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Abstract—This paper investigates the design and performance
of a two-user satellite communication system. Each user is
independently encoded using a structured Turbo code with
identical symbol interleavers. This permits Turbo decoding to be
performed using the combined component code trellises, which
provides significant gains over independent decoding. The design
of the code-matched symbol interleavers is described. Both ideal
and imperfect knowledge of the relative phase shift between users
is considered. Performance is compared to the single user case
and the performance degradation due to a third unknown user is
considered. These investigations show that the proposed system
performs well in a variety of conditions.

Index Terms—Turbo Code, satellite communications, inter-
leaver design, iterative decoding, multiuser communications.

I. INTRODUCTION

W IRELESS data communication systems often employ
a star network architecture in which multiple remote

terminals communicate with a central hub or base station using
a shared channel. Transmission is in frames or packets and a
fundamental problem is the efficient sharing of the channel
[27], [19]. Typical of such systems are very small aperture
terminal (VSAT) satellite systems [21], [1], [3]. These are
packet radio systems and their communication characteristics
are summarized in [2], [29].

One approach to mitigating the effect of multiple cochannel
signals in satellite systems involves joint iterative interference
cancellation and decoding [5]. In contrast, in this paper we
utilize coding to mitigate some of the loss due to simultaneous
transmission by users in the same channel (collisions). We
code in such a manner that when only two users collide, we
may with some minimal performance degradation recover both
packets. In many systems two-user collisions are the dominant
cause of packet loss [29] and the elimination or reduction of
frame loss in this case leads to significant improvement in
achievable throughput and usage of system resources.

We consider the situation when two users continuously
transmit packets or frames simultaneously and independently
through the shared memoryless additive white Gaussian noise

Paper approved by A. H. Banihashemi, the Editor for Coding and Commu-
nication Theory of the IEEE Communications Society. Manuscript received
August 1, 2007; revised March 13, 2008 and August 19, 2008.

P. A. Martin and D. P. Taylor are with the Department of Electrical and
Computer Engineering, University of Canterbury, Christchurch, New Zealand
(e-mail: {p.martin, taylor}@elec.canterbury.ac.nz).

M. A. Ambroze and M. Tomlinson are with the School of Computing,
Communications and Electronics, University of Plymouth, United Kingdom
(e-mail: {m.ambroze, m.tomlinson}@plymouth.ac.uk).

Digital Object Identifier 10.1109/TCOMM.2009.08.070390

(AWGN) channel and are jointly decoded. Their transmissions
are assumed synchronized at frame and symbol levels, but
are not phase locked. Both ideal and imperfect knowledge
of the relative phase shift between users is considered. We
assume the availability of pilot symbols to initialize the phase
estimator in each joint receiver. Both users are assumed to
have uplink power control, as used for example in the DVB-
RCS standard [15].

In this work we investigate systems that do not use code,
time or frequency division multiple access. Instead we focus
on using error control coding (with code rates of 1/3) to
protect multiple users in a shared channel1. In [10] rate 1/16
Turbo codes are used to independently encode each user’s
data, which is transmitted on a multiple-access adder AWGN
channel. Each user is assigned a different power, which allows
the decoding of high power users to converge and hence
reduce interference so that the decoding of lower power users
can then converge. Iterative decoding is used within each
Turbo code and between Turbo codes of different users. Each
user has a randomly generated coded bit interleaver after the
Turbo encoder. In [28], [31] a Reed Solomon (RS) code is
concatenated with a Turbo code and used for transmission over
a digital video broadcasting (DVB) satellite system. However,
only single user performance is considered.

Here we use Turbo codes to independently encode each
user’s data. We assume that the codes used by each user
are known at the hub or receiver. Unlike [10], we avoid
concatenating iterative decoders as they are suboptimal and
extrinsic information tends to saturate. Instead, the Turbo
codes of both users are jointly decoded using a combined
trellis for each of the component convolutional codes and
iterative decoding is performed between the combined trellis
decoders. This exploits the fact that in Turbo codes the
component convolutional codes have low complexity and
as a consequence the combined trellis still has manageable
complexity. The transmitted symbols are structured such that
it is possible to use optimal maximum a posteriori (MAP)
decoding of the combined component codes of both users’
Turbo codes. This approach allows performance to be sig-
nificantly improved compared to decoding the two users’
codes independently, while still maintaining feasible decoding
complexity. In addition, since we are only iterating between
two MAP decoders instead of within and between two Turbo
code decoders [10] we do not need to worry about scheduling

1We note that this could be argued to be a form of code division multiple
access, but not in the traditional meaning of the term.
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the iterative decoding [9].
Symbol-based decoding is used in order to improve com-

bined decoder convergence. The decoders use metrics based
on the composite constellation created by the transmitted
symbols from both users. From the decoder’s point of view
this is equivalent to a higher order modulation. Turbo codes
do not converge well with higher order modulation and it
is found, similar to [16], that symbol interleaving improves
convergence. As shown later, careful code-matched interleaver
design is necessary to ensure that the distance properties of
the Turbo codes result in a low error floor.

In Section II we describe the proposed communication
system. This includes a description of the interleaver design.
Section III presents extensive simulation results, which inves-
tigate the robustness of the proposed scheme under various
conditions. Finally, conclusions are drawn in Section IV.

II. SYSTEM OVERVIEW

We consider a two user satellite communication system and
focus on the decoding of user A. A memoryless AWGN chan-
nel is considered. The vectors of M -ary constellation points
transmitted by users A and B are denoted sA =(sA

1 ,· · ·, sA
N)

and sB = (sB
1 ,· · ·, sB

N ), respectively, where N is the frame
length and M is the size of each users’ constellation. The
set of all possible points is denoted {cA

i }M
i=1 for user A and

{cB
i }M

i=1 for user B. We assume both users simultaneously
transmit codes with the same length, and have symbol and
frame synchronization. We also assume that both users have
uplink power control so that the relative power levels received
at the satellite may be preset. The noise free received signal
vector is then defined as

y =
√

EA
s sA +

√
EB

s sB exp(−jφ), (1)

where EA
s and EB

s are the average symbol (constellation
point) energies for user A and B, respectively, and φ =
(φ1, · · · , φN ) denotes the phase difference between their
signals. The resulting composite noise free received constella-
tions for EA

s = 1 and various values of EB
s and φ are shown

in Fig. 1 for QPSK. For two users each transmitting QPSK the
composite constellation varies between having 9 non-unique
points to having 16 unique points (including 16-QAM and 16-
APSK constellations). The phase shift, φ, is primarily caused
by the relative motion between the satellite and user A and
B’s terminals on Earth. We assume we can track the motion
of the satellite. However, short-term frequency instabilities in
the two terminals will result in a time varying phase. As a
result, we consider both ideal and imperfect knowledge of
φ at the receiver. However, the estimation and tracking of
phase is beyond the scope of the present paper. The reference
phase for the system is assumed to be that of user A. Unless
otherwise stated we also assume the relative phase difference
between the two transmitted signals varies linearly with time
such that the phase difference accumulated over each block of
N transmitted symbols from each user is a small multiple of
2π.

A. Encoder

The proposed two-user system is shown in Fig. 2. Each user
employs a conventional Turbo code using recursive system-
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Fig. 1. Noise free received composite constellations for EA
s = 1 and various

values of EB
s and φ. The transmitted constellations from user A and B are

labelled by � and ×, respectively. The resulting composite noise free received
constellation points are labelled by ◦.

atic convolutional (RSC) component codes [7] and identical
symbol based interleavers. This allows the interleaved compo-
nent codes to be decoded using a low complexity combined
trellis. The modulated encoded data from both users is sent
simultaneously and adds linearly on a symbol by symbol basis
according to (1), where there are log2(M) bits per symbol/
constellation point. Gray mapping is used. Each M -ary symbol
transports either data, parity 1 (parity from the non-interleaved
component encoders) or parity 2 (parity from the interleaved
component encoders), but not a combination of them. This
structure simplifies the symbol-based decoding. Since we
assume user A and B have frame synchronization, both users
simultaneously transmit the same type of symbol (namely data,
parity 1 or parity 2). We denote the binary data from user
A and B as dA =

[
dA
1 , · · · , dA

k

]
and dB =

[
dB
1 , · · · , dB

k

]
,

respectively, where k is the number of information bits per
frame for each user. The parity bits from the ith component
encoder of user A and B are denoted pA

i =
[
pA

i,1, · · · , pA
i,m

]
and pB

i =
[
pB

i,1, · · · , pB
i,m

]
, respectively, where m is the

number of parity bits from each encoder per frame. The rates
of user A and B’s Turbo codes are denoted RA

ecc and RB
ecc,

respectively.
In order to associate the decoded data with the correct user,

it is necessary for each user to have a different signature.
The simplest solution is to use different component codes.
The component codes are encoded/ decoded using the tail
biting method [8], [23] in order to avoid trellis termination

Authorized licensed use limited to: University of Canterbury. Downloaded on August 19, 2009 at 18:02 from IEEE Xplore.  Restrictions apply. 



2332 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 8, AUGUST 2009

SISO Decoder for

combined trellis C &1

A
C1

B

Convolutional encoder

C2

A�

Convolutional encoder

C1

B

Convolutional encoder

C2

B�

d
A

d
B

�

�

�

Encoder Channel over
3 time slots

Decoder

n

n

n

Convolutional encoder

C1

A

SISO Decoder for

combined trellis C &2

A
C2

B

�
��

�

d
A

M
ap

b
it

s
to

co
n

st
el

la
ti

o
n

p
o

in
ts

d
A

p2

A

d
B

p1

A

p1

B

p2

B

rd

rp
1

rp
2

Fig. 2. Proposed two user communication system with symbol interleaver π. Note, pairs of bits from the same output stream (for example dA) are mapped
to QPSK constellation points. Both users send either data, parity 1 or parity 2 information simultaneously. The three output types are then time multiplexed
on a symbol basis. There is only one channel and noise source, but here we show the three time slots used to transmit the encoded data as three separate
adders.

overheads. Two sections in each component code’s trellis are
combined to allow symbol based decoding. In the following
we assume rate 1/2 RSC component codes for ease of
exposition. For each of users A and B we denote the current
state in the ith component trellis as SA,i and SB,i and the
next state as SA,i/ and SB,i/, respectively. The transition from
state SA,i to SA,i/ is labelled by (dA

1 , dA
2 , pA

i,1, p
A
i,2) for user A

and similarly for user B. Each pair of states (SA,i,SB,i), one
from the ith component code’s trellis of each user, determine a
state in the ith component code’s combined trellis. Therefore,
for each transition in the component trellis of user A there
are 4 transitions in the component code’s combined trellis.
The transition labels in the combined trellis are the union
of the labels in the trellises of the two users. Therefore, the
transition label for the transition from state (SA,i,SB,i) to
(SA,i/,SB,i/) is (dA

1 , dA
2 , pA

i,1, p
A
i,2, d

B
1 , dB

2 , pB
i,1, p

B
i,2).

The combined trellis complexity grows exponentially with
the number of users, but reduced state techniques can be used
to reduce complexity. If one of the users is substantially differ-
ent in power or if the signal to noise ratio (SNR) is large only
a few of the states will have significant probabilities. Thus,
states can be pruned without significant loss in performance.

B. Interleaver Design

Identical code matched symbol interleavers of length L =
k/ log2(M) symbols are employed by each user. A symbol
interleaver allows symbol probabilities to be exchanged during
the iterative process, which gives improved convergence [14].
The design of the symbol interleaver has to take into account
low weight Turbo codewords involving component code error
events that have two 1’s contained in one interleaver symbol.
These low weight codewords are possible because a symbol
interleaver does not separate the bits within a symbol. They
are not characteristic of bit interleavers. Consequently, two
constraints are imposed on the design of the symbol inter-
leaver. Firstly, we use a (symbol-wise) S-random interleaver
[12] of size S ≈ √

L/2. Secondly, low code weight error
events are determined and as much as possible removed from
the interleaver by symbol swaps in an iterative fashion.

The symbol interleaver design starts with a symbol based S-
random interleaver, which provides a reasonable starting point

for the iterative procedure described below. The procedure has
two steps:

1) Determine the Turbo code weight spectrum up to the tar-
get design distance and identify the (symbol) interleaver
entries that cause the low weight codewords.

2) Swap the selected interleaver entries with randomly
chosen entries under an S-random constraint (the swap-
ping should not result in a significant reduction of the
S parameter). If there are no more codewords with
weight lower than the design distance or a set number
of iterations has been exceeded, then exit this design
procedure. Otherwise, return to step 1.

For the two-user case, the weight spectra of the Turbo codes
of both users has to be considered simultaneously. It has been
found that this procedure reduces the number of error events
discussed above, but does not completely remove them due
to their large number. This is why their weight has to be
maximized.

The first terms of the Hamming weight spectrum of the
Turbo code are evaluated using a branch and bound search
algorithm as introduced in [17]. The algorithm used for this
work has been optimized to take advantage of the short
constraint length of the component codes [24]. This results in
a highly optimized algorithm which can compute not only the
minimum distance of the code but also a significant number
of higher weight terms.

C. Channel Metric

Since we consider a memoryless AWGN channel the re-
ceived baseband signal, r = (r1, · · · , rN ), after matched
filtering and sampling, can be written as

r = y + n =
√

EA
s sA +

√
EB

s sB exp(−jφ) + n, (2)

where n = (n1, · · · , nN ) is AWGN with variance

σ2
n =

N0

2
=

EA
s

2 log2(M)RA
ecc100.1SNR

, (3)

and SNR = 10 log10(E
A
b /N0) denotes the signal to noise

ratio in terms of user A’s data bit energy, EA
b , and the noise

spectral density, N0.
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A soft channel metric is calculated for each possible pair of
symbols (sA

t , sB
t ) at time t. We assume all possible symbols

are equiprobable. Since we assume a memoryless AWGN
channel, for each time t, we want to find

(ŝA
t , ŝB

t ) = arg max
{cA

i ,cB
l }

{
p(cA

i , cB
l |rt, φt)

}
= arg max

{cA
i ,cB

l }

{
p(rt|cA

i , cB
l , φt)Pr(cA

i )Pr(cB
l )

p(rt|φt)

}
= arg max

{cA
i ,cB

l }

{
p(rt|cA

i , cB
l , φt)

}
, i, l = 1, · · ·, M.

(4)

Assuming a Gaussian distribution this becomes

(ŝA
t , ŝB

t ) = arg max
{cA

i ,cB
l }

{

exp

(
−|rt −

√
EA

s cA
i −√EB

s cB
l exp(−jφt)|2

2σ2
n

)}
. (5)

Therefore, the normalized metric for the hypothesized user A
and B symbols (cA

i , cB
l ) at time t is defined as

Mi,l
t =

Γi,l
t∑M

q=1

∑M
p=1 Γq,p

t

, i, l = 1, · · · , M, (6)

where

Γq,p
t =exp

(
−|rt −

√
EA

s cA
q −√EB

s cB
p exp(−jφt)|2

2σ2
n

)
. (7)

D. Decoder

Here, we assume that the decoder knows the codes of both
users. The uninterleaved component codes for both users are
jointly decoded using a combined trellis. The same length
k/ log2(M) symbol interleaver is used by both users, which
allows the interleaved component codes for both users to also
be jointly decoded using a combined trellis. Soft information
is passed between the combined decoders as shown in Fig. 2.

A symbol-based MAP decoder is used to obtain symbol-
based extrinsic information, which is exchanged during the
iterative process. For each iteration, the input to the ith com-
bined trellis decoder is the extrinsic information and channel
symbol probability for: user A data symbol, dA, user A parity
symbol, pA

i , user B data symbol, dB , and user B parity symbol,
pB

i . The extrinsic information probabilities are provided by
the other component decoder during each iteration and are
initialized to uniform probabilities before the first iteration.
For each trellis section t, the channel symbol probability is
given by

PC{xA =u, xB =v|rx}=PC{sA
t =cA

i , sB
t =cB

l |rx}=Mi,l
t ,
(8)

where Mi,l
t is calculated using (6) and (7), x ∈ {d, pi}, rx is

a received symbol and u, v ∈ {{00}, {01}, {10}, {11}}.
The MAP output for combined decoding of the ith com-

ponent code is given for each trellis section by (the section

index is omitted for clarity):

P{dA = u, dB = v|r} = λ1P{dA = u, dB = v|rd}
×

∑
(SA,SA/):dA=u

∑
(SB ,SB/):dB=v{

α(SASB)β(SA/SB/)P{pA
i , pB

i |rpi}
}
, (9)

where P{dA, dB |rd} and P{pA
i , pB

i |rpi} are the transition
probabilities, in which rd and rpi denote a noisy received
data symbol and parity symbol, respectively. Note λ1 is a
multiplicative constant2, and α(SASB) and β(SA/SB/) result
from the alpha and beta recursions of the MAP algorithm [4].
In the iterative decoder,

P{dA, dB|rd} = λ2P
′
E{dA, dB|r}PC{dA, dB|rd} (10)

is the extrinsic probability from the previous decoder times
the channel probability calculated using (8) and λ2 is again
a multiplicative constant. The output extrinsic information for
both users’ data symbols is given by

PE{dA = u, dB = v|r} = λ3

∑
(SA,SA/):dA=u

∑
(SB ,SB/):dB=v{

α(SASB)β(SA/SB/)P{pA
i , pB

i |rpi}
}
, (11)

where λ3 is a multiplicative constant.
The advantage of using this combined decoder can be illus-

trated by considering a scenario in which separate decoders
are used. Now, the joint conditional probabilities are treated
as if they were independent probabilities. This means we
assume the inputs to each decoder are independent. Then
P{dA, dB|rd} = P{dA|rd}P{dB|rd} and P{pA

i , pB
i |rpi} =

P{pA
i |rpi}P{pB

i |rpi}. This corresponds to the user A decoder
treating user B as independent interference. It can be shown
that (9) then becomes3

P{dA = u, dB = v|r} = λ1

× P{dA = u|rd}
∑

(SA,SA/):dA=u

α(SA)β(SA/)P{pA
i |rpi}

× P{dB = v|rd}
∑

(SB,SB/):dB=v

α(SB)β(SB/)P{pB
i |rpi}.

(12)

This can be split into two separate decoders with

P{dX = w} = λ4P{dX = w|rd}
×

∑
(SX ,SX/):dX=w

α(SX)β(SX/)P{pX
i |rpi}, (13)

where λ4 is again a multiplicative constant, X ∈ {A, B} and
w ∈ {u, v}. This leads to separate MAP decoding which
incorrectly assumes that the inputs to the two decoders are
independent. The MAP summation in (13) is performed over
the state space of only one user. The other user is treated as
independent interference and this assumption destroys infor-
mation available in the received signal, which could be used
in combination with the trellis structure of the other user. In
(9) the MAP summation is performed over the combined state

2Note λ1, λ2, λ3 and λ4 are multiplicative constants as in [4].
3The alpha and beta recursions were also analyzed to reach (12).
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space of the two users. In this way, the knowledge available
at the decoder about the structure of the encoded stream from
user B is used to aid the decoding of user A.

E. Phase Errors

In practical systems the phase has to be calculated and
tracked. In order to consider the impact of imperfect phase
estimation on performance we model the phase error as a
Gaussian random variable with variance 1/γPE [18]. The
probability density function (PDF) of the phase error, θ, is
then given by [18]

P (θ) ≈ exp(−θ2γPE/2)√
2π/γPE

, (14)

where γPE is the effective loop SNR of the phase estimator.
This model can be used when a phase lock loop with large
loop SNR is considered. Note, that in the severe co-channel
interference scenario considered here, it is likely that a more
sophisticated phase estimator would be required. This is
outside the scope of the current work. However, the simple
model considered does allow us to investigate the robustness
of the scheme to a random phase error. The channel metric is
still calculated using (6), but now we define

Γq,p
t =exp

(
−
∣∣∣∣∣rt −

√
EA

s sA
q exp(−jθA

t )√
2σn

−
√

EB
s sB

p exp(−j(φt + θB
t ))√

2σn

∣∣∣∣∣
2
⎞
⎠ , (15)

where θA
t and θB

t are the phase estimation errors for user A
and B, respectively, based on the PDF given by (14).

III. SIMULATION RESULTS

We now present simulation results for the proposed two user
satellite communication system. Users A and B each transmit
QPSK constellation points. A maximum of 50 decoding itera-
tions4 are used and results are based on at least 100 frame error
events. All bit error rate (BER) and frame error rate (FER)
results are presented from user A’s perspective. However, the
decoder can be used to obtain estimates of both users’ data.
We define SNR with respect to user A and set EA

s = 1.
Recall, unless otherwise stated, we assume the relative phase
difference between the two transmitted signals varies linearly
with time such that the phase difference accumulated over
each block of N transmitted symbols from each user is a
small multiple of 2π. See Section II for more details on the
system setup.

A. Component code selection and interleaver design

Memory 2, 3 and 4 component codes were evaluated for
the two user scenario. Memory 3 component codes have been
found to provide the best compromise between convergence
and error floor. The memory 3 component RSC codes in the
Turbo codes are defined by the feed forward polynomial ff =
17 (octal) and feedback polynomials fb = 13 (octal) for user

4A stopping rule is used similar to that described in [22].

A and fb = 15 (octal) for user B. Each component RSC code
has rate Rcc = 1/2 giving an overall Turbo code rate of
RA

ecc = RB
ecc = 1/3. Here, we will consider Turbo codes

with k = 1000 (for each user).
The symbol interleaver is designed using the procedure

outlined in Section II.B. Unless otherwise stated, we use a
2-bit symbol interleaver for k = 1000 bits. The S-random
interleaver starts with S = 14 (symbols) and ends after the
swaps with S = 12 (symbols). The weight spectra for weights
of 34 or less is Aw≤34(x) = 6x22 + 14x25 + 8x26 + 5x27 +
8x28 +25x29+46x30+22x31+3x32 +102x33+76x34 before
and Aw≤34(x) = 3x32+93x33+83x34 after the swaps, where
the exponent of x denotes the weight of the error event and
the multiplicative factors denote the multiplicity. As can be
seen the final minimum distance is dmin = 32.

We now justify the selection of the memory 3 RSC com-
ponent codes. The weight of the error events that cannot be
removed by the symbol interleaver structure can be maximized
by choosing the feed forward polynomial equal to ff = 17
(octal). This is due to the fact that most of these error events
are caused by data sets that cancel the feedback, in user A’s
case the simplest error events are of the type xp(1 + x + x3),
where p gives the position in the input stream of the error
event. The parity output of the encoder is y(x) = xp × ff(x)
with maximum weight if all the coefficients of the feedfor-
ward polynomial ff(x) are 1, meaning ff = 17 (octal). The
case of user B is similar (the error events are of the type
xp(1+x2 +x3)) resulting in the same choice of feed forward
polynomial, ff = 17 (octal). Note that such error events are
not generally allowed by an S-random bit interleaver as the
first two bits of the error events would be interleaved away
from each other. Note, the combined component code trellises
have 64 states.

B. Two user system with combined user A and B decoding

Here, we consider the two user system with combined user
A and B decoding. The effect of various values of EB

s on
BER and FER performance is shown in Fig. 3 and Fig. 4,
respectively. When EB

s = 0 we have the single user case.
As EB

s increases user B starts acting as interference and so
degrades the performance of user A. The composite decoder
can jointly decode the information for user A and B. As
a result when the energy of user B, EB

s , gets closer to
that of user A, performance starts improving. In this case
we inherently get co-operative decoding in the joint trellis
decoders, and so information about both user’s codes can be
used to provide a better estimate of the data sent by each user.
This can be seen in Fig. 5, where the loss due to EB

s > 0 is
shown (at a user A FER= 10−3). It is interesting to note
that the performance for EB

s = 0 and EB
s = 2, assuming

combined decoding, is almost identical. Therefore, we want
the other user to have either much smaller signal energy or at
least as much signal energy as we do.

In the single user case the Turbo code considered has an
error floor below BER 10−6 and FER 10−4 as shown in Fig.
3 and Fig. 4, respectively. This is already a low error floor
due to careful design of the symbol interleaver. For EB

s = 1
there is still no sign of an error floor at a FER of 10−5. The
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performance for EB
s = 1 is being determined not only by

noise, but also by interference. If a lower single user error
floor is needed, then several approaches could be used. An
outer Bose-Chaudhuri-Hocquenghem (BCH) or RS code could
be used [28], [31], [26] at the cost of BER performance in the
waterfall region5. Alternatively, a serial or hybrid concatenated
convolutional coding scheme could be used instead of the
Turbo code [6], [13]. For a serial concatenated convolutional
code a higher rate component code would be needed (larger
number of transitions) in order to maintain an overall rate of
1/3.

We now consider the two user case with EA
s = EB

s = 1,
where the performances of user A and B are approximately
the same. Overall this two user system transmits 2k = 2000
data bits over N = 1500 symbol periods (using QPSK). A
single user system with equivalent throughput and block length

5The outer BCH or RS code would result in a loss in energy efficiency
(due to the reduced rate) of 10 log10(1/Rbch/rs)dB [28], where Rbch/rs
is the rate of the BCH or RS code.
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Fig. 5. Loss to user A compared to single user QPSK performance at
FER = 10−3 in the case of separate and combined decoding of user A and
B. In the case of separate decoding we consider the case when EB

s and φ are
both known or unknown by the decoder (this alters the metric calculation). In
addition, the performance of combined decoding of user A and B is considered
in the presence of a third unknown user, C, with EC

s = 0.1.

(N = 1500) would need to transmit 16-QAM and use a Turbo
code with k = 2000 data bits. Note, we assume that all users
transmit using an average symbol energy of Es = 1. If we
were to use 16-QAM with an average symbol energy of Es =
EA

s +EB
s = 2, this would improve performance by 3dB. The

single user 16-QAM system uses either bit interleaving with
Gray mapping to 16-QAM or symbol interleaving with 4-bit
symbol mapping to 16-QAM.

We found that the interleaver design was more difficult for
the single user 16-QAM case. In order to maintain good con-
vergence we had to perform symbol decoding with interleaver
symbol size equal to the modulation symbol size (in this case,
4 bits). This requirement is illustrated in Fig. 6, where the
single user 16-QAM system with a symbol based interleaver
outperforms that with a bit based interleaver in terms of FER.
This is in spite of the fact that the minimum distance of the
Turbo code with the bit interleaver is dmin = 51 as opposed to
dmin = 32 when using the symbol interleaver. In addition, the
symbol interleaver case requires fewer iterations on average
at a given BER/ FER as shown in Fig. 6. This shows the
importance of using symbol decoding for Turbo codes with
higher order modulation (also mentioned in [16]). However,
this requirement reduces the interleaver design freedom. Over-
all the 4-bit symbol interleaver has size 500 symbols (2000
bits) and S = 12 (after swaps). While the bit interleaver
has size 2000 bits and S = 25 (after swaps). One design
freedom that has not been investigated to date is intra-symbol
permutations.

In order to obtain good error floor performance we use
a memory 5 component code with ff = 45 (octal) and
fb = 67 (octal). The performance is compared to the two
user performance in Fig. 6. As can be seen, the two user
performance is only 0.2 dB away from the single user 16-
QAM (symbol interleaver) performance at a FER of 10−2.
The single user QPSK performance is also shown in Fig. 6. It
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provides the best performance, but only transmits k = 1000
data bits over N = 1500 symbol periods.

C. Two user system with independent user A decoding

We now consider a trellis decoder in a two user scenario
where only the constraints of user A’s Turbo code are used
(no information about user B’s code is used). Note that the
soft input metric has knowledge of EB

s and φ. It averages
the metric over all possible user B constellation points. In this
instance, for all l = 1, · · · , M (6) becomes

Mi,l
t =

∑M
p=1 Γi,p

t∑M
q=1

∑M
p=1 Γq,p

t

, , i, q, p = 1, · · · , M. (16)

The BER and FER performance when the decoder uses only
the constraints of user A’s Turbo code are shown in Fig. 7. For
EB

s = 0 we have the single user QPSK performance, which
is unchanged. For EB

s = 0.5 we get a loss of approximately
0.25dB at a BER of 10−5 when using only user A’s code
constraints instead of the combined trellis. As can be seen,
when EB

s = 1 the loss increases to approximately 2.8dB
at a BER of 10−4. The loss to user A with increasing EB

s ,
compared to single user QPSK performance, is shown in Fig. 5
for separate and combined decoding (at FER= 10−3). For
separate decoding the loss increases with EB

s to a maximum
of 4.29 dB at around EB

s = 1.25 and then decreases. For
combined decoding the loss increases to a maximum of 1.8
dB at around EB

s = 0.5 and then decreases. Since EB
s and

φ are known by the receiver in both cases, once EB
s is

large enough the constellation improves sufficiently to allow
improved performance. If we do not have information about
EB

s and φ and use only the user A trellis, then there is a
further performance loss compared to the known EB

s and φ
case for EB

s ≥ 0.5, and this increases with EB
s as seen in Fig.

5. In this case, we do not expect performance to improve for
higher EB

s values.
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Fig. 7. BER performance when using a combined trellis for user A and B,
trellis AB, and when using a trellis for only user A, trellis A. Both have the
same performance for EB

s = 0. In addition, the performance for trellis AB
in the presence of an unknown third user, C, with EC

s = 0.1 is shown.

D. Two user system with an unknown interferer

We now consider the case of having a third unknown user/
interferer (user C). We assume that the receiver is unaware
that user C exists (no knowledge of the code, signal energy
or received phase). The new received signal is given by

r =
√

EA
s sA+

√
EB

s sB exp(−jφ)+
√

EC
s sC exp(−jφC)+n,

(17)
where EC

s is the signal energy of user C and φC is the phase
difference between user C and A. In this case we model φC as
a uniformly distributed random variable on (0, 2π). User C is
encoded using a rate RC

ecc = 1/3 Turbo code, however it could
be random data. The receiver operates as if we had a two user
(user A and B) system. BER performance is compared to the
two user case in Fig. 7 for EC

s = 0.1. As expected we lose
performance compared to the two user case (or single user
QPSK case with EB

s = 0). However, successful decoding is
still possible showing the robustness of the proposed system.
The loss compared to the single user QPSK (EB

s = 0) system
is also shown in Fig. 5 for EC

s = 0.1. The system can cope
with larger values of EC

s , but at the cost of further performance
loss.

E. Impact of phase errors

The effect on FER of various phase differences between
user A and B is shown in Fig. 8. When φ = 0 (or a multiple
of π/2) and EA

s = EB
s = 1 the QPSK signals sent from user A

and B have the same phase orientation and magnitude, and so
some values cancel out when added together by the channel
(see Fig. 1). This results in only 9 composite constellation
points (ignoring AWGN) rather than the 16 unique points we
would normally expect. This can be considered as a form of
erasure channel. But as shown in Fig. 1 even a small value of φ
can result in 16 distinct points and hence in better performance
as shown in Fig. 8. We looked at finding the optimal phase for
each value of EB

s , but as can be seen in Fig. 8 this provides
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little advantage over allowing the phase to vary linearly over
the block. A time varying known phase is the more realistic
situation in a satellite system.

We now look at the impact of imperfect phase estimation
on performance. We model the phase error as a Gaussian
random variable with variance 1

γPE
and PDF given by (14).

As a result, the channel metric of (15) is used. The BER and
FER performance for EA

s = EB
s = 1 and various values of

γPE |dB are shown in Fig. 9. As can be seen γPE |dB = 30dB
results in similar performance to having no phase error,
while at a BER of 10−3 we get a loss of approximately
0.13dB for γPE |dB = 20dB and approximately 0.48dB for
γPE |dB = 15dB. This shows the proposed system is robust to
small random phase errors. Before practical implementation
more sophisticated phase error models would need to be
considered.

IV. CONCLUSIONS

A two-user satellite communication system has been de-
scribed in which each user transmits a structured signal
encoded with a Turbo code, which allows iterative joint
decoding. The complexity of the proposed scheme is low
due to the use of symbol based, common interleaver Turbo
codes and iterative decoding. Using a combined user A and B
trellis decoder to decode each of the component codes makes
the decoding of the two user signals collaborative. The gain
compared to the use of a single user trellis increases with
increasing energy, EB

s , of the second user. When the two users
have equal power, the gain is 2.8 dB at a BER of 10−4. The
proposed approach can handle time-varying phase differences
with negligible loss in performance compared to an optimized
fixed phase offset between users. We have also investigated
the impact of imperfect phase estimation on performance. The
loss in performance is small if a phase estimator with good
loop SNR is used (such as γPE |dB ≥ 20dB).

There are still several open research questions to address
before any practical implementation of the proposed system.
These include both symbol timing and carrier phase syn-
chronization, issues involved with handling more than two
users and protocols to ensure that all users obtain reasonable
performance.
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