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ABSTRACT

Model checking is used to aid in the design and verification of complex concurrent sys-
tems. An abstracted finite state model of a system and a set of mathematically based
correctness properties based on the design specifications are defined. The model checker
then performs an exhaustive state space search of the model, checking that the correct-
ness properties hold at each step. This thesis describes how the SPIN model checker
has been used to find and correct problems in the software design of a distributed ma-
rine vessel control system currently under development at a control systems specialist
in New Zealand. The system under development is a mission critical control system
used on large marine vessels. Hence, the requirement to study its architecture and
verify the implementation of the system. The model checking work reported here fo-
cused on analysing the implementation of the Time-Triggered Controller-Area-Network
(TTCAN) protocol, as this is used as the backbone for communications between devices
and thus is a crucial part of their control system.

A model of the ISO TTCAN protocol has been created using the SPIN model
checker. This was based on work previously done by Leen and Heffernan modelling the
protocol with the UPPAAL model checker [Leen and Heffernan 2002a]. In the process
of building the ISO TTCAN model, a set of general techniques were developed for
model checking TTCAN-like protocols. The techniques developed include modelling
the progression of time efficiently in SPIN, TTCAN message transmission, TTCAN
error handling, and CAN bus arbitration. These techniques then form the basis of a set
of models developed to check the sponsoring organisation’s implementation of TTCAN
as well as the fault tolerance schemes added to the system. Descriptions of the models
and properties developed to check the correctness of the TTCAN implementation are
given, and verification results are presented and discussed. This application of model
checking to an industrial design problem has been successful in identifying a number of
potential issues early in the design phase. In cases where problems are identified, the
sequences of events leading to the problems are described, and potential solutions are
suggested and modelled to check their effect of the system.





CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Overview of TTCAN 1
1.2 Overview of model checking 2
1.3 Main phases of the project 2
1.4 Thesis structure 3

CHAPTER 2 NETWORK PROTOCOLS BACKGROUND 5
2.1 CAN protocol 5

2.1.1 CAN protocol background 5
2.2 TTCAN protocol 7

2.2.1 TTCAN protocol background 7
2.2.2 TTCAN message schedule 8
2.2.3 Timing in TTCAN 9
2.2.4 Error-handling in TTCAN 9
2.2.5 Startup and reintegration of potential time-masters 9

2.3 Timed-triggered network protocols 11
2.4 The sponsoring organisation’s implementation of TTCAN 12

2.4.1 System architecture 12
2.4.2 Implementation of TTCAN message schedules 14
2.4.3 Modifications to TTCAN synchronisation reference

message 14

CHAPTER 3 MODEL CHECKING BACKGROUND 17
3.1 Introduction to formal methods and model checking 17

3.1.1 Specification and verification of systems using for-
mal methods 18

3.1.2 Model checking overview 18
3.1.3 Overview of model checking tools 18

3.2 Overview of the SPIN model checker 19
3.2.1 Overview of the structure of the SPIN model checker 20

3.3 Specification of model and correctness properties 21
3.3.1 Overview of the PROMELA specification language 21
3.3.2 Specification of correctness properties with LTL 21



vi CONTENTS

3.3.3 Specification of a model and correctness properties
for a coffee shop 22

3.4 Overview of techniques for modelling the progression of
time in a system 26

3.5 Use of abstraction in model checking 28

CHAPTER 4 MODEL CHECKING ISO TTCAN 29
4.1 Modelling the progression of time 29
4.2 Overview of layered model 31

4.2.1 Structure of model 31
4.2.2 Handling CAN message transmissions 33
4.2.3 Handling of timing 36

4.2.3.1 Implementation details for modelling tim-
ing 36

4.2.4 Scheduler node model 40
4.2.4.1 Startup synchronisation 40
4.2.4.2 Basic-cycle model 43

4.2.5 ISO TTCAN error-handler model 43
4.3 Overview of abstracted model 45

4.3.1 Structure of model 45
4.3.2 Handling of timing 47

4.3.2.1 Overview of implementation 49
4.3.2.2 Handling CAN bus arbitration 50
4.3.2.3 Handling TTCAN reference message 52
4.3.2.4 Example of modified timing scheme 54

4.3.3 Modifications to scheduler processes 55
4.4 Verification of models 57

4.4.1 Verified properties 57
4.4.2 Verification results 60

4.4.2.1 Initial layered model 60
4.4.2.2 Abstracted model 61

4.4.3 Discussion of results 61
4.5 Summary of modelling ISO TTCAN 62

CHAPTER 5 MODEL CHECKING THE TTCAN
IMPLEMENTATION 63
5.1 TTCAN protocol model 64

5.1.1 Overview 64
5.1.1.1 Structure of model 65
5.1.1.2 Scheduling of events at a node 66
5.1.1.3 Modelling TTCAN message transmission 69

5.1.2 Correctness properties and failure scenarios used
in verification 73
5.1.2.1 Assumptions made for verification of model 74
5.1.2.2 Failure scenarios 74



CONTENTS vii

5.1.2.3 Correctness properties 77
5.1.3 Verification results 78

5.1.3.1 Verification results for “base” configuration 78
5.1.3.2 Verification results for most common and

worst case configurations 80
5.1.3.3 Verification of model with incorrectly con-

figured module 81
5.1.4 Potential solutions 82

5.2 Voter model 83
5.2.1 Structure of model 84
5.2.2 Correctness properties 86
5.2.3 Verification results 87
5.2.4 Potential solutions 89

5.3 Signal picker model 89
5.3.1 Structure of model 89
5.3.2 Correctness properties 93
5.3.3 Verification results 94

5.4 Redundant TTCAN protocol model 94
5.4.1 Structure of model 94
5.4.2 Failure scenarios 97
5.4.3 Correctness properties 98
5.4.4 Verification results 99
5.4.5 Potential solutions 101

5.5 Summary of potential problems found 101

CHAPTER 6 CONCLUSION 103

APPENDIX A LISTINGS COMMON TO ALL MODELS 107

APPENDIX B LISTING FOR LAYERED MODEL OF ISO TTCAN 121

APPENDIX C LISTING FOR ABSTRACTED MODEL OF ISO
TTCAN 139

APPENDIX D LISTINGS FOR THE MODEL OF THE TTCAN
IMPLEMENTATION 153

APPENDIX E VERIFICATION TOOL SPECIFICATIONS 187

REFERENCES 189





ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr Allan McInnes and Dr Michael Hayes for their
help and guidance throughout the course of this project. Allan has given me great
advice and encouragement and during the project, and I would like to thank him for
setting-up what has been such an interesting and rewarding project. I would also like
to thank him for the many hours he has spent proofreading and providing feedback on
my thesis chapter drafts and papers. Michael has also given me a lot of encouragement
and some excellent advice during the course of the project, and I would also like to
thank him for the time he has spent proofreading my reports and thesis drafts and
especially for the excellent advice to improve my writing.

I would also like to thank my parents and family for all their support and encour-
agement.





Chapter 1

INTRODUCTION

A New Zealand based control systems specialist is currently developing a mission crit-
ical control system to be used on large marine vessels. The control system uses the
Time-Triggered Controller-Area-Network (TTCAN) protocol for communication be-
tween modules on the system. In distributed systems such as this, where there is
communication between concurrently executing processes, the complicated nature of
the system often leads to design errors difficult to detect using conventional testing
methods. The aim of the research described in this thesis was to apply model checking
techniques to assist in verifying the correct operation of the implementation of the
TTCAN protocol in the control system.

1.1 OVERVIEW OF TTCAN

Currently, the Controller-Area-Network (CAN) protocol is one of the most widely used
protocols for modern vehicle communications networks [Leen and Heffernan 2002b]. Al-
though the bit-timing of CAN nodes is synchronised, in terms of the timing of message
transmissions, CAN is an asynchronous protocol; triggering of message transmissions
from nodes is not synchronised to a global clock. Messages are transmitted across a
bus in response to the occurrence of corresponding events at a node. Consequently,
conflicts occur on the CAN bus when multiple messages are sent simultaneously. In
this case, a priority-based arbitration scheme determines the message transmitted on
the bus. This arbitration scheme introduces non-deterministic delay or jitter into the
system, complicating the design of systems with tight timing constraints such as vehicle
drive-by-wire systems [Fuhrer et al 2000].

TTCAN (ISO 11898-4) [ISO 11898-4 2004] adds a session layer to the existing
data-link and physical layers of the CAN protocol to offer more deterministic timing
[Leen and Heffernan 2002b]. It is a synchronous (time-triggered) protocol, where the
transmission of messages is based on the progression of a globally synchronised time-
base. Each node has a pre-defined schedule of messages to transmit in pre-allocated
time-slots. This way conflicts on the bus are eliminated and message latencies are



2 CHAPTER 1 INTRODUCTION

guaranteed. This predictability makes system design simpler and the design of more
complicated systems possible.

1.2 OVERVIEW OF MODEL CHECKING

Concurrent systems are found in a number of applications. This may be a distributed
network of sensors and actuators in a control system or multiple threads executing in
an individual program. Due to the complexity of these types of systems, subtle errors in
the system design may not always be detected by conventional simulation and testing
techniques [Merz 2000]. In such situations model checking can be used as a system
design aid to verify correctness of concurrently executing asynchronous processes.

The initial step in the model checking process is to develop a model that specifies a
finite state representation of a concurrent system, and captures the interactions between
different threads or processes in the system. Following this, a set of correctness prop-
erties are created to verify against the model [Merz 2000]. Running the model checker
exhaustively searches the state-space of the model for possible deadlocks or violations
of the specified correctness properties. If an error is detected during model checking
then a counter-example trace is produced. This shows the sequence of events leading to
the undesired condition, and this can be used to aid in debugging the implementation
[Holzmann 2004].

Leen and Heffernan applied model checking techniques when developing the ISO
TTCAN specification, using the UPPAAL model checker. The goal of their work was
to check the error handling scheme worked as intended and to ensure the protocol
was free of deadlocks [Leen and Heffernan 2002a]. Saha and Roy used the SAL model
checker to ensure that the TTCAN startup scheme behaves as expected. Checks were
made to ensure nodes synchronise to the network correctly, a time-master is elected
correctly, and possible errors are handled correctly, during the initialisation period
[Saha et al 2007]. They also used a variant of the SPIN model checker capable of
modelling fixed discrete time intervals called Discrete Time SPIN (DT-SPIN) to ensure
that the TTCAN protocol behaves as expected [Saha and Roy 2007].

1.3 MAIN PHASES OF THE PROJECT

The initial objectives of the project were to create a model of the ISO TTCAN proto-
col, and to develop a specification of correctness properties to verify against the model.
Developing the initial model of the ISO TTCAN protocol involved recreating previous
work done by Leen and Heffernan model checking TTCAN using the UPPAAL model
checker [Leen and Heffernan 2002a]. Following this, the ISO TTCAN model was mod-
ified to reflect the sponsoring organisation’s implementation of the protocol and model
checking techniques applied to verify that this implementation of TTCAN was correct.
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This involved analysing the source code and documentation of the sponsoring organi-
sation’s TTCAN driver implementation to develop an abstracted finite state model of
the system, and a set of correctness properties to check against the model. The model
was then extended to check the interaction between the sponsoring organisation’s fault-
tolerance mechanisms and the ISO TTCAN protocol. Next, the injection of faults was
modelled to check the implementation of the fault protection system. Finally, potential
solutions to the problems found in the implementation were modelled to show how they
perform when integrated into the system.

1.4 THESIS STRUCTURE

Chapter 2 gives background for the CAN field-bus protocol and the TTCAN variant
of the protocol, as this protocol is central to the BlueArrowAvx system and is the
focus of the majority of this model checking work. Chapter 3 contains background on
the process of model checking. Chapter 4 describes a layered model developed using
SPIN to model check the ISO TTCAN protocol. This model is based on work previ-
ously done by Leen and Heffernan model checking ISO TTCAN using the UPPAAL
model checker. A simplified abstracted model is also described, and comparisons of
the resources required for verification are made between the models and with Leen
and Heffernan’s model. Chapter 5 describe the models and correctness specifications
developed for the sponsoring organisation’s implementation of the TTCAN protocol.
The results of verification of the models are shown and potential problems detected
during the verifications are illustrated. Potential solutions to problems identified are
also modelled. Finally, Chapter 6 summarises the results of the model checking and
gives ideas for future work.





Chapter 2

NETWORK PROTOCOLS BACKGROUND

Sections 2.1 and 2.2 give an overview of the CAN protocol and the TTCAN protocol.
These are the protocols used by the sponsoring organisation in their next generation
distributed marine vessel control system. These protocols form the backbone of the
distributed system, and were the main focus of the model checking work done on this
system. Section 2.4 contains details of the sponsoring organisation’s implementation of
the TTCAN protocol. Some background on next generation time-triggered protocols
including FlexRay and the TTP/C protocol is also included in Section 2.3.

2.1 CAN PROTOCOL

Controller Area Network (CAN) is a networking protocol commonly used in the au-
tomotive industry. It provides a means to interface multiple sensors, actuators, and
microcontrollers, to a single serial bus. This decreases the complexity and cost of wiring
required in large systems. CAN supports real-time control applications, such as a ve-
hicle’s Anti-lock Braking System (ABS) system. It is also used in less time constrained
systems, for example, electric windows and lighting clusters, to decrease the cost of
wiring [Bosch 1991].

2.1.1 CAN protocol background

CAN provides a serial communications channel allowing message passing between mul-
tiple nodes. CAN is a multi-master protocol; any node may transmit a message if
the transmission medium is idle. Carrier Sense Multiple Access with Collision De-
tection and Arbitration on Message Priority (CSMA/CD + AMP) is used to resolve
contention if multiple nodes transmit simultaneously [Lawrenz 1997]. In the protocol,
this is known as Non-Destructive Bit-wise Arbitration (NDBA). The transmitter of a
message monitors the bit-value on the bus as it is sending. If the bit-value sent during
the message’s identifier field differs from that read off the bus then the sender has lost
arbitration and will immediately end transmission. This allows any other higher pri-
ority messages to continue to be sent without any interruption. The message identifier
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Figure 2.2 CAN 2.0A data frame, showing the formats for standard and extended frame messages.

field of the CAN message frame (Figure 2.2 [Bosch 1991]) is used for arbitration. In
CAN, a logic ‘0’ is dominant; this means the message with the lowest identifier will win
arbitration. Any messages that lose arbitration must be re-queued and transmitted
later when the transmission medium becomes idle again.

The CAN protocol guarantees consistency of data throughout the system. Mes-
sages are simultaneously broadcast to all network nodes, and nodes use the message
identifier field to filter messages they are interested in. If a message is interrupted
during transmission due to an error the transmission stops immediately and an error
frame is transmitted to all nodes on the network notifying them of the error condition.
The erroneous message is discarded by all receiving nodes and they will wait for the
message to be retransmitted. Error detection is achieved by: monitoring the bit-level
transmitted on a bus; Cyclic Redundancy Checks (CRC) of a message’s data; checking
bit-stuffing; and message frame checks. Fault confinement allows a persistently faulty
node’s transmitter to be switched off isolating it from the network [Bosch 1991].

Implementation of the physical channel is not fixed. The most common is a two-
wire balanced signaling scheme defined by ISO 11898-2, known as “high-speed CAN”
[ISO 11898-2 2003]. The transmission medium usually uses a twisted pair of wires
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for greater noise immunity (labeled ‘CAN H (CAN High)’ and ‘CAN L (CAN Low)’)
and are terminated with 120 ohm end of line resistors. CAN uses Non-Return to Zero
signalling (NRZ) with bit-stuffing. A CAN node can signal ‘recessive’ and ‘dominant’
states. The CAN transceiver is wired so that a logic ‘0’ bit value driven on the bus
is ‘dominant’. A logic ‘0’ will override the ‘recessive’ logic ‘1’ bit value if multiple
nodes are trying to simultaneously access the bus. The physical medium performs a
wired-and logical function [Lawrenz 1997].

2.2 TTCAN PROTOCOL

Modern vehicles contain complicated distributed control systems of sensors and actu-
ators. Currently, the CAN protocol is one of the most predominant communications
protocols used in these types of networks [Leen and Heffernan 2002b]. It is an asyn-
chronous event-triggered protocol, events are sent around the network as they occur.
Due to the event-triggered nature, conflicts can occur on the bus when multiple mes-
sages are sent simultaneously. A priority based arbitration scheme is used to determine
which message is transmitted on the bus. This introduces non-deterministic latency
to message transmissions, complicating the design of systems with tight timing con-
straints, such as a closed loop distributed control system like those used in vehicle’s
brake or steer by-wire systems [Fuhrer et al 2000].

The increasing size and complexity of these types of systems has introduced a need
for a variant of the protocol that provides deterministic timing across the system. This
makes system design simpler and the design of more complicated systems possible.
Time-Triggered CAN (TTCAN) is a variant of the CAN protocol that offers more
precise timing. The TTCAN protocol is the addition of a session layer (layer 5 of
the OSI model), defined by ISO 11898-4 [ISO 11898-4 2004], to the existing data link
(OSI layer 2) and physical (OSI layer 1) layers of the existing CAN protocol [ISO
11898-1 2003].

TTCAN is a synchronous (time-triggered) protocol, where the transmission of mes-
sages is based on the progression of a globally synchronised time base. Each node has
a pre-defined schedule of messages to transmit in pre-allocated time-slots. This way
conflicts on the bus are eliminated and message latencies can be guaranteed [Fuhrer
et al 2000].

2.2.1 TTCAN protocol background

In TTCAN the transmission of messages is triggered by the progression of a shared
global time base. Access to the CAN bus is controlled in a similar manner to a Time
Division Multiple Access (TDMA) protocol, by pre-allocating time-slots for nodes so
they can have exclusive access to the bus to transmit messages. Time synchronisation
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Figure 2.3 TTCAN matrix-cycle.

is achieved by the periodic transmission of a specific message known as a ‘reference mes-
sage’ from a designated time-master node. On receiving the Start of Frame (SOF) bit
of the reference message, the pre-defined transmission cycles of all nodes are restarted.
Messages will be sent when their scheduled time-slot becomes active [Leen and Heffer-
nan 2002b].

Using a time-triggered protocol allows deterministic timing of transmissions and
a higher portion of the overall bandwidth of the system to be utilised. However, the
latency of transmissions may be greater than when using an event-triggered protocol.

2.2.2 TTCAN message schedule

The period elapsed between two consecutive reference messages is known as a basic-
cycle. It is composed of a number of timing windows where messages are scheduled for
transmission or reception [Fuhrer et al 2000]. TTCAN nodes are synchronised by a pe-
riodic sending of a reference message from a time-master node. On receiving a reference
message, a node restarts and begins sending the pre-configured messages scheduled in
its basic-cycle. More complex systems require greater flexibility in how messages can
be sent and received; this can be achieved using a matrix-cycle, as illustrated in Figure
2.3. This allows a set of basic-cycles, each with different combinations of messages, to
be repeated. The columns of the matrix-cycle are called transmission columns. At the
start of each transmission column a sub-time window (called the transmission enable
window) is defined; messages must be sent within this window otherwise they will run
into the next time-slot, corrupting the next message.

There are three types of windows: free windows, arbitrating windows, and exclusive
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windows. Free windows are left for future expansion, nothing is transmitted in these
slots. Arbitrating windows allow nodes to compete for access to the bus using CAN’s
NDBA to resolve conflicts. Exclusive windows are used to send scheduled time-triggered
messages from a node without contention [Leen and Heffernan 2002b].

2.2.3 Timing in TTCAN

Time in TTCAN is represented in terms of Network Time Units NTUs. The event
trigger times for messages and network time reference marks are measured in terms of
NTUs. TTCAN supports two different levels of timing resolution, Level 1 and Level
2. Level 1 timing is more coarse; the NTU period is the same duration as one CAN
bit-time interval. In Level 2, the NTU period is a fraction of a physical second. It
is calculated with a higher time resolution, increasing timing accuracy. Level 2 also
allows drift compensation and synchronisation to another network or time source such
as a GPS signal [Hartwich et al 2003].

2.2.4 Error-handling in TTCAN

Figure 2.4 shows the ISO TTCAN error-handling state-machine [Leen and Heffer-
nan 2002b]. Message Status Counter (MSC) registers are assigned to each exclusive
time-slot message. They keep a record of any communication errors on the network.
If there is a communications error when transmitting a message, the message’s MSC
count is incremented. If successful the count is decremented. If the count for any
message’s MSC reaches 7, or if the difference between any two MSCs is greater than 2,
an error is reported [Leen and Heffernan 2002b]. Also, the number of scheduled trans-
missions from a node during a basic-cycle period is compared to the actual number
of messages transmitted. If the number of messages sent is greater than expected a
transmit overflow error is reported; if the number sent is less than expected a transmit
underflow error is reported.

When there is no fault at a node the state-machine will be in the S0 state, as shown
in Figure 2.4. If there is an MSC difference, MSC receive error, or transmit underflow
error the node will enter the S1 warning state. If there is an MSC transmit, or transmit
overflow error, the node will enter the S2 error state. Here, all transmissions from the
node are disabled excluding reference messages and acknowledgements. A configuration
error, application watch-dog timeout, or reference message watch-dog timeout will cause
the node to enter the S3 state, indicating a severe error. Here, all transmissions on the
bus are stopped.
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Figure 2.4 TTCAN error handling state-machine.

2.2.5 Startup and reintegration of potential time-masters

Due to the importance of keeping nodes in synchronisation, TTCAN provides redun-
dant time-master nodes to provide a backup if the current time-master fails. Up to
eight nodes on the network can be configured to be potential time-masters. In the
case where multiple nodes are competing to become time-master, the node with the
highest priority will become the time-master. When a potential time-master node is
reset, or powers on, it will check for existing traffic on the bus and whether a reference
message has been sent by another time-master. If no reference message is received
after a timeout period, the potential time-master will send its own reference message
and become the network time-master. If a reference message with higher priority is
received, the potential time-master will stop sending its reference message and synchro-
nise to this time-master. If a lower priority reference message is received, the potential
time-master first synchronises to this time-master’s basic-cycle. Then at the beginning
of the next cycle it sends its own reference message. CAN NDBA will allow the higher
priority reference message to win arbitration and the lower priority time-master will be
over-ridden. A timeout period is used to detect if a reference message is missed by a
potential time-master. After a timeout, potential time-masters will start sending their
reference message, and arbitration will decide the new time-master [Fuhrer et al 2000].

Potential time-master nodes have a pre-defined initial reference message trigger
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offset value. This value is used in the startup procedure to stagger the timeouts for
triggering of the initial transmission of a reference message from time-master nodes.
This initial reference message trigger offset value is pre-configured; nodes with a higher
priority have a smaller offset. The staggering of timeouts allows the potential time-
master with the highest priority to transmit first after system power-on or reset. This
avoids unnecessary conflicts and arbitration on the bus that results from nodes trans-
mitting simultaneously [Fuhrer et al 2000].

To enable greater flexibility, the TTCAN protocol allows transmission cycles to be
triggered either periodically, or in response to an event. This is achieved by allowing a
period of no activity between consecutive basic-cycles, known as a gap-period. A gap-
period is initialised following the completion of the current basic-cycle before the next
basic-cycle begins if the ‘Next is gap’ bit is set in the time-master’s reference message.
The gap-period finishes and the next basic-cycle begins when a reference message is
transmitted from the time-master node in response to a corresponding event. This
allows the system to be more responsive to certain events as the basic-cycle will be
immediately restarted in response to the event. If the expected reference message is
not detected during the gap-time a timeout will occur and the basic-cycle will restart.
The initial gap-time timeout during synchronisation is required so that if a potential
time-master, that is not the active time-master, is reset during a gap period, a reference
message will not immediately be sent by the node causing it to incorrectly takeover as
the active time-master.

2.3 TIMED-TRIGGERED NETWORK PROTOCOLS

Time-triggered protocols are preferred to event-triggered protocols for use in safety crit-
ical systems such as steer and brake by-wire systems in the next generation of vehicles
[Maier et al 2002]. Using a time-triggered protocol allows predictable and determinis-
tic trigger times for communication between components on the system. The TTCAN
protocol has been added as an extension to the existing CAN physical and data-link lay-
ers to allow time-triggered communication over existing CAN installations. Currently,
CAN is the one of the most popular automotive control networks [Maier et al 2002].
This addition to the protocol allows existing networks to use deterministic timing and
more efficient use of the available bandwidth [Fuhrer et al 2000]. A disadvantage of
extending the existing CAN protocol is that the bandwidth is limited to the standard
CAN bandwidth of 1 Mbit/s [Maier et al 2002].

The next generation of protocols must support higher bandwidths, determinism,
fault-tolerance, and support for distributed control by offering a distributed global time-
base [Kopetz 2001]. FlexRay and TTP/C are two next generation protocols designed
to meet these requirements. Both FlexRay and TTP/C support redundancy as part of
the protocol by specifying redundant buses, unlike TTCAN. They also support higher
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data-rates than TTCAN; TTP/C runs at 25 Mbit/s and FlexRay runs at 10 Mbit/s.
Flexray uses differential signalling over a two wire bus similar to CAN. The high data-
rate is achieved by not allowing collisions as part of the protocol [FlexRay EPS 2006].
This means the bus can be actively driven high or low by the bus drivers. TTP/C uses
IEEE standard 802.3 (Ethernet CSMA/CD) as the physical layer to achieve these high
data-rates [TTChip 2005]. Another advantage over TTCAN is the clock synchronisa-
tion algorithms used in FlexRay and TTP/C are fully distributed so the protocol is
tolerant of an arbitrary failure of any network node. TTCAN uses a master-slave clock
synchronisation algorithm and only supports a single bus so it cannot support a single
arbitrary fault of a network node [Maier et al 2002].

Currently, FlexRay is being developed by BMW and DaimlerChrysler and is used
in the BMW X5, X6, 7 series, and in the Audi A8 [Lukasiewycz et al 2009]. TTP/C has
been developed at the Technical University of Vienna and is used for engine control
in the Lockheed Martin F16 and Aermacchi M-346; for the cabin pressure control
system in the Airbus A380; and in the environment control system of the Boeing 787
Dreamliner [Lu and Lei 2010].

2.4 THE SPONSORING ORGANISATION’S IMPLEMENTATION

OF TTCAN

The sponsoring organisation are using the TTCAN protocol as the backbone for com-
munication between components in their next generation distributed marine vessel con-
trol system. Using a time-triggered architecture allows messages responsible for real-
time control of the vessel to be allocated time-slots at the beginning of each basic-cycle.
This way the control and feedback messages are deterministic making the response of
the distributed control system more predictable and the design simpler. Diagnostic,
status, heart-beat and other lower priority messages are sent in an arbitrating window
at the end of each message cycle, so they do not interfere with the real-time control
messages.

2.4.1 System architecture

The system is a dual redundant distributed marine vessel control system based on the
TTCAN protocol. The redundant CAN buses are labelled P and Q in Figure 2.5. The
vessel is usually wired with a bus running down each side of the vessel. The system
consists of three main types of modules: Control Input Devices (CID), Vessel Control
Units (VCU), and Hydraulic Control Units (HCU). Each module is connected to both
of the redundant CAN busses.

CIDs take input actions from the operator, such as adjusting the throttle levers
or steering angle of the helm, and translate these to input commands that are sent
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to the VCU. Each CID has redundant STM32 Cortex M3 microcontrollers. Each
microcontroller is connected to one of the redundant CAN busses. A system is able to
be configured with multiple control stations or a single control station depending on
the size of the vessel. On larger vessels, this allows an operator control of the vessel
from different locations. Each station on a vessel may have a different configuration of
CIDs.

The VCU processes control input commands from the CIDs and feedback messages
from the HCUs. It uses response curves to translate the commands and feedback
into output demands that are sent to the HCU to control the vessel’s steering, thrust
direction, and engine throttle. The VCU uses an NXP LPC2xxx microcontroller. This
has two CAN controller modules, one connected to the P bus, and the other to the Q

bus, as shown in Figure 2.5. When the currently active time-master VCU transmits
messages, they are sent on both CAN buses. The VCU only accepts messages from
one of these buses; the currently active bus being determined by the ‘signal picker’
module in the VCU. The VCU is the time-master of the system; it is responsible for
synchronising the message schedules of the other network nodes. This is achieved by
the active VCU periodically sending a TTCAN sync reference message.

The HCU is the interface to the vessel’s thrust and direction control. Sensors on
the hydraulic control units monitor a number of parameters including the temperature,
r.p.m, and steering angle. This information is used for feedback control and diagnostics
of the hydraulic units. The HCU controls hydraulic actuators to adjust the steering,
thrust direction and vessel’s trim, as well as control the engine throttle. Each HCU
has a separate STM32 microcontroller connected to each CAN bus. There is also a
separate STM32 microcontroller used for the independent backup system. Another
STM32, known as the house keeper, is used to switch control between the redundant
TTCAN busses and the backup system. A fault on either bus will cause the HCU to
switch to the other bus. The system will switch to backup if this is selected by the
operator. The backup system gives limited control of the vessel and is designed to be
used if the primary system fails.

2.4.2 Implementation of TTCAN message schedules

The currently active time-master VCU node sends a sync reference with a 50 ms period,
as shown in Figure 2.6(a). Receiving the reference message restarts message transmis-
sion cycles at the other nodes on the system. The time-master is referred to as the
‘sync master’ in this implementation, as the ‘time-master’ is already used in the im-
plementation to synchronise nodes to a real-time clock. The implementation currently
differs from ISO TTCAN in that the schedules are only used for message transmissions.
The nodes are not aware of messages that are scheduled to be received.

Figure 2.6(b) shows the format of a basic-cycle used in the sponsoring organisation’s
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Figure 2.5 Block diagram of the sponsoring organisation’s redundant control system.

TTCAN implementation. The initial gap after the first reference message is due to
the method used to trigger scheduled message transmissions. The schedule stored in
each node contains the time until the next message is to be triggered, this is used
to set a general purpose timer with the next scheduled message transmission time
during the timer ISR triggered to send the currently scheduled message. However, the
first scheduled messages timeout is loaded in the reference message receive complete
interrupt. A fixed offset value of 420 µs is subtracted from the first message trigger
time to reduce the time delay before sending this initial message. Following this initial
gap period, the schedule is divided into exclusive time-slots each with a duration of
500 µs.

Following the initial reference message, there is an exclusive time-slot for each HCU
to transmit. This is followed by exclusive time-slots for each CID on the currently active
station to transmit. The number of CID slots is fixed to provide enough transmit slots
for the station on the system with the greatest number of CIDs. In stations with
fewer devices these become free slots with no transmission. There are three slots for
transmissions from the currently active VCU. These are used to transmit throttle,
steering, and reverse demand messages to the HCU to control the hydraulic units in
response to control inputs. Following this, an arbitrating window is opened to allow
transmission of periodic messages, such as heart-beat, diagnostic, fault, and button-
state messages.
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(a) Diagram showing the repeated 50 ms message transmission schedule.
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(b) Timing diagram of a basic-cycle in the implementation.

Figure 2.6 Details of the message schedule used in the sponsoring organisation’s TTCAN implemen-
tation.

2.4.3 Modifications to TTCAN synchronisation reference message

A modified version of the ISO standard L2 synchronisation reference message frame is
used in the implementation. Figure 2.7 shows a comparison of the ISO standard Level
2 (L2) synchronisation message with the version used in this implementation. The
bits in the message fields with darker shading are not used in the implementation. A
key difference is that the Master Reference Mark (MRM) fields, usually used in a L2
implementation to broadcast the sync master’s MRM time-stamp to correct for clock
drift in remote nodes, are not used in this implementation.

Even though a L2 synchronisation message is used, the implementation effectively
uses a Level 1 timing scheme. The reception of the reference message at a node ef-
fectively resets a local general-purpose timer to restart a transmission schedule. The
hardware does not allow a complete implementation of L1 timing. There does not ap-
pear to be any way to synchronise the Start of Frame (SOF) bit of the reference message
to the system clock used to trigger message transmissions as is done in ISO TTCAN. In
ISO TTCAN with L1 timing, a 16 bit free-running counter called Local_Time, clocked
by the system clock passed through the Time Unit Ration (TUR) prescaler, is used to
keep track of the node’s time. When the SOF bit of a reference message is received a
time stamp is recorded, known in ISO TTCAN as a Ref_Mark. The time stamp is sub-
tracted from the current value of Local_time, giving a value known as the Cycle_Time.
The Cycle_Time value is used to trigger scheduled events in the current message cycle
[Hartwich et al 2003]. The STM32 microcontroller used in the implementation contains
a 16 bit free-running counter, but this is only able to store the time stamp of a received
message in a register. The current timer value can not be accessed, so it can not be
used to calculate the Cycle_Time value by subtracting the last reference message time
stamp from it.
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Another difference in this implementation is that the Cycle_Count field in the L2
message is used to select the current schedule to start, as shown by the field labelled
Schd_Sel in Figure 2.7(b). This value corresponds to the currently active station. The
cycle count fields are optional in the ISO standard and are usually used to trigger a
specific basic-cycle from a transmission matrix. The count is incremented after each
basic-cycle until all cycles of the transmission matrix are completed. The network
time resolution NTU_Res bits 0 – 3, which are also optional in ISO TTCAN, contain
a value that is used by nodes to select which of the periodic messages to transmit
during their arbitrating windows. This also differs from the ISO standard; these bits
are usually used to show the current state of the fractional part of a node’s NTU time.
The field holds a number between 0 – 19, and nodes will send a periodic command or
control message whenever the number matches the node’s assigned value. This value
is pre-assigned when the node’s schedules are configured.
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(a) ISO TTCAN L2 reference message format.
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(b) Reference message format used in the sponsoring organisation’s implementation.

Figure 2.7 Comparison of ISO TTCAN L2 reference message format against the sponsoring organ-
isation’s implementation.



Chapter 3

MODEL CHECKING BACKGROUND

Concurrent systems can be found in many applications. For example, networks of
sensors and actuators in a car, or concurrently executing threads in an individual
program. Due to the concurrent nature and ever increasing complexity of these types of
systems, subtle errors in the system design may not always be picked up by conventional
simulation and testing techniques [Merz 2000].

Model checking can be used as a system design aid to verify correctness of con-
currently executing asynchronous processes. The inputs to a model checker are an
abstracted model of a distributed system and a set of properties that must hold for the
system. The model checker verifies the model by traversing every possible path through
the model’s state-space, checking correctness properties at each step. If a property does
not hold, a counter-example trace is produced to show the sequence of events leading
to violation of the property [Merz 2000].

Section 3.1 gives background on the use of formal methods and the model checking
process in general. Section 3.2 gives an overview of the SPIN model checker, as this is
the model checker that has been used in this research. Section 3.3 shows how a model
and correctness properties are developed for a system, and the example of a coffee shop
is used to illustrate these ideas. Section 3.4 explains why it may be necessary to model
the timing of a system, and gives background on how this has been achieved by other
authors. Finally, Section 3.5 describes how abstraction is used in model checking and
why it is important.

3.1 INTRODUCTION TO FORMAL METHODS AND MODEL

CHECKING

This section explains the link between model checking and other formal methods, such
as formal specification and theorem proving. It gives a brief overview of model checking
and includes details of some commonly used model checking tools.
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3.1.1 Specification and verification of systems using formal methods

Formal methods are a set of mathematical techniques and tools that allow developers
to formally specify and verify systems. The techniques are used to help gain insight
into a design and to help identify potential problems early in the development process
[Clarke and Wing 1996]. Formal methods are usually applied to safety critical systems
or systems where failure may lead to a large loss of revenue.

Formal specification of a system may be made using languages such as Z notation.
Z is mathematical language used to formally specify a sequential system and its prop-
erties [Spivey 1988]. A more powerful technique is formal verification; two common
techniques are theorem proving and model checking. These techniques allow develop-
ers to prove specified properties hold against a mathematical specification of a system
[Clarke and Wing 1996]. Theorem proving involves developing a set of mathemati-
cal rules to represent a system and using these to prove that properties hold against
the system. Model checking is a process that involves developing a finite state model
to represent a system and checking that correctness properties hold in a exhaustive
state-space search of the model of a system [Clarke and Wing 1996].

3.1.2 Model checking overview

Model checking is a technique used to automatically verify correctness properties against
a finite state model of a system. If a property is disproved a counter-example is gen-
erated showing the sequence of events leading to the violation of the property. The
counter-example is a valuable aid in debugging a system [Merz 2000].

One of the limitations of model checking is the state-space explosion problem that
occurs when models grow in size. This limits the size and complexity of systems that
can be checked effectively [Clarke and Wing 1996]. Another limitation is that it can-
not be guaranteed how accurately the model specified represents the implementation.
An abstract representation of the implementation must be developed to reduce the
state-space of the model. This reduces the time and memory required for verification.
Simulated runs of the model and verification of properties that are expected to hold in
the system are compared with the behavior of the implementation to help gain confi-
dence in the model [Merz 2000]. This process is analogous to testing a mathematical
model used to represent a control system. Here, comparing the simulated output with
the observed behaviour of the system is also done to gain confidence in the model.

3.1.3 Overview of model checking tools

There are a number of model checking tools available. Some of the more widely used
ones are:
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SPIN The SPIN model checker checks a model specified in the PROMELA language
against an Linear Temporal Logic (LTL) formula representing correctness proper-
ties to be verified against the system. SPIN is an explicit-state model checker; it
adds new states to a representation of the state-space as it performs an exhaustive
search of the model [Holzmann 2004].

SAL The Symbolic Analysis Library (SAL) is a set of tools used for formal verifi-
cation of transition systems. It includes a model checker that uses a symbolic
representation of the state-space of a system [de Moura et al 2003].

SMV The Symbolic Model Verifier (SMV) system is used to verify systems against
correctness properties expressed using Computation Tree Logic (CTL). SMV also
uses a symbolic representation of the state-space of the system [McMillan 1993].

FDR The Failures-Divergence Refinement (FDR) tool is used to verify Communicat-
ing Sequential Processes (CSP) models by comparing processes and checking that
one process is a valid refinement of the other [Formal Systems 2005]. CSP is a lan-
guage for specifying concurrent processes that communicate by message passing
[Roscoe 1997].

UPPAAL, KRONOS The UPPAAL [Larsen and Pettersson 1997] and Kronos [Bozga
et al 1998] model checkers allow checking of real-time systems, using a technique
based on the theory of timed automata. Each automaton in the model has an
associated clock value to keep track of timing, and interprocess communication
is achieved through message passing and shared variables. These model checkers
use a symbolic representation of the state-space of the system [McMillan 1993].

3.2 OVERVIEW OF THE SPIN MODEL CHECKER

SPIN is a model checker that has become increasingly popular in industry. In SPIN, the
input specification language for describing the model is called Process Meta-Language
(PROMELA). Correctness properties to be checked against the system are described
using Linear Temporal Logic (LTL). A processes is created in PROMELA to represent
the control flow of a program. The individual threads of a multi-threaded application or
simultaneously executing nodes on a distributed network are modelled in PROMELA
by creating multiple processes. Shared variables and message channels are used to
model interprocess communication.

A concurrent program can be visualised as a Finite State Machine (FSM) repre-
sented as a state transition diagram. This is commonly referred to as an automaton
in model checking. The state of the system is the current expression being executed in
each of the concurrent processes and the corresponding set of values of variables. The
FSM contains nodes to represent every possible state the system enters, and edges to
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Figure 3.1 Block diagram of main components of the SPIN model checker.

represent possible transitions between states [Ben Ari 2008]. The SPIN model checker
is used to traverse all possible paths through the concurrent system’s FSM, checking
specified safety and liveness properties at each step.

3.2.1 Overview of the structure of the SPIN model checker

A block diagram of the main components of the SPIN model checker is shown in Figure
3.1 [Ben Ari 2008]. Initially, the concurrent system to be model checked is described
using the PROMELA specification language. The PROMELA parser will find any
syntax errors in the model. SPIN is able to perform random simulation runs through
the model to check that it behaves as expected. Each simulation run takes a non-
deterministic path through the state-space of the model. A SPIN simulation uses a
random number generator to make any non-deterministic choice with the current time
used as a seed.

The main use of SPIN is to verify the correctness of a model against a set of cor-
rectness specifications for all possible sequences of executions of events in the model.
To perform this verification SPIN is applied to the PROMELA model to create a set
of verifier output files that make a C program. The files have historically been given
the prefix pan.*. The verifier program is compiled using the gcc compiler. Running
the verifier traverses every possible path of the FSM to check safety and liveness prop-
erties specified for the model. The Linear Temporal Logic (LTL) interpreter is used
to convert an LTL formula into correctness claims that are checked against the model
during verification. If any correctness property is violated an error will be flagged and
a counter-example trail file will be created. The counter-example trail file is able to be
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run by SPIN as a simulation showing the sequence of steps leading to the error [Holz-
mann 2004].

3.3 SPECIFICATION OF MODEL AND CORRECTNESS

PROPERTIES

The models to be verified by the SPIN model checker are specified using a language
known as PROMELA. PROMELA is a system description language used to model
concurrent systems. It is not an implementation language. PROMELA is designed to
efficiently describe the way different processes in a system interact with each other.

3.3.1 Overview of the PROMELA specification language

In PROMELA, multiple processes are used to model the control flow of concurrently ex-
ecuting modules of a system. These may be the individual threads of a multi-threaded
program or multiple nodes on a distributed networked system. Interprocess communi-
cation is modelled using shared variables, that processes have read and write access to,
and by message channels where messages are sent between processes. Message chan-
nels are used to model synchronous and asynchronous communications. Asynchronous
communications is modelled using a message buffer with multiple entries; messages are
placed in the buffer if there is room and retrieved in FIFO order. Synchronous com-
munication is modelled using a zero length buffer. In this case, the sender will block
until the receiving process has reached the corresponding receive channel statement
[Holzmann 2004].

3.3.2 Specification of correctness properties with LTL

Temporal logic formulae are logical statements that allow sequences of a program’s
states to be described. LTL formulae are built from atomic propositions; symbols
representing expressions which evaluate to true or false. Propositions are combined by
a set of logical operators: and (∧), or (∨), not (¬), implies (→), and equivalent (↔).
Temporal operators, always (◻), eventually (◇), and until (U), are used to add an
element of time to a formula. For example, p U q means proposition p is true until
the instant when q is true [Holzmann 2004].

In SPIN, LTL properties are used to specify safety and liveness properties against
a model. Safety properties are specifications that a correctness property should hold
over an exhaustive state space search of a model. This is represented in LTL by the
always operator (◻), meaning the specified proposition is always invariantly satisfied
throughout the search. A liveness property specifies that some event eventually hap-
pens. Liveness is represented in LTL by the eventually operator (◇), meaning the
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specified property is eventually satisfied during the search. Checking liveness proper-
ties is important, as a safety property may hold in the trivial case where the process is
doing nothing at all. Operators can be combined to check more interesting properties,
for example, the always and eventually operators are combined to check that an event
occurs infinitely often in a system. The model must always eventually pass through a
certain state to satisfy the property [Ben Ari 2008].

3.3.3 Specification of a model and correctness properties for a coffee

shop

This model is a simple example to show how the specification of a model and correctness
properties are developed in SPIN. The process of placing an order at a coffee shop is
modelled. The initial model consists of two Customer processes representing customers
named Joe and Kaye, and a CoffeeServer process. As customers arrive they queue
up and place an order for a coffee. The coffee server makes their coffee and gives the
coffees to the customers in the order they have arrived. Correctness properties are used
to show that customers always receive the correct order and that customers eventually
get a chance to order.

Listing 3.1 PROMELA source for ‘Customer’ process from the coffee shop model.

proctype Customer(byte customer)

{

mtype orderedCoffee;

mtype receivedCoffee;

5 /* A customer can place an order for a coffee of any type

and will accept a coffee when it is ready. */

ORDER_COFFEE: atomic

{

/* First customers queue up. */

10 QUEUE ! customer;

/* Customer orders any type of coffee. */

if

:: skip ->

orderedCoffee = LATTE;

15 :: skip ->

orderedCoffee = CAPPUCCINO;

fi;

ORDERS ! orderedCoffee;

}

20 /* Wait for the coffee. */

COFFEE[customer] ? receivedCoffee;

RECEIVED_COFFEE:

goto ORDER_COFFEE;

}
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When customers arrive at the coffee shop they queue up for a coffee. This is
represented in the model using the QUEUE asynchronous message channel, as shown in
Listing 3.1. In the model, messages representing customer’s identifiers are placed into
the queue in the order they have arrived. The queued messages are received by the
CoffeeServer process in FIFO order. A non-deterministic condition is used to select
the coffee ordered by the customer. A message representing the type of coffee ordered
by the customer is placed in the ORDERS asynchronous message channel. This is again
received by the CoffeeServer process, where the orders are processed in FIFO order.
An atomic block is required so the queuing and ordering events in different Customer

processes cannot interleave. This way the sequences in which customers arrive and
place orders for coffee are the same. It is assumed in the model that the customers
place their orders in the order that they arrive, as is usually the case in a shop.

Initially, the CoffeeServer process takes the coffee orders out of the ORDERS queue
in the order they have been placed by the customers. Following this, the coffees are
then delivered to the customers in the order they have queued; the most recent coffee
made is given to the first customer in the queue. Finally, the type of coffee prepared is
passed as a channel parameter through the COFFEE zero-length synchronisation message
channel to this customer.

Listing 3.2 PROMELA source for ‘CoffeeServer’ process from the coffee shop model.

proctype CoffeeServer ()

{

mtype orderedCoffee;

byte firstCustomer;

5 START:

/* Take the orders as they come out of the ‘ORDERS ’ FIFO queue. */

ORDERS ? orderedCoffee;

/* Coffees given to customers in the order they are queued. */

QUEUE ? firstCustomer;

10 COFFEE[firstCustomer] ! orderedCoffee;

goto START;

}

Listing 3.3 Definitions of state labels and local variables used in the coffee shop model.

/* Type of coffee received by Joe. */

#define joe_received_type Customer [1]: receivedCoffee

/* Type of coffee ordered by Joe. */

#define joe_order_type Customer [1]: orderedCoffee

/* Joe receives a coffee. */

#define joe_received_coffee Customer [1] @RECEIVED_COFFEE

/* Joe receives the correct coffee. */

#define joe_correct_order (joe_order_type == joe_received_type)

A safety and liveness property are checked against this model. A liveness property
is checked to ensure that Kaye eventually receives a coffee. The LTL formula specifies
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that the Customer process representing Kaye always eventually passes through the
RECEIVED_COFFEE state (defined in Listing 3.3).

[] <> kaye_received_coffee

This property initially failed verification due to the case where Joe repeatedly orders
coffees, not giving Kaye a chance to order. This is commonly known as starvation of the
process. The property passes verification when fairness is enabled in the verification.
Enabling fairness means that if a process has an executable statement that is always
executable in a run then the statement must eventually be executed [Ben Ari 2008]. In
this model, the Customer processes are given a ‘fair’ chance to place orders for coffees.

A safety property is also checked to ensure that customers always receive the coffee
that they ordered. The LTL formula specifies that it is always the case that when Joe
receives a coffee, the coffee ordered is the same as the coffee received. The formula
uses the implication operator (->) so the property only checks the coffees are the same
when the order is received.

[] (joe_received_coffee -> joe_correct_order)

Listing 3.4 shows a modification of the CoffeeServer process, where coffee mak-
ing jobs are dispatched by the coffee server to other workers in the coffee shop. In
this model, there are two workers named Bob and Mark. Each is represented by a
CoffeeMaker process, as shown in Listing 3.5. The liveness property checked in the
previous model holds in this model; assuming weak fairness, a customer always eventu-
ally receives a coffee. However, the safety property, checking that the customers always
receive the coffee they ordered, does not hold in this model.

Listing 3.4 PROMELA source for ‘CoffeeServer’ process, modified to give jobs to separate ‘Cof-

feeMaker’ processes.

proctype CoffeeServer ()

{

mtype orderedCoffee;

mtype finishedCoffee;

5 byte firstCustomer;

/* Current state of the coffee makers. */

mtype makerState[TOTAL_MAKERS ];

makerState[BOB] = READY;

10 makerState[MARK] = READY;

START:

if

:: ORDERS ? orderedCoffee ->

/* Send a request for a coffee maker to go make the

15 coffee , if they are not busy. */

if

:: makerState[MARK] != BUSY ->

makerState[MARK] = BUSY;
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MAKE_COFFEE[MARK] ! orderedCoffee;

20 :: makerState[BOB] != BUSY ->

makerState[BOB] = BUSY;

MAKE_COFFEE[BOB] ! orderedCoffee;

:: else ->

skip

25 fi;

:: FINISHED_COFFEE[MARK] ? finishedCoffee ->

/* Received the coffee made by Mark. */

makerState[MARK] = READY;

/* Coffees given to customers in the order they are queued. */

30 QUEUE ? firstCustomer;

COFFEE[firstCustomer] ! finishedCoffee;

:: FINISHED_COFFEE[BOB] ? finishedCoffee ->

/* Received the coffee made by Bob. */

makerState[BOB] = READY;

35 QUEUE ? firstCustomer;

COFFEE[firstCustomer] ! finishedCoffee;

fi;

goto START;

}

Listing 3.5 PROMELA source for ‘CoffeeMaker’ process from the coffee shop model.

proctype CoffeeMaker(byte maker)

{

mtype orderedCoffee;

START:

5 /* Receive a request to make a coffee. */

MAKE_COFFEE[maker] ? orderedCoffee;

/* Finished making the coffee. */

FINISHED_COFFEE[maker] ! orderedCoffee;

goto START;

10 }

Listing 3.6 shows an error trail file generated by the violation of the safety property
checked against the modified coffee shop model. As the names of workers and customers
in the model are defined using the preprocessor, usually the raw values would appear
in the output trace. To improve readability the trail is modified by replacing the raw
values with the defined names. The mtype construct is used where possible to simplify
the model. However, it cannot be used for the customer and worker names as they are
used to index into arrays and these index values cannot be assigned to mtype elements.

The error trail shows the sequence of events that caused the property to be dis-
proved. The sequence of events leading to the error begins with Kaye queueing then
placing an order for a Latte. An order to make the coffee is then given to one of the
coffee makers that is not busy. In the mean time, Joe arrives and places an order for
a Cappuccino, and this order is promptly made by the other coffee maker. The coffee
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server gives this coffee to the first queued customer. In this case, it is Kaye. Kaye is
given the Cappuccino when she asked for a Latte. Some time later, the other coffee
maker finishes making the Latte and this is then given to Joe. The orders have been
mixed up due to the first coffee maker taking longer than the other to finish making
the coffee, and the assumption that the server only remembers the order in which the
customers arrived and not what each customer actually ordered. The model is an
example of a race-condition, as the sequence of events in concurrent processes causes
unexpected results in the model.

Listing 3.6 SPIN error trail when checking the safety property against the modified coffee shop

model.

1 . . QUEUE!KAYE

Customer: (KAYE), Order: (LATTE)

2 . . ORDERS!LATTE

2 . . . ORDERS?LATTE

5 Send order to Bob to prepare

4 . . . MAKE_COFFEE[BOB]! LATTE

4 . . . . . MAKE_COFFEE[BOB]? LATTE

1 . QUEUE!JOE

Customer: (JOE), Order: (CAPPUCHINO)

10 2 . ORDERS!CAPPUCHINO

2 . . . ORDERS?CAPPUCHINO

Send order to Mark to prepare

3 . . . MAKE_COFFEE[MARK]! CAPPUCCINO

3 . . . . MAKE_COFFEE[MARK]? CAPPUCCINO

15 5 . . . . FINISHED_COFFEE[MARK]! CAPPUCCINO

5 . . . FINISHED_COFFEE[MARK]? CAPPUCCINO

1 . . . QUEUE?KAYE

8 . . . COFFEE[KAYE]! CAPPUCCINO

8 . . COFFEE[KAYE]? CAPPUCCINO

20 Customer: (KAYE), Recv: (CAPPUCCINO)

6 . . . . . FINISHED_COFFEE[BOB]! LATTE

6 . . . FINISHED_COFFEE[BOB]? LATTE

1 . . . QUEUE?JOE

7 . . . COFFEE[JOE]! LATTE

25 7 . COFFEE[JOE]? LATTE

Customer: (JOE), Recv: (LATTE)

3.4 OVERVIEW OF TECHNIQUES FOR MODELLING THE

PROGRESSION OF TIME IN A SYSTEM

In the coffee shop example (Section 3.3.3) it may be necessary to check a property that
a coffee is always received within a certain time frame. To check this timing property
the specification of the model has to be modified to model the progression of time.
This section gives an overview of various techniques that have been used to model the
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progression of time in model checkers. The technique used to model the progression of
time for the models developed during this research is described in Section 4.1.

Saha and Roy used a variant of SPIN modified to model discrete time called Dis-
crete Time SPIN (DT-SPIN) to verify correctness the TTCAN protocol [Saha and
Roy 2007]. DT-SPIN allows multiple timers to be declared in the model. The incre-
ment of a global ‘tick’ variable is used to control the progression of time throughout the
model. Events occurring at predefined times are modelled by initialising a timer with
a timeout value for an event and triggering the event on this timeout. This allows the
timing of events to be scheduled to occur in a certain time-slot. The time events occur
and time elapsed between events is able to be modelled. A limitation of this approach
is that the timing of events within the same time-slice is not known, but only the order
the events occur. If the events are in the same time-slice but in different processes,
verification of the model will check all possible interleavings of events in the time-slice,
as would occur in an untimed model [Bosanacki and Dams 1999].

Saha and Roy have also used a technique called synchronous calendar to model the
progression of time when verifying the TTCAN startup protocol using the SAL model
checker [Saha et al 2007]. Synchronous calendar is a variant of a technique previ-
ously developed by Dutertre and Sorea to model time when verifying the fault-tolerant
real-time startup protocol in the Time Triggered Architecture (TTA) [Dutertre and
Sorea 2004]. The technique is based on time scheduling techniques commonly used in
discrete event simulation; multiple concurrent processes each have an associated time-
out value that is used to control the timing of execution of events in each process.
Constructs known as ‘event calendars’ are used to model asynchronous communica-
tion between processes. These calendar events are used to model interaction between
processes by message passing that may cause a receiving process to perform a discrete
state transition. Saha and Roy have modified this technique to model the synchronous
message transmissions that they have assumed to occur in this TTCAN model.

A similar technique to handle the progression of time known as Variable Time
Advance (VTA) has also been used by a number of authors to reduce the state-space
required when solving optimisation problems using the SPIN model checker. In VTA,
when time is advanced, the current time skips forward to the instant when an event
causes the next state transition. The current time is increased by varying amounts,
unlike a fixed-time strategy where time is incremented in a pre-defined interval with
events becoming active when the time-step reaches their interval. VTA allows periods
of no activity, that are not of interest in the verification, to be skipped reducing the
state-space of the model. VTA was used by Brinksma and Mader to handle timing
in a model used to first verify then optimise the program for a Programmable Logic
Controller (PLC) for a chemical plant [Brinksma et al 2002]. The technique has also
been used subsequently by Ruys when optimising a schedule for producing personalised
identification cards [Ruys 2003] and by Gu, He, and Yuan when finding an optimal bus
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and task schedule of a distributed embedded system [Gu et al 2007]. Also, Weininger
and Cofer used an explicit representation of time similar to this to reduce the state-space
when modelling the ASCB-D startup synchronisation algorithm using SPIN [Weininger
and Cofer 2000].

Leen and Heffernan used the UPPAAL model checker to verify correctness of the
ISO TTCAN during its initial development [Leen and Heffernan 2002a]. In UPPAAL,
multiple concurrently executing processes can be modelled, with each process being
represented as a finite-state machine known as an automaton. Each automaton is
associated with a globally synchronised clock variable, enabling the progression of time
to be modelled [Behrmann et al 2004].

3.5 USE OF ABSTRACTION IN MODEL CHECKING

A major problem in model checking is the exponential increase in computational com-
plexity as models grow. This is known as the ‘state-space explosion problem’ [Clarke
and Wing 1996]. To combat this, abstractions must be made when creating a model
of the system [Merz 2000].

Model checking languages are deliberately designed to be simple. They are used
to efficiently model the control flow and interprocess communication in concurrent
systems. Concurrent systems such as distributed or multi-threaded systems, by their
nature, have a modular design with low coupling between modules. Different processes
maintain information about their state independently, and the details of the internal
workings of other processes are abstracted away. To reflect this, the specification lan-
guage is designed so it effectively represents the interface between processes; it is not
concerned with the computations within a process. For example, the PROMELA lan-
guage does not provide support for floating point arithmetic but supports interprocess
communications through message channels. Modelling tries to find flaws in the high
level system design; it is not concerned with coding or computational errors in the code
itself. Keeping the models simple by only focusing on the interface between processes
enables abstract models to be developed that tend to produce smaller state-spaces
during verification [Holzmann 2004].

An interesting example that illustrates the use of abstraction in a model was shown
in the modelling of a fault protection (FP) system for a space-craft [Feather et al 2001].
The FP system is a module responsible for detecting, interpreting, and correcting faults
on the space-craft. An abstraction is used between the space-craft’s sensors and the
FP system to hide the complex operation of the sensors. Instead of reading a range
of temperature values off an input sensor this is abstracted to the values ‘normal’
or ‘overheated’. This abstraction and other simplifications allowed the system to be
verified using a reasonable amount of resources, while still allowing the correct operation
FP system to be verified.



Chapter 4

MODEL CHECKING ISO TTCAN

This chapter describes an abstracted model of the ISO time-triggered controller area
network (TTCAN) protocol developed using the PROMELA specification language and
verified using the SPIN model checker. The design of the model is based on previous
work by Leen and Heffernan modelling TTCAN using the UPPAAL model checker
[Leen and Heffernan 2002a]. Replicating Leen and Heffernan’s results is a first step
towards developing general techniques for model checking TTCAN-like protocols. One
of the reasons why the SPIN model checker was chosen is because it does not require a
licence fee for commercial use. Also, we initially planned to create an untimed model
of the protocol as we thought it would be more efficient to model only the ordering of
events in the system and not the time which they occurred. We assumed adding timing
would not be necessary as we were checking properties which appeared to only depend
on the interleavings of events in the system. This would be well suited for verification
by SPIN as it is an untimed model checker, so it does not have any overhead required
to model timing. However, during the development of the model, we found that it
was necessary to model the timing of events relative to each other to verify a number
of the properties checked against the model. So, a strategy was added to model the
progression of time. This allowed modelling of the timing of events during the startup
algorithm as well as the timing of TTCAN messages, time-slots, and scheduled events.

Section 4.1 gives an overview of how the progression of time is represented in the
models of ISO TTCAN that have been developed. Section 4.2 describes the layered
model of the ISO TTCAN protocol that was developed initially. Section 4.3 describes
a simplified, abstracted model that has a much smaller state-space than the layered
model. The correctness properties checked, and results of the verification of the models
are shown in Section 4.4.

4.1 MODELLING THE PROGRESSION OF TIME

Initially, an untimed model was planned, but during development it was decided that a
strategy to model timing was needed to allow modelling of timing of events relative to
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each other [Weininger and Cofer 2000]. Adding timing allowed us to model the timing of
scheduled TTCAN events, message transmission lengths, lengths of time-slots, duration
of timeouts, and the timing during the startup and reintegration periods. Modelling the
timing of these events relative to each other proved to be important for a number of the
correctness properties verified against the model. Using a timed strategy also simplified
the process of translating Leen and Heffernan’s model from UPPAAL, which is a timed
model checker, into SPIN. Finding an efficient strategy to model the progression of
time was essential in reducing the state space required for verification.

This section gives an overview of the technique that was initially used to model
the progression of time in a layered model of the ISO TTCAN protocol. Modifications
made to the timing scheme in a more abstract model of the protocol are also described.

In the initial layered model of ISO TTCAN, a discrete representation of time
known as Variable Time Advance (VTA) is used to model the progression of time. The
technique used is based on the strategy previously applied by Weininger and Cofer
when modelling the ASCB-D synchronisation algorithm with SPIN [Weininger and
Cofer 2000], and is similar to a number of other author’s VTA strategies, as described
in Section 3.4. Using this strategy, the current time advances by having the model
jump to the instant where the next event causes a state transition. The advantage
of using this technique over a fixed-time step model is that periods where there is no
activity are skipped, allowing the state-space of the verification to be reduced. We also
found that this technique simplified the process of developing a model that accurately
represents the protocol, when compared to an untimed model. Using this technique
enabled greater control in constraining the sequences of events generated by the model.

Due to the complicated sequences of events generated by the model when multiple
nodes are executing concurrently, the original VTA technique proved difficult to make
additions to. A decision was made to develop a more efficient technique for modelling
the progression of time. The technique used to model the progression of time in the
layered model was modified to reduce the amount of unnecessary concurrency in the
model. The aim was to reduce the complexity of the model, making it simpler to under-
stand and develop. The technique developed here again borrows ideas from Weininger
and Cofer when modelling the ASCB-D protocol. Using this abstracted technique,
nodes that are scheduled to execute at the same instant are now activated one after
the other. The model makes the execution appear simultaneous by not advancing the
elapsed time in the model until all nodes with events scheduled at the same instant
have finished executing. To achieve this TTCAN messages transmitted by nodes at the
same instant must be buffered and arbitration decided when time next advances.

Section 4.2.3 contains further details of how the progression of time is handled in
the layered model. Section 4.3.2 contains further details of how the progression of time
is handled in the abstracted model.
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4.2 OVERVIEW OF LAYERED MODEL

This section describes the initial model that was developed to verify ISO TTCAN
using the SPIN model checker. The model is based on a model developed by Leen
and Heffernan to verify ISO TTCAN using the UPPAAL model checker. The model
contains a layered representation of the CAN protocol which underlies TTCAN.

The model aims to recreate the sequences of events involved in transmitting a mes-
sage over a single shared bus using the TTCAN protocol. This is achieved by building
a detailed layered model of the protocol. A node’s scheduler initialises transmission
of a message, and a transceiver process controls access to the bus. A model of the
physical layer controls CAN arbitration and maintains the bus state. At the top level,
an error handling process maintains the error status of each node by modelling the ISO
TTCAN error-handling state machine.

Section 4.2.1 outlines the structure of the layered model. Section 4.2.2 gives details
of the sequence of events involved in transmitting a TTCAN reference message over
the bus. Section 4.2.3 gives an overview of the scheduler node process used to model
the startup synchronisation algorithm in network nodes and TTCAN message cycles.
Finally, Section 4.2.5 gives an overview of the error-handler process that models the
ISO TTCAN error-handling scheme in each node. The error handler model is common
to both the layered and abstracted ISO TTCAN models. The complete PROMELA
source code of the model appears in Appendix B.

4.2.1 Structure of model

The model consists of 12 processes, including the initialisation (init) process. The
modelled system consists of three nodes that receive and transmit messages on the CAN
bus, a process to simulate the progression of time (AdvanceTime), and a model of the
physical layer (PhysicalMedium). Each node has a transceiver process (Transceiver),
a time-scheduler process, and an error handling process (ErrorContainment). On
initialisation, event scheduler processes are instantiated for each node in the model.
Each node can be configured as either a potential time-master (TimeMasterNode) or a
time-receiving node (TimeReceivingNode). Figure 4.1 is a block diagram showing the
processes modelled in the 3-node system and the interprocess communication between
them.

Interprocess communication is achieved using synchronous communication channels
and global variables. Figure 4.2 shows the synchronisation channel messages of one node
in the model. Synchronisation channels are zero-length message channels between a
single sending and receiving process. The sending process blocks until the receiving
process is ready to the accept message. The use of synchronisation channels constrains
the possible sequence of events so that the model only recreates sequences of events
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Figure 4.1 Block diagram of processes and connections between them in the three node ISO TTCAN
model.
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that occur in the TTCAN protocol. In SPIN, synchronisation channels are defined
between a single source and destination; there is no multiway sync channel like that
used in Leen and Heffernan’s UPPAAL model. To simulate broadcast of a message to
multiple nodes, a dedicated synchronisation channel is used to communicate between
a source and each remote process. Messages are sent over the synchronisation channels
one after the other from the source to each receiving process.

In translating the UPPAAL model, a technique had to be developed to model the
progression of time in SPIN. A single time handling process is used to handle timing
in the model; this replicates the way UPPAAL models the progression of time by
associating global clock variables with each process. Modelling of timing is described
in further detail in Section 4.2.3.

4.2.2 Handling CAN message transmissions

A node’s time-scheduler process triggers the transmission of a message on the CAN
bus. The node’s scheduler models sending and receiving messages in pre-determined
time-slices, allowing a pre-defined TTCAN matrix-cycle to be modelled. On initiating
transmission of a TTCAN message, a synchronisation channel message (TX_TRIGGER)
is passed from a node’s scheduler process to its transceiver process.

The transceiver process handles sending and receiving messages on the physical
layer. Each transceiver keeps track of the current state of the bus. It will allow
transmission if the bus is idle, and block transmission if the bus is busy. The physical
layer process models CAN message arbitration, resolving conflicts if nodes transmit
simultaneously.

The following list details the sequence of events involved in sending and receiving
a TTCAN reference message (see Figure 4.3):

1. The SET_TIMEOUT sync channel message is sent from the transmitting node’s
scheduler process to AdvanceTime. The next timeout for the node is updated with
an initial delay period in which the node triggers transmission of the message. If
multiple nodes trigger transmission during this period arbitration is decided by
the PhysicalMedium process.

2. The transmission is initialised by sending a TX_TRIGGER synchronisation channel
message from a node’s scheduler process to its transceiver process.

3. On receiving the trigger message, the transceiver initiates sending of a message
on the bus by sending a TX_FRAME synchronisation message to the physical layer.

4. The physical layer process (PhysicalMedium) initially waits in the IDLE state
allowing nodes to place a message on the bus. PhysicalMedium replies to the
node’s transceiver with the FRAME_ACCEPTED sync channel message indicating
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the message has been accepted for transmission on the bus, as shown in Listing
4.2.

5. The TX_ACCEPTED sync channel is used between the node’s transceiver and sched-
uler to signal that the message has been accepted for transmission on the bus.
The MSG_ON_BUS sync channel message is then used to signal to the AdvanceTime

process that the reference message transmitted is now on the bus. These sync
channels are used to synchronise the progression of time in the AdvanceTime pro-
cess with the processes representing the nodes and physical layer during trans-
mission of a TTCAN message.

6. After all transmitting nodes have had an opportunity to place a message on
the bus, the BusClock global variable is set high in AdvanceTime to represent a
‘recessive’ state on the CAN bus. This transition from ‘dominant’ to ‘recessive’
states models the bus transitioning from idle to the Start of Frame (SOF) period
of the CAN message.

7. After the transition to the SOF period, the PhysicalMedium process transitions
to the SOF_BROADCAST state. Here, SOF sync channel messages are sent to each
node to indicate that a transmission on the bus has begun. Separate SOF_BCAST

synchronisation channel messages must be sent to each node as PROMELA spec-
ifications only allow synchronisation channel messages to be transmitted between
a single source and destination process. On receiving the SOF_BCAST synchroni-
sation channel message, nodes that are not transmitting transition from an idle
state to a message reception state.

8. CAN bus arbitration for simultaneously transmitting nodes is handled by the
PhysicalMedium process. The result of the arbitration for transmitting nodes is
passed to each node’s transceiver from the PhysicalMedium process.

9. The REF_MARK sync channel message is sent from each node’s transceiver to its
scheduler. This represents the reception of a reference message at a node. The
received reference message may cause a state transition depending on the priority
of the reference message compared with the priority of the node.

10. Each transmitting nodes’ scheduler processes then waits for a TX_FINISHED sync
channel message from the transceiver. In the case of a reference message, on
receiving the TX_TRIGGER, an REF_TX_COMPLETE sync channel message is sent
to the time handling process. The REF_TX_COMPLETE sync channel is used to
synchronise AdvanceTime with transmission and processing of a reference message
in nodes’ scheduler processes. Handling of received reference message is explained
in further detail in Section 4.2.3.1.
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11. On completing transmission, the END_FRAME synchronisation channel message is
sent from the node’s transceiver to the physical layer.

12. The PhysicalMedium process replies with the EOF_BCAST synchronisation channel
message followed by the BUS_IDLE_BCAST synchronisation channel message. The
bus returns to idle state and another transmission is able to commence.

Listing 4.1 PROMELA source from ‘LayeredISOTTCAN.pml’. From the PhysicalMedium process,

used to model the transition from ‘recessive’ to ‘dominant’ when the bus state changes from idle to the

SOF bit period.

IDLE:

/* Wait on a TX_FRAME sync message from transceiver , signals

that a node is ready to transmit a message on the bus. Go to

the next state when the bus clock timer advances. This

5 signals that the SOF period has finished. */

if

:: TX_FRAME[NODE_1] ? 0;

FRAME_ACCEPTED[NODE_1] ! 0 ->

:: TX_FRAME[NODE_2] ? 0;

10 FRAME_ACCEPTED[NODE_2] ! 0 ->

:: TX_FRAME[NODE_3] ? 0;

FRAME_ACCEPTED[NODE_3] ! 0 ->

:: atomic

{

15 BusClock == 1 ->

printf (" Physical layer - SOF period ended\n");

BusFrameId = BUS_NOT_IDLE;

/* Reset the bus clock timer. */

BusClock = 0;

20 }

goto SOF_BROADCAST;

fi;

/* Continue waiting for more transmissions. */

goto IDLE;

During the transmission of a message on the bus, the PhysicalMedium process
broadcasts the FRAME_ACCEPTED, SOF_BCAST, STABLE_ID_BCAST, EOF_BCAST, and BUS_

IDLE_BCAST synchronisation messages to each node’s transceiver, as shown in Figure
4.2. These messages model the start and end of important message fields as they are
transmitted on the bus.

The sequence of events involved in modelling transmission of the reference message
is more complex than for a regular TTCAN message. This is because the reception of
a reference message at a node may cause the next scheduled timeout value for the node
to change. The REF_MARK and REF_TX_COMPLETE sync channels, used to synchronise
processing of a received reference message at a node with AdvanceTime, are not required
when transmitting an exclusive or arbitrating window TTCAN message.
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Figure 4.2 Synchronous communication channels between processes.

4.2.3 Handling of timing

The strategy used for handling the progression of time is a VTA technique based on
the technique used by Weininger and Cofer when modelling the ASCB-D synchroni-
sation algorithm with SPIN [Weininger and Cofer 2000]. The progression of time is
controlled by a single time handling process called AdvanceTime. Each node contains a
scheduler process that stores a schedule of events to trigger at predefined times. Nodes
communicate with the time handling process updating it with their next event trigger
time. The time handling process then calculates the next node with a scheduled event
and activates it. If multiple nodes are scheduled with events at the same instant they
are activated simultaneously. This allows events in one node that may cause a state
transition in another node that is executing concurrently to be modelled.

Using this technique means that as the current time advances the model jumps to
the instant where the next event at a node causes a state transition. The advantage of
using this technique over a fixed-step model is that periods where there is no activity
are skipped, allowing the state-space of the verification to be reduced.

4.2.3.1 Implementation details for modelling timing

The progression of time is controlled by the AdvanceTime process. A synchronisation
channel message (TIMEOUT) is sent from AdvanceTime to activate the process where
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the next earliest event is scheduled. After the activated process executes its scheduled
event, an updated time for triggering the next event is sent as a parameter over the
SET_TIMEOUT synchronisation channel back to the AdvanceTime process, as shown in
Figure 4.7. The time advanced by the process is then subtracted from the other node’s
next scheduled event times and the process with the next earliest scheduled event is
selected once again.

In this model, if there are nodes with events scheduled at the same instant both
nodes are activated concurrently by sending a TIMEOUT sync channel message to each
node. Listing 4.2 shows the portion of code from the AdvanceTime process in the
layered model for determining the node or nodes that are triggered next. If the
triggerTimeout flag is set for a node, then a TIMEOUT sync channel message is sent to
activate the node following this.

Listing 4.2 PROMELA source from ‘LayeredISOTTCAN.pml’. Used to determine the next node or

nodes to be activated.

minTimeToNextTimeout = MAX_TIMEOUT;

/* Find next node(s) to timeout. */

FOR(i, 0, TOTAL_NODES)

if

5 :: (( timeToNextTimeout[i] < minTimeToNextTimeout)

&& (NodePresent[i] != false )) ->

minTimeToNextTimeout = timeToNextTimeout[i];

/* Reset all trigger timeout message flags except this one

as new min time till next message has been found. Resetting

10 flags separately uses less states than a loop. */

triggerTimeout[NODE_1] = false;

triggerTimeout[NODE_2] = false;

triggerTimeout[NODE_3] = false;

triggerTimeout[i] = true;

15 :: (( timeToNextTimeout[i] == minTimeToNextTimeout)

&& (NodePresent[i] != false )) ->

/* Time to next timeout for this node matches min

value so send timeout for this node also. */

triggerTimeout[i] = true;

20 :: else ->

skip;

fi;

ROF(i);

TTCAN reference messages are able to cause state-transitions that affect the next
timeout value in a receiving node. They may be received before the next scheduled
timeout at a node, and may alter the timeout depending on the current state of the
node. This is accounted for in the model by sending a REF_MARK synchronisation
channel message from each node’s transceiver to its event scheduler process on receiving
a reference message. The next timeout value is updated in the AdvanceTime process
by setting the global AdjustTimeout flag in the scheduler node process, as shown in



4.2 OVERVIEW OF LAYERED MODEL 39

Listing 4.3. This value depends on the current state of the receiving node and the
priority of the received reference message relative to the node itself.

The REF_MARK sync channel message receive statement in Listing 4.3 is enclosed in
an atomic block. This is required when a sync reference message causes a change of
state in a receiving node. Adding the atomic block forces the receiving node to update
its next timeout value immediately following the reference message received, and before
the time advanced during the cycle is subtracted from the other nodes.

Listing 4.3 PROMELA source from ‘LayeredISOTTCAN.pml’. Used to handle reference messages

received at a node.

START_BASIC_CYCLE:

/* If received ref. message while waiting for TIMEOUT sync

message then update the node ’s next timeout value. */

if

5 :: atomic

{

REF_MARK[nodeNum] ? 0 ->

/* Received ref message. Update the node ’s next timeout. */

AdjustTimeout[nodeNum] = true;

10 SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 - START_TX_COL_0 );

goto START_BASIC_CYCLE;

}

:: TIMEOUT[nodeNum] ? 0 ->

/* Received the scheduled timeout. */

15 skip;

fi;

Using this technique for modelling the progression of time proved to be difficult.
The interaction between currently executing nodes by the transmission of reference
messages greatly increases the complexity of the model. Saha and Roy used a technique
called synchronous calendar to overcome this problem when they modelled the TTCAN
startup protocol using the SAL model checker [Saha et al 2007]. The synchronous
calendar technique allows the next scheduled timeout value at a node to be modified
due to a received message. On receiving a reference message, the event calendar stores
an associated event and time to represent the message. The calendar event can then
be used to update a node’s next scheduled timeout if it occurs before the timeout. The
synchronous calendar technique is described further in Section 3.4.

As the ISO TTCAN model forms a base for modelling the sponsoring organisation’s
implementation of TTCAN and their redundancy, a decision was made to develop a
more abstract model of ISO TTCAN that would be less complex and simpler to modify.
The synchronous calendar technique is not used in the abstract model, because it is
simpler to handle the reference message as a special case since it is the only message
that can modify the next timeout value at a receiving node. The abstract model is
described in further detail in Section 4.3.
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4.2.4 Scheduler node model

The scheduler process models a node’s matrix-cycle as a set of pre-allocated timing
windows that are used for sending and receiving messages on the CAN bus. There are
two types of scheduler node models, the potential time-master node (TimeMasterNode),
and the time-receiving node (TimeReceivingNode). The main difference between the
two processes is that the potential time-master node models the startup synchronisation
procedure as well as a basic-cycle period, while the time-receiving node only models
a basic-cycle period. Also, the currently active time-master handles transmission of
reference messages, whereas the receiving node only handles their reception.

4.2.4.1 Startup synchronisation

The startup synchronisation model is based on Leen and Heffernan’s UPPAAL model
[Leen and Heffernan 2002a] and their description of the startup algorithm used in the
ISO TTCAN protocol in [Leen and Heffernan 2002b]. This was used as a starting point
for the model as it gave a clear description and example of the startup procedure. A
large number of state transitions from the UPPAAL model were directly translated into
PROMELA. However, handling of timing in this model is complicated by the reference
message being able to cause state-transitions that change the next timeout in receiving
nodes, as described in 4.1.

Potential time-master nodes model the startup synchronisation procedure, as il-
lustrated in Figure 4.4. After power-on, a potential time-master is integrated into the
network once it has received two consecutive reference messages from the current time-
master. After being reset, the node waits for a pre-defined maximum gap-time period
plus the delay of the initial reference message transmission to elapse, as described in
Section 2.2.5. This timeout may be interrupted by receiving a reference message from
another node.

Figure 4.4 shows that on initialisation, under normal conditions with all nodes
starting simultaneously, the potential time-master with the highest priority will be
the first to transmit its reference message. The REF_MARK synchronisation channel
represents a node receiving a reference message. The lower priority potential time-
master nodes will interrupt their initial timeouts on receiving this initial reference
message and enter the ChkRefMsg state. As the priority of the received reference
message is greater than the receiving node’s priority the node’s next timeout is set to
the pre-configured REF_TRIGGER value plus the reference trigger offset value of the node
(refTriggerOffset), as shown in Listing 4.4.

Listing 4.4 Source code for a portion of the potential time-master startup synchronisation model.

Shows how a received reference message is handled during startup.

/* Set the initial timeout for the node. */

SET_TIMEOUT[nodeNum] ! (GAP_TIME + refTriggerOffset[nodeNum ]);
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Figure 4.4 State diagram of the TTCAN startup synchronisation algorithm for a potential time-
master node [Leen and Heffernan 2002b].
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if

:: TIMEOUT[nodeNum] ? 0 ->

5 /* Had the initial gap timeout. Drop through to the next state

where the first reference is sent. */

:: REF_MARK[nodeNum] ? 0 ->

/* Received a reference message from another node. Check the

current state of the bus before transmitting. */

10 CHK_BUS[nodeNum] ! busNum;

BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

/* Check received ref. message priority against the node ’s

priority , work out the adjusted time till next timeout

and send in a sync channel to time -handling process. */

15 if

:: busFrameIdTemp < refMsgID ->

/* Priority of received ref. message greater than node

priority. Transition to "SEND_REF_MSG_4" state. */

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER +

20 refTriggerOffset[nodeNum ]);

goto SEND_REF_MSG_4;

:: busFrameIdTemp > refMsgID ->

/* Priority of received ref. message is less than node

priority. Transition to "SEND_REF_MSG_3" state. */

25 refTriggerOffset[nodeNum] = 0;

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER +

refTriggerOffset[nodeNum ]);

goto SEND_REF_MSG_3;

fi;

30 fi;

/* Send first reference message "SEND_REF_MSG_1" state. */

Transmit_Message(nodeNum , refMsgID , REF_MSG_LEN ,

ONE_SHOT_INTERVAL , ON_BUS_0 );

On successfully transmitting the first reference message, the highest priority node
sets its next timeout to the REF_TRIGGER value with the reference trigger offset set to
zero. This causes the node to again timeout before the other potential time-masters,
allowing it to transmit the second reference message. On receiving this reference mes-
sage, the lower priority potential time-masters again interrupt their current timeouts
and start their first basic-cycle as a potential time-master with the reference trigger
offset set at its initial default value. On successfully transmitting the second refer-
ence message, the highest priority node becomes the active time-master and begins its
first basic-cycle. The active time-master’s reference trigger offset is set to zero so it
will transmit its reference message first, avoiding unnecessary arbitration with other
potential time-masters at the start of each basic-cycle.
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4.2.4.2 Basic-cycle model

Once synchronised, the potential time-master node will begin a basic-cycle. The basic-
cycle modelled is the same as used in Leen and Heffernan’s model of the ISO TTCAN
protocol [Leen and Heffernan 2002a], see Table 4.1. The model is able to recreate any
basic-cycle by modifying the timing anchor point definitions and identifiers of messages
sent during the basic-cycle. Each basic-cycle of the schedule begins with the active time-
master node sending a reference message. Time-receiving nodes are synchronised to
the time-master’s reference message, and all nodes transmit according to the scheduled
time-slots of each basic-cycle.

After transmitting the reference message, the first transmission column (TC1) be-
gins. During this window, node 2 begins transmission of message 5 (has value 5 in its
identifier field), and the other nodes receive the transmitted message. In TC2, node
3 transmits message 10; in TC3, node 1 transmits message 3; and, in TC4, node 2
transmits message 6, as shown in Table 4.1. The timing of the transmission windows
is controlled by the AdvanceTime process, as described in section 4.1.

Table 4.1 TTCAN matrix-cycle used in model.

Cycle TC0 TC1 TC2 TC3 TC4

BC0

1 or 2 5 10 3 6 Message Identifier
80 120 130 120 100 Message Length (NTU)

1 or 2 2 3 1 2 Message Source
- 286 446 606 766 Receive Trigger (NTU)

BC1

1 or 2 13 7 or 11 7 or 11 8 Message Identifier
80 120 130 120 100 Message Length (NTU)

1 or 2 3 2 or 3 2 or 3 2 Message Source
- 286 - - 766 Receive Trigger (NTU)

BC2

1 or 2 9 free 7 or 11 6 Message Identifier
80 120 free 120 100 Message Length (NTU)

1 or 2 2 free 2 or 3 2 Message Source
- 286 free - 766 Receive Trigger (NTU)

4.2.5 ISO TTCAN error-handler model

Each network node has an associated ErrorContainment process. This is used to
model the ISO TTCAN error handling state machine. The error-handler state machine
is described in detail in Section 2.2.4. The ErrorContainment process is responsible
for handling faults at the node and updating the node’s error state. This is achieved
by maintaining the Message Status Count (MSC) for each message the node sends and
receives.

In this model, the error handler implemented is based on Leen and Heffernan’s
UPPAAL model of ISO TTCAN [Leen and Heffernan 2002a]. In this case, the UPPAAL
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model of the process was easily translated to PROMELA as all the states are committed
locations, meaning time does not progress between the state transitions. As time does
not have to be accounted for in this process, the SPIN model developed is an untimed
model that performs state transitions in response to receiving synchronisation channel
messages triggered by correct message transfers or transmission errors. Initially, the
process begins in a quiescent state. Here, it waits to receive a synchronisation channel
message from the node’s transceiver or event scheduler process. The synchronisation
messages trigger the error-handler to update MSC counts for the scheduled messages
and update the error state of the node.

The RX_TRIGGER (see Figure 4.2) synchronisation channel message is received by
the error-handler process when an expected scheduled basic-cycle message is received
by the node. The model assumes that the message originally sent at the beginning of a
transmission column will be buffered by the receiving nodes before being checked dur-
ing the receive trigger time-slot. The message’s MSC is decremented if the scheduled
message is received correctly, and it is incremented if received incorrectly. If the mes-
sage’s MSC count reaches 7, a MSC receive error is reported and the node transitions
to the S1 level error state, see Section 2.2.4.

The MSC_TX_NOK synchronisation channel message is received after the sending
node loses arbitration. On receiving this message, the MSC count for the message
sent is incremented. The MSC_TX_OK synchronisation channel message is received if the
sending node wins arbitration. In this case, the message’s MSC count is decremented.
If the MSC count reaches 7 for a receive error an S2 level error is reported by the node’s
error-handler state-machine.

At the end of each basic-cycle the CHECK_MSC synchronisation channel message is
sent from each scheduler node. On receiving CHECK_MSC, the exclusive messages’ current
MSC counts are compared to see if there is any pair of messages with a difference of
greater than 2 between counts. If this is the case, an MSC difference error is flagged for
the message and the error-handler process transitions to the S1 level error state. This
check will find errors in the transmission schedule. For example, a message may be
consistently over-running its allocated time-slot, causing the next scheduled message
to be repeatedly missed. In this case, the difference error will be reported more quickly
than the other MSC errors.

Each node’s error-handler state machine stores the total number of messages trans-
mitted during each basic-cycle. The counter is incremented each time a message is sent
from a node and reset to zero at the beginning of each basic-cycle period. At the end
of a basic-cycle, the current value of the counter is checked to see if it is less than
the pre-defined expected number of transmissions for the period. If so, a transmission
underflow error is flagged and the error-handler transitions to the S1 level error state.
If the transmit count is greater than the expected count the underflow count is reset.
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If the send count exceeds the expected count a transmit overflow error is reported and
the error-handler transitions to S2 level error state.

4.3 OVERVIEW OF ABSTRACTED MODEL

Verification of the layered ISO TTCAN model described in Section 4.2 takes a rela-
tively large amount of computation and memory. This is partly due to the complex
sequence of events modelled when sending a message, as well as the large number of
combinations of interleavings of events caused by allowing processes to execute simul-
taneously. In this section, we develop a model that uses a more abstract simulation of
message transmission and handling of time to further constrain the possible interleav-
ings of events and reduce the state-space required for verification. The structure of the
abstracted TTCAN model is described, as well as modifications that have been made
to the handling of timing.

As the focus of this work is verification of the TTCAN protocol, it is not necessary
to model the underlying CAN protocol in detail as is done in the layered model. The
abstracted model only includes the properties of the CAN protocol that are relevant
for verification of the TTCAN layer, such as arbitration and bus access. Using this
abstract model not only reduces the resources required for verification, but also makes
the model simpler to understand and extend. This is important as the techniques
developed for verifying TTCAN in this model are to be used as a basis for verification
of the sponsoring organisation’s implementation of the protocol.

Creation of the abstract model involves making a number of simplifications to the
layered model:

• A less complex, more abstract approach to modelling message transmissions re-
duces the number of processes and communication channels between them.

• Combining processes where possible reduces the complexity of the model.

• Modification to the handling of timing removes unnecessary concurrency from
the model. Nodes that execute simultaneously are now looked at each in turn
by the time handling process. This eliminates the large number of unnecessary
interleavings of events when the node models execute concurrently.

The complete PROMELA source code of the model appears in Appendix C.

4.3.1 Structure of model

In the initial layered model, there is a complicated sequence of events involved in
the transmission of a message. Once a message is triggered for transmission by the
scheduler node it is passed to the node’s transceiver. The transceiver then checks if
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Figure 4.5 Block diagram showing processes and synchronisation channel messages of the abstracted
ISO TTCAN model.

the bus is idle and if a new transmission can be initialised. The message is then passed
to the physical layer to model arbitration on the bus. Finally, the message is passed
back up through the protocol layers at receiving nodes. Message arbitration due to
nodes simultaneously transmitting on the CAN bus is modelled by the corresponding
processes in the model executing concurrently (see Section 4.1). The large number of
possible interleavings of events due to this concurrency also adds to the complexity of
the model.

In the abstract model, a simplified sequence of events is used to model the trans-
mission of a message over the network, resulting in a simpler process model. Figure 4.5
is a block diagram showing the processes and synchronisation channel messages used in
the abstract model. Each node process is simplified, as the node’s transceiver process
is not explicitly modelled. The key change that enables this simplification is to modify
the time keeping process to model bus arbitration, again adopting a technique used
by Weininger and Cofer when modelling the ASCB-D synchronisation algorithm with
SPIN [Weininger and Cofer 2000]. To implement Weininger and Cofer’s idea in this
model the combined time-handling and bus arbitration process has to be capable of
modelling the TTCAN protocol. CAN bus arbitration is handled within the process,
and a special case is added to handle receiving reference messages. This is required
as, in the TTCAN protocol, reference messages cause state transitions in receiving
nodes that can alter the next timeout value for the node. Error handing and startup
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synchronisation is the same as in the original layered model.

When a message is triggered for transmission from a node, a synchronisation
channel message (TX_TRIGGER) is sent directly to the AdvTimeBusArb process. The
AdvTimeBusArb process keeps track of the current state of the bus. It can be in idle,
arbitration, or busy states. The process also keeps track of the current message each
node is attempting to send, the time remaining for any current transmission, and the
identifier of any message that is currently being transmitted on the bus. The CHK_BUS

synchronisation channel message is sent from a node to the AdvTimeBusArb process to
request the current state of the bus. The BUS_STATE synchronisation channel message
is returned with the current state of the bus, the time remaining if a message is cur-
rently transmitting on the bus, and a flag indicating whether the node won or lost the
last arbitration. A comparison of the sequence of events required to send a reference
message in the original layered model and the abstract model is shown by the message
sequence charts in Figure 4.6.

Assertions are used in the layered and abstract models to verify that important
properties of the CAN protocol hold in both models. These checks ensure that the
node with the lowest identifier always wins arbitration and nodes only transmit when
the bus is idle, providing greater confidence that the abstraction of the layered model
is valid.

4.3.2 Handling of timing

A number of changes are made to the time handling process in the abstracted model.
This is done to make it simpler to extend and also to reduce the state-space required
for verification. Nodes that execute simultaneously are modelled by node processes
that are now not allowed to interleave. The AdvTimeBusArb process achieves this by
controlling the activation of the processes, looking at each node in turn. The model
makes execution appear simultaneous by buffering any messages sent by apparently
simultaneously transmitting nodes in the AdvTimeBusArb process and resolving arbi-
tration before time next advances. It is not necessary to model all interleavings of
events from nodes as the only interaction between the nodes on the system, that effects
the next state transition, is by the transmission of messages across the bus.

The technique developed here is also used as the basis for handling of timing
in models of the sponsoring organisation’s TTCAN implementation. A file labelled
AdvTimeBusArb.pml contains code for the AdvTimeBusArb process and is included in
models using the C pre-processor. AdvTimeBusArb has been designed as a reusable
component that can be added to different models. The complete PROMELA source
code of AdvTimeBusArb appears in Appendix A.
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Figure 4.6 Comparison using message sequence charts to show the sequence of events involved when
transmitting a reference message with the original layered and abstracted approaches to modelling ISO
TTCAN.
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4.3.2.1 Overview of implementation

Both the progression of time and CAN bus arbitration in the model are handled by the
AdvTimeBusArb process. The interaction between processes, through sync channels, to
model the progression of time is shown in Figure 4.7(a). The sequence of events that
advance time to the next scheduled event that causes a state transition is shown by the
flow chart in Figure 4.7(b).

The sequence of events for handling the progression of time and bus arbitration in
AdvTimeBusArb are as follows:

1. The process compares each node’s timeToNextTimeout value, the time until the
node’s next scheduled event, to find the node with the minimum timeout value,
as shown in Listing 4.5.

Listing 4.5 PROMELA source from AdvTimeBusArb for finding the node with the next timeout.

FOR(i, 0, TOTAL_NODES)

IF (( timeToNextTimeout[i] < minTimeToNextTimeout)

&& (NodePresent[i] != false )) ->

minTimeToNextTimeout = timeToNextTimeout[i];

5 /* Save the index of the next node to timeout. */

nextTimeoutIndex = i;

FI;

ROF(i);

2. Bus arbitration is handled if time has advanced and there are any messages
triggered for transmission on the bus. Handling of bus arbitration is described in
further detail in Section 4.3.2.2.

3. A TIMEOUT synchronisation channel message is sent to the node that is next to
timeout. This timeout indicates an event is due to be triggered at the node. If
multiple nodes are triggered simultaneously, they are looked at each in turn with
the lowest identifier triggered first. Because simultaneously transmitted messages
are buffered, then arbitration decided before time is next advanced, the order that
the nodes are looked at is not important.

4. AdvTimeBusArb waits for CHK_BUS, TX_TRIGGER, or REF_MARK sync channel mes-
sages. On receiving CHK_BUS, the current state of the bus is returned to the
requesting node process. TX_TRIGGER initialises transmission of a message on the
bus. REF_MARK indicates a reference message has been received at a node and each
node’s next timeout value is to be updated. Handling of the TTCAN reference
message is described in further detail in Section 4.3.2.3.

5. AdvTimeBusArb waits for a SET_TIMEOUT synchronisation channel message from
the currently executing node. An updated timeout value is sent from the node
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as a parameter through this synchronisation channel, and this is used to update
the node’s next timeout value.

6. The time elapsed by the node that timed-out is subtracted from the other node’s
next timeout values, as shown in Listing 4.6.

7. AdvTimeBusArb then restarts to find the next node with the minimum time to
next timeout.

Listing 4.6 PROMELA source from ‘AdvTimeBusArb’ process used to subtract time advanced by

executing node from other nodes.

FOR(i, 0, TOTAL_NODES)

/* Subtract the time advanced form the last node ’s timeout from

the other node ’s time till next timeout values. */

IF (( nextTimeoutIndex != i) && (NodePresent[i] != false )) ->

5 timeToNextTimeout[i] = timeToNextTimeout[i]

- minTimeToNextTimeout;

FI;

ROF(i);

4.3.2.2 Handling CAN bus arbitration

Listing 4.7 shows how bus arbitration of simultaneously transmitting nodes is resolved.
When a message is initially triggered for transmission on the bus the doArbitration

flag within the AdvTimeBusArb process is set. The AdvTimeBusArb process stores the
identifier of any node transmitting at this instant in the AdvTimeBusArb processes’
nodeFrameId array. Once time advances, arbitration is handled with the node trans-
mitting the highest priority message winning (transmitting the lowest identifier). The
identifier of the winning node’s message is assigned to BusFrameId which is a variable
used to keep track of the current state of the bus. The rxMsgBuff flag for the message
in each receiving node’s MsgStatus structure is set to indicate the message has been
received without error at the other nodes configured for the system.

Listing 4.7 PROMELA source from ‘AdvTimeBusArb’ process for handling bus arbitration.

IF (( busArbitration[checkBus ]. doArbitration != false)

&& (minTimeToNextTimeout > 0)) ->

busArbitration[checkBus ]. doArbitration = false;

/* Work out winner of arbitration if there are multiple nodes

5 transmitting on bus simultaneously. This is also done by

default if a single node is transmitting. */

busArbitration[checkBus ]. tempBusId = BUS_IDLE;

/* Bus that message is transmitted on may be corrupt. */

BusCorrupt ();

10 /* Find the lowest id of currently transmitting nodes. */

FOR(i, 0, TOTAL_NODES)



4.3 OVERVIEW OF ABSTRACTED MODEL 51

IF ((((i % 2) == checkBus) || (REDUNDANT_BUSES == 1)) &&

(busArbitration[checkBus ]. nodeFrameId[i]

< busArbitration[checkBus ]. tempBusId) &&

15 (NodePresent[i] != false)) ->

busArbitration[checkBus ]. tempBusId

= busArbitration[checkBus ]. nodeFrameId[i];

/* Id of node transmitting the msg that won arb. */

busArbitration[checkBus ]. arbWinnerIndex = i;

20 FI;

ROF(i);

/* An arbitration winner is determined whether there is arbitration

on the bus or if a node transmits without contention. */

FOR(i, 0, TOTAL_NODES)

25 IF (((i % 2) == checkBus) || (REDUNDANT_BUSES == 1)) ->

#ifdef ERROR_HANDLER

UpdateErrorHandler ();

#endif

IF i != busArbitration[checkBus ]. arbWinnerIndex ->

30 NodeSendStatus[i]. receiveBuff.messageID

= busArbitration[checkBus ]. tempBusId;

/* Message received correctly or corrupted. */

if

:: busArbitration[checkBus ]. busFrameId.status

35 == CORRUPT ->

NodeSendStatus[i]. receiveBuff.status = CORRUPT;

:: else ->

/* Bus is OK but receiver may still be corrupt. */

MsgReceiverCorrupt ();

40 IF NodeSendStatus[i]. receiveBuff.status

!= CORRUPT ->

MapBackupVCUMsg ();

/* Buffer bit set when message is received

without error at the node. */

45 MsgStatus[i]. rxMsgBuff[NodeSendStatus[i].

receiveBuff.messageID] = true;

FI;

fi;

FI;

50 FI;

ROF(i);

/* Assigns the message id of the arbitration winner to the bus. */

busArbitration[checkBus ]. busFrameId.messageID

= busArbitration[checkBus ]. tempBusId;

55 FI;
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4.3.2.3 Handling TTCAN reference message

In this TTCAN protocol model, reference messages are able to cause state-transitions
that affect the next timeout value in a receiving node. They may be received before the
next scheduled timeout at a node and alter the timeout depending on the current state
of the node. This is accounted for in the model by sending the REF_MARK synchronisation
channel message between the transmitting and receiving processes when a reference
message is transmitted, as shown in Figure 4.7(a). A timeout in the receiving node
may be interrupted and updated to a new value on receiving this REF_MARK message.

Listing 4.8 gives an example of how handling the reference message has been im-
plemented in the model. If a REF_MARK, due to the node receiving a reference message,
is received from another node during the period after the initial reference message
is transmitted from a potential time-master node, then the process updates the next
timeout value to REF_TRIGGER + refTriggerOffset. On transmitting a reference
message, a REF_MARK sync channel message is also sent from the transmitting process
to AdvTimeBusArb. This causes AdvTimeBusArb to change to a state where it allows
nodes that received the reference message to transmit an updated next timeout value
through SET_TIMEOUT if necessary.

Listing 4.8 PROMELA source from ‘TimeMasterNode’ for handling received reference message dur-

ing a timeout after transmitting the first reference message.

/* Timeout after transmitting initial ref. msg. */

if

:: TIMEOUT[nodeNum] ? 0 ->

/* Scheduled timeout has elapsed. */

5 :: REF_MARK[nodeNum] ? 0 ->

/* Received reference message from other node. */

/* Check the current state of the bus before transmitting. */

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

10 /* Check received ref message priority against the node ’s priority ,

work out the adjusted time till next tick and send in a sync

channel to ‘AdvTimeBusArb ’. */

if

:: busFrameIdTemp < refMsgID ->

15 /* Priority of received ref msg greater than node priority. */

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset );

goto TIMEOUT_4;

:: busFrameIdTemp > refMsgID ->

/* Priority of received ref msg less than node priority. */

20 refTriggerOffset = 0;

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset );

goto TIMEOUT_3;

fi;

fi;
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4.3.2.4 Example of modified timing scheme

An example of the timing scheme implemented is shown in Figure 4.8. Figure 4.8(a)
shows an example of a matrix-cycle consisting of two basic-cycles in system with 3
nodes transmitting over a single CAN bus. In Figure 4.8(b), at NTU count 5 nodes
1 and 2 are scheduled to transmit their arbitrating window messages simultaneously.
In the model, the AdvTimeBusArb process initially triggers node 1 to transmit mes-
sage 4 and when it has completed triggers node 2 to transmit message 5. The nodes
execute simultaneously, but in the model the nodes are triggered one after the other.
This is shown Figure 4.8 by the arbitrating messages being transmitted at different
times without the NTU count being advanced. To allow simultaneous transmission
to be modelled, the messages are buffered in the AdvTimeBusArb process and arbitra-
tion is delayed until time advances. In this example, node 1 wins arbitration as it is
transmitting the message with the lowest identifier.
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4.3.3 Modifications to scheduler processes

In the abstract model, the time-receiving and potential time-master node processes
are simplified to reduce the state space of verification and to make the code easier
to maintain, as shown in Listing 4.9. In the layered model, each node process, after
starting a new basic-cycle, sets the next timeout and waits for it to elapse before
sending the next message or setting the next receive trigger. The node’s scheduler
process triggers all the messages in a basic-cycle before the control flow of the process
loops back to the initial state and the next cycle begins. The identifiers of messages
to send and timeouts between trigger points are coded directly into the main body of
each of the node’s scheduler processes.

In this abstracted model, the transmission schedule for each node is pre-assigned
during the first phase of the init process. Each node contains a structure called
Schedule that stores the number of frames in the transmission schedule and an array
containing the message identifier to send (nextMsgId) and the delay before sending it
(nextTxSendDelay) for each transmission in the schedule. The trigger times for the
transmissions and receptions of the basic-cycle modelled (see Table 4.1) are assigned
to each node’s scheduler structure.

The sequence of events for triggering of the next scheduled event at a node using
this scheme is:

1. Each node process will block and wait for a TIMEOUT sync channel message to be
received.

2. After receiving a TIMEOUT, the node process will execute any pending events. This
may be to transmit a scheduled message, open or close the arbitrating window,
or finish the current basic-cycle.

3. The SET_TIMEOUT sync channel message is sent to AdvTimeBusArb to set the
timeout for triggering the next scheduled event.

4. The identifier of the next scheduled event is buffered to be sent when this timeout
next elapses.

5. The process then loops back to the initial state and blocks, again waiting for the
TIMEOUT sync message from the AdvTimeBusArb process.

6. Once the END_SCHEDULE state is reached, the process transitions to the
FINISHED_BASIC_CYCLE state. Here, the process clears flags set by messages
received during the cycle, resets the schedule event counter to point to the initial
event, and transitions back to START_BASIC_CYCLE.
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Listing 4.9 PROMELA source from ‘TimeReceivingNode’ for triggering of scheduled events at node.

START_BASIC_CYCLE:

printf ("Node %d: Starting basic cycle\n", nodeNum );

if

:: TIMEOUT[nodeNum] ? 0 ->

5 printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? 0 ->

/* Received a reference message. Skip the initial

scheduled reference message. */

currentFrame = 0;

10 /* Add a dummy delay here to skip through code which loads

message into tx buffer on first pass. */

eventToTrigger = SKIP_SEND_MSG;

SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

15 fi;

if

:: eventToTrigger == SKIP_SEND_MSG ->

/* Do nothing after this timeout. Skip through and set the

20 next timeout. */

skip;

:: (eventToTrigger > SKIP_SEND_MSG)

&& (eventToTrigger < RX_TRIGGER) ->

if

25 :: eventToTrigger <= REF_ID_LAST ->

/* Sending a scheduled reference message. */

:: eventToTrigger == END_SCHEDULE ->

/* Reached the end of the basic -cycle. Handle cycle count ,

frame count , and sending periodic reference message. */

30 goto FINISHED_BASIC_CYCLE;

:: else ->

/* Send a scheduled message. */

TransmitMessage(nodeNum , eventToTrigger , EXCLUSIVE_MSG_LEN ,

ONE_SHOT_INTERVAL , BUS_P );

35 fi;

:: else ->

/* Setup rx trigger for scheduled received message. */

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

fi;

40

START_SYNC_REF:

/* Set the next scheduled timeout. */

eventToTrigger = Schedule[nodeNum ]. schedBasicCycle[currentFrame ].

nextMsgId[cycleCount ];

45 SET_TIMEOUT[nodeNum] ! Schedule[nodeNum ].

schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount ];

currentFrame = currentFrame + 1;

/* End of basic -cycle is handled by jumping to ‘FINISHED_BC ’



4.4 VERIFICATION OF MODELS 57

state after the final scheduled message is sent. */

50 goto START_BASIC_CYCLE;

4.4 VERIFICATION OF MODELS

The properties verified are based on the properties checked by Leen and Heffernan in
their UPPAAL model of ISO TTCAN [Leen and Heffernan 2002a]. The main difference
is that properties checked in the UPPAAL model are described using computational
tree logic (CTL), while SPIN uses linear temporal logic (LTL), so the verified prop-
erties must be translated from CTL to LTL. Fortunately, the translation of each of
Leen and Heffernan’s CTL properties to LTL is straightforward, as the specification
they developed uses a fragment of CTL that is expressible in LTL [Merz 2000]. Some
extra properties modelled during the startup synchronisation period are also checked
to gain further confidence in the model. The following sections describe the prop-
erties checked and the corresponding verification results for the original layered and
abstracted models. The results are analysed, with comparisons made between the two
models.

4.4.1 Verified properties

Two potential time-masters and a time-receiving node are used in the setup for verifica-
tion of properties 1 – 10. Node 1 and node 2 are configured as potential time-masters;
node 3 is configured as a time-receiving node. This test setup is the same as Leen and
Heffernan used in their verification of TTCAN [Leen and Heffernan 2002a]. Properties
1 – 3 ensure that it is always the case that there will never be an S1, S2, or S3 level
error at any node. The success of properties 1 – 3 is implied by the success of properties
4 – 9, as the flags set in a node’s error handler state machine for properties 4 – 9 are
used directly to update the error state that is checked by properties 1 – 3. Verification
of property 4 ensures a MSC difference error is never set in any node. Properties 5
and 6 ensure there is never an MSC exceeding seven for a message at a receiving or
transmitting node. Properties 7 and 8 check that there is never a transmit overflow
or underflow error at any node. Verification of property 9 ensures that the error state
in all nodes is always in the default ‘no error’ state. Property 10 is checked to ensure
there are no possible deadlock states using this configuration.

1. ◻ !(n1 S1 error || n1 S2 error || n1 S3 error)

2. ◻ !(n2 S1 error || n2 S2 error || n2 S3 error)

3. ◻ !(n3 S1 error || n3 S2 error || n3 S3 error)

4. ◻ !(n1 MSC diff error || n2 MSC diff error || n3 MSC diff error)
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5. ◻ !(n1 rx MSC7 error || n2 rx MSC7 error || n2 rx MSC7 error)

6. ◻ !(n1 tx MSC7 error || n2 tx MSC7 error || n2 tx MSC7 error)

7. ◻ !(n1 tx underflow || n2 tx underflow || n3 tx underflow)

8. ◻ !(n1 tx overflow || n2 tx overflow || n3 tx overflow)

9. ◻ (n1 no error && n2 no error && n3 no error)

10. ◻ !deadlock — During scheduled basic-cycle, with 2 potential time-master nodes
and a time receiving node.

Properties 11 – 13 verify that when a node is disabled an S1 level error is always
eventually reported at the remaining two nodes. The original property that was checked
by Leen and Heffernan was that if a node is missing it is always the case that the other
nodes would flag S1 level errors [Leen and Heffernan 2002a]. Leen and Heffernan made
a mistake in this specification and checked properties that were trivially false. The
properties check that an S1 level error is reported at a node and is always active when
a node is missing. However, this is not the case in the real system; the error flag
will eventually be set by the node’s error handler after the error count due to the
absence of scheduled messages reaches the error count threshold. It appears that the
property checked is disproved as the error flag will not be set immediately after a node
is disabled, causing the correctness property that is checking the error flag is always
set to be violated immediately. It was assumed that this property would fail when a
node is removed from the network as the remaining nodes are no-longer receiving the
reference messages expected from the disabled node. Their argument that properties
should be false appears to be incorrect. Their ability to check these properties was
hampered by state-space explosion. We have changed the property in our specification
so it checks that the error flag will always eventually be set in the two remaining nodes
after a node is disabled.

Properties 1 – 13 are checked against models conditionally compiled without the
start-up synchronisation algorithm included, and it is assumed that the nodes start
in synchronisation. Properties 14 – 19 are checked against models compiled to only
contain the start-up synchronisation procedure and only model the transmission of a
single reference message at the beginning of each basic-cycle of the node to reduce the
state-space required for verification.

Property 14 ensures that there is no deadlock with three potential time-masters and
also in the case where the node 1 time-master is delayed by 10 NTU on startup. Prop-
erties 15 and 16 are modelled using two potential time-masters and a time-receiving
node with no startup delay in any node. Property 15 ensures node 1, being the highest
priority node, will always either be the active time-master or be in the initialisation
state. Property 16 verifies node 2 is always either a potential time-master or in the
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initialisation state. Property 17 uses the same configuration except node 1 is delayed
by 10 NTU before the startup synchronisation begins. A check is made here to ensure
that eventually it is always the case that node 1 still becomes the time-master and
node 2 the potential time-master.

Property 18 checks that node 2 will eventually always become the active time-
master, and property 19 checks that node 3 eventually always becomes the backup
time-master. To check these properties the model is configured using three potential
time-masters starting simultaneously. The model is conditionally compiled so that only
the synchronisation and the periodic sending of a reference message is modelled. This
is done to reduce the state-space required for the verification. These checks are used
to verify the property of the TTCAN protocol that if a backup time-master receives a
reference message from a lower priority active time-master it will eventually takeover
as the active time-master. The higher priority time-master will decrement its reference
message trigger offset value on receiving a reference message from a lower priority node.
Eventually they will simultaneously transmit their reference messages, and the highest
priority time-master will win arbitration and become the active time-master.

To verify these properties a sequence of events must be modelled that will induce
the properties to be checked. The initial step to induce properties 18 and 19 is for
node 1 to win the time-master election and become the time-master. After successfully
transmitting its first periodic reference message node 1 is disabled. In the next round,
with node 1 disabled, node 2 tries to transmit its reference message, but in this case
the transmission of the first reference message from node 2 is skipped. This models a
situation where the message sent is dropped, possibly due to interference on the bus.
This allows node 3 to transmit its reference message. It will win arbitration as it is
the only node transmitting and will become the new time-master node. On winning
time-master election, node 3 will zero its reference message trigger offset. However,
node 2 still remains with its initial reference message trigger offset. At the beginning
of the next basic-cycle period, node 3 will transmit its reference message before node
2. On receiving a reference message from a lower priority node, node 2 will decrement
its reference message trigger offset value. This will repeat each cycle until the reference
message trigger offset values of both the nodes is 0. In this case, at the start of the
basic-cycle, the reference messages from both nodes will be sent simultaneously and
CAN arbitration resolves the conflict. Node 2 will win arbitration and become the time-
master as it is the higher priority node. Node 3 will become a potential time-master
once again. The startup synchronisation state machine is shown in Figure 4.4.

11. ◻◇ (n1 S1 error && n2 S1 error) — Node 3 disabled

12. ◻◇ (n1 S1 error && n3 S1 error) — Node 2 disabled

13. ◻◇ (n2 S1 error && n3 S1 error) — Node 1 disabled
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14. ◻ !deadlock — During startup synchronisation, with 3 potential time-master
nodes

15. ◻ (n1 state init || n1 state t master)

16. ◻ (n2 state init || n2 state p master)

17. ◇◻ (n1 state t master && n2 state p master)

18. ◇◻ (n2 state t master)

19. ◇◻ (n3 state p master)

4.4.2 Verification results

Sections 4.4.2.1 and 4.4.2.2 show the results of the verification of each property for the
initial layered and the abstracted ISO TTCAN models. All the properties were verified
with no errors reported.

4.4.2.1 Initial layered model

Table 4.2 shows the results of the verification of each property for the initial layered
model. The model of the complete basic-cycle is larger than the startup synchronisation
model and this is reflected in the results with properties 1 – 13 requiring more memory
and time to check than properties 14 – 17. The complex sequence of events used in the
model to check properties 18 and 19 again leads to a greater state-space required for
verification.

4.4.2.2 Abstracted model

Table 4.3 shows the results from verification of the abstracted ISO TTCAN model. In
this case, the same model specification is used for verification of each property; the code
is not conditionally compiled to check the startup synchronisation or a TTCAN message
cycle as in the layered model. If conditional compilation was used, the reduction in
state space for verification of each property in this model compared with the layered
model would be greater. This also explains why properties 14 – 17 do not use less
resources for verification as is seen in the layered model case. The reduction in state-
space would be greater still if only a single TTCAN message cycle was tested as was
done in the layered model. In the abstracted model, a matrix-cycle consisting of three
basic cycles is modelled.
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Table 4.2 SPIN layered ISO TTCAN model verification results.

Property Vector size(B) States stored Depth Memory(MB) Time(s) Errors
1 900 45607 8373 24.508 0.94 0
2 900 45607 8373 24.508 0.94 0
3 900 45607 8373 24.508 0.95 0
4 900 45607 8373 24.508 0.95 0
5 900 45607 8373 24.508 0.94 0
6 900 45607 8373 24.508 0.95 0
7 900 45607 8373 24.508 0.94 0
8 900 45607 8373 24.508 0.94 0
9 900 45607 8373 24.508 0.93 0
10 892 44206 6608 23.727 0.84 0
11 900 225946 21556 87.582 7.73 0
12 900 146970 16830 65.219 4.85 0
13 900 194449 21108 78.695 6.65 0
14 900 14364 2198 15.524 0.29 0
15 908 15156 2886 15.719 0.33 0
16 908 15156 2886 15.719 0.33 0
17 908 25624 3396 18.746 1.42 0
18 916 61736 4396 29.391 3.8 0
19 916 51856 4396 26.559 3.04 0

4.4.3 Discussion of results

The results from verification of the layered model show that the modelling techniques
used greatly reduced the resources required for verification when compared with Leen
and Heffernan’s UPPAAL model. Leen and Heffernan recorded properties 1 – 11 as
each taking approximately 140 minutes and using 971 MB of memory to check [Leen
and Heffernan 2002a]. Table 4.2 shows that the initial layered model, which has a sim-
ilar layered structure and the same number of nodes as Leen and Heffernan’s UPPAAL
model, takes approximately 23 seconds and uses 335 MB (without using the state com-
pression SPIN option) to verify all properties. Leen and Heffernan used an Intel Xeon
1.7 GHz processor with 4 GB of RAM and I have used an Intel Core 2 Duo running
at 2.2 Ghz with 3 GB of RAM. Due to the setup of SPIN on my system only one of
the two cores is used for the verifications. The difference between the speed of the
machines is small compared to the reduction in resources observed when verifying the
more abstract SPIN models. More detailed specifications of the hardware and software
used for verification of the models is included in Appendix E.

The results show that the memory and time required to complete the verification
of the abstract model is greatly reduced when compared to the layered model. The
use of abstraction to reduce the complexity and number of processes in the model,
the modification to handling of time by eliminating nodes executing simultaneously to
reduce possible interleavings of events, and the increased use of atomic sequences have
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Table 4.3 SPIN abstracted ISO TTCAN model verification results.

Property Vector size(B) States stored Depth Memory(MB) Time(s) Errors
1 1340 1577 8336 9.379 0.07 0
2 1340 1577 8336 9.379 0.07 0
3 1340 1577 8336 9.379 0.07 0
4 1340 1577 8336 9.379 0.07 0
5 1340 1577 8336 9.379 0.08 0
6 1340 1577 8336 9.379 0.07 0
7 1340 1577 8336 9.379 0.08 0
8 1340 1577 8336 9.379 0.07 0
9 1340 1577 8336 9.379 0.07 0
10 1332 1577 8054 6.632 0.07 0
11 1340 8559 21439 26.491 0.66 0
12 1340 7967 20966 25.918 0.56 0
13 1340 9627 26031 27.444 0.74 0
14 1332 1577 8054 6.175 0.06 0
15 1340 1577 8336 7.548 0.07 0
16 1340 1577 8336 7.548 0.07 0
17 1340 1932 8456 7.929 0.22 0
18 1348 5203 21486 12.812 0.63 0
19 1348 4668 21486 12.240 0.53 0

all contributed to this reduction in resources required for verification.

Reducing the state-space allowed more complicated network configurations to be
modelled than was previously possible. This turned out to be useful when modelling the
sponsoring organisation’s various system configurations and the redundancy they have
added to the system. Developing the abstract model not only reduced the resources
required for verification but made the model simpler to understand and develop further.

4.5 SUMMARY OF MODELLING ISO TTCAN

In this chapter two models of the ISO TTCAN protocol developed using SPIN have
been described:

• A layered model of the ISO TTCAN model that parallels Leen and Heffernan’s
UPPAAL model, but allows verification of properties that Leen and Heffernan
were not able to check due to state explosion.

• An abstract model of ISO TTCAN that produces the same protocol behaviour
as the layered model, but has significantly smaller state space by abstracting
away details of the underlying CAN protocol and focusing on the TTCAN layer.
It therefore forms a good foundation for developing models of more complex
TTCAN-like systems, and is used as a basis for modelling the sponsoring organ-
isation’s TTCAN implementation. Development of the abstract model required
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the introduction and integration of several techniques useful for efficient modelling
of TTCAN-like protocols, including an efficient way of modelling the progression
of time.





Chapter 5

MODEL CHECKING THE TTCAN
IMPLEMENTATION

This chapter describes how model checking techniques have been applied to aid in
the development of the sponsoring organisation’s marine vessel control system. The
approach taken was to develop multiple models focused on specific aspects of the sys-
tem, rather than one monolithic model. Four PROMELA models of different parts
of the implementation have been developed, along with sets of correctness properties
for each model. The properties have been verified against the models using the SPIN
model checker. The model checking work here focuses on the sponsoring organisation’s
implementation of the TTCAN protocol, as this is a crucial component used for commu-
nications between modules on the distributed control system. Details of the sponsoring
organisation’s implementation of TTCAN in the control system are described in Section
2.4.

The four models are:

• A model of the sponsoring organisation’s implementation of the TTCAN protocol.
This checks the basic operation of the system with the minimum, most common,
and maximum number of modules that can be configured for the system. This is
described in Section 5.1.

• A model of the active time-master election process, known as the “voter” process
in the implementation. This analyses the election procedure that determines the
active time-master on startup or reintegration. This is described in Section 5.2.

• A model of the “signal picker” module in the VCU. The “signal picker” selects
which of the redundant buses the VCU is currently listening to. This is described
in Section 5.3.

• A model of the redundancy in the TTCAN implementation. This checks the
effect these additions to the system has on its operation. It also models the ISO
TTCAN error handler state machine, and shows how this can be integrated into
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the system to improve error reporting and handling. This is described in Section
5.4.

Sections 5.1 to 5.4 give details of each of the PROMELA models and the sets of
correctness properties checked against them are described. The results of the verifica-
tion are then presented and discussed. Potential solutions to problems identified during
the verification are also modelled to confirm that they resolve the problems as intended
and do not introduce additional problems.

5.1 TTCAN PROTOCOL MODEL

The TTCAN protocol model is a model of the sponsoring organisation’s implementation
of TTCAN (see Section 2.4 for details of the sponsoring organisation’s implementation).
The model is able to be conditionally compiled to check a number of different possible
system configurations. Various failure scenarios are modelled to check the implemen-
tation’s tolerance to faults, and a set of correctness properties has been developed to
check against the model to ensure it operates as expected.

Section 5.1.1 outlines the structure of the model; details are given of how events
are scheduled and how message transmissions are handled in the model. Section 5.1.2
describes the correctness properties checked against the model, the assumptions made
during the verification, and the failure scenarios checked against the model. Section
5.1.3 shows the results of the verification, and Section 5.1.4 describes potential solutions
to the problems found. The complete PROMELA source code of the model appears in
Appendix D.

5.1.1 Overview

The model of the sponsoring organisation’s implementation of TTCAN is based on the
abstract ISO TTCAN model described in Section 4.3. The techniques used for han-
dling the progression of time, transmission of TTCAN messages, bus arbitration, and
scheduling of events to be triggered are all similar to the ISO model. The main differ-
ences between the ISO TTCAN model and the model of the sponsoring organisation’s
implementation are:

• Exclusive window messages can overrun into the next time-slot causing a delay
in the following scheduled message.

• Multiple TTCAN transmit buffers present in the implementation are modelled.

• The error containment process associated with each node in the ISO TTCAN
protocol is not present in the sponsoring organisation’s implementation.
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Figure 5.1 Block diagram showing processes and synchronisation channel messages for handling
timing and message transmission.

• The ISO TTCAN startup synchronisation scheme is not present in the sponsoring
organisation’s implementation.

The following subsections give an overview of the details of the sponsoring organisa-
tion’s TTCAN protocol model. Section 5.1.1.1 outlines the structure of the model by
describing the main components of the model and their purpose. Section 5.1.1.2 de-
scribes how events are scheduled and triggered in the model. Section 5.1.1.3 shows how
message transmission is handled in the model.

5.1.1.1 Structure of model

In the TTCAN protocol model, VCU nodes are the potential time-master nodes in the
system; each VCU is modelled by a TimeMasterNode process. HCU and CID nodes
are time-receiving nodes; these are modelled by TimeReceivingNode processes. As in
the ISO TTCAN model, CAN bus arbitration and handling of timing in the model is
combined in a process called AdvTimeBusArb, as shown in Figure 5.1.

The init process is used to initialise nodes’ event schedules and to activate the
processes of the configuration modelled. Different TTCAN message cycles used in the
sponsoring organisation’s implementation can be experimented with allowing the model
to easily check different basic-cycle schedules. The model is able to be conditionally
compiled into three different system configurations. The SYS_CONFIG_BASE definition
sets up the system in a minimal “base” configuration with 2 VCU nodes, 1 HCU,
and 1 CID node. The SYS_CONFIG_2HCU_2CID definition compiles the model with
the most common configuration, which has 2 VCUs, 2 HCUs, and 2 CIDs. Defining
SYS_CONFIG_MAX compiles the model with the maximum number of nodes, which has
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2 VCUs, 4 HCUs, and 5 CIDs.

5.1.1.2 Scheduling of events at a node

The technique used for handling triggering of scheduled events in the model of the
implementation is based on that used to check the ISO TTCAN model in Section 4.3.3.
The scheduled events and their trigger times are set up during the initialisation period
of the model. Each node process cycles through these schedules triggering the events
as time progresses in the model. The main reasons for using the pre-configured event
schedule were to simplify the code, reducing the state-space required for verification,
and making it easier to maintain. Also, after talking with the sponsoring organisation’s
engineers, it was decided that it would be useful to allow different schedules to be
experimented with and checked in a convenient way.

Listing 5.2 shows the section of code from the TimeReceivingNode process, used
to handle triggering of events scheduled at the node. The main difference from the ISO
TTCAN model is that the scheduler switches between a hard-coded default schedule
and a configured schedule. In the sponsoring organisation’s implementation, the config-
ured basic-cycle is triggered on receiving a sync reference message correctly at a node;
the default schedule is sent periodically in the absence of the sync reference message.
Section 2.4 contains further details of the sponsoring organisation’s implementation of
TTCAN. The model also switches to the hard-coded backup schedule once the current
configured basic-cycle is finished in non-active time-master nodes. The nodes resume
transmitting their configured basic-cycle on receiving the next reference message from
the active time-master node.

The event schedule for each node is pre-assigned during the first phase of the init

process. Each node contains a structure called Schedule, that stores the number of
frames in the event schedule, an array containing the message identifier to send, and
the delay before sending it for each event in the schedule. The InitScheduleEntry

macro is used to initialise an entry in the schedule, as shown in Listing 5.1.

Listing 5.1 PROMELA source for ‘InitScheduleEntry’ inline function, used to initialise an event

scheduled to be triggered at the node.

inline InitScheduleEntry(node , index , msgId , msgTxDelay)

{

Schedule[node]. MsgSendDelay[index] = msgTxDelay;

Schedule[node].MsgId[index] = msgId;

}

The sequence of events for triggering a scheduled event at a node process are:

1. Each node process will block and wait for a TIMEOUT sync channel message to be
received.
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2. The pending event type is checked and executed. If the event is to send a sched-
uled message, transmission is triggered here by calling the TransmitMessage

inline function.

3. A test is made to see if the node is currently transmitting the configured or the
default basic-cycle schedule.

4. A timeout is set for triggering the next scheduled message of the currently active
schedule by sending the SET_TIMEOUT sync channel message from the active node
to AdvTimeBusArb.

5. The identifier of the scheduled event is buffered in the node processes’ local
eventToTrigger variable to be sent when this timeout elapses.

6. The process then loops back to the initial state and blocks, again waiting for the
TIMEOUT sync message from the AdvTimeBusArb process.

Listing 5.2 PROMELA source from ‘TimeReceivingNode’ process for handling triggering of sched-

uled events.

START_BASIC_CYCLE:

if

:: TIMEOUT[nodeNum] ? 0 ->

/* Had scheduled timeout. */

5 :: REF_MARK[nodeNum] ? _ ->

RECV_REF_MARK:

/* Restart the schedule. */

currentFrame = 0;

/* Use the configured schedule as received the ref sync msg. */

10 useDefaultSchedule = false;

/* Clear the flag used to represent the process transitioning

into the ‘START_SYNC_REF ’ state. */

startSyncRef = false;

goto START_SYNC_REF;

15 fi;

if

:: eventToTrigger == SKIP_SEND_MSG ->

/* No message to send / receive this time. */

20 skip;

:: (eventToTrigger > SKIP_SEND_MSG)

&& (eventToTrigger < RX_TRIGGER) ->

/* Trigger scheduled event. */

if

25 :: eventToTrigger == BEGIN_ARBITRATION ->

/* Entering arbitration window. */

arbWindowOpen = true;

:: eventToTrigger == FINISH_ARBITRATION ->

/* Leaving arbitration window. */
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30 arbWindowOpen = false;

:: eventToTrigger == END_SCHEDULE ->

skip;

:: else ->

TransmitMessage(nodeNum , eventToTrigger , DEFAULT_MSG_TIME ,

35 ONE_SHOT_INTERVAL , bus);

fi;

:: else ->

/* This is included in the RedundantTTCAN and abstracted

ISO TTCAN models , that include the error handling process. */

40 #ifdef ERROR_HANDLER

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

#endif

fi;

START_SYNC_REF:

45 startSyncRef = true;

if

:: useDefaultSchedule != false ->

/* Send the current scheduled frame. */

eventToTrigger = DefSchedule.schedBasicCycle[currentFrame ].

50 nextMsgId[BASIC_CYCLE_1 ];

/* Delay before sending the next frame in the schedule. */

SET_TIMEOUT[nodeNum] ! DefSchedule.

schedBasicCycle[currentFrame ].

nextTxSendDelay[BASIC_CYCLE_1] -

55 NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

currentFrame = (currentFrame + 1) % DefSchedule.numFrames;

:: else ->

/* Send the current scheduled frame. */

60 eventToTrigger = Schedule[nodeNum ].

schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1 ];

/* Delay before sending the next frame in the schedule.

Subtract any time already elapsed sending a message. */

SET_TIMEOUT[nodeNum] !

65 Schedule[nodeNum ]. schedBasicCycle[currentFrame ].

nextTxSendDelay[BASIC_CYCLE_1] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

currentFrame = currentFrame + 1;

70 IF currentFrame == Schedule[nodeNum ]. numFrames ->

/* Finished the current schedule , start the next with the

hard -coded schedule as this is not a time -master node. */

useDefaultSchedule = true;

currentFrame = 0;

75 #ifdef ERROR_HANDLER

CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

#endif



5.1 TTCAN PROTOCOL MODEL 71

FI;

80 fi;

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

goto START_BASIC_CYCLE;

5.1.1.3 Modelling TTCAN message transmission

The model of the sponsoring organisation’s TTCAN protocol recreates the behaviour
of their implementation of TTCAN, focusing on checking the transmission of the ex-
clusive window messages. The exclusive messages are responsible for transmitting the
important control information between the user inputs, such as the helm and throttle,
and the hydraulic units. More details of the sponsoring organisation’s implementation
are described in Section 2.4. After talking with the sponsoring organisation’s engi-
neers, it was decided that it is important to focus on checking the transmission of the
exclusive window messages for different system configurations because of their impact
on the performance and safety of the system.

The technique used to model TTCAN message transmission in the model of the
sponsoring organisation’s implementation is based on the technique used in the abstract
ISO TTCAN model described in Section 4.3.1. The message sequence chart (MSC)
for sync channel messages involved in transmitting a TTCAN message in the model
of the implementation is the same as in the ISO TTCAN model, shown in Figure
4.6(b). The model of the implementation differs from the model of the ISO standard
as the implementation uses two one-shot transmit buffers to handle exclusive TTCAN
message transmissions. The model of the implementation is also modified so exclusive
window messages over-running their allocated time-slot and causing a delay in the next
scheduled message is modelled. To achieve this, the duration of each message is passed
to the combined bus and time handling process (AdvTimeBusArb) when the message is
triggered. As time progresses, AdvTimeBusArb maintains a record of the time remaining
of any message currently transmitting on the bus.

The microcontrollers used by the sponsoring organisation1 in the implementation
are both configured with two one-shot buffers for transmitting exclusive window mes-
sages and a single buffer with retransmission for arbitrating window messages. The
one-shot buffers are modelled by the firstOneShot and backupOneShot variables in
each node’s NodeSendStatus structure. These buffer variables store the identifier of the
message to be sent. The arbitrating buffer used in the implementation is not included
in this model as the model focuses on checking transmission of the exclusive window
messages.

Each node contains an array of flags called RxScheduled which is part of the
node’s MsgStatus structure. The array is indexed by a message identifier and each

1An NXP LPC2xxx microcontroller is used in the VCU nodes, and STM32 microcontrollers are
used in the CID and HCU nodes.
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element is used to represent a message scheduled to be received at the node. The
RxScheduled array is set up during the init process for the system configuration to
be modelled. When a TTCAN message is received at a node, a flag in the rxMsgBuff

array, corresponding to the received message, is set in the node’s MsgStatus structure.
At the end of each basic-cycle the RxScheduled array is checked against the messages
received during the period; an error is flagged if there are any missing messages.

The message error checking method used in the model of the implementation dif-
fers from the ISO TTCAN model, since the sponsoring organisation have not im-
plemented the ISO TTCAN error handling scheme. In the ISO model, each node’s
ErrorContainment process checks the rxMsgBuff flag has been set by any message
that has been scheduled to be received at the node. If a message is lost the MSC
count associated with that message is incremented, and an error is reported if the fault
continues. The model of the ISO TTCAN error containment process is described in
detail in Section 4.2.5.

The sequence of events involved in transmitting a message in the model of the
implementation are:

1. The TransmitMessage inline function (shown in Listing 5.3) is called by a node
process to trigger the transmission of a message on the bus.

2. The CHK_BUS sync channel message is sent from the node process to the AdvTime-
BusArb process to find the current state of the bus, as shown in Figure 5.1.

3. The AdvTimeBusArb process replies by sending the BUS_STATE sync channel mes-
sage to the requesting node. The sync channel message sent to the requesting
node includes the time remaining for a message currently transmitting on the
bus, the state of the bus or the identifier of the message if the bus is busy, and
whether the node won the last arbitration. The bus can either be in arbitration,
idle, or busy states. When idle the BUS_IDLE value is returned in the message
identifier channel field; BUS_ARB is returned if the bus is currently in arbitration.
The identifier of the message is returned if the bus is currently busy.

4. The first choice one-shot transmit buffer (firstOneShot) is checked, and if it is
empty the pending message is placed in the buffer.

5. If firstOneShot is not empty the message is placed in the backup one-shot buffer
(backupOneShot). The message is dropped if both buffers have messages pending.

6. A check is made to see if the bus is currently busy; if so, the CheckSend-

TimeRemaining inline function (shown in Listing 5.4) is called. If the time re-
maining of the message currently on the bus is less than the time allocated for the
time-slot, a timeout is added here to allow the current message to finish trans-
mission. The pending message is triggered later in this time-slot, following this
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delay. If the bus is busy and the message on the bus can not be completed within
the current window, the pending message is triggered after the window when the
bus next becomes idle.

7. Message transmission is triggered if the bus is currently idle or in the arbitration
state. The arbitration bus state is used to allow multiple nodes to transmit at
the same instant. Listing 5.5 shows the CheckSendBuffers inline function, called
to transmit the message. The first choice one-shot buffer is triggered first, and
the backup is triggered if the first choice buffer is empty. The TX_TRIGGER sync
channel message is used to trigger transmission of a message on the bus. The
identifier of the message, length of the message in µ s, and the bus number are
passed from the transmitting node to AdvTimeBusArb over the channel.

8. In the transmitted message is a reference message and the node won arbitration,
the REF_MARK sync channel message is sent to AdvTimeBusArb and to all the other
receiving nodes. Reference messages are handled in the same way as in the ISO
TTCAN model, described in more detail in Section 4.3.2.3.

Listing 5.3 PROMELA source for ‘TransmitMessage’ inline function, used to trigger transmission

of a TTCAN message from a node.

inline TransmitMessage(sourceNode , msgId , msgSendTime , arbMode ,

busNumber)

{

atomic

5 {

IF (nodeNum == sourceNode) && (( DisableTx[sourceNode] == false)

|| (msgId == REF_ID_1) || (msgId == REF_ID_2 )) ->

/* Reset the elapsed send time count. */

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

10 NodeSendStatus[nodeNum ]. triggerSend = false;

/* Check the state of the bus before transmitting. */

CHK_BUS[nodeNum] ! busNumber;

BUS_STATE[nodeNum] ? NodeSendStatus[nodeNum ]. sendTimeRemaining ,

busState , wonArbitration;

15 /* Check if the first choice buffer is currently full. If so,

check if the backup buffer is full. Drop message if this

buffer is full. */

if

:: NodeSendStatus[nodeNum ]. firstOneShot.messageID != 0 ->

20 if

:: NodeSendStatus[nodeNum ]. backupOneShot.messageID != 0 ->

/* Is already an entry in the backup buffer. */

:: else ->

/* Will be transmitted after the first choice msg. */

25 NodeSendStatus[nodeNum ]. backupOneShot.messageID

= msgId;
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fi;

:: else ->

/* Transmitted when the current node (other node) finishes

30 transmitting on the bus. */

NodeSendStatus[nodeNum ]. firstOneShot.messageID = msgId;

fi;

/* If bus is not ‘idle ’ and not in arbitration state and there

is currently a message transmitting on the bus then delay till

35 then end of message before transmitting. */

if

:: (busState != BUS_IDLE) && (busState != BUS_ARB)

&& (NodeSendStatus[nodeNum ]. sendTimeRemaining > 0) ->

CheckSendTimeRemaining ();

40 :: else ->

/* No other node currently transmitting. Trigger

transmission of this message. */

NodeSendStatus[nodeNum ]. triggerSend = true;

fi;

45 IF NodeSendStatus[nodeNum ]. triggerSend != false ->

NodeSendStatus[nodeNum ]. triggerSend = false;

CheckSendBuffers(busNumber , msgSendTime , msgId);

FI;

FI;

50 }

}

Listing 5.4 PROMELA source for ‘CheckSendTimeRemaining’ inline function, called during trans-

mission of a TTCAN message.

inline CheckSendTimeRemaining ()

{

if

:: NodeSendStatus[nodeNum ]. sendTimeRemaining >

5 Schedule[nodeNum ]. schedBasicCycle[currentFrame ].

nextTxSendDelay[cycleCount] ->

/* Can not complete transmission of message currently

transmitting within this time -slot. Have to buffer this

message to send after message finishes transmitting. */

10 :: else ->

/* Complete the current transmission , then trigger this msg. */

SET_TIMEOUT[nodeNum]

! NodeSendStatus[nodeNum ]. sendTimeRemaining;

if

15 :: TIMEOUT[nodeNum] ? 0 ->

:: REF_MARK[nodeNum] ? _ ->

/* Back to the start of the schedule. */

currentFrame = 0;

20 useDefaultSchedule = false;

goto START_SYNC_REF;
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fi;

/* Update the elapsed time accumulated delaying

transmission during this exclusive window. */

25 NodeSendStatus[nodeNum ]. elapsedSendTime =

NodeSendStatus[nodeNum ]. sendTimeRemaining;

/* Trigger transmission of message. */

NodeSendStatus[nodeNum ]. triggerSend = true;

fi;

30 }

Listing 5.5 PROMELA source for ‘CheckSendBuffers’ inline function, called during transmission of

a TTCAN message.

inline CheckSendBuffers(busNumber , msgSendTime , msgId)

{

/* Initially , check the first choice one -shot buffer. */

if

5 :: NodeSendStatus[nodeNum ]. firstOneShot.messageID != 0 ->

TX_TRIGGER[nodeNum] ! NodeSendStatus[nodeNum ]. firstOneShot.

messageID , msgSendTime , busNumber;

NodeSendStatus[nodeNum ]. firstOneShotTx = true;

:: else ->

10 /* Check the backup buffer. */

if

:: NodeSendStatus[nodeNum ]. backupOneShot.messageID != 0 ->

TX_TRIGGER[nodeNum] ! NodeSendStatus[nodeNum ].

backupOneShot.messageID , msgSendTime , busNumber;

15 NodeSendStatus[nodeNum ]. backupOneShotTx = true;

:: else ->

/* Will not necessarily be a message to send , if

checked after an rx trigger. */

fi;

20 fi;

}

5.1.2 Correctness properties and failure scenarios used in verification

The model of the sponsoring organisation’s TTCAN protocol is able to be configured by
modifying constants and using conditional compilation to test the model with different
parameters and to model various failure scenarios. This section outlines the configu-
rations used in verification of the model and the correctness properties developed to
check against the model. Section 5.1.2.1 describes the assumptions made for verifi-
cation of the model. Section 5.1.2.2 describes the potential failure scenarios applied
to the model. Section 5.1.2.3 describes the correctness properties checked against the
model.
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5.1.2.1 Assumptions made for verification of model

A number of assumptions have been made for verification of the model to help reduce
its complexity and the size of the state-space to be checked. The assumptions used are
based on those used by Leen and Heffernan in their verification of TTCAN using UP-
PAAL [Leen and Heffernan 2002a] but with some modifications to suit the sponsoring
organisation’s TTCAN protocol:

• The exclusive window message length includes maximum bit-stuffing and is fixed.
Extended identifier messages are used in the model.

• Reference messages have a fixed length; this is the same for all potential time-
masters.

• Messages in the arbitrating window have a lower priority than messages in exclu-
sive time-slots.

• Exclusive window messages are sent in one-shot mode. Arbitrating window mes-
sages are sent with retransmission.

• The reference message’s cycle count field, used as a schedule number in this
implementation, is decoded correctly and the correct configured schedule is used
when a reference message is received at a node. This allows an abstraction of the
reference message decoding and simplification of the model.

• All CAN nodes’ bit timings are in synchronisation.

• The CRC for all messages is assumed to be correct.

• Acknowledgement of messages at the CAN protocol level is assumed.

5.1.2.2 Failure scenarios

The model of the sponsoring organisation’s TTCAN protocol is able to be conditionally
compiled to check a number of different scenarios which potentially cause failures in the
system. After talking with the sponsoring organisation’s engineers and analysing the
code, it appeared that verification of the redundant VCU nodes was the most important
aspect in checking the TTCAN implementation. The periodic sync reference message
sent from the currently active time-master VCU is the heart-beat of the system. The
reference message triggers and synchronises transmission schedules of all other nodes in
the system. Without the sync reference message, exclusive window messages, respon-
sible for control of the vessel (see Section 2.4 for further details), are not transferred
from the user inputs to the hydraulic control units. It was also decided to verify the
correct transmission of all the scheduled exclusive window messages themselves.
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Another potential cause of failure that was investigated is interaction of the re-
dundant VCU nodes. In this implementation, the VCU nodes are the potential time-
masters in the system. During initialisation, they are assigned to be either an active
or backup time-master. However, there are situations where it is possible to have both
VCUs set as the active time-master. This occurs briefly during the initial startup of
the system as the VCU nodes go through an election process to determine which node
is the active time-master (see voter model in Section 5.2). This will only occur on
startup if neither node was previously an active time-master, as is the case in the ini-
tial startup of the system. It also occurs if the active time-master VCU was powered
down, allowing the backup VCU to become the active time-master, and then restarted.
The active state is retained as it is stored in non-volatile memory.

As in the implementation, if the node is an active time-master, it sends the con-
figured message schedule; if the node is a backup time-master, it will revert to the
hard-coded default message schedule. The configured message schedule for the time-
master node begins by sending a reference message. The correctness properties checked
verify that if time-master nodes simultaneously send reference messages, CAN bus ar-
bitration resolves the conflict correctly. The startup can also be staggered to model
triggering of a reference message part way through the reception of a reference mes-
sage from another node, or triggering the first reference message during another node’s
basic-cycle period.

Even though these particular sequences of events did not reveal any problems,
designing the model to check these events helped to gain a deeper understanding of the
implementation. Although these events do not cause problems now, future additions
to the implementation may cause problems when they interact with the time-master,
so understanding this process and including it in the model is essential for allowing the
model to become integrated into the ongoing development process.

Delayed transmission of scheduled messages is also modelled. After analysing the
TTCAN driver code, it appeared that message bit-stuffing causes messages to overrun
their allocated time-slots, and that this overrun can accumulate delaying subsequent
transmissions. It was decided that this fault is an important aspect to include in
the model, due to its potential to effect the exclusive window message transmissions.
Adding this artificial delay to messages simulates the accumulated delay of previous
messages overrunning into the next time-slot that can cause problems in systems with
larger configurations. A node can also be configured to model a “babbling idiot” fault,
where the node repeats transmitting the same message throughout a basic-cycle. The
erroneous messages generated by the “babbling idiot” node are another potential cause
of delay to scheduled messages. This delay occurs when a node that is out of sync,
or transmitting erroneous messages, transmits a message slightly before a scheduled
exclusive message is triggered. Another possible cause of delay is noise on the bus;
this causes delay if the noise prevents the bus returning to an idle state, preventing
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transmission.

After talking with the sponsoring organisation’s engineers, a potential cause of
failure to investigate was when an incorrectly configured node is added to a system.
This can occur if the node has been set up for another system, then added to a new
system without the system configuration being updated for the new node. The incor-
rectly configured node is modelled by the backup VCU node transmitting a message
at the beginning of every exclusive time-slot in the schedule. Each time the schedule is
completed, it is modified so the unconfigured exclusive window message is sent during
the next time-slot.

The following list summarises the scenarios modelled:

1. The startup delay of the VCU nodes is staggered by non-deterministically choos-
ing an initial startup delay. The delays checked ranged between no delay and a
1 second delay.

2. Both VCUs are initially configured as the active time-master.

3. The states of each time-master node are swapped from active to backup and
backup to active after the initial basic-cycle completes.

4. The first HCU message is delayed to simulate an accumulated overrun when a
number of nodes transmit messages longer than their allocated time-slots.

5. The first CID message is delayed to simulate an accumulated overrun when a
number of nodes transmit messages longer than their allocated time-slots.

6. The first VCU message is delayed to simulate an accumulated overrun when a
number of nodes transmit messages longer than their allocated time-slots.

7. The backup VCU is configured as a “babbling idiot” node. The node repeatedly
sends an unexpected message through the system’s exclusive time-slots, ignoring
the scheduled message trigger times.

8. The backup VCU is configured with a simulated configuration error. The node
sends unexpected messages at the beginning of each scheduled exclusive time-slot.

9. Reference messages sent by the active time-master are not received correctly at
other nodes but are received correctly at the time-master node (meaning there is
no retransmission).

10. Reference messages sent by the active time-master are not received correctly at
all nodes including the time-master node causing a timeout and retransmission.
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5.1.2.3 Correctness properties

The correctness properties chosen focus on checking the correct transmission of the
scheduled exclusive window messages. This is due to their importance to the correct
operation of the system, as exclusive window messages are responsible for transferring
control information from the user inputs to the hydraulic control units. Also, as they are
transmitted in one-shot mode (without CAN retransmission), it is essential that they
are either transmitted correctly or errors detected and reported if this is not possible.
To check the correctness of the exclusive window messages, safety properties are used to
ensure no scheduled messages fail to be received at a node and no unexpected messages
are received at a node.

Liveness properties are used to ensure the active time-master and time receiving
nodes are always active. In the case of the active time-master (the VCU in the im-
plementation), this means the periodic sync reference message is being transmitted
infinitely often. In the receiving node’s case, this means the sync reference message
is received infinitely often, triggering the start of each node’s scheduled transmission
cycle.

Liveness properties also check that the arbitrating window present in each basic-
cycle in the implementation is always opened and closed correctly. Currently, the model
does not check specific messages transmitted during the arbitration window. As ar-
bitration window messages are transmitted with the usual CAN retransmission, it is
assumed that if there are collisions during this period, CAN arbitration and retrans-
mission will resolve any conflicts. This assumption helps to simplify the model and
reduce the state-space required for verification. A “babbling idiot” fault and artificial
delays can be configured for the model to simulate the effect that a message trans-
mitted in error has on the exclusive window messages. For example, in the “babbling
idiot” node case, an arbitrating window message may in certain error conditions be
repeatedly retransmitted through the exclusive time-slot period.

The arbitrating window is checked with and without the sync reference message
being correctly transmitted from the active time-master node. This is used to test
that the default hard-coded schedule, consisting of only a single arbitrating window, is
switched to if the sync reference message is lost.

Assertions are used to check that CAN bus access and arbitration are handled
correctly in the model.

The following list of 6 correctness properties have been verified against the model
with the “base” configuration:

1. Absence of violated assertions and deadlock in model.

2. ◻ !(n1 rx error || n2 rx error || n3 rx error || n4 rx error) — Absence
of scheduled message receive error at nodes 1 – 4.
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3. ◻ !(n1 schedule error || n2 schedule error || n3 schedule error

|| n4 schedule error) — Absence of received message that has not been sched-
uled at nodes 1 – 4.

4. ◻◇ n1 alive — The active time-master node (Node 1) always eventually starts
a new basic-cycle.

5. ◻◇ n2 n4 recv sync ref — Nodes 2 – 4 always eventually receive a reference
message triggering the restart of a new basic-cycle.

6. ◻◇ n1 n4 arb window open — The arbitration window in nodes 1 – 4 is always
eventually open.

5.1.3 Verification results

The LTL correctness properties specified in Section 5.1.2.3 have been verified against
the three configurations of the TTCAN model described in Section 5.1.1. For each
property verified against the models, the models are configured with the scenarios
described in Section 5.1.2.2 or a default configuration. In the default configuration,
both VCU nodes start simultaneously. One VCU is configured as the active time-
master; the other is configured as the backup. The specified LTL formulae, scenarios
modelled, and the verification results of each property checked against the model are
summarised in Table 5.1.

5.1.3.1 Verification results for “base” configuration

Initially, the model is configured with the “base” configuration, and a worst case
bit-stuffed message length that is smaller (480 µs) than the exclusive window period
(500 µs) is used. Figure 5.2 shows a timing diagram for messages 480 µs in length
transmitted on the CAN bus in a system setup with the “base” configuration. The
verification results of the “base” configured model configured with 480 µs and 636 µs
messages are summarised in Table 5.1. The first correctness property, checking for an
absence of deadlocks and assertions, passed verification without error when checked
against each of the failure scenarios modelled.

In verification of the “base” configured model using 480 µs messages:

• 17 of 18 properties checked passed verification without error.

• Property 9 fails verification as a message scheduled to be received is lost when
an unconfigured node is added to the system; details are given in Section 5.1.3.3.

In verification of the “base” configured model using 636 µs messages:

• 14 of 18 properties checked passed verification without error.
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Table 5.1 Verification results for “base” configured model with 480 µs and 636 µs messages.

Property Failure Correctness Errors Errors
scenario property (480 µs messages) (636 µs messages)

1 Default 2 0 0
2 1 2 0 0
3 2 2 0 0
4 3 2 0 0
5 4 2 0 1
6 5 2 0 1
7 6 2 0 1
8 7 2 0 0
9 8 2 1 1
10 Default 3 0 0
11 1 3 0 0
12 2 3 0 0
13 3 3 0 0
14 7 3 0 0
15 Default 4 0 0
16 Default 5 0 0
17 Default 6 0 0
18 9 6 0 0

• Property 9 fails verification as in the 480 µs message length case.

• Property 5 fails verification. When an extra delay of 450 µs is added before trans-
mitting the HCU’s scheduled message, the first message to be sent from the VCU
is lost and a verification error is reported. The delay causes the HCU’s message to
be transmitted over the CID’s and VCU’s exclusive time-slots. Once the HCU’s
message completes, both the pending messages will be sent simultaneously. CAN
arbitration will cause the lower priority VCU message to be lost, causing the ver-
ification error to be reported. The delay has been artificially added to the model
and is of arbitrary length, but this could occur in a system that has a larger
configuration, since the delay due to each exclusive message sent over-running
into the next time-slot will accumulate. The error occurs when an exclusive win-
dow message transmits over two other exclusive window message triggers. The
exclusive messages from both nodes are delayed until the currently transmitting
node has completed. When the current message finishes both nodes will send
their messages simultaneously and one of the pending messages will be lost due
to CAN bus arbitration. As the exclusive messages are sent in one-shot mode,
the lost message will not be retransmitted.

• Properties 6 and 7 fail verification. Delaying the CID and first VCU messages
(delayed by 450 µs) cause verification errors. In both cases, the last message sent
by the VCU is lost. In the CID case, this is due to the CID message transmitting
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Figure 5.2 Timing diagram for 2 VCU, CID, and HCU model transmitting 480 µs messages.

over the first and second scheduled VCU message trigger points. When the third
VCU message is triggered, the node’s backup buffer is already full and the message
is dropped. In the VCU case, the first VCU message is transmitting during the
trigger points for the second and third VCU messages. The second message is put
into the node’s backup buffer but the third is dropped as the node is currently
transmitting and the backup buffer is now full.

Most importantly, in the process of creating the models, it was also found that in
the implementation it is possible that exclusive window messages are lost without an
error being passed to the application. Reporting an error is important in this case,
since these exclusive window messages are transmitted in one-shot mode without the
usual CAN retransmission. An intermittent fault on a bus may cause a message to be
repeatedly lost, causing the VCU to switch to the redundant bus without reporting the
fault. Section 5.4 shows how the TTCAN error handling state machine is added to the
system to detect these errors by transitioning to an error state and signalling this to
the application [ISO 11898-4 2004].

Properties 8, 9, and 14, where a “babbling idiot” fault and a node with an incorrect
configuration is modelled, are only checked against the model with the “base” config-
uration. It was not necessary to check these faults against the other configurations,
since it could be seen from the results of the verification that the reaction to the faults
would be the same with larger configurations.

5.1.3.2 Verification results for most common and worst case configurations

The most common configuration model has 2 VCUs, 2 HCUs, and 2 CID nodes. It
has been verified against the same correctness properties and test conditions used in
the verification of the “base” configured model. The results showed that all 16 tests
passed as expected using a worst case bit-stuffed message length that is smaller (480 µs)
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Figure 5.3 Timing diagram for 2 VCU, 2 CID, and 2 HCU model transmitting 636 µs messages.
Shows that the third scheduled VCU message is lost.

than the exclusive window period (500 µs). However, using a maximum bit-stuffed
message length of 636 µs caused a scheduled message receive error, as was the case in
the verification of the model with a “base” configuration and a 450 µs message delay.
In this case, the third exclusive window VCU message is not received correctly at
other nodes on the network. Figure 5.3 shows that the accumulated overrun from each
exclusive window message sent causes the first VCU message to be delayed so that it
transmits across the trigger points of the second and third VCU messages. The second
message is placed in the VCU’s backup one-shot buffer, but the third is dropped and
not transmitted as both the one-shot transmit buffers are full.

The largest possible system configuration, in terms of increasing the size of the
TTCAN transmission schedule, has 2 VCUs, 4 HCUs, and 5 CIDs. This model also
fails in a similar way to the standard configuration model. The accumulated delay of
messages overrunning into the next time slot causes the first scheduled CID message
to be delayed so that it transmits across the trigger points of the second and third
CID nodes transmissions. In this case, the second and third CID messages will be
transmitted simultaneously once the current message finishes transmission. The third
CID message will lose arbitration since it has a lower priority than the second. The
message is lost in this scenario as there is no retransmission during the exclusive window
period.

5.1.3.3 Verification of model with incorrectly configured module

In property 9 checked against the “base” configuration of the TTCAN model, the
redundant VCU is used to model a node that has been introduced to the system
with an incorrect configuration. The incorrectly configured node sends an unscheduled
message at the beginning of each scheduled exclusive time-slot during each basic-cycle.
Property 9 fails verification when the node transmits simultaneously with an existing
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node on the system and the node’s message has a higher priority than the message from
the existing node. In this case, the scheduled message from the existing node is lost
due to CAN arbitration. Since the messages sent are exclusive time-slot messages, they
are sent in one-shot mode without retransmission. A verification error for a missing
message scheduled to be received is reported at the end of the basic-cycle.

Transmissions from an incorrectly configured node may collide with existing nodes
scheduled to transmit at the same time. For example, a CID may be added to a
system that has been configured for another system. It is likely that the added node’s
exclusive message transmission time-slot will clash with an existing node’s scheduled
transmission window. However, it is possible for the added node’s exclusive time-slot to
match the node that has been replaced, causing no problems with the existing system.
It is also possible that the node added has come from a larger system; in this case, it is
possible that the exclusive window period will lie after the existing system’s exclusive
window time-slots and no collision will occur.

Even if messages from the incorrectly configured node and existing node are sched-
uled in the same time-slot they will not necessarily transmit simultaneously. The
majority of messages may be sent without error as processor jitter may cause the
transmissions to be staggered. This will allow one message to be sent after the other
finishes transmitting.

Importantly, as mentioned in Section 5.1.3.1, it appears that in the implementa-
tion no error is passed to the application if a fault due to an incorrectly configured
node causes a loss of exclusive window messages. Again, this is important as these
exclusive window messages are transmitted in one-shot mode without the usual CAN
retransmission. Having no indication of the cause of the error may make debugging this
type of problem on real systems difficult. It is possible that performance is degraded
without any error indication. Section 5.4 shows how the ISO TTCAN error handling
state machine is added to the system to detect this kind of error by transitioning to an
error state [ISO 11898-4 2004].

5.1.4 Potential solutions

A potential solution to the message overrun problem was developed and verified. The
exclusive window time-slots are extended to 750 µs to allow the worst case bit stuffed
extended frame CAN message to transmit without running into the next time-slot. This
change was applied to the model of the most common configuration (see Section 5.1.1).
With the 500 µs exclusive time-slot, this model previously reported a receive message
error during verification, as illustrated in Figure 5.3; with the extended time-slot, the
model passes verification without error.
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Figure 5.4 State machine of time-master election process in VCU nodes.

5.2 VOTER MODEL

After talking with the sponsoring organisation’s developers and analysing the code, it
appeared that the correct operation of the redundant VCU nodes is crucial to the safety
of their system, and checking the correctness of the “voter” procedure is essential to
the correct operation of the VCU. The periodic sync reference message sent from the
currently active time-master VCU is the heart-beat of the system. The reference mes-
sage triggers and synchronises the transmission schedules of all the other nodes in the
system. Without the sync reference message, exclusive window messages, responsible
for control of the vessel, are not transferred from the helm and throttle to the hydraulic
control units.

The “voter” model is used to verify the active time-master election process used in
the implementation to select an active and backup time-master during startup of a VCU
node. Figure 5.4 shows the “voter” state machine used to automatically generate source
code in the implementation. The “voter” state machine is the basis for the model of the
active time-master election procedure used by the sponsoring organisation. Scenarios
where intermittent faults cause time-master nodes to periodically toggle on and off
are modelled, as well as the addition of initial startup delays of the VCU nodes. The
complete PROMELA source code of the model appears in Appendix D.
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Figure 5.5 Block diagram showing processes and connections between them in the “voter” model.

5.2.1 Structure of model

The “voter” model consists of two VCU nodes, a CID, and a HCU. The VCU nodes
are represented in the model by TimeMasterNode processes and each is associated with
a PeriodicTimer process, as shown in Figure 5.5. In this model, the VCUs simulate
the “voter” procedure. The AdvTimeBusArb process is responsible for handling the
progression of time, message transmissions, and CAN bus arbitration in the model.

The “voter” state machine is implemented in the model as a non-deterministic
if ... fi construct in the TimeMasterNode processes, as shown in Listing 5.7. Guard
statements of the construct test the value of the currentState variable to determine
the state in the “voter” procedure that the TimeMasterNode processes is currently in.
When the VCU is first initialised, the state machine defaults to the INVALID state.
Following this, a check is made to see if the node was previously the active time-master
before the reset. If this is the case, the node will transition to the INITIALLY and
then TOOKOVER states. If the VCU was not previously the active time-master it will
transition to the STANDBY state. On entering the STANDBY state, the VCU will start a
3 s timeout by setting the standbyTimer variable to STANDBY_TIMEOUT. This timeout
is reset when a “master status” message is received from an active time-master VCU.
If a “master status” message is not received within the 3 s timeout period, the backup
time-master takes over as the active time-master, by transitioning from the STANDBY

to TOOKOVER state. If both nodes are currently in the TOOKOVER state and configured
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as the active time-master, the node with the highest priority, defined as the node with
the lowest identifier, will become the sole active time-master.

A timer in each VCU is used to periodically trigger transmission of a message
representing the “master status” message used in the implementation. The “master
status” message conveys the current state of each VCU to the other; it allows a VCU to
determine whether the other VCU is in active or backup mode. An abstraction is made
to simplify modelling of the “master status” message transmission. In the model, when
the “master status” message is correctly received at a node, the rxMsgBuff flag in the
receiving node’s MsgStatus structure is set, as shown in Listing 5.7. When processing
the “master status” message in the VCU a global variable called ActiveTimeMaster is
checked. This determines whether the other VCU node is in active or backup states.
An assumption is made here that the “master status” message is always transmitted,
received, and decoded correctly by the VCU nodes.

Listing 5.6 PROMELA source from the “TimeMasterNode” process, used to check if a “master

status” message has been received from the other VCU node.

/* Received a master status message from other VCU node. */

IF MsgStatus[nodeNum ]. rxMsgBuff[MASTER_STATUS_ID + nodeNum] != false ->

MsgStatus[nodeNum ]. rxMsgBuff[MASTER_STATUS_ID + nodeNum] = false;

recvMasterStatus = true;

5 FI;

Listing 5.7 PROMELA source from the “TimeMasterNode” process, used to model the “voter” state

machine.

/* Update the active time -master state at the end of each 50ms

basic -cycle. */

if

:: currentState == INVALID ->

5 if

:: ActiveTimeMaster[nodeNum] != false ->

currentState = INITIALLY;

:: else ->

currentState = STANDBY;

10 fi;

:: currentState == INITIALLY ->

currentState = TOOKOVER;

:: currentState == TOOKOVER ->

/* Had timeout from standby state , now enters ‘TOOKOVER ’ state. */

15 ActiveTimeMaster[nodeNum] = true;

/* Received master status message from a node which is currently

an active master. */

IF (recvMasterStatus != false)

&& (ActiveTimeMaster [1 - nodeNum] != false) ->

20 if

:: nodeNum == NODE_1 ->

/* Do nothing as this is the node with higher priority

(lower identifier ). The node remains as the active
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time -master. */

25 :: nodeNum == NODE_2 ->

currentState = STANDBY;

ActiveTimeMaster[nodeNum] = false;

:: else ->

skip;

30 fi;

FI;

:: currentState == STANDBY ->

if

:: standbyTimer != 0 ->

35 standbyTimer = standbyTimer - 1;

IF standbyTimer == 0 ->

currentState = TOOKOVER;

FI;

:: else ->

40 standbyTimer = STANDBY_TIMEOUT;

fi;

/* If received a ‘master status ’ message and the other node

is the active master , then reset the timeout. */

IF (( recvMasterStatus != false)

45 && (ActiveTimeMaster [1 - nodeNum] != false )) ->

standbyTimer = STANDBY_TIMEOUT;

FI;

:: else ->

skip;

50 fi;

The PeriodicTimer associated with each TimeMasterNode is responsible for exter-
nally triggering periodic events in the TimeMasterNode process. In this case, it is used
to periodically toggle the time-master on and off at a certain rate, in order to model a
periodic fault at the node. An external process must be used to handle this due to the
technique used for modelling timing. A timeout period is passed as a parameter along
with a count for the number of timeouts elapsed before the node toggles state. In this
model, the timeout period is one basic-cycle, with a duration of 50 ms as is the case in
the implementation.

A startup delay is modelled in the same way as in the other TTCAN protocol
models. The initial startup delay is passed as a parameter when initialising the cor-
responding TimeMasterNode process. This is used to model the existing startup delay
of the VCU, due to initialisation of the boot-block and threading, and is able to be
adjusted to simulate other delays.

5.2.2 Correctness properties

The following LTL correctness properties were checked against the model to gain con-
fidence that the implementation of the “voter” procedure meets the designer’s original
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specifications:

1. ◇◻ (time master1 active && !time master2 active) — The potential time-
master node (Node 1) eventually always becomes the active time-master and
Node 2 becomes the backup time-master.

2. (time master1 disabled)⇒◇◻ (time master2 active) — Node 2 eventu-
ally always becomes the active time-master if Node 1 is disabled.

3. ◻◇ !(time master1 active && time master2 active) — Always eventually
Node 1 and Node 2 are not both the active time-master.

4. ◇◻ !(time master1 active && time master2 active) — Eventually always
Node 1 and Node 2 are not both the active time-master.

5. ◻ !(time master1 active && time master2 active) — Always potential time-
master nodes Node 1 and Node 2 are not both the active time-master.

6. ◻◇ (time master2 active) — Always eventually time-master node Node 2 is
active when Node 1 is disabled following completion of the first basic-cycle.

7. Absence of violated assertions when the active time-master node (Node 1) is
toggled on and off every 1.5 s.

8. Absence of violated assertions when the active time-master node (Node 1) is
toggled on and off every 1.5 s, and an initial bootup delay of the faulty active
VCU is added.

9. ◇◻ (time master2 active) — Node 2 eventually always becomes the active
time-master if there is a periodic fault causing the currently active time-master
node (Node 1) to be toggled on and off every 1.5 s.

5.2.3 Verification results

The following list shows the results of the verification of the correctness properties and
test conditions from Section 5.2.2 against the voter model:

• Properties 1 – 4 pass verification without error.

• Property 5 fails verification. The error trails reveal two situations where both
potential time-masters are simultaneously configured as the active time-master.
On the initial startup of the system, both time-masters become the active time-
master after an initial timeout, the voter state-machine then determines the win-
ning time-master. Also, if an active time-master is powered down the state is
stored in non-volatile memory and when the node is reactivated, if the backup
time-master has taken over and become active, both nodes will be in this state.
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Figure 5.6 Timing diagram showing the sequence of events that causes property 7 to fail in the voter
model.

• Property 6 passes verification with the backup time-master taking over as ex-
pected.

• Property 7 fails when the on/off period is 3 s (1.5 s on and 1.5 s off) and passes
for all other intervals tested. This kind of fault could potentially be caused by
a faulty alternator sending a voltage spike to the VCU’s power supply, causing
it to periodically switch on and off. The reason this period fails is because with
the 3 s period the node is active just long enough so that the active time-master
status message is able to be sent after startup, as illustrated in Figure 5.6. From
tests of the VCU hardware it was found the time-master status message is sent
approximately 1.3 s after the node is powered up. This means, even with the 1.5 s
periodic fault, the backup VCU will think there is still an active VCU on the
network so will not timeout and takeover. In this case, 50% of the VCU messages
are effectively lost from the active VCU due to the fault and the redundant VCU
will not takeover. An up down counter is used as a check to see if 1 or more
messages have failed to be received at a node within a basic-cycle period. If this
count becomes greater than 20 an error is flagged. This is the case in the model
when the 3 s periodic fault is tested. The test shows that the redundant VCU
does not take over as expected in this situation.

• Property 8 passes when an extra delay is added to the time-master node, as
described in Section 5.2.4.

• Property 9 fails verification showing that when there is 1.5 s periodic fault causing
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the active VCU to toggle on and off, the backup time-master VCU does not take-
over.

5.2.4 Potential solutions

An intermittent fault causing the active time-master to toggle on and off at a certain
rate was found to prevent the backup VCU from taking over. In this case, it was found
that a large number of VCU control messages to the HCU could potentially be lost
from the active VCU without the redundant VCU taking over. A potential solution
to the verification error found has been added to the model. The model is modified
to show the effect of extending the initial startup delay so that it is greater than the
backup VCU node’s timeout period before it takes over as the active VCU. The timeout
period in the implementation is 3 s; the solution modelled extends the VCU startup
delay to 3.5 s. If the currently active VCU happens to power off then restart with this
extra delay, the backup VCU now has enough time to timeout and takeover as the
active time-master. This modified model passed verification without error, as recorded
in property 8 of Section 5.2.3.

Currently, in the implementation, the startup delay is dependent on the startup
time of the boot block and the operating system. This delay is non-deterministic and is
also dependent on the operating system used. The startup delay implemented should
not be dependent on the platform otherwise if this changes at some later stage this
problem may reoccur.

5.3 SIGNAL PICKER MODEL

The “signal picker” model is an abstract model of the module used in the VCU nodes
to select the bus the node is currently listening to, as shown in Figure 5.7. The model
simulates messages received on either bus, messages reporting errors from their source,
dropped messages, and then periodically updates the state of the module as occurs
in the implementation. Assertions are used in the model to check the rules that are
specified in the implementation of the “signal picker” module hold. The complete
PROMELA source code of the model appears in Appendix D.

5.3.1 Structure of model

The init process, shown in Listing 5.8, represents the “signal picker” module. The
“signal picker” reacts to any of the events triggered by the TriggerInputs process,
shown in Listing 5.9.

Listing 5.8 PROMELA source for the model of the “signal picker” module.

init
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{

run TriggerInputs ();

do

5 :: RecvMsg[BUS_P] != false ->

printf (" Received message from P\n");

RecvMsg[BUS_P] = false;

ChkInputSignal(BUS_P );

ChkSwapped ();

10 :: RecvMsg[BUS_Q] != false ->

printf (" Received message from Q\n");

RecvMsg[BUS_Q] = false;

ChkInputSignal(BUS_Q );

ChkSwapped ();

15 :: MsgError[BUS_P] != false ->

printf (" Dropped message on bus P\n");

/* Have lost a message on this bus since the last time the

flags have been invalidated. */

DroppedMsg[BUS_P] = true;

20 :: MsgError[BUS_Q] != false ->

printf (" Dropped message on bus Q\n");

/* Have lost a message on this bus since the last time the

flags have been invalidated. */

DroppedMsg[BUS_Q] = true;

25 :: Update != false ->

/* Update and invalidate variables. */

Update = false;

if

:: Seen[OnBus] && !Bad[OnBus] ->

30 /* Seen current bus and still good - stay on it. */

:: else ->

if

:: Seen[1 - OnBus] && !Bad[1 - OnBus] ->

/* Current is bad and other is good , so switch. */

35 OnBus = 1 - OnBus;

SwappedBus[OnBus] = true;

:: else ->

skip;

fi;

40 fi;

ChkSwapped ();

/* Invalidate flags. */

Seen[BUS_P] = false;

Seen[BUS_Q] = false;

45 Bad[BUS_P] = false;

Bad[BUS_Q] = false;

MsgError[BUS_P] = false;

MsgError[BUS_Q] = false;

DroppedMsg[BUS_P] = false;

50 DroppedMsg[BUS_Q] = false;
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od;

}

The process TriggerInputs models the “signal picker” module’s interaction with
the environment. It non-deterministically triggers events that occur in the environ-
ment and the “signal picker” such as: receiving messages, simulating missed (dropped)
messages, and initialising the periodic update of the state of the “signal picker”. The
periodic update is triggered every 1.5 s in the implementation but is triggered non-
deterministically in this model as it could occur at any time relative to the messages
being received on the bus.

Listing 5.9 PROMELA source for the ‘TriggerInputs’ process.

proctype TriggerInputs ()

{

do

:: skip ->

5 /* Received message correctly on bus P. */

RecvMsg[BUS_P] = true;

:: skip ->

/* Received message correctly on bus Q. */

RecvMsg[BUS_Q] = true;

10 :: skip ->

/* Timer has expired to update bus state and

invalidate flags. */

Update = true;

:: skip ->

15 /* Msg that has been sent to bus P has not been received. */

MsgError[BUS_P] = true;

:: skip ->

/* Msg that has been sent to bus Q has not been received. */

MsgError[BUS_Q] = true;

20 od;

}

The ChkInputSignal inline function, shown in Listing 5.10, is called by the init

process when a new message is received. It non-deterministically simulates messages
received without error and messages indicating sensor errors at the message source. It
also determines if the message received causes the node to swap buses.

Listing 5.10 PROMELA source for the ‘ChkInputSignal’ inline function.

inline ChkInputSignal(index)

{

Seen[index] = true;

if

5 :: skip ->

/* Received bad signal. Message data indicates an error at the

source. */

printf ("Bus %d: Received bad signal\n", index );
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Bad[index] = true;

10 :: skip ->

/* Good signal received. */

printf ("Bus %d: Received good signal\n", index );

Bad[index] = false;

if

15 :: OnBus == index ->

/* Signal received which is on the current bus. */

skip;

printf (" Received good signal - stay on (%d) bus\n", index );

:: else ->

20 if

:: Seen[1 - index] && Bad[1 - index] ->

/* Other bus has been seen and is bad , then swap

to this one. */

OnBus = index;

25 SwappedBus[OnBus] = true;

:: else ->

/* Received good signal on redundant bus ,

or other arrived before this signal. */

skip;

30 fi;

fi;

fi;

}

Listing 5.11 shows the ChkSwapped inline function. This is also called by the init

process. The function is used to check the rules specified for switching to the redundant
bus are not broken after a new message has been received or the state of the module
has been updated.

Listing 5.11 PROMELA source for the ‘ChkSwapped’ inline function.

inline ChkSwapped ()

{

/* ‘OnBus ’ is the bus the ‘signal picker ’ is currently listening

to; in this case , the bus that has been swapped to. */

5 printf ("Check if swapped: Currently on bus (%d)\n", OnBus );

if

:: SwappedBus[OnBus] ->

SwappedBus[OnBus] = false;

/* If swapped to the other bus assert that the bus has been

10 seen and is not bad. Also , the current bus must be either

bad or not seen to swap. */

assert(Seen[OnBus] && !Bad[OnBus]

&& (Bad[1 - OnBus] || !Seen[1 - OnBus ]));

:: else ->

15 /* Haven ’t swapped buses but there has been a missed message

on the current bus. */

IF DroppedMsg [1 - OnBus] != false ->
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Figure 5.7 Diagram showing “signal picker” module’s connections within the VCU.
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Figure 5.8 Timing diagram for intermittent error on bus P.

DroppedMsg [1 - OnBus] = false;

/* Did not swap buses and there was an error on bus since

20 last reset. */

FI;

fi;

}

5.3.2 Correctness properties

The properties specified to check against the model are based on the developer’s original
design specifications. The properties checked are:

1. The module will only ever swap to the other bus if the current bus has received a
message with an error value or a message has not been received since the status
flags have been last reset. There must be a message seen on the bus that will be
swapped to and no error messages can be received on the bus. An assertion is
used to check this property after any time the model swaps buses.
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2. A check is made to ensure that if a message is dropped since the last time the
modules flags are reset, a transition is made to the redundant bus. Again, an
assertion is used to check this property.

5.3.3 Verification results

Property 1 from Section 5.3.2 passes verification when checked against the “signal
picker” model; however, property 2 fails. Messages can be dropped on the bus the
module is currently listening to without swapping to the backup bus. The “signal
picker” only swaps to the redundant bus if no message has been seen (received correctly)
on the current bus or a message is seen with an error flag set. This means if there is
an intermittent fault on the bus, as shown in Figure 5.8 on bus P, it is possible to lose
a number of message since the last periodic reset of the modules flags. In this case, as
long as one message is received the module will not switch to the redundant bus. It
also appears that there is currently no error handling scheme to detect an intermittent
fault of this kind. In this case, as described in Section 5.1.3.3, the ISO TTCAN error
handling scheme can be used to detect these types of faults and report an error to the
application.

5.4 REDUNDANT TTCAN PROTOCOL MODEL

The redundant TTCAN model is used to check that the redundancy added to the
system interacts correctly with the existing implementation. This section outlines the
structure of the redundant model and highlights the changes that have been made from
the original TTCAN protocol model described in Section 5.1. The properties verified
against the model, results of verification, and potential solutions modelled are also
described. The complete PROMELA source code of the model appears in Appendix
D.

5.4.1 Structure of model

The configuration used in this model has two VCUs and a separate CID and HCU
on each bus, as shown in Figure 5.9. In the implementation, each VCU node has
two instances of the TTCAN driver, one connected to each of the network buses.
In the model, this is represented using two TimeMasterNode processes for each VCU
node. Each instance is connected to one of the redundant buses. Each CID and
HCU module in the implementation has two microcontrollers, each connected to one of
the redundant buses. This is represented in the model using two TimeReceivingNode

processes associated with each module. The TimeMasterNode and TimeReceivingNode

node processes are modified in this model so when they are initialised they are able to
be assigned to either the P or Q buses.
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The ISO TTCAN error handling state-machine is added to this redundant model.
Each node on the network has an associated error handler state-machine, represented
in the model by the ErrorContainment process, as shown in Figure 5.9. Currently
the error handler module is not part of the implementation; it is added to this model
to show how it improves the error handling capability of the existing system. The
error handler keeps track of the number of scheduled messages received or transmitted
with errors. This is achieved by associating a Message Status Count (MSC) with each
exclusive window message that is scheduled to be sent or received. If a message fails to
be received or transmitted correctly, the associated MSC count is increased; the count
is decreased if the message is transferred correctly. The error handler transitions to
an error state when the MSC count reaches the error threshold value, indicating an
exclusive window message is repeatedly lost [ISO 11898-4 2004]. A node is able to be
isolated from the network if there is a persistent transmission error, such as a “babbling
idiot” fault, or a scheduling conflict. The TTCAN error is passed to the application
from the driver by setting a bit in a variable known in ISO TTCAN as the ‘interrupt
status vector’ to indicate the error condition [ISO 11898-4 2004]. This is polled or used
as an interrupt in the application to take the correct action depending on the type of
error.

Message receive triggers, that are not present in the implementation but are part
of ISO TTCAN, have been added to the message schedules in this model. This is
required by the error handler process to model message receive errors at a node. Receive
trigger events are added to the node’s schedules on initialisation using the definition
RX_TRIGGER in combination with the identifier of the expected message. The receive
trigger point for a message is defined in this model to be half way through the exclusive
time-slot following the corresponding scheduled message.

The TransmitMessage inline function has been modified for use in this model. If
the CHECK_BUFFERS_ONLY definition is passed as the message identifier to TransmitMessage,
any currently buffered message is sent but no new message is buffered. This is required
due to the introduction of receive trigger events in the schedule. The receive trigger
points are used by the error containment process as trigger times for checking sched-
uled messages are received correctly. If a buffered message is due to be transmitted
when a receive trigger event occurs, the model must check the transmit buffer and
trigger transmission if there is a message pending. An extra parameter is also added to
TransmitMessage and the TX_TRIGGER sync channel to select the bus that the message
is transmitted on.

The AdvTimeBusArb process is modified to handle the redundant bus added to the
model. The sections of the process responsible for handling bus arbitration when time
advances and resetting the bus when the current message finishes transmission are now
called once for each bus. The portion of code that handles arbitration is modified so
that only modules on the bus currently being evaluated are included in the arbitration.
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Odd numbered modules (Node 1, Node 3, ..., etc) are on bus P (labelled as bus 0 in
the model), even numbered modules (Node 2, Node 4, ..., etc) are on bus Q (labelled as
bus 1 in the model). The AdvTimeBusArb process also models the corruption of a bus
or an individual message received at a node. If a bus is corrupted all messages received
by nodes from this bus are corrupted.

Listing 5.12 shows the BusCorrupt inline function called by AdvTimeBusArb. If
BUS_CORRUPTED is defined BusCorrupt non-deterministically selects one of three test
cases for the redundant buses. Either messages transmitted on bus P are not corrupted
and those on bus Q are corrupted, messages on bus P are corrupted and messages on
bus Q are not, or both buses transmit messages correctly. This allows the correctness
properties to check the sponsoring organisation’s requirement that the system is toler-
ant to any single fault. BusCorrupt is called at the start of AdvTimeBusArb. This is
required as calling the function to dynamically update the state of the bus when each
message is processed results in the state space explosion problem.

The MsgReceiverCorrupt inline function is used to model the corruption of a
message received at a node. This is used in a similar way to BusCorrupt to test the
redundancy added to the system. It models corruption of messages received by each
node on one of their redundant receivers. Similarly to BusCorrupt, it is called at
the beginning of AdvTimeBusArb and non-deterministically selects which of each nodes
redundant receivers is corrupted.

Listing 5.12 PROMELA source for the ‘BusCorrupt’ inline function.

inline BusCorrupt ()

{

/* Bus is either OK or corrupted. If corrupt , the corrupted message is

passed to all receiving nodes. */

5 #ifdef BUS_CORRUPTED

/* Testing a fault on one of the redundant buses. */

if

:: skip ->

busArbitration[BUS_P ]. busFrameId.status = OK;

10 busArbitration[BUS_Q ]. busFrameId.status = CORRUPT;

:: skip ->

busArbitration[BUS_P ]. busFrameId.status = CORRUPT;

busArbitration[BUS_Q ]. busFrameId.status = OK;

:: skip ->

15 busArbitration[BUS_P ]. busFrameId.status = OK;

busArbitration[BUS_Q ]. busFrameId.status = OK;

fi;

#else

busArbitration[BUS_P ]. busFrameId.status = OK;

20 busArbitration[BUS_Q ]. busFrameId.status = OK;

#endif

}
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Figure 5.9 Block diagram of the redundant TTCAN system.

If a message is received at a node without corruption the rxMsgBuff flag for this
message is set to indicate the correct transmission. This flag is checked in the node’s
error handler process when the receive trigger for this message is reached.

5.4.2 Failure scenarios

A possible failure scenario occurs if the node transmitting does not see the acknowledge
(ACK) bit set in the ACK field of the CAN message frame after the message has been
received at a node. This may be due to all receiving nodes not seeing the message due to
a fault on the node’s transceiver, or a problem with reception at the transmitting node
causing it to miss the ACK bit. In this situation, the node will constantly retransmit
the message, flooding the bus. The CAN hardware should change the node to “bus
off” state once the node’s transmit error count reaches 256 [ISO 11898-1 2003]. This
error situation only occurs when the message transmission error is on an arbitrating
window message, as only messages sent during the arbitrating window are sent with
retransmission. Exclusive window messages are only sent in one-shot mode. This type
of failure scenario is known as a “babbling idiot” fault. There are many possible causes
of “babbling idiot” type faults, in the worst case, a node may constantly flood the bus
with random data.

The model is able to be conditionally compiled with the backup VCU node having
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a “babbling idiot” fault. The messages are sent directly after each other without gaps,
and the scheduled exclusive message trigger points are ignored. When the “babbling
idiot” fault is enabled, the backup VCU sends a message with an arbitrary identifier
(in this case 5) throughout the exclusive time-slot period. The message identifier is
arbitrarily chosen. Previously the identifier was changed after each basic-cycle to check
the effect of different erroneous messages. This proved to be unnecessary, as the effect
of the “babbling idiot” node is seen, scheduled exclusive window messages are lost, as
long as the erroneous message’s priority is greater than at least one of the scheduled
exclusive window messages. The model allows a potential worst case “babbling idiot”
fault on the VCU, where both the redundant buses are flooded with erroneous messages,
to be modelled.

The model simulates corruption of individual messages received at nodes and cor-
ruption the redundant buses. This allows the model to check the redundancy added to
the system works as intended, and the sponsoring organisation’s requirement that any
single fault is satisfied. Properties verified against the model check that if a node has a
faulty receiver on one bus it will detect the error correctly and switch to the other bus.
If a bus is corrupt all messages received by nodes on that bus are received in error, and
in this case, all nodes detect the error and switch to the redundant bus.

The following list summarises the scenarios modelled:

1. Corruption on a single bus.

2. Corruption of messages received by nodes on a single bus.

3. Backup VCU node configured as a “babbling idiot”. The two instances of the
TTCAN driver in the backup VCU are represented by the Node 3 and Node 4

processes, as shown in Figure 5.9.

4. Backup VCU node configured as a “babbling idiot”, and enabling isolating of
node on an S2 level error.

5.4.3 Correctness properties

In this redundant model, an error due to a scheduled message not being received (prop-
erties 3, 4, 5, 6, 7, 8, and 9) is only flagged if the scheduled message is not received
on either of the modules’ redundant buses. When checking these properties, only the
CID (Node 7 and Node 8 processes) and HCU (Node 5 and Node 6 processes) node’s
receive error flags are checked. This check is enough to prove that a message has not
been lost while reducing the time and resources required for verification.

Properties 4 and 8 check that a scheduled exclusive window message never fails to
be received, when the backup VCU is configured with a “babbling idiot” fault on both
buses. Property 11 checks that, when there is a “babbling idiot” fault on the backup
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VCU, MSC 7 transmit errors are reported by the active VCU. Property 12 checks that
MSC 7 overflow errors are reported by the backup VCU when it is configured as a
“babbling idiot”.

The model is also able to be conditionally compiled to enable isolating of node if
an S2 level error is reported by the node’s error handler. Properties 7 and 9 shows a
potential solution to a “babbling idiot” node flooding the bus with erroneous messages
by allowing a faulty node to be isolated by the node’s error handling process. The
properties check that no message receive error is reported in this situation.

Again, assertions are used to check that CAN bus access and arbitration are han-
dled correctly in the model.

The following list of 6 correctness properties have been verified against the redun-
dant TTCAN model:

1. Absence of violated assertions and deadlock in model.

2. ◻◇ (no n5 msg rx error && no n6 msg rx error && no n7 msg rx error

&& no n8 msg rx error) — Always eventually no scheduled receive message er-
rors flagged on nodes 5 – 8.

3. ◇◻ (no n5 msg rx error && no n6 msg rx error && no n7 msg rx error

&& no n8 msg rx error) — Eventually always no scheduled receive message er-
rors flagged on nodes 5 – 8.

4. ◻ !(n5 schedule error || n6 schedule error || n7 schedule error

|| n8 schedule error) — Absence of received message that has not been sched-
uled.

5. ◻◇ (n1 msc7 tx error && n2 msc7 tx error) — The two instances modelling
the TTCAN driver in the active VCU (Node 1 and Node 2) both always eventu-
ally report MSC 7 transmit errors.

6. ◻◇ (n3 tx overflow error && n4 tx overflow error) — The two instances
modelling the TTCAN driver in the backup VCU (Node 3 and Node 4) both
always eventually report TTCAN transmit overflow errors.

5.4.4 Verification results

The properties specified in Section 5.4.3 have been verified against the redundant
TTCAN model described in Section 5.4.1. For each property verified against the mod-
els, the models are configured with the scenarios described in Section 5.4.2 or a default
configuration. In the default configuration, both VCU nodes start simultaneously. One
VCU is configured as the active time-master; the other is configured as the backup.
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The verification results of the redundant TTCAN model using 480 µs length exclu-
sive window messages are summarised in Table 5.2.

Table 5.2 Verification results of the redundant TTCAN model using 480 µs messages.

Property Failure Correctness Errors
scenario property (480 µs messages)

1 Default 1 0
2 3 1 0
3 Default 2 0
4 3 2 1
5 1 2 0
6 2 2 0
7 4 2 0
8 3 3 1
9 4 3 0
10 Default 4 0
11 3 5 0
12 3 6 0

• Properties 1 – 3, 5 – 7, and 9 – 12 all pass verification without error.

• Properties 4 and 8 fail arbitration, this is expected with the “babbling idiot” node
enabled and no TTCAN “bus off” isolation modelled. Scheduled messages are
lost when they collide with “babbling idiot” messages of higher priority that are
transmitted simultaneously. Currently, when these errors detected by the model
are not reported to the application in the implementation.

• The results of verification for properties 5 and 6 of the redundant model (Section
5.4.2) show that currently the system is tolerant to a single fault on one of the
buses or to a single fault at a module’s receiver.

• Properties 7 and 9 show how a node’s error handler is used to isolate a node
that is erroneously flooding the bus with messages. When the transmit MSC
error count reaches a certain value, the node’s error handler transitions to the
S2 error level state; the node’s transmitter is switched off and is prevented from
transmitting messages on the bus [ISO 11898-4 2004]. Further details are given
in Section 5.4.5.

• Properties 11 and 12 show the errors flagged at the node’s error handler with
a faulty node on the system. The error handler is not currently part of the
implementation, but is included in the model to show how it is used to monitor
the system for errors.

Properties 7 and 9 show how the ISO TTCAN error is used to isolate a faulty
node. Usually, the CAN hardware switches the CAN controller into “bus off” mode if
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a node consistently has transmission errors on the bus, but in the implementation the
CAN controller module is reset before this when the error count reaches the CAN error
passive’ state [ISO 11898-1 2003]. This prevents the node from entering the “bus off”
state that is used to stop a faulty node continuously corrupting a bus.

In verification of properties 5 and 6, on detecting the fault the system switches
to the redundant bus and continues to operate as expected. However, there does not
appear to be any signal reported to the application when a fault is detected on one of
the buses. Reporting this error is important as this could lead to a situation where a
single unreported fault on a bus will leave the system vulnerable to an additional fault
on the redundant bus. There is a general counter that is incremented when there is any
transmission error flagged by the CAN controller hardware, but this is currently only
used for diagnostic purposes. It does not report an error to the application if there are
persistent errors on a bus.

There are a number of situations that cause the system swap to the redundant
bus. If one microcontroller in a CID, one port of a VCU controller, or one of the HCU
microcontrollers has a fault the system will switch buses. However, in all of these cases
it does not appear that an error indication is passed to the application. Again, this
leaves the system vulnerable to an additional fault occurring on the redundant bus.
The ISO TTCAN error handling scheme can be used to detect these types of faults
and report an error to the application, as described in Section 5.1.3.3.

5.4.5 Potential solutions

A modification is added to the model to isolate a node if a transmission fault is detected
by a node’s error handling state machine. A “babbling idiot” VCU node that has worst
case behaviour transmitting messages of high priority (message identifier 5) on both
buses is used to model the faulty node. The model shows that when the MSC transmit
error or transmit overflow error is triggered, the error handler of the VCU transitions to
the S2 error state and the transmitter of the node is disabled. The active VCU is now
able to transmit messages without them being corrupted by the faulty node. The check
made ensures that always eventually there will be no receive message error reported
at any of the CID or HCU nodes. This means it is possible to lose messages while
the error handling state machine is determining whether there is an error condition to
report. However, after the error handling state machine isolates the faulty node, and
the system reaches a stable state, there will be no further message receive errors.

5.5 SUMMARY OF POTENTIAL PROBLEMS FOUND

A number of potential problems with the sponsoring organisation’s TTCAN implemen-
tation have been found using model checking. The checks have revealed unexpected
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sequences of events that cause the system to operate in unexpected ways. The prob-
lems identified include the failure to report certain errors caused by intermittent faults
on the system, failure to switch to backup in certain situations, and a possibility for
messages that communicate between different modules on the system to be lost.

The following list gives a summary of potential problems found model checking the
sponsoring organisation’s TTCAN implementation:

• Section 5.1.3.1 shows that delay in an exclusive time-slot worst case length mes-
sage causes a subsequent exclusive time-slotted message to be lost.

• Section 5.1.3.3 shows that a node added to the system with an incorrect configu-
ration causes an exclusive window message to be lost without reporting an error
to the application.

• Section 5.2.3 shows that if an active time-master VCU node has an intermittent
fault, causing it to power on and off at a certain rate, the backup VCU will not
take over as expected.

• The model of the VCU’s “signal picker” module shows that an intermittent fault
at a certain rate on one of the redundant CAN buses may cause the “signal picker”
module in the VCU to fail to transfer to the backup bus. The model shows that
this occurs when there is a high error rate on the current bus, as described in
Section 5.3.3.

• A worst case “babbling idiot” fault on a VCU node may flood both buses with
erroneous messages. Section 5.4.4 shows how this fault causes scheduled messages
to be lost, and shows how the problem is resolved using the ISO TTCAN error
handling scheme.

• The ISO TTCAN error handling scheme is not currently implemented and errors
occurring in the TTCAN driver are currently not signalled to the application.
Section 5.4 shows how the error handler is added to the system to help improve
error reporting.
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CONCLUSION

Initially, a layered model of ISO TTCAN and a set of LTL correctness properties,
based on work previously done by Leen and Heffernan modelling the protocol using
UPPAAL, have been developed and then verified using the SPIN model checker. By
using a variable time advance (VTA) strategy to model the progression of time, we
were able reduce the state space required for verification when compared to Leen and
Heffernan’s model. In UPPAAL, each process is represented by a timed automaton
with an associated clock variable; using SPIN and the VTA technique, these extra
clock variables are not required. Using VTA, as the current time advances, the model
jumps to the instant where the next event causes a state transition; periods where
there is no activity are skipped. Using this technique allowed us to develop a model
where only state transitions that are relevant to the search are included, reducing the
state space required for verification. Using VTA allowed us to check properties which
Leen and Heffernan could not check due to state space restrictions. Also, complicated
sequences of events during startup were able to be modelled, giving us more confidence
the model correctly represented ISO TTCAN.

An abstracted model, which has the same protocol behaviour as the original ISO
TTCAN model, has also been developed to help reduce the state space required for
verification when compared to the original layered model. The underlying details of
the CAN protocol are abstracted away, allowing the model to focus on checking the
properties of the TTCAN protocol layer. The reduction in state space allows more
complicated system configurations and sequences of events to be modelled. The tech-
niques developed here for modelling the progression of time, message transmission, and
CAN bus arbitration form the basis of the models of the sponsoring organisation’s
implementation of TTCAN.

Four separate models, each focusing on different areas of the sponsoring organ-
isation’s implementation of TTCAN, have been developed. The models check the
correctness of the TTCAN implementation and the interaction of the TTCAN system
with the fault tolerance measures added to the system. Models have been developed
to check the correct operation of the following areas of the system:
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• The sponsoring organisation’s implementation of the TTCAN protocol. This
model focuses on checking the message schedules are triggered correctly and
scheduled TTCAN messages are transferred correctly.

• The active time-master election algorithm, known as the “voter” process in the
implementation.

• The process used to select the bus the VCU is currently listening to, known as
the “signal picker” module in the implementation.

• The interaction of redundancy added with the existing system. This model fo-
cuses on checking the redundant CAN bus added interacts correctly with the
system.

Verification of the models of the sponsoring organisation’s system have revealed a
number of potential problems in the implementation. Through the process of develop-
ing the models, forming correctness properties, and then verifying them, sequences of
events and unexpected conditions were found that caused to system to fail. The model
of the sponsoring organisation’s implementation of TTCAN revealed an unexpected
situation where a worst case length bit-stuffed message could overrun the allocated
time-slot causing subsequent scheduled exclusive window messages to be lost. The
TTCAN protocol model also shows that if a scheduled exclusive window message is
lost, whether due to the message overrun problem or from an incorrectly configured
node added to the system, there is no error indication passed to the application. The
active time-master election or “voter” model revealed that if the currently active VCU
has an intermittent fault causing it to periodically restart at a certain rate, then the
backup VCU will not takeover as expected. The “signal picker” model shows a situation
where an intermittent fault on the bus that the VCU is currently listening to prevents
it from transferring to the redundant bus. The model of the redundancy added to the
system shows that in the current implementation the system switches to the redundant
bus without reporting an error to the application. As no error is reported to the ap-
plication after an initial fault, it is possible for single faults to occur concurrently on
each bus and cause the system to fail.

The model of the redundancy added to the system shows how the ISO TTCAN
error handler can be added to the implementation to improve detection of errors on the
system. The ISO TTCAN error handler allows detection of persistent and intermittent
errors on a system bus. If an error is detected the error handler changes to an error state
and this is reported to the application. The error handler can also be used to prevent
a node repeatedly corrupting a bus from transmitting. The ISO TTCAN error handler
will also improve error reporting when exclusive window messages are lost due to faults
on the bus, the message overrun problem, or nodes transmitting unexpected messages
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during the time-slot. The error handler can also be used to detect intermittent faults
which currently prevent the VCU from switching to the redundant bus.

This research demonstrates the successful application of model checking to an in-
dustrial design problem. The analysis of the models developed has identified unex-
pected situations where scheduled messages can be lost, the VCU node fails to switch
to the redundant bus, the backup VCU does not takeover from a faulty active VCU,
and errors occurring in the TTCAN driver are not reported to the application. In the
implementation, these situations could potentially lead to a situation where control
of the vessel is lost. In applying model checking techniques to the sponsoring organ-
isation’s TTCAN implementation, we have found model checking techniques to be a
useful aid in the design phase of a large software project. The process of developing
the models of the implementation allows a developer to gain a deeper understanding
of the code. Simulations of the model often revealed complicated sequences of events
that were not taken into account during the initial software design, and these can now
be checked to ensure they do not cause the system to misbehave. Also, by creating a
model of the software and automatically verifying it against a set of mathematically
based design specifications, it allows the developer to check the specifications against
the implementation in a formal way. This gives the developer more confidence in the
design, and that the design meets the specifications.

A potential area for future work is to extend the models of the sponsoring or-
ganisation’s redundant TTCAN implementation to model different system topologies.
Currently, the configuration of nodes on the system can be modified but the topology
of the system is fixed. Another area to investigate is the effect of adding periodically
transmitted arbitrating window messages, such as status and fault messages, to the
model. The model could be used to check that messages always have an opportunity to
transmit and the worst case delay of the arbitrating window messages is always within
the design values under the worst case traffic load. Also, it would be worthwhile to
create higher level models of the state machines used to change control between and
report the status of the vessels stations in response to faults on the system and user
inputs.

Due to the complicated sequences of events required to expose some of the prob-
lems identified, these issues may be difficult to discover or trigger using conventional
testing techniques. Another area for future work is to investigate how the results of
the verification can be fed-back into the test phases which follow the design phase to
help improve the overall development process.





Appendix A

LISTINGS COMMON TO ALL MODELS

/**

* Macros used to simplify model source code.

3 * Ref: Ben -Ari , M. (2008) , " Principles of the Spin Model Checker", Springer London.

*

* @file macros.h

* @author dmk

* @date 05/08/10

8 *

*/

/* Used to simplify code for a deterministic condition. */

#define IF if ::

13 #define FI :: else fi

/* Macro to simplify code for a loop. */

#define FOR(I,low ,high) \

I = low ; \

18 do \

:: ( I >= high ) -> \

I = 0 ; \

break \

:: else ->

23

#define ROF(I) \

; I++ \

od

/**

* Definitions common to both the ISO and sponsoring organisation ’s TTCAN models.

*

4 * @file Common.h

* @author dmk

* @date 05/08/10

*

*/

9 /* Message identifiers . */

#define REF_ID_1 1

#define REF_ID_2 2

#define REF_ID_3 3

#define MSG_ID_3 3 /* ALWAYS HCU1 message */

14 #define MSG_ID_4 4

#define MSG_ID_5 5

#define MSG_ID_6 6

#define MSG_ID_7 7

#define MSG_ID_8 8

19 #define MSG_ID_9 9

#define MSG_ID_10 10

#define MSG_ID_11 11

#define MSG_ID_12 12

#define MSG_ID_13 13

24 #define MSG_ID_14 14

/* If MSB set this is an rx trigger message , so wait for the message to be received at the node. */

#define RX_TRIGGER 128

/* Used in mesage ID field to represent an empty buffer. */

#define BUFFER_EMPTY 0

29 /* Used as the message id when calling the ‘TransmitMessage ’ function and only want to check the send

buffers , not load another message. */
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#define CHECK_BUFFERS_ONLY 255

/* Values reserved in msg id field of node ’s schedule for starting/ finishing arbitration , and completing

a basic cycle. */

34 #define SKIP_SEND_MSG 0

#define BEGIN_ARBITRATION 125

#define FINISH_ARBITRATION 126

#define END_SCHEDULE 127

/* Used to show bus is currently in idle and arbitration states. */

39 #define BUS_IDLE 62

#define BUS_ARB 63

/* TTCAN node state. */

#define INITIALISATION 0

#define TIME_MASTER 1

44 #define P_MASTER 2

#define TIME_RECEIVER 3

/* 2^31 -1 max value for a signed ’int ’. */

#define UINT32_MAX 2147483647

#define MAX_TIMEOUT UINT32_MAX

49 /* Flags used by the TransmitMessage function. Flag is set if transmission is triggered in the arb window

in this case there are retransmissions . */

#define ARB_INTERVAL 1

/* Transmission is triggered in an exclusive time -slot. */

#define ONE_SHOT_INTERVAL 0

54 #define BUS_P 0

#define BUS_Q 1

#define BACKUP_TIME_MASTER 0

#define ACTIVE_TIME_MASTER 1

/* TTCAN error handling. */

59 #define NO_ERROR 0

#define S1_ERROR 1

#define S2_ERROR 2

#define S3_ERROR 3

/* Message status count error value. */

64 #define MSC_MAX 7

/* Reserved values passed as parameters of ‘SET_TIMEOUT ’ channel used to enable / disable a node. */

#define NODE_ABSENT 0

#define NODE_PRESENT 1

/* Default the bootup delay to 0. */

69 #define TIME_MASTER_BOOTUP_DELAY 0

mtype = {OK , CORRUPT };

/**

* Typpedefs used in both the ISO and TTCAN models.

3 *

* @file TTCANTypedefs .h

* @author dmk

* @date 05/08/10

*

8 */

typedef SchedBasicCycleT

{

/* The scheduled message for each basic -cycle of a matrix -cycle for a transmission column. */

13 int nextTxSendDelay[BASIC_CYCLE_COUNT ];

byte nextMsgId[BASIC_CYCLE_COUNT ];

};

/* A node ’s transmission schedule. */

18 typedef ScheduleT

{

/* Number of messages to transmit in schedule. */

byte numFrames;

/* Number of scheduled transmissions from node. */

23 byte expectedTxCount;

/* Has a schedule entry for each transmission column in the matrix -cycle. Each entry is a structure

with the message to send for each basic -cycle of a transmission column. */

SchedBasicCycleT schedBasicCycle[MAX_SCHEDULE_LENGTH ];

};

28

typedef MessageT

{

byte messageID;

/* status of the message can be ok or corrupted. */

33 mtype status;

};
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typedef NodeSendStatusT

{

38 /* Send time remaining for each node currently transmitting a message. */

int sendTimeRemaining;

/* Time that has elapsed since putting msg on wire (not including delay before sending ). */

int elapsedSendTime;

/* Flag set during the transmit routine to trigger sending of a message. */

43 bool triggerSend;

bool firstOneShotTx;

MessageT firstOneShot;

bool backupOneShotTx;

MessageT backupOneShot;

48 MessageT receiveBuff;

};

/* Variables used in bus arbitration for each bus. */

typedef BusArbitrationT

53 {

/* Msg id of nodes currently attempting to transmit on the bus , defaults to BUS_IDLE. */

byte nodeFrameId[TOTAL_NODES ];

byte tempBusId;

/* Identifier of message currently on physical medium. */

58 MessageT busFrameId;

bool doArbitration;

/* Time remaining for current message on bus to complete tx. */

int txMsgComplete;

/* Stores the identifier of the node that won the last bus arbitration . */

63 byte arbWinnerIndex;

};

1 /**

* Contains inline functions used in AdvTimeBusArb process.

*

* @file AdvTimeMacros .pml

* @author dmk

6 * @date 11/08/10

*

*/

11 #define __ADV_TIME_MACROS_

inline BusCorrupt ()

{

/* Bus is either OK or corrupted . If corrupt , the corrupted message is passed to all receiving nodes. */

16 #ifdef BUS_CORRUPTED

/* Testing a fault on one of the redundant buses. */

#if REDUNDANT_BUSES == 2

if

:: skip ->

21 busArbitration[BUS_P]. busFrameId.status = OK;

busArbitration[BUS_Q]. busFrameId.status = CORRUPT;

:: skip ->

busArbitration[BUS_P]. busFrameId.status = CORRUPT;

busArbitration[BUS_Q]. busFrameId.status = OK;

26 :: skip ->

busArbitration[BUS_P]. busFrameId.status = OK;

busArbitration[BUS_Q]. busFrameId.status = OK;

fi;

#else

31 #error "Invalid number of buses , must have REDUNDANT_BUSES = 2 when defining BUS_CORRUPT test case."

#endif

#else

#if REDUNDANT_BUSES == 1

busArbitration[BUS_P]. busFrameId.status = OK;

36 #elif REDUNDANT_BUSES == 2

busArbitration[BUS_P]. busFrameId.status = OK;

busArbitration[BUS_Q]. busFrameId.status = OK;

#else

#error "Invalid number of buses , REDUNDANT_BUSES must be either 1 or 2."

41 #endif

#endif

}

46 inline UpdateErrorHandler ()

{
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if

:: i == busArbitration[checkBus ]. arbWinnerIndex ->

/* Node won arbitration . */

51 printf ("Node %d: won arbitration and transmitted sucessfully\n",

busArbitration[checkBus ]. arbWinnerIndex );

if

:: busArbitration[checkBus ]. busFrameId.status != CORRUPT ->

56 MSC_TX_OK[busArbitration[checkBus ]. arbWinnerIndex] !

busArbitration[checkBus ]. tempBusId;

FINISHED_ERR_UPD[busArbitration[checkBus ]. arbWinnerIndex] ? 0;

:: else ->

/* Bus is corrupt and message is not transmitted correctly. */

61 MSC_TX_NOK[busArbitration[checkBus ]. arbWinnerIndex] !

busArbitration[checkBus ]. tempBusId;

FINISHED_ERR_UPD[busArbitration[checkBus ]. arbWinnerIndex] ? 0;

fi;

:: else ->

66 /* Check to see if node currently has msg on the bus. */

IF (busArbitration[checkBus ]. nodeFrameId[i] != BUS_IDLE) ->

printf ("Node %d: failed arbitration\n", i);

MSC_TX_NOK[i] ! busArbitration[checkBus ]. nodeFrameId[i];

FINISHED_ERR_UPD[i] ? 0;

71 FI;

fi;

}

76 inline MsgReceiverCorrupt ()

{

#ifdef MSG_CORRUPTED

/* Setup message receive is corrupt or not when the first bus is processed. The redundant bus is also

set here to reduce the state space. Preset the status of the receive buffers , again to reduce the

81 state -space. */

if

:: skip ->

FOR(i, 0, TOTAL_NODES)

IF ((i % 2) == BUS_P) ->

86 NodeSendStatus[i]. receiveBuff.status = CORRUPT;

NodeSendStatus[i + 1]. receiveBuff.status = OK;

FI;

ROF(i);

:: skip ->

91 FOR(i, 0, TOTAL_NODES)

IF ((i % 2) == BUS_P) ->

NodeSendStatus[i]. receiveBuff.status = OK;

NodeSendStatus[i + 1]. receiveBuff.status = CORRUPT;

FI;

96 ROF(i);

fi;

#else

/* Message received without corruption . */

FOR(i, 0, TOTAL_NODES)

101 NodeSendStatus[i]. receiveBuff.status = OK;

ROF(i);

#endif

}

106

inline MapBackupVCUMsg ()

{

/* Check if the received messages are ref messages from the backup VCU. These have message IDs 8 - 10 and

need to be mapped to the expected ref messages with IDs 5 - 7. */

111 #if REDUNDANT_BUSES == 2

IF (NodeSendStatus[i]. receiveBuff.messageID >= MSG_ID_8)

&& (NodeSendStatus[i]. receiveBuff.messageID <= MSG_ID_10) ->

NodeSendStatus[i]. receiveBuff.messageID = NodeSendStatus[i]. receiveBuff.messageID - 3;

FI;

116 #else

skip; /* Prevents warnings. */

#endif

}

1 /**

* Process used to keep track of the progression of time in the model. Stores the time till the next

* timeout for each node in the system. Sends a sync channel message to trigger execution of the node

* that has the minimum time to next timeout , then waits for that node to update its timeout value. Also ,
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* keeps track of the current state of the CAN bus , this can be: idle , in the arbitrating phase , or a

6 * message may be transmitting on the bus. The process also mainitains the length of time remaining for a

* message currently transmitting on the bus. Conflicts on the bus are resloved using CAN arbitration .

*

* @file AdvTimeBusArb .pml

* @author dmk

11 * @date 05/08/10

*

*/

#ifndef __ADV_TIME_MACROS_

16 #error "Must include AdvTimeMacros.pml before AdvTimeBusArb.pml."

#endif

#ifndef __PROC_REF_MARK_VOTER

inline ProccessRefMark ()

21 {

/* On receiving a REF_MARK message from the currently executing node the process will wait for

updates to other node ’s timeout values. When a reference message is received it is possible for

this to cause a state transition at the node , this may alter the node ’s current next timeout

value. */

26 FOR(i, 0, TOTAL_NODES)

/* Update the timeout values for all nodes. */

IF NodePresent[i] != false ->

#if REDUNDANT_BUSES == 1

if

31 :: CHK_BUS[i] ? tempBus ->

/* Send the current state of the bus. */

BUS_STATE[i] ! busArbitration[tempBus ]. txMsgComplete ,

busArbitration[tempBus ]. busFrameId.messageID ,

(i == busArbitration[tempBus ]. arbWinnerIndex );

36 /* Update time till next timeout for this node. */

SET_TIMEOUT[i] ? timeToNextTimeout[i];

:: SET_TIMEOUT[i] ? timeToNextTimeout[i] ->

skip;

41 fi;

#elif REDUNDANT_BUSES == 2

if

:: ((i % 2) == tempBus) ->

SET_TIMEOUT[i] ? timeToNextTimeout[i];

46 :: else ->

timeToNextTimeout[i] = timeToNextTimeout[i] - minTimeToNextTimeout;

fi;

#else

#error "Invalid number of buses , must be either 1 or 2."

51 #endif

FI;

printf ("++++ AdvanceTime - Node %d, timeToNextTimeout %d ++++\n", i, timeToNextTimeout[i]);

ROF(i);

}

56 #endif

proctype AdvTimeBusArb ()

{

/* The time till the next timeout for each node. */

61 int timeToNextTimeout[TOTAL_NODES ];

/* Stores the current minimum time to next timeout value. */

int minTimeToNextTimeout;

/* Identifier of node currently executing as had the minimum time till next timeout value. */

byte nextTimeoutIndex;

66 byte i;

byte j;

byte checkBus;

int totalElapsedTime;

int cycleTimeCount;

71 BusArbitrationT busArbitration[REDUNDANT_BUSES ];

/* The bus number the message has been transmitted on. Either bus P or the redundant bus Q.*/

bool tempBus;

byte tempFrameId;

int tempTxComplete;

76 byte nodeId;

byte nodeState;

bool restartNode[TOTAL_NODES ];

/* Initially the bus is in idle state. */

81 atomic
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{

FOR(checkBus , 0, REDUNDANT_BUSES)

FOR(i, 0, TOTAL_NODES)

busArbitration[checkBus ]. nodeFrameId[i] = BUS_IDLE;

86 ROF(i);

busArbitration[checkBus ]. busFrameId.messageID = BUS_IDLE;

busArbitration[checkBus ]. busFrameId.status = OK;

ROF(checkBus );

91 BusCorrupt ();

MsgReceiverCorrupt ();

START:

i = 0;

/* Default next timeout value to max to activate the node with the minimum time till next timeout. */

96 minTimeToNextTimeout = MAX_TIMEOUT;

/* Find minimum timeToNextTimeout value. This is the next node to timeout. Store the result in

minTimeToNextTimeout . */

FOR(i, 0, TOTAL_NODES)

/* Check trigger node present flags to see if the TM node will be a part of this time -slice. */

101 IF restartNode[i] != false ->

restartNode[i] = false;

NodePresent[i] = true;

/* Add the initial startup delay. */

timeToNextTimeout[i] = TIME_MASTER_BOOTUP_DELAY;

106 printf ("########## Re-enable Node (%d) ##########\n", i);

RESTART[i] ! 0;

FI;

IF (( timeToNextTimeout[i] < minTimeToNextTimeout) && (NodePresent[i] != false )) ->

minTimeToNextTimeout = timeToNextTimeout[i];

111 /* Save the index of the next node to timeout. */

nextTimeoutIndex = i;

FI;

ROF(i);

116 FOR(checkBus , 0, REDUNDANT_BUSES)

IF (( busArbitration[checkBus ]. doArbitration != false) && (minTimeToNextTimeout > 0)) ->

busArbitration[checkBus ]. doArbitration = false;

printf ("******** Bus Arbitration , bus (%d) ********\n", checkBus );

/* Work out winner of arbitration if there are multiple nodes transmitting on bus

121 simultaneously . This is also done by default if a single node is transmitting . */

busArbitration[checkBus ]. tempBusId = BUS_IDLE;

FOR(i, 0, TOTAL_NODES)

IF ((((i % 2) == checkBus) || (REDUNDANT_BUSES == 1))

126 && (busArbitration[checkBus ]. nodeFrameId[i] < busArbitration[checkBus ]. tempBusId)

&& (NodePresent[i] != false )) ->

/* Find the lowest identifier of currently transmitting nodes. */

busArbitration[checkBus ]. tempBusId = busArbitration[checkBus ]. nodeFrameId[i];

/* Identifier of the node transmitting the msg that won arbitration . */

131 busArbitration[checkBus ]. arbWinnerIndex = i;

FI;

ROF(i);

/* Check CAN bus arbitration . Winner Id should always be less than other node ’s msg ids. */

136 FOR(i, 0, TOTAL_NODES)

IF i != busArbitration[checkBus ]. arbWinnerIndex ->

assert(busArbitration[checkBus ]. nodeFrameId[busArbitration[checkBus ]. arbWinnerIndex]

<= busArbitration[checkBus ]. nodeFrameId[i]);

FI;

141 ROF(i);

/* An arbitration winner is determined whether there is arbitration on the bus or if a node

transmits without contention . */

FOR(i, 0, TOTAL_NODES)

146 IF (((i % 2) == checkBus) || (REDUNDANT_BUSES == 1)) ->

#ifdef ERROR_HANDLER

UpdateErrorHandler ();

#endif

IF i != busArbitration[checkBus ]. arbWinnerIndex ->

151 printf ("Node %d, bus %d, message id %d received msg\n", i, checkBus ,

busArbitration[checkBus ]. tempBusId );

NodeSendStatus[i]. receiveBuff.messageID = busArbitration[checkBus ]. tempBusId;

/* Message received correctly or corrupted . */

if

156 :: busArbitration[checkBus ]. busFrameId.status == CORRUPT ->

NodeSendStatus[i]. receiveBuff.status = CORRUPT;

:: else ->
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/* Bus is OK but receiver may still be corrupt. */

/* MsgReceiverCorrupt (); */

161 IF NodeSendStatus[i]. receiveBuff.status != CORRUPT ->

MapBackupVCUMsg ();

/* Buffer bit set when message is first received at the node. This is

checked when the node has a scheduled rx trigger for this message. */

MsgStatus[i]. rxMsgBuff[NodeSendStatus[i]. receiveBuff.messageID] = true;

166 FI;

fi;

FI;

FI;

ROF(i);

171 /* Assigns the message id of the arbitration winner to the bus. */

busArbitration[checkBus ]. busFrameId.messageID = busArbitration[checkBus ]. tempBusId;

FI;

/* Determine if current msg has finished transmission on bus. */

176 printf ("******** AdvTimeBusArb: BusFrameId (%d)********\n",

busArbitration[checkBus ]. busFrameId.messageID );

IF (busArbitration[checkBus ]. busFrameId.messageID != BUS_IDLE) ->

/* Update time till current msg transmitting is complete. */

busArbitration[checkBus ]. txMsgComplete = busArbitration[checkBus ]. txMsgComplete -

181 minTimeToNextTimeout;

IF busArbitration[checkBus ]. txMsgComplete < 0 ->

busArbitration[checkBus ]. txMsgComplete = 0;

FI;

186

IF (busArbitration[checkBus ]. txMsgComplete <= 0) ->

printf ("##### Bus reset to BUS_IDLE state #####\n");

busArbitration[checkBus ]. busFrameId.messageID = BUS_IDLE; /* Bus back to idle state. */

printf ("Msg send complete ....\n");

191 /* Have finished transmitting on the bus so set nodes back to idle. */

atomic

{

FOR(i, 0, TOTAL_NODES)

IF (((i % 2) == checkBus) || (REDUNDANT_BUSES == 1)) ->

196 busArbitration[checkBus ]. nodeFrameId[i] = BUS_IDLE;

IF NodeSendStatus[i]. firstOneShotTx != false ->

NodeSendStatus[i]. firstOneShotTx = false;

/* Reset the first one -shot buffer as now has finished transmitting . */

NodeSendStatus[i]. firstOneShot.messageID = 0;

201 printf ("Node %d: Reset first choice oneshot buff\n", i);

FI;

IF NodeSendStatus[i]. backupOneShotTx != false ->

NodeSendStatus[i]. backupOneShotTx = false;

/* Reset the backup one -shot buffer as now has finished transmitting . */

206 NodeSendStatus[i]. backupOneShot.messageID = 0;

printf ("Node %d: Reset backup one shotbuffer\n", i);

FI;

FI;

ROF(i);

211 }

FI;

FI;

ROF(checkBus );

216 CheckMsgRx ();

printf("----------------AdvTimeBusArb: - Time till next timeout: (%d)--------------------\n",

minTimeToNextTimeout );

printf("----------------AdvTimeBusArb: - Sending TIMEOUT to node: (%d)--------------------\n",

221 nextTimeoutIndex );

/* Send timeout message to next node to timeout. */

TIMEOUT[nextTimeoutIndex] ! 0;

}

226 /* Wait in a loop for sync channel messages from the currently executing node. The ’SET_TIMEOUT ’

message will cause the loop to end and will update the timeout for the node. */

atomic

{

do

231 :: CHK_BUS[nextTimeoutIndex] ? tempBus ->

printf ("Had check bus message id enquiry from Node %d, bus %d\n", nextTimeoutIndex , tempBus );

BUS_STATE[nextTimeoutIndex] ! busArbitration[tempBus ]. txMsgComplete ,

busArbitration[tempBus ]. busFrameId.messageID , (nextTimeoutIndex ==

busArbitration[tempBus ]. arbWinnerIndex );
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236

:: TX_TRIGGER[nextTimeoutIndex] ? tempFrameId , tempTxComplete , tempBus ->

assert (( busArbitration[tempBus ]. busFrameId.messageID == BUS_ARB)

|| (busArbitration[tempBus ]. busFrameId.messageID == BUS_IDLE ));

busArbitration[tempBus ]. nodeFrameId[nextTimeoutIndex] = tempFrameId;

241 busArbitration[tempBus ]. txMsgComplete = tempTxComplete;

/* Message has been triggered for transmission on bus. */

busArbitration[tempBus ]. busFrameId.messageID = BUS_ARB;

/* Flag set to trigger bus arbitration for this message. */

busArbitration[tempBus ]. doArbitration = true;

246

:: REF_MARK[nextTimeoutIndex] ? tempBus ->

ProccessRefMark ();

/* Jump back to the start of the routine and find the next node to timeout. */

goto START;

251

:: UPD_NODE_STATE ? nodeId , nodeState ->

printf ("Got here ...\n");

if

:: nodeState == NODE_ABSENT ->

256 NodePresent[nodeId] = false;

printf ("########## Disable Node (%d) ##########\n", nodeId );

:: nodeState == NODE_PRESENT ->

restartNode[nodeId] = true;

printf ("########## Enable Node (%d) ##########\n", nodeId );

261 :: else ->

skip;

fi;

:: SET_TIMEOUT[nextTimeoutIndex] ? timeToNextTimeout[nextTimeoutIndex] ->

266 /* Update the time till next timeout field for the currently transmitting node , before breaking

out of loop. */

break;

od;

271 FOR(i, 0, TOTAL_NODES)

/* Subtract the time advanced form the last node ’s timeout from the other node ’s time till next

timeout values. */

IF (( nextTimeoutIndex != i) && (NodePresent[i] != false )) ->

timeToNextTimeout[i] = timeToNextTimeout[i] - minTimeToNextTimeout;

276 FI;

printf ("++++ AdvanceTime - Node %d, nTimeToNextTimeout %d ++++\n", i, timeToNextTimeout[i]);

ROF(i);

#if 0

281 totalElapsedTime = totalElapsedTime + minTimeToNextTimeout;

IF totalElapsedTime >= 500 ->

NodePresent[NODE_2] = true;

FI;

#endif

286 /* Jump back to the start and find the node with the next minimum time till next timeout. */

goto START;

}

}

1 /**

* Error containment process for a node. Each node in the system has an associated error containment

* process. The process models the ISO TTCAN error handling state -machine.

*

* @file TTCANErrorHandler .pml

6 * @author dmk

* @date 31/07/10

*

*/

11 proctype ErrorContainment(byte nodeNum)

{

bool S1Error;

bool S2Error;

bool S3Error;

16 byte pointer;

byte largestMSC;

byte smallestMSC;

/* Identifier of transmitted message. */

byte txMessage;

21 byte rxMessage;

byte txCount;
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bool watchdogError;

bool MSCDiffError;

bool txMSC7Error;

26 bool rxMSC7Error;

bool txUnderflow;

bool txOverflow;

byte errorState;

31 atomic

{

txCount = 0;

MSCDiffError = false;

errorState = NO_ERROR;

36

QUIESCENT:

do

:: RX_MESSAGE[nodeNum] ? rxMessage ->

printf ("Node %d: Error containment - rxMessage %d, Bit array flag %d\n",

41 nodeNum , rxMessage , MsgStatus[nodeNum ]. rxMsgBuff[rxMessage ]);

if

:: MsgStatus[nodeNum ]. rxMsgBuff[rxMessage] != false ->

/* Have received the expected message correctly. */

MsgStatus[nodeNum ]. rxMsgBuff[rxMessage] = false;

46 printf ("Node %d: Error containment - received message correctly\n", nodeNum );

goto RECV_MSG_OK;

:: else ->

/* assert (0); */

printf ("Node %d: Error containment - received message error\n", nodeNum );

51 goto RECV_MSG_ERR;

fi;

:: MSC_TX_NOK[nodeNum] ? txMessage ->

printf ("Node %d: msg tx not ok, message id %d\n", nodeNum , txMessage );

56 if

:: DisableTx[nodeNum] != false ->

/* Node has S2 error so transmission from node is disabled. */

goto ERR_UPD_COMPLETE;

:: else ->

61 if

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] == MSC_MAX ->

goto ERR_UPD_COMPLETE;

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] < MSC_MAX ->

MsgStatus[nodeNum ]. msgStatusCount[txMessage] =

66 MsgStatus[nodeNum ]. msgStatusCount[txMessage] + 1;

if

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] < MSC_MAX ->

goto ERR_UPD_COMPLETE;

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] == MSC_MAX ->

71 txMSC7Error = true;

goto UPD_ERROR_LEVEL;

fi;

fi;

fi;

76

:: MSC_TX_OK[nodeNum] ? txMessage ->

printf ("Node %d: msg tx ok , message id %d\n", nodeNum , txMessage );

if

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] == MSC_MAX ->

81 MsgStatus[nodeNum ]. msgStatusCount[txMessage] = MSC_MAX - 1;

/* Message transmit error has cleared. */

txMSC7Error = false;

goto UPD_ERROR_LEVEL;

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] < MSC_MAX ->

86 if

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] == 0 ->

skip;

:: MsgStatus[nodeNum ]. msgStatusCount[txMessage] > 0 ->

MsgStatus[nodeNum ]. msgStatusCount[txMessage] =

91 MsgStatus[nodeNum ]. msgStatusCount[txMessage] - 1;

fi;

goto ERR_UPD_COMPLETE;

fi;

96 :: CHECK_MSC[nodeNum] ? 0 ->

printf (" Checking MSC difference for node %d\n", nodeNum );

pointer = HIGHEST_PRIORITY_MSG;

largestMSC = 0;
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smallestMSC = MSC_MAX;

101 /* Check if MSC is greater than largest MSC count. */

UPD_MSC_MIN_MAX:

IF MsgStatus[nodeNum ]. msgStatusCount[pointer] >= largestMSC ->

largestMSC = MsgStatus[nodeNum ]. msgStatusCount[pointer ];

FI;

106

IF MsgStatus[nodeNum ]. msgStatusCount[pointer] <= smallestMSC ->

smallestMSC = MsgStatus[nodeNum ]. msgStatusCount[pointer ];

FI;

111 IF pointer < (TOTAL_MESSAGES - 1) ->

/* Check every message ’s MSC value. */

pointer = pointer + 1;

goto UPD_MSC_MIN_MAX;

FI;

116

if

:: (largestMSC - smallestMSC) <= 2 ->

printf ("Node %d: MSC difference check ok\n", nodeNum );

MSCDiffError = false;

121 :: (largestMSC - smallestMSC) > 2 ->

printf ("Node %d: MSC difference check error\n", nodeNum );

MSCDiffError = true;

fi;

/* Check tx count for underflow as finished basic cycle. */

126 if

:: txCount <= Schedule[nodeNum ]. expectedTxCount ->

txOverflow = false;

if

:: txCount == Schedule[nodeNum ]. expectedTxCount ->

131 txUnderflow = false;

:: txCount < Schedule[nodeNum ]. expectedTxCount ->

txUnderflow = true;

fi;

:: txCount > Schedule[nodeNum ]. expectedTxCount ->

136 txUnderflow = false;

fi;

printf ("Node %d: Zeroed node ’s TxCount\n", nodeNum );

/* Zero node ’s tx count as the basic cycle has ended. */

txCount = 0;

141 goto UPD_ERROR_LEVEL;

:: TX_TRIGGER_E[nodeNum] ? 0 ->

txCount = txCount + 1;

printf ("Node %d: TxCount: %d\n", nodeNum , txCount );

146 if

:: txCount <= Schedule[nodeNum ]. expectedTxCount ->

goto ERR_UPD_COMPLETE;

:: txCount > Schedule[nodeNum ]. expectedTxCount ->

/* Transmitted more messages from node than expected. */

151 txOverflow = true;

printf ("Node %d: Had TxCount overflow error\n", nodeNum );

goto UPD_ERROR_LEVEL;

fi;

printf ("Node %d: Finished TX_TRIGGER_E Back to quiescent state\n", nodeNum );

156 od;

RECV_MSG_OK:

/* Received message as expected. */

if

161 :: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] == MSC_MAX ->

MsgStatus[nodeNum ]. msgStatusCount[rxMessage] = MSC_MAX - 1;

rxMSC7Error = false;

goto UPD_ERROR_LEVEL;

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] < MSC_MAX ->

166 if

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] > 0 ->

MsgStatus[nodeNum ]. msgStatusCount[rxMessage] =

MsgStatus[nodeNum ]. msgStatusCount[rxMessage] - 1;

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] == 0 ->

171 skip;

fi;

goto ERR_UPD_COMPLETE;

fi;

176 RECV_MSG_ERR:
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if

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] < MSC_MAX ->

MsgStatus[nodeNum ]. msgStatusCount[rxMessage] =

MsgStatus[nodeNum ]. msgStatusCount[rxMessage] + 1;

181 if

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] == MSC_MAX ->

rxMSC7Error = true;

goto UPD_ERROR_LEVEL;

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] < MSC_MAX ->

186 goto ERR_UPD_COMPLETE;

fi;

:: MsgStatus[nodeNum ]. msgStatusCount[rxMessage] == MSC_MAX ->

rxMSC7Error = true;

goto UPD_ERROR_LEVEL;

191 fi;

UPD_ERROR_LEVEL:

S1Error = false;

S2Error = false;

196 S3Error = false;

IF (( rxMSC7Error != false) || (txUnderflow != false) || (MSCDiffError != false)) ->

S1Error = true;

FI;

201

IF (( txMSC7Error != false) || (txOverflow != false )) ->

S2Error = true;

FI;

206 IF watchdogError != false ->

S3Error = true;

FI;

/* Check internal state flags and determine node ’s error state. */

211 IF S3Error != false ->

printf ("Node %d: Had S3 level error\n", nodeNum );

errorState = S3_ERROR;

goto ERR_UPD_COMPLETE;

FI;

216

IF S2Error != false ->

errorState = S2_ERROR;

#ifdef ENABLE_TTCAN_BUS_OFF

DisableTx[nodeNum] = true;

221 #endif

goto ERR_UPD_COMPLETE;

FI;

IF S1Error != false ->

226 errorState = S1_ERROR;

DisableTx[nodeNum] = false;

goto ERR_UPD_COMPLETE;

FI;

/* Node is not in error state. */

231 errorState = NO_ERROR;

goto ERR_UPD_COMPLETE;

ERR_UPD_COMPLETE:

FINISHED_ERR_UPD[nodeNum] ! 0;

236 goto QUIESCENT;

}

}

1 /* On receiving a reference message , all pending transmit buffers are cleared. */

#define __CANCEL_SCHEDULE_

inline CancelSchedule ()

6 {

printf ("************************* Node (%d): cancel schedule ************************\n", nodeNum );

NodeSendStatus[nodeNum ]. firstOneShot.messageID = BUFFER_EMPTY;

NodeSendStatus[nodeNum ]. firstOneShotTx = false;

NodeSendStatus[nodeNum ]. backupOneShot.messageID = BUFFER_EMPTY;

11 NodeSendStatus[nodeNum ]. backupOneShotTx = false;

}
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#define __CHECK_SEND_BUFFERS_

3

inline CheckSendBuffers(busNumber , msgSendTime , msgId)

{

/* Another node was sending so can now send this node ’s message. */

if

8 :: NodeSendStatus[nodeNum ]. firstOneShot.messageID != 0 ->

printf ("Node %d: Triggering sending of first choice message %d\n", nodeNum ,

NodeSendStatus[nodeNum ]. firstOneShot.messageID );

TX_TRIGGER[nodeNum] ! NodeSendStatus[nodeNum ]. firstOneShot.messageID , msgSendTime , busNumber;

NodeSendStatus[nodeNum ]. firstOneShotTx = true;

13 :: else ->

/* Check the backup buffer. */

if

:: NodeSendStatus[nodeNum ]. backupOneShot.messageID != 0 ->

printf ("Node %d: Triggering sending of backup message %d\n",

18 nodeNum , NodeSendStatus[nodeNum ]. backupOneShot.messageID );

TX_TRIGGER[nodeNum] ! NodeSendStatus[nodeNum ]. backupOneShot.messageID , msgSendTime ,

busNumber;

NodeSendStatus[nodeNum ]. backupOneShotTx = true;

:: else ->

23 /* Will not necessarily be a message to send , say if checked after an rx trigger. Should

always be a message assigned to one of the buffers.*/

fi;

fi;

/* Error state is not updated for reference messages. Only ref messages are sent during sync

28 phase so error state is not updated during this phase. */

#ifdef ERROR_HANDLER

IF (arbWindowOpen == false) && (msgId > REF_ID_LAST)

&& (( NodeSendStatus[nodeNum ]. firstOneShotTx != false)

|| (NodeSendStatus[nodeNum ]. backupOneShotTx != false)) ->

33 TX_TRIGGER_E[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

FI;

#endif

}

#define __CHECK_TIME_REMAINING_

3

#ifndef __CANCEL_SCHEDULE_

#error "Have to include CancelSchedule.pml before CheckSendTimeRemaining.pml."

#endif

8 inline CheckSendTimeRemaining ()

{

if

:: NodeSendStatus[nodeNum ]. sendTimeRemaining >

Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount] ->

13 /* Can ’t complete tansmission of message currently transmitting within this time -slot. Have to

buffer this message to send after message finishes transmitting . */

:: else ->

/* Complete the current transmission , then trigger this message. */

SET_TIMEOUT[nodeNum] ! NodeSendStatus[nodeNum ]. sendTimeRemaining;

18 if

:: TIMEOUT[nodeNum] ? 0 ->

:: REF_MARK[nodeNum] ? _ ->

printf ("Node %d: Received REF_MARK during ref message send time\n", nodeNum );

23 CancelSchedule ();

/* Back to the start of the schedule. */

currentFrame = 0;

/* Set timeout for the first message. */

useDefaultSchedule = false;

28 goto START_SYNC_REF;

fi;

/* Update the elapsed time accumulated delaying transmission during this exclusive window. */

NodeSendStatus[nodeNum ]. elapsedSendTime = NodeSendStatus[nodeNum ]. sendTimeRemaining;

/* Trigger transmission of message. */

33 NodeSendStatus[nodeNum ]. triggerSend = true;

fi;

}

/**

* Inline function to handle triggering of transmission of a message on the CAN bus. Initially , checks

* the current state of the bus to determine if there is currently a node transmitting on the bus. If
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* this is the case , transmission is delayed until the message currently transmitting finishes. If the

5 * send time remaining is greater than this exclusive timeslot period don ’t do anything in this timeslot.

* In this case , the buffered message will be transmitted in the next timeslot.

*

* @param sourceNodeId Source node id of the transmission .

* @param nextMsgId Message identifier of transmitted message.

10 * @param msgSendTime Length in us of the message transmission .

* @param arbMode Flag to differentiate exclusive message transmission from

* arb window transmission . (not currently implemented ).

* @param busNumber The bus to send the message on.

*

15 * @date 17/05/10

*

*/

#ifndef __CHECK_TIME_REMAINING_

20 #error "Have to include CheckSendTimeRemaining.pml before TransmitMessage.pml."

#else

#ifndef __CHECK_SEND_BUFFERS_

#error "Have to include CheckSendBuffers.pml before TransmitMessage.pml."

#endif

25 #endif

inline TransmitMessage(sourceNode , msgId , msgSendTime , arbMode , busNumber)

{

atomic

30 {

IF (nodeNum == sourceNode) && (( DisableTx[sourceNode] == false)

|| (msgId == REF_ID_1) || (msgId == REF_ID_2 )) ->

/* Reset the elapsed send time count. */

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

35 NodeSendStatus[nodeNum ]. triggerSend = false;

printf ("Node %d: Check current state bus\n", nodeNum );

/* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! busNumber;

BUS_STATE[nodeNum] ? NodeSendStatus[nodeNum ]. sendTimeRemaining , busState , wonArbitration;

40 printf ("Node %d: Tx remains (%d), Bus state (%d), Won last arb (%d)\n",

nodeNum , NodeSendStatus[nodeNum ]. sendTimeRemaining , busState , wonArbitration );

/* Check if the first choice buffer is currently full. If so , check if the backup buffer is full ,

drop message if this buffer is full. */

45 IF msgId != CHECK_BUFFERS_ONLY ->

if

:: NodeSendStatus[nodeNum ]. firstOneShot.messageID != 0 ->

if

:: NodeSendStatus[nodeNum ]. backupOneShot.messageID != 0 ->

50 /* Is already an entry in the backup buffer. */

printf ("Node %d: Drop the message - ID: (%d)\n", nodeNum ,

NodeSendStatus[nodeNum ]. backupOneShot.messageID );

:: else ->

printf ("Node %d: Put message into the backup buffer\n", nodeNum );

55 /* Will be transmitted after the first choice msg. */

NodeSendStatus[nodeNum ]. backupOneShot.messageID = msgId;

fi;

:: else ->

printf ("Node %d: Put message into the first choice buffer\n", nodeNum );

60 /* Transmitted when the current node (other node) finishes transmitting on the bus. */

NodeSendStatus[nodeNum ]. firstOneShot.messageID = msgId;

fi;

FI;

65 /* If bus is not ’idle ’ and not in ’arb ’ state and there is currently a message transmitting on

the bus then delay till then end of message before transmitting . */

if

:: (busState != BUS_IDLE) && (busState != BUS_ARB)

&& (NodeSendStatus[nodeNum ]. sendTimeRemaining > 0) ->

70 CheckSendTimeRemaining ();

:: else ->

/* No other node currently transmitting . Trigger transmission of this message. */

NodeSendStatus[nodeNum ]. triggerSend = true;

fi;

75

IF NodeSendStatus[nodeNum ]. triggerSend != false ->

NodeSendStatus[nodeNum ]. triggerSend = false;

CheckSendBuffers(busNumber , msgSendTime , msgId);

FI;

80 FI;
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}

}



Appendix B

LISTING FOR LAYERED MODEL OF ISO TTCAN

/**

2 * Detailed layered model of the ISO TTCAN protocol. This model is based on a paper titled "Formal

* verification of the TTCAN protocol" (2002) by Leen and Heffernan modelling TTCAN with UPPAAL.

*

* @file LayeredISOTTCAN .pml

* @author dmk

7 * @date 12/07/10

*

*/

12 #include "macros.h"

/* Configured with 2 or 3 time -master nodes. */

#ifdef SYNC_TEST_3

17 #define REF_ID 3

#else

#define REF_ID 2

#endif

/* Message identifiers . */

22 #define REF_ID_1 1

#define REF_ID_2 2

#define REF_ID_3 3

#define MSG_ID_3 3

#define MSG_ID_4 4

27 #define MSG_ID_5 5

#define MSG_ID_6 6

#define MSG_ID_10 10

#define TOTAL_MESSAGES 11

/* Lowest and highest priority non reference messages. */

32 #define LOWEST_PRIORITY_MSG MSG_ID_13

#define HIGHEST_PRIORITY_MSG MSG_ID_3

/* Bus state. */

#define BUS_IDLE 14

#define BUS_NOT_IDLE 15

37 /* Node identifiers . */

#define NODE_1 0

#define NODE_2 1

#define NODE_3 2

#define TOTAL_NODES 3

42 /* Scheduled events. */

#define START_TX_COL_0 0

#define END_TX_ENABLE_COL_0 8

#define END_TX_MESSAGE_COL_0 80

#define RX_TRIGGER_COL_0 126

47 #define START_TX_COL_1 130

#define END_TX_ENABLE_COL_1 138

#define END_TX_MESSAGE_COL_1 250

#define RX_TRIGGER_COL_1 286

#define START_TX_COL_2 290

52 #define END_TX_ENABLE_COL_2 298

#define END_TX_MESSAGE_COL_2 420

#define RX_TRIGGER_COL_2 446

#define START_TX_COL_3 450

#define END_TX_ENABLE_COL_3 458

57 #define END_TX_MESSAGE_COL_3 570
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#define RX_TRIGGER_COL_3 606

#define START_TX_COL_4 610

#define END_TX_ENABLE_COL_4 618

#define END_TX_MESSAGE_COL_4 710

62 #define RX_TRIGGER_COL_4 766

#define END_TX_COL_4 780

/* TTCAN protocol timeout values. */

#define INITIAL_REF_OFFSET_1 8

#define INITIAL_REF_OFFSET_2 10

67 #define INITIAL_REF_OFFSET_3 12

#define REF_TRIGGER 780

#define GAP_TIME 1565

/* Initial delay period used when transmitting ref messages. Multiple nodes may initiate transmission of

a ref msg during this period. The 1 NTU period is of arbitrary length. It opens a timing window where

72 nodes can trigger a reference message for transmission on the bus. If multiple nodes trigger transmission

during this period arbitration is decided by the PhysicalMedium process. */

#define REF_TX_INIT_PERIOD 1

/* Expected number of transmissions from node , currently for only a single basic cycle. */

#define EXPECTED_TX_COUNT_1 1

77 #define EXPECTED_TX_COUNT_2 2

#define EXPECTED_TX_COUNT_3 1

/* TTCAN error handling. */

#define NO_ERROR 0

#define S1_ERROR 1

82 #define S2_ERROR 2

#define S3_ERROR 3

#define MSC_MAX 7

/* 2^31 -1 max value for a signed ’int ’. */

#define MAX_TIMEOUT 2147483647

87 /* State of time -master node. */

#define INITIALISATION 0

#define TIME_MASTER 1

#define P_MASTER 2

#define TIME_RECEIVER 3

92 /* Type of TTCAN message. */

#define NO_MESSAGE 0

/* Exclusive window message - no retransmission , transmitted 1-shot. */

#define EXCLUSIVE_MSG 1

/* Arbitrating window message - transmitted with retransmission . */

97 #define ARBITRATING_MSG 2

/* Reference message - May cause next timeout value to be modified at receiving nodes. */

#define REFERENCE_MSG 3

102 /* Declarations of synchronous message channels. */

/* Used for communication between a node ’s transceiver and the physical layer process , signals that a

message is to be put on the bus. */

chan TX_FRAME[TOTAL_NODES] = [0] of {bool};

/* Confirmation that the message has been accepted for transmission on the bus. */

107 chan FRAME_ACCEPTED[TOTAL_NODES] = [0] of {bool};

/* Channels used to divide important timing periods of a CAN message on the bus. */

chan SOF_BCAST[TOTAL_NODES] = [0] of {bool};

chan END_FRAME[TOTAL_NODES] = [0] of {bool};

chan EOF_BCAST[TOTAL_NODES] = [0] of {bool};

112 chan BUS_IDLE_BCAST[TOTAL_NODES] = [0] of {bool};

chan STABLE_ID_BCAST[TOTAL_NODES] = [0] of {bool};

chan FAILED_ARB[TOTAL_NODES] = [0] of {bool};

chan WON_ARB[TOTAL_NODES] = [0] of {bool};

/* Communication between a node ’s scheduler process and transceiver . */

117 chan TX_TRIGGER[TOTAL_NODES] = [0] of {byte};

chan TX_ACCEPTED[TOTAL_NODES] = [0] of {bool};

chan TX_FINISHED[TOTAL_NODES] = [0] of {bool};

chan REF_MARK[TOTAL_NODES] = [0] of {bool};

/* Communication between node ’s error handler , transceiver , and scheduler processes . */

122 chan MSC_TX_OK[TOTAL_NODES] = [0] of {byte};

chan MSC_TX_NOK[TOTAL_NODES] = [0] of {byte};

chan TX_TRIGGER_E[TOTAL_NODES] = [0] of {bool};

chan FINISHED_ERR_UPD[TOTAL_NODES] = [0] of {bool};

chan RX_MESSAGE[TOTAL_NODES] = [0] of {byte};

127 chan CHECK_MSC[TOTAL_NODES] = [0] of {bool};

/* Used to handle the progression of time in the model. Communicates between AdvanceTime and the

scheduler node processes. */

chan TIMEOUT[TOTAL_NODES] = [0] of {bool};

chan SET_TIMEOUT[TOTAL_NODES] = [0] of {int , byte};

132 /* Used to sync progression of time in AdvanceTime to the node processes when ref messages are

transmitted . Ref msgs must be treated differently as they can cause a change of state when received at a

node that may change the next timeout value of the node. */
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chan REF_MSG_ON_BUS[TOTAL_NODES] = [0] of {bool};

chan REF_TX_COMPLETE[TOTAL_NODES] = [0] of {bool};

137

typedef MsgStatusT

{

/* Bit array flags set when message is received at node. */

142 bool rxMsgBuff[TOTAL_MESSAGES ];

/* Message Status Count for each message. */

byte msgStatusCount[TOTAL_MESSAGES ];

};

147 /* The scheduled message tx scheme used in the abstracted model and models of the implementation is yet

to be added to this model. The Schedule structure is added so a common ErrorContainment process can be

included in all versions. */

typedef ScheduleT

{

152 /* Number of scheduled transmissions from node. */

byte expectedTxCount;

};

/* Identifier of message currently on physical medium. */

157 byte BusFrameId;

byte NodeFrameId[TOTAL_NODES ];

/* Used to show 1 bit time , by transition from 0 -> 1. */

bool BusClock;

/* Structure holding flags associated with receiving and transmitting msgs. */

162 MsgStatusT MsgStatus[TOTAL_NODES ];

ScheduleT Schedule[TOTAL_NODES ];

byte NodeState[TOTAL_NODES ];

bool AdjustTimeout[TOTAL_NODES ];

bool NodePresent[TOTAL_NODES ];

167 bool DisableTx[TOTAL_NODES ];

proctype AdvanceTime ()

{

172 byte i;

int timeToNextTimeout[TOTAL_NODES ];

/* Stores the lowest time to next timeout value. */

int minTimeToNextTimeout;

/* Node has min time till next timeout , so send sync message to this node to advance time. */

177 bool triggerTimeout[TOTAL_NODES ];

int totalElapsedTime;

byte msgTriggered[TOTAL_NODES ];

START:

182 atomic

{

i = 0;

/* Default next tick stored value to max to force update. */

minTimeToNextTimeout = MAX_TIMEOUT;

187 /* Find timeToNextTimeout minimum and store result in timeToNextTimeout . */

FOR(i, 0, TOTAL_NODES)

if

:: (( timeToNextTimeout[i] < minTimeToNextTimeout)

&& (NodePresent[i] != false )) ->

192 minTimeToNextTimeout = timeToNextTimeout[i];

/* Reset all trigger timeout message flags except this 1 as new min time till next message

has been found. Resetting flags separately will use less states than a loop. */

triggerTimeout [0] = false;

triggerTimeout [1] = false;

197 triggerTimeout [2] = false;

triggerTimeout[i] = true;

:: (( timeToNextTimeout[i] == minTimeToNextTimeout)

&& (NodePresent[i] != false )) ->

/* Time to next timeout for this node matches min value so send timeout for this node also. */

202 triggerTimeout[i] = true;

:: else ->

skip;

fi;

printf("------AdvanceTime - Node (%d), timeToNextTimeout (%d)------\n", i, timeToNextTimeout[i]);

207 ROF(i);

/* Send timeout sync message to nodes which have triggerTimeout flag set. */

i = 0;

printf("----------AdvanceTime - minTimeToNextTimeout: (%d)-----------\n", minTimeToNextTimeout );
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212

FOR(i, 0, TOTAL_NODES)

IF triggerTimeout[i] != false ->

printf("----AdvanceTime: Sending TIMEOUT to node %d-----\n", i);

TIMEOUT[i] ! 0;

217 FI;

ROF(i);

}

atomic

222 {

i = 0;

/* Update next timeout for any nodes that were triggered at this instant. */

FOR(i, 0, TOTAL_NODES)

if

227 :: triggerTimeout[i] != false ->

printf ("******** Node %d - had trigger timeout ********\n", i);

/* Update the time till next timeout field for the node. */

SET_TIMEOUT[i] ? timeToNextTimeout[i], msgTriggered[i];

triggerTimeout[i] = false;

232 printf ("******** Node %d - had tx msg (%d) ********\n", i, msgTriggered[i]);

:: else ->

printf ("**** Node %d - subtract time elapsed ****\n", i);

IF NodePresent[i] != false ->

timeToNextTimeout[i] = timeToNextTimeout[i] - minTimeToNextTimeout;

237 FI;

fi;

ROF(i);

/* totalElapsedTime = totalElapsedTime + minTimeToNextTimeout ;

242 printf ("######## totalElapsedTime (%d) ########\ n", totalElapsedTime );*/

/* ************************* Handling timing of ref message transmissions . ************************ */

/* Wait for the ref message to finish transmission . This is necessary when multiple time -master nodes

transmit simutaneously . Blocking here and waiting for the transmission to complete allows all the

247 events involved in transmission of the ref message to complete before the next timeout is triggered .

This is essential in the scheduler node process as the ref mark sync message must be processed before

the next timeout. This is required to accurately represent the sequence of events that occurs in the

protocol. */

252 /* First wait for REF_MSG_ON_BUS sync channel msgs from any ref msgs that have been transmitted . After

all transmitting nodes have their message on the bus , the BusClock bit is set high. This symbolises

the beginning of the SOF bit period. Arbitration begins following this. */

FOR(i, 0, TOTAL_NODES)

IF msgTriggered[i] != false ->

257 REF_MSG_ON_BUS[i] ? 0;

FI;

ROF(i);

/* Bus clock can advance now as all pending messages are on the bus. Make sure this is only set once

262 or can trigger multiple times , causing the physical layer process to transition to SOF finished

unexpectedly . */

IF (msgTriggered[NODE_1] != false) || (msgTriggered[NODE_2] != false)

|| (msgTriggered[NODE_3] != false) ->

BusClock = 1;

267 printf ("*********** Node %d - bus clock (%d)***********\n", i, BusClock );

FI;

/* Wait for any reference messages to complete transmitting before the next timeout is triggered .

Reset flags for any other exclusive or arbitrating messages transmitting . */

FOR(i, 0, TOTAL_NODES)

272 if

:: msgTriggered[i] == REFERENCE_MSG ->

/* Reset the flag and wait for the ref message to finish transmission . */

printf ("**** Node %d - finished REF msg transmission ****\n", i);

/* msgTriggered [i] = false;*/

277 REF_TX_COMPLETE[i] ? 0;

:: else ->

/* If not a reference message , check to see if message is an exclusive or arbitrating window

message. If so , reset message trigger flag for node. */

if

282 :: (msgTriggered[i] == EXCLUSIVE_MSG) || (msgTriggered[i] == ARBITRATING_MSG) ->

printf ("**** Node %d - finished ARB msg transmission ****\n", i);

msgTriggered[i] = false;

:: else ->

skip;

287 fi;

fi;
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ROF(i);

/* Check to see if any nodes next timeout value has been altered due to the reception of a reference

292 message at the node. If so , update the next timeout value and jump back to the start to recalculate

the minumum timeout value. */

IF (msgTriggered[NODE_1] == REFERENCE_MSG) || (msgTriggered[NODE_2] == REFERENCE_MSG)

|| (msgTriggered[NODE_3] == REFERENCE_MSG) ->

/* If had a branch in scheduler node , time to next timeout may be different now. This can be used

297 to update time to next timeout for node. */

FOR(i, 0, TOTAL_NODES)

IF AdjustTimeout[i] != false ->

printf ("****** Node %d - adjusting next timeout ******\n", i);

SET_TIMEOUT[i] ? timeToNextTimeout[i], _;

302 AdjustTimeout[i] = false;

FI;

msgTriggered[i] = false;

ROF(i);

FI;

307 /* ************************************************************************************************* */

}

goto START;

}

312

#include "../../ TTCANErrorHandler.pml"

inline ResetTimeout(nextTimeout)

317 {

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! nextTimeout , NO_MESSAGE;

}

322

/* Used to transmit exclusive or arbitrating window TTCAN messages. Currently , retransmission for

arbitrating window messages is not implemented . */

inline TransmitMessage(source , msgId , txInitPeriod , msgType)

{

327 if

:: nodeNum == source ->

SET_TIMEOUT[nodeNum] ! txInitPeriod , msgType ->

TX_TRIGGER[nodeNum] ! msgId ->

TX_ACCEPTED[nodeNum] ? 0;

332 REF_MSG_ON_BUS[nodeNum] ! 0 ->

printf ("******** Node %d: Transmitted msg accepted ********\n", nodeNum );

TX_TRIGGER_E[nodeNum] ! 0 ->

FINISHED_ERR_UPD[nodeNum] ? 0;

:: else ->

337 SET_TIMEOUT[nodeNum] ! txInitPeriod , NO_MESSAGE ->

fi;

}

342 inline ReceiveMessage(destination , msgId)

{

IF nodeNum == destination ->

/* Process received message error handler. */

RX_MESSAGE[nodeNum] ! msgId;

347 /* Wait for the error hadler to update for the received message. Assumes this will complete

within the time slot period. */

FINISHED_ERR_UPD[nodeNum] ? 0;

FI;

}

352

inline EndTransmission(source)

{

/* Received finished sync message from transceiver . Bus has gone back to idle state after

357 transmission has finished. */

IF nodeNum == source ->

TX_FINISHED[nodeNum] ? 0;

FI;

}

362

proctype TimeMasterNode(byte nodeNum , initRefOffset , refMsgID , initDelay)

{
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bool missSendingRefMsg;

367 int refTriggerOffset;

#ifndef SYNCHRONISATION

/* Don ’t model the initial startup synchronisation , jump straight to the start of a new basic

cycle. */

372 goto START_BASIC_CYCLE;

#endif

/* Initial startup delay. Simulates node 2 starting early. */

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! initDelay , NO_MESSAGE;

377 START_SYNCHRONISATION:

#ifdef SYNC_TEST_3

IF nodeNum == NODE_2 ->

missSendingRefMsg = true;

FI;

382 #endif

NodeState[nodeNum] = INITIALISATION;

/* Set ref message trigger offset to initial default value for node. */

refTriggerOffset = initRefOffset;

TIMEOUT[nodeNum] ? 0 ->

387 SET_TIMEOUT[nodeNum] ! (GAP_TIME + refTriggerOffset), NO_MESSAGE;

/* While waiting for timer to expire check for reference messages received from other processes.

Make this section atomic as the branch is due to an event from another node , so the ’time to next

timeout ’ update must occur before the next min time to next tick node is selected. If the node is

selected and a TIMEOUT sync message sent then this section is skipped and the ref mark will not be

392 processed . */

GAP_TIMEOUT:

if

:: atomic

{

397 REF_MARK[nodeNum] ? 0 ->

/* Received ref. message transmitted from another node. */

printf ("Node %d: REF_MARK received reference message\n", nodeNum );

AdjustTimeout[nodeNum] = true;

/* Test priority of received message: if less than node priority then RefTriggerOffset = 0,

402 otherwise leave the same. */

if

:: BusFrameId < refMsgID ->

/* Priority of received ref. msg is greater than node priority. */

printf ("Node %d: Ref Id less than node id goto TIMEOUT_4\n", nodeNum );

407 SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset), NO_MESSAGE;

goto TIMEOUT_4;

:: BusFrameId > refMsgID ->

/* Priority of received ref. message is less than node priority. */

printf ("Node %d: Ref Id greater than node id goto TIMEOUT_3\n", nodeNum );

412 refTriggerOffset = 0;

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset), NO_MESSAGE;

goto TIMEOUT_3;

fi;

}

417 :: TIMEOUT[nodeNum] ? 0 ->

skip;

fi;

/* No time is elapsed before sending the ref. message after the initial timeout. Must send after

422 SET_TIMEOUT to allow other listening nodes to branch in response to receiving the ref. message.

Initialisation time period expired so transmit ref. message from node. */

SEND_REF_MSG_1:

printf ("*********** Node %d: Send first reference message ***********\n", nodeNum );

SET_TIMEOUT[nodeNum] ! REF_TX_INIT_PERIOD , REFERENCE_MSG ->

427 /* Put the ref msg on the bus. */

TX_TRIGGER[nodeNum] ! refMsgID;

TX_ACCEPTED[nodeNum] ? 0;

REF_MSG_ON_BUS[nodeNum] ! 0 ->

432 /* Wait for a ref. mark message to be received. */

atomic

{

REF_MARK[nodeNum] ? 0;

if

437 :: BusFrameId == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

:: BusFrameId < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

/* Finish processing the reference message. */

442 TX_FINISHED[nodeNum] ? 0;
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REF_TX_COMPLETE[nodeNum] ! 0 ->

/* goto TIMEOUT 4. RefTriggerOffset is not altered. */

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset), NO_MESSAGE;

goto TIMEOUT_4;

447 :: BusFrameId > refMsgID ->

printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

/* Finish processing the reference message. */

TX_FINISHED[nodeNum] ? 0;

REF_TX_COMPLETE[nodeNum] ! 0 ->

452 refTriggerOffset = 0;

/* goto TIMEOUT 3. Reset RefTriggerOffset . */

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset), NO_MESSAGE;

goto TIMEOUT_3;

fi;

457 }

TX_FINISHED[nodeNum] ? 0;

REF_TX_COMPLETE[nodeNum] ! 0 ->

462 /* Zero the offset. */

refTriggerOffset = 0;

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset - REF_TX_INIT_PERIOD), NO_MESSAGE;

TIMEOUT_2:

467 /* While waiting for timer to expire check for reference messages received from other processes. */

TIMEOUT[nodeNum] ? 0 ->

/* Ensures the node triggers transmission during the next period. Is required to model nodes that are

transmitting simultaneously during this time period (in this case nodes are in sync ). Otherwise , can

encounter situation where lower priority node transmits before higher priority node - blocking the

472 transmission , even though the nodes are scheduled to transmit at the same instant. */

SEND_REF_MSG_2:

SET_TIMEOUT[nodeNum] ! REF_TX_INIT_PERIOD , REFERENCE_MSG;

/* Send reference message. */

printf ("Node %d: Send second reference message\n", nodeNum );

477 TX_TRIGGER[nodeNum] ! refMsgID;

TX_ACCEPTED[nodeNum] ? 0;

REF_MSG_ON_BUS[nodeNum] ! 0 ->

/* Wait for a ref. mark message to be received. Check the message identifier currently on the bus. */

482 atomic

{

REF_MARK[nodeNum] ? 0;

if

:: BusFrameId == refMsgID ->

487 printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

NodeState[nodeNum] = TIME_MASTER;

:: BusFrameId < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

NodeState[nodeNum] = P_MASTER;

492 /* Modified this as appears to be incorrect in - "a new time triggered approach to TTCAN", Leen

and Heffernan . */

/* refTriggerOffset = refTriggerOffset - 1;*/

refTriggerOffset = initRefOffset;

printf ("******** Node %d: ref trigger offset (%d) ********\n", nodeNum , refTriggerOffset );

497 :: BusFrameId > refMsgID ->

printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

refTriggerOffset = refTriggerOffset - 1;

NodeState[nodeNum] = P_MASTER;

fi;

502 }

TX_FINISHED[nodeNum] ? 0;

REF_TX_COMPLETE[nodeNum] ! 0 ->

507 START_BASIC_CYCLE:

#ifndef SYNCHRONISATION

/* Trigger the secheduled events from the node. */

printf ("******** Node %d: triggering initial event ********\n", nodeNum );

ResetTimeout(END_TX_ENABLE_COL_0 - START_TX_COL_0 );

512 printf ("Node %d: start tx col 0\n", nodeNum );

ResetTimeout(END_TX_MESSAGE_COL_0 - END_TX_ENABLE_COL_0 );

printf ("Node %d: end tx enable col 0\n", nodeNum );

517 ResetTimeout(RX_TRIGGER_COL_0 - END_TX_MESSAGE_COL_0 );

printf ("Node %d: end tx message col 0\n", nodeNum );
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ResetTimeout(START_TX_COL_1 - RX_TRIGGER_COL_0 );

printf ("Node %d: rx trigger col 0\n", nodeNum );

522

/* ResetTimeout ( END_TX_ENABLE_COL_1 - START_TX_COL_1 );

printf (" Node %d: start tx col 1\n", nodeNum );*/

TIMEOUT[nodeNum] ? 0;

527 TransmitMessage(NODE_2 , MSG_ID_5 , END_TX_ENABLE_COL_1 - START_TX_COL_1 , EXCLUSIVE_MSG );

ResetTimeout(END_TX_MESSAGE_COL_1 - END_TX_ENABLE_COL_1 );

printf ("Node %d: end tx enable col 1\n", nodeNum );

532 ResetTimeout(RX_TRIGGER_COL_1 - END_TX_MESSAGE_COL_1 );

printf ("Node %d: end tx message col 1\n", nodeNum );

EndTransmission(NODE_2 );

537 ResetTimeout(START_TX_COL_2 - RX_TRIGGER_COL_1 );

printf ("Node %d: rx trigger col 1\n", nodeNum );

ReceiveMessage(NODE_1 , MSG_ID_5 );

542 ResetTimeout(END_TX_ENABLE_COL_2 - START_TX_COL_2 );

printf ("Node %d: start tx col 2\n", nodeNum );

ResetTimeout(END_TX_MESSAGE_COL_2 - END_TX_ENABLE_COL_2 );

printf ("Node %d: end tx enable col 2\n", nodeNum );

547

ResetTimeout(RX_TRIGGER_COL_2 - END_TX_MESSAGE_COL_2 );

printf ("Node %d: end tx message col 2\n", nodeNum );

ResetTimeout(START_TX_COL_3 - RX_TRIGGER_COL_2 );

552 printf ("Node %d: rx trigger col 2\n", nodeNum );

ReceiveMessage(NODE_1 , MSG_ID_10 );

ReceiveMessage(NODE_2 , MSG_ID_10 );

557 /* ResetTimeout ( END_TX_ENABLE_COL_3 - START_TX_COL_3 );

printf (" Node %d: start tx col 3\n", nodeNum );*/

TIMEOUT[nodeNum] ? 0;

TransmitMessage(NODE_1 , MSG_ID_3 , END_TX_ENABLE_COL_3 - START_TX_COL_3 , EXCLUSIVE_MSG );

562

ResetTimeout(END_TX_MESSAGE_COL_3 - END_TX_ENABLE_COL_3 );

printf ("Node %d: end tx enable col 3\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_3 - END_TX_MESSAGE_COL_3 );

567 printf ("Node %d: end tx message col 3\n", nodeNum );

EndTransmission(NODE_1 );

ResetTimeout(START_TX_COL_4 - RX_TRIGGER_COL_3 );

572 printf ("Node %d: rx trigger col 3\n", nodeNum );

ReceiveMessage(NODE_2 , MSG_ID_3 );

/* ResetTimeout ( END_TX_ENABLE_COL_4 - START_TX_COL_4 );

577 printf (" Node %d: start tx col 4\n", nodeNum );*/

TIMEOUT[nodeNum] ? 0;

TransmitMessage(NODE_2 , MSG_ID_6 , END_TX_ENABLE_COL_4 - START_TX_COL_4 , EXCLUSIVE_MSG );

582 ResetTimeout(END_TX_MESSAGE_COL_4 - END_TX_ENABLE_COL_4 );

printf ("Node %d: end tx enable col 4\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_4 - END_TX_MESSAGE_COL_4 );

printf ("Node %d: end tx message col 4\n", nodeNum );

587

EndTransmission(NODE_2 );

ResetTimeout(END_TX_COL_4 - RX_TRIGGER_COL_4 );

printf ("Node %d: rx trigger col 4\n", nodeNum );

592

ReceiveMessage(NODE_1 , MSG_ID_6 );

/* Finished basic cycle so now check the msgStatusCount difference between messages

transmitted by the node. */
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597 CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

#else /* ifdef SYNCHRONISATION */

TIMEOUT[nodeNum] ? 0 ->

assert (( END_TX_COL_4 + refTriggerOffset - START_TX_COL_0 - REF_TX_INIT_PERIOD) > 0);

602 printf ("***** Node %d, current value of RefTriggerOffset: (%d) *****\n", nodeNum , refTriggerOffset );

SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 + refTriggerOffset - START_TX_COL_0 - REF_TX_INIT_PERIOD),

NO_MESSAGE;

printf ("Node %d: End of basic cycle\n", nodeNum );

/* While waiting for timer to expire check for reference messages received from other processes. This

607 section is atomic as the branch is due to an event from another node , so the ’SET_TIMEOUT ’ update

should be sent to advance time proc before deciding the next node to trigger , as the new timeout

value for this node is due to the branch. */

TIMEOUT_BASIC_CYCLE:

if

612 :: atomic

{

REF_MARK[nodeNum] ? 0 ->

/* Received ref. message transmitted from another node. */

printf ("Node %d: REF_MARK received reference message\n", nodeNum );

617 AdjustTimeout[nodeNum] = true;

/* Test priority of received message: if less than node priority then RefTriggerOffset = 0,

otherwise leave the same. */

if

:: BusFrameId < refMsgID ->

622 /* Priority of received ref msg is greater than node priority. */

printf ("Node %d: Ref Id less than node id\n", nodeNum );

NodeState[nodeNum] = P_MASTER;

/* Priority received is greater than that node priority. */

refTriggerOffset = initRefOffset;

627 /* Immediately start the next basic cycle. */

SET_TIMEOUT[nodeNum] ! 0, NO_MESSAGE;

/* Priority of received ref. message is less than node priority. */

:: BusFrameId > refMsgID ->

/* Adjust ref. trigger offset as message priority received is less node priority. */

632 printf ("******** Node %d: Ref Id greater than node id ********\n", nodeNum );

printf ("******** State (%d), ref offset (%d) ********\n", NodeState[nodeNum], refTriggerOffset );

/* assert( refTriggerOffset > 0); */

if

:: NodeState[nodeNum] == P_MASTER ->

637 /* NodeState [nodeNum] = P_MASTER;*/

/* refTriggerOffset = refTriggerOffset - 1;*/

if

:: refTriggerOffset > 0 ->

printf ("******** zeroed ref offset ********\n");

642 refTriggerOffset = 0;

:: refTriggerOffset <= 0 ->

refTriggerOffset = refTriggerOffset - 1;

printf ("******** decremented ref offset (%d) ********\n", refTriggerOffset );

fi;

647 :: NodeState[nodeNum] == TIME_MASTER ->

NodeState[nodeNum] = P_MASTER;

refTriggerOffset = refTriggerOffset - 1;

fi;

SET_TIMEOUT[nodeNum] ! 0, NO_MESSAGE;

652 /* Immediately start the next basic cycle. */

fi;

goto START_BASIC_CYCLE;

}

:: TIMEOUT[nodeNum] ? 0 ->

657 printf ("######## Node %d: had initial loop timeout ########\n", nodeNum );

skip;

fi;

/* Delay by ref. trigger offset value before sending the periodic ref. message. */

if

662 :: missSendingRefMsg != false ->

/* Used in property 19 to check system recovers when a ref msg is lost. */

/* missSendingRefMsg = false;*/

SET_TIMEOUT[nodeNum] ! REF_TX_INIT_PERIOD , NO_MESSAGE;

printf ("Node %d: Skip sending the reference message this time\n", nodeNum );

667 TIMEOUT[nodeNum] ? 0;

/* Simulate sending of ref message period otherwise deadlock as AdvanceTime process can not

proceed. */

SET_TIMEOUT[nodeNum] ! 80, NO_MESSAGE;

:: else ->

672 printf ("######## Node %d: Sending periodic ref msg from node ########\n", nodeNum );

SET_TIMEOUT[nodeNum] ! REF_TX_INIT_PERIOD , REFERENCE_MSG;
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printf ("******** Node %d: sending TX_TRIGGER ********\n", nodeNum );

TX_TRIGGER[nodeNum] ! refMsgID ->

printf ("******** Node %d: waiting on TX_ACCEPTED ********\n", nodeNum );

677 TX_ACCEPTED[nodeNum] ? 0;

REF_MSG_ON_BUS[nodeNum] ! 0 ->

fi;

/* Wait for a ref. mark message to be received. Check the message identifier currently on the bus. */

atomic

682 {

REF_MARK[nodeNum] ? 0;

if

:: BusFrameId == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

687 refTriggerOffset = 0;

NodeState[nodeNum] = TIME_MASTER;

:: BusFrameId < refMsgID ->

printf ("Node %d: Bus frame id is less than node id\n", nodeNum );

refTriggerOffset = initRefOffset;

692 NodeState[nodeNum] = P_MASTER;

:: BusFrameId > refMsgID ->

printf ("Node %d: Bus frame id is greater than node id\n", nodeNum );

assert(refTriggerOffset > 0);

refTriggerOffset = refTriggerOffset - 1;

697 fi;

}

if

:: missSendingRefMsg != false ->

702 missSendingRefMsg = false;

:: else ->

TX_FINISHED[nodeNum] ? 0;

REF_TX_COMPLETE[nodeNum] ! 0 ->

fi;

707 /* refTriggerOffset = refTriggerOffset -

REF_TX_INIT_PERIOD ;*/

/* Used in property 19. After first cycle disable node 1. Now only have node 2 and node 3 competing

to become time master. Node 2 is next to transmit its ref. message. */

#ifdef SYNC_TEST_3

712 IF nodeNum == NODE_1 ->

NodePresent[NODE_1] = false;

printf ("Node %d: Disabling node\n", nodeNum );

FI;

#endif

717 #endif /* ifndef SYNCHRONISATION */

goto START_BASIC_CYCLE;

TIMEOUT_3:

/* While waiting for timer to expire check for reference messages received from other processes. */

722 if

:: atomic

{

REF_MARK[nodeNum] ? 0 ->

/* Received ref. message transmitted from another node. */

727 printf ("Node %d: received reference message during TIMEOUT_3\n", nodeNum );

/* Check priority of the reference message on bus. */

if

:: BusFrameId < refMsgID ->

/* Ref. message priority is greater than node priority. */

732 printf ("Node %d: Ref msg received has greater priority than node\n", nodeNum );

NodeState[nodeNum] = P_MASTER;

refTriggerOffset = initRefOffset;

:: BusFrameId > refMsgID ->

printf ("Node %d: Ref msg received has less priority than node\n", nodeNum );

737 NodeState[nodeNum] = P_MASTER;

refTriggerOffset = refTriggerOffset - 1;

fi;

AdjustTimeout[nodeNum] = true;

/* Node is now in sync with the master node and state defaults to backup master. */

742 SET_TIMEOUT[nodeNum] ! 0, NO_MESSAGE;

}

goto START_BASIC_CYCLE;

:: TIMEOUT[nodeNum] ? 0 ->

goto SEND_REF_MSG_3;

747 fi;

TIMEOUT_4:

/* While waiting for timer to expire check for reference messages received from other processes. */
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if

752 :: atomic

{

REF_MARK[nodeNum] ? 0 ->

/* Received ref. message transmitted from another node. */

printf ("Node %d: REF_MARK received reference message\n", nodeNum );

757 /* Check priority of the reference message on bus. */

if

:: BusFrameId < refMsgID ->

/* Ref. message priority is greater than node priority. */

printf ("Node %d: Busframeid less than ref message id\n", nodeNum );

762 NodeState[nodeNum] = P_MASTER;

:: BusFrameId > refMsgID ->

printf ("Node %d: Busframeid greater than ref message id\n", nodeNum );

fi;

AdjustTimeout[nodeNum] = true;

767 /* Test priority of received message: if less than node priority then RefTriggerOffset = 0,

otherwise leave the same. Node is now in sync with the master node and state defaults to backup

master. */

SET_TIMEOUT[nodeNum] ! 0, NO_MESSAGE;

}

772 goto START_BASIC_CYCLE;

:: TIMEOUT[nodeNum] ? 0 ->

goto SEND_REF_MSG_3;

fi;

777 SEND_REF_MSG_3:

SET_TIMEOUT[nodeNum] ! REF_TX_INIT_PERIOD , REFERENCE_MSG;

printf ("Node %d: Sending reference message 3\n", nodeNum );

TX_TRIGGER[nodeNum] ! refMsgID;

TX_ACCEPTED[nodeNum] ? 0;

782 REF_MSG_ON_BUS[nodeNum] ! 0 ->

/* Wait for a ref. mark message to be received. Check the message identifier currently on the bus. */

atomic

{

REF_MARK[nodeNum] ? 0;

787 if

:: BusFrameId == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

NodeState[nodeNum] = TIME_MASTER;

refTriggerOffset = 0;

792 :: BusFrameId < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

refTriggerOffset = initRefOffset;

printf ("******** Node %d: ref trigger offset (%d) ********\n", nodeNum , refTriggerOffset );

:: BusFrameId > refMsgID ->

797 printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

refTriggerOffset = 0;

printf ("******** Node %d: ref trigger offset (%d) ********\n", nodeNum , refTriggerOffset );

fi;

}

802

TX_FINISHED[nodeNum] ? 0;

REF_TX_COMPLETE[nodeNum] ! 0 ->

/* Process received message. */

TIMEOUT[nodeNum] ? 0 ->

807 SET_TIMEOUT[nodeNum] ! 0, NO_MESSAGE;

goto START_BASIC_CYCLE;

}

812 proctype TimeReceivingNode(byte nodeNum)

{

/* Time receiving node. If detects a reference message received then restarts the basic cycle to sync

to the ref message. */

START_SYNCHRONISATION:

817

START_BASIC_CYCLE:

#ifdef SYNCHRONISATION

/* The model can be conditionally compiled to check the startup synchronisation scheme. In this case ,

the schedule is just modelled with a delay , no events are triggered. This is done to reduce the

822 state -space for verification of the model. */

/* If received ref. message while waiting for TIMEOUT sync message then restart timing periods for

basic cycle. */

if

:: atomic

827 {
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REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received ref. mark from NODE_1\n", nodeNum );

AdjustTimeout[nodeNum] = true;

SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 - START_TX_COL_0), NO_MESSAGE;

832 goto START_BASIC_CYCLE;

}

:: TIMEOUT[nodeNum] ? 0 ->

skip;

fi;

837 SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 - START_TX_COL_0), NO_MESSAGE ->

printf ("Node %d: End of basic cycle\n", nodeNum );

#else

ResetTimeout(END_TX_ENABLE_COL_0 - START_TX_COL_0 );

printf ("Node %d: start tx col 0\n", nodeNum );

842

ResetTimeout(END_TX_MESSAGE_COL_0 - END_TX_ENABLE_COL_0 );

printf ("Node %d: end tx enable col 0\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_0 - END_TX_MESSAGE_COL_0 );

847 printf ("Node %d: end tx message col 0\n", nodeNum );

ResetTimeout(START_TX_COL_1 - RX_TRIGGER_COL_0 );

printf ("Node %d: rx trigger col 0\n", nodeNum );

852 ResetTimeout(END_TX_ENABLE_COL_1 - START_TX_COL_1 );

printf ("Node %d: start tx col 1\n", nodeNum );

ResetTimeout(END_TX_MESSAGE_COL_1 - END_TX_ENABLE_COL_1 );

printf ("Node %d: end tx enable col 1\n", nodeNum );

857

ResetTimeout(RX_TRIGGER_COL_1 - END_TX_MESSAGE_COL_1 );

printf ("Node %d: end tx message col 1\n", nodeNum );

ResetTimeout(START_TX_COL_2 - RX_TRIGGER_COL_1 );

862 printf ("Node %d: rx trigger col 1\n", nodeNum );

ReceiveMessage(NODE_3 , MSG_ID_5 );

/* ResetTimeout ( END_TX_ENABLE_COL_2 - START_TX_COL_2 );

867 printf (" Node %d: start tx col 2\n", nodeNum );*/

TIMEOUT[nodeNum] ? 0;

TransmitMessage(NODE_3 , MSG_ID_10 , END_TX_ENABLE_COL_2 - START_TX_COL_2 ,

EXCLUSIVE_MSG );

872

ResetTimeout(END_TX_MESSAGE_COL_2 - END_TX_ENABLE_COL_2 );

printf ("Node %d: end tx enable col 2\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_2 - END_TX_MESSAGE_COL_2 );

877 printf ("Node %d: end tx message col 2\n", nodeNum );

EndTransmission(NODE_3 );

ResetTimeout(START_TX_COL_3 - RX_TRIGGER_COL_2 );

882 printf ("Node %d: rx trigger col 2\n", nodeNum );

ResetTimeout(END_TX_ENABLE_COL_3 - START_TX_COL_3 );

printf ("Node %d: start tx col 3\n", nodeNum );

887 ResetTimeout(END_TX_MESSAGE_COL_3 - END_TX_ENABLE_COL_3 );

printf ("Node %d: end tx enable col 3\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_3 - END_TX_MESSAGE_COL_3 );

printf ("Node %d: end tx message col 3\n", nodeNum );

892

ResetTimeout(START_TX_COL_4 - RX_TRIGGER_COL_3 );

printf ("Node %d: rx trigger col 3\n", nodeNum );

ReceiveMessage(NODE_3 , MSG_ID_3 );

897

ResetTimeout(END_TX_ENABLE_COL_4 - START_TX_COL_4 );

printf ("Node %d: start tx col 4\n", nodeNum );

ResetTimeout(END_TX_MESSAGE_COL_4 - END_TX_ENABLE_COL_4 );

902 printf ("Node %d: end tx enable col 4\n", nodeNum );

ResetTimeout(RX_TRIGGER_COL_4 - END_TX_MESSAGE_COL_4 );
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printf ("Node %d: end tx message col 4\n", nodeNum );

907 ResetTimeout(END_TX_COL_4 - RX_TRIGGER_COL_4 );

printf ("Node %d: rx trigger col 4\n", nodeNum );

ReceiveMessage(NODE_3 , MSG_ID_6 );

912 /* Finished basic cycle so now check the msgStatusCount difference between messages transmitted by

the node. */

CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

#endif

917 goto START_BASIC_CYCLE;

}

proctype Transceiver(byte nodeNum)

922 {

/* The node was transmitting a message and lost arbitration . */

bool nodeLostArbitration;

byte txMessageTemp;

927 IDLE:

printf ("Node %d: Idle ...\n", nodeNum );

do

:: TX_TRIGGER[nodeNum] ? txMessageTemp ->

if

932 :: atomic

{

BusFrameId == BUS_IDLE ->

goto TRANSMIT

}

937 :: else ->

goto IDLE

fi;

:: SOF_BCAST[nodeNum] ? 0 ->

printf ("Node %d: Receiving SOF broadcast message\n", nodeNum );

942 goto RECEIVE

od;

TRANSMIT:

if

947 :: atomic

{

BusFrameId == BUS_IDLE ->

printf ("Node %d: Transmitting ...\n", nodeNum );

NodeFrameId[nodeNum] = txMessageTemp;

952 printf ("Node %d: Triggering sending of message on bus\n", nodeNum );

TX_FRAME[nodeNum] ! 0;

}

:: else ->

goto IDLE;

957 fi;

FRAME_ACCEPTED[nodeNum] ? 0;

printf ("******** Node %d: Frame is now on the bus ********\n", nodeNum );

TX_ACCEPTED[nodeNum] ! 0 ->

962 SOF_BCAST[nodeNum] ? 0;

printf ("Node %d: Transmitter received SOF broadcast message\n", nodeNum );

/* Wait until arbitration is done. */

if

:: WON_ARB[nodeNum] ? 0 ->

967 printf ("######## Node %d: Transmitting node won arbtration ########\n", nodeNum );

:: FAILED_ARB[nodeNum] ? 0 ->

printf ("###### Node %d: Transmitting node failed arbitration ######\n", nodeNum );

IF NodeFrameId[nodeNum] > REF_ID ->

/* If transmissing a normal message. */

972 MSC_TX_NOK[nodeNum] ! 0;

printf ("Node %d: Signal to error handler that message tx failed\n", nodeNum );

FINISHED_ERR_UPD[nodeNum] ? 0;

FI;

NodeFrameId[nodeNum] = BUS_IDLE;

977 /* Set local flag here that is used to reset the transmitting node ’s (that has lost arbitration )

NodeFrameId variable once finished receiving . */

nodeLostArbitration = true;

goto RECEIVE;

fi;
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982

STABLE_ID_BCAST[nodeNum] ? 0;

printf ("Node %d: Transmitting node has stable ID\n", nodeNum );

/* END_FRAME [nodeNum] ! 0;

printf (" Node %d: Finished transmitting message\n", nodeNum );*/

987 if

:: NodeFrameId[nodeNum] > REF_ID ->

/* If transmissing a normal message. */

MSC_TX_OK[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

992 :: else ->

/* Is a reference message. Transmitted message id is less than or equal to ref. message id. */

REF_MARK[nodeNum] ! 0;

fi;

997 END_FRAME[nodeNum] ! 0;

printf ("Node %d: Finished transmitting message\n", nodeNum );

EOF_BCAST[nodeNum] ? 0;

printf ("Node %d: Transmitter has received EOF\n", nodeNum );

1002 NodeFrameId[nodeNum] = BUS_IDLE;

/* Wait for the bus to become idle again after transmission . */

BUS_IDLE_BCAST[nodeNum] ? 0;

/* Transmitting node process is waiting for this sync channel before continuing to next time slice

(receive trigger ). Once sync message is received all nodes can advance to the receive trigger time

1007 interval. */

printf ("******** Node %d: Finished transmission - won arb ********\n", nodeNum );

TX_FINISHED[nodeNum] ! 0;

goto IDLE;

1012 RECEIVE:

printf ("Node %d: Receiving ...\n", nodeNum );

STABLE_ID_BCAST[nodeNum] ? 0;

printf ("Node %d: Receiving node has stable ID\n", nodeNum );

MsgStatus[nodeNum ]. rxMsgBuff[BusFrameId] = true;

1017 /* Only send REF_MARK if received a reference message and node is active. */

IF (( BusFrameId <= REF_ID) && (NodePresent[nodeNum] != false)) ->

REF_MARK[nodeNum] ! 0;

FI;

1022 EOF_BCAST[nodeNum] ? 0;

printf ("Node %d: Finished receiving message\n", nodeNum );

BUS_IDLE_BCAST[nodeNum] ? 0;

/* Send TX_FINISHED if node was trying to send a ref message (check NodeFrameId ) but is now in

receive state so has lost arbitration . */

1027 IF (nodeLostArbitration != false) ->

nodeLostArbitration = false;

/* Send TX_FINISHED to any node that was transmitting and lost arbitration . */

printf ("******** Node %d: Finished transmission - lost arb ********\n", nodeNum );

TX_FINISHED[nodeNum] ! 0;

1032 FI;

goto IDLE;

}

1037 proctype PhysicalMedium ()

{

/* Mesage Id for winner of arbitration . */

byte winnerArb;

byte i;

1042

IDLE:

/* Wait on a TX_FRAME sync message from transceiver , signals that a node is ready to transmit a

message on the bus. Go to the next state when the bus clock timer advances. This signals that the SOF

period has begun. The transition from the recessive idle state to dominant state of the SOF bit

1047 period has occurred. Frames can no longer be accepted for transmission on the bus. */

if

:: TX_FRAME[NODE_1] ? 0;

FRAME_ACCEPTED[NODE_1] ! 0 ->

:: TX_FRAME[NODE_2] ? 0;

1052 FRAME_ACCEPTED[NODE_2] ! 0 ->

:: TX_FRAME[NODE_3] ? 0;

FRAME_ACCEPTED[NODE_3] ! 0 ->

:: atomic

{

1057 BusClock == 1 ->

printf ("******** Physical layer - SOF period begins ********\n");
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BusFrameId = BUS_NOT_IDLE;

/* Reset the bus clock timer. */

BusClock = 0;

1062 }

goto SOF_BROADCAST;

fi;

/* Continue waiting for more transmissions , while the bus is IDLE. */

assert(BusFrameId == BUS_IDLE );

1067 goto IDLE;

SOF_BROADCAST:

printf ("Phy: Sending SOF bcast sync message - SOF period has finished\n");

/* Nodes that are not transmitting are put into the receive state. */

1072 SOF_BCAST[NODE_1] ! 0;

SOF_BCAST[NODE_2] ! 0;

SOF_BCAST[NODE_3] ! 0;

goto ARBITRATION;

1077 ARBITRATION:

if

:: NodeFrameId[NODE_1] < NodeFrameId[NODE_2] ->

if

:: NodeFrameId[NODE_1] < NodeFrameId[NODE_3] ->

1082 goto ARB_N1_WON

:: NodeFrameId[NODE_1] > NodeFrameId[NODE_3] ->

goto ABR_N3_WON

fi;

:: NodeFrameId[NODE_2] == NodeFrameId[NODE_1] ->

1087 goto ABR_N3_WON

:: NodeFrameId[NODE_1] > NodeFrameId[NODE_2] ->

if

:: NodeFrameId[NODE_2] < NodeFrameId[NODE_3] ->

goto ARB_N2_WON

1092 :: NodeFrameId[NODE_2] > NodeFrameId[NODE_3] ->

goto ABR_N3_WON

fi;

fi;

1097 ABR_N3_WON:

printf ("PHY: Node index 2 won arbitraion -----------------------------\n");

BusFrameId = NodeFrameId[NODE_3 ];

winnerArb = NODE_3;

WON_ARB[NODE_3] ! 0;

1102 goto CHK_N1_IDLE;

ARB_N2_WON:

printf ("PHY: Node index 1 won arbitraion ------------------------------\n");

BusFrameId = NodeFrameId[NODE_2 ];

1107 winnerArb = NODE_2;

WON_ARB[NODE_2] ! 0;

goto CHK_N1_IDLE;

ARB_N1_WON:

1112 /* If received ref messages from both transmitters then node 1 always wins arbitration , as ref

message has lowest ID. */

printf ("PHY: Node index 0 won arbitraion ------------------------------\n");

BusFrameId = NodeFrameId[NODE_1 ];

winnerArb = NODE_1;

1117 WON_ARB[NODE_1] ! 0;

goto CHK_N2_IDLE;

CHK_N1_IDLE:

printf ("PHY: Check Node 0 idle ---------------------------------------\n");

1122 IF NodeFrameId[NODE_1] != BUS_IDLE ->

printf ("PHY: Node 0 failed arbitration ---------------------------\n");

FAILED_ARB[NODE_1] ! 0

FI;

goto WON_ARB_N2_OR_N3;

1127

CHK_N2_IDLE:

printf ("PHY: Check Node 1 idle ---------------------------------------\n");

IF NodeFrameId[NODE_2] != BUS_IDLE ->

printf ("PHY: Node 1 failed arbitration ---------------------------\n");

1132 FAILED_ARB[NODE_2] ! 0

FI;

goto WON_ARB_N1_OR_N3;
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CHK_N3_IDLE:

1137 printf ("PHY: Check Node 2 idle ---------------------------------------\n");

IF NodeFrameId[NODE_3] != BUS_IDLE ->

printf ("PHY: Node 2 failed arbitration ---------------------------\n");

FAILED_ARB[NODE_3] ! 0

FI;

1142 goto STABLE_ID_BROADCAST;

WON_ARB_N2_OR_N3:

if

:: winnerArb == NODE_2 ->

1147 goto CHK_N3_IDLE

:: winnerArb == NODE_3 ->

goto CHK_N2_IDLE

fi;

1152 WON_ARB_N1_OR_N3:

if

:: winnerArb == NODE_1 ->

goto CHK_N3_IDLE

:: winnerArb == NODE_3 ->

1157 goto STABLE_ID_BROADCAST

fi;

STABLE_ID_BROADCAST:

/* Check CAN bus arbitration . Winner Id should always be less than other node ’s msg ids. */

1162 FOR(i, 0, TOTAL_NODES)

IF i != winnerArb ->

assert(BusFrameId <= NodeFrameId[winnerArb ]);

FI;

ROF(i);

1167

STABLE_ID_BCAST[NODE_1] ! 0;

STABLE_ID_BCAST[NODE_2] ! 0;

STABLE_ID_BCAST[NODE_3] ! 0;

END_FRAME[winnerArb] ? 0;

1172 goto EOF_BROADCAST;

EOF_BROADCAST:

/* Signal end of frame to receiving nodes. */

EOF_BCAST[NODE_1] ! 0;

1177 EOF_BCAST[NODE_2] ! 0;

EOF_BCAST[NODE_3] ! 0;

printf (" PhysicalMedium: Bus back to idle state\n");

BusFrameId = BUS_IDLE;

BUS_IDLE_BCAST[NODE_1] ! 0;

1182 BUS_IDLE_BCAST[NODE_2] ! 0;

BUS_IDLE_BCAST[NODE_3] ! 0;

goto IDLE

}

1187

init

{

/* Initialise global variables . */

#ifdef DISABLE_NODE_1

1192 NodePresent[NODE_1] = false;

#else

NodePresent[NODE_1] = true;

#endif

#ifdef DISABLE_NODE_2

1197 NodePresent[NODE_2] = false;

#else

NodePresent[NODE_2] = true;

#endif

#ifdef DISABLE_NODE_3

1202 NodePresent[NODE_3] = false;

#else

NodePresent[NODE_3] = true;

#endif

NodeState[NODE_1] = INITIALISATION;

1207 NodeState[NODE_2] = INITIALISATION;

BusFrameId = BUS_IDLE;

NodeFrameId[NODE_1] = BUS_IDLE;

NodeFrameId[NODE_2] = BUS_IDLE;

NodeFrameId[NODE_3] = BUS_IDLE;

1212
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/* Setup the expected number of transmissions from each node. */

Schedule[NODE_1 ]. expectedTxCount = EXPECTED_TX_COUNT_1;

Schedule[NODE_2 ]. expectedTxCount = EXPECTED_TX_COUNT_2;

Schedule[NODE_3 ]. expectedTxCount = EXPECTED_TX_COUNT_3;

1217

run ErrorContainment(NODE_1 );

run ErrorContainment(NODE_2 );

run ErrorContainment(NODE_3 );

run Transceiver(NODE_1 );

1222 run Transceiver(NODE_2 );

run Transceiver(NODE_3 );

#ifdef SYNC_TEST_3

run TimeMasterNode(NODE_1 , INITIAL_REF_OFFSET_1 , REF_ID_1 , 0);

run TimeMasterNode(NODE_2 , INITIAL_REF_OFFSET_2 , REF_ID_2 , 0);

1227 run TimeMasterNode(NODE_3 , INITIAL_REF_OFFSET_3 , REF_ID_3 , 0);

#else

#ifdef SYNC_TEST_2

/* Delay starting of node 1 by 10 NTU for sync test 2. */

run TimeMasterNode(NODE_1 , INITIAL_REF_OFFSET_1 , REF_ID_1 , 10);

1232 #else

run TimeMasterNode(NODE_1 , INITIAL_REF_OFFSET_1 , REF_ID_1 , 0);

#endif

run TimeMasterNode(NODE_2 , INITIAL_REF_OFFSET_2 , REF_ID_2 , 0);

run TimeReceivingNode(NODE_3 );

1237 #endif

run AdvanceTime ();

run PhysicalMedium ();

}





Appendix C

LISTING FOR ABSTRACTED MODEL OF ISO
TTCAN

/**

* Abstracted model of the ISO TTCAN protocol. This model is based on a paper titled "Formal verification

* of the TTCAN protocol" (2002) by Leen and Heffernan modelling TTCAN with UPPAAL.

*

5 * @file AbstractedISOTTCAN .pml

* @author dmk

* @date 12/07/10

*

*/

10

#include "macros.h"

#include "../../ Common.h"

15

#define ERROR_HANDLER

/* Node identifiers . */

#define NODE_1 0

#define NODE_2 1

20 #define NODE_3 2

#define TOTAL_NODES 3

/* Anchor points for timing. */

#define START_TX_COL_0 0

#define END_TX_ENABLE_COL_0 8

25 #define END_TX_MESSAGE_COL_0 80

#define RX_TRIGGER_COL_0 126

#define START_TX_COL_1 130

#define END_TX_ENABLE_COL_1 138

#define END_TX_MESSAGE_COL_1 250

30 #define RX_TRIGGER_COL_1 286

#define START_TX_COL_2 290

#define END_TX_ENABLE_COL_2 298

#define END_TX_MESSAGE_COL_2 420

#define RX_TRIGGER_COL_2 446

35 #define START_TX_COL_3 450

#define END_TX_ENABLE_COL_3 458

#define END_TX_MESSAGE_COL_3 570

#define RX_TRIGGER_COL_3 606

#define START_TX_COL_4 610

40 #define END_TX_ENABLE_COL_4 618

#define END_TX_MESSAGE_COL_4 710

#define RX_TRIGGER_COL_4 766

#define END_TX_COL_4 780

/* Length of a ref message in NTU. */

45 #define REF_MSG_LEN 80

#define EXCLUSIVE_MSG_LEN 100

/* Length of messages transmitted in each transmission column. */

#define TC1_MSG_LEN 120

#define TC2_MSG_LEN 130

50 #define TC3_MSG_LEN 120

#define TC4_MSG_LEN 100

/* Length of the CAN frame identifier field. Make this timeout short to force arbitration for the initial

ref. message sent to be decided before the initial timeout from the next node. */

#define ID_LEN 1

55 /* Fixed timeouts used in TTCAN protocol. */
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#define INITIAL_REF_OFFSET_1 8

#define INITIAL_REF_OFFSET_2 10

#define INITIAL_REF_OFFSET_3 12

#define REF_TRIGGER 780

60 #define GAP_TIME 1565

/* Config with 2 or 3 potential time -masters. */

#ifdef SYNC_TEST_3

#define REF_ID_LAST 3

#else

65 #define REF_ID_LAST 2

#endif

#define TOTAL_MESSAGES 14

/* Lowest and highest priority non reference messages. */

#define LOWEST_PRIORITY_MSG MSG_ID_13

70 #define HIGHEST_PRIORITY_MSG MSG_ID_4

/* Number of buses in the model. */

#define REDUNDANT_BUSES 1

/* Expected number of transmissions from node , currently for only a single basic cycle. */

#define EXPECTED_TX_COUNT_1 1

75 #define EXPECTED_TX_COUNT_2 5

#define EXPECTED_TX_COUNT_3 2

/* Length of schedules / number of basic -cycles. */

#define MAX_SCHEDULE_LENGTH 10

#define BASIC_CYCLE_COUNT 3

80 #define BASIC_CYCLE_1 0

#define BASIC_CYCLE_2 1

#define BASIC_CYCLE_3 2

85 /* Declarations of synchronous channels. */

/* Sent by node after sucessfully transmitting a reference message to model other nodes receiving the

reference message. */

chan REF_MARK[TOTAL_NODES] = [0] of {bool};

/* Sent to AdvTimeBusArb process to check the current state of the bus. */

90 chan CHK_BUS[TOTAL_NODES] = [0] of {bool};

/* Sends the time to complete the current msg on the bus , the current msg id on the bus , BUS_IDLE if the

bus is not busy , or BUS_ARB if there is currently arbitration on the bus , and also a flag to show the

result of the last msg transmission on the bus. */

chan BUS_STATE[TOTAL_NODES] = [0] of {int , byte , bool};

95 chan TIMEOUT[TOTAL_NODES] = [0] of {bool};

/* Sets the timeout for a node timeout value is sent through sync channel. */

chan SET_TIMEOUT[TOTAL_NODES] = [0] of {int};

/* Updates time for the node sent through sync channel. */

chan UPD_TIMEOUT[TOTAL_NODES] = [0] of {int};

100 /* Sent from node process to initialise transmission of a message on bus. The msg id , send time , and bus

number are sent as channel parameters . */

chan TX_TRIGGER[TOTAL_NODES] = [0] of {byte , int , bool};

chan RX_MESSAGE[TOTAL_NODES] = [0] of {byte};

chan FINISHED_ERR_UPD[TOTAL_NODES] = [0] of {bool};

105 chan MSC_TX_OK[TOTAL_NODES] = [0] of {byte};

chan MSC_TX_NOK[TOTAL_NODES] = [0] of {byte};

chan CHECK_MSC[TOTAL_NODES] = [0] of {bool};

chan TX_TRIGGER_E[TOTAL_NODES] = [0] of {bool};

/* Sent by the advance time process / bus arbitration process to put a node into a restart state. When in

110 this state node will not reset its time till next timeout when a reference mark message is received. */

chan RESTART[TOTAL_NODES] = [0] of {bool};

chan UPD_NODE_STATE[TOTAL_NODES] = [0] of {byte , byte};

115 #include "../../ TTCANTypedefs.h"

typedef MsgStatusT

{

120 /* Flags set when message is received at node. Buffer bit set when message is first received at the

node. */

bool rxMsgBuff[TOTAL_MESSAGES ];

/* Message status Count for each message. */

byte msgStatusCount[TOTAL_MESSAGES ];

125 };

byte NodeState[TOTAL_NODES ];

bool NodePresent[TOTAL_NODES ];

130 bool DisableTx[TOTAL_NODES ];

/* Structure holding flags associated with receiving and transmitting messages. */

MsgStatusT MsgStatus[TOTAL_NODES ];
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NodeSendStatusT NodeSendStatus[TOTAL_NODES ];

/* Message schedules for each nodes. */

135 ScheduleT Schedule[TOTAL_NODES ];

/* Dummy function so model is able to include the common AdvTimeBusArb process. */

inline CheckMsgRx ()

140 {

skip;

}

145 /* Check for a timeout during the sync period. */

inline CheckSyncTimeout ()

{

if

:: TIMEOUT[nodeNum] ? 0 ->

150 printf ("Node %d: Had timeout after triggering sync ref message\n",

nodeNum );

:: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received ref mark\n", nodeNum );

fi;

155 }

#include "../../ CancelSchedule.pml"

#include "../../ AdvTimeMacros.pml"

160 #include "../../ AdvTimeBusArb.pml"

#include "../../ TTCANErrorHandler.pml"

#include "../../ CheckSendTimeRemaining.pml"

#include "../../ CheckSendBuffers.pml"

#include "../../ TransmitMessage.pml"

165

inline ReceiveMessage(destination , msgId)

{

IF nodeNum == destination ->

170 /* Process received message error handler. */

RX_MESSAGE[nodeNum] ! msgId;

/* Wait for the error handler to update for the received message. Assumes this will complete

within the time -slot period. */

FINISHED_ERR_UPD[nodeNum] ? 0;

175 FI;

}

inline CheckRefMessage(busId)

180 {

/* Check to see winner of arbitration . */

printf ("Node %d: Check current state bus\n", nodeNum );

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, busId , wonArbitration;

185 printf ("#### Node %d: Won last arb (%d)####\n", nodeNum , wonArbitration );

/* If won arbitration send REF_MARK sync messages to other nodes. If lost arbitration go to timeout

and try to send ref message again after timeout has elapsed. */

if

190 :: wonArbitration != false ->

i = 0;

FOR(i, 0, TOTAL_NODES)

IF /*((i % 2) == bus) &&*/ (NodePresent[i] != false) ->

printf ("***** Sent REF_MARK message to node %d*****\n", i);

195 #ifndef REF_TX_ERROR

/* Will be received by the AdvTimeBusArb proc if this is the transmitting node. Is also

sent to the other nodes to model receiving a reference message at the nodes. */

REF_MARK[i] ! bus;

#endif

200 FI;

ROF(i);

:: else ->

/* Lost arbitration , or sync ref not acked by another node. */

printf ("Node %d: Lost arb or sync ref not acked - begin timeout\n", nodeNum );

205 #if 0

/* 10ms timeout in this case. */

SET_TIMEOUT[nodeNum] ! 10000;

goto START_BASIC_CYCLE;

#endif



144 APPENDIX C LISTING FOR ABSTRACTED MODEL OF ISO TTCAN

210 fi;

}

inline FinishBasicCycle ()

215 {

cycleCount = (cycleCount + 1) % 3;

printf ("Node %d: Incremented cycleCount new value (%d)\n", nodeNum , cycleCount );

/* Finished matrix -cycle (3 basic -cycles) so now check the MSC difference between messages

transmitted by the node. */

220 IF cycleCount == 0 ->

printf ("Node %d: Finished the matrix cycle - checking tx msg count\n", nodeNum );

/* Reset all scheduled message receive flags at node 1. */

MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_5] = false;

MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_6] = false;

225 MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_8] = false;

MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_9] = false;

MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_10] = false;

MsgStatus[NODE_1 ]. rxMsgBuff[MSG_ID_13] = false;

230 /* Reset all scheduled message receive flags at node 2. */

MsgStatus[NODE_2 ]. rxMsgBuff[MSG_ID_4] = false;

MsgStatus[NODE_2 ]. rxMsgBuff[MSG_ID_10] = false;

MsgStatus[NODE_2 ]. rxMsgBuff[MSG_ID_13] = false;

235 CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

FI;

}

240

proctype TimeMasterNode(byte nodeNum , bus , initRefOffset , refMsgID , initDelay)

{

byte i;

bool missSendingRefMsg;

245 byte cycleCount;

/* Flag set if the arbitrating window is open at node. */

bool arbWindowOpen;

byte busFrameIdTemp;

/* Id of message to send after next timeout. */

250 byte eventToTrigger;

/* Current frame in the schedule to transmit. */

byte currentFrame;

byte refTriggerOffset;

bool wonArbitration;

255 byte busState;

/* Just a dummy variable in this model , so CheckSendTimeRemaining macro can be included in multiple

projects. */

bool useDefaultSchedule;

260 atomic

{

cycleCount = 0;

/* Skip over the initial scheduled reference message. */

currentFrame = 1;

265 eventToTrigger = SKIP_SEND_MSG;

/* Initial startup delay. Simulates node 2 starting early. */

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! initDelay;

270

IF nodeNum == NODE_2 ->

#ifdef SYNC_TEST_3

missSendingRefMsg = true;

#endif

275 FI;

TIMEOUT[nodeNum] ? 0 ->

START_SYNC:

NodeState[nodeNum] = INITIALISATION;

280 /* Set reference message trigger offset to initial default value for node. */

refTriggerOffset = initRefOffset;

/* Keep record of time to next timeout - to be used if ref message is received and the node ’s timeout

value needs to be recalculated . */

285 SET_TIMEOUT[nodeNum] ! (GAP_TIME + refTriggerOffset );
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if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had initial GAP_TIME timeout\n", nodeNum );

290 :: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received REF_MARK (ref msg) from node\n", nodeNum );

/* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

295 /* Check received ref message priority against the node ’s priority , work out the adjusted time

till next tick and send in a sync channel to AdvTimeBusArb . */

if

:: busFrameIdTemp < refMsgID ->

/* Priority of received ref. message greater than node priority. */

300 printf ("Node %d: Ref Id less than node id goto TIMEOUT_4\n", nodeNum );

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset );

goto TIMEOUT_4;

:: busFrameIdTemp > refMsgID ->

/* Piority of received ref. message is less than node priority. */

305 printf ("Node %d: Ref Id greater than node id TIMEOUT_3\n", nodeNum );

refTriggerOffset = 0;

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset );

goto TIMEOUT_3;

fi;

310 fi;

/* Send first ref message. */

SEND_REF_MSG_1:

printf ("Node %d: Sending first ref message\n", nodeNum );

315 /* Use special set wdt sync channel message for watch dog timeout as timeout value can be updated

depending on whether or not the ref. msg is received correctly . */

TransmitMessage(nodeNum , refMsgID , REF_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P);

/* Add dummy delay here so all nodes transmit before the bus is checked to see which node won

arbitration , if nodes are transmitting simultaneously . */

320 SET_TIMEOUT[nodeNum] ! ID_LEN;

CheckSyncTimeout ();

/* Check the msg id currently on the bus or for wdt. */

CheckRefMessage(busFrameIdTemp );

325 if

:: busFrameIdTemp == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

/* Zero the ref trigger offset if the node sends ref message sucessfully . */

refTriggerOffset = 0;

330 :: busFrameIdTemp < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

:: busFrameIdTemp > refMsgID ->

printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

fi;

335

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER + refTriggerOffset );

TIMEOUT_2:

if

:: TIMEOUT[nodeNum] ? 0 ->

340 printf ("Node %d: Send ref message 2 timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Recvd REF_MARK during second send ref msg timeout\n", nodeNum );

/* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! bus;

345 BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

if

:: busFrameIdTemp < refMsgID ->

/* Ref message received priority is greater than node priority. */

printf ("Node %d: Bus id is less than node id\n", nodeNum );

350 refTriggerOffset = initRefOffset;

:: busFrameIdTemp > refMsgID ->

printf ("Node %d: Bus id is greater than node id\n", nodeNum );

assert(refTriggerOffset > 0);

/* Adjust ref. trigger offset as msg priority recvd is less node priority. */

355 refTriggerOffset = refTriggerOffset - 1;

fi;

/* Node is now a potential time master. */

NodeState[nodeNum] = P_MASTER;

SET_TIMEOUT[nodeNum] ! 0;

360 goto START_BASIC_CYCLE;

fi;

/* Send second ref message. */
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SEND_REF_MSG_2:

365 printf ("Node %d: Sending second ref message\n", nodeNum );

TransmitMessage(nodeNum , refMsgID , REF_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P );

/* Add dummy delay here so all nodes transmit before the bus is checked to see which node won

arbitration , if nodes are transmitting simultaneously . */

SET_TIMEOUT[nodeNum] ! ID_LEN;

370 CheckSyncTimeout ();

/* Check the msg id currently on the bus or for wdt. */

CheckRefMessage(busFrameIdTemp );

if

375 :: busFrameIdTemp == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

NodeState[nodeNum] = TIME_MASTER;

:: busFrameIdTemp < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

380 NodeState[nodeNum] = P_MASTER;

:: busFrameIdTemp > refMsgID ->

printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

assert (0); /* TODO: Should skip to START_BC. */

NodeState[nodeNum] = P_MASTER;

385 fi;

SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

assert (0);

390 TIMEOUT_3:

printf ("Node %d: wait for TIMEOUT_3\n", nodeNum );

if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had TIMEOUT_3\n", nodeNum );

395 goto SEND_REF_MSG_3; /* Next state is SEND_REF_MSG_3 . */

:: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received REF_MARK during TIMEOUT_3\n", nodeNum );

/* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! bus;

400 BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

if

:: busFrameIdTemp < refMsgID ->

/* Ref message received priority is greater than node priority. */

printf ("Node %d: Bus id is less than node id\n", nodeNum );

405 refTriggerOffset = initRefOffset;

:: busFrameIdTemp > refMsgID ->

printf ("Node %d: Bus id is greater than node id\n", nodeNum );

assert(refTriggerOffset > 0);

/* Adjust ref. trigger offset as msg priority recvd is less node priority. */

410 refTriggerOffset = refTriggerOffset - 1;

fi;

/* Node is now a potential time master. */

NodeState[nodeNum] = P_MASTER;

SET_TIMEOUT[nodeNum] ! 0;

415 goto START_BASIC_CYCLE;

fi;

TIMEOUT_4:

printf ("Node %d: wait for TIMEOUT_4\n", nodeNum );

420 if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had TIMEOUT_4\n", nodeNum );

/* Next state is SEND_REF_MSG_3 . */

:: REF_MARK[nodeNum] ? 0 ->

425 printf ("Node %d: Received REF_MARK during TIMEOUT_4\n", nodeNum );

/* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

if

430 :: busFrameIdTemp < refMsgID ->

/* Ref message received priority is greater than node priority. */

printf ("Node %d: Bus id is less than node id\n", nodeNum );

refTriggerOffset = initRefOffset;

:: busFrameIdTemp > refMsgID ->

435 printf ("Node %d: Bus id is greater than node id\n", nodeNum );

refTriggerOffset = 0;

fi;

/* Node is now a potential time master. */

NodeState[nodeNum] = P_MASTER;

440 SET_TIMEOUT[nodeNum] ! 0;
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goto START_BASIC_CYCLE;

fi;

SEND_REF_MSG_3:

445 /* Send third ref message. */

printf ("Node %d: Sending third ref message\n", nodeNum );

TransmitMessage(nodeNum , refMsgID , REF_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P);

/* Add dummy delay here so all nodes transmit before the bus is checked to see which node won

arbitration , if nodes are transmitting simultaneously . */

450 SET_TIMEOUT[nodeNum] ! ID_LEN;

CheckSyncTimeout ();

/* Check the msg id currently on the bus or for wdt. */

CheckRefMessage(busFrameIdTemp );

455 if

:: busFrameIdTemp == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

NodeState[nodeNum] = TIME_MASTER;

refTriggerOffset = 0;

460 :: busFrameIdTemp < refMsgID ->

printf ("Node %d: Bus frame id is less than ref message id sent\n", nodeNum );

NodeState[nodeNum] = P_MASTER;

refTriggerOffset = initRefOffset;

:: busFrameIdTemp > refMsgID ->

465 printf ("Node %d: Bus frame id is greater than ref message id sent\n", nodeNum );

NodeState[nodeNum] = P_MASTER;

refTriggerOffset = 0;

fi;

470 printf ("Node %d: Starting first basic cycle\n", nodeNum );

SET_TIMEOUT[nodeNum] ! 0;

START_BASIC_CYCLE:

printf ("Node %d: Trigger next scheduled frame. Current frame (%d)\n", nodeNum , currentFrame );

475 if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

480 currentFrame = 1;

eventToTrigger = SKIP_SEND_MSG;

SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

fi;

485

if

:: eventToTrigger == SKIP_SEND_MSG ->

/* Do nothing after this timeout. Skip through and set the next timeout. */

skip;

490 :: (eventToTrigger > SKIP_SEND_MSG) && (eventToTrigger < RX_TRIGGER) ->

if

:: eventToTrigger <= REF_ID_LAST ->

/* Sending a scheduled reference message. */

assert (0);

495 :: eventToTrigger == END_SCHEDULE ->

/* Reached the end of the basic cycle. Handle cycle count , frame count , and sending periodic

reference message. */

goto TRIGGER_REF_MSG;

:: else ->

500 assert(currentFrame - 1);

/* Send a scheduled message. */

printf ("##### Node %d: Value of current frame (%d) #####\n", nodeNum , currentFrame );

assert(currentFrame < 7);

TransmitMessage(nodeNum , eventToTrigger , EXCLUSIVE_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P);

505 fi;

:: else ->

/* Rx trigger. */

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

fi;

510 START_SYNC_REF:

/* Set the next scheduled timeout. cycleCount should initially be 1 after an initial dummy 0 delay. */

eventToTrigger = Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[cycleCount ];

SET_TIMEOUT[nodeNum] ! Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount ];

currentFrame = currentFrame + 1;

515 /* End of basic cycle is handled by jumping to the code below after the final scheduled message is

sent. */

/* assert( eventToTrigger != END_SCHEDULE );*/
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/* Wait for this next timeout to expire. */

goto START_BASIC_CYCLE;

520

TRIGGER_REF_MSG:

/* Models a basic cycle without sending any msg to test startup sync. */

SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 + refTriggerOffset - RX_TRIGGER_COL_4 );

if

525 :: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Finished transmiting basic cycle\n", nodeNum );

FinishBasicCycle ();

:: REF_MARK[nodeNum] ? 0 ->

FinishBasicCycle ();

530 /* Check the current state of the bus before transmitting . */

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, busFrameIdTemp , _;

if

:: busFrameIdTemp < refMsgID ->

535 /* Priority of received ref. msg is greater than node priority. */

printf ("Node %d: Ref Id less than node id\n", nodeNum );

/* Priority received is greater than that node priority. */

NodeState[nodeNum] = P_MASTER;

refTriggerOffset = initRefOffset;

540 :: busFrameIdTemp > refMsgID ->

/* Piority of received ref. message is less than node priority. */

printf ("Node %d: Ref Id greater than node id\n", nodeNum );

assert(refTriggerOffset > 0);

NodeState[nodeNum] = P_MASTER;

545 /* Adjust ref. trigger offset as msg priority recvd is less node priority. */

refTriggerOffset = refTriggerOffset - 1;

fi;

/* Nodes receiving ref msg timers are reset to the full basic cycle period time. */

currentFrame = 1;

550 eventToTrigger = SKIP_SEND_MSG;

SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

fi;

555 if

:: missSendingRefMsg != false ->

missSendingRefMsg = false;

printf ("Node %d: Skip sending the reference message this time\n", nodeNum );

:: else ->

560 printf ("Node %d: Sending basic cycle periodic ref message\n", nodeNum );

TransmitMessage(nodeNum , refMsgID , REF_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P );

/* Add dummy delay here so all nodes transmit before the bus is checked to see which node won

arbitration , ifnodes are transmitting simultaneously . */

SET_TIMEOUT[nodeNum] ! ID_LEN;

565 CheckSyncTimeout ();

/* Check the msg id currently on the bus or for wdt. */

CheckRefMessage(busFrameIdTemp );

fi;

570 assert (( busFrameIdTemp != BUS_ARB) && (busFrameIdTemp != BUS_IDLE ));

if

:: busFrameIdTemp == refMsgID ->

printf ("Node %d: Bus frame id is equal to ref message id sent\n", nodeNum );

refTriggerOffset = 0;

575 NodeState[nodeNum] = TIME_MASTER;

:: busFrameIdTemp < refMsgID ->

printf ("Node %d: Bus frame id is less than node id\n", nodeNum );

refTriggerOffset = initRefOffset;

NodeState[nodeNum] = P_MASTER;

580 :: busFrameIdTemp > refMsgID ->

printf ("Node %d: Bus frame id is greater than node id\n", nodeNum );

assert(refTriggerOffset > 0);

/* Adjust ref. trigger offset as msg priority received is less node priority. */

refTriggerOffset = refTriggerOffset - 1;

585 fi;

/* After first cycle disable node 1, simulate turning it off. Now should only have node 2 and node 3

competing to become time master. Node 2 is next to transmit its ref. message. What happens if this

message is not transmitted correctly? */

590 IF nodeNum == NODE_1 ->

#ifdef SYNC_TEST_3

NodePresent[NODE_1] = false;

printf ("Node %d: Disabling node ...\n", nodeNum );

#endif
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595 FI;

/* Restart the basic cycle. */

currentFrame = 1;

eventToTrigger = SKIP_SEND_MSG;

SET_TIMEOUT[nodeNum] ! 0;

600 goto START_BASIC_CYCLE;

}

}

605 proctype TimeReceivingNode(byte nodeNum , bus)

{

byte cycleCount;

/* Flag set if the arbitrating window is open at node. */

bool arbWindowOpen;

610 /* Id of message to send after next timeout. */

byte eventToTrigger;

/* Current frame in the schedule to transmit. */

byte currentFrame;

bool wonArbitration;

615 byte busState;

/* Just a dummy variable in this model , so CheckSendTimeRemaining macro can be included in multiple

projects. */

bool useDefaultSchedule;

620 atomic

{

cycleCount = 0;

/* Skip over the initial scheduled reference message. */

currentFrame = 0;

625 eventToTrigger = SKIP_SEND_MSG;

/* Time receiving node. If detects a reference message received then restarts the basic cycle to sync

to the ref message. */

TIMEOUT[nodeNum] ? 0 ->

630 DUMMY_TIMEOUT_1:

/* Dummy delay here to keep global timer progressing while time master nodes are enabling. */

SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 - START_TX_COL_0 );

RECV_REF_MSG_1:

if

635 :: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received first ref message\n", nodeNum );

/* TODO: Also add a timeout if no ref message is received. */

:: TIMEOUT[nodeNum] ? 0 ->

/* Wait for delay timeout to elapse as system is not doing anything. Required to keep time

640 progressing in the model. */

goto DUMMY_TIMEOUT_1;

fi;

DUMMY_TIMEOUT_2:

645 /* Dummy delay here to keep global timer progressing while time master nodes are enabling. */

SET_TIMEOUT[nodeNum] ! (END_TX_COL_4 - START_TX_COL_0 );

RECV_REF_MSG_2:

if

:: REF_MARK[nodeNum] ? 0 ->

650 printf ("Node %d: Received second ref message\n", nodeNum );

/* TODO: Also add a timeout if no ref message is received. */

:: TIMEOUT[nodeNum] ? 0 ->

goto DUMMY_TIMEOUT_2;

fi;

655

printf ("Node %d: Starting first basic cycle\n", nodeNum );

/* Just use a dummy timeout here will skip through tx code and then load the first element of the

schedule with a send timeout. */

SET_TIMEOUT[nodeNum] ! 0;

660

START_BASIC_CYCLE:

printf ("Node %d: Starting basic cycle\n", nodeNum );

if

:: TIMEOUT[nodeNum] ? 0 ->

665 printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? 0 ->

printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

/* Skip the initial scheduled reference message. */

currentFrame = 0;

670 /* Add a dummy delay here to skip through code which loads message into tx buffer on 1st pass. */

eventToTrigger = SKIP_SEND_MSG;
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SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

fi;

675

if

:: eventToTrigger == SKIP_SEND_MSG ->

/* Do nothing after this timeout. Skip through and set the next timeout. */

skip;

680 :: (eventToTrigger > SKIP_SEND_MSG) && (eventToTrigger < RX_TRIGGER) ->

if

:: eventToTrigger <= REF_ID_LAST ->

/* Sending a scheduled reference message. */

assert (0);

685 :: eventToTrigger == END_SCHEDULE ->

/* Reached the end of the basic cycle. Handle cycle count , frame count , and sending periodic

reference message. */

goto FINISHED_BC;

:: else ->

690 /* Send a scheduled message. */

printf ("##### Node %d: Value of current frame (%d) #####\n", nodeNum , currentFrame );

assert (( currentFrame < 6) && (currentFrame >= 0));

TransmitMessage(nodeNum , eventToTrigger , EXCLUSIVE_MSG_LEN , ONE_SHOT_INTERVAL , BUS_P);

fi;

695 :: else ->

/* Rx trigger. */

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

fi;

700 START_SYNC_REF:

/* Set the next scheduled timeout. cycleCount should initially be 1 after an initial dummy 0

delay. */

eventToTrigger = Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[cycleCount ];

SET_TIMEOUT[nodeNum] ! Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount ];

705 currentFrame = currentFrame + 1;

/* End of basic cycle is handled by jumping to the code below after the final scheduled message is

sent. */

/* assert( eventToTrigger != END_SCHEDULE );*/

/* Wait for this next timeout to expire. */

710 goto START_BASIC_CYCLE;

FINISHED_BC:

MsgStatus[NODE_3 ]. rxMsgBuff[MSG_ID_4] = false;

MsgStatus[NODE_3 ]. rxMsgBuff[MSG_ID_5] = false;

715 MsgStatus[NODE_3 ]. rxMsgBuff[MSG_ID_6] = false;

MsgStatus[NODE_3 ]. rxMsgBuff[MSG_ID_8] = false;

MsgStatus[NODE_3 ]. rxMsgBuff[MSG_ID_9] = false;

printf ("Node %d: cycleCount %d\n", nodeNum , cycleCount );

720 cycleCount = (cycleCount + 1) % 3;

printf ("Node %d: Incremented the cycleCount (%d) for node\n", nodeNum , cycleCount );

/* Finished current matrix cycle so check tx count for messages sent from this node. */

IF cycleCount == 0 ->

printf ("Node %d: Finished the matrix cycle - checking tx msg count\n", nodeNum );

725 CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

FI;

/* Skip the initial scheduled reference message. */

currentFrame = 0;

730 /* Add a dummy delay here to skip through code which loads message into tx buffer on first pass. */

eventToTrigger = SKIP_SEND_MSG;

SET_TIMEOUT[nodeNum] ! 0;

goto START_BASIC_CYCLE;

}

735 }

init

{

740 atomic

{

#ifdef DISABLE_NODE_1

NodePresent[NODE_1] = false;

#else

745 NodePresent[NODE_1] = true;

#endif

#ifdef DISABLE_NODE_2

NodePresent[NODE_2] = false;
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#else

750 NodePresent[NODE_2] = true;

#endif

#ifdef DISABLE_NODE_3

NodePresent[NODE_3] = false;

#else

755 NodePresent[NODE_3] = true;

#endif

Schedule[NODE_1 ]. numFrames = 6;

/* Node 1 - Basic cycle 1. */

760 Schedule[NODE_1 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_1] = REF_ID_1;

Schedule[NODE_1 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

Schedule[NODE_1 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_5;

Schedule[NODE_1 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_1 - START_TX_COL_0;

765 Schedule[NODE_1 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_10;

Schedule[NODE_1 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_1 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_1] = MSG_ID_4;

Schedule[NODE_1 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_1] =

770 START_TX_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_1 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_6;

Schedule[NODE_1 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_4 - START_TX_COL_3;

Schedule[NODE_1 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_1] = END_SCHEDULE;

775 Schedule[NODE_1 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

/* Node 1 - Basic cycle 2. */

Schedule[NODE_1 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_2] = REF_ID_1;

Schedule[NODE_1 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_2] = 0;

780 Schedule[NODE_1 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_2] = RX_TRIGGER + MSG_ID_13;

Schedule[NODE_1 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_1 - START_TX_COL_0;

Schedule[NODE_1 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_1 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_2] =

785 RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_1 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_1 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_2] =

START_TX_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_1 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_2] = RX_TRIGGER + MSG_ID_8;

790 Schedule[NODE_1 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_4 - START_TX_COL_3;

Schedule[NODE_1 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_2] = END_SCHEDULE;

Schedule[NODE_1 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_2] = 0;

795 /* Node 1 - Basic cycle 3. */

Schedule[NODE_1 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_3] = REF_ID_1;

Schedule[NODE_1 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_3] = 0;

Schedule[NODE_1 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_3] = RX_TRIGGER + MSG_ID_9;

Schedule[NODE_1 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_3] =

800 RX_TRIGGER_COL_1 - START_TX_COL_0;

Schedule[NODE_1 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_1 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_1 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

805 Schedule[NODE_1 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_3] =

START_TX_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_1 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_3] = RX_TRIGGER + MSG_ID_6;

Schedule[NODE_1 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_4 - START_TX_COL_3;

810 Schedule[NODE_1 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_3] = END_SCHEDULE;

Schedule[NODE_1 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_3] = 0;

Schedule[NODE_2 ]. numFrames = 8;

/* Node 2 - Basic cycle 1. */

815 Schedule[NODE_2 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_1] = REF_ID_2;

Schedule[NODE_2 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_1] = MSG_ID_5;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_1] = START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_1] = SKIP_SEND_MSG;

820 Schedule[NODE_2 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_1 - START_TX_COL_1;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_10;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

825 Schedule[NODE_2 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_4;
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Schedule[NODE_2 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_1] = MSG_ID_6;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_1] =

830 START_TX_COL_4 - RX_TRIGGER_COL_3;

Schedule[NODE_2 ]. schedBasicCycle [6]. nextMsgId[BASIC_CYCLE_1] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [6]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_4 - START_TX_COL_4;

Schedule[NODE_2 ]. schedBasicCycle [7]. nextMsgId[BASIC_CYCLE_1] = END_SCHEDULE;

835 Schedule[NODE_2 ]. schedBasicCycle [7]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

/* Node 2 - Basic cycle 2. */

Schedule[NODE_2 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_2] = REF_ID_2;

Schedule[NODE_2 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_2] = 0;

840 Schedule[NODE_2 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_2] =

START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_2] = RX_TRIGGER + MSG_ID_13;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_2] =

845 RX_TRIGGER_COL_1 - START_TX_COL_1;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_2 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

850 Schedule[NODE_2 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_2] = MSG_ID_8;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_2] =

START_TX_COL_4 - RX_TRIGGER_COL_3;

855 Schedule[NODE_2 ]. schedBasicCycle [6]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [6]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_4 - START_TX_COL_4;

Schedule[NODE_2 ]. schedBasicCycle [7]. nextMsgId[BASIC_CYCLE_2] = END_SCHEDULE;

Schedule[NODE_2 ]. schedBasicCycle [7]. nextTxSendDelay[BASIC_CYCLE_2] = 0;

860

/* Node 2 - Basic cycle 3. */

Schedule[NODE_2 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_3] = REF_ID_2;

Schedule[NODE_2 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_3] = 0;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_3] = MSG_ID_9;

865 Schedule[NODE_2 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_3] =

START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_1 - START_TX_COL_1;

870 Schedule[NODE_2 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_2 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_2 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_3] =

875 RX_TRIGGER_COL_3 - RX_TRIGGER_COL_2;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_3] = MSG_ID_6;

Schedule[NODE_2 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_3] =

START_TX_COL_4 - RX_TRIGGER_COL_3;

Schedule[NODE_2 ]. schedBasicCycle [6]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

880 Schedule[NODE_2 ]. schedBasicCycle [6]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_4 - START_TX_COL_4;

Schedule[NODE_2 ]. schedBasicCycle [7]. nextMsgId[BASIC_CYCLE_3] = END_SCHEDULE;

Schedule[NODE_2 ]. schedBasicCycle [7]. nextTxSendDelay[BASIC_CYCLE_3] = 0;

885 #ifdef SYNC_TEST_3

Schedule[NODE_3 ]. numFrames = 2;

/* Node 3 - Basic cycle 1. */

Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_1] = REF_ID_3;

Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

890 Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_1] = END_SCHEDULE;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_4 - START_TX_COL_0;

/* Node 3 - Basic cycle 2. */

895 Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_2] = REF_ID_3;

Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_2] = 0;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_2] = END_SCHEDULE;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_4 - START_TX_COL_0;

900

/* Node 3 - Basic cycle 3. */

Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_3] = REF_ID_3;
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Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_3] = 0;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_3] = END_SCHEDULE;

905 Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_4 - START_TX_COL_0;

#else

Schedule[NODE_3 ]. numFrames = 6;

/* Node 3 - Basic cycle 1. */

910 Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_1] = SKIP_SEND_MSG;

Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_1] =

START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_5;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_1] =

915 RX_TRIGGER_COL_1 - START_TX_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_1] = MSG_ID_10;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_1] =

START_TX_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_4;

920 Schedule[NODE_3 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_3 - START_TX_COL_2;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_1] = RX_TRIGGER + MSG_ID_6;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_1] =

RX_TRIGGER_COL_4 - RX_TRIGGER_COL_3;

925 Schedule[NODE_3 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_1] = END_SCHEDULE;

Schedule[NODE_3 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_1] =

END_TX_COL_4 - RX_TRIGGER_COL_4;

/* Node 3 - Basic cycle 2. */

930 Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_2] = MSG_ID_13;

Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_2] =

START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_2] =

935 RX_TRIGGER_COL_1 - START_TX_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_2] =

START_TX_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_2] = SKIP_SEND_MSG;

940 Schedule[NODE_3 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_3 - START_TX_COL_2;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_2] = RX_TRIGGER + MSG_ID_8;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_2] =

RX_TRIGGER_COL_4 - RX_TRIGGER_COL_3;

945 Schedule[NODE_3 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_2] = END_SCHEDULE;

Schedule[NODE_3 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_2] =

END_TX_COL_4 - RX_TRIGGER_COL_4;

/* Node 3 - Basic cycle 3. */

950 Schedule[NODE_3 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_3 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_3] =

START_TX_COL_1 - START_TX_COL_0;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_3] = RX_TRIGGER + MSG_ID_9;

Schedule[NODE_3 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_3] =

955 RX_TRIGGER_COL_1 - START_TX_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

Schedule[NODE_3 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_3] =

START_TX_COL_2 - RX_TRIGGER_COL_1;

Schedule[NODE_3 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_3] = SKIP_SEND_MSG;

960 Schedule[NODE_3 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_3 - START_TX_COL_2;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_3] = RX_TRIGGER + MSG_ID_6;

Schedule[NODE_3 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_3] =

RX_TRIGGER_COL_4 - RX_TRIGGER_COL_3;

965 Schedule[NODE_3 ]. schedBasicCycle [5]. nextMsgId[BASIC_CYCLE_3] = END_SCHEDULE;

Schedule[NODE_3 ]. schedBasicCycle [5]. nextTxSendDelay[BASIC_CYCLE_3] =

END_TX_COL_4 - RX_TRIGGER_COL_4;

#endif

/* Setup the expected number of transmissions from each node. */

970 Schedule[NODE_1 ]. expectedTxCount = EXPECTED_TX_COUNT_1;

Schedule[NODE_2 ]. expectedTxCount = EXPECTED_TX_COUNT_2;

Schedule[NODE_3 ]. expectedTxCount = EXPECTED_TX_COUNT_3;

run ErrorContainment(NODE_1 );

975 run ErrorContainment(NODE_2 );

run ErrorContainment(NODE_3 );

#ifdef SYNC_TEST_3

run TimeMasterNode(NODE_1 , BUS_P , INITIAL_REF_OFFSET_1 , REF_ID_1 , 0);

run TimeMasterNode(NODE_2 , BUS_P , INITIAL_REF_OFFSET_2 , REF_ID_2 , 0);
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980 run TimeMasterNode(NODE_3 , BUS_P , INITIAL_REF_OFFSET_3 , REF_ID_3 , 0);

#else

#ifdef SYNC_TEST_2

/* Delay starting of node 1 by 10 NTU for sync test 2. */

run TimeMasterNode(NODE_1 , BUS_P , INITIAL_REF_OFFSET_1 , REF_ID_1 , 10);

985 #else

run TimeMasterNode(NODE_1 , BUS_P , INITIAL_REF_OFFSET_1 , REF_ID_1 , 0);

#endif

run TimeMasterNode(NODE_2 , BUS_P , INITIAL_REF_OFFSET_2 , REF_ID_2 , 0);

run TimeReceivingNode(NODE_3 , BUS_P);

990 #endif

run AdvTimeBusArb ();

}

}



Appendix D

LISTINGS FOR THE MODEL OF THE TTCAN
IMPLEMENTATION

1 /**

* Definitions used in the sponsoring organisation ’s TTCAN models.

*

* @file Vessel.h

* @author dmk

6 * @date 05/08/10

*

*/

/* Number of VCU tx slots. */

11 #define VCU_TX_COUNT 3

/* Maximum number of HCUs on a system. */

#define MAX_HCU_COUNT 4

/* Maximum number of CIDs on a station. */

#define MAX_CID_COUNT 5

16 #define BASIC_CYCLE_COUNT 1

#define BASIC_CYCLE_1 0

/* All times are in us , CAN bit time is 4us with CAN running at 250 kBit/s. Exclusive message windows are

500 us in length. These values can be varied to test different window periods to check for message overrun

causing messages to be lost. */

21 #define EXCLUSIVE_TIME_SLOT 500

/*#define GUARD_TIME_SLOT EXCLUSIVE_TIME_SLOT */

/* Not currently using the guard window experiment . */

#define GUARD_TIME_SLOT 0

/* Default CAN message length in us. (max bit -stuffed message length is assumed to be 612 us have to check

26 this ). */

/* Actually , its 636 usec (159 bits @ 250 KBit/s). See "TTCAN Reference Application " by Mikael

F e r n s t r m and Daniel Ungerdahl. */

#define DEFAULT_MSG_TIME 400 /* was 400, then 616. */

/* Offset subtracted from first msg in schedule. */

31 #define SYNC_REF_OFFSET_TIME 420

/* Sync reference send time in us. The sync ref message has 4 data bytes so takes 384 us to transmit at

250 kbits/s. */

#define REF_MSG_SEND_TIME 384

/* Subtracted from basic cycle end time so messages started at end of window do not over -run into next

36 cycle. */

#define ARB_TX_DISABLE_TIME 1000

#define TIME_FROM_SYNC_REF (EXCLUSIVE_TIME_SLOT - SYNC_REF_OFFSET_TIME)

/* Basic transmission cycle takes 50ms. */

#define BASIC_CYCLE_PERIOD 50000

/**

* Process for a potential time -master node. Controls sending the scheduled messages from the schedule

* configured for the node in the init process. Can model an active time -master node , in this case , will

* start sending the configured schedule beginning with the reference message. In this system , VCU0 and

5 * VCU1 are modelled by this process.

*

* @params nodeNum The identifier for the node.

* @params initDelay Delay before starting the nodes tx schedule.

*

10 * @file TimeMasterNode .pml

* @author dmk

* @date 31/07/10

*

*/



156 APPENDIX D LISTINGS FOR THE MODEL OF THE TTCAN IMPLEMENTATION

15

#ifndef __CANCEL_SCHEDULE_

#error "Have to include CancelSchedule.pml before TimeMasterNode.pml."

#endif

20 proctype TimeMasterNode(byte nodeNum , bus; int initDelay; bool activeTimeMaster)

{

byte i;

/* Current frame of schedule to transmit. */

byte currentFrame;

25 /* Id of message to send after next timeout. */

byte eventToTrigger;

/* Flag set if using the hard -coded default schedule. */

bool useDefaultSchedule;

/* Flag set if the arbitrating window is open at node. */

30 bool arbWindowOpen;

/* Timeslot where the randomly configured node sends a message. */

byte triggerSlot;

byte busState;

bool wonArbitration;

35 byte cycleCount;

/* Flag used set when process enters the ’START_SYNC_REF ’ state. Required to check the liveness

property within an atomic block. The atomic block is required to help reduce the state space of the

verification . */

bool startSyncRef;

40 bool startBasicCycle;

/* Required to reduce the state -space for verification of the max config. Not included in the base and

standard config models as verifier can not check a state label has been reached within the atomic block.

This is required to check some of the liveness properties . */

45 atomic

{

currentFrame = 0;

eventToTrigger = 0;

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

50 useDefaultSchedule = true;

cycleCount = BASIC_CYCLE_1;

printf (" Starting time -master - node number: %d, pid: %d, active: %d\n", nodeNum , _pid ,

activeTimeMaster );

55 /* Don ’t use the hard -coded schedule for the active time -master , use the configured schedule. */

IF activeTimeMaster != false ->

useDefaultSchedule = false;

FI;

printf ("Node %d: Using default schedule %d\n", nodeNum , useDefaultSchedule );

60 /* Initial delay for startup of node. */

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! initDelay;

START_BASIC_CYCLE:

65 /* Toggle the flag indicating that the process is passing through the ’START_BASIC_CYCLE ’ state. Is

required as SPIN cannot check state labels within an atomic block. */

printf (" TOGGLED BASIC CYCLE FLAG\n");

startBasicCycle = true;

/* Wait for a timeout or ref. mark sync channel message. */

70 if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? _ ->

RECV_REF_MARK:

75 printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

CancelSchedule ();

/* Jump back to the start of the schedule. This is the potential time -master so skip the initial

sync ref. message on receiving this sync ref. Use the configured schedule. */

currentFrame = 1;

80 useDefaultSchedule = false;

startSyncRef = false;

/* Jump to this label to set the timeout for the first message. */

goto START_SYNC_REF;

fi;

85 printf ("**** Node %d: Set timer for sending of message: %d, Current frame: %d****\n", nodeNum ,

Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1], currentFrame );

/* Check to see if there is a message currently scheduled to be sent , if the arbitration window is to

be opened or closed , or if the basic cycle period has finished. */

if

90 :: eventToTrigger == 0 ->

/* No message to send / receive this time. */
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:: (eventToTrigger > 0) && (eventToTrigger < RX_TRIGGER) ->

printf ("Node %d: Had timeout - sending message %d\n", nodeNum , eventToTrigger );

if

95 :: (eventToTrigger == REF_ID_1) || (eventToTrigger == REF_ID_2) ->

if

:: skip ->

printf ("Node %d: Sending ref messge\n", nodeNum );

/* Send the reference message. */

100 TransmitMessage(nodeNum , eventToTrigger , REF_MSG_SEND_TIME , ONE_SHOT_INTERVAL , bus);

:: else ->

/* Lost arbitration , or sync reference not acked by another node. 10ms timeout in this

case. */

SET_TIMEOUT[nodeNum] ! 10000;

105 goto START_BASIC_CYCLE;

fi;

/* Delay for the duration of the reference message. */

SET_TIMEOUT[nodeNum] ! REF_MSG_SEND_TIME;

110 if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had timeout after sending sync ref\n", nodeNum );

:: REF_MARK[nodeNum] ? _ ->

printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

115 CancelSchedule ();

/* Back to the start of the schedule but skip the ref message as this schedule is started

in response to receiving a sync ref message. */

currentFrame = 1;

/* Use the configured schedule. */

120 useDefaultSchedule = false;

/* Set timeout for the first message. */

goto START_SYNC_REF;

fi;

/* Check to see winner of arbitration . */

125 printf ("Node %d: Check current state bus\n", nodeNum );

CHK_BUS[nodeNum] ! bus;

BUS_STATE[nodeNum] ? _, _, wonArbitration;

printf ("#### Node %d: Won last arb (%d)####\n", nodeNum , wonArbitration );

130 /* If won arbitration send REF_MARK sync messages to other nodes. If lost arbitration go to

timeout and try to send ref message again after timeout has elapsed. */

if

:: wonArbitration != false ->

FOR(i, 0, TOTAL_NODES)

135 IF (((i % 2) == bus) || (REDUNDANT_BUSES == 1)) && (NodePresent[i] != false) ->

#ifndef REF_TX_ERROR

/* Will be received by the AdvTimeBusArb proc if this is the transmitting node.

Is also sent to the other nodes to model receiving a reference message at the

nodes. */

140 REF_MARK[i] ! bus;

#endif

FI;

ROF(i);

:: else ->

145 /* Lost arbitration , or sync ref not acked by another node. 10ms timeout in this case. */

SET_TIMEOUT[nodeNum] ! 10000;

goto START_BASIC_CYCLE;

fi;

:: eventToTrigger == BEGIN_ARBITRATION ->

150 /* Arbitration period of schedule has started. */

arbWindowOpen = true;

printf ("*************** Node %d: Entering arb window **********************\n", nodeNum );

/* Trigger any remaining exclusive one -shot messages. */

TransmitMessage(nodeNum , CHECK_BUFFERS_ONLY , DEFAULT_MSG_TIME , ONE_SHOT_INTERVAL , bus);

155 #if 0

printf ("Node: %d - Sending test arbitration message\n", nodeNum );

TransmitMessage(NODE_1 , MSG_ID_12 , DEFAULT_MSG_TIME , ARB_INTERVAL , bus);

TransmitMessage(NODE_2 , MSG_ID_13 , DEFAULT_MSG_TIME , ARB_INTERVAL , bus);

#endif

160 :: eventToTrigger == FINISH_ARBITRATION ->

/* Arbitration period of schedule has finished. */

arbWindowOpen = false;

printf ("*************** Node %d: Leaving arb window *******************\n", nodeNum );

:: eventToTrigger == END_SCHEDULE ->

165 /* Current schedule has finished. */

skip;

:: else ->

/* Trigger transmission the scheduled message. */
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TransmitMessage(nodeNum , eventToTrigger , DEFAULT_MSG_TIME , ONE_SHOT_INTERVAL , bus);

170 fi;

:: else ->

#ifdef ERROR_HANDLER

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

#endif

175 fi;

START_SYNC_REF:

/* Toggle the flag indicating that the process is passing through the ’START_SYNC_REF ’ state. Is

required as SPIN cannot check state labels within an atomic block. */

180 startSyncRef = true;

/* Test whether using the default or configured schedule. */

if

:: useDefaultSchedule != false ->

/* Send the current scheduled frame. */

185 eventToTrigger = DefSchedule.schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1 ];

printf ("#### Node: %d, Timeout until next message triggered: %d, Elapsed send time: %d####\n",

nodeNum , DefSchedule.schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1],

NodeSendStatus[nodeNum ]. elapsedSendTime );

/* Delay before sending the next frame in the schedule. Subtract any time that has been already

190 elapsed sending a message during the current window. */

SET_TIMEOUT[nodeNum] ! DefSchedule.schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send in the schedule. */

currentFrame = (currentFrame + 1) % DefSchedule.numFrames;

195 :: else ->

/* Send the current scheduled frame , after the next timeout. */

eventToTrigger = Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1 ];

printf ("#### Node: %d, Timeout until next message triggered: %d, Elapsed send time: %d####\n",

nodeNum , Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1],

200 NodeSendStatus[nodeNum ]. elapsedSendTime );

/* Update node ’s timeout to delay before sending the next frame in the schedule. Subtract any

time already elapsed sending a message during the current window. */

SET_TIMEOUT[nodeNum] !

Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1] -

205 NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

currentFrame = currentFrame + 1;

IF currentFrame == Schedule[nodeNum ]. numFrames ->

/* Check the received message flags. */

210 printf ("#### Node: %d, Finished basic cycle ####\n", nodeNum );

#ifdef SWAP_ACTIVE_TM

/* Test what happens when the active time -master swaps at the end of the first schedule ,

equivalent to swapping during a schedule also. */

IF nodeNum == NODE_1 ->

215 activeTimeMaster = false;

FI;

IF nodeNum == NODE_2 ->

activeTimeMaster = true;

FI;

220 #endif

if

:: activeTimeMaster != false ->

/* Now node 2 is the active time -master , so restart using the configured schedule for

this node. */

225 useDefaultSchedule = false;

currentFrame = 0;

:: else ->

/* Active time -master flag has been cleared during this cycle , so start the next with the

hard -coded schedule. */

230 useDefaultSchedule = true;

currentFrame = 0;

fi;

#ifdef ERROR_HANDLER

235 CHECK_MSC[nodeNum] ! 0;

FINISHED_ERR_UPD[nodeNum] ? 0;

#endif

#ifdef SYS_CONFIG_ERROR

240 /* Node 2 has a random configuration so after each basic cycle modify the config so node

transmits in a different timeslot. */

atomic

{

IF nodeNum == NODE_2 ->

245 Schedule[NODE_2 ]. numFrames = 5;
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Schedule[NODE_2 ]. schedBasicCycle [0]. nextMsgId[BASIC_CYCLE_1] = REF_ID_2;

Schedule[NODE_2 ]. schedBasicCycle [0]. nextTxSendDelay[BASIC_CYCLE_1] = 0;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextMsgId[BASIC_CYCLE_1] = MSG_ID_5;

Schedule[NODE_2 ]. schedBasicCycle [1]. nextTxSendDelay[BASIC_CYCLE_1] =

250 EXCLUSIVE_TIME_SLOT *( triggerSlot) + TIME_FROM_SYNC_REF;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextMsgId[BASIC_CYCLE_1] = BEGIN_ARBITRATION;

Schedule[NODE_2 ]. schedBasicCycle [2]. nextTxSendDelay[BASIC_CYCLE_1] =

EXCLUSIVE_TIME_SLOT *( HCU_COUNT + CID_COUNT + VCU_TX_COUNT - triggerSlot) +

GUARD_WINDOW_COUNT * GUARD_TIME_SLOT;

255 Schedule[NODE_2 ]. schedBasicCycle [3]. nextMsgId[BASIC_CYCLE_1] = FINISH_ARBITRATION;

Schedule[NODE_2 ]. schedBasicCycle [3]. nextTxSendDelay[BASIC_CYCLE_1] = BASIC_CYCLE_PERIOD -

ARB_WINDOW_START - ARB_TX_DISABLE_TIME;

Schedule[NODE_2 ]. schedBasicCycle [4]. nextMsgId[BASIC_CYCLE_1] = END_SCHEDULE;

Schedule[NODE_2 ]. schedBasicCycle [4]. nextTxSendDelay[BASIC_CYCLE_1] = ARB_TX_DISABLE_TIME;

260 triggerSlot = (triggerSlot + 1) % (HCU_COUNT + CID_COUNT + VCU_TX_COUNT );

FI;

}

#endif

FI;

265 fi;

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

startBasicCycle = false;

goto START_BASIC_CYCLE;

}

270 }

/**

* Process to model a time receiving node in the system. This process controls sending the scheduled

* messages from the schedule configured for the node. It also handles the reception of sync reference

* messages and will restart its current schedule on receiving one. On initialisation , and if a sync

5 * reference message is missed , the process falls back to transmitting the default message

* schedule.

*

* @param nodeNum The identifier for the node.

* @param bus The bus the node is on.

10 *

* @file TimeReceivingNode .pml

* @author dmk

* @date 31/07/10

*

15 */

proctype TimeReceivingNode(byte nodeNum , bus)

{

byte i;

20 byte currentFrame;

byte eventToTrigger;

/* Use the hard coded default schedule. */

bool useDefaultSchedule;

/* Flag set if the arbitrating window is open at node. */

25 bool arbWindowOpen;

bool wonArbitration;

byte busState;

byte cycleCount;

/* Flag used set when process enters the ’START_SYNC_REF ’ state. Required to check the liveness

30 property within an atomic block. The atomic block is required to help reduce the state space of the

verification . */

bool startSyncRef;

atomic

35 {

currentFrame = 0;

eventToTrigger = 0;

useDefaultSchedule = true;

cycleCount = BASIC_CYCLE_1;

40

printf (" Starting time -receiving node - node number: %d, pid: %d\n", nodeNum , _pid);

printf ("Node %d: Using default schedule %d\n", nodeNum , useDefaultSchedule );

START_BASIC_CYCLE:

if

45 :: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? _ ->

RECV_REF_MARK:

printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

50 /* Restart the schedule. */

currentFrame = 0;
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/* Use the configured schedule as received the ref sync message. */

useDefaultSchedule = false;

/* Clear the flag used to represent the process transitioning into the ’START_SYNC_REF ’ state. */

55 startSyncRef = false;

goto START_SYNC_REF;

fi;

if

60 :: eventToTrigger == 0 ->

/* No message to send / receive this time. */

skip;

:: (eventToTrigger > 0) && (eventToTrigger < RX_TRIGGER) ->

printf ("Node %d: Had timeout - sending message %d\n", nodeNum , eventToTrigger );

65 if

:: eventToTrigger == BEGIN_ARBITRATION ->

printf ("*************** Node %d: Entering arb window **********************\n", nodeNum );

arbWindowOpen = true;

:: eventToTrigger == FINISH_ARBITRATION ->

70 printf ("*************** Node %d: Leaving arb window *******************\n", nodeNum );

arbWindowOpen = false;

:: eventToTrigger == END_SCHEDULE ->

skip;

:: else ->

75 TransmitMessage(nodeNum , eventToTrigger , DEFAULT_MSG_TIME , ONE_SHOT_INTERVAL , bus);

fi;

:: else ->

#ifdef ERROR_HANDLER

ReceiveMessage(nodeNum , eventToTrigger - RX_TRIGGER );

80 #endif

fi;

START_SYNC_REF:

startSyncRef = true;

if

85 :: useDefaultSchedule != false ->

/* Send the current scheduled frame. */

eventToTrigger = DefSchedule.schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1 ];

/* Delay before sending the next frame in the schedule. */

SET_TIMEOUT[nodeNum] ! DefSchedule.schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1] -

90 NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

currentFrame = (currentFrame + 1) % DefSchedule.numFrames;

:: else ->

/* Send the current scheduled frame. */

95 eventToTrigger = Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[BASIC_CYCLE_1 ];

/* Delay before sending the next frame in the schedule. Subtract any time already elapsed sending

a message. */

SET_TIMEOUT[nodeNum] !

Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[BASIC_CYCLE_1] -

100 NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

currentFrame = currentFrame + 1;

IF currentFrame == Schedule[nodeNum ]. numFrames ->

/* Finished the current schedule , start the next with the hard -coded schedule as this is not

105 a time -master node. */

useDefaultSchedule = true;

currentFrame = 0;

#ifdef ERROR_HANDLER

CHECK_MSC[nodeNum] ! 0;

110 FINISHED_ERR_UPD[nodeNum] ? 0;

#endif

FI;

fi;

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

115 goto START_BASIC_CYCLE;

}

}

/**

* Contains definitions for the scheduled messages and delays from nodes 1 - 4 for the base test

3 * configuration of the TTCAN model. Model has 2 VCUs , 1 HCU , and 1 CID. Configuraiton is defined in the

* header for these nodes as their schedule changes for different configuration of the model. Defining

* the schedule in a separate header for each config simplifies the model source code.

*

* @file BaseConfig .h

8 * @author dmk

* @date 15/05/10

*
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*/

13 #define NODE_1 0 /* VCU1 */

#define NODE_2 1 /* VCU2 */

#define NODE_3 2 /* HCU1 */

#define NODE_4 3 /* CID1 */

#define TOTAL_NODES 4

18

/* Number of HCUs and CIDs configured for the system. */

#define HCU_COUNT 1

#define CID_COUNT 1

23 /* Define the first and last exclusive window messages. */

#define EXCLUSIVE_MSG_FIRST MSG_ID_3

#define EXCLUSIVE_MSG_LAST MSG_ID_7

/* Number of ’Guard ’ windows in the Exclusive Window area */

28 /* = Total messages / 3

= (3 VCU + 1 HCU + 1 CID) / 3

= 5 / 3

= 1

-Ref -| HCU1| CID1| VCU1| -G- | VCU2| VCU3|---Arb ---|-End -

33 */

#define GUARD_WINDOW_COUNT (( HCU_COUNT + CID_COUNT + VCU_TX_COUNT) / 3)

/* Scheduled messages sent from NODE_1 (VCU1 ). */

38 /* -Ref -| | | VCU1| -G- | VCU2| VCU3|---Arb ---|-End - */

#define SCHD_EVENT_N1_0 REF_ID_1 /* SyncRef message */

#define SCHD_DELAY_N1_0 0

/* VCU message 1 may be delayed , or not , depending on configuration */

#define SCHD_EVENT_N1_1 MSG_ID_5 /* VCU1 message 1 */

43 #define SCHD_DELAY_N1_1 EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT) + TIME_FROM_SYNC_REF + \

VCU_MESSAGE1_DELAY

#define SCHD_EVENT_N1_2 MSG_ID_6 /* VCU1 message 2 */

/* Insert the Guard */

#define SCHD_DELAY_N1_2 EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT - VCU_MESSAGE1_DELAY

48 #define SCHD_EVENT_N1_3 MSG_ID_7 /* VCU1 message 3 */

#define SCHD_DELAY_N1_3 EXCLUSIVE_TIME_SLOT

#define SCHD_EVENT_N1_4 BEGIN_ARBITRATION

#define SCHD_DELAY_N1_4 EXCLUSIVE_TIME_SLOT

#define SCHD_EVENT_N1_5 FINISH_ARBITRATION

53 #define SCHD_DELAY_N1_5 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N1_6 END_SCHEDULE

#define SCHD_DELAY_N1_6 ARB_TX_DISABLE_TIME

58 /* Schedule for NODE_2 (VCU2) and NODE_3 (HCU1) does not change between the different configurations . */

/* Scheduled messages sent from NODE_4 (CID1 ). */

/* -Ref -| | CID1| | -G- | | |---Arb ---|-End - */

63 /* CID1 exclusive time -slot message may be delayed , or not , depending on configuration */

#define SCHD_EVENT_N4_0 MSG_ID_4 /* CID1 message */

#define SCHD_DELAY_N4_0 EXCLUSIVE_TIME_SLOT * HCU_COUNT + TIME_FROM_SYNC_REF + CID1_MESSAGE_DELAY

#define SCHD_EVENT_N4_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N4_1 EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 1) + GUARD_TIME_SLOT -\

68 CID1_MESSAGE_DELAY /* Insert the Guard */

#define SCHD_EVENT_N4_2 FINISH_ARBITRATION

#define SCHD_DELAY_N4_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N4_3 END_SCHEDULE

#define SCHD_DELAY_N4_3 ARB_TX_DISABLE_TIME

/**

* Contains definitions for the scheduled messages and delays from nodes 1 - 4 for the base test

3 * configuration of the TTCAN model. Model has 2 VCUs , 2 HCUs , and 2 CIDs. Configuraiton is defined in

* the header for these nodes as their schedule changes for different configuration of the model.

* Defining the schedule in a separate header for each config simplifies the model source code.

*

* @file StandardConfig .h

8 * @author dmk

* @date 15/05/10

*

*/

13 #define NODE_1 0 /* VCU1 */

#define NODE_2 1 /* VCU2 */
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#define NODE_3 2 /* HCU1 */

#define NODE_4 3 /* HCU2 */

#define NODE_5 4 /* CID1 */

18 #define NODE_6 5 /* CID2 */

#define TOTAL_NODES 6

/* Number of HCUs and CIDs configured for the system. */

#define HCU_COUNT 2

23 #define CID_COUNT 2

/* Define the first and last exclusive window messages. */

#define EXCLUSIVE_MSG_FIRST MSG_ID_3

#define EXCLUSIVE_MSG_LAST MSG_ID_9

28

/* Number of ’Guard ’ windows in the Exclusive Window area */

/* = Total messages / 3

= (3 VCU + 2 HCU + 2 CID) / 3

= 7 / 3

33 = 2

-Ref -| HCU1| HCU2| CID1| -G- | CID2| VCU1| VCU2| -G- | VCU3|---Arb ---|-End -

*/

#define GUARD_WINDOW_COUNT (( HCU_COUNT + CID_COUNT + VCU_TX_COUNT) / 3)

38

/* Scheduled messages sent from NODE_1 (VCU1 ). */

/* -Ref -| | | | -G- | | VCU1| VCU2| -G- | VCU3|---Arb ---|-End - */

#define SCHD_EVENT_N1_0 REF_ID_1 /* SyncRef message */

#define SCHD_DELAY_N1_0 0

43 /* VCU message 1 may be delayed , or not , depending on configuration */

#define SCHD_EVENT_N1_1 MSG_ID_7 /* VCU1 message 1 */

#define SCHD_DELAY_N1_1 EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT) + GUARD_TIME_SLOT +\

TIME_FROM_SYNC_REF + VCU_MESSAGE1_DELAY /* Insert Guard 1 */

#define SCHD_EVENT_N1_2 MSG_ID_8 /* VCU1 message 2 */

48 #define SCHD_DELAY_N1_2 EXCLUSIVE_TIME_SLOT - VCU_MESSAGE1_DELAY

#define SCHD_EVENT_N1_3 MSG_ID_9 /* VCU1 message 3 */

#define SCHD_DELAY_N1_3 EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT /* Insert Guard 2 */

#define SCHD_EVENT_N1_4 BEGIN_ARBITRATION

#define SCHD_DELAY_N1_4 EXCLUSIVE_TIME_SLOT

53 #define SCHD_EVENT_N1_5 FINISH_ARBITRATION

#define SCHD_DELAY_N1_5 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N1_6 END_SCHEDULE

#define SCHD_DELAY_N1_6 ARB_TX_DISABLE_TIME

58

/* Schedule for NODE_2 (VCU2) and NODE_3 (HCU1) does not change between the different configurations . */

/* Scheduled messages sent from NODE_4 (HCU2 ). */

63 /* -Ref -| | HCU2| | -G- | | | | -G- | |---Arb ---|-End - */

#define SCHD_EVENT_N4_0 MSG_ID_4 /* HCU2 message */

#define SCHD_DELAY_N4_0 EXCLUSIVE_TIME_SLOT + TIME_FROM_SYNC_REF

#define SCHD_EVENT_N4_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N4_1 EXCLUSIVE_TIME_SLOT * (1 + CID_COUNT) + EXCLUSIVE_TIME_SLOT * VCU_TX_COUNT +\

68 GUARD_WINDOW_COUNT * GUARD_TIME_SLOT /* Insert all Guards */

#define SCHD_EVENT_N4_2 FINISH_ARBITRATION

#define SCHD_DELAY_N4_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N4_3 END_SCHEDULE

#define SCHD_DELAY_N4_3 ARB_TX_DISABLE_TIME

73

/* Scheduled messages sent from NODE_5 (CID1 ). */

/* -Ref -| | | CID1| -G- | | | | -G- | |---Arb ---|-End - */

#define SCHD_EVENT_N5_0 MSG_ID_5 /* CID1 message */

78 #define SCHD_DELAY_N5_0 EXCLUSIVE_TIME_SLOT * HCU_COUNT + TIME_FROM_SYNC_REF

#define SCHD_EVENT_N5_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N5_1 EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + CID_COUNT) + GUARD_WINDOW_COUNT *\

GUARD_TIME_SLOT /* Insert all Guards */

#define SCHD_EVENT_N5_2 FINISH_ARBITRATION

83 #define SCHD_DELAY_N5_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N5_3 END_SCHEDULE

#define SCHD_DELAY_N5_3 ARB_TX_DISABLE_TIME

88 /* Scheduled messages sent from NODE_6 (CID2 ). */

/* -Ref -| | | | -G- | CID2| | | -G- | |---Arb ---|-End - */

#define SCHD_EVENT_N6_0 MSG_ID_6 /* CID2 message */

#define SCHD_DELAY_N6_0 EXCLUSIVE_TIME_SLOT * (HCU_COUNT + 1) + GUARD_TIME_SLOT + TIME_FROM_SYNC_REF
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/* Insert Guard 1 */

93 #define SCHD_EVENT_N6_1 BEGIN_ARBITRATION

/* Insert Guard 2 */

#define SCHD_DELAY_N6_1 EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 1) + GUARD_TIME_SLOT

#define SCHD_EVENT_N6_2 FINISH_ARBITRATION

#define SCHD_DELAY_N6_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

98 #define SCHD_EVENT_N6_3 END_SCHEDULE

#define SCHD_DELAY_N6_3 ARB_TX_DISABLE_TIME

1 /**

* Contains definitions for the scheduled messages and delays from nodes 1 - 4 for the maximum test

* configuration of the TTCAN model. Model has 2 VCUs , 4 HCUs , and 5 CIDs. Configuraiton is defined in

* the header for these nodes as their schedule changes for different configuration of the model.

* Defining the schedule in a separate header for each config simplifies the model source code.

6 *

* @file MaxConfig.h

* @author dmk

* @date 15/05/10

*

11 */

#define NODE_1 0 /* VCU1 */

#define NODE_2 1 /* VCU2 */

#define NODE_3 2 /* HCU1 */

16 #define NODE_4 3 /* HCU2 */

#define NODE_5 4 /* HCU3 */

#define NODE_6 5 /* HCU4 */

#define NODE_7 6 /* CID1 */

#define NODE_8 7 /* CID2 */

21 #define NODE_9 8 /* CID3 */

#define NODE_10 9 /* CID4 */

#define NODE_11 10 /* CID5 */

#define TOTAL_NODES 11

26 /* Number of HCUs and CIDs configured for the system. */

#define HCU_COUNT 4

#define CID_COUNT 5

/* Define the first and last exclusive window messages. */

31 #define EXCLUSIVE_MSG_FIRST MSG_ID_3

#define EXCLUSIVE_MSG_LAST MSG_ID_14

/* Number of ’Guard ’ windows in the Exclusive Window area */

/* = Total messages / 3

36 = (3 VCU + 4 HCU + 5 CID) / 3

= 12 / 3

= 4

-Ref -| HCU1| HCU2| HCU3| -G- | HCU4| CID1| CID2| -G- | CID3| CID4| CID5| -G- | VCU1| VCU2| VCU3

| -G- |---Arb ---|-End -

41 */

#define GUARD_WINDOW_COUNT (( HCU_COUNT + CID_COUNT + VCU_TX_COUNT) / 3)

/* Scheduled messages sent from NODE_1 (VCU1 ). */

46 /* -Ref -| | | | -G- | | | | -G- | | | | -G- | VCU1| VCU2| VCU3

| -G- |---Arb ---|-End - */

#define SCHD_EVENT_N1_0 REF_ID_1 /* SyncRef message */

#define SCHD_DELAY_N1_0 0

/* VCU message 1 may be delayed , or not , depending on configuration */

51 #define SCHD_EVENT_N1_1 MSG_ID_12 /* VCU1 message 1 */

#define SCHD_DELAY_N1_1 EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT) + 3 * GUARD_TIME_SLOT + \

TIME_FROM_SYNC_REF + VCU_MESSAGE1_DELAY /* Insert Guards 1, 2, 3 */

#define SCHD_EVENT_N1_2 MSG_ID_13 /* VCU1 message 2 */

#define SCHD_DELAY_N1_2 EXCLUSIVE_TIME_SLOT - VCU_MESSAGE1_DELAY

56 #define SCHD_EVENT_N1_3 MSG_ID_14 /* VCU1 message 3 */

#define SCHD_DELAY_N1_3 EXCLUSIVE_TIME_SLOT

#define SCHD_EVENT_N1_4 BEGIN_ARBITRATION

#define SCHD_DELAY_N1_4 EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT /* Insert Guard 4 */

#define SCHD_EVENT_N1_5 FINISH_ARBITRATION

61 #define SCHD_DELAY_N1_5 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N1_6 END_SCHEDULE

#define SCHD_DELAY_N1_6 ARB_TX_DISABLE_TIME

66 /* Schedule for NODE_2 (VCU2) and NODE_3 (HCU1) does not change between the different configurations . */



164 APPENDIX D LISTINGS FOR THE MODEL OF THE TTCAN IMPLEMENTATION

/* Scheduled messages sent from NODE_4 (HCU2 ). */

/* -Ref -| | HCU2| | -G- | | | | -G- | | | | -G- | | |

71 | -G- |---Arb ---|-End - */

#define SCHD_EVENT_N4_0 MSG_ID_4 /* HCU2 message */

#define SCHD_DELAY_N4_0 EXCLUSIVE_TIME_SLOT + TIME_FROM_SYNC_REF

#define SCHD_EVENT_N4_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N4_1 EXCLUSIVE_TIME_SLOT * (3 + CID_COUNT) + EXCLUSIVE_TIME_SLOT * VCU_TX_COUNT +\

76 GUARD_WINDOW_COUNT * GUARD_TIME_SLOT /* Insert all Guards */

#define SCHD_EVENT_N4_2 FINISH_ARBITRATION

#define SCHD_DELAY_N4_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N4_3 END_SCHEDULE

#define SCHD_DELAY_N4_3 ARB_TX_DISABLE_TIME

81

/* Scheduled messages sent from NODE_5 (HCU3 ). */

/* -Ref -| | | HCU3| -G- | | | | -G- | | | | -G- | | |

| -G- |---Arb ---|-End - */

86 #define SCHD_EVENT_N5_0 MSG_ID_5 /* HCU3 message */

#define SCHD_DELAY_N5_0 2 * EXCLUSIVE_TIME_SLOT + TIME_FROM_SYNC_REF

#define SCHD_EVENT_N5_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N5_1 EXCLUSIVE_TIME_SLOT * (2 + CID_COUNT) + EXCLUSIVE_TIME_SLOT * VCU_TX_COUNT +\

GUARD_WINDOW_COUNT * GUARD_TIME_SLOT /* Insert all Guards */

91 #define SCHD_EVENT_N5_2 FINISH_ARBITRATION

#define SCHD_DELAY_N5_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N5_3 END_SCHEDULE

#define SCHD_DELAY_N5_3 ARB_TX_DISABLE_TIME

96

/* Scheduled messages sent from NODE_6 (HCU4 ). */

/* -Ref -| | | | -G- | HCU4| | | -G- | | | | -G- | | |

| -G- |---Arb ---|-End - */

#define SCHD_EVENT_N6_0 MSG_ID_6 /* HCU4 message */

101 /* Insert Guard 1 */

#define SCHD_DELAY_N6_0 3 * EXCLUSIVE_TIME_SLOT + TIME_FROM_SYNC_REF + GUARD_TIME_SLOT

#define SCHD_EVENT_N6_1 BEGIN_ARBITRATION

#define SCHD_DELAY_N6_1 EXCLUSIVE_TIME_SLOT * (1 + CID_COUNT) + EXCLUSIVE_TIME_SLOT * VCU_TX_COUNT +\

(GUARD_WINDOW_COUNT - 1) * GUARD_TIME_SLOT /* Insert remainder of Guards */

106 #define SCHD_EVENT_N6_2 FINISH_ARBITRATION

#define SCHD_DELAY_N6_2 BASIC_CYCLE_PERIOD - ARB_WINDOW_START - ARB_TX_DISABLE_TIME

#define SCHD_EVENT_N6_3 END_SCHEDULE

#define SCHD_DELAY_N6_3 ARB_TX_DISABLE_TIME

1 /**

* Model of the implementation of the TTCAN protocol. Models a single CAN bus on the system.

* The model is able to be conditionally compiled to model different system configurations . A simple base

* config models 2 VCUs , 1 HCU , and 1 CID; a standard config models 2 VCUs , 2 HCUs , and 2 CIDs; and a

* maximum system config is modelled with 2 VCUs , 4 HCUs , and 5 CIDs. TTCAN transmission schedules and

6 * the interaction of nodes transmitting at these times are modelled.

*

* @file TTCAN.pml

* @author dmk

* @date 14/05/10

11 *

*/

#include "macros.h"

#include "../../../ Common.h"

16 #include "../../ Vessel.h"

#ifdef SYS_CONFIG_MAX

/* Maximum possible system configuration . */

#include "MaxConfig.h"

21 #else

#ifdef SYS_CONFIG_2HCU_2CID

/* Standard system configuration . */

#include "StandardConfig.h"

#else

26 /* Default is the base configuration . */

#include "BaseConfig.h"

#endif

#endif

31

#define TOTAL_MESSAGES 15

#define MAX_SCHEDULE_LENGTH 16

/* Number of buses in the model. */

#define REDUNDANT_BUSES 1



165

36 /* Absolute time arb window begins and basic cycle ends. */

#define ARB_WINDOW_START (EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT + VCU_TX_COUNT) + \

GUARD_TIME_SLOT * GUARD_WINDOW_COUNT + TIME_FROM_SYNC_REF + REF_MSG_SEND_TIME)

#ifdef DELAY_HCU_MESSAGE

41 /* Delay sending the HCU1 exclusive time -slot message. */

#define HCU1_MESSAGE_DELAY 380

#else

#define HCU1_MESSAGE_DELAY 0

#endif

46

#ifdef DELAY_VCU_MESSAGE

#define VCU_MESSAGE1_DELAY 450

#else

#define VCU_MESSAGE1_DELAY 0

51 #endif

#ifdef DELAY_CID_MESSAGE

#define CID1_MESSAGE_DELAY 450

#else

56 #define CID1_MESSAGE_DELAY 0

#endif

#ifdef DELAYED_TM_STARTUP

#define INITIAL_STARTUP_DELAY 100

61 #else

#define INITIAL_STARTUP_DELAY 0

#endif

66 /* Declarations of synchronous message channels. All message channels used are zero length synchronous

message channels. Meaning a process transmiting a message over a channel will block until the receiving

process is ready to receive the message. */

/* Sent by node after sucessfully transmitting a reference message to model other nodes receiving the

71 reference message. */

chan REF_MARK[TOTAL_NODES] = [0] of {bool};

/* Sent to AdvTimeBusArb process to check the current state of the bus. */

chan CHK_BUS[TOTAL_NODES] = [0] of {bool};

/* Passes as channel parameters the time to complete if a messge is currently on the bus , the current msg

76 id on the bus , BUS_IDLE if the bus is not busy , or BUS_ARB if there is currently arbitration on the bus ,

and also a flag to show the result of the last msg transmission on the bus. */

chan BUS_STATE[TOTAL_NODES] = [0] of {int , byte , bool};

/* Is sent from AdvTimeBusArb process to activate a node when it has a timeout. */

chan TIMEOUT[TOTAL_NODES] = [0] of {bool};

81 /* Updates the next timeout for a node. */

chan SET_TIMEOUT[TOTAL_NODES] = [0] of {int};

/* Sent from node process to initialise transmission of a message on bus. The msg id and send time are

sent as channel parameters . */

chan TX_TRIGGER[TOTAL_NODES] = [0] of {byte , int , bool};

86 chan UPD_NODE_STATE[TOTAL_NODES] = [0] of {byte , byte};

/* Sent by the advance time process / bus arbitration process to put a node into a restart state. When in

this state node will not reset its time till next timeout when a reference mark message is received. */

chan RESTART[TOTAL_NODES] = [0] of {bool};

91

#include "../../../ TTCANTypedefs.h"

typedef MsgStatusT

96 {

/* Flags set when message is received at the node. */

bool rxMsgBuff[TOTAL_MESSAGES ];

/* Flags are set if this message is expected to be received by the node during the basic cycle. */

bool rxScheduled[TOTAL_MESSAGES ];

101 };

/* Flag to indicate whether node is currently active or not. */

bool NodePresent[TOTAL_NODES ];

106 /* Structure containing flags associated with receiving and transmitting messages. */

MsgStatusT MsgStatus[TOTAL_NODES ];

/* Message schedules for each nodes. */

ScheduleT Schedule[TOTAL_NODES ];

/* The default hard -coded schedule. */

111 ScheduleT DefSchedule;

/* Structure containing variables associated with each node ’s message transmission . */
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NodeSendStatusT NodeSendStatus[TOTAL_NODES ];

/* Set if a scheduled msg is not received at a node. */

bool MsgRxError[TOTAL_NODES ];

116 /* Set if an unexpected scheduled message is received at a node. */

bool RxScheduleError[TOTAL_NODES ];

/* Disable message transmission in node. */

bool DisableTx[TOTAL_NODES ];

121

inline InitScheduleEntry(node , index , msgId , msgTxDelay)

{

Schedule[node]. schedBasicCycle[index]. nextTxSendDelay[BASIC_CYCLE_1] = msgTxDelay;

Schedule[node]. schedBasicCycle[index]. nextMsgId[BASIC_CYCLE_1] = msgId;

126 }

inline InitDefSchdEntry(index , msgId , msgTxDelay)

{

131 DefSchedule.schedBasicCycle[index]. nextTxSendDelay[BASIC_CYCLE_1] = msgTxDelay;

DefSchedule.schedBasicCycle[index]. nextMsgId[BASIC_CYCLE_1] = msgId;

}

136 inline InitMsgStatus(node , index , msgIsScheduled)

{

MsgStatus[node]. rxScheduled[index] = msgIsScheduled;

}

141

/**

* Inline function called at the end of each basic -cycle , used to check message receive flags against

* messages scheduled to be reecived. Sets the MsgRxError flag if a message is not received , and sets the

* RxScheduleError flag if an unexpeted message is received.

146 *

* @date 14/05/10

*

*/

inline CheckMsgRx ()

151 {

/* Loop through node ’s expected messages checking to see that they have been received correctly. */

atomic

{

cycleTimeCount = cycleTimeCount + minTimeToNextTimeout;

156 IF cycleTimeCount >= BASIC_CYCLE_PERIOD ->

cycleTimeCount = 0;

/* Currently only checking the exclusive time -slotted messages. These are defined in the header

for the config modelled. */

FOR(j, 0, TOTAL_NODES)

161 FOR(i, EXCLUSIVE_MSG_FIRST , (EXCLUSIVE_MSG_LAST + 1))

if

:: MsgStatus[j]. rxScheduled[i] != false ->

/* Check that the received flag is set for this message. */

IF MsgStatus[j]. rxMsgBuff[i] == false ->

166 /* Expected message was not received in the basic cycle , so flag an error. */

printf (" DEBUGGING: Node %d, Message id %d\n", j, i);

/* assert(false );*/

MsgRxError[j] = true;

FI;

171 :: else ->

/* An unexpected message has been received at node. */

IF MsgStatus[j]. rxMsgBuff[i] != false ->

printf (" DEBUGGING: Unscheduled message received , Node %d, Message id %d\n", j, i);

RxScheduleError[j] = true;

176 /* assert(false );*/

FI;

fi;

/* Reset the message received flag for this basic cycle. */

MsgStatus[j]. rxMsgBuff[i] = false;

181 ROF(i);

ROF(j);

FI;

}

}

186

#include "../../../ CancelSchedule.pml"

#include "../../../ AdvTimeMacros.pml"
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#include "../../../ AdvTimeBusArb.pml"

191 #include "../../../ CheckSendTimeRemaining.pml"

#include "../../../ CheckSendBuffers.pml"

#include "../../../ TransmitMessage.pml"

#include "../../ TimeMasterNode.pml"

#include "../../ TimeReceivingNode.pml"

196

init

{

byte i;

201

/* Set flags to show nodes are present in the system. */

atomic

{

FOR(i, 0, TOTAL_NODES)

206 NodePresent[i] = true;

ROF(i);

/* Setup node ’s transmission schedules .

- Schedule times must add up to 50000 - 384 = 49616.

211 - Schedules start from the end of transmission of the initial reference message , this takes

384 us. */

/* VCU 1 schedule configuration - Always the same for all configurations . */

Schedule[NODE_1 ]. numFrames = 7;

216 /* This is always the SyncRef (REF_ID_1) */

InitScheduleEntry(NODE_1 , 0, SCHD_EVENT_N1_0 , SCHD_DELAY_N1_0 );

InitScheduleEntry(NODE_1 , 1, SCHD_EVENT_N1_1 , SCHD_DELAY_N1_1 ); /* VCU Msg 1 (may be delayed) */

InitScheduleEntry(NODE_1 , 2, SCHD_EVENT_N1_2 , SCHD_DELAY_N1_2 ); /* VCU Msg 2 */

InitScheduleEntry(NODE_1 , 3, SCHD_EVENT_N1_3 , SCHD_DELAY_N1_3 ); /* VCU Msg 3 */

221 InitScheduleEntry(NODE_1 , 4, SCHD_EVENT_N1_4 , SCHD_DELAY_N1_4 ); /* Begin Arbitration */

InitScheduleEntry(NODE_1 , 5, SCHD_EVENT_N1_5 , SCHD_DELAY_N1_5 ); /* Finish Arbitration */

InitScheduleEntry(NODE_1 , 6, SCHD_EVENT_N1_6 , SCHD_DELAY_N1_6 ); /* End Schedule */

/* VCU 2 schedule configuration . */

226 #ifdef BABBLING_IDIOT_VCU

/* Configuration of VCU2 as babbling idiot node. Repeats transmission of msg id 8 throughout the

exclusive window period. */

Schedule[NODE_2 ]. numFrames = 15;

InitScheduleEntry(NODE_2 , 0, MSG_ID_8 , 0);

231

FOR(i, 1, 13)

InitScheduleEntry(NODE_2 , i, MSG_ID_8 , DEFAULT_MSG_TIME );

ROF(i);

236 InitScheduleEntry(NODE_2 , 13, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - 12* DEFAULT_MSG_TIME -

ARB_TX_DISABLE_TIME - REF_MSG_SEND_TIME );

InitScheduleEntry(NODE_2 , 14, END_SCHEDULE , ARB_TX_DISABLE_TIME );

#else

#ifdef SYS_CONFIG_ERROR

241 /* Configuration of VCU 2 with a config error. Incorrectly transmits msg id 5 in the first

exclusive window. */

Schedule[NODE_2 ]. numFrames = 5;

InitScheduleEntry(NODE_2 , 0, REF_ID_2 , 0);

InitScheduleEntry(NODE_2 , 1, MSG_ID_5 , TIME_FROM_SYNC_REF );

246 InitScheduleEntry(NODE_2 , 2, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT +

VCU_TX_COUNT) + GUARD_WINDOW_COUNT * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_2 , 3, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_2 , 4, END_SCHEDULE , ARB_TX_DISABLE_TIME );

251 #else

/* Default case where VCU 2 has a normal schedule for the backup VCU. Only transmits an arbitrating

window. */

Schedule[NODE_2 ]. numFrames = 4;

InitScheduleEntry(NODE_2 , 0, REF_ID_2 , 0);

256 InitScheduleEntry(NODE_2 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT +

VCU_TX_COUNT) + GUARD_WINDOW_COUNT * GUARD_TIME_SLOT + TIME_FROM_SYNC_REF );

InitScheduleEntry(NODE_2 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_2 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

261 #endif

#endif

/* Configuration of HCU 1 for base config model. Also , used for standard config and max config

models. */

266 Schedule[NODE_3 ]. numFrames = 4;
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/* HCU1 exclusive time -slot message may be delayed , or not , depending on configuration */

InitScheduleEntry(NODE_3 , 0, MSG_ID_3 , TIME_FROM_SYNC_REF + HCU1_MESSAGE_DELAY );

InitScheduleEntry(NODE_3 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT +

VCU_TX_COUNT) + GUARD_WINDOW_COUNT * GUARD_TIME_SLOT - HCU1_MESSAGE_DELAY );

271 InitScheduleEntry(NODE_3 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_3 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

/* CID 1 for base config model , HCU 2 for standard and max config models. */

276 Schedule[NODE_4 ]. numFrames = 4;

InitScheduleEntry(NODE_4 , 0, SCHD_EVENT_N4_0 , SCHD_DELAY_N4_0 );

InitScheduleEntry(NODE_4 , 1, SCHD_EVENT_N4_1 , SCHD_DELAY_N4_1 );

InitScheduleEntry(NODE_4 , 2, SCHD_EVENT_N4_2 , SCHD_DELAY_N4_2 );

InitScheduleEntry(NODE_4 , 3, SCHD_EVENT_N4_3 , SCHD_DELAY_N4_3 );

281

/* Configuration of CID 1 and 2 for standard config model , or HCU 3 and 4 for max config model. */

#ifdef NODE_5

/* CID 1 / HCU 3 */

Schedule[NODE_5 ]. numFrames = 4;

286 InitScheduleEntry(NODE_5 , 0, SCHD_EVENT_N5_0 , SCHD_DELAY_N5_0 );

InitScheduleEntry(NODE_5 , 1, SCHD_EVENT_N5_1 , SCHD_DELAY_N5_1 );

InitScheduleEntry(NODE_5 , 2, SCHD_EVENT_N5_2 , SCHD_DELAY_N5_2 );

InitScheduleEntry(NODE_5 , 3, SCHD_EVENT_N5_3 , SCHD_DELAY_N5_3 );

#endif

291

#ifdef NODE_6

/* CID 2 / HCU 4 */

Schedule[NODE_6 ]. numFrames = 4;

InitScheduleEntry(NODE_6 , 0, SCHD_EVENT_N6_0 , SCHD_DELAY_N6_0 );

296 InitScheduleEntry(NODE_6 , 1, SCHD_EVENT_N6_1 , SCHD_DELAY_N6_1 );

InitScheduleEntry(NODE_6 , 2, SCHD_EVENT_N6_2 , SCHD_DELAY_N6_2 );

InitScheduleEntry(NODE_6 , 3, SCHD_EVENT_N6_3 , SCHD_DELAY_N6_3 );

#endif

301 /* Configuration of CID 1 - 5 for max config model. */

#ifdef SYS_CONFIG_MAX

/* CID 1. */

/* -Ref -| | | | -G- | | CID1| | -G- | | | | -G- | | |

| -G- |---Arb ---|-End - */

306 Schedule[NODE_7 ]. numFrames = 4;

InitScheduleEntry(NODE_7 , 0, MSG_ID_7 , EXCLUSIVE_TIME_SLOT * HCU_COUNT + TIME_FROM_SYNC_REF +

GUARD_TIME_SLOT );

InitScheduleEntry(NODE_7 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + CID_COUNT) +

(GUARD_WINDOW_COUNT - 1) * GUARD_TIME_SLOT );

311 InitScheduleEntry(NODE_7 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_7 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

/* CID 2. */

316 /* -Ref -| | | | -G- | | | CID2| -G- | | | | -G- | | |

| -G- |---Arb ---|-End - */

Schedule[NODE_8 ]. numFrames = 4;

InitScheduleEntry(NODE_8 , 0, MSG_ID_8 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + 1) + TIME_FROM_SYNC_REF +

GUARD_TIME_SLOT );

321 InitScheduleEntry(NODE_8 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 4) +

(GUARD_WINDOW_COUNT - 1) * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_8 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_8 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

326

/* CID 3. */

/* -Ref -| | | | -G- | | | | -G- | CID3| | | -G- | | |

| -G- |---Arb ---|-End - */

Schedule[NODE_9 ]. numFrames = 4;

331 InitScheduleEntry(NODE_9 , 0, MSG_ID_9 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + 2) + TIME_FROM_SYNC_REF +

2 * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_9 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 3) +

(GUARD_WINDOW_COUNT - 2) * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_9 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

336 ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_9 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

/* CID 4. */

/* -Ref -| | | | -G- | | | | -G- | | CID4| | -G- | | |

341 | -G- |---Arb ---|-End - */

Schedule[NODE_10 ]. numFrames = 4;

InitScheduleEntry(NODE_10 , 0, MSG_ID_10 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + 3) + TIME_FROM_SYNC_REF +
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2 * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_10 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 2) +

346 (GUARD_WINDOW_COUNT - 2) * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_10 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

InitScheduleEntry(NODE_10 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

351 /* CID 5. */

/* -Ref -| | | | -G- | | | | -G- | | | CID5| -G- | | |

| -G- |---Arb ---|-End - */

Schedule[NODE_11 ]. numFrames = 4;

InitScheduleEntry(NODE_11 , 0, MSG_ID_11 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + 4) + TIME_FROM_SYNC_REF +

356 2 * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_11 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 1) +

(GUARD_WINDOW_COUNT - 2) * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_11 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME );

361 InitScheduleEntry(NODE_11 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

#endif

/* Configuration of the default sechedule. */

DefSchedule.numFrames = 3;

366 InitDefSchdEntry (0, BEGIN_ARBITRATION , 20000);

InitDefSchdEntry (1, FINISH_ARBITRATION , 25000);

InitDefSchdEntry (2, END_SCHEDULE , 5000);

371 /**

* Set flags for each node ’s expected messages. These are checked against the flag set when a node

* receives the message at the end of each basic cycle. The expected messages assigned to each node

* varies depending on the configuration used. For example:

*

376 * ** VCU 1 **

* InitMsgStatus (NODE_1 , MSG_ID_3 , true );

* InitMsgStatus (NODE_1 , MSG_ID_4 , true );

* ...

*

381 * ** VCU 2 **

* InitMsgStatus (NODE_2 , REF_ID_1 , true );

* InitMsgStatus (NODE_2 , MSG_ID_3 , true );

* ...

*

386 * ** HCU 1 **

* ...

*

*/

391

#include "../ TTCANConfigExpectedMsg.pml"

/* Run the processes . */

396 run AdvTimeBusArb ();

#ifdef MULTI_ACTIVE_TM

printf ("******** Multi -active time masters ********\n");

run TimeMasterNode(NODE_1 , BUS_P , 0, ACTIVE_TIME_MASTER );

401 run TimeMasterNode(NODE_2 , BUS_P , INITIAL_STARTUP_DELAY , ACTIVE_TIME_MASTER );

#else

printf ("******** Node 1 active time master ********\n");

run TimeMasterNode(NODE_1 , BUS_P , 0, ACTIVE_TIME_MASTER );

run TimeMasterNode(NODE_2 , BUS_P , INITIAL_STARTUP_DELAY , BACKUP_TIME_MASTER );

406 #endif

run TimeReceivingNode(NODE_3 , BUS_P);

run TimeReceivingNode(NODE_4 , BUS_P);

#ifdef SYS_CONFIG_2HCU_2CID

411 run TimeReceivingNode(NODE_5 , BUS_P);

run TimeReceivingNode(NODE_6 , BUS_P);

#endif

#ifdef SYS_CONFIG_MAX

416 run TimeReceivingNode(NODE_5 , BUS_P);

run TimeReceivingNode(NODE_6 , BUS_P);

run TimeReceivingNode(NODE_7 , BUS_P);

run TimeReceivingNode(NODE_8 , BUS_P);

run TimeReceivingNode(NODE_9 , BUS_P);
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421 run TimeReceivingNode(NODE_10 , BUS_P);

run TimeReceivingNode(NODE_11 , BUS_P);

#endif

}

}

/**

* Model of the implementation of the TTCAN protocol with redundancy and error handling

* included. The model is able to be conditionally compiled to model different system configurations . 2

* VCUs , 1 CID , and 1 HCU are modelled on each redundant bus. Odd numbered nodes are on bus 0, and even

5 * numbered nodes are on bus 1. TTCAN transmission schedules and the interaction of nodes transmitting at

* these times are modelled.

*

* @file RedundantTTCAN .pml

* @author dmk

10 * @date 17/05/10

*

*/

#include "macros.h"

15 #include "../../ Common.h"

#include "../ Vessel.h"

#define ERROR_HANDLER

20

/**

* Mapping of message IDs sent from each node.

* REF_ID_1 ----> VCU1 SyncRef

25 * REF_ID_2 ----> VCU2 SyncRef

* MSG_ID_3 ----> HCU1 message

* MSG_ID_4 ----> CID1 message

* MSG_ID_5 ----> VCU1 message 1

* MSG_ID_6 ----> VCU1 message 2

30 * MSG_ID_7 ----> VCU1 message 3

* MSG_ID_8 ----> VCU2 message 1

* MSG_ID_9 ----> VCU2 message 2

* MSG_ID_10 ----> VCU2 message 3

*

35 */

#define NODE_1 0 /* VCU1a */

#define NODE_2 1 /* VCU1b */

#define NODE_3 2 /* VCU2a */

40 #define NODE_4 3 /* VCU2b */

#define NODE_5 4 /* HCU1a */

#define NODE_6 5 /* HCU1b */

#define NODE_7 6 /* CID1a */

#define NODE_8 7 /* CID1b */

45 #define TOTAL_NODES 8

#define REF_ID_LAST REF_ID_2

#define TOTAL_MESSAGES 14

/* Lowest and highest priority non reference messages. */

50 #define LOWEST_PRIORITY_MSG MSG_ID_13

#define HIGHEST_PRIORITY_MSG MSG_ID_3

/* There are two buses. */

#define REDUNDANT_BUSES 2

/* Currently there can be up to 4 HCUs. */

55 #define MAX_HCU_COUNT 4

/* Maximum number of CIDs on a station. */

#define MAX_CID_COUNT 5

/* Number of HCUs (PER BUS) configured for the system. */

#define HCU_COUNT 1

60 /* Number of CIDs (PER BUS) configured for the system. */

#define CID_COUNT 1

/* Number of ’Guard ’ windows in the Exclusive Window area */

/* = Total messages / freq

= (3 VCU + 1 HCU + 1 CID) / freq

65 = 5 / freq

= 1 (freq = 3)

-Ref -| HCU1| CID1|VCU .1| -G- |VCU .2| VCU.3|---Arb ---|-End -

= 1 (freq = 4)

-Ref -| HCU1| CID1|VCU .1| VCU .2| -G- |VCU.3|---Arb ---|-End -

70 */

#define GUARD_WINDOW_FREQUENCY 3
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#define GUARD_WINDOW_COUNT (( HCU_COUNT + CID_COUNT + VCU_TX_COUNT) / GUARD_WINDOW_FREQUENCY)

#define MAX_SCHEDULE_LENGTH 16

/* TODO: check with Vessel.h definition values. */

75 #define GUARD_TIME_SLOT EXCLUSIVE_TIME_SLOT

/* Default CAN message length in us (modify this to test the max bit -stuffed message length message ). */

#define DEFAULT_MSG_TIME 480

/* Rx trigger is in the centre of the exclusive window. */

#define RX_TRIGGER_OFFSET (EXCLUSIVE_TIME_SLOT / 2)

80 /* Absolute time arb window begins and basic cycle ends. */

#define ARB_WINDOW_START (EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT + VCU_TX_COUNT) + \

GUARD_TIME_SLOT * GUARD_WINDOW_COUNT + TIME_FROM_SYNC_REF + REF_MSG_SEND_TIME)

#define MULT_INIT_DELAY 100

/* Expected number of tx from node , currently for only a single basic cycle. */

85 #define EXPECTED_TX_COUNT_1 4

#define EXPECTED_TX_COUNT_2 4

#define EXPECTED_TX_COUNT_3 4

#define EXPECTED_TX_COUNT_4 4

#define EXPECTED_TX_COUNT_5 1

90 #define EXPECTED_TX_COUNT_6 1

#define EXPECTED_TX_COUNT_7 1

#define EXPECTED_TX_COUNT_8 1

95 /* Declarations of synchronous message channels. All message channels used are zero length synchronous

message channels. Meaning a process transmiting a message over a channel will block until the receiving

process is ready to receive the message. */

/* Sent by node after sucessfully transmitting a reference message to model other nodes receiving the

100 reference message. */

chan REF_MARK[TOTAL_NODES] = [0] of {bool};

/* Sent to Adv_Time_Bus_Arb process to check the current state of the bus. */

chan CHK_BUS[TOTAL_NODES] = [0] of {bool};

/* Sends the time to complete the current msg on the bus , the current msg id on the bus , BUS_IDLE if the

105 bus is not busy , or BUS_ARB if there is currently arbitration on the bus , and also a flag to show the

result of the last msg transmission on the bus. */

chan BUS_STATE[TOTAL_NODES] = [0] of {int , byte , bool};

/* Is sent from Adv_Time_Bus_Arb process when a node has a timeout. */

chan TIMEOUT[TOTAL_NODES] = [0] of {bool};

110 /* Resets the timeout for a node. */

chan SET_TIMEOUT[TOTAL_NODES] = [0] of {int};

/* Sent from node process to initialise transmission of a message on bus. The msg id , send time , and bus

number are sent as channel parameters . */

chan TX_TRIGGER[TOTAL_NODES] = [0] of {byte , int , bool};

115 /* Handle the received message in the error handler ’s process. */

chan RX_MESSAGE[TOTAL_NODES] = [0] of {byte};

chan FINISHED_ERR_UPD[TOTAL_NODES] = [0] of {bool};

chan MSC_TX_OK[TOTAL_NODES] = [0] of {byte};

chan MSC_TX_NOK[TOTAL_NODES] = [0] of {byte};

120 chan CHECK_MSC[TOTAL_NODES] = [0] of {bool};

/* Trigger channel for exclusive window messages error handling. */

chan TX_TRIGGER_E[TOTAL_NODES] = [0] of {bool};

/* Sent by the advance time process / bus arbitration process to put a node into a restart state. When in

this state node will not reset its time till next timeout when a reference mark message is received. */

125 chan RESTART[TOTAL_NODES] = [0] of {bool};

chan UPD_NODE_STATE[TOTAL_NODES] = [0] of {byte , byte};

#include "../../ TTCANTypedefs.h"

130

typedef MsgStatusT

{

/* Flags set to indicate a message has been sucessfully received at a node following a scheduled rx

135 trigger. The rx buffer (rxMsgBuff - set when the message is initially received at a node) bit for the

message is checked when the node has an rx trigger for the message. */

bool rxMsg[TOTAL_MESSAGES ];

/* Buffer bit set when message is first received at the node. */

bool rxMsgBuff[TOTAL_MESSAGES ];

140 /* Flags are set if this message is expected to be received by node during the basic cycle. */

bool rxScheduled[TOTAL_MESSAGES ];

/* Message status Count for each message. */

byte msgStatusCount[TOTAL_MESSAGES ];

};

145

/* Flag to indicate whether node is currently active or not. */

bool NodePresent[TOTAL_NODES ];
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/* Structure containing flags associated with receiving and transmitting . */

150 MsgStatusT MsgStatus[TOTAL_NODES ];

/* Message schedules for each nodes. */

ScheduleT Schedule[TOTAL_NODES ];

/* The default hard -coded schedule. */

ScheduleT DefSchedule;

155 NodeSendStatusT NodeSendStatus[TOTAL_NODES ];

/* Set if a scheduled msg is not received at a node. */

bool MsgRxError[TOTAL_NODES ];

/* Set if an unexpected scheduled message is not received at a node. */

bool RxScheduleError[TOTAL_NODES ];

160 /* Disable message transmission in node. */

bool DisableTx[TOTAL_NODES ];

/* If time has advanced and nodes have completed their basic cycles then check messages received at

165 nodes. Do this over both busses to check redundancy . */

inline CheckMsgRx ()

{

cycleTimeCount = cycleTimeCount + minTimeToNextTimeout;

IF cycleTimeCount >= BASIC_CYCLE_PERIOD ->

170 cycleTimeCount = 0;

printf (" AdvTimeBusArb: Finished basic cycle - check receive flags\n");

/* Currently only checking the exclusive time -slotted messages. MSG_ID_7 is the highest id exclusive

message. MSG_ID_3 is the lowest id exclusive message. */

FOR(j, MSG_ID_3 , MSG_ID_8)

175 /* Checking messages received at node 5 (HCU A) and node 7 (CID A) on bus A, and node 6 (HCU B)

and node 8 (CID B) on bus B. */

i = NODE_5;

do

:: i < TOTAL_NODES ->

180 IF NodePresent[i] != false ->

/* Check that the scheduled receive message is received on either the P or Q busses. */

MsgRxError[i] = false;

/* VCU1 messages id 5 - 7. */

if

185 :: (MsgStatus[i]. rxScheduled[j] != false) || (MsgStatus[i + 1]. rxScheduled[j] != false) ->

/* Check the received flag is set for this message. */

IF (MsgStatus[i]. rxMsg[j] == false) && (MsgStatus[i + 1]. rxMsg[j] == false) ->

/* Expected message was not received in the basic cycle on either bus , so flag an

error. */

190 MsgRxError[i] = true;

FI;

:: else ->

/* An unexpected message has been received at node. */

IF (MsgStatus[i]. rxMsg[j] != false) || (MsgStatus[i + 1]. rxMsg[j] != false) ->

195 RxScheduleError[i] = true;

FI;

fi;

/* Reset the message received flag for this basic cycle. */

MsgStatus[i]. rxMsg[j] = false;

200 MsgStatus[i + 1]. rxMsg[j] = false;

FI;

i = i + 2;

:: else ->

break;

205 od;

i = 0;

ROF(j);

FI;

}

210

#include "../../ CancelSchedule.pml"

#include "../ ReceiveMessage.pml"

#include "../../ AdvTimeMacros.pml"

215 #include "../../ AdvTimeBusArb.pml"

#include "../../ TTCANErrorHandler.pml"

#include "../../ CheckSendTimeRemaining.pml"

#include "../../ CheckSendBuffers.pml"

#include "../../ TransmitMessage.pml"

220 #include "../ TimeMasterNode.pml"

#include "../ TimeReceivingNode.pml"

init

225 {
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byte i;

int initDelay;

/* Set flags to show nodes are present in the system. */

230 atomic

{

FOR(i, 0, TOTAL_NODES)

NodePresent[i] = true;

ROF(i);

235

#if 0

/* Disable the redundant VCU and check message are still delivered as expected. */

NodePresent[NODE_3] = false;

NodePresent[NODE_4] = false;

240 #endif

/* Setup the message schedules for each node and assign flags for messages expected to be received at

the node. */

#include "RedundantTTCANConfig.pml"

245

/* Run the processes . Even numbered nodes are on bus 0, odd numbered nodes on bus 1. */

run AdvTimeBusArb ();

run ErrorContainment(NODE_1 );

250 run ErrorContainment(NODE_2 );

run ErrorContainment(NODE_3 );

run ErrorContainment(NODE_4 );

run ErrorContainment(NODE_5 );

run ErrorContainment(NODE_6 );

255 run ErrorContainment(NODE_7 );

run ErrorContainment(NODE_8 );

/* Non - deterministically check system with VCU1 configured as active time -master and non active

time -master. */

260 if

:: skip ->

/* VCU1a. */

run TimeMasterNode(NODE_1 , BUS_P , initDelay , ACTIVE_TIME_MASTER );

/* VCU1b. */

265 run TimeMasterNode(NODE_2 , BUS_Q , initDelay , ACTIVE_TIME_MASTER );

:: else ->

/* VCU1a. */

run TimeMasterNode(NODE_1 , BUS_P , initDelay , BACKUP_TIME_MASTER );

/* VCU1b. */

270 run TimeMasterNode(NODE_2 , BUS_Q , initDelay , BACKUP_TIME_MASTER );

fi;

/* Non - deterministically check system with VCU2 configured as active time -master and non active

time -master. */

275 if

:: skip ->

/* VCU2a. */

run TimeMasterNode(NODE_3 , BUS_P , initDelay , BACKUP_TIME_MASTER );

/* VCU2b. */

280 run TimeMasterNode(NODE_4 , BUS_Q , initDelay , BACKUP_TIME_MASTER );

:: else ->

/* VCU2a. */

run TimeMasterNode(NODE_3 , BUS_P , initDelay , ACTIVE_TIME_MASTER );

/* VCU2b. */

285 run TimeMasterNode(NODE_4 , BUS_Q , initDelay , ACTIVE_TIME_MASTER );

fi;

run TimeReceivingNode(NODE_5 , BUS_P); /* HCUa. */

run TimeReceivingNode(NODE_6 , BUS_Q); /* HCUb. */

290 run TimeReceivingNode(NODE_7 , BUS_P); /* CIDa. */

run TimeReceivingNode(NODE_8 , BUS_Q); /* CIDb. */

}

}

/**

2 * Model of the signal picker module used to select the bus that the VCU is currently listening to.

* Models messages received on either bus , messages reporting errors from their source , dropped messages ,

* and the periodic update of the * state of the module that occurs in the implementation . Checks that

* the module only swaps to the redundant bus if is seen and no error messages have been received , and

* the current bus has not been seen or an error message has been received. Also , checks that if the bus

7 * has not swaped since the last update there has been no message lost on the current bus.

*
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* @file SignalPicker .pml

* @author dmk

* @date 14/05/10

12 *

*/

#include "../../ macros.h"

17

#define BUS_P 0

#define BUS_Q 1

/* The number of buses in the model. */

22 #define REDUNDANT_BUSES 2

/* A flag to signal that a message has been received correctly on the P or Q bus. */

bool RecvMsg[REDUNDANT_BUSES ];

27 /* A flag to signal that a message has been missed due to an error in transmission on the P or Q bus. */

bool MsgError[REDUNDANT_BUSES ];

/* Flag used set to indicate a message has been dropped since the signal picker has last been updated. */

bool DroppedMsg[REDUNDANT_BUSES ];

/* Flag is set when signal picker is due to periodically update its state and invalidate its status

32 flags. This is triggered by a 1.5s periodic timer in the implementation . */

bool Update;

/* The bus that the signal picker module is currently listening to. Can be on bus P or bus Q (bus 0, or

bus 1 in model ). */

bool OnBus;

37 /* Message received from P or Q source is reporting an error value , indicating sensor error at message

source. */

bool Bad[REDUNDANT_BUSES ];

/* Message has been seen on the bus , since modules flags have last been invalidated . */

bool Seen[REDUNDANT_BUSES ];

42 /* Flag to show that the signal picker has swapped to the redundant bus. */

bool SwappedBus[REDUNDANT_BUSES ];

/**

47 * ChkInputSignal is called by the ’init ’ process when a new message is received. It is used to

* non - deterministically model a received message with a data value indicating a sensor error at the

* message source. Determines if the message * received will cause the node to swap buses.

*

* @param index The bus the signal picker is currently looking at.

52 *

*/

inline ChkInputSignal(index)

{

Seen[index] = true;

57

if

:: skip ->

/* Bad signal received. Message data indicates an error at the source. */

printf ("Bus %d: Received bad signal\n", index);

62 Bad[index] = true;

:: skip ->

/* Good signal received. */

printf ("Bus %d: Received good signal\n", index);

Bad[index] = false;

67 if

:: OnBus == index ->

/* Signal received which is on the current bus. */

/* Do nothing accept the signal , (function returns true) maybe add this to the model. */

skip;

72 printf (" Received good signal - stay on (%d) bus\n", index);

:: else ->

if

:: Seen[1 - index] && Bad[1 - index] ->

/* Other bus has been seen and the other is bad , then swap to this one. */

77 printf ("Swap to the redundant bus - new bus is: (%d)\n", index);

OnBus = index;

SwappedBus[OnBus] = true;

:: else ->

printf (" Received good signal on redundant bus , or other arrived before this signal\n");

82 skip;

fi;

fi;

fi;
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}

87

/**

* ChkSwaped is an inline function called by the init process. This is used to check the specified

* properties of the signal picker module hold after a new message has been received or the state of the

92 * module has been updated.

*

*/

inline ChkSwapped ()

{

97 /* OnBus is the bus the signal picker is currently listening to , in this case , the bus that has been

swapped to. */

printf ("##### Check if swapped: Currently on bus (%d)\n", OnBus );

if

:: SwappedBus[OnBus] ->

102 SwappedBus[OnBus] = false;

/* If swapped to the other bus assert that the bus has been seen and is not bad. Also , the

current bus must be either bad or not seen to swap. */

assert(Seen[OnBus] && !Bad[OnBus] && (Bad[1 - OnBus] || !Seen[1 - OnBus ]));

:: else ->

107 /* Haven ’t swapped buses but there has been a missed message on the current bus. */

IF DroppedMsg [1 - OnBus] != false ->

DroppedMsg [1 - OnBus] = false;

printf ("Did not swap buses and there was an error on bus since last reset\n");

/* assert (0); */

112 FI;

fi;

}

117

/**

* Process used to non - deterministically trigger received messages , simulate missed (dropped) messages ,

* and initiate the periodic update of the state of the signal picker. The periodic update is triggered

* every 1.5s in the implementation , but is triggered non - deterministically iin this model as could occur

122 * at any time relative to the messages being received on the bus. The process models the signal picker

* module ’s interaction with the environment .

*

*/

proctype TriggerInputs ()

127 {

do

:: skip ->

/* Received message correctly on bus P. */

RecvMsg[BUS_P] = true;

132 :: skip ->

/* Received message correctly on bus Q. */

RecvMsg[BUS_Q] = true;

:: skip ->

/* Timer has expired to update bus state and invalidate flags. */

137 Update = true;

:: skip ->

/* Message that has been set to bus P has not been received. */

MsgError[BUS_P] = true;

:: skip ->

142 /* Message that has been set to bus Q has not been received. */

MsgError[BUS_Q] = true;

od;

}

147

/**

* The ’init ’ process represents the signal picker module its self , it reacts to any of the events

* triggered by the TriggerInputs process.

*

152 */

init

{

run TriggerInputs ();

do

157 :: RecvMsg[BUS_P] != false ->

printf (" Received message from P\n");

RecvMsg[BUS_P] = false;

ChkInputSignal(BUS_P);

ChkSwapped ();

162
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:: RecvMsg[BUS_Q] != false ->

printf (" Received message from Q\n");

RecvMsg[BUS_Q] = false;

ChkInputSignal(BUS_Q);

167 ChkSwapped ();

:: MsgError[BUS_P] != false ->

printf (" Dropped message on bus P\n");

/* Have lost a message on this bus since the last time the flags have been invalidated . */

172 DroppedMsg[BUS_P] = true;

:: MsgError[BUS_Q] != false ->

printf (" Dropped message on bus Q\n");

/* Have lost a message on this bus since the last time the flags have been invalidated . */

177 DroppedMsg[BUS_Q] = true;

:: Update != false ->

printf ("########## Update and invalidate variables ##########\n");

Update = false;

182 if

:: Seen[OnBus] && !Bad[OnBus] ->

printf ("Seen current bus and still good - stay on it (bus %d)\n", OnBus );

:: else ->

if

187 :: Seen[1 - OnBus] && !Bad[1 - OnBus] ->

/* Current is bad and other is good so switch. */

printf (" Switch to the other bus as current is bad and other is good\n");

OnBus = 1 - OnBus;

SwappedBus[OnBus] = true;

192 :: else ->

skip;

fi;

fi;

ChkSwapped ();

197

/* Invalidate flags. */

Seen[BUS_P] = false;

Seen[BUS_Q] = false;

Bad[BUS_P] = false;

202 Bad[BUS_Q] = false;

MsgError[BUS_P] = false;

MsgError[BUS_Q] = false;

DroppedMsg[BUS_P] = false;

DroppedMsg[BUS_Q] = false;

207 od;

}

/**

* Model of the sponsoring organisation ’s "Voter" startup synchronisation between VCU nodes.

*

* @file Voter.pml

5 * @author dmk

* @date 14/05/10

*

*/

10 #include "macros.h"

#include "../ Vessel.h"

#include "../../ Common.h"

15 #define NODE_1 0 /* VCU1 */

#define NODE_2 1 /* VCU2 */

#define NODE_3 2 /* Timer Node 1 */

#define NODE_4 3 /* Timer node 2 */

#define NODE_5 4 /* HCU1 */

20 #define NODE_6 5 /* CID1 */

#define TOTAL_NODES 6

#define TOTAL_TM_NODES 2

#define LAST_TM_NODE NODE_2

/* Mapping of message identifiers to the type of message represented . */

25 /* REF_ID_1 ----> VCU1 SyncRef */

/* REF_ID_2 ----> VCU2 SyncRef */

/* MSG_ID_3 ----> HCU1 message */

/* MSG_ID_4 ----> CID1 message */

/* MSG_ID_5 ----> VCU message 1 */
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30 /* MSG_ID_6 ----> VCU message 2 */

/* MSG_ID_7 ----> VCU message 3 */

#define TOTAL_MESSAGES 14

#define NODE_1_MASTER_STATUS MSG_ID_12

#define NODE_2_MASTER_STATUS MSG_ID_13

35 #define EXCLUSIVE_MSG_FIRST MSG_ID_3

#define EXCLUSIVE_MSG_LAST MSG_ID_7

/* Number of HCUs configured for the system. */

#define HCU_COUNT 1

/* Number of CIDs configured for the system. */

40 #define CID_COUNT 1

/* Number of ’Guard ’ windows in the Exclusive Window area */

/* = Total messages / freq

= (3 VCU + 1 HCU + 1 CID) / freq

= 5 / freq

45 = 1 (freq = 3)

-Ref -| HCU1| CID1|VCU .1| -G- |VCU .2| VCU.3|---Arb ---|-End -

= 1 (freq = 4)

-Ref -| HCU1| CID1|VCU .1| VCU .2| -G- |VCU.3|---Arb ---|-End -

*/

50 #define GUARD_WINDOW_FREQUENCY 3

#define GUARD_WINDOW_COUNT (( HCU_COUNT + CID_COUNT + VCU_TX_COUNT) / GUARD_WINDOW_FREQUENCY)

#define MAX_SCHEDULE_LENGTH 16

/* All times are in us , the CAN bit time is 4us with CAN running at 250 kBit/s. */

/* Absolute time arb window begins and basic cycle ends. */

55 #define ARB_WINDOW_START (EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT + VCU_TX_COUNT) + \

GUARD_TIME_SLOT * GUARD_WINDOW_COUNT + TIME_FROM_SYNC_REF + REF_MSG_SEND_TIME)

/* Current state of time -master node. */

#define INVALID 0

#define INITIALLY 1

60 #define TOOKOVER 2

#define STANDBY 3

/* Multiply these timeout counts by 250 ms to get the timeout used in the implementation . The counts are

updated every basic -cycle in the model which represents 50ms in the implementation . The counts have been

scaled down here to reduce the state -space of the verification . However , the ratios between the timeouts

65 in the model is the same as in the implementation . */

/* The standby timeout , the time before a backup time -master times -out by not receiving a status message

from the active time master , is 3s in the implementation . */

#define STANDBY_TIMEOUT 12

/* The master status message is sent in the time -master node ’s arbitrating window. It is sent on a 1

70 second timer in the implementation , and every 4 basic -cycles in the model. */

#define SEND_STATUS_TIMEOUT 4

/* Timeout for faulty VCU. On timeout node toggles between on and off states. */

#define FAULTY_NODE_TIMEOUT 6

/* Bootup delay after restarting a VCU node before sending the initial master status message. Again each

75 basic -cycle (50 ms) represents 250 ms in the implementation to reduce the state -space. In this case , the

timeout count is multiplied by the basic -cycle period count ( BASIC_CYCLE_PERIOD measured in us), as this

value is compared to the elapsed model time in the AdvTimeBusArb process. */

#ifdef EXTENDED_BOOTUP_DELAY

/* Extended bootup delay , 3.51s delay (5 * 250 ms + 1ms) to give the backup VCU time to timeout if there

80 is an intermittent type fault on the active VCU. */

#define TIME_MASTER_BOOTUP_DELAY (BASIC_CYCLE_PERIOD * 14) + 1000

#else

/* 1.251s (5 * 250 ms + 1ms), the extra ms is added so bootup delay does not occur at beginning of a

basic -cycle. In this case , would have to deal with triggered ref. messages that no longer have a target

85 when the node is disabled , this simplifies the model. */

#define TIME_MASTER_BOOTUP_DELAY (BASIC_CYCLE_PERIOD * 5) + 1000

#endif

/* Flag an error when a node ’s rx error count reaches this value. */

#define RX_ERROR_COUNT 5

90 /* This node does not have a periodic fault where it is switched off. */

#define NO_FAULT 255

/* Number of buses in the model. */

#define REDUNDANT_BUSES 1

95

/* Declarations of synchronous message channels. All message channels used are zero length synchronous

message channels. Meaning a process transmiting a message over a channel will block until the receiving

process is ready to receive the message. */

/* Sent by node after sucessfully transmitting a reference message to model other nodes receiving the

100 reference message. */

chan REF_MARK[TOTAL_NODES] = [0] of {bool};

/* Sent to Adv_Time_Bus_Arb process to check the current state of the bus. */

chan CHK_BUS[TOTAL_NODES] = [0] of {bool};

/* Sends the time to complete the current msg on the bus , the current msg id on the bus , BUS_IDLE if the

105 bus is not busy , or BUS_ARB if there is currently arbitration on the bus , and also a flag to show the

result of the last msg transmission on the bus. */
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chan BUS_STATE[TOTAL_NODES] = [0] of {int , byte , bool};

/* Is sent from Adv_Time_Bus_Arb process when a node has a timeout. */

chan TIMEOUT[TOTAL_NODES] = [0] of {bool};

110 /* Updates the next timeout for a node. */

chan SET_TIMEOUT[TOTAL_NODES] = [0] of {int};

/* Sent from node process to initialise transmission of a message on bus. The msg id and send time are

sent as channel parameters . */

chan TX_TRIGGER[TOTAL_NODES] = [0] of {byte , int , bool};

115 /* Sent by the advance time process / bus arbitration process to put a node into a restart state. When in

this state node will not reset its time till next timeout when a reference mark message is received. */

chan RESTART[TOTAL_NODES] = [0] of {bool};

chan UPD_NODE_STATE[TOTAL_NODES] = [0] of {byte , byte};

120

#include "../../ TTCANTypedefs.h"

typedef MsgStatusT

125 {

/* Flags set when message is received at node. */

bool rxMsgBuff[TOTAL_MESSAGES ];

/* Flags are set if this message is expected to be received by node during the basic cycle. */

bool rxScheduled[TOTAL_MESSAGES ];

130 };

/* Flag to indicate whether node is currently active or not. */

bool NodePresent[TOTAL_NODES ];

135 bool TimerNode[TOTAL_NODES ];

/* Structure containing flags associated with receiving and transmitting messages. */

MsgStatusT MsgStatus[TOTAL_NODES ];

/* Message schedules for each nodes. */

ScheduleT Schedule[TOTAL_NODES ];

140 /* The default hard -coded schedule. */

ScheduleT DefSchedule;

NodeSendStatusT NodeSendStatus[TOTAL_NODES ];

/* Set if an unexpected scheduled message is received at a node. */

bool RxScheduleError[TOTAL_NODES ];

145 /* Set if this is the current active time master VCU. */

bool ActiveTimeMaster[TOTAL_TM_NODES ];

/* Flag is set during the time -master node ’s startup period. */

bool StartupPeriod[TOTAL_NODES ];

/* Disable message transmission in node. */

150 bool DisableTx[TOTAL_NODES ];

inline InitScheduleEntry(node , index , msgId , msgTxDelay)

{

155 Schedule[node]. schedBasicCycle[index]. nextTxSendDelay[BASIC_CYCLE_1] = msgTxDelay;

Schedule[node]. schedBasicCycle[index]. nextMsgId[BASIC_CYCLE_1] = msgId;

}

160 inline InitDefSchdEntry(index , msgId , msgTxDelay)

{

DefSchedule.schedBasicCycle[index]. nextTxSendDelay[BASIC_CYCLE_1] = msgTxDelay;

DefSchedule.schedBasicCycle[index]. nextMsgId[BASIC_CYCLE_1] = msgId;

}

165

inline InitMsgStatus(node , index , rxMsgId)

{

MsgStatus[node]. rxScheduled[index] = rxMsgId;

170 }

inline CheckMsgRx ()

{

skip;

175 }

#include "../../ ProcRefMarkVoter.pml"

#include "../../ AdvTimeMacros.pml"

180 #include "../../ AdvTimeBusArb.pml"

#include "../../ CancelSchedule.pml"

#include "../../ CheckSendTimeRemaining.pml"

#include "../../ CheckSendBuffers.pml"
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#include "../../ TransmitMessage.pml"

185

/**

* Inline function called at the end of each basic -cycle , used to check message receive flags against

* messages scheduled to be reecived. Sets the msgRxError flag if a message is not received , and sets the

190 * RxScheduleError flag if an unexpected message is received.

*

* @date 14/05/10

*

*/

195 inline UpdateMsgRxError ()

{

bool rxErrorFlag;

/* Loop through node ’s expected messages checking to see that they have been received correctly. */

200 atomic

{

FOR(i, EXCLUSIVE_MSG_FIRST , (EXCLUSIVE_MSG_LAST + 1))

if

:: MsgStatus[nodeNum ]. rxScheduled[i] != false ->

205 /* Check that the received flag is set for this message. */

IF MsgStatus[nodeNum ]. rxMsgBuff[i] == false ->

/* Expected message was not received in the basic cycle , so flag an error. */

printf (" DEBUGGING - Message not received at: Node %d, Message id %d\n", nodeNum , i);

rxErrorFlag = true;

210 FI;

:: else ->

/* An unexpected message has been received at node. */

IF MsgStatus[nodeNum ]. rxMsgBuff[i] != false ->

printf (" DEBUGGING - Unscheduled message received: Node %d, Message id %d\n", nodeNum , i);

215 RxScheduleError[nodeNum] = true;

assert(false);

FI;

fi;

/* Reset the message received flag for this basic cycle. */

220 MsgStatus[nodeNum ]. rxMsgBuff[i] = false;

ROF(i);

/* Two up / one down counter to trigger fault if node in losing more than half of its messages. */

if

225 :: rxErrorFlag != false ->

rxErrorFlag = false;

IF msgRxError < RX_ERROR_COUNT ->

/* Started a new receive error cycle. */

IF (msgRxError == 0) && (rxErrorCycles < 20) ->

230 rxErrorCycles = rxErrorCycles + 1;

FI;

msgRxError = msgRxError + 1;

FI;

printf ("##### Node %d: Increased rx error count (%d) #####\n", nodeNum , msgRxError );

235 :: else ->

IF msgRxError > 0 ->

msgRxError = msgRxError -1 ;

FI;

printf ("##### Node %d: Decreased rx error count (%d) #####\n", nodeNum , msgRxError );

240 fi;

/* assert( msgRxError < RX_ERROR_COUNT );*/

assert(rxErrorCycles < 20);

}

}

245

/**

* Process for a potential time -master node. Controls sending the scheduled messages from the schedule

* configured for the node in the init process. Can model an active time -master node , in this case , will

250 * start sending the configured schedule beginning with the reference message. In this system , VCU0 and

* VCU1 are modelled by this process. Also , models the startup synchronisation procedure known

* as the "voter" process. On startup , both VCUs are initially potential time -masters , the voter

* procedure determines which VCU becomes active and which becomes the backup node.

*

255 * @params nodeNum The identifier for the node.

* @params initDelay Delay before starting the nodes tx schedule.

*

* @date 14/05/10

*

260 */
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proctype TimeMasterNode(byte nodeNum; int initDelay)

{

byte i;

/* Id of message to send after next timeout. */

265 byte msgToSend;

/* Use the hard -coded default schedule. */

bool useDefaultSchedule;

/* Flag set if the arbitrating window is open at node. */

bool arbWindowOpen;

270 /* Local variables to keep track of active time -master status. */

/* A 3 second timeout for triggered when in the standby state. */

byte standbyTimer;

/* Received a master status message. */

bool recvMasterStatus;

275 /* Flag set if the voter state -machine is to be updated this cycle. */

bool updateVoterSM;

/* Flag set at end of basic cycle period time to check that the scheduled messages have been received

at the node. */

bool checkRxFlags;

280 byte currentState;

byte currentFrame;

byte busState;

bool wonArbitration;

byte cycleCount;

285 byte msgRxError;

byte rxErrorCycles;

/* A 1 second timeout for triggering sending of the master status message. */

byte masterStatusTimer;

290 atomic

{

currentFrame = 0;

msgToSend = 0;

NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

295 ActiveTimeMaster[nodeNum] = false;

useDefaultSchedule = true;

cycleCount = BASIC_CYCLE_1;

/* Stagger sending of the master status messages from the VCU nodes , this way there is no need to

300 model a collision of the master status messages on the CAN bus. Avoiding this collision helps to

simplify the model. In the real system , if there is a collision CAN retransmission in the arb window

will allow retransmission of any lost master status message. */

if

:: nodeNum == NODE_1 ->

305 masterStatusTimer = 1;

:: else ->

masterStatusTimer = 2;

fi;

310 printf (" Starting time -master - node number: %d, pid: %d\n", nodeNum , _pid);

/* Don ’t use the hard -coded schedule for the active time -master , use the configured schedule. */

IF ActiveTimeMaster[nodeNum] != false ->

useDefaultSchedule = false;

FI;

315 printf ("Node %d: Using default schedule %d\n", nodeNum , useDefaultSchedule );

/* Initial delay for startup of node. */

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! initDelay;

320 START_BASIC_CYCLE:

/* Wait for a timeout or ref mark sync channel message. */

if

:: TIMEOUT[nodeNum] ? 0 ->

INITIALISE_TIMEOUT:

325 printf ("Node %d: Had Timeout\n", nodeNum );

:: RESTART[nodeNum] ? 0 ->

printf ("########## Node %d: Had restart ##########\n", nodeNum );

currentFrame = 0;

StartupPeriod[nodeNum] = true;

330 if

:: nodeNum == NODE_1 ->

masterStatusTimer = 1;

:: else ->

masterStatusTimer = 2;

335 fi;

goto RESTART_TIME_MASTER;
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:: REF_MARK[nodeNum] ? _ ->

RECV_REF_MARK:

340 printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

/* Jump back to the start of the schedule , is the potential time -master so skip the initial sync

ref message on receiving this sync ref. */

currentFrame = 1;

useDefaultSchedule = false;

345 goto START_SYNC_REF;

fi;

/* Check to see if there is a message currently scheduled to be sent , if the arbitration window is to

be opened or closed , or if the basic cycle period has finished. */

IF msgToSend > 0 ->

350 printf ("Node %d: Had timeout - sending message %d\n", nodeNum , msgToSend );

if

:: (msgToSend == REF_ID_1) || (msgToSend == REF_ID_2) ->

if

:: (1) ->

355 printf ("Node %d: Sending ref messge\n", nodeNum );

/* Send the reference message. */

TransmitMessage(nodeNum , msgToSend , REF_MSG_SEND_TIME , ONE_SHOT_INTERVAL , BUS_P);

:: else ->

/* Lost arbitration , or sync reference not acked by another node. */

360 printf ("Node %d: Lost arbitration or sync ref not acked - begin timeout\n", nodeNum );

SET_TIMEOUT[nodeNum] ! 10000;

goto START_BASIC_CYCLE;

fi;

365 /* Delay for the duration of the reference message. */

SET_TIMEOUT[nodeNum] ! REF_MSG_SEND_TIME;

if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had timeout after sending sync ref\n", nodeNum );

370 :: REF_MARK[nodeNum] ? _ ->

printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );

/* Back to the start of the schedule but skip the ref message as this schedule is started

in response to receiving a sync ref message. */

currentFrame = 1;

375 useDefaultSchedule = false;

goto START_SYNC_REF;

fi;

/* Check to see winner of arbitration . */

printf ("Node %d: Check current state bus\n", nodeNum );

380 CHK_BUS[nodeNum] ! 0;

BUS_STATE[nodeNum] ? _, _, wonArbitration;

printf ("#### Node %d: Won last arb (%d)####\n", nodeNum , wonArbitration );

/* If won arbitration , send REF_MARK sync messages to other nodes. If lost arbitration , go to

385 timeout and try to send ref message again after timeout has elapsed. */

if

:: wonArbitration != false ->

FOR(i, 0, TOTAL_NODES)

IF (NodePresent[i] != false) && (StartupPeriod[i] == false)

390 && (TimerNode[i] == false) ->

#ifndef REF_TX_ERROR

/* Will be received by AdvTimeBusArb if this is the transmitting node. Is also

sent to the other nodes to model receiving a reference message at the nodes. */

REF_MARK[i] ! 0;

395 #endif

FI;

ROF(i);

:: else ->

/* Lost arbitration , or sync ref not acked by another node. */

400 printf ("Node %d: Lost arbitration or sync ref not acked - begin timeout\n", nodeNum );

SET_TIMEOUT[nodeNum] ! 10000;

goto START_BASIC_CYCLE;

fi;

:: msgToSend == BEGIN_ARBITRATION ->

405 /* Arbitration period of schedule has started. */

arbWindowOpen = true;

printf ("Node: %d - Sending test arbitration message\n", nodeNum );

masterStatusTimer = masterStatusTimer - 1;

IF masterStatusTimer == 0 ->

410 /* Had a master status send timeout. */

TransmitMessage(NODE_1 , NODE_1_MASTER_STATUS , DEFAULT_MSG_TIME , ARB_INTERVAL , BUS_P);

TransmitMessage(NODE_2 , NODE_2_MASTER_STATUS , DEFAULT_MSG_TIME , ARB_INTERVAL , BUS_P);

/* Reset the 1s master status send timeout. */

masterStatusTimer = SEND_STATUS_TIMEOUT;
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415 FI;

:: msgToSend == FINISH_ARBITRATION ->

/* Arbitration period of schedule has finished. */

arbWindowOpen = false;

skip;

420 :: msgToSend == END_SCHEDULE ->

/* Current schedule has finished. */

skip;

:: else ->

/* Trigger transmission the scheduled message. */

425 IF ActiveTimeMaster[nodeNum] != false ->

TransmitMessage(nodeNum , msgToSend , DEFAULT_MSG_TIME , ONE_SHOT_INTERVAL , BUS_P);

FI;

fi;

FI;

430 START_SYNC_REF:

if

:: useDefaultSchedule != false ->

/* If using the default configured schedule. Send the current scheduled frame. */

msgToSend = DefSchedule.schedBasicCycle[currentFrame ]. nextMsgId[cycleCount ];

435 /* Delay before sending the next frame in the schedule. Subtract any time that has been already

elapsed sending a message during the current window. */

SET_TIMEOUT[nodeNum] ! DefSchedule.schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

440 currentFrame = currentFrame + 1;

IF currentFrame == DefSchedule.numFrames ->

currentFrame = 0;

updateVoterSM = true;

checkRxFlags = true;

445 FI;

:: else ->

/* Send the current scheduled frame , after the next timeout. */

msgToSend = Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextMsgId[cycleCount ];

/* Update node ’s timeout to delay before sending the next frame in the schedule. Subtract any

450 time that has been already elapsed sending a message during the current window. */

SET_TIMEOUT[nodeNum] !

Schedule[nodeNum ]. schedBasicCycle[currentFrame ]. nextTxSendDelay[cycleCount] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

455 currentFrame = currentFrame + 1;

IF currentFrame == Schedule[nodeNum ]. numFrames ->

printf ("#### Node: %d, Finished basic cycle ####\n", nodeNum );

/* Check the received message flags. */

/* UpdateMsgRxError (); */

460 currentFrame = 0;

updateVoterSM = true;

checkRxFlags = true;

FI;

fi;

465 NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

/* Check the received message flags if the initial startup period has expired and the finished basic

cycle flag has been set. This allows enough time for a time -master to be elected and the scheduled

messages to begin transmission . */

470 IF (checkRxFlags != false) && (ActiveTimeMaster[NODE_1] || ActiveTimeMaster[NODE_2 ]) ->

checkRxFlags = false;

UpdateMsgRxError ();

FI;

475 /* Update the active time -master state in the voter startup sync procedure. In this model , this is

done at the end of each 50ms cycle. */

IF updateVoterSM != false ->

updateVoterSM = false;

/* Received the master status message from node 1. */

480 IF MsgStatus[nodeNum ]. rxMsgBuff[NODE_1_MASTER_STATUS] != false ->

MsgStatus[nodeNum ]. rxMsgBuff[NODE_1_MASTER_STATUS] = false;

recvMasterStatus = true;

FI;

IF MsgStatus[nodeNum ]. rxMsgBuff[NODE_2_MASTER_STATUS] != false ->

485 MsgStatus[nodeNum ]. rxMsgBuff[NODE_2_MASTER_STATUS] = false;

recvMasterStatus = true;

FI;

if

:: currentState == INVALID ->

490 /* Entering the initial state when node begins. */

printf ("TM elect Node %d - initial INVALID state\n", nodeNum );
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/* Check wasActive flag to determine next state. As an abstraction just check the time -master

active flag. */

if

495 :: ActiveTimeMaster[nodeNum] != false ->

currentState = INITIALLY;

:: else ->

currentState = STANDBY;

fi;

500

:: currentState == INITIALLY ->

printf ("TM elect Node %d - INITIALLY state\n", nodeNum );

currentState = TOOKOVER;

505 :: currentState == TOOKOVER ->

printf ("TM elect Node %d - TOOKOVER state\n", nodeNum );

/* Had timeout from standby state , now enters the ’tookover ’ state. */

ActiveTimeMaster[nodeNum] = true;

/* Received master status message from a node and that node is currently an active master. */

510 IF (recvMasterStatus != false) && (ActiveTimeMaster [1 - nodeNum] != false) ->

if

:: nodeNum == NODE_1 ->

/* Do nothing as this is the node with lowest ID and hence the higher priority.

Remains as the active time -master. */

515 :: nodeNum == NODE_2 ->

/* Goto STANDBY and no -longer time -master. */

currentState = STANDBY;

ActiveTimeMaster[nodeNum] = false;

:: else ->

520 skip;

fi;

FI;

:: currentState == STANDBY ->

525 printf ("TM elect Node %d - STANDBY state\n", nodeNum );

/* On entering standby state the timeout is started. */

/* Check the timeout value. If zero set to 6 for 3s timeout , otherwise decrement and check to

see if becomes 0. If so had timeout and go to ’tookover ’ state. */

if

530 :: standbyTimer != 0 ->

standbyTimer = standbyTimer - 1;

IF standbyTimer == 0 ->

/* Transition to the tookover state. */

printf ("TM elect Node %d - Had 3s timeout\n", nodeNum );

535 currentState = TOOKOVER;

FI;

:: else ->

printf ("TM elect Node %d - Decrement the standby timeout\n", nodeNum );

/* 3 second timeout in implementation . Ratio between standby timeout and master status

540 send interval is 3 to 1. */

standbyTimer = STANDBY_TIMEOUT;

fi;

/* If received a master status message and the other node is the active master then reset the

timeout. */

545 IF (( recvMasterStatus != false) && (ActiveTimeMaster [1 - nodeNum] != false)) ->

printf ("TM elect Node %d - Is standby time master - reset 3s timeout\n", nodeNum );

standbyTimer = STANDBY_TIMEOUT;

FI;

:: else ->

550 skip;

fi;

recvMasterStatus = false;

/* Update whether using the default or the configured schedule. */

if

555 :: ActiveTimeMaster[nodeNum] != false ->

/* This is the active time -master , so restart using the configured schedule for this node. */

useDefaultSchedule = false;

:: else ->

/* Active time -master flag has been cleared during this cycle , so start the next with the

560 hard -coded schedule. */

useDefaultSchedule = true;

fi;

#ifdef CHK_TM_BACKUP

565 IF ActiveTimeMaster[NODE_1] != false ->

NodePresent[NODE_1] = false;

FI;

#endif
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FI;

570 goto START_BASIC_CYCLE;

/* Ignore ref. marks during the restart phase. Or should this be node off phase? */

RESTART_TIME_MASTER:

if

575 :: TIMEOUT[nodeNum] ? 0 ->

/* Had the initial timeout. */

printf ("########## Node (%d): Finished restart phase ##########\n", nodeNum );

StartupPeriod[nodeNum] = false;

goto INITIALISE_TIMEOUT;

580 #if 0

:: REF_MARK[nodeNum] ? _ ->

printf ("########## Node (%d): Received ref mark during restart phase ##########\n", nodeNum );

goto RESTART_TIME_MASTER;

#endif

585 :: RESTART[nodeNum] ? 0 ->

currentFrame = 0;

printf ("########## Node (%d): Received restart within the startup phase ##########\n", nodeNum );

if

:: nodeNum == NODE_1 ->

590 masterStatusTimer = 1;

:: else ->

masterStatusTimer = 2;

fi;

goto RESTART_TIME_MASTER;

595 fi;

}

}

600 /**

* Process to model a time receiving node in the system. This process controls sending the scheduled

* messages from the schedule configured for the node. It also handles the reception of sync reference

* messages and will restart its current schedule on receiving one. On initialisation , and if a sync

* reference message is missed , the process falls back to transmitting the default message schedule.

605 *

* @params nodeNum The identifier for the node.

*

* @date 14/05/10

*

610 */

proctype TimeReceivingNode(byte nodeNum)

{

byte i;

byte index;

615 byte msgToSend;

/* Use the hard coded default schedule. */

bool useDefaultSchedule;

/* Flag set if the arbitrating window is open at node. */

bool arbWindowOpen;

620 /* Flag set at end of basic cycle period time to check that the scheduled messages have been received

at the node. */

bool checkRxFlags;

byte currentFrame;

byte busState;

625 bool wonArbitration;

byte cycleCount;

byte msgRxError;

byte rxErrorCycles;

630 atomic

{

index = 0;

msgToSend = 0;

useDefaultSchedule = true;

635 cycleCount = BASIC_CYCLE_1;

printf (" Starting time -receiving node - node number: %d, pid: %d\n", nodeNum , _pid);

printf ("Node %d: Using default schedule %d\n", nodeNum , useDefaultSchedule );

START_BASIC_CYCLE:

640 if

:: TIMEOUT[nodeNum] ? 0 ->

printf ("Node %d: Had Timeout\n", nodeNum );

:: REF_MARK[nodeNum] ? _ ->

RECV_REF_MARK:

645 printf ("Node %d: Received REF_MARK restart basic cycle\n", nodeNum );
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/* Restart the schedule. */

index = 0;

/* Use the configured schedule as received the ref sync message. */

useDefaultSchedule = false;

650 goto START_SYNC_REF;

fi;

IF msgToSend > 0 ->

printf ("Node %d: Had timeout - sending message %d\n", nodeNum , msgToSend );

if

655 :: msgToSend == BEGIN_ARBITRATION ->

arbWindowOpen = true;

skip;

:: msgToSend == FINISH_ARBITRATION ->

arbWindowOpen = false;

660 skip;

:: msgToSend == END_SCHEDULE ->

skip;

:: else ->

TransmitMessage(nodeNum , msgToSend , DEFAULT_MSG_TIME , ONE_SHOT_INTERVAL , BUS_P);

665 fi;

FI;

START_SYNC_REF:

if

:: useDefaultSchedule != false ->

670 /* Send the current scheduled frame. */

msgToSend = DefSchedule.schedBasicCycle[index]. nextMsgId[cycleCount ];

/* Delay before sending the next frame in the schedule. */

SET_TIMEOUT[nodeNum] ! DefSchedule.schedBasicCycle[index]. nextTxSendDelay[cycleCount] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

675 /* Increment to the next frame to send. */

index = (index + 1) % DefSchedule.numFrames;

IF index == DefSchedule.numFrames ->

index = 0;

checkRxFlags = true;

680 FI;

:: else ->

/* Send the current scheduled frame. */

msgToSend = Schedule[nodeNum ]. schedBasicCycle[index ]. nextMsgId[cycleCount ];

/* Delay before sending the next frame in the schedule. Subtract any time already elapsed sending

685 a message. */

SET_TIMEOUT[nodeNum] ! Schedule[nodeNum ]. schedBasicCycle[index]. nextTxSendDelay[cycleCount] -

NodeSendStatus[nodeNum ]. elapsedSendTime;

/* Increment to the next frame to send. */

index = index + 1;

690 IF index == Schedule[nodeNum ]. numFrames ->

/* Check the received message flags. */

/* UpdateMsgRxError (); */

/* Finished the current schedule , start the next with the hard -coded schedule as this is not

a time -master node. */

695 useDefaultSchedule = true;

index = 0;

checkRxFlags = true;

FI;

fi;

700 NodeSendStatus[nodeNum ]. elapsedSendTime = 0;

/* Check the receive flags when the basic cycle has finished transmitting . Must allow time for

startup delay before checking received messages. Must allow time for the initial time -master election

process , otherwise nodes will not be transmitting scheduled messages. */

IF (checkRxFlags != false) && (ActiveTimeMaster[NODE_1] || ActiveTimeMaster[NODE_2 ]) ->

705 checkRxFlags = false;

/* Check the received message flags. */

UpdateMsgRxError ();

FI;

goto START_BASIC_CYCLE;

710 }

}

/**

715 * Process to create a periodic timer node. The node is used set and trigger a periodic timeout. The

* timer can be associated with a node. Usually it will be configured so the timeout period is equal to

* the basic cycle time , this way the timer fires once each basic -cycle and can be used as a counter to

* trigger other events associated with the node.

*

720 * @params nodeNum The identifier for the node.

* @param timeoutPeriod The interval of the periodic timeout.

* @param faultPeriod Multiple by the timeoutPeriod to get the fault period. The period elapsed
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* between the node toggling on and off.

*

725 * @date 14/05/10

*

*/

proctype PeriodicTimerNode(byte nodeNum; int timeoutPeriod; byte faultPeriod)

{

730 byte faultyNodeTimer;

faultyNodeTimer = faultPeriod;

START_TIMER:

atomic

735 {

TIMEOUT[nodeNum] ? 0 ->

SET_TIMEOUT[nodeNum] ! timeoutPeriod - 1000;

TIMEOUT[nodeNum] ? 0 ->

/* Disable the node 49ms after the basic cycle starts , this way won ’t have problems disabling before

740 the ref message is sent. */

printf ("##### Had timeout at timer node (%d) #####\n", nodeNum );

/* Toggle the currently active time -master on and off at the configured error rate. */

IF (ActiveTimeMaster[nodeNum - TOTAL_TM_NODES] != false) && (faultPeriod != NO_FAULT) ->

faultyNodeTimer = faultyNodeTimer - 1;

745 printf ("##### faulty node timer count (%d) #####\n", faultyNodeTimer );

IF faultyNodeTimer == 0 ->

printf ("##### Had fault timeout at node (%d) #####\n", nodeNum , faultyNodeTimer );

faultyNodeTimer = faultPeriod;

/* Toggle node on and off. */

750 /* This timer belongs to node with index - TOTAL_TM_NODES . */

if

:: NodePresent[nodeNum - TOTAL_TM_NODES] != false ->

/* Update the state of the corresponding time -master node. In this case , toggle the state

to absent. */

755 UPD_NODE_STATE ! (nodeNum - TOTAL_TM_NODES), NODE_ABSENT;

:: else ->

UPD_NODE_STATE ! (nodeNum - TOTAL_TM_NODES), NODE_PRESENT;

fi;

FI;

760 FI;

SET_TIMEOUT[nodeNum] ! 1000;

goto START_TIMER;

}

}

765

init

{

byte i;

770

/* Set flags to show nodes are present in the system. */

atomic

{

FOR(i, 0, TOTAL_NODES)

775 NodePresent[i] = true;

ROF(i);

/* Node 3 and 4 are configured as timer nodes. */

TimerNode[NODE_3] = true;

780 TimerNode[NODE_4] = true;

#ifdef DISABLE_NODE_1

NodePresent[NODE_1] = false;

NodePresent[NODE_3] = false;

785 #endif

/* Setup node ’s transmission schedules . Schedule times must add up to 50000 (so they

synchronise with the Timer Nodes ). Time elapsed sending messages is subtracted from

the next scheduled timeout. */

790 /* Schedule =

-Ref -| HCU1| CID1|VCU .1| -G- |VCU .2| VCU.3|---Arb ---|-End -

OR ...

-Ref -| HCU1| CID1|VCU .1| VCU .2| -G- |VCU.3|---Arb ---|-End -

*/

795

/* VCU1 schedule configuration */

Schedule[NODE_1 ]. numFrames = 7;

InitScheduleEntry(NODE_1 , 0, REF_ID_1 , 0);

InitScheduleEntry(NODE_1 , 1, MSG_ID_5 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT) +
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800 TIME_FROM_SYNC_REF );

#if GUARD_WINDOW_FREQUENCY == 3

InitScheduleEntry(NODE_1 , 2, MSG_ID_6 , EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT );

#elif GUARD_WINDOW_FREQUENCY == 4

InitScheduleEntry(NODE_1 , 2, MSG_ID_6 , EXCLUSIVE_TIME_SLOT );

805 #else

#error "Illegal GUARD_WINDOW_FREQUENCY defined"

#endif

#if GUARD_WINDOW_FREQUENCY == 3

InitScheduleEntry(NODE_1 , 3, MSG_ID_7 , EXCLUSIVE_TIME_SLOT );

810 #elif GUARD_WINDOW_FREQUENCY == 4

InitScheduleEntry(NODE_1 , 3, MSG_ID_7 , EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT );

#else

#error "Illegal GUARD_WINDOW_FREQUENCY defined"

#endif

815 InitScheduleEntry(NODE_1 , 4, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT );

InitScheduleEntry(NODE_1 , 5, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME + REF_MSG_SEND_TIME );

InitScheduleEntry(NODE_1 , 6, END_SCHEDULE , ARB_TX_DISABLE_TIME );

820 /* VCU2 schedule configuration */

Schedule[NODE_2 ]. numFrames = 7;

InitScheduleEntry(NODE_2 , 0, REF_ID_2 , 0);

InitScheduleEntry(NODE_2 , 1, MSG_ID_5 , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT) +

TIME_FROM_SYNC_REF );

825 #if GUARD_WINDOW_FREQUENCY == 3

InitScheduleEntry(NODE_2 , 2, MSG_ID_6 , EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT );

#elif GUARD_WINDOW_FREQUENCY == 4

InitScheduleEntry(NODE_2 , 2, MSG_ID_6 , EXCLUSIVE_TIME_SLOT );

#else

830 #error "Illegal GUARD_WINDOW_FREQUENCY defined"

#endif

#if GUARD_WINDOW_FREQUENCY == 3

InitScheduleEntry(NODE_2 , 3, MSG_ID_7 , EXCLUSIVE_TIME_SLOT );

#elif GUARD_WINDOW_FREQUENCY == 4

835 InitScheduleEntry(NODE_2 , 3, MSG_ID_7 , EXCLUSIVE_TIME_SLOT + GUARD_TIME_SLOT );

#else

#error "Illegal GUARD_WINDOW_FREQUENCY defined"

#endif

InitScheduleEntry(NODE_2 , 4, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT );

840 InitScheduleEntry(NODE_2 , 5, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME + REF_MSG_SEND_TIME );

InitScheduleEntry(NODE_2 , 6, END_SCHEDULE , ARB_TX_DISABLE_TIME );

/* HCU1 schedule configuration */

845 Schedule[NODE_5 ]. numFrames = 4;

InitScheduleEntry(NODE_5 , 0, MSG_ID_3 , TIME_FROM_SYNC_REF );

InitScheduleEntry(NODE_5 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (HCU_COUNT + CID_COUNT +

VCU_TX_COUNT) + GUARD_WINDOW_COUNT * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_5 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

850 ARB_TX_DISABLE_TIME + REF_MSG_SEND_TIME );

InitScheduleEntry(NODE_5 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

/* CID1 schedule configuration */

Schedule[NODE_6 ]. numFrames = 4;

855 InitScheduleEntry(NODE_6 , 0, MSG_ID_4 , EXCLUSIVE_TIME_SLOT * HCU_COUNT + TIME_FROM_SYNC_REF );

InitScheduleEntry(NODE_6 , 1, BEGIN_ARBITRATION , EXCLUSIVE_TIME_SLOT * (VCU_TX_COUNT + 1) +

GUARD_WINDOW_COUNT * GUARD_TIME_SLOT );

InitScheduleEntry(NODE_6 , 2, FINISH_ARBITRATION , BASIC_CYCLE_PERIOD - ARB_WINDOW_START -

ARB_TX_DISABLE_TIME + REF_MSG_SEND_TIME );

860 InitScheduleEntry(NODE_6 , 3, END_SCHEDULE , ARB_TX_DISABLE_TIME );

DefSchedule.numFrames = 3;

InitDefSchdEntry (0, BEGIN_ARBITRATION , 20000);

InitDefSchdEntry (1, FINISH_ARBITRATION , 25000);

865 InitDefSchdEntry (2, END_SCHEDULE , 5000);

/* Set flags for each nodes expected messages. */

/* VCU 1. */

MsgStatus[NODE_1 ]. rxScheduled[MSG_ID_3] = true;

870 InitMsgStatus(NODE_1 , MSG_ID_3 , true);

MsgStatus[NODE_1 ]. rxScheduled[MSG_ID_4] = true;

InitMsgStatus(NODE_1 , MSG_ID_4 , true);

MsgStatus[NODE_1 ]. rxScheduled[MSG_ID_5] = true;

InitMsgStatus(NODE_1 , MSG_ID_5 , true);

875 MsgStatus[NODE_1 ]. rxScheduled[MSG_ID_6] = true;

InitMsgStatus(NODE_1 , MSG_ID_6 , true);
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MsgStatus[NODE_1 ]. rxScheduled[MSG_ID_7] = true;

InitMsgStatus(NODE_1 , MSG_ID_7 , true);

/* MsgStatus [NODE_1 ]. rxScheduled [MSG_ID_8] = true; */

880

/* VCU 2. */

InitMsgStatus(NODE_2 , REF_ID_1 , true);

InitMsgStatus(NODE_2 , MSG_ID_3 , true);

InitMsgStatus(NODE_2 , MSG_ID_4 , true);

885 InitMsgStatus(NODE_2 , MSG_ID_5 , true);

InitMsgStatus(NODE_2 , MSG_ID_6 , true);

InitMsgStatus(NODE_2 , MSG_ID_7 , true);

/* HCU 1. */

890 InitMsgStatus(NODE_5 , REF_ID_1 , true);

InitMsgStatus(NODE_5 , MSG_ID_4 , true);

InitMsgStatus(NODE_5 , MSG_ID_5 , true);

InitMsgStatus(NODE_5 , MSG_ID_6 , true);

InitMsgStatus(NODE_5 , MSG_ID_7 , true);

895 /* MsgStatus [NODE_5 ]. rxScheduled [MSG_ID_8] = true; */

/* CID 1. */

InitMsgStatus(NODE_6 , REF_ID_1 , true);

InitMsgStatus(NODE_6 , MSG_ID_3 , true);

900 InitMsgStatus(NODE_6 , MSG_ID_5 , true);

InitMsgStatus(NODE_6 , MSG_ID_6 , true);

InitMsgStatus(NODE_6 , MSG_ID_7 , true);

/* MsgStatus [NODE_6 ]. rxScheduled [MSG_ID_8] = true;*/

905 /* Run the processes . */

run AdvTimeBusArb ();

run TimeMasterNode(NODE_1 , TIME_MASTER_BOOTUP_DELAY );

run TimeMasterNode(NODE_2 , TIME_MASTER_BOOTUP_DELAY );

#ifdef FAULTY_VCU

910 /* 6 * 250 ms = 1.5s, period to toggle node on and off. */

run PeriodicTimerNode(NODE_3 , BASIC_CYCLE_PERIOD , FAULTY_NODE_TIMEOUT );

#else

/* Non -faulty node. */

run PeriodicTimerNode(NODE_3 , BASIC_CYCLE_PERIOD , NO_FAULT );

915 #endif

run PeriodicTimerNode(NODE_4 , BASIC_CYCLE_PERIOD , NO_FAULT );

run TimeReceivingNode(NODE_5 );

run TimeReceivingNode(NODE_6 );

}

920 }



Appendix E

VERIFICATION TOOL SPECIFICATIONS

Hardware and software setup used for SPIN verifications:

• Machine: MacBookPro 3,1; 2.2 GHz Intel Core 2 Duo; 3 GB 667 MHz DDR2
SDRAM.

• Operating system: Mac OS X Version 10.6.2.

• Spin version: 5.1.7.
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