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ABSTRACT 

Optical diffusion tomography attempts to  recon- 
struct an object cross section from measurements of 
scattered and attenuated light. While Bayesian ap- 
proaches are well suited to  this difficult nonlinear in- 
verse problem, the resulting optimization problem is 
very computationally expensive. In this paper, we pro- 
pose a nonlinear multigrid technique for computing the 
maximum a posteriori (MAP) reconstruction in the op- 
tical diffusion tomography problem. The multigrid ap- 
proach improves reconstruction quality by avoiding lo- 
cal minimum. In addition, it dramatically reduces com- 
putation. Each iteration of the algorithm alternates a 
Born approximation step with a single cycle of a non- 
linear multigrid algorithm. 

1. INTRODUCTION 
The objective of optical diffusion imaging is to  recon- 
struct the cross section of a highly scattering media 
such as tissue based on measurements of the scattered 
and attenuated optical energy. This technique presents 
significantly lower health risk as compared to  X-ray 
imaging techniques and its potential has been success- 
fully demonstrated in biomedical applications [l]. How- 
ever, the relationship between the unknown scattering 
coefficients and the optical measurements is highly non- 
linear and described by a partial differential equation; 
so reconstruction poses a very challenging nonlinear in- 
verse problem. 

Recently, Bayesian approaches based on iterative 
coordinate descent (ICD) optimization have been in- 
vestigated [2, 31. In particular, we have proposed an 
ICD/Born method which provides high quality recon- 
structions and is computationally efficient when com- 
pared to  the conventional iterative Born approxima- 
tion methods. However, the computational complex- 
ity of ICD/Born is still prohibitive for large three di- 
mensional problems. Perhaps more importantly, local 
optimization methods such as ICD/Born can become 

trapped in local minimum and result in suboptimal so- 
lut ions. 

In this paper, we apply multigrid algorithms to  non- 
linear optical diffusion imaging. Multigrid techniques 
have a number of important advantages over fixed grid 
methods for our type of problem [4]. First, the con- 
vergence of multigrid algorithms is independent of the 
size of the image, reducing overall computation. Sec- 
ond, the global nature of the optimization tends to  
more robustly achieve the global minimum, resulting 
in improved reconstruction quality. In our multigrid 
algorithm, each iteration alternates a Born approxima- 
tion step with a single cycle of a nonlinear multigrid 
algorithm [5]. At each resolution of the multigrid al- 
gorithm, we use the ICD optimization method [S] (also 
referred to  as Gauss-Seidel in multigrid applications). 

We present simulation results for a 2-D reconstruc- 
tion of size 129 x 129. The results show that the multi- 
grid optimization reduces computation by a factor of 
20-30 in our simulations while achieving substantially 
better reconstruction quality. 

2. BAYESIAN OPTICAL DIFFUSION 
IMAGING 

Figure 1 illustrates the proposed measurement geome- 
try. The region to  be imaged is denoted by s2 and is 
surrounded by K point sources at positions s k  E a, 
and M detectors at positions d, E R. The following 
partial differential equation describes the measurement 
$ k ( ~ )  at position T due to  a source of light at position 
s k  E fl [I, 31. 

v ' D(.)TJ&(.) + (-Pa(.) + &J/C)4k(.)  = 4. - Sk), 
where c is the speed of light in the medium, D ( r )  is the 
diffusion constant given by D ( r )  = 1/3(pa(r) + p L ( r ) ) ,  
pa(.) is the absorption coefficient, and P ; ( T )  is the re- 
duced scattering coefficient. Here $k (.) denotes the 
complex envelope of a modulated optical signal [l, 31. 
Then, the objective of the optical imaging problem is to  
determine the values of pa(.) from the measured values 
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of q5k (&). This is a difficult nonlinear ill-posed inverse 
problem because of the nonlinear coupling between the 
coefficients and the photon flux in the diffusion equa- 
tion. 

The Bayesian framework for maximum a posteriori 
(MAP) estimation of absorption image x E RN from 
the measurement vector y E CP is given by 

X M A P  = argm?x{ logp(yJx) + logp(x) }, (1) 

where p(y)x) is the data likelihood, and p(x) is the 
prior density for the image. Under appropriate condi- 
tions, we showed that the data likelihood can be rep- 
resented as [3] 

where cy is a parameter which determines noise vari- 
ance, A denotes a diagonal matrix due to “shot noise” 
[3], and the complex vector valued function f(x) rep- 
resents the “exact” value of the photon flux for the as- 
sumed value of the absorption coefficient x. We use the 
generalized Gaussian Markov random field (GGMRF) 
prior model of [7] since this prior model enforces smooth- 
ness in the solution while preserving sharp edge tran- 
sitions. 

In this paper, we will adaptively estimate a during 
the reconstruction procedure. In practice, we will see 
that adaptive estimation of cy allows for smoother con- 
vergence to the minimum of our cost function. This is 
particularly important because f (x) is highly nonlinear 
so the computation of the MAP estimate can become 
trapped in local minima. Initially, the estimated value 
of cy will be large when x is far from its true value. In 
this case, the strong prior term restricts the solution to 
be smoother. As the optimization proceeds, the value 
of cy decreases making the data term more important 
and consequently reducing the relative importance of 
the regularization term. 

If we consider a unknown, the optimization prob- 
lem (1) can be re-written as 

which can be solved by alternately minimizing with 
respect to cy, and then x using the following two equa- 
tions. 

(3) 

3. NONLINEAR MULTIGRID INVERSION 
Equation (3) is a straight-forward computation, but 
(4) is a computationally expensive optimization prob- 
lem especially for large images x. To circumvent this 
problem, we will employ multigrid optimization algo- 
rithms to efficiently compute (4). At the beginning 
of each multigrid cycle the nonlinear functional f(x) is 
first linearized using a Taylor series expansion (or Born 
approximat ion) 

IIY - f(x)lIi = IIY - f(3 - f ’ (WxlIi  (5) 

where x is an estimate of the unknown x, Ax = x - x, 
and f’(x) represents the Frechet derivative off( .)  at x 
[3]. This presents an approximate cost function 

bi_j)“i - ” j J P  
C(X) = llz - Axll& + 

PUP 
7 

where 

A 
C = - z = y - f(x) + f’(%)x, A = f’(x), 

a 

The next section describes how the approximate cost 
function of (6) can be efficiently minimized using a 
multigrid algorithm. In particular, we will investigate 
the use of two different multigrid methods known as 
V-cycle and full multigrid [4]. 

Our overall strategy for the optimization is illus- 
trated in the Figure 2. Each iteration of our algorithm 
starts with an update of a using (3) followed by a new 
linearization ( 6 ) .  This results in a non-linear optimiza- 
tion problem that we then solve using either V-cycle 
or full multigrid. This sequence is repeated until the 
desired level of convergence is reached. 

3.1. Two Grid Algorithm 
Let x(O) denote the finest grid absorption image, i.e., 
x = x(O), and let x(l) be the next coarser grid absorp- 
tion image which is obtained by a 2:l decrease in grid 
resolution. We may compute x(l) from x(O) via the 
decimation operation x(l) = 1:i;x(O). Here 1::; is an 
$ x N matrix which locally averages points in x(O) to 
form x(l). For the two dimensional image, we choose 
1:;; to be the separable extension of the one dimen- 
sional decimation matrix 

. . . . . . . . . 

4 2 4  

For most common choices of matrices used on a two di- 
mensional grid, the corresponding interpolation matrix 
1;;; is defined by 1:;; = i(1:;;)’. 
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Multigrid optimization can be best understood by 
first considering the two-grid algorithm. Assume that 
we have an initial solution do) which approximately 
minimizes the cost functional 

Our objective is to then improve our result by incorpo- 
rating x(l), an improved solution computed at a coarse 
grid. We may do this by using the update formula 

In order to implement this coarse grid correction, we 
must first define a corresponding cost function, c(l) (x(')), 
for the coarse grid solution x(l). Then, c(l)(x(l))  con- 
sists of two parts: a quadratic term and a prior term. 
Referring to (lo), the quadratic term of (9) can be ex- 
pressed as 

JIz - Ax(O)JI& = I)z(') - A(l)x(')lJ& (11) 

where z(') = z-A 1 - n")f"') and = AI(') ( (1 )  ( 0 ) )  id0) (1) '  
For the coarse grid prior term, we assume that the 

derivative of z is locally smooth [5]. In this case, we 
use the approximation 

Note that the factor of 4 is chosen to account for the 
reduced number of terms in the sum, and the smooth- 
ness assumption makes xio) - xy) N (xi') - x$'))/2. 
Based on (11) and (12), we define the coarse grid cost 
function as 

However, minimization of c ( ' )  ( x ( I ) )  is still problem- 
atic because discretization errors for the prior term will 
cause the solution to  be slightly different than would 
otherwise result from the exact fine grid optimization 
of (9). To correct for this error, we will solve the opti- 
mization problem 

where the vector I-(') is chosen as a correction term so 
that the exact fine grid solution is a fixed point to the 
new coarse grid problem. That is 

(15) 
(1) = 0 ,  if do) is the solution vc(')(~i;ji(~)) - r { , otherwise 

Furthermore, we want r(') to approach zero when the 
approximation error due to  the discretization of the 
prior term is small. We can show that the following 
expression for r(') satisfies these two conditions. 

= Vc(')(I;i;B(')) - ~ ~ I ~ ~ ~ V C ( ~ ) ( X ( ~ ) ) .  (16) I-(') 

Then, the coarse grid problem can be represented as 

Multigrid optimization is implemented by recursively 
applying the two-grid optimization. In particular, we 
will use the two recursions known as V-cycle and full 
multigrid [4]. The pseudo-code recursions for V-cycle 
and full multigrid are shown in Tables 1 and 2. 

At each resolution or grid, we use the ICD opti- 
mization method [6, 2, 31 to compute an approximate 
solution to the optimization. The ICD method is essen- 
tially a fast implementation of the Gauss-Seidel method 
for tomography applications. In fact, Gauss-Seidel op- 
timization is usually the preferred method for use in 
multigrid optimization because it has fast convergence 
at high spatial frequencies. This is also true for the case 
of tomographic reconstruction, so the ICD method is 
well suited to our problem. 

4. SIMULATION RESULTS 
We used an 8 point neighborhood model with bi-j = 
(2fi + 4)-l for nearest neighbors and bi-j = ( 4 f i  + 
4)-l for diagonal neighbors. A fixed value of 1.1 is 
used for p in all the reconstructions. A random update 
ordering scheme was used for the ICD relaxation. The 
number of resolutions for the multigrid inversion algo- 
rithms is determined by decimating the full resolution 
image at scale 0 with size of 129 x 129 pixels until we 
obtain 17 x 17 pixels. Two iterations of optimization 
were applied at each resolution of the multigrid algo- 
rithm. 

Figure 3(a) shows a phantom used for one of the nu- 
merical experiments. The values of the absorption co- 
efficient for each sub-domain are given in Figure 3(b). 
The modulation frequency is 200 MHz. Figure 3(c)(d) 
illustrate the magnitude and the phase information of 
the scattering data. The reconstructions by the fixed 
grid ICD/Born after 1000 iterations (8,923 sec of CPU 
time on a Sun Ultra Sparc 30 machine), and by the V- 
cycle algorithm after 20 cycles (352 sec of CPU time) 
are compared in Figure 4. Notice that the multigrid re- 
construction is much more accurate than the fixed reso- 
lution result. Furthermore, the multigrid algorithm re- 
duces computation by a factor of 20-30. Figure 5(a)(b) 
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show the convergence of the log posterior probability 
and the normalized root mean square (NRMSE) values 
for the multigrid inversion algorithm and the fixed grid 
ICD/Born algorithm, as a function of CPU time. The 
multigrid inversion algorithm converges at a very early 
stage of the iterations. Figure 6 illustrates the results 
of 10 cycles of full multigrid (220-240 sec of CPU time) 
on three test phantoms each with 129 x 129 resolution. 
In each case, accurate reconstructions were obtained. 

5.  C O N C L U S I O N S  
In this work, we derived a fast inversion algorithm 
for the Bayesian diffusion imaging using the nonlin- 
ear multigrid optimization technique. Simulation re- 
sults show that the multigrid algorithms dramatically 
reduce the computational burden as well as improve 
the reconstruction quality. 
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Figure 1: Simulation geometry with the locations of 
sources and detectors for inversion of synthetic data. 

a eStimatlon a estimation a emat ion 
Born a p p x  Born approx Born approx 

a estimatan 
Born approx Born appmx 

,. . 
(b) 

Figure 2: 
multigrid inversion algorithm. 
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Figure 3: (a) Gray scale of absorption coefficient, and (b) 
contour plot with units of cm-’. Gray-scale view of (c) log 
magnitude and (d) phase of measurements for each source 
and detector pairs. 
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Figure 4: Reconstructions by (a) the fixed resolution 
ICD/Born algorithm, and (b) the multigrid V-cycle inver- 
sion algorithm. 

vlultigridV(x, r,  z, k )  { 

1. Use the initial condition, x, to approximately solve 
the optimization using VI scans of the ICD algo- 
rithm 

2. If k is the coarsest desired grid, return. 
3. Compute the following: 

4. MultigridV(x, i, 2, k + 1). 
5 .  Perform coarse grid correction 

6. Use the initial condition, x, to approximately solve 
the optimization using v2 scans of the ICD algo- 
rithm 

J J Z ( ~ )  - A ( ~ ) X J ) C  - rTx 

7. Return. 1 

CPU Ism ,e 1 cw hmlmcl 

Figure 5 :  (a) Log posterior probability and (b) NRMSE as 
a function of CPU time for fixed grid ICD/Born algorithm 
(. . .) and multigrid V-cycle algorithm (-). 

Table 1: Pseudo-code specification for the multigrid V- 
cycle inversion algorithm 

Figure 6: Reconstruction results for pa by the full multi- 
grid inversion algorithm. Left column: original absorption 
images; right column: reconstructed absorption images af- 
ter 10 cycles of full multigrid algorithm. 

FMG(x, r, 2, k )  { 
1. If k is the coarsest grid, go to 5. 
2. Compute the following: 

XInt = P+ ' )x  (k) 
% =  

f. = VC("+')(Xznt) - 4I;;jt')vCyx) 

x t x + I;:)+')(? - Xi,t) 

3. Do FMG(i, i, z, IC + 1) 
4. Perform coarse grid correction 

5 .  Do MultigridV(x, r, z, k ) .  
6. Return. 1 

Table 2: Pseudo-code specification for the full multigrid 
inversion algorithm 
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