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The aqueous solvation of halides, chloride in particular, is a highly active area of research since 

these are among the most common anions in nature, and the energetics and structures of chloride-

water clusters are important to our understanding of solvation phenomena.[1] For example, solvated 

anions are relevant to the study of aqueous salt interfaces, biologically-important water/membrane 

interfaces, electrical phenomena in the troposphere and ionosphere, and the mobility of ions. 

Consequently, chloride hydrates have been investigated by a large number of both experimental and 

theoretical techniques.[2] Almost all of these studies have focussed on monochloride hydrates of the 

form [Cl(H2O)n]– and have addressed issues such as coordination numbers, the stability and 

structures of the complexes, their infrared spectra, whether the halides are surface or interior ions 

etc. Due to the tendency of chlorides to be surface cluster atoms, these clusters invariably have low-

energy polar structures.[2] In contrast to the monochlorides, the study of dihalide hydrates is almost 

unknown. We are unaware of any theoretical studies on dihalide hydrate clusters and only one brief 
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structural report of a discrete dichloride hydrate cluster.[3] Dichloride clusters have a greater 

potential to form non-polar clusters and, as well as being relevant in concentrated solutions, may be 

more relevant in hydrophobic and low-polarity environments. We now report on structural and 

energetic studies of the cubic, dianionic and non-polar cluster [Cl2(H2O)6]2– (12–). 

The solid state structure of [C3(NiPr2)3]Cl.3H2O was initially determined to investigate the effect 

of anticipated steric interactions between the isopropyl groups in the previously unknown 

tris(diisopropylamino)cyclopropenium cation. The cation (Figure 1) is interesting in its own right; 

other amino cyclopropenium cations described to date contain planar N atoms, however, steric 

interactions force two of the isopropyl groups out of the C3N3 plane and one of the N atoms, N2, 

assumes a distorted tetrahedral geometry in the solid state. The structure of this and related cations 

will be discussed elsewhere.[4] To our surprise, the chloride was found as the discrete dichloride 

hexahydrate cluster, 12– (Figure 2), with chlorides in opposite corners of a Cl2O6 cube. Effectively, 

each chloride has another chloride in its third solvation sphere. Every edge of the cube contains one 

hydrogen atom and there are no hydrogen atoms exterior to the cluster. Thus, each chloride is 

involved in three hydrogen bonds and each O atom has one hydrogen bond with a chloride, one 

hydrogen bond to an O atom, and one hydrogen bond from another O atom. There are two possible 

hydrogen-bonding arrangements around the O6 ring (one is shown in Figure 2) with each 

arrangement having S6 symmetry. With the H atom environments averaged, the symmetry becomes 

D3d. The six O atoms can also be considered to form an O6 ring in a distorted chair conformation 

with axial H atoms hydrogen bound to the chlorides. It is also worth noting that the chlorides are 

not encapsulated by water molecules, but can be considered as examples of surface cluster anions. 

There has been one[3] previous report of such a discrete 12– cube: Dalley and coworkers reported 

it as a salt of sodium cryptand [2.2.2] (CCD reference code ZOMBAE).[5] A dichloride hexahydrate 

cube with hydrogen bonding to a cationic complex has been characterised (CHYDNI)[6] and there is 

also a report of a dibromide hexahydrate cube as part of a hydrogen-bonding network (KIQVAH).[7] 

The bromide salt [K(Crypt-222)]Br.3.5H2O has disordered cubes of water molecules and bromide 

anions as part of a hydrogen-bonding network.[8] There is also an interesting “inverted” 

[Na2(H2O)6]2+ cube within a network of hydrogen bonds.[9] 

Table 1 gives selected distances and angles for 12– found in our study along with other 

[X2(H2O)6]2– (X = Cl, Br) cubes. The Cl–O distances for the three chloride cubes are quite similar, 

with the distances in CHYDNI being ca. 0.1 Å shorter than in the other two. The O–O distances in 

three of the cubes are very similar (2.790–2.888 Å), with those in ZOMBAE being noticeably 

longer at 3.063 Å. The [Na2(H2O)6]2+ cube has an average O–O distance of 2.787 Å[9] and a 

crystallographically-characterised water cube, (H2O)8, also has very similar O–O distances (average 

of 2.85 Å), although there is considerable variation (2.750–2.929 Å) due to interactions of the 

  



exterior H atoms with the host.[10] The most obvious difference between the chloride cubes lies with 

the Cl–Cl distance for which ours is the longest at 6.3212(5) Å, compared to 5.953 Å in ZOMBAE 

and 5.204 Å in CHYDNI. These differences largely result from the differing angles: the O–Cl–O 

angles in our structure are ca. 10° degrees smaller than in the other two, while the O-O-O angles are 

ca. 10° smaller than in CHYDNI, but similar to that in ZOMBAE. The origin of the structural 

differences between the three 12– clusters must be a combination of crystal-packing forces in the 

form of differing electrostatic arrangements and steric interactions, as well as the external 

hydrogen-bonding interactions in CHYDNI. 

As can be seen in Figure 3, we found 12– to be well isolated from the cationic centers: the 

chlorides are surrounded by isopropyl groups and the closest interactions of the cluster with the C3
+ 

ring occur to O1 and O1’ (above and below as shown in Figure 3) with O1–C1 = 3.1488(9) Å, O1–

C2 = 3.5190(9) Å and O1–C3 = 3.2460(9) Å. Most of the chloride–cyclopropenium contacts are to 

methyl groups (there are four methyl carbon atoms at 3.85–4.0 Å: C12, C24, C33 and C25) with the 

exception of a contact to the H atom on C34, which is alpha to an N atom. For this contact, the Cl–

H distance is 2.94 Å and the C-H–Cl angle is 146.6°. Weiss and coworkers have commented on the 

electron-rich nature of tris(dialkylamino)cyclopropenium ions and the resultant ion-pair strain 

between the cation and halide which leads to isolated anions.[11] We might, therefore, expect our 

cluster to be less distorted from the ideal gas-phase structure than the others, especially CHYDNI 

since that cluster is involved in external hydrogen bonding. 

In order to investigate the low-energy gas-phase structure of 12– and its stability, calculations 

were performed at both the MP2/aug-cc-pVDZ and B3LYP/aug-cc-pVDZ level (Table 2). The 

structures were shown to be true minima by calculation of the harmonic vibrational frequencies. 

The calculations assumed S6 symmetry for the structure of 12–. When the calculations were repeated 

starting with C1 symmetry, they converged to the S6 structure. Both calculations give structural 

parameters that are significantly closer to those found in our X-ray study than to what has been 

found in ZOMBAE and CHYDNI. As might be expected, the MP2 calculation tends to give 

structural parameters closest to that reported here. The Cl–Cl distance differs by only 0.12 Å while 

the O–O distances differ by only 0.004 Å and the Cl–O distances by only 0.058 Å. Similarly, the 

angles are in excellent agreement, with less than 1° difference between these parameters. It would 

seem that ion-pair strain has indeed resulted in a relatively isolated and undistorted 12– cluster. 

Since the corresponding monomer of 12–, [Cl(H2O)3]– (2–), has been extensively investigated,[2,12] 

similar calculations were also performed on this cluster for comparison. The Cl–O distances for 12–, 

which has no net dipole moment, and its polar pyramidal monomer differ by less than 0.07 Å, 

however, the O–O distances for 12– are significantly shorter (by 0.18 Å) than in 2–. This shortening 

can be attributed to the more favorable hydrogen-bonding angles in the O6H6 ring of 12– (171.7° 

  



versus 144.0° for the O3H3 ring in 2–). The calculated OH–Cl angles of 173.5° in 12– also compares 

more favorably than 2– (179.5°) to that calculated for [Cl(H2O)]– (168.0°).[12] The strongly negative 

ΔH° calculated for 12– attests to its gas-phase stability. Clearly, the six Cl–HO hydrogen bonds are 

sufficient to overcome the electrostatic repulsion between the chlorides. It should be noted, 

however, that it is not as stable as its monomer 2– (ΔH° for 2– should be  multiplied by 2 for a more 

accurate comparison).[12] This is not surprising given the electrostatic repulsion in 12–, even though 

the hydrogen-bonding interactions may be stronger in the dianion.  

In summary, we have described an interesting well-isolated dichloride hydrate cluster, presented 

the first calculations on a dichloride hydrate, and shown that such a species would be stable in the 

gas phase. The presence of such dianionic species in hydrated halide phases should therefore be 

considered, particularly in studies involving concentrated solutions and low-polarity environments, 

even though local polarisations are likely to be important. Spectroscopic studies of 12– and 

investigations of other dichloride hydrates remain to be carried out. 

Experimental Section 

[C3(NiPr2)3]Cl.3H2O was prepared by addition of NHiPr2 (20.2 g, 0.200 mol) to C3Cl5H (3.28 

g, 0.0153 mol) at 0°C in 1,2-C2Cl2H4 (100 mL). The solution was stirred overnight and 

allowed to reach ambient temperature. It was then heated to reflux for 2 days. A precipitate 

of [NH2
iPr2]Cl was filtered off. The solvent was then removed to give a brown oil which was 

washed with HCl(aq) (100 mL) and then water (200 mL). The organic component was 

extracted with CHCl3 and after solvent removal a brown crystalline mass entrained in oil 

remained. Addition of diethylether caused the mass to become an oil from which crystals 

(0.52 g, 8% yield) were obtained upon cooling. 1H NMR (300 MHz, CDCl3, 23°C, TMS): 

δ=3.59 (septet, 3J(H,H)=6.8 Hz, 1H; CH(CH3)2), 1.27 ppm (d, 3J(H,H)=6.8 Hz, 6H; 

CH(CH3)2). The chemical shift for the water is highly concentration dependent but 

indicative of free water. 13C{1H} NMR (75 MHz, CDCl3, 23°C, TMS): δ=117.6 (s; C3), 49.5 

(s; CH(CH3)2), 22.5 ppm (s; CH(CH3)2). ES-MS (CH3CN/H2O, 20 V cone voltage): m/z (%) 

336 (100) [C3(NPr2)3
+], 253 (25) [C3(NPr2)2OH+]. Elemental analysis, calcd for 

C21H48ClN3O3: C, 59.20; H, 11.35; N, 9.86. Found C, 59.53; H, 11.25; N, 9.71. 

X-ray crystallographic data for [C3(NiPr2)3]Cl.3H2O was collected using an APEX-II 

diffractometer equipped with a Bruker SMART CCD area detector. The structure was 

solved by direct methods and refined by least-squares methods on F2 with anisotropic 

thermal parameters for all non-hydrogen atoms. The water H atoms were refined 

isotropically with O–H distances of 0.84 Å and the H atoms in the O6H6 ring were refined 

  



as equal distributions of the two possible hydrogen-bonding networks. Crystallographic 

data and refinement parameters: C21H48ClN3O3, crystal size 0.85x0.26x0.18 mm, Mr = 

426.07 gmol–1, triclinic, space group P–1, a = 9.9248(6) Å, b = 10.1879(6) Å, c = 

13.1210(7) Å, α = 82.683(3)°, β = 81.063(3)°, γ = 88.233(3)°, V = 1299.84(13) Å3, Z = 2, ρ 

= 1.089 gcm–3, μ = 0.170 mm–1, Mo(Kα) radiation (λ = 0.71073 Å), T = 93(2) K, 2θmax = 

69.92°, 34404 reflections collected, 10109 independent reflections (Rint = 0.0310), 

R1(I≥2σ(I)) = 0.0342, wR2(I≥2σ(I)) = 0.0946, R1(all) = 0.0427, wR2(all) = 0.1029, residual 

electron density = 0.451/–0.209 eÅ–3. The crystallographic data has been deposited with 

the Cambridge Crystallographic Data Centre, CCDC reference number 615639. Copies of 

this information may be obtained on the web at 

http://www.ccdc.cam.ac.uk/data_request/cif. 
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Legends for Figures 

 

Figure 1. Thermal ellipsoid plot of the cation in [C3(NiPr2)3]Cl.3H2O. Hydrogen atoms have 

been omitted for clarity. Selected distances [Å] and angles [°]: C1–C2 1.3861(8), C1–C3 

1.4316(9), C2–C3 1.3881(8), N1–C1 1.3219(7), N2–C2 1.3928(8), N3–C3 1.3260(8); C2-

N2-C21 109.57(5), C2-N2-C22 113.83(5), C21-N2-C22 118.99(5). 

Figure 2. Thermal ellipsoid plot of the anionic cluster in [C3(NiPr2)3]Cl.3H2O illustrating one 

of the hydrogen-bonding arrangements. Selected distances [Å] and angles [°]: Cl1–O1 

3.2529(8), Cl1–O2 3.2413(8), Cl1–O3’ 3.1860(8), O1–O3 2.8345(11), O2–O3 2.8245(11), 

O1–O2’ 2.8379(11), Cl1–Cl1’ 6.3212(5); O1-Cl1-O2 77.02(2), O1-Cl1-O3’ 74.07(2), O2-

Cl1-O3’ 72.56(2), O1-O3-O2 91.21(3), O3-O1-O2’ 84.22(3), O3-O2-O1’ 86.46(3). 

Figure 3. Two orthogonal views that illustrate the environment around the [Cl2(H2O)6]2– 

cluster (Cl, green; O, red; N, blue; C, black). 

 

  



 

Table 1. Selected average structural parameters for [X2(H2O)6]2– cubes. 

 This work ZOMBAE[5] CHYDNI[6] KIQVAH[7]

X Cl– Cl– Cl– Br– 

X–X [Å] 6.321 5.953 5.204 7.057 

X–O [Å] 3.227 3.206 3.120 3.428 

O–O [Å] 2.832 3.063 2.790 2.888 

O-X-O [°] 74.55 83.11 85.63 68.41 

O-O-O [°] 87.30 87.96 98.96 83.57 

 

Table 2. Structural parameters and standard enthalpies for the formation of [Cl2(H2O)6]2– 

and [Cl(H2O)3]– from Cl– and H2O calculated at the B3LYP/aug-cc-pVDZ and MP2/aug-cc-

pVDZ levels. 

 [Cl2(H2O)6]2– [Cl(H2O)3]– 

 X-ray B3LYP MP2 B3LYP MP2[a] 

Cl–Cl [Å] 6.321 6.554 6.441 – – 

Cl–O [Å] 3.227 3.312 3.285 3.231 3.222 

O–O [Å] 2.832 2.869 2.836 3.025 3.009 

O-Cl-O [°] 74.55 73.10 73.61 55.82 55.68 

O-O-O [°] 87.30 86.85 87.91 60.00 60.00 

ΔH° [kJmol–1] – –173.3 –222.0 –159.3 –176.7

[a] Also see reference 12. 
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Figure 1. Thermal ellipsoid plot of the cation in [C3(NiPr2)3]Cl.3H2O. Hydrogen atoms have 

been omitted for clarity. Selected distances [Å] and angles [°]: C1–C2 1.3861(8), C1–C3 
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Figure 2. Thermal ellipsoid plot of the anionic cluster in [C3(NiPr2)3]Cl.3H2O illustrating one 

of the hydrogen-bonding arrangements. Selected distances [Å] and angles [°]: Cl1–O1 

3.2529(8), Cl1–O2 3.2413(8), Cl1–O3’ 3.1860(8), O1–O3 2.8345(11), O2–O3 2.8245(11), 

O1–O2’ 2.8379(11), Cl1–Cl1’ 6.3212(5); O1-Cl1-O2 77.02(2), O1-Cl1-O3’ 74.07(2), O2-

Cl1-O3’ 72.56(2), O1-O3-O2 91.21(3), O3-O1-O2’ 84.22(3), O3-O2-O1’ 86.46(3).

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two orthogonal views that illustrate the environment around the [Cl2(H2O)6]2– 

cluster. 

 

  


