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Abstract 
The effective delivery of sedation in critical care relies primarily on an accurate and consistent measure of a 
patient’s agitation level. However, current methods for assessing agitation are subjective and prone to error, 
often leading to over sedation or cycles between agitation and oversedation. This paper builds on previous work 
developing agitation sensors based on heart rate and blood pressure variability, and overall whole body motion. 
In this research, the focus is on real-time measurement of high resolution facial changes that are observed to 
occur in agitation. An algorithm is developed that measures the degree of facial grimacing from a single digital 
camera. The method is demonstrated on simulated patient facial motion to prove the concept. A consistent 
measure is obtained that is robust to significant random head movement and compares well against visual 
observation of different levels of grimacing. The method provides a basis for clinical validation. 
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1 Introduction 
In critical care many patients are mechanically 
ventilated and sedated for relatively long periods. 
Sedative dosing is thus primarily titrated to provide a 
minimum level of unconsciousness to facilitate 
recovery while also minimizing patient agitation. 

Currently, there is no accepted gold standard for 
measuring agitation and current methods are 
subjective and prone to error. This subjective level of 
assessment can lead to over sedation, variable 
delivery of sedative, and increased cost and prolonged 
length of stay [1]. 

In previous work, agitation sensors based on blood 
pressure and heart rate variability [2] and digital 
imaging of whole body motion [3], have been 
developed and validated [4]. However, the whole 
body movement approach [3,4] is hindered by 
perspective distortion due to viewing angle, has 
relatively low resolution of the head and face and is 
only suitable for measuring average body motion. 
Furthermore, in the case of paraplegic patients, whole 
body movement is not available, significantly 
hindering the use of [3,4].  

Facial expression is particularly important for 
measuring pain in pediatrics, is one of the key 
elements of Behavioural Pain Assessment [5] and is a 
significant part of pain measurement in general [6]. 
Hence, in this research, the camera is focused 
primarily on the head and face rather than an overall 
view of the whole body [3,4]. This approach thus 
provides the potential for characterising a greater 
range of agitation through the detection of subtle 
facial changes. The method could also be readily 

combined to significantly enhance and improve the 
resolution of the current sensors [2,3,4]. 

A number of facial recognition and tracking 
algorithms exist, however these algorithms usually 
deal with either the detection and tracking of static 
facial features [7], or purely describe qualitatively 
overall facial changes [8]. Neither task is typically 
done within the real time constraints needed for 
critical care, which are on the order of 1-5 times per 
second to effectively track changes [3,4]. The goal in 
this paper is to develop methods for detecting and 
quantifying dynamic feature change related to facial 
grimacing, independent of head movement. A general 
approach is given but demonstrated by specific 
examples. 

2 Methodology 

2.1 Experimental Setup 
A Canon IXUS 40 digital camera is focused 
approximately normal to the patient’s face, as shown 
in Figure 1. The images cover a range of grimacing 
from calm to exaggerated expression. 

 

 

 

 

 

 

 

Figure 1: Scheme of Experimental setup for video 
acquisition - (a) Side view - (b) Front view. 
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The video simulates: 

1. A patient moving head with no expression 

2. A patient moving head and grimacing 

Each frame is stored as a jpeg file and processed 
frame-by-frame using MATLAB 7.1. MATLAB is 
used to develop the algorithms, but in a manner that 
would generalise to an implemented real-time system. 

2.2 Reference point tracking 
To easily determine head position, a white marker 
containing a black dot is placed on the forehead, as 
shown in Figure 2 and is followed in consecutive 
frames. In a critical care setting a patient usually has a 
ventilator and/or tubes from the mouth so that several 
artificial points could be placed. If a marker was 
dislodged this would be easily automatically detected 
as missing from the image and could then be placed 
back on the patient by clinical staff. 

A sufficiently large rectangular area is first placed 
around the forehead, such that it contains the dot 
under all typical motions. Tracking can then be 
accurately and efficiently achieved by a normalized 
thesholding of the image, see Figure 2. The 
normalization involves scaling the pixels from 0 to 1 
based on the lowest and highest pixels. The average 
of all the pixels in the black dot, the centre of the 
black dot in Figure 2 (a) is found. 

For subsequent frames, the correct dot is identified by 
requiring it to be within a predefined tolerance from 
the black dot in the previous frame. This tolerance is 
chosen to be +4 and -4 pixels given the 30 fps image 
rate. For faster computation, the rectangle area can 
also be reduced once the dot in the first frame is 
found. 

Figure 2: (a) Original Jpeg image containing the 
analysed area; (b)  Image of rectangle after doing a 
normalised thresholding 

2.3 Extracting boundary contour of 
face 

With only one dot to act as a landmark point, the 
location of this dot is not sufficient to consistently 
enable the placement of a rectangle around the cheek 
region or any other region restricted to certain areas 
on the face. For significant rotations of the head, part 
of the cheek on one side can disappear and the size of 
such regional rectangles will change significantly. To 
correct this error would require either more artificial 
points to be placed on the face or natural facial 

features to be tracked. In a hospital environment, it is 
undesirable and impractical to require too many 
artificial points to be placed on a patient’s face. Thus, 
a form of the latter option is chosen. 

Since the boundary contour of the visible part of the 
face remains largely unchanged during facial 
grimacing, a method for tracking the contour is 
developed. Common methods for tracking face 
contour use snakes with gradient or colour 
information as exterior forces on the snakes to aid the 
process. However, in this application thousands of 
frames need to be tracked in real time. Thus, the 
method of snakes would be computationally heavy. In 
addition, that high a level of accuracy is not required, 
as only the essential facial outline is needed. 
Therefore, a simpler computationally efficient method 
is used based on skin colour segmentation and 
constrained by a restriction on movement between 
frames. 

Note that the case simulated in this paper is a 
conservative choice where only one artificial 
landmark point is used. In practice, with tubes and a 
ventilator on a patient, many more artificial landmark 
points would be available, making the job of motion 
tracking and identifying facial regions simpler. Any 
tubes crossing the boundary could be accounted for in 
an initialization which would incorporate user input if 
required. The position of the tubes would be known 
throughout time by tracking the artificial landmark 
points.  

However, if there is a sufficient number of landmark 
points such that facial regions of interest can be easily 
located, a boundary algorithm may not be required. 
This possibility is left to future clinical trials. 
Importantly, the methodology in this paper is 
designed to track any number of landmark points and 
utilize the boundary of the face as required. Also note 
that a longer term goal is to apply the method in the 
general wards, where there are less artificial landmark 
objects/points available as patients are less likely to 
be on a ventilator or have tubes. 

2.3.1 Skin recognition 

Extraction of the contour uses a skin hue property to 
detect the edge of the face. Specifically, the R/G ratio 
of the intensity value on the red (R) channel to the 
intensity on the green (G) channel can be used to 
represent skin [9,10]. Using the position of the dot to 
get a sample of the skin hue on the forehead, it is thus 
possible to detect skin on the face of a specific 
patient. Note that the studies of [9,10] successfully 
detect skin on a very large data set containing a wide 
number of skin types. In critical care patients there is 
the possibility of paler skin due to their severe illness. 
However, measurements have shown that paler skin 
has almost the same chromaticity as yellowish or dark 
skin [11,12] thus presenting no further significant 
difficulty. Skin can also show up more white than 

(a)   (b)   



usual due to changes in light, but this effect is 
normalized out by taking colour ratios and is shown to 
have minimal effect on skin detection [12]. 

Figure 4 shows examples of detecting skin based on 
deleting pixels that have an intensity ratio R/G greater 
than a specified tolerance of the sample skin intensity. 
However, as can be seen in Figure 4, the face is not 
precisely defined and requires further processing to 
accurately isolate areas associated with grimacing. In 
addition, bandages or other coverings would hide 
skin, although such areas would not contribute to 
agitation detection either. 

 

Figure 4: Example of skin hue recognition 

 

 

2.3.2 Contour extraction 

Thresholding of the R/G ratio can be used to 
approximate the boundary of the face separating skin 
from non-skin. However, this method does not always 
accurately detect all parts of the boundary. Therefore 
an initial contour extraction is done on the first image 
of the sequence. This contour is found by using the 
R/G ratio to find all the discrete boundary points on 
the face, thus forming the contour. This contour must 
then be checked by the user before the algorithm 
proceeds, making corrections if necessary.  

This initialization is used to assist in extracting the 
contour in future frames. The number of pixels 
defining the facial contour curve is set to 50 equally 
spaced points (in Euclidean distance) around the 
perimeter of the contour. This number is arbitrary, but 
provides enough segments to adequately define the 
fundamental visible face in an image. More or less 
points might be equally effectively used. 

 The amount of pixel movement between frames at 30 
fps is relatively small, and can be bounded above by a 
predefined tolerance δ. Therefore, each new contour 
will lie inside an envelope around the previous 
contour. In particular, for every point on the previous 
contour, the boundary of the new contour is searched 
for along the line segment perpendicular to the 
tangent of the curve, with a length determined by the 
pre-defined tolerance δ. Figure 5, shows this line 
segment in an example image.  

The goal is to detect which point along the line A to B 
best meets the criteria for the border of the face. The 
gradient of the red, green and blue intensities between 

points A and B would appear to be a simple way of 
doing this task. However, there is not always a clearly 
defined boundary, which can result in no significant 
change in the gradient across the boundary leading to 
potentially false points being chosen. A more robust 
solution uses the ratio of the red and green signals, 
which is shown in Figure 6. 

When the ratio of the red and green is above a 
predefined threshold, which is chosen as 1.18 in 
Figure 6, it is considered to be skin. The first point of 
the segment that is above the threshold is defined as 
the boundary. If no such point is found, no point is 
stored. The resulting gaps left in the curve are then 
linearly interpolated using equally spaced points.  

For additional robustness, a simple learning system 
can be used. For every tracked position of the black 
dot, the boundary contour can be stored. Thus, when 
the head comes back to a point close to a known 
position, the corresponding stored contour can be 
used instead of re-calculating. 

Figure 5: Searching for new boundary within an 
envelope of the previous boundary 

Figure 6: Difference between red and green pixel 
intensity along the line A to B 

2.4 Measuring dynamic facial 
grimacing 

During grimacing, extra wrinkles appear on the face 
and similarly for agitation evidenced by biting or 
chewing the endo–tracheal tube. These wrinkles occur 
dynamically and can be detected as extra edges on the 
image. Since edges are largely unaffected by the 
rotation of the head and different lighting conditions, 
edge detection was chosen as the basis for defining a 
grimacing measure.  

To accomplish this task in a computationally efficient 
manner, a high-pass filter is applied on an extracted 
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region of the image to locate the edges corresponding 
to the wrinkles. The specific filter looks for zero 
crossings after filtering the image with a Laplacian of 
the Gaussian filter [13]. 

For better consistency, this high-pass filter is applied 
only where the wrinkles are most likely to be located. 
Specifically, from above the eyebrows to the sides of 
the mouth, as seen for a series of facial grimaces in 
Figures 9-10. This approach saves computation by 
examining areas of known occurrence. It also 
provides a more dynamic measure by ignoring areas 
where little change is likely to occur. 

The overall approach first finds the facial contour. 
The face is then segmented from above the eyebrows 
to below the mouth. The head tracking dot position is 
used to find these regions relative to the dot’s location 
and provide a consistent facial segmentation.  

Next, a sequence of initialization frames is chosen 
with a calm face to calibrate the grimacing measure. 
This can be done by ensuring the measure was as 
constant as possible during a rotation of the head. 
Clinically, it would have to be done manually. Figure 
7 shows the grimacing level as a function of the 
distance from the initial dot position before 
calibration. Also shown in Figure 7 is the best least 
squares fitted straight line. This line can be used to 
correct the grimacing measure using the formula: 

axGG −=            (2) 

where a is the gradient of the line in Figure 7, the 
distance between the initial position and the current 
position of the white dot and is the grimacing 
measure.  

Thus, in summary, the position of the dot is used to 
correct unwanted changes that occur in the grimacing 
measure due to rotation of the head. Once the 
coefficient  is found, Equation (2) is applied to every 
image in the movie sequence. This process corrects 
the grimacing signal by returning a constant 
grimacing level during periods of calm in the patient. 

Lastly, the grimacing measure is low pass filtered and 
normalized between 0 and 1 using a method similar to 
Equation (1). This step is important as it normalizes 
out any initial facial wrinkles in elderly patients, and 
other marks or scars present in the calm facial state. 
This approach ensures only the change from the calm 
state is measured which corresponds to a grimace. 

Figure 7: Edge detection level as function of head 
position 

3 Results 

3.1 Reference point tracking 
The black dot was successfully tracked throughout a 
1336 frame (44.5 seconds) movie sequence, with the 
results of five frames shown in Figure 8, where the 
rectangle bounding the movement of the dot is also 
drawn. The left image shows the picture, while the 
right shows only the resulting binary image with the 
tracked dot. The rectangle is bigger in the first image 
because the position of the dot is unknown. After this 
initial frame the rectangle size is reduced. The white 
dot in the binary images of Figure 8 can be seen to 
accurately follow the position of the black dot, as 
denoted by a cross in the left image and thus the 
position of the head. The dot was successfully tracked 
for all 1336 frames with no lost or missed frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Tracking the reference point throughout a 
movie sequence.  Five frames, frame 1, 140, 280, 440 
and 530 out of 1336 frames are shown, including the 

binary image of the dot. 

 

3.2 Extracting boundary contour of 
face 

The contour of the face is tracked through a 1336 
frame movie sequence, and 9 frames representing 
extreme cases are shown in Figure 9, with the 
extracted facial contours plotted in green. The 
boundary of the face was successfully tracked in all 
frames. As Figure 9 shows, the results are sufficiently 
accurate for this application, which requires only 
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identification of the basic face area for further 
processing. 

 

 

 

 

 

 

 

 

 

Figure 9: Tracking face contour 

 

3.3 Facial grimacing 
The same 9 frames shown in Figure 9 are shown in 
Figure 10 with an agitation bar on the two sides of 
each image. The results show good consistency 
between the visually observed level of grimacing and 
the measured value shown on the bar is shown by the 
height of the panels to the left and right of the face in 
each image. The normalized level of grimacing is also 
plotted as a function of frame number in Figure 11; 
and consistent cycles can be seen that match the 
observed level of grimacing in Figure 10. Note that 
the number in each frame of Figure 10 are also shown 
in the plot of Figure 11 for added clarity. Finally, note 
that the qualitative levels and normalized quantitative 
assessments match well regardless of the rolling head 
motion that also occurs in the video. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Visual picture of agitation curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Grimacing measure (dynamic) after error 
correction 

4 Discussion and conclusions 
This paper has investigated the image processing and 
feasibility of measuring the degree of facial grimacing 
in ICU patients using a single digital camera. The 
goal is to develop methods for high-resolution 
measurement of changes in specific facial features 
that have been clinically observed to correlate with 
patient agitation and pain. Such a measure would 
enable more sensitive, quantitative, objective and 
accurate agitation assessment in critical care. Several 
simulations imitating a patient with differing degrees 
of grimacing and significant head movement are used 
to validate the approach. 

Accurate position tracking was achieved with the 
artificial placement of a black dot locally surrounded 
by white. This dot can be placed either on the 
patients’ forehead or on the ventilator tubing near the 
mouth. This dot is the only invasive feature of the 
overall approach. 

To isolate the face an efficient algorithm was 
developed for tracking the overall facial contour 
based on skin hue and colour ratios. The cheek and 
eyebrows regions are used to detect agitation-based 
grimacing using edge detection methods. Good 
resolution was obtained for the normalized degree of 
grimacing measured and the results compared well to 
visually observed grimacing in the recorded images. 
Note that other methods, such as image surface 
roughness which could be measured using for 
example the fractal dimension [14,15], might also be 
used equally effectively. 

In practice, any noise that occurs could be filtered 
leaving the essential dynamics required for this 
assessment. The orientation of the head could also be 
estimated to compensate for slight changes in the 
grimacing measure that occur due to the change in the 
angle of the camera as the head moves, particularly at 
extreme head rotations. Future experience with a 
number of critical care patients will allow a consistent 
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angle correction factor to be chosen and other issues 
to be assessed. 

The method can also be applied in real time as the 
computational time for processing 1 frame in Matlab 
7.1, on a Pentium 4 with 3 GHz and 2 GB Ram, took 
0.4 seconds. This is equivalent to 2.5 frames/s in 
Matlab, which is not real-time for a 30 fps 
application. However, reasonably optimized C code 
would provide a 10x-20x improvement, or 25 to 50 
frames per second. Hence, the computational 
requirements are not too onerous for real-time 
application. 

Future work will require clinical validation of the 
methods in this paper. In particular, direct comparison 
of the computed agitation level based on grimacing 
with agitation graded by nursing staff using the Riker 
Sedation-Agitation Scale or similar scale [16], will be 
required. 
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