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Abstract: Experiments on carbon monoxide generation principle of pine which has been widely used 
in the historical buildings in Tibet were conducted in a combustion cabin in high-altitude-region Lhasa 
and low-altitude-region Hefei respectively. Three pine samples with different sizes were adopted. The 
surface temperature and CO concentration under radiative heat flux of 42 kW/m2 were measured. The 
effect of oxygen quantity and pressure on carbon monoxide production were analyzed. It was found 
from the experimental results that carbon monoxide generation had the same trend in both districts; it 
was first steadily released to a peak value, subsequently descended to a constant value, and then 
increased to a second value and decayed in the end. Comparing with those in Hefei, the two peak 
values and the steady value of carbon monoxide concentration in Lhasa were higher, and also, the time 
to them was much later. The main reason is that the quicker increasing temperature in lower-oxygen 
condition in Lhasa accelerated the incomplete oxidation of unburned hydrocarbons. Additionally, low 
mixing rate of volatile component and oxygen under the condition of low oxygen quantity and the  
ambient pressure was in favor of incomplete combustion of pine and therefore carbon monoxide 
production. 
Key Words ： low oxygen quantity and low ambient pressure; pyrolysis; carbon monoxide 

concentration; gas phase combustion; hydrocarbon oxidation 

1. Introductions 

Investigations showed that people’s inbreathing toxic gases, especially carbon monoxide, is the 

main reason to casualty in fire. Therefore carbon monoxide is the most dangerous gas in fire [1-6]. 

Many studies have been done on the carbon monoxide releasing principles in fire. The most widely 

referenced work, and the basis for current predictive engineering tools for species generation, is the 

work of Beyler [7,8]. Beyler proposed that it might be possible to correlate the species yields and 

species production rates to an overall fuel-to-air ratio. The parameter proposed by Beyler is the global 

equivalence ratio (GER), which in his experiments is equivalent to the plume equivalence ratio (PER) 

during the steady-state period. Tewarson [9] performed a series of tests in the ASTME2058 fire 

propagation apparatus and in the Fire Research Institute’s enclosure. The Fire Research Institute 

enclosure was a 0.022m3 enclosure measuring 0.25m by 0.25m and 0.35m high. Tewarson presented 



the data as a ratio of species yields for ventilation-controlled (vc) to well-ventilated (wv) fires. 

Tewarson concluded, from the study, that the ratios of oxygen and carbon dioxide were independent of 

the chemical composition of the materials, while the ratios of carbon monoxide and hydrocarbons did 

exhibit a dependence on the chemical structure of the materials. This agrees with the findings of 

Beyler [7] who reported that normalized carbon monoxide yields had a fuel dependency. The carbon 

monoxide releasing of fir had been investigated by Song et. al [6] on self-developed test configuration, 

and they mainly discussed the influence of external heat flux on carbon monoxide’s generation. Some 

other researchers also carried out similar experiments using cone colorimeter [10]. These former 

studies mainly focused on the influence of fuel-air ratio, chemical elements of material and ventilation 

on carbon monoxide’s releasing at different stages of fire, especially after flashover. Nevertheless, 

they all ignored the influence of oxygen quantity and atmosphere on carbon monoxide generation. But 

in altiplano of Tibet, the low oxygen quantity and low ambient pressure would have a certain influence 

on carbon monoxide generation. So it is significant to investigate the generation principles of carbon 

monoxide for fire prevention, detection and evacuation in the special atmosphere of Tibet. The 

different generation principles in both districts are discussed in this article. 

2. Theoretical Analysis 

Oxygen diffuses into the smoldering reaction region where chemical reaction occurs between raw 

material and oxygen and then productions overflow. The chemical reaction in the region can be 

described by a two-step reaction model. 

(1) Thermal decomposition 

Thermal decomposition is an endothermic reaction, in which combustible gases are produced. 

The reaction can be described as below:  

  11111 QCharGasmkgMa −+→ λ                                      －(2) 

The reaction rate is determined by temperature and material density. 
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where sρ  is material density and E1 is activation energy.  

(2) Thermo-oxidative decomposition 

This process is an exothermic reaction, which can be described as below: 

 22221 QCharGasmOkgMa prd ++→+ λγ                              －(4) 

The reaction rate is determined by material density, oxygen concentration and temperature as 

well. 
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where 
2OY  is oxygen concentration. 

In fact, thermal decomposition and thermo-oxidative decomposition is a couple of competitive 



reactions that occur in certain region. Assuming the proportion of material that involved in 

thermo-oxidative decomposition isα , the proportion of materials that involved in the thermal 

decomposition is )1( α− . Combustible gases are produced during the thermal decomposition of 

materials and the amounts of these gases are proportional to sV0)1( ρα− . The reaction rate and the 

amount of combustible gases produced increased with the oxygen concentration increasing [11]. 

Gas phase reaction rate is determined by combustible gases concentration, oxygen concentration 

and temperature as well. Obviously low temperature and oxygen concentration will inhibit the 

reaction rate. However once they increase to reach an appropriate level, fast gas phase combustion 

reaction will happen and produce a flame. 

In the low oxygen quantity atmosphere, the carbon monoxide production is similar to the 

situation under the underventilated conditions. So the carbon monoxide formation is affected by two 

competing mechanism (i.e., CO and hydrocarbon oxidation) [12]. Increasing gas temperature above 

900 K depletes CO by accelerating the CO to CO2 conversion. However, incomplete oxidation of 

unburned hydrocarbons increases the CO production. Since hydrocarbon oxidation is much faster than 

CO oxidation, net levels increase until all available oxygen is consumed. For underventilated fires, 

chemical kinetics modeling indicates that higher temperature environments may result in slightly 

higher CO yields due to preferentially accelerated hydrocarbon oxidation compared to CO oxidation. 

3. Test Configuration/Experimental procedure 

A series of tests were carried out in the west-south altiplano regions of China Lhasa for 

investigating the CO production in pine combustion, comparing that of in the plain regions-Hefei city. 

The experimental apparatus was a 2 m（L）×4 m（W）×3.3 m（H）enclosure made of plasterboard. 

A door of 0.7ｍ×1.8ｍ was closed during the experiments. There was a 0.5ｍ×0.5ｍ vitreous 

window for observation on one side. The power of the radiation panel was 2.5kW and can produce a 

radiative heat flux of 42 kW/m2. Three types of pine sticks with different sizes were used: specimen 

No.1 of 10mm×10 mm×400 mm, specimen No.2 of 15 mm×15 mm×400 mm and specimen No.3 of 

20 mm×20 mm×400 mm, and their densities were all 450kg /m3. The specimens were located above 

the radiation panel which is 0.4m high in the center of the enclosure. The CO concentration of plume 

was measured by Testo350XL Smoke Species Analyzer with a accuracy of 0.1 ppm and uncertainty of 

%5± . Two sampling positions are located at the 2.0ｍ and 3.2ｍ height of the plume, respectively. 

The schematic map of the experiment apparatus was shown in Figure 1. 



 
 

Figure.1 Scheme of the test configuration 

4. Results and discussions 

It is observed that carbon monoxide concentrations in the two positions are almost uniform, so 

the average values of the data measured in two positions were used which are presented in Figure 2.  
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(a) Specimen No.1              (b) Specimen No.2            (c) Specimen No.3 

Figure.2 CO concentration during the combustion of specimens 

As shown in Figure 2, the pine combustion can be divided into three stages: (Ⅰ) Initial stage that 

carbon monoxide was released when heated; (Ⅱ) Steady burning stage that carbon monoxide 

concentration was kept at a relatively stable level; (Ⅲ) Decay stage that carbon monoxide 

concentration would descend firstly and then reach a new maximum. The results were comply with 

that of cone calorimeter [10]. The experimental data in different stages were listed in Table.1. It is 

clear that the time of the first peak value of carbon monoxide concentration is consistent with pilot 

ignition time of specimen[13], which suggests that the carbon monoxide concentration reaches a peak 

value before ignition. 

Table 1 CO parameters of three pine specimens 
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Lhasa Hefei Lhasa Hefei Lhasa Hefei Lhasa Hefei Lhasa Hefei Lhasa Hefei 
NO.1 924 562 72 34 166 76 46 22 1174 704 78 34 
NO.2 939 585 80 49 203 112 51 24 1239 906 90 47 
NO.3 982 608 99 85 231 140 66 52 1269 1152 106 94 

There were significant differences on the carbon monoxide production characteristics of pine 

combustion between Lhasa and Hefei. 

(1) At the initial stage of combustion, the first peak of carbon monoxide concentration in Lhasa 

was higher than that in Hefei, which suggested that the thermal decomposition period in Lhasa was 

longer than in Hefei. From Figure 2, it can be seen that in Lhasa region, the rate of carbon monoxide 

production during the initial heating stage is slow, then increased rapidly in a short time before 

ignition. According to the literature [11], it is suggested that the low oxygen quantity in Lhasa inhibits 

the reaction rate and decreases the amounts of combustible gases produced.  

(2) It is also found that the period of early stage and the duration of carbon monoxide 

concentration kept stable in Lhasa are longer than those in Hefei. Furthermore, the stable value of 

carbon monoxide concentration is also higher. This can be attributed to pine’s incomplete combustion 

and large amount of carbon monoxide in the low oxygen quantity atmosphere in Lhasa.  

(3) In stage Ⅲ, the remaining char begin burning and produced a large amount of carbon 

monoxide and the concentration value reaches a new maximum. In Hefei, the carbon monoxide 

concentration in stage III increased slowly while it increases rapidly in Lhasa. The second peak value 

of carbon monoxide concentration is little higher than the first one in both districts, respectively. 
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(a)In Hefei                              (b)In Lhasa 

Figure.3 Surface temperature and CO concentration of specimen No.1 
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(a)In Hefei                              (b)In Lhasa 

Figure.4 Surface temperature and CO concentration of specimen No.2 
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(a)In Hefei                              (b)In Lhasa 
Figure.5 Surface temperature and CO concentration of specimen No.3 

The surface temperature and carbon monoxide concentration of three specimens in both district 

are shown in Fig.3~5. The period of stage Ⅱ that carbon monoxide concentration kept stable is 

consistent with the steady burning stage from the surface temperature curve in Hefei. However, it 

covers the steady burning stage and early stage of decay in the stage II in Lhasa. It is suggested that in 

Lhasa the oxygen near the burning specimen is consumed in a short time, which promoted the 

combustion of pine decays rapidly. As a result, more raw material and volatile components are 

remained, which continue to burn and produce carbon monoxide steadily. 

Comparing the carbon monoxide concentration and surface temperature of specimens in different 

stages, the combustion process of pine can be distinguished: (1) Vaporization of moisture content 

stage that slow thermal decomposition and thermo-oxidative decomposition happen, and this process 

corresponds to region A of Fig.3~5. In this stage, moisture content is evaporated, yet the chemical 

component of specimen is preserve. Surface temperature of specimen in Lhasa is 30～60℃ higher 

than that in Hefei in this period. (2) Pre-charring stage that is corresponding to region B of Fig.3~5. 

The decomposition reaction rates of specimens are accelerated and volatile components are produced. 

From Fig.3~5, it can be seen that the surface temperature of specimens in Lhasa is about 30～40℃ 

higher than that in Hefei. The prior two stages are corresponding to stage I of carbon monoxide 

concentration. (3) Charring stage that is corresponding to region C of Figure 3 to Figure 5. In this 

stage, fast gas combustion happens and produce amounts of production after decomposition which 

forms a steady value of carbon monoxide concentration as shown in stage Ⅱ of Figure 2. (4) Charred 

remains’ combustion that is corresponding to region D of Figure 3 to Figure 5. In this stage, carbon 

monoxide increases once more until reaching a new maximum concentration because of charred 

remains’ combustion. The temperature in of three pine specimens in different stages is listed in Table 2, 

from which it can be deduced that the carbon monoxide produced in Lhasa has a higher temperature 

than that in Hefei. 

Table 2 Temperature of three pine samples in different stages 

specimen 
Stage Ⅰ Stage Ⅱ 

Stage 1/℃ Stage 2/℃ Stage 3/℃ 



Lhasa Hefei Lhasa Hefei Lhasa Hefei 

NO.1 ～258 ～223 258～468 223～427 468～497 427～490 

NO.2 ～302 ～250 302～524 250～498 524～580 498～561 

NO.3 ～318 ～262 318～570 262～528 570～636 528～622 
At the beginning of stage Ⅰ, less carbon monoxide is produced in Lhasa than in Hefei because 

low oxygen quantity and partial pressure in Lhasa makes it difficult for oxygen diffusing into 

specimen internal, which decreased the thermal decomposition rate. In stage Ⅱ and stage Ⅲ more 

carbon monoxide are produced in Lhasa than in Hefei. One reason is the incomplete combustion of 

specimen in Lhasa, another reason is that the low mixing rate of volatile component and oxygen under 

the condition of low oxygen quantity and the pressure is in favor of carbon monoxide production; the 

third reason, also the most significant reason, is that the quicker increasing temperature in 

under-oxygen condition accelerates the incomplete oxidation of unburned hydrocarbons. 

Studies on carbon monoxide production are important for early fire detection and evacuation. The 

low oxygen quantity and low pressure environment in Lhasa can promote the carbon monoxide 

production and aggravate the toxicity of carbon monoxide according to experimental results on 

animals[14] in altiplano region.  

5. Conclusions 
Experiments for investigating the carbon monoxide production in the combustion of pine, widely 

used in the historical buildings in Tibet, have been performed in Lhasa and Hefei.  

The burning of specimens in Lhasa and Hefei have similar process and tendency for carbon 

monoxide production. The concentrations of carbon monoxide produced during the combustion of 

pine in both regions have two peak values. Between the two peak values, the carbon monoxide 

concentration kept a relatively stable value but lower. 

The two peak values of carbon monoxide concentration during pine combustion in Lhasa are 

higher than that in Hefei. Also, the time that the peak values reached is much later. This may delay gas 

detector’s response to fire, thus dally over time which can be used for evacuation and property 

protection.  

The low oxygen concentration and low pressure atmosphere in Tibet is in favor of producing 

more high temperature carbon monoxide and aggravates the toxicity of CO. So the fire in Tibet is 

more harmful to occupant. 
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