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Abstract

A minimal cardiac model has been shown to accurately capture a wide range

of cardiovascular system dynamics commonly seen in the intensive care unit

(ICU). However, standard parameter identification methods for this model

are highly non-linear and non-convex, hindering real-time clinical applica-

tion. An integral-based identification method that transforms the problem

into a linear, convex problem, has been previously developed, but was only

applied on continuous simulated data with random noise. This paper extends

the method to handle discrete sets of clinical data, unmodelled dynamics, a
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significantly reduced data set thta requires only the minimum and maximum

values of the pressure in the aorta, pulmonary artery and the volumes in

the ventricles. The importance of integrals in the formulation for noise re-

duction is illustrated by demonstrating instability in the identification using

simple derivative-based approaches. The CVS model and parameter identi-

fication method are then clinically validated on porcine data for pulmonary

embolism. Errors for the identified model are within 10% when re-simulated

and compared to clinical data. All identified parameter trends match clini-

cally expected changes. This work represents the first clinical validation of

these models, methods and approach to cardiovascular diagnosis in critical

care.

Keywords: cardiovascular system, cardiac model, parameter identification,

integral method, pulmonary embolism

1 Introduction

Cardiac disease state is highly patient specific and difficult to accurately di-

agnose due to the limited measurements available. In addition, the body’s

natural reflex responses try to restore circulatory equilibrium, which can of-

ten mask the underlying symptoms [1, 2]. Successful diagnosis and treatment
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often rely on the experience and intuition of clinical staff. Thus, a physio-

logical, identifiable and validated computer model offers several potential

advantages in diagnosis and therapy selection, by aggregating diverse pa-

tient data into a compact, patient specific, clinically relevant and potentially

real-time assessment of circulatory status.

There are many CVS models in the literature ranging from very complex

finite element models [3–6] to relatively simpler pressure volume approaches

[7–9]. However, the focus is often on only specific areas of CVS dysfunction.

Although there are full CVS models, patient-specific parameter optimization

is either not considered or restricted to small subsets of the overall much

larger parameter set (e.g.[10, 11]). This restriction to specific CVS aspects

can dramatically limit the range of CVS disturbances that can be detected,

thus prohibiting use as a broader diagnostic tool for patients with unknown

condition. For relatively larger, more complex system models computational

cost and feasibility can also become a major issue.

This research employs a physiologically validated minimal model [12–

15] capable of capturing patient dynamics commonly seen in an ICU, while

using a relatively small number of physiological variables. A highly efficient

solution method [16] provides the necessary simplicity, flexibility and rapid
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forward simulation that is required in a clinical environment. An integral-

based parameter identification method has been also been developed and

shown, in simulation, to rapidly and accurately identify virtually the entire

parameter set in the presence of significant measurement noise [17]. However,

a relatively large measured data set was assumed, including continuously

measured pressure and flow waveforms. Such measurements might not always

be clinically available.

In this paper, the integral method is extended to allow discrete sets of

clinical data and is shown to be robust to unmodelled dynamics and mea-

surement noise. The measurements utilized are also reduced from prior work

to a more clinically feasible set. The use of integrals in the formulation is

shown to be critical for stability, even with locally smoothed curves, as com-

pared to numerical derivative-based identification approaches. The method

is initially tested on simulations of pulmonary embolism that capture all the

physiologically expected responses. The CVS model and integral method are

then clinically validated on a porcine model of pulmonary embolism.
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2 Methodology

2.1 CVS model

The CVS model is a lumped parameter model [18], where the left and right

ventricle chambers are characterized by the flow in and out of the cham-

ber, the pressure up- and downstream and the resistances of the valves, and

inertia of the blood. An overview of the model is given in Figure 1. To

add flexibility and better match waveform shape as well as peak values, the

model is extended from [18] to allow a slightly non-linear pressure volume

relationship in the aorta and pulmonary artery. The equations for the left

ventricle are defined:

Vpcd = Vlv + Vrv (1)

Ppcd = P0pcd · (eλpcd(Vpcd−V0pcd) − 1) (2)

Pperi = Ppcd + Pth (3)

Vlvf = Vlv − Vspt (4)

Plvf = driL · Eeslvf · (Vlvf − Vdlvf )

+ (1− driL) · P0lvf · (eλlvf(Vlvf−V0lvf ) − 1) (5)
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Plv = Plvf + Pperi (6)

Ppu = Epu · (Vpu − Vdpu) + Pth (7)

V̇ao = Qav −Qsys (8)

Qsys =
Pao − Pvc

Rsys

(9)

Pao = Eao · (Vao − Vdao)
f (10)

V̇lv = Qav −Qmt (11)

Q̇mt = H(H(Ppu − Plv) + H(Qmt)) ·
(Ppu − Plv −Rmt ·Qmt)

Lmt

(12)

Q̇av = H(H(Plv − Pao) + H(Qav)) ·
(Plv − Pao −Rav ·Qav)

Lav

(13)

where H is the Heaviside function, f is a nonlinear factor ranging from 0.8

to 1.4, and all other variables are as shown in Figure 1. Similar equations

are used for the right ventricle and pulmonary/ systemic circulation. For a

more detailed description see [12–14, 16, 18]. The parameter f in Equation

(10) provides more flexibility to capture the shape and peak of Pao seen in

clinical data.

2.1.1 Activation Function

The electrical activation of the left and right ventricles are described using a

driver function and time varying elastance to model cardiac muscle activation
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[7, 18]. For clinical validation on the porcine data, separate driver functions

are chosen for the left and right ventricles.

driL = AL · e
(−bL·(t− period

cL
)2)

(14)

driR = AR · e
(−bR·(t− period

cR
)4)

(15)

period =
1

heartrate
(16)

where AL = 1, bL = 2582.177, cL = 2.07 and AR = 1, bR = 91.5975,

cR = 2.18 for the left (L) and right ventricles (R). The drivers are shown in

Figure 2 for a period of 0.53s, and are developed from scaling pressures for

the porcine data.

The use of two different driver functions is physiologically justified, as the

electric signal spreads differently in both ventricles. More specifically, the

cardiac activation pattern and times have been clinically observed to differ

between the right and left ventricles [19, 20]. The activation function is also

defined to change as a function of the heart period. For human simulations

the same driver function is used for both ventricles and the septum volume,

and is defined [7, 18]:

dri = 1 · e(−80·(t− period
2

)2) (17)
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2.1.2 Ventricular Interaction

Ventricular interaction is an important dynamic [21, 22] and is included in the

model. The septum volume is described by a time-varying P-V relationship

defined [7, 14, 18]:

Pspt = driS ·Eesspt(Vspt − Vdspt) + (1− driS) · P0spt(e
λspt(Vspt−Vospt) − 1) (18)

where the driver function driS describing the activation of the septum, is

taken from [7, 14, 18]. The septum volume Vspt can be determined analyti-

cally using the methods in [17].

Vspt = a/b (19)

with a and b defined:

a =

(
driS · Eesspt · Vdspt + driL · Eeslvf · Vlv − driR · Eesrvf · Vrv (20)

− (1− driS) · P0spt · (bspte
−λsptVospt − 1) + (1− driL) · P0lvf · (blvfe

λlvf Vlv − 1)

− (1− driR) · P0rvf · (brvfe
λrvf Vrv − 1)

)

8



b =

(
driS · Eesspt − driL · Eeslvf − driR · Eesrvf (21)

+ (1− driS) · P0spt · aspte
−λsptVospt − (1− driL) · P0lvf · alvfe

λlvf Vlv

+ (1− driR) · P0rvf · arvfe
λrvf Vrv

)

where aspt, alvf , arvf , bspt, blvf , brvf are defined:

x1 = Vspt,old +4Vspt; x2 = Vspt,old −4Vspt (22)

aspt =
eλsptx2 − eλsptx1

x2 − x1

; alvf =
eλlvf x2 − eλlvf x1

x2 − x1

; arvf =
eλrvf x2 − eλrvf x1

x2 − x1

(23)

bspt = eλsptx1 − (eλsptx2 − eλsptx1

x2 − x1

x1) (24)

blvf = eλlvf x1 − (eλlvf x2 − eλlvf x1

x2 − x1

x1) (25)

brvf = eλrvf x1 − (eλrvf x2 − eλrvf x1

x2 − x1

x1) (26)

and Vspt,old is the Vspt in the previous time step and 4Vspt = 0.1ml. Note

that for the case of simulations of human driL = driR = driS.

2.1.3 Reflex actions (human simulations)

The effect of CVS diseases on the cardiovascular system can be significantly

altered by the compensation from nervous system reflex mechanisms. Thus,

reflex actions are included in the CVS model for the pulmonary embolism
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simulation. It is assumed that vasoconstriction is proportional to a drop in

pulmonary artery pressure (Pao) and is modeled by increasing the systemic

vascular resistance (Rsys) by 34% for a drop in average Pao from 100 mmHg

to 80 mmHg. Other reflex mechanisms include venous constriction, increased

heart rate (HR) and increased ventricular contractility [1, 19]. Their activa-

tion is also assumed to be proportional to the drop in the average pressure

in the aorta (Pao). The proportionality constants are estimated based on

clinically observed CVS hemodynamic responses reported in the literature

[23–25]. More specifically, HR and ventricular contractility are increased by

80 to 120 beats per minute and 67% whereas the venous dead space Vdvc is

decreased by 35% respectively for a drop in average Pao to 80 mmHg. Figure

3 shows how Rsys is varied as a function of 4Pao.

2.2 Integral-Based Parameter Identification

To uniquely determine the parameters, the model equations are transformed

using integrals. A previously designed integral-based parameter identifi-

cation method [17] is extended in this paper to rapidly identify the pa-

tient specific parameters from limited discrete data. The assumed mea-

sured data is the discrete minimum and maximum values of the pressure
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in the aorta (Pao,max, Pao,min), pulmonary artery (Ppa,max, Ppa,min), and the

discrete maximum and minimum volumes of the left and right ventricles

(Vlv,max, Vlv,min, Vrv,max, Vrv,min). Hence, unlike prior work [17], no waveforms

are required and there are 60% less measurements (4 total) required in this

approach.

2.2.1 Scaling model outputs - discrete data

For discrete data, the waveforms are not known, therefore the integral method

of [17] cannot be directly applied. However, waveforms can be artificially

generated by scaling a set of previously calculated model outputs to best

fit the maximum and minimum measured data values for the pressures and

volumes. The assumption is that these validated model waveforms are rea-

sonably conformable with the actual clinical case. In return, significantly less

measurement and potentially fewer invasive catheters are required.

The scaled signal, Signew, is obtained from a previously calculated signal,

Sigold, as follows:
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Signew = a · Sigold + b (27)

a =
(Sigm,max − Sigm,min)

(Sigs,max − Sigs,min)
(28)

b =
(Sigs,max · Sigm,min − Sigm,max · Sigs,min)

(Sigs,max − Sigs,min)
(29)

where the subscript s refers to simulated output and the subscript m refers to

measured data. For example, Figure 4 shows the pressure in the aorta (Pao)

after scaling with a = 0.6832 and b = 2.417, with the measured maximum

and minimum values denoted by a circle.

2.2.2 Scaling model outputs - porcine data

For the porcine data continuous waveforms are measured in Vlv, Vrv, Pao

and Ppa. However, the same scaling approach can be used to simplify the

parameter identification. In particular, scaling effectively filters noise and

unmodelled dynamics from the data. The identification problem is thus re-

stricted to dynamics in the model. Note that the final comparison is still

made to the original data and this approach is only done to minimize com-

putational effort and complexity in the identification process. An example

of scaling in this clinical porcine case is shown in Figure 5, for the pressure

in the aorta (Pao) before and after scaling, with a = 0.5871 and b = 6.7166.
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However, matching only the maximum and minimum values has the lim-

itation that the waveform shape may not be precisely captured. For the

porcine data, better matches to the waveform shapes were obtained by in-

troducing a slight non-linearity into the pressure volume relationship in the

aorta and pulmonary artery, as defined by Equation (10). A range of f pa-

rameters ranging from 0.8 to 1.4 were tested, where each time the integral

method was applied. The f value producing the best waveform match in the

aorta and pulmonary artery was chosen. Hence, more complexity could be

readily added to the model to better capture the observed dynamics with

minimal effect on computational time.

2.2.3 Integral identification problem formulation

Consider the left ventricle defined in Equations (8) and (13). Assume that

Qav, Qmt, Pao, Vlv, Vspt and Pperi are either measured or estimated from

measured data. Integrating Equation (11) from teb to t during ejection and

from tfb to t during filling gives an expression for Vlv(t) [17]:

Vlv(t) = Vlv(teb)−
∫ t

teb

Qav(t)dt, teb ≤ t ≤ tef (30)

= Vlv(tfb) +

∫ t

tfb

Qmt(t)dt, tfb ≤ t ≤ tfe (31)
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where teb is the beginning of ejection, and tfb is the beginning of filling, tee

stands for end-ejection and tfe for end-filling respectively. For simplicity,

Vdao = 0 and f = 1 in the following equations.

Integrating Equation (8) from 0 to t, solving for Vao(t), and then using

Equations (9) and (10) yields:

Pao(t) = Eao(Vao(0) +

∫ t

0

Qav(t)dt− 1

Rsys

∫ t

0

Pao(t)dt (32)

− 1

Rsys

∫ t

0

Pvc(t)dt)

Under the assumption that Pvc = Pvc0 is an unknown constant, Equation

(32) can be rewritten:

Pao(t) = Pao0 + Eao

∫ t

0

Qav(t)dt + A1

∫ t

0

Pao(t)dt + A2t (33)

where A1 and A2 are defined:

A1 = − Eao

Rsys

, A2 =
EaoPvc0

Rsys

(34)

The best linear least squares fit of Equation (34) to the measured pressure

waveform Pao over one heart beat will determine Eao and Rsys over that
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heart beat. Similarly, given an approximation to Vspt and Pperi in Equation

(5), Equations (12) and (13) can be integrated across the filling and ejection

stages respectively. A linear least-squares optimization can then be similarly

used to determine Rav, Rmt, Eeslvf and P0lvf . The right ventricle can be

treated similarly.

Given the pressure waveforms through the aorta and pulmonary artery,

the flows into and out of the left and right ventricles, as well as their volumes,

a system of linear equations can thus be defined for the full CVS model [17]:

A · −→x =
−→
b (35)

−→x =

(
Lav, Lmt, Ltc, Lpv, Eeslvf , P0lvf , Eesrvf , P0rvf , Eao, Epa, Evc, Epu,

(36)

Rav, Rmt, Rtc, Rpv, Pao0, Ppu0, Ppa0, Pvc0, Rsys, Rpul

)T

with −→x being the solution vector of the parameters to be identified, which

can be found by linear least squares. More details about this integral method

and parameter definitions can be found in [17].

Ventricular interaction is also included, however the volume of the septum

is not known and not directly measurable in an ICU. As an initial approx-

imation, this volume is set to zero. The resulting parameters identified by

15



the integral method are then used to resimulate the model and produce an

approximation of the septum volume (Vspt). The parameter identification is

then run a second time using this Vspt value, producing a modified set of

identified parameters that better account for ventricular interaction.

In this research, the parameters are identified for each period of mea-

sured data during the porcine experiment of pulmonary embolism. Thus,

time varying changes from the initial healthy state to the fully diseased state

are captured, as might be desired for a clinical system. Hence, model iden-

tification can provide a potential means of monitoring CVS disease state in

the highly dynamic critical care patient.

2.2.4 Simulation using optimized parameters

Figure 6 shows the overall process of the simulation and parameter identifi-

cation algorithm. After the porcine specific parameters have been identified

for a respective point in time, these parameters are then used to rerun the

model simulation. The simulated output is then compared to the clinical

data. However, due to errors in the initial approximations of Vspt and the un-

measured flows (Qav, Qmt, Qpv, Qtc), and the process of scaling output signals,

parameter identification should be iterated to ensure optimal convergence.
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Fast convergence consistently occurred within 3-5 iterations in this study and

is stopped when the relative error between model output and clinical data

reaches a set tolerance.

3 Results & Discussion

3.1 Simulated Pulmonary Embolism in Human

The CVS model and previously identified human parameters [12–14, 17] are

used to generate simulated pulmonary embolism data. Pulmonary embolism

is caused by a blood clot obstructing the pulmonary circulation and is sim-

ulated by increasing the pulmonary resistance Rpul by 30% every 50 heart

beats for a total of 300 heart beats. This gives an overall increase in Rpul

of 150%. To account for measurement noise, white gaussian noise of 5%

and 10% is added to the (simulated) measurements for pressure in the aorta,

pulmonary artery and both ventricle volumes.

During pulmonary embolism, blood is backing up in the right ventri-

cle due to increased afterload. The overfilled right ventricle compresses

the underfilled left ventricle and thus, the right ventricle expansion index

(RVEDV/LVEDV) increases [26, 27]. Figure 7 shows the true expansion in-
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dex versus the re-simulated expansion indexes obtained using the identified

parameter sets from the simulated pulmonary embolism experiment.

The left panels of Figure 8 show the simulated pressure in the left ventricle

(Plv), the left ventricle volume (Vlv) and the pressure in the aorta (Pao). In

each case, 10% Gaussian white noise is added to the pressure and volume

signals, except for the ventricular pressure (top panel) as it is not measured

or used in the analysis. Only the maximum and minimum values of Pao and

Vlv in the noise corrupted signals are used to identify the system parameters.

The dotted lines in each panel are the re-simulated signals generated with the

identified parameter set. Similar results for the right ventricle are given in the

right panel. Although the pressure in left and right ventricles is not known

and not used during the parameter identification process, the re-simulated

data matches it very well.

Finally, Figure 9 shows the identified pulmonary resistance over the 300

heart beats. Increased pulmonary resistance is the hallmark of pulmonary

embolism. Here, it is consistently detected with up to 10% random noise

added.

The pressure-volume relationship for the left ventricle is shown in Figure

10 for 6 different points in time during the pulmonary embolism experiment
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with 10% measurement noise. The CVS identification method produces pa-

rameters, which when re-simulated match the clinical data very closely with

average errors of 3.18±1.79 mmHg (7.20%) and 3.81±3.38 ml (4.67%) for the

maximum and minimum pressures and volumes respectively. These identi-

fication results are summarized in Table 1, which also shows an accurately

captured rise in pulmonary resistance.

3.2 Integral vs Derivative identification approaches

Rather than formulating Equations (1) - (13) in terms of integrals [17] a po-

tentially simpler way is to directly substitute the measured or estimated data

into Equations (1) - (13). This approach would require differentiating the

signals for Equations (8), (11), (12) and (13). For the case of scaled signals,

the local noise is effectively removed and the signals are smooth suggesting

that differentiation may be suitable. A similar system of linear equations

to Equations (35) and (36) would be obtained without the initial conditions

Pao0, Ppa0, Pvc0 and Ppu0 which are essentially integration constants.

However, although local measurement noise is removed there is still mod-

elling error that occurs from scaling the signals. Specifically, a scaled wave-

form can only match the maximum and minimum values of a measured signal
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and will not necessarily have the same waveform shape. Figure 11 shows an

example where the scaled and measured pressure and volume waveforms are

superimposed. Note that ”measured” in this case refers to the model gener-

ated signal using pre-selected parameters that represent a ”virtual” patient.

Figure 12 shows a comparison of the derivatives dPao

dt
, dPpa

dt
and integrals∫ t

0
Paodt,

∫ t

0
Ppadt for the scaled versus true signals. A similar comparison is

made between dVlv

dt
, dVrv

dt
and

∫ t

0
Vlvdt,

∫ t

0
Vrvdt in Figure 13. Very large errors

can be seen in the differentiated signals, thus showing how differentiation

amplifies the modelling error between the curves in Figure 11, even though

the signals are locally smooth. In contrast, integration effectively reduces

modelling error as shown by the upper panels in Figures 12 and 13. Figures 14

and 15 further demonstrate the differences by displaying the percentage errors

for both methods, where the derivative-based approach shows an effective

instability.

The parameters identified by the derivative-based method are then used

to rerun the CVS model and produce pressure and volume curves, for com-

parison to the (simulated) measured data. This process is repeated in all the

measured periods during the pulmonary embolism simulation experiment.

The results in Figure 16 show significant large errors in the matching of the
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signals. The total mean error in the identified parameters, versus the true

values simulated, over all periods was 419% ± 1363%. Thus, the integral

formulation provides a more robust parameter identification in the presence

of modelling or measurement error.

3.3 Porcine Pulmonary Embolism

Finally, the integral-based parameter identification is applied to clinical porcine

data for a true clinical validation. The data was obtained from the Hemo-

dynamics Research Laboratory, University of Liège, Belgium. In the experi-

ments, a pig is injected with autologous blood clots every 2 hours to simulate

pulmonary embolism [28]. Three pigs are presented for initial validation of

the methods presented.

Figure 17 shows the simulated model output for the pressure in the left

and right ventricles (Plvs, Prvs), the volume in the left and right ventricles

(Vlvs, Vrvs) and the pressure in the aorta, pulmonary artery (Paos, Ppas) over-

laid with the corresponding clinical data (Plvp/Prvp, Vlvp/Vrvp, Paop/Ppap) at

30 mins into the pulmonary embolism experiment of pig 1. The simulation

data matches the measured porcine data very well with errors within 2.36

mmHg (∼ 5.72%) and 1.47 ml (∼ 2.16%) for the maximum and minimum
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pressures and volumes, respectively.

Figure 18 shows the Volume-Pressure waveforms for the left and right

ventricles in more detail. The upper panel in Figure 18 is the simulated

ventricle volume and the dotted line is the measured porcine volume for 2

heartbeats. The lower panel shows the same results obtained for the ventricle

pressure. Finally, Figure 19 shows the resulting Pressure-Volume relation-

ships (P-V loops) for the left and right ventricles. Errors in all cases are in

the range of 0.15% to 4.76%.

Figure 20 displays the P-V loops for the left and right ventricle 120 min-

utes into the pulmonary embolism experiment. Although the model didn’t

exactly capture all the exact volume shapes in the left and right ventri-

cles, the pressure waveform shapes were accurately captured, as well as the

maximum and minimum pressures and volumes. The differences represent

local, unmodelled dynamics, as might be expected. Overall, the errors in the

maximum pressures and volumes that are typically used to define trends in

different disease states are within 0.17% to 4.95%, respectively.

Figure 21 displays the P-V loops at 180 minutes, which was the end of the

experiment. Again the results show a very close match. Errors in the maxi-

mum pressures and volumes are all within 0.20% and 6.59%, respectively.
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Figure 22 clearly shows that the identified subject (pig) specific parame-

ters systemic and pulmonary vascular resistance, Rsys and Rpul, differ signif-

icantly between healthy and disease state, with Rpul increasing by 261.44%.

Furthermore, the model’s ability to pick up reflex response can clearly be

seen in Figure 22, as the pig increases systemic resistance to help restore

blood pressure. However, near the end, when the pig is near death, systemic

resistance (Rsys) drops off. This last result is potentially a sign that the pig

can no longer regulate hemodynamics effectively. The left and right ventricle

contractilities (Eeslvf , Eesrvf ) also increased during the pulmonary emboliza-

tion experiment. These contractilities are also known to be part of reflex

response [29], providing some further confirmation of this result.

The derivative formulation of the parameter identification algorithm did

not produce a parameter set that could be used to re-run the CVS simula-

tion when using the clinical porcine data. This result further illustrates the

instability and/or diffculty of this type of method for this problem.

3.4 Summary of 3 pigs

The results of the integral-based parameter identification method on the 3

pigs are summarized in Table 2. The mean and standard deviation of the
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absolute errors for the maximum and minimum pressure in aorta (Pao) and

pulmonary artery (Ppa), and left and right ventricle (Plv,Prv) are given. The

mean model response errors are within 2.21±2.15 mmHg (∼ 5.52%) for the

pressures and 2.37±2.01 ml (∼ 3.49%) for the volumes. These results show

that the minimal CVS model is able to capture the essential dynamics of the

porcine CVS response to induced pulmonary embolism, over a selection of

subjects.

4 Conclusions

The integral-based optimization successively identified patient specific pa-

rameters for the minimal cardiac model with inertial effects and ventricular

interaction. A much reduced discrete set of measured data was employed

compared to prior work. The use of integrals for identification of this model

parameter identification, particularly in the presence of measurement noise

and/or modelling error. In contrast, derivative-based methods failed to pro-

duce stable, reliable identification results. Thus, integrals are fundamental

to handling both local measurement error [17] and modelling error in the

parameter identification process.

Computationally, the parameter identification optimization problem is

24



made linear and convex, where current approaches are non-linear and non-

convex. The results from clinical porcine data of pulmonary embolism show

that clinically relevant and physiologically accurate parameter identification

can be obtained to a clinical setting. These results will obviously need to

be confirmed with further trials over broader sets of cardiac circulatory dys-

function. However, this integral approach has the potential to ensure medical

staff can obtain rapid patient specific information to assist in diagnosis and

therapy selection in clinical real time.
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Figure 1: Minimal CVS model overview
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Figure 2: Driver functions for ventricle activation
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Figure 10: Pressure-Volume Relationship for left ventricle during pulmonary
embolism experiment and 10% measurement noise for simulated human case
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for simulated human case
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Figure 12: Comparison between integral and derivative for true (dashed) and
scaled (solid) signal for simulated human case
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Figure 13: Comparison between integral and derivative for true (dashed) and
scaled (solid) signal for simulated human case
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Figure 14: Percentage error for integral and derivative for simulated human
case
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Figure 15: Percentage error for integral and derivative for simulated human
case
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Figure 17: Porcine pulmonary embolism, pig 1, model output (s) vs clinical
data (p) data
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Figure 18: Porcine pulmonary embolism, pig 1, model output (s) vs clinical
data (p) for Pressure and Volume
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Figure 19: Porcine pulmonary embolism, pig 1, Pressure-Volume Relation-
ship
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Figure 20: Porcine pulmonary embolism, pig 1, Pressure-Volume Relation-
ship
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Figure 21: Porcine pulmonary embolism, pig 1, Pressure-Volume Relation-
ship
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Figure 22: Porcine pulmonary embolism, pig 1: Pulmonary and vascular
systemic resistance
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Pressures (mmHg) and Error (%)
Noise Pao Ppa Plv Prv

0% 1.63±0.89 (1.70) 1.28±1.31 (4.92) 1.30±1.56 (2.40) 0.76±1.38 (4.17)
5% 1.58±0.83 (1.74) 2.01±1.60 (7.74) 0.69±0.75 (4.40) 1.39±1.56 (9.01)
10% 3.18±1.79 (3.57) 2.72±1.96 (9.33) 1.36±1.63 (6.29) 1.76±1.99 (9.62)

Volumes (ml) and Error (%)
Noise Vrv Vlv

0% 1.72±1.36 (2.46) 1.80±2.08 (2.46)
5% 2.07±1.08 (3.36) 2.88±2.34 (3.81)
10% 2.50±2.44 (4.64) 3.81±3.38 (4.70)

Rpul (mmHgsml−1) and Error (%)
Noise 0 s 35 s 70 s 105 s 140 s 175 s
0% 0.155 (0.07) 0.191 (5.34) 0.257 (1.72) 0.315 (7.32) 0.413 (6.62) 0.583 (1.32)
5% 0.142 (8.06) 0.198 (1.40) 0.252 (3.81) 0.323 (5.06) 0.381 (14.04) 0.483 (16.16)
10% 0.154 (0.14) 0.208 (2.10) 0.243 (7.34) 0.306 (10.01) 0.371 (16.14) 0.482 (16.23)
True 0.155 0.201 0.262 0.340 0.443 0.576

Table 1: Simulated Human Pulmonary Embolism: Mean model response er-
rors and standard deviation for combined maximum and minimum pressures
and volumes. The lower portion shows the value of pulmonary resistance,
Rpul, with the true simulated value for comparison. The mean percentage
errors are given in brackets.
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Pressures (mmHg) and Volumes (ml)
Pig Pao Ppa Plv Prv

#1 3.501±3.247 (4.10) 2.31±1.93 (8.63) 1.37±1.65 (3.46) 2.313±1.939 (5.46)
#2 5.042±3.161 (4.59) 2.394±1.827 (10.17) 1.604±1.179 (1.90) 1.264±1.337 (5.23)
#3 2.567±2.130 (2.18) 2.305±1.796 (2.30) 2.414±2.607 (2.41) 0.571±0.708 (2.51)

Volumes (ml) and Error (%)
Noise Vrv Vlv

0% 1.666±1.682 (2.39) 1.273±1.187 (1.90)
5% 3.468±0.870 (4.21) 3.007±1.609 (4.75)
10% 3.316±2.315 (5.67) 2.294±2.156 (3.32)

Rpul (mmHgsml−1)
Pig 0 min 60 min 90 min 120 min 180 min 240 min
#1 0.044 0.196 0.198 0.197 0.307 0.290
#2 0.152 0.305 0.393 0.387 0.529 0.466
#3 0.138 0.174 0.215 0.228 0.405 0.445

Table 2: Porcine Pulmonary Embolism: Mean model response errors and
standard deviation for combined maximum and minimum pressures and vol-
umes. The lower portion shows the true value of pulmonary resistance, Rpul,
with the true simulated value for comparison. The mean percentage errors
are given in brackets.
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