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“Which would you prefer: a descriptive model backed by physiological evidence or a

monkey who simply tells you the right answer?”
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Model-based decision support relies on a series of mathematical models and methods to

convert raw clinical data into actionable recommendations. High clinical burden asso-

ciated with measurement, and clinically significant outcomes, make glycaemic control

an area where considerable benefit is possible. However, few glycaemic control proto-

cols have been successful in critical care, and fewer exist for outpatient management of

diabetes. Challenges faced include high levels of uncertainty and noise, limited mea-

surements, and risk of iatraogenic low blood glucose events. This thesis aims to develop

a successful glycaemic control framework, STAR, beyond the critical care environment,

and set the stage for an outpatient glycaemic control protocol that individuals with

diabetes can use to inform their day-to-day glucose management decisions. To achieve

this goal, appropriate models and methods are developed, and validated against both

clinical and in-silico data.
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Chapter 1

Introduction

The problem of hyperglycaemia begins with acute care and ends with management of

diabetes. Diabetes is a general term for a range of metabolic conditions, each resulting

in chronic hyperglycaemia [1]. Hyperglycaemia is defined as elevated blood glucose

concentrations (BG), and can be caused by a wide range of metabolic dysfunctions. Not

only is hyperglycaemia the root cause of long term complications in diabetes [2], but the

condition has also been correlated with morbidity and mortality in a hospital setting [3].

While critically ill patients may also be diabetic, the physiological stress of injury can

cause significantly elevated BG [4]. This research attempts to link model-based insulin

therapy in a hospital setting with out-patient management of diabetes. To achieve this,

both in-silico and real-world data sets are used to develop mathematical models and

methods for prediction and dose-optimisation algorithms.

1



Chapter 1. Introduction 2

1.1 Glucose homoeostasis

While an exhaustive review of glucose homoeostatic mechanisms is not necessary, a

broad overview is useful to establish the physiological context of this work. In the

human body, the main dietary energy sources are carbohydrates and fats [5]. Oxidation

of these compounds produces adenosine triphosphate (ATP), which is then available for

use within cells. The substrates that are not immediately oxidised after absorption are

stored, with carbohydrates stored as glycogen, and fats as triglycerides. As glycaemic

control is by definition management of blood glucose, fatty acid concentrations are not

considered in this work.

After carbohydrate consumption and absorption into circulation, complex carbohydrates

are reduced to monosaccharides by the liver. The only monosaccharides present in phys-

iological relevant concentrations are glucose or fructose [6]. The major monosaccharide

transporters are the facilitated diffusion GLUT transporters, with GLUT-5 targeting

fructose and the remaining 6 targeting glucose. The majority of GLUT family receptors

are located on the cell surface, though a portion of GLUT-4 is associated with intracel-

lular vesicles, and is recruited to the cell surface in response to insulin. After transport,

the molecules are oxidised to produce ATP.

Postprandial glucose oxidation is approximately 10 g.hr−1 [5]. All remaining glucose is

converted to glycogen through glycogenesis, a process which consumes 5% of the total

energy content. Glycogen storage occurs in both hepatic and muscle tissues, where

hepatic tissues have high glycogen affinity and muscle tissues have much lower affinities.

However, the relative total tissue masses mean the total glycogen stored in muscle tissue

is around 3 to 4 times greater than that in hepatic tissues.
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Future glucose demand is thus met through a combination of glycogenolysis and glu-

coneogenesis. Glycogenolysis is the production of glucose from stored glycogen, and

gluconeogenesis is the production of glucose from other substrates. Gluconeogenesis oc-

curs mainly in the liver and kidneys, with renal glucose balance typically zero, but able

to compensate for compromised hepatic production [7].

A complex signalling relationship exists between the liver and pancreas. A number of

hormones that are secreted by the pancreas directly into the hepatic portal vein, entering

the liver in high concentrations. Briefly, alpha cells secrete the hormone glucagon, which

promotes endogenous glucose production [8] by activating glycogen phosphorylase in

liver hepatocytes, an enzyme that hydrolyses glycogen in glycogenolysis. In contrast,

beta cells secrete insulin, which promotes glycogenesis in hepatocytes [9]. Additionally,

insulin increases glucose transport in fat and muscle cells by stimulating the translocation

of the transporter GLUT4 from intracellular sites to the plasma membrane [10]. The

most significant contributors to glucose homoeostasis are summarised in Figure 1.1.

1.1.1 Glucose dysregluation

The mechanism by which the human body maintains euglycaemia is complex, and dys-

regulation can occur. Compensatory mechanisms exist, such as increased insulin secre-

tion in the face of insulin resistance, or upregulation of gluconeogenesis in the kidney

when hepatic glucose production is insufficient. However, both acute and chronic dys-

regulation occur, with clinically significant effects. Chronic dysregulation is broadly

labelled as diabetes mellitus.

Initial signs of chronic impairment are impaired fasting glucose (IFG) and impaired

glucose tolerance (IGT). IFG is defined as fasting plasma glucose (FPG) levels between
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Figure 1.1: Main mechanisms of glucose homoeostasis, reproduced from [10].

5.6 mmol.L−1 and 6.9 mmol.L−1, while IGT is defined as BG between 7.8 mmol.L−1

and 11.0 mmol.L−1 2 hours after ingesting 75g of glucose orally, as part of the oral

glucose tolerance test (OGTT) [1]. Values exceeding these ranges are currently used as

diagnostic criteria for diabetes mellitus.

The two major categories of diabetes mellitus are type 1 (T1DM) and type 2 (T2DM).

T1DM accounts for approximately 5% to 10% of all cases, and is characterised by

cellular-mediated autoimmune destruction of the β-cells of the pancreas [1]. Absolute

insulin deficiency thus results. In contrast, T2DM encompasses individuals who have

insulin resistance and usually have relative (rather than absolute) insulin deficiency.

These individuals comprise 90% to 95% of those with diabetes. Other genetic defects,

diseases, and chemicals can cause diabetes mellitus. It is estimated diabetes affects at

least 285 million people worldwide, and it was estimated that diabetes accounted for
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12% of global health expenditures in 2010, or at least $376 billion [11].

The primary symptom in diabetes mellitus is high blood glucose concentrations (hy-

perglycaemia). Individuals suffering from marked hyperglycaemia experience polyuria,

polydipsia, weight-loss (sometimes with polyphagia), and blurred vision. Acute, life-

threatening consequences of uncontrolled glycaemia are hyperglycaemia with ketoaci-

dosis or the non-ketotic hyperosmolar syndrome. Longer term complications include

retinopathy with potential loss of vision; nephropathy leading to renal failure; peripheral

neuropathy with risk of foot ulcers, amputations, and Charcot joints; and autonomic

neuropathy causing gastrointestinal, genitourinary, and cardiovascular symptoms and

sexual dysfunction. Patients with diabetes have an increased incidence of atheroscle-

rotic cardiovascular, peripheral arterial, and cerebrovascular disease. Hypertension and

abnormalities of lipoprotein metabolism are often found in people with diabetes. Im-

pairment of growth and susceptibility to certain infections may also accompany chronic

hyperglycaemia [1].

Administration of exogenous insulin lowers BG, and can produce hypoglycaemia. Mild

hypoglycaemic events can induce unpleasant symptoms, while severe hypoglycaemia

can cause neurological impairments. Symptoms include anxiety, palpitations, tremor,

sweating, hunger, and paresthesias, while neurological impairments include behavioural

changes, cognitive dysfunction, seizures, and coma. Additionally, focal neurological

deficits can occur. Although severe prolonged hypoglycaemia can cause permanent brain

damage, typically complete recovery is made [12].

Recurrent hypoglycaemia is the norm in T1DM. When maintaining glycaemic control,

plasma glucose levels may be less than 2.8 to 3.3 mmol.L−1 10% of the time. Typically,

two episodes of symptomatic hypoglycaemia occur per week. An estimated 2% to 4% of
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deaths of people with T1DM have been attributed to hypoglycaemia. The rates of severe

hypoglycaemia in T2DM are roughly 10% of those in T1DM, even during aggressive

insulin therapy. However, quantitative data from patients with T2DM treated to near-

euglycaemia with rigorous ascertainment of hypoglycaemia are not available [12].

In critical illness, even non-diabetic individuals can experience acute or chronic hyper-

glycaemia. Stress-induced hyperglycaemia affects 30-50% of critically ill patients, and

increases morbidity and mortality [4, 13]. While BG is difficult to control using insulin

due to hypoglycaemic risk [14], both extremes, as well as glycemic variability, have been

independently linked to increased morbidity and mortality [15–17].

1.2 Management of diabetes

Management of diabetes is a difficult task, with a variety of goals and management strate-

gies. The American Diabetes Association recommends a glycated hemoglobin (HbA1C)

A1C level less than 7%. Historic data from the United States between 1988 and 1995

showed 43% of individuals with diabetes in the United States had an HbA1C level greater

than 8.0%, with 18% greater than 9.5%, and 24% of the insulin-treated patients had

poor control. More than 50% of those with T1DM used only 1 to 2 insulin injections per

day, and many patients with T2DM did not achieve adequate control using twice-daily

neutral protamine Hagedorn (NPH insulin) [18].

Mechanism of management varies between individuals and form of diabetes. Due to

absolute insulin deficiency, T1DM individuals require insulin for survival. During early

stages, residual β cell function enables some individuals to remain on basal bolus insulin

therapy only. This therapy involves once- or twice- daily injections of long-acting in-

sulin (e.g. NPH or glargine). More severe insulin deficiency requires a physiologic insulin
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regime, where basal and prandial insulin doses are used to mimic a normal secretion pat-

tern [18]. Current research on an artificial pancreas is ongoing, where continuous glucose

monitors and closed loop control algorithms are used to automate glycaemic control [19].

While no commercial product currently exists, several are in development. However, the

artificial pancreas has high associated costs, adding to the already substantial financial

burden of diabetes.

Management of T2DM is much more variable. T2DM differs from T1DM in that insulin

resistance is typically a significant factor, and oral medications are thus useful. Initially,

insulin sensitisers (e.g. metformin) or secretagogues (e.g. sulfonylurea) may be suffi-

cient to normalise BG. As the disease progresses, basal insulin replacement is required,

and as β cell function declines physiologic insulin regimes are followed. Combination

insulin/oral medication regimes can be effective in reducing weight gain and incidence

of hypoglycaemia for similar control [18].

1.3 Glycaemic control in acute care

Treating hyperglycaemia in critical illness is substantially different from managing dia-

betes. Nutrition inputs are highly regulated, frequent BG measurements can be taken,

and exercise/other lifestyle factors are not a factor. Insulin administration is typically

intravenous (IV), and nutrition can be administered enterally or parenterally. While

greater certainty about exogenous inputs exists, the patient can have extremely variable

BG due to their compromised state.

Accurate glycemic control (AGC) can reduce morbidity and mortality in critical illness

[20–22], but has proven difficult to achieve safely and consistently [23–25]. Higher nurs-

ing workloads due to high density glucose readings are impractical in many units [26, 27].
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Hand-held glucometers are easier for measurement, but their larger errors can add addi-

tional difficulty for some AGC protocols. Finally, clinical compliance determines much

of the efficacy of any AGC method, with quality of glycemic control thus also limited

by the confidence and compliance of nursing staff [27, 28].

A range of strategies have been implemented to guide insulin therapy, ranging from ad-

hoc to algorithmic, and from conventional to intensive insulin therapy. As mentioned

previously, these initiatives have been met with varying success, and thus no definitive

solution has been agreed upon. Indeed, much debate still centres around the need for

AGC, as hypoglycaemia can mitigate any benefits gained from treating hyperglycaemia,

and control strategies have historically performed poorly [14].

Perhaps the most common method is the sliding scale. This methodology is conceptually

simple, but is particularly rigid and cannot manage inter-patient variability. Attempting

intensive insulin therapy guided by a sliding scale has led to poor outcomes in the

past, with trials halted due to high incidence of hypoglycaemia and protocol violations

[29]. Combining multiple sliding scales (dynamic sliding scale) based on prior glycaemic

responses has led to much improved results [22, 30]. This control strategy is potentially

an optimal combination of simplicity and power, but is still rigid and must be tailored

for each intensive care unit (ICU).

More traditional control strategies that have been implemented include linear control.

A proportional-integral-derivative (PID) controller uses a linearised model and modern

control theory to optimise infusion rates. However, measurement sparsity and noise,

plant non-linearities, and other factors have meant expert systems have failed to signif-

icantly outperform ad-hoc treatment [31].
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A more suitable application of modern control theory has been model predictive control,

or MPC [32]. This methodology involves predicting and calculating a long-term optimal

control strategy at each measurement, but only implementing the first step in this control

strategy. MPC lends itself well to both open-loop and closed-loop control, and has been

demonstrated to be equivalent to or better than standard care [33].

Finally, another successful strategy has been model-based heuristic control [34]. A com-

bination of deterministic and stochastic models are used to predict likely ranges of

outcomes for any insulin/nutrition pair. A series of heuristic rules are used to eliminate

unsatisfactory insulin/nutrition pairs, and the remaining set of pairs are ranked accord-

ing to clinically specified criteria. The optimal insulin/nutrition pair is thus selected for

each possible measurement interval, and implemented by the attending nurse.

1.4 Summary

Glucose homoeostasis is a complex system that is compromised in diabetes mellitus and

can be affected by critical illness. Hyperglycaemia has a variety of associated morbidi-

ties, which can be mitigated by successful insulin therapy. However, insulin therapy is

associated with an increased risk of hypoglycaemia, and has been difficult to achieve

consistently in either acute or chronic hyperglycaemia. A range of treatment options

exist for management of diabetes, but application of quantitative control is difficult and

thus decision support is lacking. In contrast, many different quantitative strategies have

been applied in critical illness, but have been met by limited success. This research

aims to progress model-based heuristic control in the ICU, and extend the utility of this

control strategy into hospital ward/outpatient management of diabetes.



Chapter 2

Improved Virtual Trial

Methodology to Investigate

Changes to DKA Insulin Therapy

Protocol

2.1 Introduction

Virtual trials [35] are a valuable tool for in-silico development of glycaemic control al-

gorithms. However, certain metabolic derangements cause periods where current model

dynamics are not relevant, and thus validity of virtual trials is compromised. One case

is during the initial stages of treatment of diabetic ketoacidosis (DKA), where blood

glucose (BG) is extremely high, and response to insulin is limited.

10
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DKA occurs when glucose metabolism is compromised by insufficient available insulin

[36]. Fats are used in place of glucose, producing ketones, and lack of insulin inhibits

ketone metabolism. Thus DKA leads to accumulation of ketones in blood and urine.

Untreated, DKA leads to prolonged hyperglycaemia, and can cause cerebral edema,

myocardial infarction, and kidney failure. DKA is a medical emergency, with therapy

focused on correcting hyperglycaemia with intravenous insulin. Therapy often involves

hourly BG measurements, which is particularly disruptive for patients overnight. This

chapter investigates whether extending measurement interval to two hours is possible

without compromising patient safety.

The key steps in a virtual trial are: A) fitting the underlying “true” parameter profile, B)

using a protocol to choose the new treatment, and C) using the “true” parameter profile

to solve for the resulting virtual BG measurement. From a virtual trial standpoint,

investigating potential changes to clinical practice is challenging. During the initial

stages of insulin therapy, BG is well above typical values for critically ill patients. Model

dynamics are thus profoundly different [37].Correctly fitting the data is the critical step

for a representative virtual trial, as failure to fit translates directly to loss of information

and lesser virtual trial confidence. Due to low data density in a real-world glycaemic

control setting only one parameter, insulin sensitivity (SI), can be reliably identified

[38]. Previously, this parameter has been represented as a series of rectangle functions,

non-zero only on the relevant hour [39].

The Intensive Control Insulin-Nutrition-Glucose (ICING) model [40] is capable of de-

scribing glucose-insulin dynamics with BG≤12mmol.L−1, when hypoglycaemia is a real

risk. However, the pharmacodynamic surface and fitting methods do not allow a high

quality virtual patient to be generated in higher “severe” hyperglycaemic ranges [37].

Simply using the ICING model to generate an SI profile from clinical DKA data leads



Chapter 2. Improved Virtual Trials 12

to an ill-fitting initial period, where the model is incapable of sustaining extremely high

BG. Simulating a virtual trial with this SI profile will thus cause artificially rapid nor-

malisation of BG.

This chapter describes a method for adapting the ICING model into a simplified inter-

pretation stochastic differential equation (SDE), where SI is represented as a series of

b-spline basis functions with increased local support. A process noise term, Gx, cap-

tures the variation that a regularised SI profile cannot fit, and can natively preserve the

initial high BG period of DKA therapy. Additionally, patients are typically conscious,

and have been known to eat small meals during insulin therapy, which can distort the

fitting SI profile. A regularised SI profile limits the resulting effect, with the unobserved

nutrition intake primarily captured by Gx.

2.2 Methods

2.2.1 ICING model

The ICING model defines glucose and insulin kinetics and dynamics in critically ill

patients [40]

İ =
Ux + (1− xL)Un

VI
− nI(I −Q)− nKI − nL

I

1 + αGI
(2.1)

Q̇ = nI(I −Q)− nC
Q

1− αGQ
(2.2)

Ġ(t) = −pGG− SI(t)
G(t)Q(t)

1− αGQ(t)
+

1

VG
(PEGP − PCNS + PN (t) + max (Pmax, d2P2(t))) (2.3)
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P2(t) = d1P1(t)−max (Pmax, d2P2(t)) (2.4)

P1(t) = P (t)− d1P1(t) (2.5)

where G(t) [mmol.L−1] is the total plasma glucose, I(t) [mU.L−1] is the plasma insulin,

and interstitial insulin is represented by Q(t) [mU.L−1]. Exogenous insulin input is

represented by Uex(t) [mU.min−1], and glucose-dependent endogenous insulin production

is estimated with Uen [mU.min−1] [41]. SI(t) [L.mU−1.min−1] is the identified insulin

sensitivity profile, P1(t) [mmol] represents the glucose in the stomach and P2(t) [mmol]

represents glucose in the gut. Enteral glucose input is denoted P (t) [mmol.min−1], while

parenteral glucose input is denoted PN (t) [mmol.min−1]. All model constants are shown

in Table 2.1.

Table 2.1: ICING constant model parameters

Variable Description Value

pG Non-insulin mediated uptake 0.006 min−1

nI Insulin transport rate 0.006 min−1

nK Renal clearance 0.0542 min−1

nL Hepatic clearance 0.1578 min−1

nC Interstitial clearance 0.006 min−1

d1 Stomach clearance 0.0151 min−1

d1 Gut clearance 0.00301 min−1

Pmax Maximal gut clearance 6.11 mmol.min−1

PEGP Endogenous glucose production 1.16 mmol.min−1

PCNS Nervous system glucose disposal 0.3 mmol.min−1

xL First-pass hepatic extraction 0.67

VI Insulin volume of distribution 4.0 L

VG Glucose volume of distribution 13.3 L

αI Saturation of hepatic insulin clearance 0.0017 L.mU−1

αG Saturation of insulin-mediated glucose uptake 0.01538 L.mU−1
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2.2.2 Parameter Identification

A simple version of the integral-based fitting method will be introduced via a differential

equation with an unknown linear parameter, θ:

ẋ = f0(t, x) + θf1(t, x) (2.6)

where x is the conserved quantity, θ the unknown constant parameter, f1(t, x) is the

function corresponding to this parameter, and f0(t, x) contains the remaining known

parameters and functions. The model estimate of x at time t is:

xmod(t) = x0 +

∫ t

t0

f0dt+ θ

∫ t

t0

f1dt (2.7)

Assuming multiple data points, a residual error (ε) will occur. The error at the ith

measurement, εi = xmod(ti)− x(ti), is:

εi = −x(ti) + x0 +

∫ ti

t0

f0dt+ θ

∫ ti

t0

f1dt (2.8)

which, provided the integrals can be numerically estimated, can be minimised using least

squares for n measurements:


∫ t1
t0
f1dt

...∫ tn
t0
f1dt

 θ =


x(t1)− x0 −

∫ t1
t0
f0dt

...

x(tn)− x0 −
∫ tn
t0
f0dt

 (2.9)

If measured data is dense enough, or appropriate assumptions used, these integrals can

be fully formed without further computation, and the linear system solved directly using

least squares [39]. If sparse data or noise causes these integrals to be poorly approximated
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by the available data, this approach can be applied iteratively, where new parameters

produce a modified solution, which is then used to update the integrals [42].

These methods were developed for clinical data comprised of intermittent 1 and 2 hour

measurement intervals, a distinct parameter value was fitted for each hour interval.

Thus, θ was described as m piecewise-constant functions, where:

θ(t) =
m∑
j=1

γjgj(t) (2.10)

where γj is the jth θ value and gj(t) is a rectangle function, non-zero on a single hour

interval. This description of θ is equivalent to a 0th order uniform b-spline basis [43]

with m+ 1 knots, each an hour apart. Equation (2.7) thus expands to:

xmod(t)− x0 =

∫ t

t0

f0dt+ γ1

∫ t

t0

g1f1dt+ . . . + γm

∫ t

t0

gmf1dt (2.11)

Accordingly, Equation (2.9) becomes:

Â1,(n,m)Γ̂(m,1) = b̂1,(n,1) (2.12)

where Γ̂(m,1) = [γ1, . . . , γm]>, and:

Â1,(n,m) =


∫ t1
t0
g1f1dt . . .

∫ t1
t0
gmf1dt

...
. . .

...∫ tn
t0
g1f1dt . . .

∫ tn
t0
gmf1dt

 (2.13)
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b̂1,(n,1) =


x(t1)− x0 −

∫ t1
t0
f0dt

...

x(tn)− x0 −
∫ tn
t0
f0dt

 (2.14)

If m + 1 > n, the linear system is clearly indeterminate. Such a case almost always

occurs with this type of clinical data, as 2 hour BG measurements are common [22]. To

circumvent this issue, data can be re-sampled hourly, an assumption that introduces fit-

ting error if measurements are offset and can force unusual parameter spikes if additional

glucose is added parenterally close to a re-sampled measurement.

A continuous profile would therefore be beneficial, and controlling the order of the basis

and knot locations provides a natural method for regularising the shape of the SI profile.

However, using a knot at each measurement forces the shape of the SI profile to reach a

stationary point in the middle of the measurement period, as well as forcing all changes

to be the direct result of changes in SI .

2.2.3 Insulin sensitivity profile

Previously, due to low data density, all dynamic changes were lumped into the SI profile.

This raw SI profile showed a number of clinically important trends [44–46] highlighting

the importance of SI . Clearly, the model-based metric evolves over time, and sudden

rises greatly increase the risk of hypoglycaemia when patients are undergoing intensive

insulin therapy, as injected insulin has an amplified effect on BG, and insulin dose is

selected based on data indicating a prior (reduced) effect of insulin.

Variability in SI exists due to changes in patient state, measurement noise, and mismod-

elled dynamics. Some literature suggests the major effect of intensive insulin therapy

is the suppression of hepatic glucose production [47], though the relationship between
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plasma insulin and endogenous glucose production is poorly understood. Pulsatile deliv-

ery, intraportal concentrations, and arteriovenous concentration gradients are all thought

to have an effect, amongst other factors. However, quantifying the relationship between

the liver and insulin is impossible using the data available at the bedside in critical care.

It is sufficient to say that the relationship changes, and thus not all changes in patient

state can truly be labelled “insulin-dependent”.

This research regularises the SI profile to restrict the frequency of large or sudden

“insulin-dependent” state changes that result from a wide range of possible variations

by utilising the generalisable description of a b-spline [43] basis. Figure 2.1 compares the

current 0th order basis with 60 minute knot widths with an equivalent proposed 2nd order

basis with 240 minute knot widths. The local support provided by a 2nd order description

regularises the profile, restricting the hour-to-hour changes in SI . Typical clinical DKA

data has hourly BG measurements, due to current clinical practice standards.

2.2.4 Noise profile

Regularising the SI profile highlights a bias vs. variance tradeoff, as multiple measures

per function introduces fitting error with real data. As the SI profile becomes smoother,

greater error is introduced. Thus, additional fitting is required to prevent information

being lost in the generation of virtual patients. Such information loss would result in

virtual trials showing unintended artificial improvement or degradation. Returning to

Equation (2.6), a zero-mean internal noise (process noise, φ(t)) can be added:

ẋ = φ(t) + f0(t, x) + θf1(t, x) (2.15)
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Figure 2.1: Comparison of the current 0th order basis (60 minute knot widths) with
a proposed 2nd order basis (240 minute knot widths).

Typically, φ(t) would take the form of a Wiener process [48]. However, the added

computational intensity associated with the increased resolution, and non-deterministic

forward simulation, is not necessary in this application. In this simple SDE, φ(t) becomes

the integral of a Wiener process between two measurements, and captures unmodelled

dynamics and measurement noise that cannot be incorporated by the now-regularised

SI profile. Thus, φ(t) is a piecewise-constant function, individual values of which can

be fitted using: [
Â1,(n,m) Â2,(n,n)

]Γ̂(m,1)

Φ̂(n,1)

 = b̂1,(n,1) (2.16)
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where Φ̂(n,1) = [φ1, . . . , φn]> (φi is the ith value of the piecewise constant φ(t)), and:

Â2,(n,n) =



−(t1 − t0) 0 . . . 0

−(t1 − t0) −(t2 − t1) . . . 0

...
...

. . .
...

−(t1 − t0) −(t2 − t1) . . . −(tn − tn−1)


(2.17)

As n+m > n when m > 0 this system is always rank-deficient. However, the definition

of φ(t) as zero-mean noise can be utilised to fill the rank of the system. As zero-mean

noise,
∫ tn
t0
φ(t)dt = 0, and by the definition of the basis functions,

∑m
i=1 gi(t) = 1 ∀ t.

Thus, φ(t) ≡
∑m

i=1 φ(t)gi(t). If zero-mean is enforced over the area of local support for

each component φ(t)gi(t):

∫ tn

t0

φ(t)gi(t)dt = 0 ∀ i = 1, . . . ,m (2.18)

As φ(t) is constant between two measurements:

φ1

∫ t1

t0

gi(t)dt+ ...+ φn

∫ tn

tn−1

gi(t)dt = 0 (2.19)

Thus, the system in Equation (2.16) can be made full rank, and can be solved for all

variables: Â1,(n,m) Â2,(n,n)

0̂(m,m) Â3,(m,n)


 Γ̂(m,1)

Φ̂(n,1)

 =

b̂1,(n,1)

0̂(m,1)

 (2.20)

where:

Â3,(m,n) =


∫ t1
t0
g1(t)dt . . .

∫ tn
tn−1

g1(t)dt

...
. . .

...∫ t1
t0
gm(t)dt . . .

∫ tn
tn−1

gm(t)dt

 (2.21)
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The new form of the ICING model is therefore:

Ġ(t) = Gx(t)− pGG− SI(t)
G(t)Q(t)

1− αGQ(t)
+

1

VG
(PEGP − PCNS + PN (t) + max (Pmax, d2P2(t))) (2.22)

where SI(t) = θ(t) consists of b-spline basis functions, and Gx(t) = φ(t) is the new

stochastic element. During a virtual trial, Gx(t) is treated as the observed realisation

of the stochastic process, and used in conjunction with SI(t) to calculate deterministic

outcomes to modified therapeutic inputs.

2.2.5 DKA Cohort

Hourly BG, insulin and dextrose infusion rates, bolus insulin doses, and patient de-

tails were collected for 74 patients admitted to Auckland City Hospital with type 1

diabetes in DKA. Available cohort details are shown in Table 2.2. Each patient com-

menced an insulin infusion between 1700-0100 hours according to the Auckland City

Hospital DKA protocol, shown in Table 2.3. Typically, patients begin on Scale B, with

higher scales reserved for very insulin insensitive or critically ill patients. The scale is

increased/decreased after multiple measurements at the maximum/minimum BG range

displayed. Once BG is <15mmol.L−1 on 2 consecutive tests, 10% dextrose is introduced

at 80mL/hr.

2.2.6 Analyses

The intent of this research is to develop and implement a new fitting method to be

used for virtual trials, and thus assess the likely impact of a shift to two-hourly BG
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Table 2.2: DKA cohort details, presented as median [minimum - maximum] when
appropriate.

Cohort details

Episodes 74

Age (years) 26 [18 - 84]

Sex 39 male, 35 female

Episode length (hours) 12.0 [4.0 - 15.0]

Number of BG measures 12.0 [5.0 - 15.0]

Starting BG 23.4 [8.3 - 53.0]

Table 2.3: Insulin infusion rates specified by the Auckland City Hospital DKA pro-
tocol.

Scale BG<5.0 5.0≤BG≤11.0 11.0≤BG≤17.0 BG>17.0

A Stop 1U/hr 3U/hr 6U/hr

B 1U/hr 3U/hr 6U/hr 12U/hr

C 2U/hr 4U/hr 8U/hr 16U/hr

D 4U/hr 8U/hr 16U/hr 32U/hr

E 8U/hr 16U/hr 32U/hr 64U/hr

measurements for DKA patients at Auckland Hospital. Accordingly, two main categories

of analyses were carried out. The first was to demonstrate the problem solved by the

research, and thus justify the added complexity. The second analysis was to assess the

likely impact of a change in protocol.

When fitting, convergence was assumed if maximum error was within 0.05 mmol.L−1

(within the minimum resolution of a glucometer). To speed iterations, the Gx profile

was updated between iterations using the current SI profile. Initially, clinical data was

fit using the ICING model and standard methodology [39], yielding an hourly piecewise-

constant SI profile fitted non-iteratively to linearly-interpolated hourly BG measure-

ments. The fit was analysed with error between BG measurements and modelled plasma

glucose used to quantify how well a virtual trial would reproduce the original dataset.

Fitting error in any patient indicates a virtual trial run using this patient could not
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recreate the original observed data, and thus error is an important metric. The data

was then fit using the new methodology, with SI comprised of 2nd order basis functions

with 240 minute knot widths, and fitting error distributions compared.

Virtual trials were carried out using a) the current protocol using the original BG mea-

surement timings, “1 hour: clinical”, b) strict 1 hour BG measurements, “1 hour: strict”,

and c) a two-hourly adaptation “2 hour: strict”. For the “1 hour: clinical” trial, the

maximum scale was set to C as this scale was the highest scale observed in the data set.

Clinically administered parenteral nutrition was not changed during any trial. Whole

cohort BG statistics were used to assess performance and safety relative to the clinical

data. For a fair comparison between protocols, results were resampled minute-wise and

collated to give % time in each band.
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2.3 Results

Figure 2.2 indicates fitting error is unacceptably high when using the original model

and fitting method. Approximately 5% of BG measures correspond to a fitting error

of over 5 mmol.L−1, representing the areas where the unique metabolic processes in

DKA dominate glucose metabolism. This error is completely ameliorated by the new

methodology, with the simple SDE capturing sustained high BG periods the model could

not otherwise maintain. All patient episodes converged (results not shown here), thus

indicating the stability of the fitting methodology. Figure 2.2 shows it is possible to

stably decompose patient BG, insulin, and nutrition data into a regularised SI profile,

and a piecewise constant process noise, Gx.
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New method

Figure 2.2: Cumulative density function of fitting error across all BG measurements
in the DKA cohort. Fitting error is dominated by high BG periods where the original

method could not fit, and eliminated using the new methodology.

An example of this decomposition can be seen in Figure 2.3. This patient was chosen

due to the large spike in BG between t=400 and t=500 minutes, where clinicians believe

the patient consumed an unknown quantity of food. Subplot (a) shows the original

method failing to reach the peak BG, and the new method fitting the peak precisely.

The corresponding fitted parameters are shown in subplot (b). The peaks of the original

SI profile are smoothed in the new fitting method, and SI no longer reaches 0 during

this unforeseen BG increase. The remaining variability is captured in the Gx profile.
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Figure 2.3: a) shows the raw data and fitted model solution to an individual patient
with an unexpected spike in BG, and b) shows the fitted SI and Gx profiles. The
original method was incapable of reaching the large peak, while the new method fitted

each data point by capturing the variation using the Gx profile.
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This feature will improve the validity of the virtual trial under these conditions. Using

the new methodology, the virtual patient retains some sensitivity to insulin in such

periods, where previously any dose of insulin during this period would have failed to

have any effect. This is particularly important in critical illness, as BG is affected by a

number of poorly understood metabolic processes that can become deranged. A direct

balance between “noise” and “insulin-dependent” glycaemic responses can be struck

using the new methodology.

Table 2.4 presents the results from each trial. Measures per day are greater than 24 for

the “1 hour: strict” protocol as all patient episodes were under 15 hours, and the final

measurement was timed to coincide with the last clinically available data point rather

than maintaining a 1 hour interval. The results show only minor improvements if staff

follow the current protocol to the letter, with possible reductions in hyperglycaemia and

eliminating all minor hypoglycaemic (BG<4.0 mmol.L−1) incidents.

Furthermore, increasing BG measurement intervals to 2 hours has a limited effect on

results. Minor hypoglycaemic events have been increased relative to the “ideal” imple-

mentation of the current protocol, but are still below the current incidence in the clinical

data. BG median and IQR does not change, and % time in band is slightly reduced.

Overall, very little change in BG outcomes, both in performance and safety, should be

expected if staff move to two-hour sampling overnight for patient comfort.

However, from a compliance standpoint there are differences between the clinical data

and the “ideal” implementation of the protocol. Specifically, the upper quartile of BG is

2.1 mmol.L−1 higher for the clinical data, and the upper quartile of insulin infusion rates

has been reduced from 8 to 6 U.hr−1. From Table 2.3 it is thus clear that increasing the

scale from the default of B to C does not occur as often in practice as is theoretically
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possible, which increases the BG IQR. Interestingly, the infusion rates recommended by

the 2 hourly adaptation of the protocol match the clinical data closely, as scale increases

take twice as long.
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2.4 Discussion

Unmodelled dynamics during DKA necessitate a new approach to virtual trial creation.

Sustained extreme BG is impossible for the pharmacodynamic surface of the ICING

model to achieve [37], leading to large fitting errors and reducing confidence in virtual

trial results. Either a new glucose-insulin model or a new fitting methodology is required

to address this issue.

A new model that describes glucose-insulin dynamics during DKA would be an ideal

solution. However, this approach presents the difficulty of knowing when a patient is

leaving the DKA state. Furthermore, hypoglycaemia is not a concern during DKA, as

BG is well above the range where typical hour-to-hour changes could pose a serious risk.

An adequate DKA protocol must therefore reduce patient BG to normal ranges without

posing a hypoglycaemic risk as BG normalises.

As the current protocol is a simple sliding scale, and this study does not compare and

contrast therapy choices during the period of BG normalisation, the presented method-

ology was adequate to ensure the data could be reproduced without the need to derive a

new model and justify switching times. A two-hourly protocol could theoretically pose

a hypoglycaemic risk with BG < 12 mmol.L−1, a BG range that is well described by the

ICING model. Due to the simplicity of the protocol, differences between one and two

hour BG measurement intervals were minimal for both performance and safety, and thus

clinicians can be confident in the decision to extend measurement intervals overnight.

Interestingly, as insulin rates recommended by the two-hourly protocol are actually closer

to clinically administered values than the “ideal” implementation of the current proto-

col, nurses may actually be more comfortable with the longer measurement intervals.

Currently, staff tend towards lowering the recommended infusion rate. As confidence
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in the protocol leads to greater compliance [28], increasing measurement may have an

unexpected benefit. However, overall compliance appears to be strong, with only small

differences between clinical data and BG outcomes with perfect compliance.

This representation of SI as a series of b-splines and a simple glucose SDE can also

be used for fitting clinical data from outside the presented context. Direct control over

the balance between noise and metabolic response has a natural application in critical

care, but may also permit robust parameter identification in the hospital wards and

outpatient diabetes therapy, where noise is intrinsically higher and data more sparse.

Additionally, SI and Gx profiles could be used in a non-parametric prediction algorithm,

replacing the computationally intensive stochastic model of STAR [34]. Such a non-

parametric approach could feasibly be updated in real-time, improving the quality of

glycaemic control for longer-stay ICU patients. Safety would be improved for more

variable (higher noise) patients, and performance would be improved for more stable

patients, neither of whom benefit from additional data using the current whole-cohort

approach. The novel simplicity of this SDE permits stable parameter identification with

a relatively computationally light algorithm, which permits use in real-time glycaemic

control.

2.5 Summary

A robust parameter identification method was introduced, permitting identification of

a smooth SI profile, and capturing remaining variation in a simple stochastic element,

Gx. This method extends the validity of a virtual trial to describing likely outcomes of a

protocol change in DKA therapy in type-1 diabetes. Virtual trial results using this new

methodology indicate that extending BG measurement interval from one to two hours
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overnight will not compromise either patient safety or protocol performance. Thus, it is

possible to retain the existing level of control without waking the patient every hour to

take a capillary BG measurement.



Chapter 3

Non-Parametric Prediction with

a Glucose SDE

3.1 Introduction

Virtual trials were a key technique used to develop the STAR (Stochastic Targeted [34])

and SPRINT (Specialised Relative Insulin and Nutrition Tables [22]) protocols in-silico.

Avoiding physical trials during initial development enabled pre-informed protocols to

be implemented in pilot studies, with the virtual trial results giving a high degree of

confidence in safety and efficacy. Virtual trials also provide context analysing clinical

trial results, as shown in [35], and Chapter 2. An indicative measure of compliance and

performance can be provided by the comparison between virtual trial results and true

observations. Virtual trials are thus an valuable tool for model-based control design.

Prior work developed the virtual trial methodology using the ICING (Intensive Con-

trol Insulin-Nutrition-Glucose [40]) model and integral-based fitting [39]. The avail-

able dataset was from the SPRINT analysis [22], collected from paper spreadsheets.

31
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The ICU in Christchurch Hospital used a summary spreadsheet with hourly slots for

measurements to be recorded, thus leading to hourly-binned data. Consequently, the

integral-based fitting technique was carried out with an hourly piecewise-constant in-

sulin sensitivity (SI) profile, and linear interpolation was used to create intermediate

BG estimates for 2-hourly intervals.

Implementation of the STAR protocol on a computerised tablet led to more precise

timestamps being recorded for both BG measurement and therapy delivery. With BG

measurement times often offset from the hour, and nutrition changes happening between

measurements, the foundational use of piecewise-constant SI and interpolated measure-

ments introduced new difficulties. The nature of STAR prevented these inadequacies

affecting real-time control, but the validity of virtual trials was degraded by the failure

to fully fit the dataset. Simply fitting a single SI value between measurements was an

insufficient fix, as irregular intervals would degrade the mathematical correctness of the

stochastic models [49] used by STAR to forecast likely changes.

Chapter 2 describes a robust fitting methodology capable of decomposing patient data

into a continuous insulin sensitivity profile, SI , and an internal noise term, Gx. This

new methodology was designed to circumvent periods of unmodelled dynamics during

diabetic ketoacidosis, where fitting error reduced virtual trial validity. However, the new

methodology also solves the problem of irregular measurement timing, permitting future

virtual trials to be carried out using the new data set.

The problem presented by the new fitting methodology is thus how to forecast likely gly-

caemic variability. Ideally, a glycaemic control protocol should adapt to suit the patient

as more data becomes available. Approximately 20% of the STAR episodes observed to
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date have been 72 hours or longer, thus accumulating a significant data set is not uncom-

mon. However, while the current insulin-sensitivity is fitted and thus patient-specific,

STAR forecasts changes in SI using a whole-cohort stochastic model [49]. Creation of

this model is extremely computationally expensive, taking approximately 20 minutes

when parallelised and running on all cores of a quad-core CPU. A tablet computer lacks

the computational power to carry out these computations in real time, and thus STAR

is limited by the whole-cohort description of SI variability.

The major reason the complicated mathematics behind the stochastic model were nec-

essary was the discrete nature of the SI profile. Kernel-density methods were thus

required to generate a suitable probability density functions. Unfortunately, neither a

variable-width or continuous SI profile fit into the existing stochastic model paradigm.

This reflects the fact the stochastic model was designed to describe the variability of

SI in the SPRINT cohort, and is fundamentally tied to the hourly SI profile chosen to

describe BG variability.

This chapter details a non-parameteric approach to generating predictions, using both

SI and Gx. Non-parametric methods were chosen due to relative simplicity, thus sig-

nificantly reducing the computational burden. The non-parameteric approach can be

updated in real-time by heavily weighting and superimposing the data observed when

controlling the current patient on top of existing whole-cohort observed responses. The

prediction methodology is validated by demonstrating coverage of the prediction bands

is representative.
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3.2 Methods

The ICING model and basis function SDE approach was used to fit patient data, as

per Chapter 2. A 2nd order basis with uniform 240 minute knot spacings were used to

create a smooth SI profile and piecewise-constant Gx profile. Fitting was considered

converged when the max error between any BG measure and the corresponding model

estimate was within 0.1 mmol.L−1.

3.2.1 STAR Cohort

BG, insulin, and nutrition data was collected as part of routine use of the STAR proto-

col in Christchurch Hospital medical and surgical ICU between July 2011 and February

2013. For use in this study, datasets were split when a gap greater that 5 hours oc-

curred between consecutive BG measurements. Observational ethics was granted by the

National Ethics Advisory Committee. Available cohort details are shown in Table 3.1.

Table 3.1: STAR cohort details

Cohort details

Episodes 207

Total hours 11538

Total BG measures 6517

Age (years) 61 [48 - 71]

Sex 66.2% male, 33.8% female

Length of episode (hours) 32 [15 - 68]

BG measures 19 [10 - 39]

3.2.2 Summary of prediction methodology

Firstly, SI and Gx profiles were fitted using available patient data. Using these profiles,

probability density functions (PDFs) were generated in the form of discretised matrices.
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Finally, cumulative density functions (CDFs) were created by taking the cumulative

sum of each PDF at each timepoint, and interpolated to give percentile bands. A simple

example of the conversion of a SI trace to a PDF is shown in Figures 3.1 and 3.2. The

trace in Figure 3.1 is simply rounded based on the chosen discretisation, and the value

of the PDF incremented by one in the relevant bin at each timepoint.
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Figure 3.1: Example trace.
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Figure 3.2: Example trace converted to PDF form by discretising the trace and
incrementing the PDF by one in the relevant bin at each timepoint.

Both SI and Gx were handled separately. As SI future outcomes depends on the current
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SI , multiple PDFs were generated by binning SI data, calculating percentiles, and uni-

fying the set of percentiles into a single prediction surface. No such dependence exists

for Gx, and thus a single PDF was created. When predicting, the 95th percentile of SI

and the 5th percentile of Gx were used to generate the 5th percentile BG outcome, as

the two parameters have opposite effects on BG.

3.2.3 Insulin sensitivity prediction

A series of SI ranges were used to generate separate PDFs, as significantly differing SI

variability has been observed over the range of SI values [49]. The ranges were chosen

by binning the observed SI range such that each bin contained 5% of all observed SI .

Figure 3.3 shows the SI levels in each bin.

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

0.5

1

S
I

C
D

F

Figure 3.3: Discretisation of SI for stochastic models. The edge of each bin is shown
with dashed lines, each containing 5% of the observed SI values.

The minute-wise SI profiles in each of these bins was converted to ∆SI to ensure all

future SI curves start from zero. This choice simplifies prediction, as the appropriate

∆SI profile can simply be added to the current SI level. Absolute ∆SI was used in

place of %∆SI as extremely small SI values will have a disproportionate %∆SI . These

∆SI profiles were discretised to a series of integer grids as shown in Figure 3.2, with the

final PDF for each bin appearing similar to Figure 3.4.
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Figure 3.4: Example discretised PDF, where t is the arbitrary unit of time in the
future, while ∆x is the arbitrary unit of change.

Each SI PDF matrix was discretised in steps of 1 minute in the x direction, and calcu-

lated from 0 to 300 minutes. The y direction was discretised in steps of 4×10−6, and

limits of the were chosen such that a maximum of 1% of all ∆SI values would fall outside

the limits on either side. These limits ranged from ±2.6×10−4 to ±15×10−4.

3.2.4 Noise prediction

In Figure 3.5, all fitted Gx values are plotted against measurement interval, prior

BG measurement, and insulin/nutrition administered during the measurement inter-

val. Graphically, the only factor that affects the variance of Gx is the measurement

interval, which is congruent with the constraints introduced to Gx. Due to the choice

of constraint, longer term changes in BG are mediated by SI , while short term changes
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will predominantly affect the Gx profile. Thus, it is sufficient to generate Gx percentiles

based on measurement interval alone.
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Figure 3.5: Scatter diagram of all fitted Gx vales with a 2nd order basis, plotted
against measurement interval, exogenous insulin, exogenous glucose, and initial BG.
Hourly insulin is only indicative, as timing errors will affect the value when insulin is

delivered in a bolus.

The cumulative distribution of measurement intervals is shown in Figure 3.6. In order

to generate PDFs in a similar manner to SI , each Gx value was converted to a constant

profile non-zero in the region tlower ≤ t ≤ tupper. This region was chosen to prevent the

smaller Gx values at for longer intervals artificially tightening shorter predictions, and

the sparse data at t ≈ 300 from causing high variance for longer predictions. Values

for tlower and tupper were defined using the CDF in Figure 3.6, where F (t) is the value

of the CDF at time t, and ti is the duration of the measurement corresponding to the

current Gx value:

tlower,i = F−1(F (ti)− 0.66)

tupper,i = F−1(F (ti)− 0.02)

(3.1)
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Figure 3.6: Noise CDF.

Thus, a non-parameteric description of the Gx PDF similar to the method presented

for SI can be obtained. The Gx PDF matrix was discretised in steps of 1 minute in

the x direction, and calculated from 0 to 300 minutes as per SI . The y direction was

discretised in steps of 8×10−4, with limits of ±0.2.

3.2.5 Analyses

Using these two methods, PDFs and thus percentile bounds were generated for both SI

and Gx. The unification of these two distributions at the nth percentile is assumed to

be additive, where the nth percentile BG outcome is calculated using the (100 − n)th

percentile SI and Gx functions. In this way, 5th, 25th, 50th, 75th, and 95th percentile

BG outcomes were calculated for each measurement interval. The number of times the

true BG measure at the end of the interval exceeded these percentiles was recorded,

and compared to the expected value. Both whole-cohort and per-patient values were

recorded.

To give context to the results, the original 60 minute piecewise-constant SI method was

also used to fit the STAR cohort. Stochastic models [49] were generated for 1-5 hours,

and used to generate 5th, 25th, 50th, 75th, and 95th percentile BG outcomes. The ability
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of these BG outcomes to represent the true measurements was compared with the new

methodology.
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3.3 Results

Table 3.2 details how well the stochastic models self-validate against the true BG mea-

surements. The original stochastic model coverage is poor with the new STAR data.

The self-validation of the new method is markedly improved, with extremely closely

matching whole-cohort percentiles. Per-patient values are also improved, particularly

for the outer 5th and 95th percentiles. Whole-cohort predictive capability was strongest

for the 5th, 75th, and 95th percentiles, but was still approximately correct for the 25th

and 50th percentiles. All whole-cohort values were within 4% (absolute) of the expected

value, suggesting the SI and Gx distributions can be effectively decoupled for prediction.

Table 3.2 demonstrates the new prediction methodology is better suited to describing

glycaemic variability in irregular data sets.

Table 3.2: Comparison of prediction band coverage. Results are presented as absolute
% error between the percentile and the true percentage of BG measures that exceeded

the percentile.

Original method New method

Percentile Whole-cohort

5th +6.3 0.0

25th +7.1 +3.7

50th +0.5 +3.0

75th -7.8 +1.8

95th -7.6 +0.9

Per-patient median [IQR]

5th +7.2 [-1.4 : +17.2] -1.7 [-5.0 : +3.8]

25th +8.7 [-0.4 : +17.9] +4.4 [-3.8 : +15.0]

50th 0.0 [-6.2 : +8.5] +4.0 [-2.4 : +12.5]

75th -8.2 [-15.5 : 0.0] +3.9 [-5.0 : +12.5]

95th -6.9 [-18.1 : +0.7] +5.0 [-1.2 : +5.0]

Two examples of the stochastic models generated with the Lin et al. method are shown

in Figure 3.7. Their binned counterparts in the new method are presented in full as a
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surface in Figure 3.8. The binned ∆SI PDFs used to create these percentiles are not

shown.
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Figure 3.7: Kernel-density stochastic model built from the STAR cohort data. Only
1 and 3 hours are shown for brevity.

0

0.5

1

1.5

x 10
−3

0

100

200

300

−1.5

−1

−0.5

0

0.5

1

x 10
−3

S
I
(t

n
)

t

∆
 S

I(t
n
+

t)

Figure 3.8: From bottom to top: 5th, 25th, 50th, 75th, and 95th SI percentiles gener-
ated using the new non-parametric methodology, and combined into a single surface.

The PDF surface from the Gx data is shown in Figure 3.9, with the corresponding

percentiles shown in Figure 3.10. The magnitude of the 90th percentile band for Gx

ranged from approximately±10% to±45% of the ICING model parameter of endogenous
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glucose production. In contrast, the 50th percentile band ranged from approximately

±3% to ±10% endogenous glucose production.
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Figure 3.9: Noise PDF matrix, used to generate the percentiles shown in Figure 3.10.
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Figure 3.10: 5th, 25th, 50th, 75th, and 95th noise percentiles generated using the PDF
matrix in Figure 3.9.

STAR makes treatment decisions based on the location and 90% range of BG outcomes.

Accordingly, all 90% ranges have been presented for the original and new methods

in Figures 3.11 and 3.12, respectively. The new methodology has dramatically more

consistent BG prediction ranges across the board. While the minimum band width has
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been raised somewhat, the maximum has been dropped significantly. The within- and

without- band measurements were separated, and the CDFs for each subset suggest

that BG is slightly more likely to exceed the band for lower measurement intervals.

This feature is true for each method, but the new method reduces the magnitude of the

effect. Figures 3.13 and 3.14 present the same results, but plotted against pre-measure

SI . Similar patterns appear to exist for both methods, and the CDFs show both methods

are capable of correcting for current SI level.
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Figure 3.11: BG prediction band widths and comparison of distributions.
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Figure 3.12: BG prediction band widths and comparison of distributions.
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Figure 3.13: BG prediction band widths from Figure 3.11 plotted against pre-measure
SI .
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Figure 3.14: BG prediction band widths from Figure 3.12 plotted against pre-measure
SI .
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3.4 Discussion

Extending the utility of the methodology presented in Chapter 2 requires a new frame-

work for generating BG predictions. The kernel-density based method for generating

SI PDF matrices [49] performed well for SPRINT data, but cannot cope with irregular

or continuous SI profiles. Carrying out BG predictions with the new fitting method

required quantification of observed changes in both SI and Gx. Thus, the presented

methodology was developed with the aim of using a fully non-parametric approach.

A non-parametric approach was deemed important, as the kernel-density methodology

was significantly too computationally expensive to update in real-time. The per-patient

results of Table 3.2 showed a moderate degree of variation between in predictive per-

formance. Using a non-parametric approach will allow control to be improved for these

patients through real-time updating of the PDF matrices.

The major area for concern was the relationship between measurement interval and

likelihood of exceeding the 90% interval BG predictions. Figure 3.12 indicates this

likelihood is not uniform, as the CDFs show a slightly greater tendency to exceed for

shorter than longer intervals. This non-uniformity suggests the unification of the Gx

and SI predictions is not perfect. However, the scope of the problem does not appear to

be large enough for a dedicated solution, in particular because longer intervals do not

appear dramatically over-conservative. Additionally, the effect is more pronounced for

the old method.

Table 3.2 demonstrates the methodology achieves the desired performance over the entire

cohort. Further investigation is required to determine whether the per-patient statistics
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can be improved, but these results show that implementation could precede as is. Like-

lihood of exceeding the 90% band was not affected by SI level, indicating the discretised

SI percentiles were not producing unexpected results.

Finally, the comparative self-validation ability of the original and new method demon-

strate the strength of the new method, despite comparative simplicity. The original

method has significantly reduced predictive capability for the STAR data set, particu-

larly at the 5th and 95th percentiles. The new methodology improves both predictive

capability and consistency, as demonstrated by the band widths in Figures 3.11 to 3.14.

As these percentiles are of prime importance for the STAR algorithm, the new method

is thus better suited for use as the STAR database expands.

3.5 Summary

Representative prediction of BG despite irregular data is possible using the ICING

model, the novel SDE fitting methodology presented in Chapter 2, and a non-parameteric

approach to prediction. This combination natively supports different measurement in-

tervals, and is computationally simple enough for real-time updating of whole-cohort

PDF matrices. Overall, the results indicate the methodology is sound, and is ready for

validation on an independent cohort.



Chapter 4

Updated ICING Model Insulin

Kinetic Compartments

4.1 Introduction

The core of any model-based decision support is a model that describes the key kinetics

and dynamics of the system. In the case of glycaemic control, these kinetics are the

appearance and clearance of glucose and insulin in the circulatory system. A plethora

of models have been developed to describe glucose-insulin kinetics and dynamics, diag-

nose diabetes or pre-diabetes, or control blood glucose concentration (BG). Each model

satisfactorily describes the relevant training data, though differs in model structure,

parameter values, fitting methods, or any combination thereof.

The sheer complexity of the human body precludes a truly descriptive minimal model.

While compartmental models are perhaps the most intuitive of the available descrip-

tions, they suffer from an array of identifiability issues [50], and the assumption of

49
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perfect mixing inherent in compartmental models can introduce further difficulties. An-

other fundamental difficulty is the current inability to accurately estimate endogenous

processes in real time. Both insulin secretion and endogenous glucose production are

poorly understood, and yet they are a critical dynamic of glucose homoeostasis. When

these processes become deranged in diabetes or critical illness, exogenous insulin is used

to promote glucose uptake into insulin-sensitive cells. However, selecting the optimal

subject-specific insulin dose is difficult, as the underlying metabolic dynamics are both

hard to assess and model, and variable over time and condition.

An additional difficulty with these models is describing different types of subcutaneous

insulin. Each has a unique pharmacokinetic profile, with large inter- and even intra-

patient variation [51], and are typically used in combination. As no rapid and inexpensive

assay exists for assessing plasma insulin in real-time, insulin models are important for

estimating glycaemic response. However, models of subcutaneous insulin tend to neglect

consistent plasma insulin descriptions, and as a result multi-insulin therapy is difficult

to approach from a model-based perspective.

One model that has been successfully used to guide clinical decisions on IV insulin

and enteral/parenteral nutrition is the ICING model [40], presented in full in Chapter 2.

However, the ICING model was developed and optimised to describe insulin boluses, and

when modelling slower insulin kinetics, descriptive capability is limited. This discrepancy

is evident with both infusions and subcutaneous insulin boluses. Additionally, insulin

clearance route contributions do not closely match literature values [52], and thus may

benefit from a refitted model.

Finally, modelling insulin infusions and boluses in a simple compartment model is dif-

ficult, as demonstrated by Figure 4.1. Individual kinetic parameters were fitted on a
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median patient created from Dynamic Insulin Sensitivity and Secretion Test (DISST,

[53]) data then tested on IV Glucose Tolerance Test (IVGTT, [54]) data, and vice versa.

Clearly, descriptive capability was extremely poor when the fitted values were taken out

of context.
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Figure 4.1: Single compartment infusion/bolus comparison, fitted on a median patient
created from one data set, and tested on the other. Bars on the measurements show
the 25th and 75th percentiles of the measured data. Fitted parameter values were
xL = 0.213, V = 3.50, and nT = 0.127 (DISST), xL = 0.300, V = 5.00, and nT = 0.294

(IVGTT).

This work aims to re-evaluate the insulin model parameters to improve the descriptive

capability of the insulin kinetics in the ICING model, while retaining current IV bolus-

specific performance. The new description is intended for use in model-based decision-

support both in critical illness and beyond, where subcutaneous insulin is the delivery

route of choice.
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4.2 Methods

4.2.1 Key insulin dynamics

Insulin generally appears in plasma, but is utilised from the interstitial fluid of skeletal

muscle and adipose tissue. Thus, description of insulin effect requires a minimum of

two compartments. The liver plays an integral role in insulin disposal, and would thus

necessitate an extra compartment for complete description. However, the hepatic glucose

balance is primarily influenced by extremely high, pulsatile insulin levels in the hepatic

portal vein [55]. Exogenous insulin cannot presently achieve such portal vein profiles, and

therefore may have limited effect on hepatic glucose production. Additionally, this effect

cannot be separated from interstitial insulin action with the available measurements.

Thus, a dedicated hepatic compartment was omitted.

Degradation of insulin occurs in several key locations. The liver provides the major in-

sulin clearance at physiological concentrations, clearing approximately 60% of presented

insulin [52], but has been demonstrated to saturate in supra-physiological insulin levels

[56]. This clearance has been positively correlated with endogenous insulin secretion,

suggesting a fractional extraction. Renal insulin clearance is lower than hepatic at phys-

iological concentrations, but does not saturate, and is estimated at 39% of presented

insulin [57], or 80% of peripheral insulin [56]. These two sites, hepatic and renal, are

the main clearances from the central, circulating insulin compartment.

Remaining insulin passively diffuses into interstitial fluid, where binding and degradation

occur. A third compartment can be justified by non-uniform interstitial fluid dynam-

ics. Insulin-sensitive cells include muscle, adipocytes, gastrointestinal cells, fibroblasts,

monocytes, and lymphocytes [52]. The remaining tissues lack insulin receptors, and so
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cannot degrade insulin. Interstitial fluid can therefore be separated into two compart-

ments, active interstitium and passive interstitium. Diffusion kinetics will be identical,

but the active interstitium includes an additional clearance from the compartment. The

volume of each compartment can be estimated by body composition, extracellular water

fractions, and total extracellular fluid volumes. Saturation is omitted from the clearance,

as although insulin effect saturation has been widely reported, micro-dialysis studies of

interstitial insulin have not reported consistent reductions in plasma-interstitial insulin

concentration ratios with increasing plasma insulin concentrations. Effect saturation is

easily incorporated into the glucose model, and is justifiable because the insulin inter-

nalisation and GLUT-4 promotion are separate (but related) processes.

Combination of bolus and infusion delivery dynamics necessitate an additional dynamic.

After injection, an IV insulin bolus will form a local volume of insulin that is extremely

concentrated relative to the average plasma concentration. This area will behave very

differently to the well-mixed assumption of a compartment model, creating some of the

disparity shown in Figure 4.1. In particular, the subvolumes that travel to peripheral

capillary beds will create a locally large plasma-interstitial ratio, so trans-endothelial

transport will happen rapidly. Mixing, hepatic clearance, renal clearance, and this

rapid transport will disperse the local high concentration quickly, and plasma insulin

will then be elevated by re-entry of the transported insulin. To include this dynamic

without subdividing the interstitial compartment, this temporarily unavailable insulin

is assumed to be non-specifically bound, and released into both interstitial fluid and

plasma.

By separately handling IV boluses, the increased clearance rates needed to improve

Figure 4.1 are thus possible. Once IV boluses and infusions can be modelled by the same

circulating insulin compartment, the infusion-like dynamics of subcutaneously injection
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will be more accurately described. As the circulating insulin dynamics are unidentifiable

with available subcutaneous insulin experimental data, this improved description may

lead to a more representative model of subcutaneous insulin dynamics.

4.2.2 Insulin model structure

The resulting three compartment model is defined:

İ =
k1X + Ux,i + (1− xL)Un

VI
− nKI − nI(2I −Q−Qp)− nL

I

1 + αII
(4.1)

Ẋ = (1− xB)Ux,b − (k1 + k2)X (4.2)

Q̇ = nI(I −Q)
VI
Vq

+
k2

Vq + Vp
X − nCQ (4.3)

Q̇p = nI(I −Qp)
VI
Vp

+
k2

Vq + Vp
X (4.4)

where I, Q, and Qp [mU.L−1] are the time-varying plasma insulin, active interstitial

insulin, and passive interstitial insulin concentrations, respectively. X [mU] is the total

non-specifically bound insulin after bolus insulin administration, and Ux,b [mU] is the

exogenous insulin delivered as a bolus. This compartment includes both insulin removed

from plasma due to binding and insulin that was transported out of plasma due to the

local high concentration, but has not diffused about the interstitial fluid. Ux,i [mU]

denotes exogenous insulin appearance in plasma due to an infusion, either from direct

injection or as an appearance profile from a subcutaneous model [58]. Un [mU] is the

time-varying endogenous insulin secretion. All population constants requiring values to

be chosen/fitted are described in Table 4.1.
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Table 4.1: Insulin model constant parameters

Variable Description Units

nI Insulin transport to interstitium min−1

nK Renal insulin clearance min−1

nL Hepatic insulin clearance min−1

nC Insulin clearance from interstitium min−1

k1 Bound insulin dissociation to plasma min−1

k2 Bound insulin dissociation to interstitium min−1

xL First-pass hepatic extraction -

xB First-pass clearance of insulin bolus -

VI Insulin volume of distribution, plasma L

Vq Insulin volume of distribution, active interstitium L

Vp Insulin volume of distribution, passive interstitium L

αI Saturation of hepatic insulin clearance L.mU−1

4.2.3 Insulin measurement bias

Compartment models suffer from the assumption of instantaneous, uniform mixing

throughout each compartment. This assumption drastically reduces computational bur-

den, but may introduce difficulties when insulin is delivered in an inherently transient

bolus form, and measured at a site that is significantly different from the mean. If

trans-endothelial transport is net positive to plasma, the venous concentration at the

post-capillary bed measurement site will be elevated relative to the average plasma value,

introducing bias to the insulin measurement. Experimental work has demonstrated ar-

teriovenous insulin gradients of approximately 20% for skeletal muscle at steady state

[59, 60]. Given the cephalic vein (a typical measurement site) receives an infinitesi-

mal fraction of total cardiac output, this difference affects insulin measurement without

significantly altering the average concentration in the plasma insulin pool. As both

endogenous and exogenous insulin are added to the venous system post-measurement
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site, and assuming the dominant tissue pre-measurement site is skeletal muscle, the local

instantaneous concentration at the venous site is assumed:

Im = I − αm

[
nI(I −Q)− k1

VI
X

]
(4.5)

where I is the true plasma concentration, and Im is the local value at the measurement

site after being affected by capillary bed extraction. The averaged equilibrium across the

peripheral capillary beds is scaled by αm to achieve the desired arteriovenous gradient.

At steady-state, Q→ 1
2I and X → 0, thus:

αm =
2

nI
∆AV (4.6)

where the arteriovenous gradient, ∆AV , is set to 0.2 based on [59, 60]. This transfor-

mation allows the model to be identified using venous insulin data for both boluses and

infusions.

4.2.4 A-priori parameters

One key aim is to identify or physiologically justify every constant parameter value in

Table 4.1. With unknown clearances and volumes of distributions for hidden compart-

ments, this model is unidentifiable with any realistic data density and quality [38]. Thus,

volumes of distribution were selected for a-priori description using knowledge of human

body composition. Although pharmacokinetic volumes of distribution are not strictly

fluid volumes, using plasma and extracellular fluid (ECF) volumes is an approximation

that may introduce bias, but will be adjusted for by fitting the remaining parameters.
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A volume of distribution can be defined as the volume over which a species is homo-

geneously distributed immediately after direct injection into the relevant compartment.

Accordingly, any heterogeneity in concentration or mismodelled clearances will affect

the estimated volume. These factors make identification of these volumes difficult with

insulin, as clearances are high and endogenous production is present. As an approxi-

mation, the central compartment was assumed to be circulating plasma volume, with

VI = 2.8L [61].

Interstitial fluid of insulin-sensitive tissues predominantly consists of skeletal muscle and

adipose tissue. Skeletal muscle and adipose tissues contain approximately 10% ECF by

mass [62, 63]. Estimates of adipose and muscle tissue masses in males (20% and 38%

body mass, respectively) and females (28% and 30% body mass, respectively) [64, 65]

can therefore be used to estimate the volume of this compartment. With an average

human adult weight of 62 kg, Vq = 3.6L. The remaining interstitial fluid is from insulin-

insensitive tissues, and can be estimated using the remaining ECF. Total ECF was

estimated as 12.1L using anthropometric values [66]. Consequently, Vp = 5.7L.

The fraction of bolus insulin cleared prior to affecting measured plasma insulin was

assumed to be xB = 0.20. Local high concentrations around a bolus are assumed to

dissipate after a single pass through the splanchnic, renal, and peripheral capillary beds.

The liver and kidneys receive approximately 40% of normal cardiac output [67, 68], and

both organs typically extract 50% of presented insulin. Thus, 0.2 is an appropriate value

for this disappearance. Finally, hepatic saturation was taken directly from the ICING

model [40]. Hepatic insulin clearance has previously been demonstrated to saturate

[56, 69]. This saturation occurs at supraphysiological plasma insulin values, giving an

estimate of αI = 1.7×10−3. All a-priori insulin model parameters are summarised in

Table 4.2.
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Table 4.2: A-priori insulin model parameters

Variable Value Units

VI 2.8 L

Vq 3.6 L

Vp 5.7 L

xB 0.2 -

αI 1.7×10−3 L.mU−1

4.2.5 Identified parameters

The insulin model parameters that remain to be identified are diffusion rate of insulin

between plasma and interstitium, first-pass hepatic extraction of endogenously secreted

insulin, hepatic, renal, and interstitial clearances, and bound insulin dissociation to

plasma and interstitium. Studies investigating the steady-state insulin ratio in insulin-

sensitive tissues suggest a value of 0.5 (range 0.4-0.6) [59, 70, 71]. This value can be

used to deparameterise the equation by ensuring net flux of insulin is zero at this ratio.

Steady-state forces net flux out of the active interstitium to be zero:

nI(Iss −Qss)VI = nCQssVq (4.7)

As Iss = 2Qss, the relationship between nI and nC can be defined:

nI =
Vq
VI
nC (4.8)

The model can be further deparameterised by relating the relative clearances out of the

hepatic, renal, and interstitial fluid routes. Insulin clearance studies suggest approxi-

mately 60% of insulin is cleared by the liver, and the kidney clears 80% of the remaining
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40%, or 32% of the total [52, 56]. The fractional clearances at steady state are there-

fore 60% hepatic, 32% renal, and 8% tissue. While these values are an approximation,

the clearances are not uniquely identifiable with the available data, and thus this ap-

proximation was chosen over arbitrarily setting one or more of these clearances. Using

the previously mentioned steady-state ratio, Equations (4.9) and (4.10) can be used to

describe hepatic and renal insulin clearance in terms of nC :

nLVIIss =
0.6

0.08
nCVqQss → nL = 7.5nC

Vq
2VI

(4.9)

nKVIIss =
0.32

0.08
nCVqQss → nK = 4.0nC

Vq
2VI

(4.10)

C-Peptide measurements and kinetics [72] compared to peak insulin levels after IV glu-

cose injection [53] make first-pass hepatic extraction of endogenously secreted insulin

identifiable, assuming equimolar simultaneous secretion of c-peptide and insulin. Non-

linear optimisation techniques can thus be used to fit the optimal values of nC , k1, k2,

and xL, and Equations (4.8) to (4.10) used to calculate the corresponding values of nI ,

nL, and nK .

4.2.6 Clinical data

4.2.6.1 DISST data

A dense data set including insulin secretion and an insulin bolus was available for use

identifying insulin model parameters. A total of 217 DISST tests were undergone by

74 female participants from the Otago region of New Zealand. These individuals were

undergoing these tests as part of a 10-week dietary intervention trial described by Te

Morenga and colleagues [73]. Inclusion criteria required that participants either had a
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body mass index (BMI) greater than 25, or greater than 23 and a family history of type 2

diabetes, or ethnic disposition toward type 2 diabetes. Participants were excluded if they

had a major illness, including established diabetes, at the time of testing. Participant

characteristics are summarized in Table 4.3. Ethical approval for this study was granted

by the University of Otago Ethics Committee. Acronyms in the table are: NGT, normal

glucose tolerance; IFG, impaired fasting glucose; T2DM, type 2 diabetes mellitus; and

IQR, interquartile range.

Table 4.3: DISST cohort details

Status Body mass index Sex Age

NGT/IFG/T2DM Median [IQR] Male/Female Median [IQR]

63/11/0 32.4 [27.6-36.3] 0/74 42 [34.8-50.3]

A DISST test is a low cost, high sensitivity test for insulin sensitivity [74]. Low cost

is achieved by sparse sampling, and the dynamic response to sequential IV glucose

(10g, t=5 minutes) and insulin (1U actrapid, t=15 minutes) challenges. During a fully-

sampled DISST test, BG, insulin and C-Peptide are sampled at t=0, 5, 10, 15, 20, 25,

30, 35, 40, and 50 minutes. C-Peptide measurements are used in conjunction with van

Cauter kinetics [72] to estimate endogenous insulin secretion, and a coupled glucose-

insulin system model is used to identify unknown model parameters, including insulin

sensitivity. Figure 4.2 gives an overview of the DISST data set.

4.2.6.2 IVGTT data

A second dense data set including insulin infusions was also available. A total of 36

IVGTT tests were undergone by 14 participants from the Wellington region of New
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Figure 4.2: Median DISST data for all species at each measurement time. Error bars
show the 25th and 75th percentiles for each measurement set.

Zealand as part of an investigation into the effect of the Atkins diet in a cohort of over-

weight and insulin resistant individuals with established type 2 diabetes [75]. Inclusion

criteria required that subjects had established type 2 diabetes and were aged between

30 and 65 years with a BMI between 27 and 40 kg.m2. Participants were excluded

if they had any major physiological or psychological illness at the time of testing, or

were pregnant or lactating. Insulin sensitivity tests were undertaken at weeks 0, 12 and

24, and two subjects withdrew during the study. This research was approved by the

New Zealand Ministry of Health, central regional ethics committee. Cohort details are

summarised in Table 4.4.

The insulin-modified IVGTT protocol described by Ward et al. [54] was used to assess

insulin sensitivity during the study. The experimental protocol was a two-minute glucose

infusion of 0.1g.kg.min−1 started at t=0 min, and insulin infusions of 3.5 mU.kg.min−1
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Table 4.4: IVGTT cohort details

Status Body mass index Sex Age

NGT/IFG/T2DM Median [IQR] Male/Female Median [IQR]

0/0/14 41.2 [37.8-43.8] 8/6 46 [41-54]

(t=2 to t=4 min), 0.5 mU.kg.min−1 (t=7 to t=17 min), 0.25 mU.kg.min−1 (t=17 to t=50

min), and 0.1 mU.kg.min−1 (t=50 to t=300 min). This insulin profile was selected to

mimic the first and second insulin production phases of healthy, normo-glucose tolerant

individuals. Blood samples were taken at t=-10, -5, -1, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12.5,

15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 210, 240, 270, and 300

minutes, and assayed for both insulin and glucose. Figure 4.3 gives an overview of the

IVGTT data set.
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Figure 4.3: Median IVGTT data for all species at each measurement time. Error
bars show the 25th and 75th percentiles for each measurement set.
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4.2.7 Analyses

The aim of this research was to create a whole cohort model, matching both infusion and

bolus delivery. Thus, a median patient was created from both the DISST and IVGTT

data. As C-Peptide data was not available during the IVGTT tests, insulin secretion

was calculated from basal plasma insulin, and the data around the first-phase secretion

(t < 7 min) was omitted during fitting. Additionally, all points after t=100 min in the

IVGTT were discarded to prevent these points dominating the parameter identification

procedure. The two median patients were identified concurrently to find nC , k1, k2, and

xL, recovering the parameter values that best describe the two cohorts simultaneously.

Descriptive capability was then assessed by simulating this model for all patients in each

cohort, and calculating the relative error.

Relative error for the training data was reported as a percentage for each measurement.

The error between the whole-cohort model and individual patient data was reported as

the integral of the absolute error relative to the integral of the measured data. Low

insulin measurements and high variation during the final 20 minutes of the DISST test

meant error integrals were more suitable than individual measurements.
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4.3 Results

Identified parameter values were nC = 0.0448, k1 = 0.224, k2 = 0.0184, and xL = 0.303.

The dependent parameters, and all a-priori constants, are summarised in Table 4.5.

The influence of the measurement site insulin transformation is shown for IV bolus

administration in Figure 4.4, showing the magnitude of the transient insulin peak due

to non-uniform mixing.

Table 4.5: Summary of model constants

Variable Value Units Origin

nI 0.0576 min−1 fitted, dependent

nK 0.115 min−1 fitted, dependent

nL 0.216 min−1 fitted, dependent

nC 0.0448 min−1 fitted

k1 0.224 min−1 fitted

k2 0.0475 min−1 fitted

xL 0.303 - fitted

xB 0.2 - a-priori

VI 2.8 L a-priori

Vq 3.6 L a-priori

Vp 5.7 L a-priori

αI 1.7×10−3 L.mU−1 a-priori

αm 6.94 min a-priori

The resulting relative error between the fitted profile and the training data is shown in

Figure 4.5 for both the DISST and IVGTT tests. Relative error is similar between the

two tests, despite differing insulin administration and plasma insulin profiles. All error

values are within 30%, with the largest relative error occurring during the low infusion

rate period after t=50min during the IVGTT. Error across all patients in each cohort is

also similar, as seen in Figure 4.6, where median error is approximately 30%, with 75%

of values below a relative error of 40%.
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Figure 4.4: Effect of insulin measurement transformation. The model solution for
the fitted parameters is shown alongside the transformed insulin measurement for a
DISST test. The non-uniform mixing acts to reduce the apparent effect of endogenously

secreted insulin, and increase the apparent effect of an IV insulin injection.

4.4 Discussion

This work is a natural progression of the ICING model insulin kinetics. While the

ICING model [40] has proved useful for describing and predicting BG, the insulin model

can benefit from a more physiologically relevant description. The new model developed

with this focus proved capable of simultaneously describing both bolus and infusion

dynamics, while using more physically relevant volumes of distribution and balancing

insulin clearance sites to match mean reported data in [52]. Additional complexity was

introduced in the form of an intermediate bolus compartment and an adjusted insulin

measurement concentration, but was necessary to describe both the bolus and infusion

kinetics simultaneously.



Chapter 4. Updated Insulin Kinetic Compartments 66

0 10 20 30 40 50
−40

−20

0

20

40
DISST

E
rr

o
r 

(%
)

0 20 40 60 80 100
−40

−20

0

20

40
IVGTT

E
rr

o
r 

(%
)

Time (min)

Figure 4.5: Relative error between training data and the model solution generated
using the selected parameter set.
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Figure 4.6: Cumulative error relative to integral of measured data across all patients
in each cohort, using the selected parameter set. Boxplot whiskers show the 5th and

95th percentiles.
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All models approximate reality and make assumptions. The new model formulation was

developed using a range of assumptions, and exhibited strong descriptive capabilities.

A-priori associations between anthropometric values and fluid volumes were used to

estimate the volumes of distribution, under the assumption that insulin diffuses about a

physical volume, and that the main portion of insulin sensitive cells are found in either

muscle or adipose tissue, which matches the physiology [52]. Diffusion kinetics were

estimated by assuming a steady-state insulin ratio between plasma and the interstitial

fluid of insulin sensitive tissues was maintained. Finally, insulin clearances were fitted

under the assumption that a physiological levels, 60% of peripherally infused insulin is

cleared by the liver, 32% by the kidneys, and 8% by peripheral tissues.

Each of these assumptions may introduce error. However, limitations on available data,

particularly when used clinically, and inherent non-uniformities introduce a necessity for

these choices to ensure identifiability of critical parameters. Furthermore, as this model

is intended for use in control, rather than diagnostic purposes where there is greater

data availability, the error introduced can be offset to a significant degree as differences

in magnitude simply cause an offset in the fitted insulin sensitivity. An adaptive control

algorithm can therefore respond safely. These arguments apply in particular to volumes

of distribution, where errors introduce linear offsets in the absence of saturation dy-

namics. As saturation terms in this model have little effect at physiological dynamics,

accuracy in these volumes has few implications. However, non-representative anthropo-

metric relationships and insulin antibody binding are likely to be the main sources of

error in the estimated volumes.

As the steady-state ratio between active interstitial fluid and plasma has been well estab-

lished [59, 70, 71], the major assumption requiring justification is the presumed relative

contribution of each clearance route. An assumption here is necessary, as renal insulin
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clearance has not been shown to saturate, while hepatic clearance has [56]. At physio-

logical ranges, the similarity between the hepatic and renal clearance dynamics prevents

unique identification [38] and thus fitting is not robust in the presence of noise. As a

result, the relative contribution of each must be estimated. Identified tissue clearance

depends heavily on the volume of distribution of the active interstitium compartment.

Thus, the relative contribution of tissue clearance was included to reduce the correlation

between this volume error and error in nC from Equation 4.7. While this assumption

is very broad, using relative contributions taken from literature [52] still permitted clin-

ically observed to be well matched in Figure 4.6. Overall, these results show that use

of a median patient to derive whole-cohort parameters did not compromise ability to

capture fundamental kinetics.

However, the DISST cohort is not heterogeneous, and the IVGTT cohort includes only

T2DM individuals and is much smaller. Inclusion criteria for the study using DISST

tests in the study prevented any males, individuals with BMI less than 25, or diagnosed

diabetes. This dataset was chosen due to a combination of availability, relative den-

sity of measurements, size, and complexity of dynamics. In particular, separation of IV

glucose (stimulating a first phase secretory response) and IV insulin permitted greater

resolution of first-pass hepatic extraction and the other insulin clearances. In addition,

relatively expensive C-Peptide measurements permit estimation of insulin secretion. For

the IVGTT, T2DM individuals have a limited first-phase secretory response to IV glu-

cose, and thus lack of C-Peptide has a limited affect. The two cohorts are thus suitable

for parameter identification. The main area that will require work is an insulin secretion

model for T2DM, where impaired beta cell function in T1DM means insulin secretion

is negligible beyond early stages.

Overall, parameter identification was carried out in a manner appropriate to the inter-
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and intra- patient variation in insulin kinetics. Restricting parameter values by enforcing

a-priori relationships ensures the fate of insulin in the body is realistic and matches

observations, which may allow inclusion of hepatic glucose balance kinetics in future.

Particularly, the transparent nature of the a-priori relationships also permits simple

modifications as new knowledge arises.
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4.5 Summary

The outcome is a set of parameter estimates derived in a stable manner using a dense

dataset. A-priori values and physiological estimates of the fate of circulating insulin

were used to circumvent a practically unidentifiable model, and restrict assumptions

to easily updated values. The resulting formulation adequately describes circulating

insulin dynamics, including both bolus and infusion dynamics. Thus, the ICING model

has been extended and improved, and is better suited to describe subcutaneous insulin

dynamics after absorption.



Chapter 5

A Unified Model of Subcutaneous

Insulin Absorption

5.1 Introduction

One significant modelling problem in model-based glycaemic control is the appearance

rate in plasma of slow-release subcutaneous insulin types. A need for unified, simple

models exists, as treatment of insulin-dependent outpatient diabetes typically involves

multiple daily subcutaneous insulin injections. Optimising insulin therapy through

model-based decision support thus requires the action of each insulin form present in

the body to be described both independently and in a unified format with other insulin

types. Numerous attempts have been made to model and validate these absorption

profiles [51, 58, 76–78], but no definitive approach has arisen.

Subcutaneous insulin injections can be administered to the abdomen, upper arm, or

thigh, and can range from basal insulin analogues to extremely short acting monomeric

71
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insulins. The complexity of each absorption profile depends on the particular prepara-

tion, with the molecular affinity for larger insulin complexes, or association state, the

key predictor [79]. Significant degradation occurs at the insulin depot [80, 81], while

temperature changes, local massage, exercise, and many other factors can alter the ab-

sorption profile [51]. The inherent inter- and intra- patient variability in the appearance

rate of insulin in plasma is thus extremely high, creating significant uncertainty in any

dosing protocol.

A simple yet powerful approach to modelling subcutaneous insulin is a compartment

model. However, as with all mathematical models, even simple models suffer from the

problem of non-identifiability [50] when identifying parameters with incomplete data. In

the case of subcutaneous insulin, multiple hidden compartments make unique identifica-

tion of all possible parameters implausible. This factor has been consistently overlooked

in publications on the subject to date, and as a result, even models with the same

structure can vary significantly in internal model parameter values.

In short, the use of model-based methods in glycaemic control requires an inclusive model

that permits superimposed insulin profiles with different insulin analogues. However,

very few efforts have been made to unify an independently derived model of circulating

insulin kinetics with a subcutaneous insulin model. The level of uncertainty precludes a

standard parameter identification approach. The slow changes in appearance of a sub-

cutaneous insulin dose further prevent unique identification of volumes of distribution,

clearances, and transport rates, while also identifying the pharmacokinetic parameters

associated with subcutaneous insulin appearance in plasma.

This research proposes a model that incorporates four of the major insulin analogues,

and interfaces with an independently derived model of circulating insulin. The resulting
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model is intended to recreate the plasma insulin profiles observed in clinical trials on

a descriptive, rather than diagnostic, level, enabling its use in decision-support algo-

rithms. Prior work by the wider research group led to a unified description of the major

insulin types [58, 82], but a non-physiological plasma insulin compartment was used.

This work is thus unique in independently fitting a circulating insulin model, and us-

ing common compartments to simultaneously fit parameters describing all insulin types,

thus circumventing non-identifiability for long-acting insulins such as glargine.

5.1.1 Literature review

The variation between researchers can be simply outlined by comparing the circulating

insulin compartments in four published models when forced by an IV bolus. Compar-

ing the appearance profile of subcutaneous insulin shows little difference, as each full

parameter set has been fitted to match clinical data, while IV insulin directly enters

the main compartment and allows for direct comparison. Figure 5.1 and 5.2 show the

simulated responses to an IV insulin bolus, with endogenous insulin secretion calculated

using median C-Peptide measurements and a widely accepted model [72].

Kobayashi et al. [83] presented two models in the same paper (Figure 5.1). While the

single compartment formulation is extremely poor, the two-compartment formulation is

perhaps the most descriptive of those published to date. The accuracy of this formula-

tion can be attributed to the use of IV insulin responses to fit this portion of the model.

Unfortunately, the authors then proceeded to conclude that a ”one-compartment open

model with first-order absorption and elimination was appropriate for estimating the ki-

netics of subcutaneously administered insulin”, thus somewhat negating one of the more

diligent approaches to modelling subcutaneous insulin. On the other hand, Mosekilde
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et al. [76] opted for extremely high clearance rates, and transport rates between plasma

and interstitium were fast enough to render the second compartment irrelevant.

Tarin et al. modelled both NPH and glargine [84] using a three compartment descrip-

tion of circulating insulin shown in Figure 5.2. In contrast, Wong et al. used a single

compartment, and more closely resembles the DISST data. The subcutaneous models

themselves differ significantly also, with Kobayashi and Wong both using simple com-

partmental models, and Mosekilde and Tarin discretising the spherical depot itself and

utilizing a series of partial differential equations.

Although Figures 5.1 and 5.2 cannot be called representative or quantitative, the com-

parisons highlight how inconsistent the description of circulating insulin is in literature.

Such inconsistency means that each model is not useful practically. In particular, even

though the underlying justifications may be acceptable, the varied descriptions of plasma

insulin mean the fitted parameters of the presented models are not relevant, because the

absorption parameters will have adjusted to ensure the model fits, and cannot be used

in isolation. Thus, there is the problem of effective over-parameterisation, and a new

description is required to adequately fit a validated model of circulating insulin dynam-

ics.
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Figure 5.1: Simulation of a DISST test using the models fitted by Kobayashi et al.
[83] and Mosekilde et al. [76] plotted against median data from the DISST cohort [53]
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Figure 5.2: Simulation of a DISST test using the model fitted by Tarin et al. [84]
and Wong et al. [58] plotted against median data from the DISST cohort [53]
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5.2 Methods

5.2.1 Model

Insulin and its analogues have a number of molecular states, including monomeric, to

dimeric, hexameric, crystalline, or precipitate forms. The fastest absorbing insulins

have little tendency to self-associate into larger molecules, thus remaining largely in the

monomeric state and rapidly traversing the capillary membrane [85]. The absorption of

dimeric and monomeric insulin has been demonstrated to be different [79], but, as the

magnitude of the difference is much smaller than the difference between other forms,

these two states have been lumped into a single shared local delivery site compartment.

The mono-exponential absorption of low molecular weight insulin to the plasma [79]

justifies a linear clearance from this shared compartment. However, while absorption

is mono-exponential, a dual exponential clearance is observed in circulating plasma

insulin levels. As the half-life of insulin in plasma is much faster than the timescale

of subcutaneous insulin absorption, this dual exponential justifies a local interstitial

insulin compartment that linearly clears into plasma. Depot spreading due to diffusion

is ignored, as the larger molecules diffuse slowly (or are stationary), and diffusion of the

smaller molecules is assumed to be clearance into the local interstitium.

More complex, longer acting insulin preparations include a hexameric form, in equilib-

rium with the dimeric concentration:

Ch = QCdm
3 (5.1)

where Ch and Cdm are the concentrations of hexameric and dimeric/monomeric insulin

[mU/mL], respectively, and Q is the equilibrium constant [ml2 mU−2].
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Insulin glargine and neutral protamine Hagedorn (NPH) both have insoluble forms, the

slow clearance of which gives their protracted action profile. NPH is assumed to have

a linear clearance out of a crystalline compartment, while glargine achieves a uniquely

flat basal profile through a saturating clearance out of a micro-precipitate compartment.

As glargine doses do not saturate at the same level, this saturation is based on concen-

tration instead of absolute quantity. These interactions, and the model structure, are

summarised in Figure 5.3.

Figure 5.3: Schematic of subcutaneous model compartments and relationships. The
clearances are labelled with a brief description.

The corresponding equations describing the model dynamics are defined for each com-

partment, as follows:. Local interstitium:

ẋi = kdmxdm − kixi (5.2)
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Dimeric/Monomeric compartment:

ẋdm =



Udm − kdmxdm, monomeric

Udm + pd

(
1
3xh −Q

x3
dm

V 2

)
− kdmxdm, regular/NPH

Udm + pd

(
1
3xh,gla −Qgla

x3
dm

V 2

)
− kdmxdm, glargine

(5.3)

Hexameric compartment:

ẋh = Uh + kcxc − pd
(

1

3
xh −Q

x3
dm

V 2

)
(5.4)

Hexameric glargine compartment:

ẋh,gla = Uh,gla +
kpxp

V + αglaxp
V − pd

(
1

3
xh,gla −Qgla

x3
dm

V 2

)
(5.5)

Crystalline compartment:

ẋc = Uc − kcxc (5.6)

Micro-precipitate compartment:

ẋp = Up −
kpxp

V + αglaxp
V (5.7)

where xi, xdm, xh, xh,gla, xc, and xp are the total insulin in local interstitium, dimeric or

monomeric, hexameric, hexameric glargine, crystalline, and precipitate compartments

[mU], respectively. k denotes a clearance [min−1] and U an exogenous appearance [mU

min−1], with the subscript corresponding to the compartment listed previously. Qgla

is the equilibrium constant of the more stable glargine hexamer [ml2 mU−2], V is the
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volume of the subcutaneous depot [ml], αgla is the saturation constant for precipitate

dissolution [ml mU−1], and pd is the hexameric dissociation rate [min−1].

When monomeric insulins are used, total insulin dose UT = Udm. However, more complex

insulins exist in multiple forms simultaneously (e.g. Udm, Uh, and Uc, Figure 5.3), and

equilibrium conditions must be used to calculate initial conditions for each compartment.

In particular, human insulins exist in an equilibrium state between hexameric (h) and

dimeric/monomeric (dm) forms in the subcutaneous depot. As a result, the total insulin

dose is defined:

UT = Uh + Udm (5.8)

where equilibrium conditions dictate that the rates of forward and reverse chemical

association/dissociation reactions are identical:

1

3
Uh = Q

U3
dm

V 2
(5.9)

Substitution of Equation (5.9) into Equation (5.8) gives:

UT = 3Q
U3
dm

V 2
+ Udm (5.10)

which can be solved for given Udm, and subsequently Uh. Equation (5.10) is of the form

αx3 + x + β = 0, where α = 3Q/V 2 and β = −UT . A closed form solution is available

for rapid evaluation:

Udm =

3

√√
81α4β2 + 12α3 − 9α2β

3
√

18α
−

3

√
2
3

3

√√
81α4β2 + 12α3 − 9α2β

(5.11)

Long-acting insulins precipitate or crystallise when introduced to interstitial fluid. A
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fraction of NPH, βNPH , is assumed to form a crystalline structure upon injection. Ex-

ogenous insulin appearance in the crystalline compartment is therefore Uc = βNPHUT .

The remaining insulin, (1 − βNPH)UT , is distributed between the remaining compart-

ments, as described by Equation (5.10). Glargine behaves similarly, with Up = βglaUT ,

and substituting (1− βgla)UT for UT in Equation (5.10).

Finally, appearance of dimeric/monomeric insulin in plasma is described:

Ux = ftypekixi (5.12)

Each different formulation has a unique scaling factor, ftype. This parameter is analo-

gous to a unique clearance in the local interstitium, and highlights the many currently

unquantified processes at work during the absorption process. In essence, ftype lumps

together such dynamics as clearance from the subcutaneous depot, affinity to antibodies

(appearing as different volumes of distribution), and altered clearance routes that affect

the deconvolved integrals in parameter identification with sparse data.

ftype =



fdm, monomeric insulin

fRI , regular (human) insulin

fNPH , NPH insulin

fgla, insulin glargine

(5.13)

This mixed chemical and kinetic modelling approach allows a consistent model formu-

lation to be used while retaining drug-specific behaviour.
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5.2.2 Parameter identification

Equations (4.3) and (4.4) can be directly solved for Q and Qp, given a known I. En-

dogenous insulin secretion is minimal at basal levels, and is adjusted for by subtracting

the basal insulin concentration from the I solution. Thus, a known I can permit decon-

volution of Ux from Equation (4.1), using:

I(t) = I(t0) +
1

VI

∫ t

t0

Uxdx− nK
∫ t

t0

Idx

− nI
∫ t

t0

(2I −Q−Qp)dx− nL
∫ t

t0

I

1 + αGI
dx (5.14)

1

VI

∫ t

t0

Uxdx = I(t)− I(t0)− nK
∫ t

t0

Idx

− nI
∫ t

t0

(2I −Q−Qp)dx− nL
∫ t

t0

I

1 + αGI
dx (5.15)

Equation (5.15) gives a value for total exogenous insulin appearing in plasma at each

plasma insulin measurement. The error between the subcutaneous insulin model and

this estimated appearance at each measurement is defined:

εtm =

∫ tm

t0

Uxdx− ftypeki
∫ tm

t0

xidx ∀ tm (5.16)

Furthermore, ftype is a scaling factor, and thus depends on the total error. This depen-

dence is defined by:

ftype


ki
∫ t0
t0
xidx

...

ki
∫ tm
t0

xidx

 =


∫ t0
t0
Uxdx

...∫ tm
t0

Uxdx

 (5.17)
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where ftype can be calculated by solving the linear system. By deconvolving the ex-

ogenous appearance profile and using Equation (5.17) to solve for ftype, rather than

simulating the full system and using error in the plasma insulin compartment, one pa-

rameter is removed from the gradient descent algorithm. Additionally, Equation (5.17)

ensures the error vector of the objective function ideally has a centroid of zero, allowing

a gradient descent algorithm to identify the parameters corresponding to the optimal

shape. Removing a single parameter when fitting each insulin type means 4 parameters

are removed from the overall system, which significantly reduces the dimensionality of

the error surface when multiple insulin types are used in the same optimisation routine.

Use of multiple insulin types allows ”averaged” parameters to be estimated that work

for all insulin types.

5.2.3 Clinical data

Published data was gathered to describe typical plasma insulin profiles for monomeric

insulin [86], regular insulin [86], NPH insulin [87], and insulin glargine [88]. The baseline-

corrected plasma insulin profiles for each insulin formulation are shown in Figure 5.4.

These profiles were electronically extracted to minimise error, and used in the following

fitting procedure. Available cohort details are recorded in Table 5.1. All doses had a

concentration of 100 U.ml−1, and where weight was not explicitly published, BMI was

used to estimate the dose size.

Table 5.1: Average cohort details

Cohort N Age BMI Weight Insulin dose Gender Diagnosis

Novorapid 18 31 23.6 - 0.2 U/kg Male Healthy

Actrapid 18 31 23.6 - 0.2 U/kg Male Healthy

NPH 11 22.8 23.4 76.5 0.5 U/kg Male T1DM

Glargine 15 27.4 22.2 - 0.4 U/kg Male Healthy
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Figure 5.4: Raw baseline-corrected plasma insulin profiles for monomeric insulin [86],
regular insulin [86], NPH insulin [87], and insulin glargine [88].

5.3 Results

The exogenous insulin appearance profiles shown in Figure 5.5 were derived from the

fundamental plasma insulin profiles presented in Figure 5.4. The parameters in Table

5.2 were identified from these profiles. Note that pd was selected (not identified), as the

parameter has been previously demonstrated to be poorly correlated with error in the

appearance profile [76].

Figure 5.6 shows the identified and raw cumulative appearance profiles, while Figure

5.7 indicates the quality of the fit by showing the residuals for each profile. For the

longer acting insulins, NPH and glargine, the fitted parameter set indicates absorption

is incomplete at the end of the measurement period.

Finally, Figure 5.8 gives a qualitative comparison of the different appearance profiles
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modelled. The simulated response to 10U of 100U/ml insulin through each of the routes

shows the major features captured by the model. These features are the rapid ap-

pearance and decay of monomeric insulins, the reduced peak and protracted action of

self-associating regular insulins, the irregular protracted action of NPH, and the uniquely

flat action profile of glargine.
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Figure 5.5: Deconvolved cumulative appearance profiles for 4 distinct insulin formu-
lations.
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Figure 5.6: Fractional appearance profiles for 4 distinct insulin formulations. Ab-
sorption is thus incomplete for the longer acting NPH and glargine insulins.
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Figure 5.7: Residual profiles for 4 distinct insulin formulations.
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Table 5.2: Fitted values of subcutaneous insulin model constants

Parameter Value

ki 4.60×10−2

kdm 1.20×10−2

kc 1.31×10−3

kp 1.21×10−3

Q 5.02×10−10

Qp 2.38×10−8

pd 1a

αgla 5.72×10−6

βNPH 1

βgla 0.968

fdm 0.709

fRI 0.597

fNPH 0.480

fgla 0.509

apd was selected (not fitted) as the parameter has been previously demonstrated to be poorly corre-
lated with error in the appearance profile [76].
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Figure 5.8: Model-based appearance profiles for 10U (100U/ml) of 4 distinct insulin
formulations.
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5.4 Discussion

A novel compartment model approach combining linear clearances and kinetics, sat-

urable clearances, and chemical equilibriums was able to capture the dynamics of 4

major insulin types with minimal parameterisation. By assuming a set of circulating

insulin dynamics shared by all insulin types, the potential for parameter variance was

reduced (likely at the cost of bias between insulin types). Approximately half of the

total possible parameters were removed from the fitting procedure as a result, deparam-

eterising the model and increasing practical identifiability [18].

Model consistency was supported by the identified equilibrium constants Q and Qp in

Table 5.2. While glargine shares the hexamer form with other self-associating insulins,

glargine hexamers dissociate more slowly than typical insulin hexamers. This effect was

reflected in the parameter values, with Qp >> Q without imposing any constraints on

the fitting process. Greater Qp values mean the glargine hexamer has a greater affinity,

reducing the available quantity of dimeric/monomeric insulin. While the significance of

this observation may be limited, Q and Qp represent the only kinetic parameters that

can be directly compared, and so this consistency retains some importance.

The bias between different insulin types was partly accounted for by the scaling factor,

ftype. Interestingly, the value of ftype was clearly correlated with the length of the action

period of the insulin type. The monomeric scaling factor, fdm, had the highest value

of 0.709. The increased self-association of regular insulin resulted in a comparatively

longer action profile, with a smaller scaling factor fRI = 0.597. Finally, the scaling

factors of extremely prolonged NPH and Glargine insulins were similar, at 0.480 and

0.509, respectively. These values are in line with reported bioavailability of subcutaneous

insulin. The largest reported fraction of subcutaneously injected insulin degraded at the
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depot site is approximately 50% [81] at steady state. Other studies put this figure at

approximately 20% [80]. If the correlation with action period is physiological, instead

of an artefact of fitting a limited dataset, possible implications include:

– Greater time at conditions close to equilibrium increases the respective volumes of

distribution relative to an IV insulin bolus, where less well perfused tissues do not

have sufficient time to accumulate insulin. This effect would suggest that in prior

studies plasma insulin clearances have been underestimated by fitting clearances

while overestimating the volume of distribution around an IV bolus.

– Subcutaneous insulin degradation at the depot site saturates, thereby having a

greater effect on longer acting insulins and appearing as a reduced ftype.

– Prolonged action periods result in increased bias due to assumptions on endogenous

insulin secretion.

A limitation of this section of the work is the data itself. Individual profiles were not

available, and the information on the cohort itself was limited. In each study, insulin

dose was selected based on body weight. However, 3 out of 4 studies failed to report the

average weight, and thus the absolute size of the insulin dose had to be estimated. The

advantage of using ftype to scale the appearance profile is that error in this absolute size

will be absorbed by this parameter, and have limited effect on the remaining parameter

set. Also of note is the incomplete absorption of the longer acting insulins, as seen

in Figure 5.5. This may introduce error in the fitting procedure, but extending the

experimental protocol is impractical due to the prolonged action period of these insulins.

Due to the relative expense, C-peptide measurements were not reported in equivalent

density. This lack of data meant endogenous insulin secretion could not be fully adjusted
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for, and basal insulin levels were used as a surrogate. While this effect is unlikely to have

any significance for a T1DM participant, three of the studies used healthy volunteers,

and a bias may be introduced here. To correct each of these factors greater access to

data, or a dedicated trial, is required. However, equally, the body of literature has

frequently suggested large variation in appearance profiles even for the same patient.

As a result, these effects may not be large enough to warrant such attention given the

inter- and intra- patient variation reported [89].

These results provide a unified and physiologically justifiable model description of slow-

acting, subcutaneous insulin appearance profiles that will allow multiple insulin types

to be considered simultaneously. Such a model has wide-ranging applications in model-

based therapeutics for diabetes management, and bridges the gap left by existing models

of particular insulin analogue kinetics. Slow acting insulins are typically used in non-

acute cases, and thus, the rate of attendance is limited. These results provide a more

robust approach to estimating the appearance, and action, of insulin analogues. Hence,

the proposed model has the potential to enable model-based algorithms that have proven

effective in critical care [22, 34] to be used in non-acute cases.
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5.5 Summary

A novel mixed chemical and kinetic model is presented that describes subcutaneous in-

sulin absorption kinetics. The combined model provides a unified framework for multiple

insulin types. Circulating insulin dynamics were described by an independently derived

model where a-priori values and physiological estimates of the fate of circulating insulin

were used to circumvent a practically unidentifiable model. When combined with the

subcutaneous insulin absorption model, parameter estimates in the subsequent model

showed consistency, and captured each of the required dynamics.



Chapter 6

Characterisation of Diurnal

Insulin Sensitivity Parameter

Identification under High Internal

Noise

6.1 Introduction

Chapter 2 introduces a novel parameter fitting technique that uses a non-linear model,

basis functions, and stochastic elements to robustly identify an underlying insulin sen-

sitivity profile. The applicability of this method was demonstrated on ICU data, with

Chapter 3 showing how prediction was possible. Chapters 4 and 5 provide an insulin

model capable of describing both IV and subcutaneous insulin administration in a sin-

gle unified framework. The requisite models and methods have thus been prepared for

characterising insulin sensitivity beyond the critical care setting.

93
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Due to high measurement frequency, nutrition regulation, and intensive supervision, data

obtained in the ICU represents an upper limit in quality for glycaemic control. When

extending model-based glycaemic control from critical illness to chronic care, either in a

hospital ward or outpatient setting, BG measurement frequency and quality decreases,

and uncertainty about nutrition intake increases. Additionally, insulin administration is

subcutaneous, rather than intravenous, increasing the action period and uncertainty in

appearance, and thus the hypoglycaemic potential of overaggressive dosing. A schematic

summarising these factors in shown in Figure 6.1.

Figure 6.1: Pyramid description of glycaemic control problems in terms of ability to
control variables based on knowledge of their value or input (vertical axis), and the
range of variables to be considered and resulting level of uncertainty (horizontal axis).

Furthermore, hypoglycaemia is a greater concern in everyday life, where the conse-

quences of a hypoglycaemic event while carrying out some routine activities, such as

driving, can be severe. A robust, safe decision support protocol thus could be of sig-

nificant benefit. The foundation of such a decision support protocol is the parameter
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identification method. Due to high noise and long delays between measurements, the

STAR approach of identifying the “current” SI and predicting forward is no longer

applicable.

An example is the morning insulin dose. In this case, individuals only have access to

the current BG, and no dynamic response, since the prior measurement was the night

before or longer. However, they still must decide on an appropriate long-acting (basal)

and short-acting (prandial) insulin dose at that time with a single measurement and no

prior information. For model-based predictions, categorising a current diurnal SI profile

using multiple days of data is a method of circumventing this problem. Using multiple

days of data makes parameter identification more stable in the face of high noise and

uncertainty, as will be demonstrated in Chapter 7.

This work presents an adaptation of the parameter identification method presented in

Chapter 2, and characterises the method using clinical T1DM “diary” data.
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6.2 Methods

6.2.1 Models

The insulin model from Chapter 4 was used to simulate circulating insulin dynamics.

Subcutaneous appearance profiles were simulated using the model presented in Chapter

5. In long-term management of diabetes, a basal state is a much more valid assumption

than in critical illness. However, basal glucose, Gb, and model-based basal interstitial

insulin, Qb, must be estimated from patient data. The glucose compartment is identical

to the DISST [90] formulation:

Ġ(t) = Gx − pG(G(t)−Gb)− SI
G(t)Q(t)−GbQb

1− αGQ(t)
+
P (t)

Vg
(6.1)

P (t) = Pparenteral + max(Pmax, d2P2) (6.2)

P2 = d1P1 −max(Pmax, d2P2) (6.3)

P1 = Penteral − d1P1 (6.4)

where G, P1, and P2 are the plasma glucose concentration, and the glucose content of

the stomach and gut, respectively. P (t) is the exogenous glucose appearance in plasma,

while Penteral and Pparenteral are the enteral and parenteral nutrition administered. The

generic absorption model was also left unchanged, with d1 = − log 0.5/20min−1 (transfer

to gut), d2 = − log 0.5/100min−1 (transfer to plasma), and Pmax = 6.11mmol.min−1

(maximal absorption rate).

The main sites of non-insulin mediated glucose uptake (NIMGU) are the central nervous

system and muscles [91]. The central nervous system has a relatively stable energy

requirement, but can shift metabolic pathways away from glucose if required. As this
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process is gradual, and conditional on extreme situations such as starvation [92, 93], this

effect can be negated and the central nervous system’s glucose uptake is simply included

in Gb. In contrast, NIMGU in muscle cells changes with BG. The relative magnitude of

this change [91] gives an estimate of pG = 0.006 min−1, which agrees with the ICING

model [40], and is thus left unchanged.

The glucose volume of distribution is assumed to be extracellular fluid volume, giving

Vg = 12.1L [66]. Finally, αG is determined by the half-maximal effect of insulin on

glucose utilization. Approximate half-maximal effect of insulin on whole-body glucose

metabolism occurs at plasma insulin concentrations of approximately 58 mU.L−1 (max-

imal at 200-700 mU.L−1) [94]. As steady-state Qss = Iss
2 , αG is thus set to 29 L.mU−1.

6.2.2 Insulin sensitivity profile

A b-spline basis similar to Chapter 2 was generated by choosing identical knot times

each day. However, instead of a series of functions, three composite basis functions were

generated by combining the functions that occur at the same time of day. An example

of these three functions is shown in Figure 6.2. The resulting representation of SI is a

repeating signal with a period of 24 hours.

6.2.3 Parameter identification

To identify this repeating SI , an iterative procedure identical to Chapter 2 was carried

out with the three basis functions. Similar to Equation (2.20), for n BG measurements
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Figure 6.2: Three composite basis functions generated by a 2nd order b-spline basis
with identical knot times each day. The functions sum to unity to produce the SI

profile.

and three 2nd order b-spline basis functions f1, f2, and f3, as shown in Figure 6.2:

Â1,(n,3) Â2,(n,n)

0̂(3,3) Â3,(3,n)


 ŜI,(3,1)

Ĝx,(n,1)

 =

b̂1,(n,1)

0̂(3,1)

 (6.5)

where ŜI,(3,1) = [SI,1, SI,2, SI,3]> is the vector of scalar multipliers corresponding to f1,

f2, and f3, Ĝx,(n,1) = [Gx,1, . . . , Gx,n]> is the vector of noise values between measure-

ments, and:

Â1,(n,m) =



∫ t1
t0
f1
GQ−GbQb

1 + αGQ
dt

∫ t1
t0
f2
GQ−GbQb

1 + αGQ
dt

∫ t1
t0
f3
GQ−GbQb

1 + αGQ
dt

...
...

...∫ tn
t0
f1
GQ−GbQb

1 + αGQ
dt

∫ tn
t0
f2
GQ−GbQb

1 + αGQ
dt

∫ tn
t0
f3
GQ−GbQb

1 + αGQ
dt


(6.6)
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Â2,(n,n) =



−(t1 − t0) 0 . . . 0

−(t1 − t0) −(t2 − t1) . . . 0

...
...

. . .
...

−(t1 − t0) −(t2 − t1) . . . −(tn − tn−1)


(6.7)

Â3,(m,n) =


∫ t1
t0
f1(t)dt . . .

∫ tn
tn−1

f1(t)dt∫ t1
t0
f2(t)dt . . .

∫ tn
tn−1

f2(t)dt∫ t1
t0
f3(t)dt . . .

∫ tn
tn−1

f3(t)dt

 (6.8)

b̂1,(n,1) =


G(t1)−G0 −

∫ t1
t0

P (t)

Vg
− pG(G(t)−Gb)dt

...

G(tn)−G0 −
∫ tn
t0

P (t)

Vg
− pG(G(t)−Gb)dt


(6.9)

Parameters were considered converged when the maximum error between the model

solution and measured BG was within 0.1 mmol.L−1, and the maximum ∆SI value

was within 1x10−6. To speed convergence, between major iterations each Gx value was

updated to bring the model solution within 0.05 mmol.L−1 of the measured BG:

Gx(ti) =
1

ti+1 − ti

(
G(ti+1)−G(ti) +

∫ ti+1

ti

pG(G(t)−Gb)+

SI
G(t)Q(t)−GbQb

1− αGQ(t)
− P (t)

Vg
dt
)

(6.10)

where i is the ith measurement, and SI is the current diurnal 24 hour repeating profile.

6.2.4 Clinical data

Data was collected over a 4 day period for N=8 individuals with T1DM as part of a

DAFNE educational course [95]. Glucometer BG measurements were taken 4-8 times
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daily, insulin doses were recorded, and carbohydrates were estimated by the participants.

Some individuals included details of exercise, but this data was difficult to quantify and

inconsistent, and was not used for this reason. The dataset is summarised in Table 6.1.

Acronyms used in the table are TDI, total daily insulin; TDC, total daily carbohydrates.

6.2.5 Analyses

Initially, the model-based basal state was approximated. The best surrogate for a basal

state was assumed to be the first measurement of each day. Thus, Gb was calculated

by taking the mean of these values. Model-based Qb was approximated by solving the

insulin kinetic model over the full episode, pairing interstitial compartment solutions

with the chosen basal glucose times, and taking the mean.

Second, knots for the basis function were calculated by identifying the median meal times

for each episode. K-means cluster analyses were carried out on insulin dose and nutrition

intake times, providing an optimal classification of data into “morning”, “afternoon”,

and “evening” meal events. The influence of small inter-meal snacks on the chosen knot

times was then eliminated by finding the median time within the three classifications.

These medians were used as the knot times for basis function generation, as per Chapter

2.

Finally, using the chosen basal state and knot timings, each episode was fit using the

methodology presented in Chapter 2. The number of major iterations and total time

until convergence on an i7 CPU @ 3.8GHz was recorded. Fitted diurnal SI profiles were

presented alongside fitted Gx profiles for each individual episode to give an overview of

the expected results of the fitting methodology.
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6.3 Results

Table 6.2 shows the basal states for each of the episodes. Basal glucose, Gb, varied

significantly between patients, as might be expected for a T1DM cohort. This median

(calculated) Gb of 7.0 is lower than the 8.0 mmol.L−1 often found based on median

HbA1c in many studies. Equally, model-based basal interstitial insulin was low for all

but one patient. This individual, DM004, had the highest TDI in this cohort.

Table 6.2: Basal glucose and interstitial insulin values.

Gb Qb

[mmol.L−1] [mU.L−1]

DM001 5.5 3.28

DM002 6.1 0.88

DM003 7.7 1.77

DM004 6.2 6.05

DM005 5.9 0.38

DM006 10.5 1.63

DM007 11.0 1.48

DM008 8.4 2.79

Figure 6.3 shows the results of the cluster analysis, and thus the knot times used for each

episode. The majority of episodes featured consistent meal times, indicating a regular

daily routine. Again, this result reflects a typical, well-motivated cohort.

Figure 6.4 shows the results of the fitting methodology for each episode. Glucose level,

noise level, and SI rhythms all showed large variation between episodes. Noise level,

as indicated by the amplitude of the Gx profile, appeared to increase with BG, while

diurnal SI variation had no such apparent correlation. SI values are plotted on the same

axis and comparison across patients shows significant inter-patient variability.
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Finally, convergence details are presented in Figure 6.5. While the total number of

iterations was both low and consistent, the total time was relatively high, and showed

greater variation. The long time to convergence reflects the computational complexity

of this fitting methodology, as a data set with n measures will require n+ 3 parameters

to converge. The intermediate step of updating Gx dramatically decreases the number

of iterations, but has a less marked effect on total time required (results not shown).

6.4 Discussion

These results demonstrate the fitting methodology presented on clinical, “diary-style”

data from individuals with T1DM. This data represents typically available data in an

outpatient setting, and is thus an important test of this new methodology. Despite high

uncertainty in nutritional intake, and high sensor error noise on capillary BG measure-

ments, convergence occurred in a relatively small number of iterations. Computational

complexity was reflected by the time taken to reach this converged state.

The individual episodes featured large variation in basal BG levels, suggesting parame-

ter identification is possible across a wide range of typical patients. The importance of

a time-varying SI profile is demonstrated by the difference in SI profiles between these

episodes. DM002, DM003, DM006, and DM007 each showed relatively minor SI fluctua-

tions, while fluctuations in the remaining 4 episodes were much greater. This significant

inter-patient variability clearly reflects the typical range and corresponding variability

in hypoglycaemic risk between patients who might otherwise be dosed similarly. While

predictive capability remains to be investigated, the size of these fluctuations suggests

model-based decision support has scope to improve glycaemic control in this setting.
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Figure 6.3: Knot times identified using a cluster analysis of nutrition and insulin
data. Histogram data shown was used to find the knots (dashed lines).
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Figure 6.4: Fitted profiles, including SI and Gx.
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Figure 6.5: Number of iterations and total elapsed time when fitting each episode.
Boxplot whiskers show the maximum and minimum values.

Due to the short length of each episode, an investigation into predictive capability similar

to Chapter 3 was not carried out. Longer episodes would allow for quantification of the

expected Gx distribution, as well as the likely upper/lower limits of SI . Thus, these

results simply serve to demonstrate the applicability of the new fitting methodology.

An additional future analysis is required on the concept of a basal state in this setting.

Intuitively, the concept of a basal state makes sense outside of a critical care setting,

yet the “basal” state observed in this data is influenced by prior long-acting insulin

doses. This influence is offset by calculating a model-based Qb rather than the expected

value of Qb = 0 for an individual with T1DM. However, use of a model-based Qb

means model-based optimisation of longer acting insulin formulations is difficult, and

should be limited to incremental changes based on TDI rather than predicting optimal

outcomes. Furthermore, the influence of a changing basal Q on predictive capability

should be investigated to understand expected behaviour around changes to the basal

insulin regime. Both these issues would be ameliorated by a much larger study with

more subjects and days, based on these initial positive results.

What these results do demonstrate is that convergence of an identified diurnal SI profile

is possible using the novel parameter identification methodology. This represents an
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entirely new capability to decompose “diary-style” data into quantified insulin sensitiv-

ity fluctuations throughout the day, thus enabling model-based decision support to be

applied in an area where the inherent challenges have prevented significant advances to

date. Future work should focus on demonstrating the validity of the fitted SI profile

on in-silico data, then validating prediction capability on longer clinical data sets in a

manner similar to Chapter 3.
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6.5 Conclusion

The output of a novel diurnal SI parameter identification methodology was used to

characterise the expected results when fitting clinical “diary-style” data. Convergence

occurred in all episodes, and showed significant and expected differences in intra-day SI

fluctuations across subjects. Future work should focus on demonstrating the validity of

the fitted SI profile on in-silico data and larger cohorts.



Chapter 7

Monte-Carlo Identification of

Diurnal Insulin Sensitivity

Profiles

7.1 Introduction

Chapter 6 utilises a modified version of the parameter identification methodology pre-

sented in Chapter 2 to fit a diurnal SI to 8 episodes of patient data. Convergence of each

episode showed the applicability of the method to this style of data. However, validity

of the fitted SI profile cannot be proven on real data, as the “true” SI profile is not

known. Furthermore, the influence of data density and quality on the validity of this

profile must be also understood.

As mentioned in Chapter 6, when extending model-based glycaemic control from critical

illness to chronic care, either in a hospital ward or outpatient setting, BG measurement

109
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frequency and quality decreases, and uncertainty about nutrition intake increases. Addi-

tionally, insulin administration is subcutaneous rather than intravenous, increasing the

action period and thus the hypoglycaemic potential of overaggressive dosing. These fac-

tors represent the major challenges outside of an ICU setting. The effect of these factors

must be investigated in-silico to determine the applicability of the fitting methodology.

If a SI profile cannot be recovered robustly in the presence of noise, model-based treat-

ment recommendations will be too unreliable for use. Such an in-silico investigation

would also provide insight into an ideal measurement regime.

This study aims to investigate both convergence properties and the quality of the fitted

result using this fitting procedure with a single virtual patient. This virtual case study

has a known insulin sensitivity profile, allowing assessment of the accuracy of fitted

parameters. The effect of post-meal BG timing was assessed, along with the effect of

noise, and finally how multiple days of data could be combined to reduce the effect of

noise on the fitted insulin sensitivity. In all cases, sufficient simulations were run to

ensure outliers did not influence the interpretation of results.

7.2 Methods

7.2.1 Models

The insulin model from Chapter 4 was used to simulate circulating insulin dynamics.

Subcutaneous appearance profiles were simulated using the model presented in Chapter

5. No variations in peak time or concentration were simulated during this study.

Nutrition appearance profiles were simulated as described in Equations (6.4) and (6.3).

While no noise was added to the dynamics prior to fitting, the inaccuracy of carbohydrate
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counting was simulated by adding noise to the size of each meal. Fitting was carried

out using the stochastic differential equation fitting procedure detailed in Chapter 6.

Glucose dynamics were simulated using Equation (6.1).

7.2.2 Virtual patient details

Monte-Carlo simulations were based on a single, well controlled, virtual T1DM patient.

T1DM was chosen over T2DM as T1DM can be assumed to have negligible beta cell

function, and thus secretion can be ignored. However, this restriction is artificial, and

the models and methods are as applicable in T2DM as they are in T1DM.

Basal BG was set as 8mmol/L, with a basal interstitial insulin concentration of zero.

The insulin dosing regime was separated into basal (50U of insulin glargine before the

morning meal), and prospective (1U novorapid per 10g of carbohydrate) dosing. Meals

were identical day-to-day, with 140g of carbohydrate for breakfast (8:00am), 50g for

lunch (1:00pm), and 80g for dinner (7:00pm). Four days of this data are shown in

Figure 7.1.

BG measurements were determined by the simulation protocol, and the underlying in-

sulin sensitivity profile was set as a moderately sensitive value that changed during the

course of the day. The basis for SI was changed from serial b-spline functions to three

repeating 2nd order functions. Figure 7.2 contains an example showing the resulting

wrap-around effect. Knot times were set as the start of each meal.

7.2.3 Simulation protocol

Multiple stages were used to investigate different aspects of the fitting methodology.

Initial investigation was based around the ability of the methodology to recover a specific
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Figure 7.1: Compartment solutions for the virtual patient used in Monte-Carlo simu-
lation. Prior to sampling, the patient was simulated for 3 days to remove any transients.
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insulin sensitivity profile in the absence of noise, and subsequent investigations aimed to

understand properties of, and/or optimise, the required measurements when presented

with noisy data. All noise was normally distributed, clamped to ± 3 standard deviations,

and is presented as % CV. The investigations can be broadly categorised as follows:

– Convergence criteria (noise-free data).

– Post-meal measurement timing (10% noise on BG and nutrition).

– Influence of post-meal measurement (10% noise on BG and nutrition).

– Data quantity (10% noise on BG and nutrition).

– Data quality (0% → 20% noise on BG, 20% noise on nutrition).
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Convergence criteria for the fitting procedure included two separate tolerances, on both

insulin sensitivity and error in the plasma glucose compartment. The absolute tolerance

for error in plasma glucose was set to ±0.05 mmol.L−1, within the standard limit of a

glucometer scale of 0.1mmol/L. However, the stochastic differential equation approach

combined with sparse data meant plasma glucose solutions could converge to within the

desired error before the shape of the solution converged. As the shape of the solution

corresponds to the shape of the integrals, and therefore the fitted values of insulin

sensitivity, a relative tolerance on SI was required to supplement the standard tolerance

on error.

The first stage investigated the convergence over the full range of likely insulin sensitivity

profiles. As the n=3, 2nd order b-spline basis consists of 3 individual multiplicative

parameters, each of these parameters was varied between 0 (completely unresponsive to

insulin) and 2×10−3 (moderately high insulin sensitivity) in increments of 4×10−4, and

all permutations simulated. The virtual patient details were then used to generate pre-

and post- meal BG measurements, which were then used in the fitting procedure. For

each simulation, the relative tolerance on SI was set to each of ±∞, ±1×10−4, ±1×10−5,

±1×10−6, and ±1×10−7. The rate of convergence and final error in the recovered SI

profile was then compared.

In the second stage, the post-meal BG measurement timing was varied to investigate

the optimal range of times to record BG for fitting purposes in practice. The delay

was varied from from 1-4 hours post-meal in 30 minute intervals. Noise was added to

both BG measures and carbohydrate dose, reflecting the main sources of error in the

intended application. Initially, a moderate value of 10% was used for each simulations,

and for all simulations involving noise N=1000 iterations were run. In the third stage,
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the importance of this post-meal BG measurement was investigated by comparing the

recovered SI profiles with and without this measurement.

For the fourth stage, 1 to 4 days of data were used in the fitting procedure, and the error

between the recovered and original profiles were compared across all simulations. As the

fitting methodology aims to recover the diurnal insulin sensitivity profile, multiple days

of data can be combined to improve the accuracy of the result. Finally, 4 days of data

were used to investigate the effect of increasing noise. In this stage, noise on nutrition

was clamped to an appropriate level of 20% [96], while noise on BG was increased from

0% to 20%.

7.2.4 Analyses

As this body of work aims to investigate both the methodology and the quality of results,

both accuracy and convergence were considered. Accuracy was defined as the ability

to recover the underlying insulin sensitivity profile, while convergence was described by

both the total number of iterations and the time taken to reach a solution. Due to the

nature of the fitting procedure, all solutions converged, and thus divergence was not

considered.

Accuracy was calculated by sampling the SI profile every minute of the 24 hour period,

and subtracting the original profile. For the initial simulations, where no noise was

added, the RMS error was calculated from the error array of each simulation, and

these RMS values were presented for each convergence criterion in boxplot form. For

subsequent Monte-Carlo simulations, if the result was to be considered in isolation,

the 5th, 25th, 75th, and 95th percentiles of the raw error array were calculated on a

minute-wise basis, and the enclosed areas plotted against the original profile. However,
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if multiple related simulations were compared, the error arrays were combined for each

category, and a boxplot generated from the entire set. As the purpose of this work was

to understand, rather than describe, further quantification of the effect of this error on

predictive capability was not carried out.

7.3 Results

7.3.1 Baseline profile recovery

Figure 7.3 details the convergence of the fitting procedure when the full range of likely

SI profiles were used without adding noise. Both error in the final profile and the

convergence rate are shown for each tolerance value. During this stage, post-meal BG

measures were taken 3 hours after each of the three main meals, and a single day of data

used for all simulations.

Error in the recovered insulin sensitivity profiles indicate that the fitting method con-

verges across the full range of SI values. In these noise-free simulations, a relative

tolerance on SI was not necessary for the recovered profile to converge to approximately

1% of the average SI profile value. Inclusion of a tolerance improved accuracy at the cost

of convergence rate. Due to the sparsity of the available data, the shape of the solution

changes significantly from the initial linear interpolation to the final result. This change

limits how rapidly SI can converge, and thus convergence criteria for SI becomes impor-

tant. The improvement from a relative tolerance of 1e−5 to 1e−6 compared to 1e−6 to

1e−7 suggests 1e−6 is a satisfactory limit, due to the balance between numerical accuracy

and convergence speed.
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Figure 7.3: Convergence details for the no-noise case, where the virtual patient was
generated using the range of likely SI profiles, and the influence of convergence criteria

was assessed.

7.3.2 Effect of measurement timing

Figure 7.4 shows the results of varying the time of the post-meal BG measurement from

60 to 240 minutes. N=1000 simulations were run for each case, with 10% noise added

to both BG measurements and meal size prior to fitting. As accuracy was similar for

each measurement time, average band width is shown for the 50th and 90th percentiles

to indicate relative uncertainty. A larger number for either suggests reduced ability to

recover the underlying insulin sensitivity profile when a second measurement is taken at

the relevant time. These results, taken with the average number of iterations to conver-

gence, suggest the best combination of speed and accuracy occurs if BG is measured >2

hours after a meal.
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Figure 7.4: Effect of measurement time on identification of insulin sensitivity profiles.
N=1000 simulations were run with 10% noise on both BG measurements and nutrition

for each measurement time.

7.3.3 Effect of measurement density

Figure 7.5 compares the convergence rates of dual (pre- and post- meal) and single (pre-

meal only) BG measurements in the presence of 10% noise on BG and nutrition. The

quality of the identified profiles are contrasted in Figure 7.6 and Figure 7.7. While single

measurements are possible to use in the fitting procedure, the process takes significantly

longer, and accuracy is reduced.

7.3.4 Effect of data set length

Under the assumption that the underlying insulin sensitivity profile is static, multiple

days of data can be used to increase the accuracy of the recovered profile. This approach

is valid provided the day-to-day variability of the SI profile is less significant than the
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Figure 7.7: 50th and 90th percentiles for recovered insulin sensitivity profiles using
pre-meal measures only. The black line shows the true insulin sensitivity profile.

variability induced by sparse and noisy data. Figure 7.8 shows the level of improvement

associated with increasing the dataset from 1 to 4 days. N=1000 simulations were run for

each period with 10% noise on both BG and nutrition. Bias, as suggested by asymmetric

error distributions, was slightly increased with longer periods, and 4 days worth of data

showed the largest reduction in the width of the error distribution. The sparsity of data

and high noise was reflected in the wide error band.

7.3.5 Effect of measurement noise

Figure 7.9 shows the increasing error in SI as noise in BG is increased from 0% to 20%

for 4 days of data. Noise in meal size was set to 20%, and N=1000 iterations were run

for each BG noise level. The effect of noise in nutrition is significant even without noise

in BG measurements. Additionally, an increased data set can offset noise to the extent



Chapter 7. Monte-Carlo Identification 121

−100

−80

−60

−40

−20

0

20

40

60

80

100

1 Day 2 Days 3 Days 4 Days
Data window

E
rr

o
r 

in
 S

I (
%

)

Figure 7.8: Effect of increased measurement windows.

that 20% noise on BG and nutrition with 4 days of data has a smaller IQR than 1 day

of 10% noise on both factors, as seen in Figure 7.8. However, increasing the nutrition

noise level appears to increase the offset.

7.4 Discussion

Chapter 2 demonstrated that an insulin sensitivity profile can be identified using real

data and the presented methodology in an ICU setting. This setting provides an upper

limit on data quality, with highly regulated inputs and intensive oversight. Moving be-

yond this setting involves increasing noise and decreasing measurement density, but the

individuals in question are more metabolically stable. This chapter focuses on the prop-

erties of the diurnal SI profile recovered using this methodology under these conditions.
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Figure 7.9: Effect of increased measurement noise.

This in-silico testing demonstrates that the insulin sensitivity profile tracks the true

profile used when generating the virtual data. The simulation work is not intended

as a proof of concept, as neither the scenario (singular T1DM virtual patient with

identical daily routines) or noise sources (only BG and nutrition) can be considered

representative. However, this work builds confidence in the stability of the methodology,

and the inherent ability to retrieve the original signal using a noisy dataset and the

model-based assumptions. It also gives an understanding of how the day-to-day insulin

sensitivity profile might vary as a function of noise, as opposed to changes in diurnal

rhythms themselves. Furthermore, the low error using 4 days of data supports the

validity of the insulin sensitivity profiles fit in Chapter 6.

The methodology is not intended as a descriptive modelling process, but instead is

intended to be used in a decision-support context. With this in mind, the true endpoint

has not been addressed in this work, namely how noise in the data translates into altered
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recommendations. Consequently, use of criteria such as prediction error would only be a

surrogate for this translation, and would be misleading. This omission is fully justified,

as virtual trials without clinical data rely too heavily on model-based assumptions, and

bias the results in favour of the algorithm. A non-parametric methodology would have

to be adopted, where a bank of appearance profiles from nutrition and insulin were

taken from literature and superimposed to generate compartmental solutions that can

then be processed by the fitting methodology. Any other approach disguises structural

assumptions, and even such a methodology may be impossible due to the non-linearity

of the physiological processes. Taken in context, however, this work demonstrates that

the insulin sensitivity profile fitted using the presented methodology is not simply a

fanciful result, even in the face of high noise.

The in-silico work is therefore vital, and it is important the underlying assumptions

are both understood and discussed. Firstly, insulin appearance profiles are unmodified

in any way. As no variation in the time or size of any plasma insulin peak has been

considered, robustness to this error has not been investigated. The fitting procedure thus

uses the ”true” plasma insulin profile, which is permissible under the original intent of

demonstrating the validity of the fitting methodology. For similar reasons, the kinetics

of nutrition appearance in plasma were not varied. To add noise into the nutrition

compartment the size of each meal (as seen by the fitting procedure) was modified. This

process reflects the situation in practice, where carbohydrate counting (and therefore

the recorded meal size) is notoriously inaccurate. With regards to the kinetics of insulin

and nutrition, mismodelled dynamics will appear as coloured noise in the Gx term, and

may be corrected for in practice. Further work would be required to investigate this

possibility. The final, and most important, assumption is that plasma glucose follows

the kinetics described by the model. This assumption is not inconsequential, and the
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reasons for both including and mistrusting this assumption should be plain to all. In

practice, this assumption will be negated by comparing the outputs of the decision

support procedure using this model to independent decisions made by clinicians, and

the resulting outcomes. The validation of model-based prediction thus hinges on real-

world outcomes and observations, and a fully in-silico study was deemed inadequate.

The ability to track the true insulin sensitivity profile despite bias in the steady-state

conditions is one of the major positive outcomes of this work. Perhaps the most impor-

tant part of insulin therapy is basal insulin replacement, which, as intended, depresses

equilibrium glucose concentrations. The consequence is that the fitting procedure either

uses an incorrect basal glucose, or adopts a model-based equilibrium point. Steady-state

BG relies on both Gb and Qb, where Gb can be estimated by morning BG readings, and

Qb can be taken directly from the corresponding compartmental solution. Despite the

fitting procedure not having access to the ”true” set point of Gb = 8.0;Qb = 0.0, the

resulting bias shown by Figures 7.8 and 7.9 was negligible.

Finally, use of multiple days of data was shown to help mitigate the effect of high noise

and sparse data. Using pre-meal BG only was possible, but the comparison of Figures 7.6

and 7.7 demonstrated reduced accuracy, and Figure 7.5 showed much weaker convergence

profiles. However, using both pre- and post- meal BG, multiple days of data improve

the fitted insulin sensitivity such that the SI profile recovered using 1 day of data with

10% noise on BG and nutrition was approximately equivalent to 4 days of data with

double this noise level. Naturally, if day-to-day insulin sensitivity varies dramatically in a

manner that cannot be statistically adjusted for, the assumption of a static, underlying

insulin sensitivity will be invalid and final application impossible. However, current

decisions made in day-to-day management of diabetes are made on historical data, and

thus truly unpredictable glycaemic responses are unlikely.
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7.5 Summary

The presented results prove the validity of the fitting procedure, and demonstrate the

stability and accuracy even in the face of sparse data and high noise. Additionally,

techniques such as collating multiple days of data can mitigate the effect of high noise.

Fitting is even possible using only 3 BG measurements a day, though convergence will

take longer, and accuracy reduced. Limitations and assumptions were thoroughly dis-

cussed, and while further work is required to investigate how noise translates into mod-

ified predictions, the strength of these in-silico results suggests further development is

warranted.



Chapter 8

Conclusions and Future Work

This body of work lays the foundations for two progressions of model-based heuris-

tic control. Future work should focus on the implementation of these progressions in

STAR, and in a new STAR-like algorithm for inpatient/outpatient management of dia-

betes. Stability and utility of both the fitting and prediction methodologies have been

demonstrated throughout, and models have been re-derived to cope with the new scope

and likely inputs.

The key contribution of Chapter 2 is a new fitting methodology that no longer requires a

regular, rigid piecewise-constant SI profile. This progression uses an SDE to prevent the

regularised basis compromising predictive capability, and despite the added complexity

can be interpreted as a generalisation of the original fitting method. Inclusion of an

SDE improves fitting around unmodelled dynamics, and further analysis of trends in

this noise profile may shed light on areas where the model can be improved. Further

analysis of the b-spline basis profile should also be carried out to justify the optimal

knot width for use in real-time control.

126
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Implementing an SDE complicated prediction, as two independent parameters now exist.

Additionally, the Gx profile was irregular and the SI profile continuous, requiring sepa-

rate treatment when generating a prediction. Finally, relatively simple non-parametric

prediction was desired, as low computational burden may allow predictions to be up-

dated with patient-specific data, a key weakness in STAR. Each of these aims was met

in Chapter 3, and a marked improvement in predictive capability was demonstrated

by comparing with the original stochastic method. While the results in this chapter

are conclusive in demonstrating an improvement for irregular data, future work should

focus on developing a structured method for updating each of the PDF matrices with

patient data in real time. Quantifying the improvement in performance and/or safety

for longer stay patients would be an important step for justifying the added complexity

of patient-specific prediction.

Moving model-based heuristic control beyond the ICU requires models that apply for

both settings. In particular, types of exogenous forcing must be adequately modelled

before model-based predictions can be generated. To meet this goal, the circulating in-

sulin/glucose system model was re-derived with a new structure in Chapter 4. The new

model showed much stronger descriptive capability when simulating both insulin infu-

sions and boluses, and insulin clearances were restricted to physiologically relevant rates

for each site. The new model was used in conjunction with a unified subcutaneous insulin

absorption model to describe the absorption of 4 major subcutaneous insulin prepara-

tions in Chapter 5. The resulting model included subcutaneous insulin degradation at

the local injection site within the reported range, and thus the two re-derived models

can adequately describe subcutaneous dynamics as well as IV infusions and boluses.

Chapter 6 then unified the new models and fitting methodologies into a methodology for

recovering diurnal SI profiles from real-world “diary” style data. The validity of these
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profiles was then investigated in a large monte-carlo simulation in Chapter 7. This chap-

ter investigated the ability of the overall structure to recover diurnal SI profiles in the

presence of sparse data and noise. Results from each stage in the simulation were used to

select convergence criteria and optimal measurement times, as well as elucidate the effect

of measurement density, measurement noise, and quantify the improvement associated

with increased data. Overall, this simulation demonstrated that typical “diary” style

data can be used to identify relevant parameters despite extremely high uncertainty and

sparse, noisy measurements.

8.1 Future direction

The first focus should be on improving the STAR algorithm. While the algorithm is

currently working well, Chapter 3 demonstrates the negative effect irregular data has

on prediction. The new fitting and prediction methods of Chapters 2 and 3 provide

a solution, and have been demonstrated to provide more consistent predictions. Thus,

this work provides an opportunity to iteratively improve STAR, and potentially allow

patient-specific stochastic model predictions.

Additionally, the results presented in this work validate the SI profile that can be fitted

from typical diabetic “diary” data. Future work should thus focus on development of a

decision support algorithm that implements these methodologies, generates predictions,

and uses these predictions to optimise both prandial and basal subcutaneous insulin

regimes. This development should focus on an in-patient, hospital ward setting to val-

idate any algorithms, as high supervision relative to an outpatient setting will provide

much improved safety. The methodologies developed here have the potential to provide
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all the tools necessary to develop a low-cost solution for managing BG in an outpatient

setting.
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