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Abstract 
 

 

Hyperglycaemia is  prevalent  in  critical  care  and increases the  risks  of  further  

complications  and  mortality. Glycaemic control has shown benefits in reducing mortality. 

However, due in parts to excessive metabolic variability, many studies have found it difficult 

to reproduce these results. Out-of-Hospital Cardiac Arrest (OHCA) patients have low 

survival rates and often experience hyperglycaemia. However, these patients belongs to one 

group who has shown benefit from accurate glycaemic control (AGC), but can be highly 

insulin resistant and variable, particularly on the first two days of stay. 

 

Hypothermia is often used to treat post-cardiac arrest patients or out of hospital cardiac arrest 

(OHCA) and these same patients often simultaneously receive insulin. In general, it leads to a 

lowering of metabolic rate that induces changes in energy metabolism. However, its impact 

on metabolism and insulin resistance in critical illness is unknown, although one of the 

adverse events associated with hypothermic therapy is a decrease in insulin sensitivity and 

insulin secretion. However, this decrease may not be notable in the cohort that is already 

highly resistant and variable.  Hence, understanding metabolic evolution and variability 

would enable safer and more accurate glycaemic control using insulin in this cohort. 

 

OHCA patients were undergone preliminary analysis during cool and warm, which includes 

insulin sensitivity (SI), blood glucose (BG), and exogenous insulin and dextrose. Patients 

were analysed based on overall cohort, sub-cohorts, and 6 and 12 hour time block. Generally, 

the results show that OHCA patients had very low metabolic activity during cool period but 

significantly increased over time. In contrast, BG is higher during cool period and decreased 

over time. The analysis is equally important as the controller development since it provides 

scientific evidence and understanding of patients’ physiology and metabolic evolution 

especially during cool and warm.   

 

Model-based methods can deliver control that is patient-specific and adaptive to handle 

highly dynamic patients. A physiological ICING-2 model of the glucose-insulin regulatory 

system is presented in this thesis. This model has three compartments for glucose utilisation, 

effective interstitial insulin and its transport, and insulin kinetics in blood plasma, with 



xxvi 
 

emphasis on clinical applicability. The predictive control for the model is driven by the 

patient-specific and time-varying insulin sensitivity parameter. A novel integral-based 

parameter identification enables fast and accurate real-time model adaptation to individual 

patients and patient condition. 

 

Stochastic models and time-series methods for forecasting future insulin sensitivity are 

presented in this thesis. These methods can deliver probability intervals to support clinical 

control interventions. The risk of adverse glycaemic outcomes given observed variability 

from cohort-specific and patient-specific forecasting methods can be quantified to inform 

clinical staff. Hypoglycaemia can thus be further avoided with the probability interval guided 

intervention assessments. 

 

Simulation studies of STAR-OHCA control trials on ‘virtual patients’ derived from 

retrospective clinical data provided a framework to optimise control protocol design in-silico. 

Comparisons with retrospective control showed substantial improvements in glycaemia 

within the target 4 - 7 mmol/L range by optimising the infusions of insulin. The simulation 

environment allowed experimentation with controller parameters to arrive at a protocol that 

operates within the constraints found earlier during patient analysis. 

 

Overall, the research presented takes model-based OHCA glycaemic control from concept to 

proof-of-concept virtual trials. The thesis employs the full range of models, tools and 

methods to optimise the protocol design and problem solution.   
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Chapter 1: Introduction 
 

  

Hyperglycemia, or elevated blood glucose level, is a common effect of uncontrolled diabetes 

and is prevalent in critical care patients (Capes et al., 2000, McCowen et al., 2001, Mizock, 

2001, van den Berghe et al., 2001). During recent years, hyperglycemia was associated with 

adverse outcomes in various clinical settings (Rovlias and Kotsou, 2000, Umpierrez et al., 

2002, Krinsley, 2003, Egi et al., 2010). For example, hyperglycemia predicted a higher risk 

after stroke and poor functional recovery in surviving patients. In patients with myocardial 

infarction (heart attack) and coronary artery disease, hyperglycemia was associated with an 

increase of further complications and mortality (Capes et al., 2000, van den Berghe et al., 

2001). 

 

This problem has attracted many researchers to conduct studies on hyperglycaemia in the 

critically ill, and specifically how to perform glycaemic control effectively and safely among 

those patients. Two landmark studies by Van den Berghe (van den Berghe et al., 2001, Van 

den Berghe et al., 2006a) and Krinsley (Krinsley, 2004) showed that tight glycaemic control 

can reduce patient mortality and led to several additional clinical and model-based studies 

(Chase et al., 2008b). However, while some were successful (van den Berghe et al., 2001, 

Krinsley, 2004, Chase et al., 2008b), others failed to repeat the results (Brunkhorst et al., 

2008, Finfer et al., 2009, Preiser et al., 2009). As hyperglycaemia and its complications 

increase risk and costs, it has become a significant research area and was recently reviewed 

by Chase (Chase et al., 2006a, Chase et al., 2007a, Chase et al., 2011b).   

 

1.1   Cardiac Arrest Patients  

 

Cardiac arrest can be described as the cessation of normal circulation of the blood due to 

sudden loss of cardiac function, when the heart abruptly stops beating and pumping blood to 

the brain and other parts of the body (Jameson, 2005). Arrested blood circulation prevents 

delivery of oxygen to the body. Permanent brain damage and death is likely to occur unless 

the flow of blood to the brain is restored (Vespa et al., 2005). Ventricular fibrillation is the 

most common cause of cardiac arrest (Zipes and Wellens, 1998), which occurs due to heart 
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attack (myocardial infarction), respiratory arrest (loss of breathing function), choking, 

trauma, electrocution and drowning (Jameson, 2005).  

 

A person whose heart has stopped will lose consciousness and stop normal breathing, and 

their pulse and blood pressure will be absent.  Cardiac arrest leads to death within a few 

minutes and is obviously a serious emergency unless resuscitative efforts are begun 

immediately (Neumar et al., 2008). Early emergency treatment, such as cardiopulmonary 

resuscitation (CPR) and defibrillation (electrical impulses delivered to the chest to restore 

normal heart rhythm), are primary ways to reverse cardiac arrest and must be implemented 

within a few minutes to increase chances of survival.   

 

1.2   Out of Hospital Cardiac Arrest (OHCA) Patients  

 

Post-Cardiac Arrest or Out-of-Hospital Cardiac Arrest (OHCA) Syndrome is the medical 

emergency that occurs after the immediate resuscitation. It is characterized by resumption of 

spontaneous circulation (ROSC) after prolonged complete whole body ischemia, followed by 

resuscitation (Neumar et al., 2008). Once ROSC is achieved, the patient is technically alive. 

However, rates of early mortality in patients achieving ROSC after cardiac arrest vary 

dramatically among countries, regions and hospitals (Langhelle et al., 2003, Herlitz et al., 

2006). The cause of these differences includes variability of patient populations, reporting 

methods, and, potentially, post-cardiac arrest care.  

 

Approximately 166,200 out-of-hospital cardiac arrests occur annually in the US (Nolan et al., 

2008). On average, approximately 6.4% of out-of-hospital cardiac arrest patients survive to 

hospital discharge. The in-hospital mortality rate of patients who achieve ROSC after cardiac 

arrest has not changed significantly over the past 50 years (Bloom et al., 2007, Ehlenbach et 

al., 2009, Tian et al., 2010). Thus, there may be room for improved treatment after ROSC to 

improve outcomes. 

 

Hyperglycaemia is also common in OHCA patients and is associated with poor neurological 

outcome in survivors (Geocadin et al., 2008, Neumar et al., 2008). Post-cardiac arrest brain 

injury and myocardial dysfunction are common cause of morbidity and mortality which 

contribute to low survival rates after in- and out-of-hospital cardiac arrest (Stub et al., 2011)  .  

However, there is growing evidence that appropriate post-cardiac arrest care, such as tight 
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glycaemic control and therapeutic hypothermia can improve mortality rate and functional 

outcome (Safar et al., 1996, Holzer and Behringer, 2005, Neumar et al., 2008). Hence, these 

findings open further research and development opportunities for improving the existing tight 

glycaemic control system to specifically benefit post-cardiac arrest patients in specific. 

 

1.3   Aetiology of Hypothermia in OHCA Patients Care 

 

Post-Cardiac Arrest or Out-of-Hospital Cardiac Arrest (OHCA) patients are one group who 

have shown benefit from Tight Glycaemic Control (TGC), but can be highly insulin resistant 

and variable, particularly on the first day of stay (Pretty et al., 2012)   . Hypothermia or 

lowering body temperature below 35 degree Celsius is often used to treat out of hospital 

cardiac arrest (OHCA) (Graffagnino et al., 2012, Ornato et al., 2012, Reynolds and Lawner, 

2012, Bucher et al., 2013, Dietrich et al., 2013, Scirica, 2013, Winters et al., 2013, Mearns, 

2014, Picchi et al., 2014, Polderman et al., 2014) and these same patients often 

simultaneously receive insulin (Nolan et al., 2008) . Hypothermia leads to a further lowering 

of the metabolic rate and includes changes in energy metabolism and decreases in adenosine 

triphosphate (ATP) demand during cellular respiration process (Melhuish, 2009). 

 

Symptoms of hypothermia may be vague of difficult to identify, with sympathetic nervous 

system excitation such as shivering, hypertension, tachycardia, tachypnea and 

vasoconstriction (Hanania and Zimmerman, 1999). Other symptoms, such as cold dieresis, 

mental confusion, and hepatic dysfunction, may also present (McCullough and Arora, 2004). 

Most hypothermia-related deaths are preventable but conversely statistical record in year 

2001 have revealed that a total of 646 hypothermia-related deaths were reported in the United 

States, with an annual death rate of 0.2 per 100,000 population (Fallico et al., 2002). These 

statistics data suggest that hypothermia and its complications increase risk even though it is 

increasingly used for treating OHCA patients.   

 

In the event of hypothermia, patients now frequently undergo intensive hypothermic therapy 

(Stub et al., 2011, Graffagnino et al., 2012, Ornato et al., 2012, Dietrich et al., 2013, Scirica, 

2013) as the treatment offers beneficial effects physiologically and clinically (Dietrich et al., 

2009, Marion and Bullock, 2009, Egi et al., 2010). One of the adverse events associated with 

hypothermic therapy is the decrease in insulin sensitivity and insulin secretion (Hayashi, 
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2009). The amount of insulin required to maintain glucose levels within normal range (80 to 

110 mg/dL) is likely to increase during the induction of hypothermia, which can equally lead 

to increased risk of hyperglycaemia and hypoglycaemia. Therefore, these patients require 

additional care in metabolic management. 

 

1.4   Hypothermia and Glucose-Insulin System Dynamics 

 

The metabolic system is one of the important systems in human body. It processes the 

complex carbohydrate and sugar molecules from food and transforms them into glucose for 

storage and metabolism. The system comprises the stomach, pancreas, liver and cells where 

each organ has specific roles in digesting or storing glucose from food. Hormones, such as 

insulin and glucagon, assist the process by providing signals to the cells for releasing stored 

glucose or the liver for storing glucose from bloodstream.   

 

After food is consumed, the body reduces complex carbohydrate and sugar molecules to the 

simple six-carbon sugar known as glucose. Glucose is the body’s fuel, and upon the reduction 

by the body, it is either utilised or stored. Sensing glucose in the bloodstream leads the β-cells 

in the pancreas to produce insulin. The concentration of insulin acts as the body’s signal to 

manage storage and transportation, and thus determines the utilisation or storage rate of 

glucose.   

 

Insulin is a protein that consists of 51 amino acids in two closely connected chains.   Insulin 

molecules and their connecting fragments are then packed together in small granules in the β-

cells, which are secreted on demand through the islets of Langerhans in the pancreas. Along 

with β-cells, the 1 to 2 million islets of Langerhans contain α and δ cells, which secrete 

glucagon and somatostatin, respectively, and act as additional blood glucose regulatory 

hormones. The α, β and δ cells are approximately 25%, 60% and 10% of the total islets and 

are all very closely related (Guyton and Hall, 2000) 

 

The  level  of  insulin  in  the  bloodstream  is  the  signal  that  facilitates  the proper 

metabolic response as shown in Figure 1.1 . A high insulin level promotes storage of glucose, 

and a low insulin and glucose level signals the need for the release of glucose fuels, currently 

in storage, back into the blood stream. A meal results in an increase of insulin concentration 

in the blood, due to the increased secretion of insulin by the β-cells, and signals the liver and 
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muscles to consume the extra fuel (glucose) available.  The liver stores glucose as glycogen 

or fat, and the muscles utilise glucose primarily to repair damaged muscle cells, for energy 

storage as glycogen and lastly storage in fat cells. 

 

 

 

Figure 1.1: Model of Glucose-Insulin Regulatory System. The schematic shows the effect of 

high and low blood glucose levels in the body.  Adapted from health.howstuffworks.com 

 

 

Counter regulatory hormones, such as glucagon and adrenaline, signal the liver to release 

glucose. Too much glucose removal from the blood-stream can result in low blood glucose 

levels. When the glucose available is not sufficient enough to supply the brain’s 

requirements, hypoglycaemic symptoms including hunger, anxiousness, restlessness, 

agitation, perspiration, tachycardia (racing pulse) and palpitation (irregular and/or forced 

heart-beats) occur. These symptoms are partly a result of the release of adrenaline by the 

body as a counter regulatory measure to restore normal blood glucose levels. When the 

amount of insulin released is suddenly reduced, the signal is not available to the body to 

indicate it should remove glucose from the blood stream. The blood glucose level therefore 



6 
 

rises until there is hyperglycaemia, requiring further insulin. It is thus a natural feedback 

system using glucose raising / glucagon and adrenaline, and lowering insulin hormones. 

 

Insulin is an anabolic hormone and promotes growth, while lowering glucose levels (Vander, 

2001). Insulin also increases the activity of other enzymes, primarily those involved in 

glycogen, lipid and protein synthesis, and inhibit the activity of those that catalyse glucose 

degradation. However, all these digestive and metabolic activities involving secretion of 

insulin, glycogen and other related hormones and enzymes are optimum only during normal 

body temperature between 36
o
C and 37.5

o
C (Lehninger, 1970, Wilson, 1988). At body 

temperature of higher or lower than normal range, the production of hormones and enzymes 

from the pancreas and other organs shows some decay and can eventually affect the 

metabolic rate and physiological condition of the body (Benz-Woerner et al., 2012). 

 

To date, there is no scientific evidence explaining human glucose-insulin kinetics during 

hypothermia. However, by use of a newly developed technique, substrate profiles and their 

regulation by insulin were examined in hypothermic rats over 24h (Hoo-Paris et al., 1988, 

Cueni-Villoz et al., 2011),  resulting in the following outcomes: 

 

i)   Plasma glucose concentrations increased during cooling and remained high 

thus reducing glucose utilization throughout the period of hypothermia 

(Escolar et al., 1990). 

ii)  Plasma insulin decreased dramatically during cooling and remained very low 

during the whole period of hypothermia, reflecting the suppression of 

endogenous insulin secretion seen in isolated islets at low temperatures 

(Escolar et al., 1987). 

iii)  Resistance to exogenous insulin is increased (Torlinska et al., 2002). 

 

The role of pancreas in producing insulin and glycogen hormones is vital and its ability to 

perform at optimum level is important in regulating blood glucose level at normal glycaemic 

range. However, during hypothermia, the pancreas is unable to function normally, which can 

lead to increased or decreased blood glucose levels (Benz-Woerner et al., 2012). In general, 

hypothermia can be life threatening. However, it also benefits patients with recent heart 

attack. 



7 
 

1.5   The Problem Statement 

 

To date, there are no clinically applied glucose-insulin regulatory models developed for 

specific patient cohorts with specific physiological conditions, such as post-cardiac arrest 

patients with hypothermia. The existing glucose-insulin regulatory models (Hann et al., 2005, 

Lin et al., 2011) are suitable when dealing with typical hyperglycaemia cases in critical care 

where all predictable symptoms have taken into account when developing the models, which 

are based on normal or elevated body temperature. However, when induced hypothermia is 

implemented during treatment, the condition is changed from this baseline and the existing 

models may not be able to respond optimally, leading to poor treatment. Thus, highly 

variable blood glucose levels which can adversely affect clinical outcomes and mortality. 

 

Thus, there is a strong need for more rigorous analysis that reviews and improve existing 

model-based glycaemic control methods based on physiological response during 

hypothermia. This goal will lead to a review of the existing glycaemic model and the 

numerical parameters used, improve the insulin sensitivity prediction and blood glucose 

control methods, and improve the overall insulin-nutrition administration system. All of these 

will be specific to these hypothermia treated cohorts. 

 

1.6   Significance of the Study  

 

Rigorous studies in this area will end up developing a model-based glycaemic control 

approach that can deliver computerized glycaemic control adaptable to these specific 

critically ill patients. Additional features like cohort-specific stochastic modelling and 

adaptive control methods can further enhance model-based control with more accurate 

predictive performance and will be equally novel. The new glycaemic control should be able 

to overcome blood glucose variability problems, specific to post-cardiac arrest patients 

undergoing hypothermia, thus potentially improving care and reducing morbidity and 

mortality of ICU patients in this category. 
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1.7   Preface 

 

This thesis is organized in two parts as shown in Figure 1.2. Part I is related to the patient 

analysis and clinical setting of this work. An existing metabolic system model is reviewed, 

considering the physiological conditions due to human body temperature change and 

available data sets are presented. Part II focuses on control system design and virtual trials 

simulation. Detailed overview of all chapters of this thesis is described as follows: 

 

Chapter 2: Model Review and Development 

This chapter reviews the physiology of the glucose-insulin regulatory system and describes 

the fundamental aspects of glycaemic control, which includes an overview of previous 

glycaemic models, metabolic system model (ICING model) used and the more recent ICING-

2 model. This chapter is also reviewing the overall glycaemic control system model and its 

key components, including input, output, actuators, patient and controller in general. Then, 

the discussion is focused on glycaemic control and its development such as SPRINT and 

STAR controller. Finally, performance metrics, suitable for general TGC is also introduced. 

 

Chapter 3:  Patient Demography 

This chapter summarizes the overall OHCA patient background with statistical analysis on 

the cohort by mortality, diabetes, sex and the return of spontaneous circulation (ROSC). This 

set of cohorts is used throughout the thesis. 

 

Chapter 4:  Insulin Sensitivity Level and Variability Analysis  

This chapter explains the physiological and metabolic conditions of OHCA patients treated 

with hypothermia based on insulin sensitivity (SI) level and variability. Analysis and 

comparison is made between cool and warm conditions per-cohort and per-patient, which in 

turn characterize the overall evolution of SI for this cohort. 

 

Chapter 5:  Blood Glucose Level and Variability Analysis  

This chapter explains the physiological and metabolic conditions of OHCA patients, treated 

with hypothermia based on blood glucose (BG) level and variability analysis. Analysis and 

comparison is made between cool and warm conditions per-cohort and per-patient, which in 

turn characterize the overall evolution of BG for this cohort. This topic overlaps Chapter 4, 

but also includes the impact of glycaemic control which differs between cohorts. 
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Chapter 6: Exogenous Insulin and Nutrition Analysis 

This chapter describes a preliminary study of OHCA patients based on exogenous insulin and 

nutrition characteristics during hypothermia (cool period) and normothemia (warm period). It 

analyses the impact of exogenous insulin and nutrition modulation during TH on glycaemic 

outcome. Analysis and comparison is made between cool and warm conditions, which in turn 

characterize the overall insulin and nutrition administration for this cohort.   

 

Chapter 7: Stochastic Modelling of Insulin Sensitivity Analysis 

This chapter develops the method for insulin sensitivity variation forecasting for this specific 

cohort. Stochastic and time-series analysis techniques are used to generate likelihood bands 

for future blood glucose concentration. Observations of differences in stochastic behaviour 

between cool and warm, 12 and 6-hour time block, and patient characteristics such as 

diabetes, mortality, sex and ROSC may further develop protocols for different time blocks 

and groups.   

 

Chapter 8: Summary of OHCA Patient Analysis 

This chapter summarize the overall scenario and define glycaemic control problems based on 

analysis in chapter 4, 5, 6 and 7. It begins with describing overview of OHCA patient 

analysis and its relation with overall research work. Then, patient results from previous 

analysis were tabled based on overall cohort, 6 and 12-hour time block, and patient sub-

cohorts. Patient conditions, problems and treatment observations are identified and discussed 

thoroughly.  

 

Chapter 9: STAR Control Performance Analysis and Virtual Trials 

This chapter presents a comparative study of STAR controller performance over Out-of-

Hospital Cardiac Arrest (OHCA) patients based on general and OHCA-specific stochastic 

models. It analyses the improvement in glycaemic control that can be achieved by these 

stochastic models during treatment, including the evolution of blood glucose and its 

variability. 

 

Chapter 10: Conclusions  

Finally, this chapter summarize the overall research work and its important findings as well 

as proposing the possible future improvements and applications in relation to this studies. 
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Figure 1.2: Thesis outline. Part I of this thesis introduces relevant background knowledge, 

analyse patients’ data and determine control problem definitions. Part II presents the review 

of glycaemic control development and virtual trials. 

PART I: OHCA PATIENT 

ANALYSIS   

PART II: CONTROL DESIGN 

AND VIRTUAL TRIALS 
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Chapter 2: Model Review and Development 
 

 

 

 

The dynamics of the human glucose-insulin regulatory system have been studied extensively. 

A number of researchers have developed models with distinct levels of complexity to suit 

different physiological conditions, clinical or research applications, and targeted clinical 

outcomes. For instance, many models have been designed to provide model-based measures 

to assess metabolic phenomena, with a particular focus on measuring insulin sensitivity 

(Bergman et al., 1979, Bergman et al., 1981, Bergman et al., 1985, Pacini and Bergman, 

1986, Yang et al., 1987, Mari, 1998, Toffolo et al., 1999, Mari et al., 2001, Pacini and Mari, 

2003, Toffolo et al., 2006). These investigations focused on understanding specific metabolic 

phenomena, rather than clinical intervention or control. They thus tended forward more 

minimal models of just glucose, insulin, and insulin sensitivity. Critically, a physiological 

model that captures the basic glucose-insulin dynamics and insulin sensitivity is also the 

starting basis for any glycaemic control problem. 

 

Several researchers have constructed control system models due to a high demand for insulin 

infusion dose advice and control of blood sugar levels (Deutsch et al., 2004, Wong et al., 

2008), model predictive control (MPC) (Hovorka et al., 2004) and automated or semi- 

automated glycaemic control (Parker et al., 1999, Parker et al., 2001, Hovorka et al., 2004, 

Lonergan et al., 2006b, Plank et al., 2006a, Chase et al., 2007b, Wong et al., 2008). These are 

all models for clinical intervention.  

 

More advance biomedical control system models have additions that can capture, predict and 

control patient metabolic behaviour. Such a model offers a safe and fast means for protocol 

development without clinical testing and risk (Chase et al., 2010) . Equally, control system 

models must often work with the available clinical data in real-time, which demand a more 

robust modelling solution compared to models designed to model human physiology in 

research settings (Chase et al., 2006a). 
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This chapter examines several forms of existing metabolic control system models that have 

been used in adult intensive care. A glycaemic control system for OHCA patients, treated 

with hypothermia is developed from this foundation. Since the OHCA cohort patients are 

mainly adult, most of the model parameters during normal body temperature can be adapted. 

However, a clinically validated insulin sensitivity parameter (Chase et al., 2010)  is identified 

in each period to understand the impact of hypothermia or metabolism. 

 

2.1   Glucose-Insulin Models for Critical Care  

 

Intensive care represents a highly controlled environment where most glucose-insulin system 

inputs and outputs can be accounted for and thus modelled. However, the stress of critical 

illness can significantly disturbs the glucose-insulin regulatory system from a healthy 

baseline (Capes et al., 2000, McCowen et al., 2001, Mizock, 2001, van den Berghe et al., 

2001). This situation is exacerbated by the inconsistency and wide range of medications 

administered to the critically ill, many of which exhibit highly patient-specific effects on 

glucose metabolism (Pretty et al., 2011). Such detailed pharmacodynamics information may 

not be measurable in a typical clinical setting. Thus, any control system model must make a 

compromise between physiological validity, clinical applicability and mathematical 

identifiability. 

 

A physiological model that captures glucose-insulin system dynamics and allows accurate 

blood glucose prediction is an acceptable basis for model-based glycaemic control. The vast 

majority of these models have their roots in  basic  compartment  modelling  with  differential  

equations (Carson and Cobelli, 2001). These models and, in particular, those from which the 

model in this thesis is derived, have been extensively reviewed (Le Compte et al., 2009, Lin 

et al., 2011). This section provides a summary of the basic requirements for a compartment 

model that can be used in clinical real-time and introduces the ICING model used throughout 

the rest of this thesis.  
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A compartment model consists of five basic elements:  

 

1.   Compartments in which substances exist at varying concentrations or mass. 

2.   Kinetics describing the transport of substances between compartments such as mass 

or concentration.  

3.   Dynamics that describe the interaction of substances with each other or the 

environment.  

4.   Appearance of substances into the compartment system from the external 

 environment.  

5.   Clearance of substances back to an external environment.  

  

In addition to these five basic elements, a successful model for clinical control should also be 

physiologically valid, clinically applicable and mathematically identifiable (Chase et al., 

2011a). These additional factors ensure that the model output provides useful information 

about patient physiology and status, and can be identified in clinical real-time using the 

limited measurement data available.   

 

2.1.1    Critical care glucose–insulin model (ICU model) 

 

The model from (Chase et al., 2007b) was developed and validated for glycaemic level 

management in the ICU. This model captures the fundamental dynamics seen in critically ill 

patients, yet has a relatively simple mathematical structure enabling rapid identification of 

patient-specific parameters (Hann et al., 2005). This model only blood glucose (BG) 

measurements, so it can be used at the bedside for clinical real-time identification and control. 

This structure has been widely used in clinical TGC studies and other analyses (Lin et al., 

2008, Wong et al., 2008, Le Compte et al., 2009). 

 

Equations (2.1) – (2.5) present this ICU model as used for glycaemic control in intensive 

care: 

G

b

G

IG
V

CNSEGPtP

tQ

tQ
tGStGpG







)(

)(1

)(
).(.)(.


  

    

(2.1) 



15 
 

)*)((3
)(

)2,1min(
Iktu

II

e
V

tu

I

nI
I 





  (2.2) 

kIkQQ   (2.3) 

)(111 tPPdP   (2.4) 

  11max222 ,min PdPPdP   (2.5) 

  

where G(t) [mmol/L] denotes the total blood glucose, I(t) [mU/L] is the plasma insulin, Q(t) 

[mU/L] is the effect of previously infused insulin being utilized over time, with k [1/min] 

accounting for the effective life of insulin in the system. Endogenous glucose removal and 

insulin sensitivity are denoted pG [1/min] and SI [L/mU/min], respectively. VI [L] is the 

insulin distribution volume and n [1/min] is the constant first order decay rate for insulin 

from plasma. Basal endogenous glucose production unsuppressed by glucose and insulin 

concentration is denoted by EGPb [mmol/min] and VG [L] represents the glucose distribution 

volume. CNS [mmol/min] represents non-insulin mediated glucose uptake by the central 

nervous system. Michaelis-Menten functions are used to model saturation, with αI [L/mU] 

used for the saturation of plasma insulin disappearance, and αG [L/mU] for the saturation of 

insulin-dependent glucose clearance. P1 [mmol] represents the glucose in the stomach and P2 

[mmol] represents glucose in the gut. The rate of transfer between the stomach and gut is 

represented by d1 [1/min], and the rate of transfer from the gut to the bloodstream is d2 

[1/min].  Pmax represents the maximum disposal rate from the gut. Exogenous inputs are 

glucose appearance P(t) [mmol/min] and intravenous insulin u(t). A schematic of the model 

is shown in Figure 2.1. 

 

This model was developed and validated in critical care glycaemic control studies (Wong et 

al., 2006b, Chase et al., 2007b). Insulin sensitivity SI is identified hourly from patient data, 

producing a step-wise hourly varying profile that effectively describes the patients’ 

physiological behaviour under various metabolic conditions (Hann et al., 2005).  The validity 

and independence of this patient-specific parameter have been validated using data from 

clinically matched cohorts (Chase et al., 2010) and in gold-standard insulin sensitivity tests 

(McAuley et al., 2011). 
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Figure 2.1:  Critical care glucose-insulin model 

 

 

2.1.2    Glucose–insulin model for insulin sensitivity test (SI Test or DISST Model) 

 

The second model from (Lotz et al., 2008) was developed for diagnosis of insulin resistance. 

The modelled insulin sensitivity has high correlation to the euglycaemic hyperinsulinemic 

clamp (EIC) and high repeatability (Lotz et al., 2006, Lotz et al., 2008). This model has more 

patient specific parameters, but is not suitable for real- time patient-specific parameter 

identification because it also requires non-real-time plasma insulin and C-peptide assays 

(Lotz et al., 2009). Hence, it is suitable for SI screening and research tests. Recent work has 

sought to eliminate this issue in healthy subjects, but at a loss of a small amount of precision 

(Docherty et al., 2009). 

 

Equations (2.6) – (2.8) presents this model: 
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The nomenclature for this model is largely the same as that for the ICU model in Section 

2.1.1. This model has more parameters and more extensive insulin kinetics. The model also 

includes the endogenous glucose production rate EGP (mmol/L/min), as well as the 

endogenous insulin production uen (mU/min). The endogenous insulin production can be 

calculated from C-peptide measurements using well validated insulin –C-peptide kinetics 

model (Van Cauter et al., 1992). Endogenous insulin goes through first pass hepatic 

extraction, where XL is the fraction of extraction. This model also has more explicitly defined 

physiologically specific insulin transport parameters compared to the ICU model, where nK is 

the kidney clearance rate of insulin from plasma [1/min], nL is the liver clearance rate of 

insulin from plasma [1/min], nI is the diffusion constant of insulin between compartments 

(L/min), and nC is the cellular insulin clearance rate from interstitium [1/min]. Finally, it also 

uses different volumes for each compartment, where VP (L) is the plasma and test exchanging 

tissues volume and VQ (L) is the interstitial fluid volume.  

 

In (Lotz et al., 2008, Lotz et al., 2009), measurements from insulin and C-peptide are used to 

identify nL and XL for each person.  SI and VG are then calculated for each person using BG 

measurements. All other parameters are treated as population constants. The insulin 

sensitivity SI identified using this model correlates highly (r > 0.97) to EIC results when both 

tests are modelled together (Lotz et al., 2006, Lotz et al., 2008). Therefore, this model is 

effective as a diagnostic tool for insulin resistance. However because plasma insulin and C-

peptide measurements cannot be obtained in real time, this model cannot be readily adapted 

for TGC for ICU patients. 

 

2.1.3    Intensive Control Insulin-Nutrition-Glucose model (ICING model) 

 

The new and more physiologically comprehensive model ICING, addressing several implicit 

physiological aspects from prior models by (Chase et al., 2007b) and (Lotz et al., 2008) is 

presented in Equations (2.9) – (2.15): 
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Where G(t) [mmol/L] denotes the absolute total blood glucose, I(t) [mU/L] is the plasma 

insulin, and u(t) [mU/min] represents exogenous insulin input. Q(t) [mU/L] is the effect of 

previously infused insulin being utilized over time, with nI [1/min] accounting for the rate of 

transport between plasma and interstitial insulin compartments. Endogenous insulin 

production is model estimated with uen [mU/min] based on clinical data and a validated 

insulin C-peptide kinetics model (Van Cauter et al., 1992), with first pass hepatic insulin 

clearance is represented by xL. Patient endogenous glucose removal and insulin sensitivity are 

denoted pG [1/min] and SI [L/mU/min], respectively. The parameter VI [L] is the insulin 

distribution volume and nK [1/min] and nL [1/min] the clearance rate of insulin from plasma 

via renal and hepatic routes respectively. Basal endogenous glucose production, unsuppressed 

by glucose and insulin concentration, is denoted by EGPb [mmol/min], and VG [L] represents 

the glucose distribution volume. Finally, CNS [mmol/min] represents non-insulin mediated 

glucose uptake by the central nervous system.  

 

Michaelis-Menten functions are used to model effect saturation, with αI [L/mU] used for the 

saturation of plasma insulin disappearance, and αG [L/mU] for the saturation of insulin-

dependent glucose clearance. P1 [mmol] represents the glucose in the stomach and P2 [mmol] 

represents glucose in the gut. The rate of transfer between the stomach and gut is represented 
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by d1 [1/min], and the rate of transfer from the gut to the bloodstream is d2 [1/min]. Amount 

of dextrose from enteral feeding is D(t) [mmol/min]. Pmax represents the maximum disposal 

rate from the gut. Exogenous inputs are glucose appearance P(t) [mmol/min] from enteral 

food intake, flux out of the gut P2 and intravenous insulin u(t). Any additional parenteral 

dextrose is represented by PN(t). Summary of parameter values and descriptions, and 

exogenous input variables for the ICING model are listed in Table 2.1 and 2.2 respectively. A 

schematic of the model is shown in Figure 2.2. 

 

Table 2.1: Parameter values and descriptions for the ICING model 

Parameter Value Unit Description 

pG 0.006 1/min Non-insulin mediated glucose removal 

EGP 1.16 mmol/min Endogenous glucose production rate 

CNS 0.3 mmol/min Central nervous system glucose uptake 

VG 13.3 L Plasma glucose distribution volume 

VI 3.15 L Plasma and interstitial insulin distribution volume 

αG 0.0154 L/mU Insulin binding saturation parameter 

αI 0.0017 L/mU Hepatic insulin clearance saturation parameter 

nI 0.003 1/min Trans-endothelial diffusion rate 

nC 0.003 1/min Interstitial insulin degradation rate 

nK 0.0542 1/min Renal insulin clearance rate 

nL 0.1578 1/min Hepatic insulin clearance rate 

xL 0.67  Fractional first-pass hepatic insulin extraction 

d1 0.0347 1/min Glucose transport rate from stomach to gut 

d2 0.0069 1/min Glucose transport rate from gut to plasma 

Pmax 6.11 mmol/min Maximum glucose flux from gut to plasma 

k1 45.7 mU/min Maximum endogenous insulin secretion rate 

k2 1.5  Insulin secretion suppression factor 1 

k3 1000  Insulin secretion suppression factor 2 

 

Table 2.2: Exogenous input variables for the ICING model 

Variable Unit Description 

PN(t) mmol/min Intravenous glucose input rate (parenteral nutrition) 

D(t) mmol/min Oral glucose input rate (enteral nutrition) 

uex(t) mU/min Intravenous insulin input rate 
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Figure 2.2: Intensive Control Insulin-Nutrition-Glucose (ICING) model overview 

 

 

2.2   The Intensive Control Insulin-Nutrition-Glucose 2 model (ICING-2 model) 

 

The ICING-2 model (Pretty, 2012) is the modified version of the ICING model (Lin et al., 

2011) which proposed the following changes from its original: 

i)  New endogenous insulin secretion model as a function of blood glucose 

concentration. 

ii)  Improved insulin kinetics. 

 

The model is presented in Equations (2.16) – (2.22) and the associated parameter values and 

descriptions are listed in Table 2.3, while Table 2.4 shows the exogenous input variables to 

the model. The model is defined: 
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Table 2.3: Parameter values and descriptions for the ICING-2 model  

Parameter Value Unit Description 

pG 0.006 1/min Non-insulin mediated glucose removal 

EGP 1.16 mmol/min Endogenous glucose production rate 

CNS 0.3 mmol/min Central nervous system glucose uptake 

VG 13.3 L Plasma glucose distribution volume 

VI 4.0 L Plasma and interstitial insulin distribution 

volume 

αG 0.0154 L/mU Insulin binding saturation parameter 

αI 0.0017 L/mU Hepatic insulin clearance saturation 

parameter 

nI 0.006 1/min Trans-endothelial diffusion rate 

nC 0.006 1/min Interstitial insulin degradation rate 

nK 0.0542 1/min Renal insulin clearance rate 

nL 0.1578 1/min Hepatic insulin clearance rate 

xL 0.67  Fractional first-pass hepatic insulin 

extraction 

d1 0.0347 1/min Glucose transport rate from stomach to gut 

d2 0.0069 1/min Glucose transport rate from gut to plasma 

Pmax 6.11 mmol/min Maximum glucose flux from gut to plasma 

umin 16.7 mU/min Minimum pancreatic secretion rate 

umax 266.7 mU/min Maximum pancreatic secretion rate 

k1 ND 14.9 mU.L/mmol.

min 

Pancreatic insulin secretion glucose-

sensitivity T2DM 4.9 

T1DM 0.0 

k2 ND -49.9 mU/min Pancreatic insulin secretion offset 

T2DM -27.4 

T1DM 16.7 
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Table 2.4: Exogenous input variables to the ICING-2 model  

Variable Unit Description 

PN(t) mmol/min Intravenous glucose input rate (parenteral nutrition) 

D(t) mmol/min Oral glucose input rate (enteral nutrition) 

uex(t) mU/min Intravenous insulin input rate 

 

2.3   Overview of Glycaemic System Model 

 

The overview of Glycaemic System Model block diagram is shown in Figure 2.3. In general, 

this block diagram describes the overall glycaemic system model, and how they are related 

between each other. Besides, it also indicates the interaction between system model with 

actuators and patients. The Glycaemic System Model consists of inputs, outputs and control 

system as per explained below: 

  

i)  Inputs 

 

There are two types of inputs which are internal and external. Internal inputs are any 

parameters generated from internal human body system for metabolic activities and will be 

used by the controller or metabolic system model (ICING) such as endogenous glucose 

production [EGP] and endogenous insulin production [Uen]. Unlike internal inputs, external 

inputs are any nutrients uptake by human from outside   for metabolic activities such as 

nutrition [P] and exogenous insulin [Uex]. At the moment, internal inputs are set based on 

population constant, whereas external inputs are determined by the controller. 

 

ii)  Control System 

 

a) Metabolic system model 

 

Model-based insulin sensitivity (SI), generated from the ICING model will be able to describe 

metabolic system behaviour of OHCA patient. Thus, the analysis will provide scientific 

information about patient metabolic level and evolution over time, from cool to warm 

conditions. The understanding of SI evolution is vital for design and implementation 

glycaemic control. In addition to that, model-based SI can be exploited to create its stochastic 

model, which describes the metabolic variability conditions of the patient. Analysis of SI 
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stochastic model is important for improving stochastic control, particularly in reducing 

metabolic and glycaemic variability. 

 

b) Controller 

 

Controller is a major part of the system where the decision is being made to determine how 

much insulin and nutrition should be given to the patients. It will developed based on various 

needs and problems, and use current BG, predicted BG, model-based SI and current inputs to 

calculate the predicted insulin and nutrition. To date, there are various glycaemic controllers 

that are already developed such as SPRINT and STAR controllers. However, none of them 

cater for OHCA patients. Thus, rigorous analysis of OHCA patients conducted (Chapter 4-7) 

in this thesis will be used to develop new OHCA controller which consider the problems 

highlighted. In addition, the new model-based STAR_OHCA controller will be developed 

using single or multiple stochastic model OHCA. 

 

iii)  Output 

 

The outcome of the system after undergo real or model process is called an output. In this 

system, blood glucose and plasma insulin have been chosen as output. However, BG is 

widely used as it become subject of reference whether the glycaemic control is successful or 

not.  
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Fig 2.3:  Overview of Tight Glycaemic Control block diagram 
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2.4   Glycaemic Controller Overview 

 

2.4.1 The SPRINT Controller 

 

Specialized Relative Insulin Nutrition Titration (SPRINT) is a model-derived protocol 

(Lonergan et al., 2006a, Wong et al., 2006b, Chase et al., 2007b, Chase et al., 2008b)  that 

controls both insulin and (carbohydrate) nutrition inputs. It was implemented at the 

Christchurch Hospital Department of Intensive Care on August 2005 (Chase et al., 2008b) 

and has now been used on over 1,000 patients. In SPRINT, the interventions consider current 

and previous blood glucose measurements, current nutrition rate relative to a patient specific 

goal rate, and the prior hourly insulin dose to determine a new nutrition and insulin 

intervention for the coming 1-2 hour measurement interval defined in the protocol (Chase et 

al., 2008b) 

 

The SPRINT protocol consists of two wheels dedicated to insulin bolus administration and 

enteral nutrition optimization, as shown in Figures 2.4 - 2.7. In SPRINT, blood glucose 

measurements are taken 1-2 hourly at bedside based on the protocol. The approach is patient-

specific in nutrition rate and its titration of inputs in response to the patient-specific metabolic 

condition. 

 

More specifically, SPRINT titrates its insulin and nutrition inputs to achieve a target range of 

4-6 mmol/L based on the patient’s current insulin sensitivity, which is effectively determined 

by the response to the insulin and nutrition interventions. More resistant patients receive more 

insulin and less nutrition (relative to their 100% goal feed rate). Stability and stopping criteria 

were also based on patient-specific insulin sensitivity. Hence, the protocol explicitly 

considers glycaemic response in the context of both insulin and carbohydrate intake and is 

thus not blind to carbohydrate intake, which is unique (Chase et al., 2011b). Virtually all 

other studies leave nutritional intake to local clinical standards and are thus blind to this 

critical parameter that directly affects glycaemic levels. 
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Fig 2.4: The SPRINT insulin wheel with dial (Lonergan et al., 2006a) 

 

 

 

 

Fig 2.5: The SPRINT insulin wheel without dial (Lonergan et al., 2006a) 
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Fig 2.6: The SPRINT feed wheel with dial (Lonergan et al., 2006a) 

 

 

 

Fig 2.7: The SPRINT feed wheel without dial (Lonergan et al., 2006a) 
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A low carbohydrate enteral nutrition formula was also specified for all SPRINT patients, 

reducing the percentage of carbohydrate calories as a percentage of the total caloric intake. 

Minimum and maximum nutrition rates are 7.5 and 25 kcal/kg/day respectively, with 2.7 to 9 

kcal/kg/day (35-40%) from carbohydrates, which matches ACCP guidelines at the maximum 

level (Cerra et al., 1997). 

 

Finally, SPRINT uses insulin boluses, limited to 6U per hour to minimize insulin saturation 

(Prigeon et al., 1996, Natali et al., 2000, Chase et al., 2005). Boluses also avoid high rates of 

insulin infusion being left running when clinical staff are occupied, increasing potential 

safety, which is an important aspect in situations where high insulin infusion rates combined 

with infrequent measurement can lead to significantly increased hypoglycaemic events and 

variability resulting from acute changes in patient condition and metabolic response. This 

latter point is critical because, like hyperglycaemia, low BG or hypoglycaemia is also linked 

to increased mortality (Griesdale et al., 2009). 

 

Overall, SPRINT is a unique TGC protocol among all those published. It was the only TGC 

protocol to reduce both mortality and hypoglycaemia, where many attempts fail at both (Van 

den Berghe et al., 2006b, Preiser and Devos, 2007, Brunkhorst et al., 2008, De La Rosa Gdel 

et al., 2008). Its uniqueness stems from its direct management of insulin and nutrition based 

on patient-specific, time varying insulin sensitivity. It thus manage inter- and intra-patient 

variability, and thus glycaemia and hypoglycaemia risk, better than others (Griesdale et al., 

2009). 
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2.4.2 The STAR Controller 

 

The Stochastic TARgeted (STAR) protocol is a unique, model-based TGC protocol (Chase et 

al., 2011b, Evans et al., 2011, Evans et al., 2012, Fisk et al., 2012) for insulin therapy that 

uses clinically validated metabolic and stochastic models (Lin et al., 2006, Lin et al., 2008) to 

optimize treatment in the context of possible future patient variation.  Probabilistic 

forecasting enables more adaptive, optimized patient-specific care with clinically specified 

maximum risk(s) of hyper- and hypoglycaemia.  This protocol implements insulin and 

nutrition interventions based on the current patient-specific insulin sensitivity (SI(t)). Insulin 

sensitivity is identified hourly for each patient using recent BG measurements and a 

computerized metabolic system model. With this value, the predicted blood glucose response 

to a particular intervention can be calculated.  The algorithm for STAR is illustrated in the 

Figure 2.10. 

 

The stochastic forecasting is unique and enables a maximum likelihood approach to targeting 

a desired glycaemic range while enabling the clinical risk of hypo- or hyperglycaemia to be 

directly managed. It also enables patients with very different metabolic (intra- and inter- 

patient) variability to be directly managed and controlled within a single (STAR) model-

based framework. Summary of protocol is shown at the Table 2.6. 

 

The STAR protocol has the ability to specify risk of hypoglycemia below a clinically set 

threshold, and the ability to enable multiple hourly measurements based on clinically set 

glycemic thresholds. Within that framework, clinical or site-specific constraints may be 

added for how control is provided, which is via insulin and nutrition control. This approach 

can provide quality control performance that is tighter across patients and thus more patient-

specific reduced light hypoglycaemia using a clinically specified maximum risk with 

stochastic forecasting of metabolic variation. However, there is no guarantee that all ICU 

patients would have similar metabolic variability (Le Compte et al., 2010, Penning et al., 

2012). 
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Table 2.5: Summary of STAR protocol 

 Target Particular STAR protocol 

i) Blood Glucose Range within 4 – 6.5 mmol/L as specified in 5-95
th

 percentiles 

range. 

ii) Clinical risk of hypo- or 

hyperglycemia 

Maximum 5% risk of BG < 4.0  

iii) Measurement interval a) 1 - 3 hours when BG levels are within 4 – 7.5 mmol/L. 

b) Every hour when BG levels are outside range. 

iv) Control intervention Intervention of insulin and nutrition are based on the current 

patient-specific insulin sensitivity (SI(t)) to maximize the 

likelihood of BG in a clinically specific range and maximum 

acceptable risk of hypoglycaemia. 
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Fig 2.8: The STAR Algorithm (Dickson et al., 2013) 
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2.5    Summary 

 

This chapter discusses the basis and background of the glucose-insulin system models dealing 

to the model used in this thesis, and reviews several other models that have been developed 

and used for glycaemic understanding, control and management. These models have been 

used clinically for various studies for understanding or intervention. The use for 

understanding versus intervention requires differences in model capability and complexity 

that may not translate directly from one use to another. However, not all of these models were 

physiologically complete and some failed to capture inter- and intra- patient variability. The 

ICING-2 model presented in this chapter provides an overall measure of a patient’s insulin 

sensitivity, particularly to exogenous insulin and nutrition inputs that guide and determine the 

metabolic balance in ICU patients. It is also already proven to be suitable for clinical control, 

while accurately accounting for all relevant and observed physiological behaviour.   

 

The overall glycaemic control system model and its key components, including input, output, 

actuators, patient and controller is also introduced to indicate the relation between glucose-

insulin model and glycaemic control system model. The existing controllers such as SPRINT 

and STAR are explained since these controllers will be used during virtual trials.  Control 

performance measures are defined to standardize the criteria assessment of the various 

controllers used in these studies. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

 

 

 

 

 

 

 



34 
 

Chapter 3: Patient Demography 
 

 

 

This chapter presents the OHCA patient data used in this thesis. Patient data is analysed 

statistically to summarize the demography by whole cohort and by hospital. Additionally, the 

cohort is sub-divided and analysed by gender, diabetes status, mortality, and return of 

spontaneous circulation (ROSC).  This data and analysis will be used in Chapter 4 – 7. 

 

3.1   Introduction 

 

A retrospective analysis of glycaemic control data from 180 OHCA patients (7812 hours) 

treated with hypothermia, shortly after admission to the Intensive Care Units (ICUs) of 

Erasme Hospital, Belgium and Lausanne Hospital, Switzerland. All patients were on local 

glycaemic protocols. Therapeutic Hypothermia (TH) was applied following a standardized 

written protocol.  

 

All patients were treated with mild TH to 33 ± 1
o
C for 24 hours, irrespective of age, initial 

arrest rhythm and other physiological conditions. TH was started immediately after admission 

and was induced with ice-cold packs and intravenous ice-cold fluids. Body temperature was 

maintained at hypothermia using a surface cooling device with a computerized adjustment of 

patient temperature target. During this time, some short-acting drugs, such as midazolam 

(0.1mg/kg.hr), fentanyl (1.5µg/kg/hr) and vecuronium (0.1mg/kg boluses), were used to 

administer sedation, analgesia and control shivering. Rewarming was achieved passively, and 

sedation-analgesia was stopped when patient temperature was greater than 35
o
C. 

 

Blood glucose (BG) and temperature readings were taken 1-2 hourly. Data were divided into 

three periods: 1) cool (T<=35
o
C); 2) idle period of 2 hours as hypothermia was removed; and 

3) warm (T>35
o
C). A maximum of 24 and a minimum of 15 hours for the cool and warm 

periods were considered, ensuring a balance of contiguous data across the periods and 

transition. The idle period is not considered in the analysis. 
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3.2   OHCA Patient Demography by Cohort 

 

Overall patient demography provides the cohort information such as level and range of inter-

patient variations, or similarity in the different areas of data, as shown in Table 3.1. 

Additionally, per-hospital demographics as shown in Table 3.2 illustrate the variations 

between units due to differences in clinical practices and patient demography. 

 

Table 3.1:  Demographic data patients those who have met a minimum of 15 hours for both 

the cool and warm after periods.  (All cohort) 

 

Variables 
Value 

Cool Warm 

Total patients, number (n) 180 

Median age, years [IQR] 61 [51, 72] 

Female gender, number (%) 37 (20.6%) 

ICU mortality, number (%) 82 (45.6%) 

Diabetes, number (%) 23 (12.8%) 

ROSC < 15 min, number (%) 63 (35%) 

15 < ROSC < 30 min, number (%) 89 (49.4%) 

ROSC > 30 min, number (%) 28 (15.6%) 

Total treatment, hours (h) 3873 3939 

Blood Glucose, median  (mmol/L) [IQR] 7.6 [6.3, 9.7] 6.8 [5.9, 8.0] 

Insulin Rate, median rate (U/hr) [IQR] 3.0 [1.3, 6.0] 2.5 [1.6, 5.0] 

Glucose Rate, median rate (g/hr) [IQR] 2.7 [1.0, 5.3] 5.4 [2.7, 8.1] 

Per-patient median BG, (mmol/L) [IQR] 7.5 [6.8, 8.6] 6.8 [6. 1, 7.5] 

Per-patient median Insulin Rate, (U/hr) [IQR] 1.8 [1.0, 3.3] 1.6 [0.9, 3.7] 

Per-patient median Glucose Rate, (g/hr) [IQR] 2.5 [0.8, 3.5] 3.2 [1.6, 5.3] 

       Data are presented as median [interquartile range] where appropriate. 
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Table 3.2:  Patients’ demographic data by hospital (Erasme, Lausanne) 

Variables Erasme Hospital Lausanne Hospital 
p-value 

Cool Warm Cool Warm 

Total patients, (n) 122 98  

Median age, years [IQR] 61.5 [50 , 75] 60 [52 , 69]  

Female gender, (%) 18 (18.2%) 19 (23.5%) 0.3 

ICU mortality, (%) 45 (45.5%) 37 (45.7%) 0.5 

Diabetes, (%) 19 (19.2%) 4 (4.9%) < 0.05 

ROSC < 15 min, (%) 45 (45.5%) 18 (22.2%) < 0.05 

15 <ROSC< 30 min, (%) 44 (44.4%) 45 (55.6%) 0.2 

ROSC > 30 min, (%) 10 (10.1%) 18 (22.2%) < 0.05 

Total treatment, hrs (h) 2714 2737 1927 1941  

E
x
te

rn
a
l 

In
p

u
ts

 Insulin 

Insulin rate 

(U/hr) 

Median [IQR] 

2.5     

[1.2,6.4] 

1.7    

[1.0,4.0] 

3.3    

[1.3,8.0] 

3.9    

[1.7,7.8] 

 

Nutrition 

Glucose rate 

(g/hr) Median 

[IQR] 

6.9  

[4.2,9.4] 

5.5 

 [2.8,8.2] 

2.0 

[0.8,4.1] 

5.4 

[2.7,8.1] 

 

G
ly

ca
em

ic
 

O
u

tp
u

ts
 

BG Level 

Blood Glucose 

(mmol/L)      

Median [IQR] 

7.9 

[6.4,10.4] 

6.7    

[5.7,7.9] 

7.1       

[6.3,8.6] 

6.7    

[6.0,7.7] 

 

BG Variability 

Hourly %ΔBG 

Median [IQR] 

-0.6  

[-1.1,-0.2] 

-0.2  

[-0.6,0.3] 

-1.1 

[-1.9,-0.5] 

-0.6  

[-1.4,0.2] 

 

P-values are calculated using Fisher’s Exact Probability Test 2x2. Data are presented as median [interquartile 

range] where appropriate.   
 

In addition to the above, summary of blood glucose (BG) statistics of OHCA patients for the 

whole cohort is also presented in table 3.3, which describe the overall local protocol 

performance implemented at those hospitals. This summary provides a more detail analysis 

of BG in various conditions which gives general idea of the patients’ characteristics per 

cohort that we are dealing with throughout the research studies.  
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Table 3.3:  Summary BG statistics of OHCA patients (All cohort) 

 

Summary of BG Statistics 

OHCA patients  (All cohort) 

Value 
p-value 

Cool Warm 

Whole cohort statistics:    

Total patients, number (n) 180 180  

Total treatment, hours (h) 3873 3939  

Blood Glucose, median  (mmol/L) [IQR]-  7.6 [6.3, 9.7] 6.8 [5.9, 8.0]  

BG Mean (geometric) (mmol/L) 7.7 6.8  

BG Std.Dev (geometric) (mmol/L) 1.5 1.4  

% BG > 10.0 mmol/L  22.0 7.9 < 0.05 

% BG within 8.0 – 10.0 mmol/L  21.5 17.4 0.3 

% BG within 4.4 – 8.0 mmol/L 55.9 73.1 < 0.05 

% BG within 4.4 – 7.0 mmol/L 38.3 53.3 < 0.05 

% BG within 4.4 – 6.5 mmol/L 26.7 40.7 < 0.05 

% BG < 4.4 mmol/L 1.4 2.4 0.8 

% BG < 4.0 mmol/L 0.6 0.8 1.0 

% BG < 2.22 mmol/L 0 0 1.0 

Per-patient statistics with hourly 

resampled data 

 
 

 

Per-patient BG Median [IQR] (mmol/L) 

(resampled) 

7.5 [6.4, 9.2] 
6.7 [5.9 ,7.8] 

 

Per-patient % resampled BG > 10.0 mmol/L 18.4 5.8 < 0.05 

Per-patient % resampled BG within 8.0 - 

10.0 mmol/L 

22.1 
16.0 

0.6 

Per-patient % resampled BG within 4.4 - 8.0 

mmol/L 

59.2 
77.1 

< 0.05 

Per-patient % BG resampled within 4.4 - 7.0 

mmol/L 

39.1 
56.0 

< 0.05 

Per-patient % resampled BG within 4.4 - 6.5 

mmol/L 

26.8 
40.6 

< 0.05 

Per-patient % resampled BG < 4.4 mmol/L 1.1 1.9 0.8 

Per-patient % resampled BG < 4.0 mmol/L 0.4 0.7 1.0 

Per-patient % resampled BG < 2.22 mmol/L 0 0 1.0 

No of patients < 2.22 mmol/L (resampled) 0 0 1.0 

P-values are calculated using Fisher’s Exact Probability Test 2x2. Data are presented as median 

[interquartile range] where appropriate. 
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3.3   OHCA Patient Demography and Mortality 

 

Table 3.4 presents OHCA patient demography by mortality comparing survivors and non-

survivors data based on gender, diagnosed diabetes status and ROSC  

 

Table 3.4:  Demographic data patients based on mortality 

Variables  Survivors Non-Survivors 
p-values 

Cool Warm Cool Warm 

Total patients, (n) 

 

98 82  

Median age, years [IQR] 

 

61 [51, 72] 61 [50.5, 72]  

Female gender, (%) 

 

17 (17.3%) 20 (24.4%) 0.2 

Diabetes, (%) 

 

13 (13.3%) 10 (12.2%) 0.6 

ROSC < 15 min, (%) 

 

47 (48.0%) 16 (19.5%) < 0.05 

15 < ROSC< 30 min, (%) 

 

40 (40.8%) 49 (59.8%) < 0.05 

ROSC > 30 min, (%) 

 

11 (11.2%) 17 (20.7%) 0.1 

Total treatment, hours (h) 2123 2214 1750 1725  

Blood Glucose, median  

(mmol/L) [IQR] 

7.5  

[6.4, 9.4] 

6.7  

[5.8, 7.8] 

7.7  

[6.3, 10.2]  

7.0  

[6.0, 8.3] 

 

BG Mean (geometric) 

(mmol/L) 
7.6 6.7 7.8 6.9  

BG Std.Dev (geometric) 

(mmol/L) 
1.2 1.2 1.3 1.2  

% BG > 10.0 mmol/L  19.0 4.9 25.7 11.7  

% BG within 8.0 – 10.0 

mmol/L  

22.4 16.2 20.5 19.0  

% BG within 4.4 – 8.0 

mmol/L 

59.2 77.5 51.9 67.4  

% BG within 4.4 – 7.0 

mmol/L 

40.6 57.5 35.4 47.8  

% BG within 4.4 – 6.5 

mmol/L 

27.3 44.0 26.0 36.4  

% BG < 4.4 mmol/L 0.5 2.1 2.6 2.9  

% BG < 4.0 mmol/L 0.1 0.6 1.1 1.0  

% BG < 2.22 mmol/L 0 0 0 0  

Per-patient statistics with 

hourly resampled data 
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Per-patient BG Median 

[IQR] (mmol/L) 

(resampled) 

7.4       

[6.4 – 8.9] 

6.7       

[5.8 – 7.7] 

7.5       

[6.3 – 9.6] 

6.8       

[6.0 – 8.1] 

 

Per-patient % resampled 

BG > 10.0 mmol/L 

15.6 3.5 21.8 8.9  

Per-patient % resampled 

BG within 8.0 - 10.0 

mmol/L 

22.7 14.3 21.4 18.0  

Per-patient % resampled 

BG within 4.4 - 8.0 

mmol/L 

62.1 81.4 55.6 71.5  

Per-patient % BG 

resampled within 4.4 - 7.0 

mmol/L 

40.4 59.1 37.6 51.8  

Per-patient % resampled 

BG within 4.4 - 6.5 

mmol/L 

26.6 42.4 26.9 38.3  

Per-patient % resampled 

BG < 4.4 mmol/L 

0.4 1.3 1.9 2.5  

Per-patient % resampled 

BG < 4.0 mmol/L 

0.1 0.4 0.8 1.1  

Per-patient % resampled 

BG < 2.22 mmol/L 

0.0 0.0 0.0 0.0  

No of patients < 2.22 

mmol/L (resampled) 

0 0 0 0  

P-values are calculated using Fisher’s Exact Probability Test 2x2. Data are presented as median [interquartile 

range] where appropriate. 
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3.4   OHCA Patient Demography by Diagnosed Diabetes Status 

 

The OHCA patient demography by diabetes (Table 3.5) compares the retrospective data 

between diabetes and non-diabetes patients based on gender, mortality and ROSC, and 

provides a more detail BG analysis which define patients’ characteristics by these cohorts. 

 

Table 3.5:  Demographic data patients based on diagnosed diabetes status 

Variables  Diabetes Non-Diabetes 
p-value 

Cool Warm Cool Warm 

Total patients, (n) 

 

23 157  

Median age, years [IQR] 

 

61 [51, 73] 61 [51, 72]  

Female gender, (%) 

 

3 (13.0%) 34 (21.7%) 0.4 

ICU mortality, (%) 

 

10 (43.5%) 72 (45.9%) 0.5 

ROSC < 15 min, (%) 

 

13 (56.5%) 50 (31.8%) < 0.05 

15< ROSC < 30 min, (%) 

 

9 (39.1%) 80 (51.0%) 0.4 

ROSC > 30 min, (%) 

 

1 (4.3%) 27 (17.2%) 0.1 

Total treatment, (h) 508 513 3365 3426  

Blood Glucose, median  

(mmol/L) [IQR] 

8.5 

[6.9, 10.9] 

7.8 

[6.2, 9.0] 

7.4 

[6.3, 9.5] 

6.7 

[5.8, 7.8] 

 

BG Mean (geometric) 

(mmol/L) 
8.3 7.6 7.6 6.7  

BG Std.Dev (geometric) 

(mmol/L) 
1.1 1.1 1.5 1.4  

% BG > 10.0 mmol/L  30.1 19.6 20.6 5.6  

% BG within 8.0 – 10.0 

mmol/L  

26.6 22.8 20.6 16.4  

% BG within 4.4 – 8.0 

mmol/L 

43.1 57.8 58.2 76.1  

% BG within 4.4 – 7.0 

mmol/L 

25.4 36.0 40.6 56.6  

% BG within 4.4 – 6.5 

mmol/L 

18.9 28.8 28.1 43.0  

% BG < 4.4 mmol/L 1.2 0.5 1.5 2.8  

% BG < 4.0 mmol/L 0.5 0.3 0.6 0.9  

% BG < 2.22 mmol/L 0 0 0 0  
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Per-patient statistics with 

hourly resampled data 

     

Per-patient BG Median 

[IQR] (mmol/L) 

(resampled) 

8.3        

[6.9 –10.7] 

7.7         

[6.2-9.0] 

7.4   

[6.3-9.0] 

6.7   

[5.9-7.6] 

 

Per-patient % resampled BG 

> 10.0 mmol/L 

28.9 18.5 16.8 3.9  

Per-patient % resampled BG 

within 8.0 - 10.0 mmol/L 

25.3 22.8 21.7 14.9  

Per-patient % resampled BG 

within 4.4 - 8.0 mmol/L 

45.7 59.0 61.2 79.8  

Per-patient % BG resampled 

within 4.4 - 7.0 mmol/L 

27.4 39.0 40.9 58.4  

Per-patient % resampled BG 

within 4.4 - 6.5 mmol/L 

20.2 30.6 27.7 42.1  

Per-patient % resampled BG 

< 4.4 mmol/L 

0.9 0.6 1.1 2.0  

Per-patient % resampled BG 

< 4.0 mmol/L 

0.4 0.2 0.4 0.7  

Per-patient % resampled BG 

< 2.22 mmol/L 

0.0 0.0 0.0 0.0  

No of patients < 2.22 

mmol/L (resampled) 

0 0 0 0  

P-values are calculated using Fisher’s Exact Probability Test 2x2. Data are presented as median [interquartile 

range] where appropriate. 
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3.5   OHCA Patient Demography by Gender 

 

The OHCA patient demography by gender (Table 3.6) compares the retrospective data 

between male and female patients based on diabetes, mortality and ROSC, and provides a 

more detail BG analysis which define patients’ characteristics by these cohorts. 

 

Table 3.6:  Demographic data patients based on gender 

Variables  Male Female 
p-value 

Cool Warm Cool Warm 

Total patients, (n) 143 37  

Median age, years [IQR] 61 [51, 72] 61 [51, 73]  

Diabetes, (%) 20 (14.0%) 3 (8.1%) 0.4 

ICU mortality, (%) 62 (43.3%) 19 (51.3%) 0.5 

ROSC < 15 min, (%) 53 (37.0%) 9 (24.3%) 0.2 

15 < ROSC < 30 min, (%) 71 (49.7%) 15 (40.5%) 0.3 

ROSC > 30 min, (%) 13 (9.1%) 6 (16.2%) 0.2 

Total treatment,  (h) 3094 3129 779 810  

Blood Glucose, median  

(mmol/L) [IQR] 

7.6 

[6.4, 9.6] 

6.7 

[5.9, 8.0] 

7.4 

[6.2, 10.1] 

6.8 

[5.8, 7.9] 

 

BG Mean (geometric) 

(mmol/L) 
7.7 6.8 7.7 6.7  

BG Std.Dev (geometric) 

(mmol/L) 
1.5 1.4 1.2 1.2  

% BG > 10.0 mmol/L  21.3 8.0 25.3 7.2  

% BG within 8.0 – 10.0 

mmol/L  

22.8 17.7 16.2 16.3  

% BG within 4.4 – 8.0 

mmol/L 

55.5 73.0 57.8 73.4  

% BG within 4.4 – 7.0 

mmol/L 

37.3 53.6 42.4 52.1  

% BG within 4.4 – 6.5 

mmol/L 

25.7 41.0 31.2 39.1  

% BG < 4.4 mmol/L 1.4 2.2 1.7 3.5  

% BG < 4.0 mmol/L 0.6 0.7 0.4 0.9  

% BG < 2.22 mmol/L 0 0 0 0  

Per-patient statistics with 

hourly resampled data 

     

Per-patient BG Median 

[IQR] (mmol/L) 

(resampled) 

7.5       

[6.4 – 9.1] 

6.7       

[5.9 – 7.8] 

7.5         

[6.4 – 9.6] 

6.8       

[5.9 – 7.7] 

 

Per-patient % resampled 

BG > 10.0 mmol/L 

17.5 6.0 21.9 5.3  
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Per-patient % resampled 

BG within 8.0 - 10.0 

mmol/L 

23.1 16.3 18.5 14,4  

Per-patient % resampled 

BG within 4.4 - 8.0 

mmol/L 

59.1 76.7 59.4 78.6  

Per-patient % BG 

resampled within 4.4 - 7.0 

mmol/L 

39.1 56.1 39.1 55.2  

Per-patient % resampled 

BG within 4.4 - 6.5 

mmol/L 

26.5 41.2 27.9 38.4  

Per-patient % resampled 

BG < 4.4 mmol/L 

1.1 1.8 1.1 2.1  

Per-patient % resampled 

BG < 4.0 mmol/L 

0.4 0.7 0.3 0.5  

Per-patient % resampled 

BG < 2.22 mmol/L 

0.0 0.0 0.0 0.0  

No of patients < 2.22 

mmol/L (resampled) 

0 0 0 0  

P-values are calculated using Fisher’s Exact Probability Test 2x2. Data are presented as median [interquartile 

range] where appropriate. 
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3.6   OHCA Patient Demography by ROSC 

 

The OHCA patient demography by ROSC (Table 3.7) compares the retrospective data 

between ROSC<15 min, ROSC<30 min and ROSC>30 min patients based on gender, 

diabetes and mortality, and provides a more detail BG analysis which define patients’ 

characteristics by these cohort categories. 

 

Table 3.7:  Demographic data patients based on return of spontaneous circulation (ROSC) 

Variables  ROSC < 15 min 15 < ROSC < 30 

min 

ROSC > 30 min p-

values 

Cool Warm Cool Warm Cool Warm 
Total patients (n) 63 89 28  

Median age [IQR] 61 [51, 73] 61 [51, 72] 61 [51, 72]  

Gender, female (%) 10 (15.9%) 18 (20.2%) 9 (32.1%) 0.2 

Diabetes, (%) 13 (20.6%) 9 (10.1%) 1 (3.6%) < 0.05 

Mortality, (%) 16 (25.4%) 49 (55.1%) 17 (60.7%) < 0.05 

Total hours (h) 
1407 1404 1872 1925 594 610  

BG median  (mmol/L) 

[IQR] 

7.8 

[6.4, 9.6] 

6.8 

[5.8, 8.0] 

7.4 

[6.3, 9.7] 

6.7 

[6.0, 8.1] 

7.4 

[6.4,10.3] 

6.7 

[5.7, 7.8] 

 

BG Mean (geometric) 

(mmol/L) 

7.8 6.9 7.7 6.7 7.6 6.7  

BG Std.Dev 

(geometric) (mmol/L) 

1.4 1.2 1.5 1.4 1.2 1.2  

% BG > 10.0 mmol/L  
20.0 8.0 22.5 8.3 26.4 6.0  

% BG within 8.0 – 

10.0 mmol/L  

26.2 18.0 19.3 17.9 15.7 14.2  

% BG within 4.4 – 8.0 

mmol/L 

53.7 72.4 57.4 72.7 57.3 77.0  

% BG within 4.4 – 7.0 

mmol/L 

36.8 51.2 38.8 54.3 40.6 56.6  

% BG within 4.4 – 6.5 

mmol/L 

26.7 40.3 27.2 40.2 25.4 43.7  

% BG < 4.4 mmol/L 
0.6 2.9 2.1 1.8 1.3 3.5  

% BG < 4.0 mmol/L 
0.3 0.9 0.8 0.5 0.8 1.3  

% BG < 2.22 mmol/L 
0 0 0 0 0 0  

Per-patient statistics 

with hourly 

resampled data 

       

Per-patient BG Median 

[IQR] (mmol/L) 

(resampled) 

7.6       

[6.4 – 9.1] 

6.9        

[5.9 – 8.0] 

7.4        

[6.4 – 9.2] 

6.7        

[5.9 – 7.8] 

7.3        

[6.5 – 9.2] 

6.7       

[6.0 – 7.6] 
 

Per-patient % 

resampled BG > 10.0 

mmol/L 

17.1 6.8 18.8 5.9 20.3 3.6  



45 
 

Per-patient % 

resampled BG within 

8.0 - 10.0 mmol/L 

25.0 18.3 21.2 15.2 18.2 13.0  

Per-patient % 

resampled BG within 

4.4 - 8.0 mmol/L 

57.7 73.2 59.6 78.3 61.4 81.8  

Per-patient % BG 

resampled within 4.4 - 

7.0 mmol/L 

38.6 50.0 38.7 59.5 41.8 58.0  

Per-patient % 

resampled BG within 

4.4 - 6.5 mmol/L 

27.1 37.8 26.9 42.8 25.6 40.1  

Per-patient % 

resampled BG < 4.4 

mmol/L 

0.6 2.7 1.5 1.2 0.8 1.9  

Per-patient % 

resampled BG < 4.0 

mmol/L 

0.2 1.1 0.5 0.4 0.5 0.6  

Per-patient % 

resampled BG < 2.22 

mmol/L 

0.0 0.0 0.0 0.0 0.0 0.0  

No of patients < 2.22 

mmol/L (resampled) 

0 0 0 0 0 0  

P-values are calculated using Fisher’s Exact Probability Test 2x3. Data are presented as median [interquartile 

range] where appropriate. 
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3.7   Discussion 

 

The overall patient demography presented in this chapter summarize the cohort information 

statistically based on retrospective data (Table 3.1). In general, majority of the patients in this 

cohort are male (79.4%), non-diabetic (87.2%) and ROSC below 30 minutes (84.4%). In 

terms of mortality, the percentage are not much significant between survive (54.4%) and non-

survive (45.6%) patients. The overall summary of BG statistics (Table 3.1), summary by 

hospital (Table 3.2) and summary of BG statistics (Table 3.3) show that BG level is lower 

from cool to warm, where the percentage of BG within 4.4 – 8.0 mmol/L is increased from 

56% to 73% , which observe the improvement made by local glycaemic protocol at the 

respective hospitals. Conversely, the percentage of BG below 4.4 mmol/L is also increased 

from 1.4% to 2.4% which indicate a major setback to the therapies conducted on this cohort 

even though the number of patients whose BG < 2.22 mmol/L is zero.   

 

Apart from overall cohort demography, this chapter is also analysed the cohort background in 

more details based on the following categories; 

 

i) Mortality 

 

The purpose of analysing the cohort by mortality is to describe the patient demography and 

its glycaemic characteristics based on survive and non-survive and to observe any parameters 

and variables that might be significant between these two treatment outcomes. According to 

the table 3.4, it is obvious that variables such as gender and diabetes are similar between 

survive and non-survive. Percentage of BG in the analysis are similar and doesn’t show any 

significant difference, even though the improvement shown by survived patients from cool to 

warm are much better than the non-survived patients. However, the ROSC shows some 

uniqueness in the results where the number of survived patients is higher (48%) compare to 

non-survive (19.5%) for ROSC lower than15 minutes. In contrast, the number of survived 

patients is lower (52%) compared to non-survive (80.5%) for ROSC greater than 15 minutes.   
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ii) Diabetes 

 

Besides mortality, the cohort is analysed by diabetes which is aimed to describe the patient 

demography and its glycaemic characteristics based on healthy metabolic conditions and 

unhealthy metabolic conditions, and to observe any parameters and variables that might be 

significant to differentiate between these two physiological conditions. According to the table 

3.5, it is obvious that variables such as gender, mortality and ROSCs are similar between 

diabetes and non-diabetes patients. However, the majority of percentages of BGs in the 

analysis are higher for diabetic patients despite improvement shown from cool to warm 

periods. Thus, none of these variables or parameters give significant results, suggesting that 

analysing or even developing control based on diabetes will not provide any significant 

impact on the treatment positive outcome. However, further research and analysis is required 

such as insulin sensitivity before making such conclusion 

  

iii) Gender (Sex) 

 

 The patient demography is also being analysed by gender or sex based on male and female 

which is aimed to determine its glycaemic characteristics, and to observe any parameters and 

variables that might be significant to differentiate between these two physiological 

conditions. According to the table 3.6, it is obvious that variables such as diabetes, mortality 

and ROSCs are similar between male and female patients. In addition, percentages of BG in 

the analysis are similar and don’t show any significant difference. Thus, none of these 

variables or parameters gives significant results, suggesting that analysing or even developing 

control based on gender will not provide any significant impact on the treatment positive 

outcome. However, further research and analysis is required such as insulin sensitivity before 

making such conclusion. 

 

iv)      Return of Spontaneous Circulation (ROSC) 

 

 Finally, the patient demography is being analysed by the return of spontaneous circulation 

(ROSC) which is aimed to determine its glycaemic characteristics and to observe any 

parameters and variables that might be significant to differentiate between these 

physiological conditions. According to the table 3.7, it is obvious that variables such as 

gender and diabetes are not much different between ROSCs. Percentages of BG in the 
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analysis are also similar and match with the improvement shown from cool to warm periods. 

However, it is evidence that the analysis based on mortality shows some uniqueness in the 

results where the number of non-survived patients is lower (25.4%) for ROSC lower than 15 

minutes, compared to ROSC higher than 15 minutes but lower than 30 minutes (55.1%) as 

well as ROSC greater than 30 minutes (60.7%).   

 

3.8   Summary 

 

The results presented in these analyses indicate that all patients in this cohort had appropriate 

local protocol treatment at the respective hospitals and had shown some various physiological 

response individually which have resulted in the decreased of BG percentage above 8.0 

mmol/L, the increased of BG percentage within 4.4 – 8.0 mmol/L and the increased in BG 

percentage below 4.4 mmol/L from cool to warm periods. While these trends for BG 

percentage above 8.0 mmol/L and BG percentage within 4.4 – 8.0 mmol/L looks improving, 

the increased of BG percentage below 4.4 mmol/L shows poor treatment conducted which 

shows that the glycaemic outcome for this cohort is vulnerable. 

 

The analyses of cohort demography based on mortality, diabetes, sex and ROSC has revealed 

that the ROSC is most likely the variable or parameter that might be significant to 

differentiate between these mortality outcomes for OHCA patient, treated with hypothermia. 

However, further research and analysis is required such as insulin sensitivity and stochastic 

modelling before suggesting this parameter for control development.    
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Chapter 4: Insulin Sensitivity Level and Variability Analysis                                                                                                                       
 

 

 

This chapter describes a preliminary study of Out-of-Hospital Cardiac Arrest (OHCA) 

patients based on metabolic characteristics during hypothermia (cool period) and 

normothemia (warm period). It analyses the impact of therapeutic hypothermia (TH) on 

metabolism, including the evolution of insulin sensitivity (SI) and its variability. Patient data 

are analysed based for cohort and sub-cohort groups as defined in Chapter 3. 

  

4.1   Introduction 

 

Hypothermia is often used to treat OHCA patients (Andres, 2011, Brown and Bourdeaux, 

2011, Karanjia and Geocadin, 2011, Kirkham, 2011, Kory et al., 2011, Stub et al., 2011, 

Graffagnino et al., 2012, Ornato et al., 2012, Reynolds and Lawner, 2012, Bucher et al., 

2013, Dietrich et al., 2013, Scirica, 2013, Mangla et al., 2014, Mearns, 2014, Picchi et al., 

2014, Polderman et al., 2014). In general, it leads to a lowering of metabolic rate that induces 

changes in energy metabolism. However, its impact on metabolism and insulin resistance in 

critical illness is unknown, although one of the adverse events associated with hypothermic 

therapy is a decrease in insulin sensitivity and insulin secretion (Hayashi, 2009).  However, 

this decrease may not be notable in the cohort that is already highly resistant and variable 

(Pretty et al., 2012). Hence, understanding metabolic evolution and variability would enable 

safer and more accurate glycaemic control. 

 

This study analyses the evolution of a clinically validated model-based insulin sensitivity (SI) 

metric (Chase et al., 2010, McAuley et al., 2011) in OHCA patients to assess the impact of 

hypothermia. The analysis is performed at both a cohort and patient-specific level to better 

understand patient condition and physiology. The results should provide new insight to 

enable safer metabolic management. 
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4.2   Subjects and Methods 

 

4.2.1 Patients and Data  

 

This analysis was performed on a cohort of 180 OHCA patients (7812 hours) treated with 

hypothermia, shortly after admission in Intensive Care Units (ICUs) of Erasme Hospital, 

Belgium and Lausanne Hospital, Switzerland. These patients were on local AGC protocols. 

Data collections were carried out as per described in sub-chapter 3.1. Additional information 

for each patient such as mortality, diabetes history, gender and return of spontaneous 

circulation (ROSC) were recorded. These inputs will be taken into consideration for separate 

sub-analysis studies from full cohort. Details of the cohort demography, including sub-

cohorts are presented in Table 3.1.   

 

4.2.2 Analyses and Metrics  

 

SI level during the cool (T<35
o
C) and warm (T>37

o
C) periods were identified hourly using 

the ICING model (Lin et al., 2011) for each patient. SI Variability was calculated as the hour-

to-hour percentage change in SI or %ΔSI, defined:  

   

%∆𝑆𝐼 =  
( 𝑆𝐼𝑛+1 

−  𝑆𝐼𝑛
)

𝑆𝐼𝑛

 𝑥 100 

 

(4.1) 

 

The use of percentage change, rather than absolute change, normalises the metric so patients 

with differing SI levels can be compared fairly.  

 

SI  level  and  variability  were  analysed  during both cool and warm periods on  overall  

cohort  and  per-patient  bases as follows: 

i)  Overall cohort patient. 

ii)  Analysis of patient by 12-hour block. 

iii)  Analysis of patient by 6-hour block.  

  

Cohort analysis assessed every hour of SI level and variability for the entire cohort, and 

shows trend based on the overall group behaviour. In contrast, per-patient analysis examined 

the SI level by median values within each timeframe. To quantify per-patient variability, the 
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interquartile range (IQR: 25
th

 -75
th

 percentile) of %ΔSI is calculated. This metric captures the 

width of the hour-to-hour variability distributions for each patient.  

 

Table 4.1: Descriptions of 12-hour and 6-hour blocks for data analysis   

Day 
12-hour blocks 6-hour blocks 

Block Hours Range Period Block Hours Range Period 

1 

1 0 – 12 hours Cool 
1 0 – 6 hours Cool 

2 6 – 12 hours Cool 

2 12 – 24 hours Cool 
3 12 – 18 hours Cool 

4 18 – 24 hours Cool 

2 

3 24 – 36 hours Warm 
5 24 – 30 hours Warm 

6 30 – 36 hours Warm 

4 36 – 48 hours Warm 
7 36 – 42 hours Warm 

8 42 – 48 hours Warm 

 

 

The SI analysis of patients’ uses 12-hour and 6-hour blocks is described in Table 4.1. It is 

aimed to capture SI evolution over time with different resolution. For the cohort analysis, SI 

and ∆%SI data from all patients was grouped into each appropriate time-block. Median values 

for each time-block were calculated for comparison to the previous block, thus capturing 

overall cohort changes over time in level and hour-to-hour variability. For the per-patient 

analysis, the median value of SI and the interquartile range (IQR) of ∆%SI were calculated for 

each patient, for each time-block. The IQR captures the width of degree of variability for a 

given patient within each hour block. Thus, a reduction in the IQR of ∆%SI over time would 

indicate a reduction in hour-to-hour variability for a given patient. 

 

SI level and variability are non-Gaussian and thus were compared using non-parametric 

cumulative distribution functions (CDFs). All distributed data were compared using a 

Wilcoxon rank-sum test (Mann-Whitney U-test), except for SI variability results. SI 

variability was compared using the Kolmogorov-Smirnov (KS) test as it has greater power to 

detect differences in the shape of distributions when median values are similar. In all cases, p 

< 0.05 is considered statistically significant.  
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4.3   Results 

 

4.3.1 Results by Overall Cohort 

 

4.3.1.1   SI Level Analysis 

 

Figure 4.1 presents the cumulative distribution functions (CDFs) of hourly SI level and its 

variability for both cool and warm after periods by cohort (left panel) and median hourly SI 

per-patient (right panel) for all cohort patients. Table 4.2 summarizes SI level results and 

analysis for overall OHCA cohort.  

 

Per-Cohort Analysis 

 

Per-Patient Analysis 

 
  

Fig. 4.1:  Insulin sensitivity level and variability distribution by cohort (left) and per-patient median 

(right) during cool and warm after periods for all ICU patients 

 

Table 4.2:  Summary of SI results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median SI [IQR]  

[L/mU/min] 

Per-Patient 

Median SI [IQR] 

[L/mU/min] 

1 Cool 

 
0 – 24 hours 2.4 x10

-4  
[1.1, 4.4] x 10

-4
 2.4 x10

-4  
[1.1, 3.5] x 10

-4
 

2 Warm 

 
24 – 48 hours 5.4 x10

-4  
[2.8, 9.7] x 10

-4
 5.2 x10

-4  
[2.8, 8.3] x 10

-4
 

 

 

 
p-value p < 0.05 p < 0.05 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Insulin Sensitivity (SI) [L/mU.min]

F
(x

)

Cohort SI Level Analysis

 

 

Cool

Warm

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Insulin Sensitivity (SI)

Per-Patient SI Level Analysis

 

 

Cool

Warm

Cool-Warm

P < 0.05 

P < 0.05 

80% of all OHCA 

patients had higher 

SI during warm  



54 
 

The results show that insulin sensitivity levels are initially low during the cool period and 

significantly increase (p<0.05) over time for the first 2 days of ICU stay, with consistent 

trends between per-cohort and per-patient median values. However, there are around 20% (36 

patients) of all patients that have contrasting results, where SI level is higher during the cool 

period, counter to the overall trend. 

 

Figure 4.2 presents the 12-hour block SI level by cohort (left panel) and median SI per-patient 

(right panel). Table 4.3 presents the summary of SI results based on 12-hour block and Table 

4.4 presents the increase in median SI between successive blocks.   

 

 Per-Cohort  

 

Per-Patient 

 

Fig. 4.2:  SI level distribution per-cohort (left) and per-patient median (right) for OHCA patients, treated with 

hypothermia using 12 hour blocks of data. Blue colour represent cool period and red colour represent warm 

period. 

 

Table 4.3:  Summary of SI results for OHCA cohort based on 12-hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median SI [IQR]  

[L/mU/min] 

Per-Patient 

Median SI [IQR] 

[L/mU/min] 

1 1 
0 – 12 hours 

2.0 x10
-4   

[1.0, 3.6] x 10
-4

 

1.9 x10
-4   

[1.0, 3.0] x 10
-4

 

2 
12 – 24 hours 

3.0 x10
-4   

[1.3, 5.1] x 10
-4

 

2.7 x10
-4   

[1.2, 4.5] x 10
-4

 

2 3 
24 – 36 hours 

5.3 x10
-4   

[2.6, 9.8] x 10
-4

 

4.8 x10
-4   

[2.5, 8.3] x 10
-4

 

4 
36 – 48 hours 

5.6 x10
-4   

[3.0, 9.5] x 10
-4

 

5.2 x10
-4   

[3.0, 8.5] x 10
-4
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Table 4.4:   Increasing cohort and per patient median SI during cool and warm (12-hour 

blocks of data) 

 

SI Level 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
% Increase at 

median 
p-value 

% Increase at 

median 
p-value 

Block 1-2 (C)            
  (0 - 12 vs. 12 - 24 hr) 

50.0 <0.05 42.1 <0.05 

Block 2-3 (C-W)    
  (12 - 24 vs. 24 - 36 hr) 

76.7 <0.05 77.8 <0.05 

Block 3-4 (W)        
(24 - 36 vs. 36 - 48 hr) 

5.7 0.1 8.3 0.4 

 P-values calculated using Wilcoxon rank-sum test   
  

The results suggest that SI increases for the cohort and per-patient are statistically significant 

for the first 36 hours (p<0.05) in both cases. Similarly, the percentage increase at median is 

also very high within these period. However, the percentage of SI increase is smaller after the 

subsequent hours.   

 

Figure 4.3 presents the 6-hour block SI level by cohort (left panel) and median SI per-patient 

(right panel). Table 4.5 presents the summary of SI results based on 6-hour block and Table 

4.6 presents the increase in median SI between successive blocks.   
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Fig. 4.3:  SI level distribution per-cohort (left) and per-patient median (right) for OHCA patients, treated with 

hypothermia using 6 hour blocks of data.   
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Table 4.5:  Summary of SI results for overall OHCA cohort based on 6-hour block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median SI [IQR]  

[L/mU/min] 

Per-Patient 

Median SI [IQR] 

[L/mU/min] 

1 

1 0 – 6 hours 
1.8 x10

-4   

[0.9, 3.3] x 10
-4

 

1.5 x10
-4   

[0.6, 2.6] x 10
-4

 

2 6 – 12 hours 
2.3 x10

-4   

[1.0, 4.0] x 10
-4

 

1.9 x10
-4   

[0.9, 3.2] x 10
-4

 

3 12 – 18 hours 
2.6 x10

-4   

[1.2, 4.5] x 10
-4

 

2.1 x10
-4   

[1.0, 4.0] x 10
-4

 

4 18 – 24 hours 
3.4 x10

-4   

[1.4, 5.9] x 10
-4

 

3.0 x10
-4   

[1.2, 5.1] x 10
-4

 

2 

5 24 – 30 hours 
5.3 x10

-4   

[2.7, 9.8] x 10
-4

 

4.5 x10
-4   

[2.2, 8.3] x 10
-4

 

6 30 – 36 hours 
5.2 x10

-4   

[2.3, 9.7] x 10
-4

 

4.4 x10
-4   

[1.7, 8.7] x 10
-4

 

7 36 – 42 hours 
5.4 x10

-4   

[2.9, 9.3] x 10
-4

 

4.8 x10
-4   

[2.6, 7.7] x 10
-4

 

8 42 – 48 hours 
5.6 x10

-4   

[3.0, 9.6] x 10
-4

 

5.0 x10
-4   

[2.7, 8.5] x 10
-4

 

 

 

Table 4.6:   Increasing cohort and per patient median SI during cool and warm as per 6-hour 

blocks of data 

 

SI Level 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
% Increase at 

median 
p-value 

% Increase at 

median 
p-value 

Block 1-2 (C)            
  (0 - 6 vs. 6 - 12 hr) 

27.8 < 0.05 30.4 < 0.05 

Block 2-3 (C)            
  (6 - 12 vs. 12 - 18 hr) 

13.0 < 0.05 8.8 < 0.05 

Block 3-4 (C)            
  (12 - 18 vs. 18 - 24 hr) 

30.8 < 0.05 42.6 < 0.05 

Block 4-5 (C-W)    
  (18 - 24 vs. 24 - 30 hr) 

55.9 < 0.05 52.1 < 0.05 

Block 5-6 (W)    
  (24 - 30 vs. 30 - 36 hr) 

-1.9 0.2 -2.2 0.6 

Block 6-7 (W)    
  (30 - 36 vs. 36 - 42 hr) 

3.8 0.2 9.3 0.3 

Block 7-8 (W)    
  (36 - 42 vs. 42 - 48 hr) 

3.7 0.3 5.3 0.6 

 P-values calculated using Wilcoxon rank-sum test   
 

The results suggest that SI levels are initially low during the cool period and increase over 

time for the first 36-42 hours of ICU stay, matching the 12-hour block analyses. It is evident 

that the increase in SI between each time block is significantly larger (p < 0.05) for the first 

36 hours of treatment than after 36 hours which are not significantly different. 
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4.3.1.2   SI Variability Analysis 

  

Figure 4.4 presents the cumulative distribution functions (CDFs) of hourly SI level and its 

variability for both cool and warm after periods by cohort (left panel) and median hourly SI 

per-patient (right panel) for all cohort patients. Table 4.7 presents summary of SI variability 

results for overall OHCA cohort.    

 

Per-Cohort Analysis 

 

Per-Patient Analysis 

 
 

 

Fig. 4.4:  Insulin sensitivity level and variability distribution by cohort (left) and per-patient median 

(right) during cool and warm after periods for all ICU patients 

 

Table 4.7:  Summary of SI variability results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median DeltaSI  

[IQR] [%] 

Per-Patient 

Median DeltaSI 

[IQR] [%] 

1 Cool 

 
0 – 24 hours 1.1 [-1.8, 4.4] 2.3 [-0.8, 8.9] 

2 Warm 

 
24 – 48 hours 0.2 [-2.2, 2.2] 0.4 [-2.5, 3.4] 

 

 

 
p-value 0.3 0.08 

 

The results in show that SI is more variable during cool than warm and significantly decrease 

(p<0.05) over time for the first 2 days of ICU stay. However, there are around 40% (72 

patients) of all patients that have contrasting results, where SI variability is higher during the 

warm period, in contrast to the overall trend. The results also show that 60% of %ΔSI are 

positive bias both cool and warm periods, indicating more rising SI as seen in Figure 4.4. 
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Figure 4.5 presents 12-hourly blocks of %∆SI (left panel) and 50% range of SI variability per-

patient (right panel). Table 4.8 presents the summary of SI variability results based on 12-

hour block and Table 4.9 presents the reductions between successive blocks.   

 

Per-Cohort  

 

Per-Patient 

 

Fig. 4.5:  SI variability per-cohort (left) and 50% range of SI variability per-patient (right) for OHCA patients, 

treated with hypothermia using 12 hour blocks. Blue and red represent cool and warm period respectively. 

 

Table 4.8:  Summary of SI variability results for OHCA cohort based on 12-hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median DeltaSI  

[IQR] [%] 

Per-Patient 

Median DeltaSI 

[IQR] [%] 

1 1 
0 – 12 hours 1.1 [-2.2, 5.3] 9.0 [5.1, 17.0] 

2 12 – 24 hours 1.2 [-1.5, 3.7] 5.8 [2.8, 10.3] 

2 3 24 – 36 hours 0.07 [-2.5, 2.0] 4.8 [2.8, 9.5] 

4 36 – 48 hours 0.3 [-1.7, 2.3] 4.8 [2.7, 9.2] 

 

Table 4.9:   Reductions in the IQR and median SI per patient range of hour-to-hour 

percentage SI change over time during cool and warm after as per 12-hour blocks of data 

 

SI Variability 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
%  Reduction 

of IQR 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 12 vs. 12 - 24 hr) 

31.1 < 0.05 35.6 < 0.05 

Block 2-3 (C-W)    
  (12 - 24 vs. 24 - 36 hr) 

12.4 0.9 17.2 0.2 

Block 3-4 (W)        
(24 - 36 vs. 36 - 48 hr) 

12.2 0.2 0.0 0.4 

P-values are calculated using Kolmogorov-Smirnov test   
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The results and analyses from both per-cohort and per-patient suggest that insulin sensitivity 

is more variable during the cool period and significantly decreases over time for the first 12 

hours of treatment. However, small decrease is observed between block 2 (12-24 hrs) and 

block 3 (24-36 hrs), but rise again for the next consequent block. The decrease between block 

1-2 (cooling) and block 3-4 (warming) is statistically significant for both per-cohort and per-

patient analyses, but the change is much less between block 2-3 (cooling-warming) and may 

not be significant. 

 

Figure 4.6 presents 6-hourly blocks of %∆SI (left panel) and 50% range of SI variability per-

patient (right panel). Table 4.10 presents the summary of SI results based on 6-hour block and 

Table 4.11 presents the reductions between successive blocks. 
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Per-Patient 

 

Fig. 4.6:  Insulin sensitivity variability per-cohort (left) and 50% range of SI variability CDF per-patient (right) 

for OHCA patients, treated with hypothermia using 6 hour blocks of data.   

 

Cohort and per-patent variability decreases over time for the first 48 hours of ICU stay. 

However, it increases across the cool to warm transition, indicating some potential stress 

across the cool-warm transition with negative reductions. The decreasing trend returns for all 

subsequent blocks. The results suggest that %∆SI decreases per-cohort and per-patient are 

statistically significant (p<0.05) for the first 36 hours in both cases. 
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Table 4.10:  Summary of SI variability results for overall OHCA cohort based on 6-hour 

block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median DeltaSI  

[IQR] [%] 

Per-Patient 

Median DeltaSI 

[IQR] [%] 

1 

1 0 – 6 hours 
1.4 [-2.5, 6.2] 

10.7 [4.7, 25.6] 

2 6 – 12 hours 0.9 [-2.0, 4.7] 6.8 [3.4, 14.4] 

3 12 – 18 hours 1.2 [-1.7, 3.9] 5.8 [2.9, 10.9] 

4 18 – 24 hours 1.1 [-1.4, 3.6] 4.3 [2.0, 8.6] 

2 

5 24 – 30 hours -0.4 [-2.8, 1.7] 4.0 [2.4, 8.8] 

6 30 – 36 hours 0.5 [-2.3, 2.6] 4.5 [2.1, 9.0] 

7 36 – 42 hours 0.6 [-1.7, 2.5] 4.3 [2.1, 7.1] 

8 42 – 48 hours 0.2 [-1.7, 2.0] 4.2 [1.5, 6.3] 

 

 

Table 4.11:   Reductions in the interquartile range and median SI per patient range of hour-

to-hour percentage SI change over time during cool and warm after as per 6-hour blocks of 

data 

 

SI Variability 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
%  Reduction 

of IQR 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            

  (0 - 6 vs. 6 - 12 hr) 
23.4 < 0.05 36.4 < 0.05 

Block 2-3 (C)            

  (6 - 12 vs. 12 - 18 hr) 
15.8 < 0.05 14.7 < 0.05 

Block 3-4 (C)            

  (12 - 18 vs. 18 - 24 hr) 
11.7 < 0.05 25.9 < 0.05 

Block 4-5 (C-W)    

  (18 - 24 vs. 24 - 30 hr) 
9.4 0.6 9.3 0.8 

Block 5-6 (W)    

  (24 - 30 vs. 30 - 36 hr) 
-8.5 0.5 -15.4 0.8 

Block 6-7 (W)    

  (30 - 36 vs. 36 - 42 hr) 
13.7 0.4 4.4 0.6 

Block 7-8 (W)    

  (36 - 42 vs. 42 - 48 hr) 
10.7 0.08 2.3 0.06 

P-values calculated using Kolmogorov-Smirnov test   
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4.3.2 Results by Sub-Cohort 

 

4.3.2.1   SI Level Analysis 

 

Table 4.12 presents the summary of SI level results and analysis for OHCA Sub-Cohorts. The 

summary shows that SI levels are low during the cool period and significantly increase 

(p<0.05) over time for the first 2 days of ICU stay, with consistent trends among all OHCA 

sub-cohorts. However, there are around 20% of each sub-cohort patients that have contrasting 

results against the overall trend. 

 

Table 4.12:  Summary of SI level results and analysis for OHCA Sub-Cohorts 

OHCA Sub-Cohort 
No of 

Patients 

Median SI [IQR] 

at cool period 
[L/mU.min] 

Median SI [IQR]  

at warm period 
[L/mU.min] 

% patients had 

higher SI at 

warm period  
[Diff(Cool-warm)] 

p-value 

Overall OHCA cohort 180 2.5 x 10
-4 

[1.1, 4.4] x10
-4

 

 5.4 x 10
-4 

[2.8, 9.7] x10
-4

 

80% p < 0.05 

Survived Patients 98 2.5 x 10
-4 

[1.2, 4.5] x10
-4

 

 5.8 x 10
-4 

[2.9, 10.6] x10
-4

 

80% p < 0.05 

Non-Survived Patients 82 2.2 x 10
-4 

[1.1, 4.2] x10
-4

 

 5.1 x 10
-4 

[2.6, 8.4] x10
-4

 

80% p < 0.05 

Diabetes Patients 23 2.3 x 10
-4 

[1.1, 3.9] x10
-4

 

 4.1 x 10
-4 

[2.5, 6.2] x10
-4

 

80% p < 0.05 

Non-Diabetes Patients 157 2.4 x 10
-4 

[1.1, 4.4] x10
-4

 

 5.7 x 10
-4 

[2.8, 10.1] x10
-4

 

80% p < 0.05 

Male Patients 143 2.5 x 10
-4 

[1.2, 4.4] x10
-4

 

 5.6 x 10
-4 

[2.9, 10.2] x10
-4

 

80% p < 0.05 

Female Patients 37 2.0 x 10
-4 

[0.9, 4.0] x10
-4

 

 4.8 x 10
-4 

[2.5, 8.0] x10
-4

 

80% p < 0.05 

ROSC < 15 mins 63 2.7 x 10
-4 

[1.4, 4.5] x10
-4

 

 5.7 x 10
-4 

[3.1, 9.7] x10
-4

 

80% p < 0.05 

ROSC < 30 mins 89 2.3 x 10
-4 

[1.0, 4.3] x10
-4

 

 5.3 x 10
-4 

[2.8, 9.6] x10
-4

 

80% p < 0.05 

ROSC > 30 mins 28 2.0 x 10
-4 

[0.9, 3.9] x10
-4

 

 5.3 x 10
-4 

[1.8, 9.8] x10
-4

 

80% p < 0.05  

 

 

Table 4.13 presents the summary of increasing cohort and per patient median SI during cool 

and warm as per 12-hour blocks of data for all OHCA sub-cohorts. The results suggest that SI 

increases for the cohort and per-patient are statistically significant for the first 36 hours 

(p<0.05), with consistent trends among all OHCA sub-cohorts. 
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Table 4.13:   Summary of increasing cohort and per patient median SI during cool and warm 

as per 12-hour blocks of data for all OHCA sub-cohorts. 

 

SI Level 

analysis 
 [12-hr 
blocks] 

No of 

Patients 

Block 1-2 (C) 

(0 - 12 vs. 12 - 24 hr) 

Block 2-3 (C-W) 

(12 - 24 vs. 24 - 36 hr) 

Block 3-4 (W) 

(24 - 36 vs. 36 - 48 hr) 

Cohort analysis Per-patient 

analysis 

Cohort analysis Per-patient 

analysis 

Cohort analysis Per-patient 

analysis 
% Increase 

at median 

p-value % Increase 

at median 

p-value % Increase 

at median 

p-value % Increase 

at median 

p-value % Increase 

at median 

p-value % Increase 

at median 

p-value 

All OHCA 
patients 

 

180 47.3 <0.01 45.6 <0.01 77.5 <0.01 77.8 <0.01 6.2 0.10 8.3 0.40 

Survived 

Patients 

 

98 52.6 <0.01 57.3 <0.01 66.3 <0.01 58.7 <0.01 9.1 0.12 15.1 0.50 

Non-

Survived 
Patients 

82 42.7 <0.01 46.3 0.02 94.7 <0.01 96.5 <0.01 0.5 0.6 4.3 0.80 

Diabetes 

Patients 

 

23 40.2 <0.01 31.3 0.25 44.4 <0.01 22.2 <0.01 5.5 0.5 26.3 0.54 

Non-

Diabetes 

Patients 

157 48.2 <0.01 48.9 <0.01 81.6 <0.01 84.3 <0.01 7.5 0.09 10.0 0.46 

Male 

Patients 

 

143 40.0 <0.01 44.3 <0.01 77.8 <0.01 66.6 <0.01 7.8 0.04 12.2 0.32 

Female 
Patients 

 

37 72.3  <0.01 77.3 <0.01 84.0 <0.01 94.8 <0.01 -3.8 0.9 -1.4 0.9 

ROSC < 15 
mins 

 

63 55.5  <0.01 64.5 <0.01 60.0 <0.01 49.3 <0.01 0.6 0.4 0.4 0.9 

ROSC < 30 

mins 
 

89 48.7  <0.01 38.5 0.03 77.7 <0.01 79.2 <0.01 10.1 0.2 11.7 0.3 

ROSC > 30 

mins 
 

28 62.0  <0.01 60.5 0.11 88.8 <0.01 100.1 <0.01 19.5 0.4 11.7 0.9 

P-values are calculated using Wilcoxon rank-sum test   
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4.3.2.2   SI Variability Analysis 

 

Table 4.14 presents the summary of SI variability results and analysis for OHCA Sub-

Cohorts. The results show that SI is more variable during cool than warm and significantly 

decrease (p<0.01) over time for the first 2 days of ICU stay, with consistent trends among all 

OHCA sub-cohorts. However, there are around 30% - 40% patients for each sub-cohort that 

have contrasting results, where SI variability is higher during the warm period, in contrast to 

the overall trend.   

 

Table 4.14:   Summary of SI variability results and analysis for OHCA Sub-Cohorts 

OHCA Sub-Cohorts 
No of 

Patients 

Median SI 

variability 

[IQR] at cool 

period 
[%∆SI] 

Median SI 

variability 

[IQR]  at 

warm period 
[%∆SI] 

% patients 

had higher SI 

variability 

during cool   
[Diff(Cool-

warm)] 

% patients 

had 

contrasting 

SI variability 

against 

overall trend 

 

p-value 

Overall OHCA cohort 180  1.2 [-1.8, 4.4]  0.2 [-2.2, 2.2] 60% 40% 0.08 

Survived Patients 98 1.0 [-1.8, 4.1]  0.3 [-2.0, 2.2] 60% 40% 0.1 

Non-Survived Patients 82 1.4 [-1.9, 4.8] 0.07[-2.4, 2.1] 60% 40% 0.2 

Diabetes Patients 23 1.0 [-1.3, 3.7] 0.04[-2.4, 2.2] 60% 40% 0.3 

Non-Diabetes Patients 157 1.2 [-1.9, 4.6]  0.3 [-2.2, 2.2] 60% 40% 0.06 

Male Patients 143 1.0 [-1.8, 4.4]  0.3 [-2.2, 2.3] 60% 40% 0.09 

Female Patients 37 1.5 [-2.0, 4.5]  -0.3[-2.2,1.8] 70% 30% 0.5 

ROSC < 15 mins 63 1.0 [-1.6, 3.6]  0.3[-2.2, 2.3] 60% 40% 0.2 

ROSC < 30 mins 89 1.2 [-2.0, 5.0]  0.2[-1.9, 2.1] 60% 40% 0.3 

ROSC > 30 mins 28 1.4 [-2.1, 4.7]  -0.1[-2.7,2.0] 70% 30% 0.5 

 

 

Table 4.15 presents the summary of reductions in the IQR and median SI per patient range of 

hour-to-hour percentage SI change over time during cool and warm as per 12-hour blocks of 

data for all OHCA sub-cohorts. The results and analyses suggest that insulin sensitivity is 

more variable during the cool period and significantly decreases over time for the first 12 

hours of treatment, with consistent trends among all OHCA sub-cohorts. However, the 

overall decrease at block 2-3 (cool-warm transition) and block 3-4 (warming) are not 

significant, even though some results are not consistent across each sub-cohort. 
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Similar SI variability trends are observed between overall OHCA cohort and several sub-

cohorts such as non-diabetes, male, female, survived, non-survived, ROSC<15 and 

ROSC<30. Other sub-cohorts such as diabetes and ROSC > 30 have shown different SI 

variability trends compared to overall OHCA cohort. Thus, these results show that not all 

OHCA patients which are distinguished by sub-cohorts have the same way of SI variability 

even though they have undergone the same treatment protocol from cool to warm period. 

 

Table 4.15:   Summary of reductions in the IQR and median SI per patient range of hour-to-

hour percentage SI change over time during cool and warm as per 12-hour blocks of data for 

all OHCA sub-cohorts. 

 

SI 

variability 

analysis 
 [12-hr 

blocks] 

No of 

Patients 

Block 1-2 (C) 

(0 - 12 vs. 12 - 24 hr) 

Block 2-3 (C-W) 

(12 - 24 vs. 24 - 36 hr) 

Block 3-4 (W) 

(24 - 36 vs. 36 - 48 hr) 

Cohort analysis Per-patient 
analysis 

Cohort analysis Per-patient 
analysis 

Cohort analysis Per-patient 
analysis 

 % 

Reduction 

of IQR 

p-value % 

Decrease 

at median 

p-value  % 

Reduction 

of IQR 

p-value % 

Decrease 

at median 

p-value  % 

Reduction 

of IQR 

p-value % 

Decrease 

at median 

p-value 

All OHCA 

patients 

 

180 31.3 0.3 36.2 0.02 12.4 0.9 17.3 0.2 12.2 0.15 -0.2 0.4 

Survived 

Patients 

 

98 32.1 0.4 33.6 0.01 3.4 0.01 11.2 0.5 19.8 0.03 2.7 0.4 

Non-

Survived 

Patients 

82 30.0 0.04 35.7 0.01 20.8 0.01 30.6 0.2 4.0 0.07 -9.8 0.7 

Diabetes 

Patients 

 

23 35.7 0.3 60.8 0.07 -23.5 0.01 -84.1 0.2 23.0 0.40 21.1 0.3 

Non-

Diabetes 

Patients 

157 30.0 0.3 32.0 0.03 17.2 <0.01 30.1 0.03 10.8 <0.01 9.0 0.7 

Male 

Patients 

 

143 30.0 0.04 35.0 0.04 10.0 <0.01 16.8 0.3 14.0 <0.01 -2.3 0.8 

Female 

Patients 

 

37 39.8 0.4 43.0 0.05 19.3 0.10 17.4 0.4 14.2 0.6 11.3 0.2 

ROSC < 15 

mins 

 

63 34.4 0.7 43.0 0.05 -18.7 <0.01 -4.2 0.03 20.4 0.02 0.7 0.4 

ROSC < 30 

mins 

 

89 31.0 0.03 23.6 0.04 25.1 <0.01 31.0 0.03 11.3 0.05 1.7 0.5 

ROSC > 30 

mins 

 

28 35.1 0.9 47.0 0.02 25.3 <0.01 49.0 0.2 -8.3 0.11 -56.0 0.8 

P-values are calculated using Kolmogorov-Smirnov test   
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4.4   Discussion 

 

4.4.1 Insulin sensitivity level   

 

The insulin sensitivity level results for both per-cohort and per-patient analyses suggest that 

OHCA patients undergoing hypothermic treatment have significantly lower insulin sensitivity 

during the earlier cool period on day 1 than the later warm period on day 2. Both results 

follow the general trend for insulin sensitivity level for critically ill patients over time and are 

consistent with other ICU studies (Langouche et al., 2007, Pretty et al., 2012).  

 

Further analysis shows that the increase in SI level during the first 36 hours are large and 

statistically significant for this cohort. The rapid increases in SI level for the first 36 hours is 

likely due to significant restart of human physiological systems and metabolic activities for 

these patients (Neumar et al., 2008). After 36 hours, the rapid SI increase abates as the 

patients’ metabolism improves and becomes more stable.  

 

Several sub-cohorts have shown consistent SI trend with overall OHCA patients,  This 

suggest that  analysing overall OHCA patients metabolic evolution is sufficient enough for 

developing control scheme. 

 

4.4.2 Insulin sensitivity variability   

 

Both per-cohort and per-patient analysis suggest that OHCA patients undergoing TH 

treatment have high initial variability that decreases over the first 36 hours. However, the 

cool to warm transition at 24 hours shows an increase in variability likely due to the change 

of physiological conditions as body temperature increase from cool to warm between 18 – 36 

hours. The lower decrease in SI variability after 36
th

 hours onwards suggests that the patients’ 

metabolic condition has improved and become more stable. 

 

Further analysis and comparison of SI variability between general ICU patients (Pretty et al., 

2012) and OHCA patients, treated with TH shows that the main difference between them is 

the SI variability increase during the cool-warm transition period for the latter cohort. These 

SI variability results do not follow the same trend with other general ICU studies by Pretty et 
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al. (Pretty et al., 2012), and it is a unique finding for this cohort that could significantly 

impact glycaemic control and safety from hypoglycaemia. 

 

4.4.3 The Impact of SI variability on glycaemic control    

 

Clinically, these results have significant implications for managing glycaemia. Increased SI 

variability leads to increased variability in BG level for a given insulin intervention (Chase et 

al., 2011b). With low and variable insulin sensitivity, glycaemic levels might appear to 

remain unchanged and difficult to control effectively with exogenous insulin. This situation 

may result in increased glycaemic variability as well as an increased risk of hyperglycaemia 

and hypoglycaemia during the first 36 hours of treatment due to greater hour-to-hour SI 

variability with increased insulin resistance (Cueni-Villoz et al., 2011). Thus, since glycaemic 

variability and hypoglycaemia are independent risk factors for the critically ill, it is important 

to understand and manage these patient-specific dynamics, especially those unique to a 

cohort, when implementing glycaemic control. This outcome is particularly important when 

OHCA patients transition from cool to warm. These results may also generalise to other areas 

where glycaemic control is applied to hypothermic patients, such as in the operating theatre. 

 

There are several ways that this low and variable insulin sensitivity could be managed during 

glycaemic control. Reducing exogenous insulin doses, coupled with modulation of the 

glucose content of nutrition would diminish the impact of sudden changes of insulin 

sensitivity on glycaemic outcome. Equally, increased blood glucose measurement frequency 

could improve control and reduce glycaemic variability. Accepting higher glycaemic targets 

during periods of increased variability would trade-off a reduced risk of hypoglycaemia 

against increased hyperglycaemia. Ultimately, the preferred method for any unit may be 

influenced by practical considerations, such as clinical workload. 
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4.5   Summary 

 

This study analyses the metabolic evolution of OHCA patients treated with hypothermia. 

These analyses characterize the metabolic impact of hypothermic treatment on the level and 

variability of insulin sensitivity to inform control. 

 

Two main conclusions are drawn as a result for these cohorts.  

i)   SI level is much lower during hypothermia and consistently increases over time, both 

cool and warm periods. 

 

ii)  Insulin sensitivity is more variable during the cool period and shows contrasting 

behavior during cool-warm transition period between 18 – 30 hours, which indicates that 

there are major changes in physiology and metabolic conditions between cool and warm as 

influenced by human body temperature. Otherwise, it decreases over time. 

 

Finally, this study shows the need for patient-specific glycemic management to ensure good 

control and safety during treatment. These results have significant potential clinical impact on 

the metabolic treatment of these patients, and changes in clinical therapy are required to 

safely treat patients as they transition from cool to warm. 
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Chapter 5: Blood Glucose Level and Variability Analysis                                                                                                                       
 

 

 

This chapter describes a preliminary study of Out-of-Hospital Cardiac Arrest (OHCA) 

patients based on glycaemic characteristics during hypothermia (cool period) and 

normothemia. It analyses the impact of therapeutic hypothermia (TH) on glycaemic outcome, 

including the evolution of blood glucose and its variability, in patients with coma after 

OHCA. Patients’ data were analysed based on cohort as defined in Chapter 3, and results 

were summarized.   

 

5.1   Introduction 

 

One of the adverse events associated with hypothermic therapy is the decrease in insulin 

sensitivity and insulin secretion (Hayashi, 2009). The amount of insulin required to maintain 

glucose levels within normal range (4.4 to 6.1 mmol/L) is thus likely to increase during the 

induction of hypothermia due to both the initial insult and stress, and hypothermia itself. High 

insulin doses can lead to hypoglycaemia if patient condition improves and dosing is not 

adjusted accordingly.  Thus, non-patient-specific approaches can result in highly variable BG, 

which can adversely affect clinical outcomes and mortality (Bagshaw et al., 2009). 

 

This study analyses and compares blood glucose (BG) level and variability, and their 

evolution in OHCA patients undergoing hypothermic treatment. The results provide better 

understanding of the glycaemic condition of these patients which will help in improving 

glycaemic control protocol for use with TH. 

 

5.2   Subjects and Methods 

 

5.2.1 Patients and Data  

 

This analysis was performed on a cohort of 180 OHCA patients (7812 hours) treated with 

hypothermia, shortly after admission in Intensive Care Units (ICUs) of Erasme Hospital, 

Belgium and Lausanne Hospital, Switzerland. These patients were on local AGC protocols. 

Data collections were carried out as per described in sub-chapter 3.1 Additional information 
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for each patient such as mortality, diabetes history, gender and return of spontaneous 

circulation (ROSC) were recorded. These inputs will be taken into consideration for separate 

sub-analysis studies from full cohort. Details of the cohort demography, including sub-

cohorts are presented in Table 3.1.   

 

5.2.2 Analyses and Metrics  

 

BG level during the cool (T<35
o
C) and warm (T>37

o
C) periods were identified hourly. 

Variability  of  BG was  calculated  as  the  hour-to-hour  percentage  change  in  BG 

(%ΔBG), defined:   

   

%∆𝐵𝐺 =  
( 𝐵𝐺𝑛+1 −  𝐵𝐺𝑛)

𝐵𝐺𝑛
 𝑥 100 

 

(5.1) 

 

The use of percentage change, rather than absolute change, normalises the metric so patients 

with differing BG levels can be compared fairly. BG level, variability and gradient were 

analysed during both cool and warm periods on overall cohort and per-patient bases as 

follows; 

i)  Overall cohort patient. 

ii)  Analysis of patient by 12-hour block. 

iii)  Analysis of patient by 6-hour block. 

 

Cohort analysis assess every hours of BG level and variability for the entire cohort and shows 

trend based on the overall group behaviour, whereas per-patient analysis examined the BG 

level by median values within each timeframe. To quantify per-patient variability, the 

interquartile range (IQR) of %ΔBG is calculated and this metric captures the width of the 

hour-to-hour variability distributions for each patient.  

 

The BG analysis of patients using 12-hour and 6-hour time blocks, which includes level and 

variability is described in Table 4.1. This method will examine group behaviour and assess its 

changes for every 12 and 6 hour blocks of the entire treatment from cool to warm periods. 

For cohort analysis, BG and ∆% BG data from all patients was grouped into each appropriate 

time-block. Median values for each time-block were calculated for comparison to the 

previous block, thus capturing overall cohort changes over time in level and hour-to-hour 
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variability. For per-patient analysis, the median value of SI and the interquartile range (IQR) 

of ∆%BG were calculated for each patient, for each time-block. The IQR captures the width 

of degree of variability for a given patient within each hour block. Thus, a reduction in the 

IQR of ∆%BG over time would indicate a reduction in hour-to-hour variability for a given 

patient. 

 

BG level and variability are non-Gaussian and thus were compared using non-parametric 

cumulative distribution functions (CDFs). All distributed data were compared using a 

Wilcoxon rank-sum test (Mann-Whitney U-test), except for BG variability results. BG 

variability was compared using the Kolmogorov-Smirnov test as it has greater power to 

detect differences in the shape of distributions when median values are similar. In all cases, p 

< 0.05 is considered statistically significant.  
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5.3   Results 

 

5.3.1 Results for Complete Cohort 

 

5.3.1.1   BG Level Analysis 

 

Figure 5.1 presents the cumulative distribution functions (CDFs) of hourly BG level and its 

variability for both cool and warm periods by cohort (left panel) and per-patient median BG 

(right panel). Table 5.1 presents summary of BG results for overall OHCA cohort. 

 

Per-Cohort Analysis 

 

Per-Patient Analysis 

 
  

Fig. 5.1:  Blood glucose level and variability distribution by cohort (left) and per-patient median (right) 

during cool and warm after periods for all OHCA patients 

 

 

Table 5.1:  Summary of BG results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median BG [IQR  

[mmol/L] 

Per-Patient 

Median BG [IQR] 

[mmol/L] 

1 Cool 

 
0 – 24 hours 9.7 [6.9, 13.1] 7.4 [6.5, 8.5] 

2 Warm 

 
24 – 48 hours 8.5 [6.1, 11.5] 6.5 [5.8, 7.4] 

  p-value 

 
p < 0.05 p < 0.05 
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The results show that blood glucose levels are initially high during the cool period and 

significantly decrease (p<0.05) over time for the first 2 days of ICU stay, with consistent 

trends between per-cohort and per-patient median values. However, there are around 30% (54 

patients) of all patients that have contrasting results, where BG level is lower during the cool 

period, in contrast to the overall trend. 

 

Figure 5.2 presents the 12-hour block BG level by cohort (left panel) and median BG per-

patient (right panel). Table 5.2 presents the summary of BG results based on 12-hour block, 

and Table 5.3 presents the decrease in median BG between successive blocks.   

  

 Per-Cohort  

 

Per-Patient 

 

Fig. 5.2:  BG level distribution per-cohort (left) and per-patient median (right) for OHCA patients, treated with 

hypothermia using 12 hour blocks of data. Blue colour represent cool period and red colour represent warm   

 

 

Table 5.2:  Summary of BG results for OHCA cohort based on 12-hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median BG [IQR]  

[mmol/L] 

Per-Patient 

Median BG [IQR] 

[mmol/L] 

1 1 
0 – 12 hours 9.7 [7.1, 13.2] 7.6 [6.5, 9.3] 

2 12 – 24 hours 8.5 [6.1, 10.2] 6.9 [5.9, 8.2] 

2 3 24 – 36 hours 8.3 [6.1, 11.3] 6.7 [6.0, 7.8] 

4 36 – 48 hours 7.6 [5.8, 9.8] 6.4 [5.7, 7.6] 
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Table 5.3:   Decreasing cohort and per patient median BG during cool and warm (12-hour 

blocks of data) 

 

BG Level 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 12 vs. 12 - 24 hr) 

12.4 <0.05 9.2 <0.05 

Block 2-3 (C-W)    
  (12 - 24 vs. 24 - 36 hr) 

2.4 0.1 2.9 0.4 

Block 3-4 (W)        
(24 - 36 vs. 36 - 48 hr) 

8.4 0.1 4.5 0.2 

 P-values calculated using Wilcoxon rank-sum test   
  

The results and analyses from both per-cohort and per-patient analyses suggest that BG levels 

were initially high during the cool period and decrease significantly over time for the first 12 

hours in the ICU (p < 0.05). However, the subsequent blocks show smaller non-statistically 

significant BG decrease at median. 

 

Figure 5.3 presents the 6-hour block BG level by cohort (left panel) and median BG per-

patient (right panel). Table 5.4 presents the summary of BG results based on 6-hour block, 

and Table 5.5 presents the increase in median BG between successive blocks.   

 

Per-Cohort Per-Cohort 

  

Fig. 5.3: BG level distribution per-cohort (left) and per-patient median (right) for OHCA patients, treated with 

hypothermia using 6 hour blocks of data.   
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Table 5.4:  Summary of BG results for overall OHCA cohort based on 6-hour block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median BG [IQR]  

[mmol/L] 

Per-Patient 

Median BG [IQR] 

[mmol/L] 

1 

1 0 – 6 hours 9.9 [7.3, 13.4] 8.3 [7.1, 10.8] 

2 6 – 12 hours 8.3 [6.4, 10.9] 7.5 [6.5, 8.9] 

3 12 – 18 hours 7.9 [6.3, 9.9] 7.3 [6.3, 8.4] 

4 18 – 24 hours 7.7 [5.9, 9.5] 6.9 [5.9, 8.1] 

2 

5 24 – 30 hours 7.6 [5.8, 9.4] 6.8 [5.9, 8.0] 

6 30 – 36 hours 7.9 [6.1, 10.7] 7.0 [6.3, 8.0] 

7 36 – 42 hours 7.4 [5.9, 9.4] 6.9 [6.0, 7.9] 

8 42 – 48 hours 7.3 [5.7, 9.1] 6.8 [5.8, 7.8] 

 

 

Table 5.5:   Decreasing cohort and per patient median BG during cool and warm as per 6-

hour blocks of data 

 

BG Level 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 6 vs. 6 - 12 hr) 

16.2 <0.05 9.6 <0.05 

Block 2-3 (C)            
  (6 - 12 vs. 12 - 18 hr) 

4.8 0.06 2.7 0.1 

Block 3-4 (C)            
  (12 - 18 vs. 18 - 24 hr) 

2.5 0.2 5.5 0.4 

Block 4-5 (C-W)    
  (18 - 24 vs. 24 - 30 hr) 

1.3 0.8 1.4 0.4 

Block 5-6 (W)    
  (24 - 30 vs. 30 - 36 hr) 

-3.9 0.06 -2.9 0.1 

Block 6-7 (W)    
  (30 - 36 vs. 36 - 42 hr) 

6.3 0.05 1.4 0.2 

Block 7-8 (W)    
  (36 - 42 vs. 42 - 48 hr) 

1.3 0.4 1.4 0.5 

 P-values calculated using Wilcoxon rank-sum test   
 

The results suggest that BG levels are initially high during the cool period and decrease over 

time, matching the 12-hour block analyses. It is evident that the decrease in BG between each 

time block is significantly larger (p < 0.05) for the first 12 hours of treatment. 
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5.3.1.2   BG Variability Analysis 

  

Figure 5.4 presents the cumulative distribution functions (CDFs) of BG variability for both 

cool and warm after periods by cohort (left panel) and median hourly BG per-patient (right 

panel) for all cohort patients. Table 5.6 presents the summary of BG variability results for 

overall OHCA cohort.     

 

Per-Cohort Analysis 

 

Per-Patient Analysis 

 
  

Fig. 5.4:  Blood glucose level and variability distribution by cohort (left) and per-patient median (right) 

during cool and warm after periods for all ICU patients 

 

Table 5.6:  Summary of BG variability results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median DeltaBG  

[IQR] [mmol/L] 

Per-Patient 

Median DeltaBG 

[IQR] [mmol/L] 

1 
Cool 

 
0 – 24 hours -0.6 [-2.3, 1.0] -2.8 [-5.6, -0.9] 

2 
Warm 

 
24 – 48 hours 0.2 [-1.6, 1.9] -1.5[ -3.4, 1.0] 

  
 

p-value 
0.5 0.08 

 

The results show that BG variability trend is similar, both during cool and warm (p=0.5) over 

time for the first 2 days of ICU stay. Besides, there are around 65% (117 patients) of all 

patients that have higher BG variability during the warm period. The results also show that 

85% of %ΔBG are negative bias at cool, compared to 65% at warm periods, indicating more 

rising BG as seen in Figure 5.4. 
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Figure 5.5 presents the cumulative distribution functions of the hour-to-hour percentage 

changes in BG (left panel) and distribution of 50% range of BG variability per-patient (right 

panel) using 12 hour blocks. Table 5.8 presents the summary of BG variability results based 

on 12-hour block, and Table 5.9 presents the percentage reduction in the interquartile range, 

percentage of BG variability decrease at median between successive blocks.   

  

Per-Cohort  

 

Per-Patient 

 

Fig. 5.5:  BG variability per-cohort (left) and 50% range of BG variability per-patient (right) for OHCA 

patients, treated with hypothermia using 12 hour blocks of data. Blue and red lines represent cool warm period 

respectively. 

 

Table 5.7:  Summary of BG variability results for OHCA cohort based on 12-hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median DeltaBG 

[IQR] [%] 

Per-Patient 

Median DeltaBG 

[IQR] [%] 

1 1 
0 – 12 hours -0.8 [-2.6, 0.8] 3.9 [2.1, 8.2] 

2 12 – 24 hours -0.4 [-1.8, 1.1] 3.8 [1.8, 6.6] 

2 3 24 – 36 hours 0.3 [-1.5, 2.0] 3.3 [2.2, 6.6] 

4 36 – 48 hours -0.2 [-1.5, 1.4] 3.3 [1.8, 6.1] 

 

The 12-hour block results and analyses from both per-cohort and per-patient suggest that 

blood glucose variability is initially high during the cool period and decreases over time. 

However, small decrease is observed insignificantly (p > 0.05) between these time blocks, 

which suggest that BG variability remains unchanged after 48 hours of treatment. 
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Table 5.8:   Reductions in the IQR and median BG per patient range of hour-to-hour 

percentage BG change over time during cool and warm after as per 12-hour blocks of data 

 

BG Variability 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
%  Reduction 

of IQR 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 12 vs. 12 - 24 hr) 

16.5 0.1 2.6 0.2 

Block 2-3 (C-W)    
  (12 - 24 vs. 24 - 36 hr) 

-19.1 0.3 13.2 0.7 

Block 3-4 (W)        
(24 - 36 vs. 36 - 48 hr) 17.6 

0.2 

 
0 

0.2 

 
P-values are calculated using Kolmogorov-Smirnov test   
   

Figure 5.6 presents the cumulative distribution functions of the hour-to-hour percentage 

changes in BG (left panel) and distribution of 50% range of BG variability per-patient (right 

panel) using 6 hour blocks. Table 5.9 presents the summary of BG variability results based on 

6-hour block, and Table 5.10 presents the percentage reduction in the interquartile range, 

percentage of BG variability decrease at median between successive blocks.   

 

Per-Cohort  

 

Per-Patient 

 

Fig. 5.6:  Blood glucose variability per-cohort (left) and 50% range of BG variability CDF per-patient (right) 

for OHCA patients, treated with hypothermia using 6 hour blocks of data.   
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Table 5.9:  Summary of BG variability results for overall OHCA cohort based on 6-hour 

block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median DeltaBG 

[IQR] [%] 

Per-Patient 

Median DeltaBG 

[IQR] [%] 

1 

1 0 – 6 hours -0.9 [-2.9, 0.5] 3.4 [1.7, 6.6] 

2 6 – 12 hours -0.6 [-2.3, 1.0] 2.9 [1.6, 5.3] 

3 12 – 18 hours -0.3 [-1.5, 1.3] 2.8 [1.2, 4.8] 

4 18 – 24 hours -0.4 [-1.8, 0.8] 2.5 [1.1, 4.7] 

2 

5 24 – 30 hours 0.4 [-1.3, 2.0] 2.4 [1.4, 4.2] 

6 30 – 36 hours 0.2 [-1.6, 1.9] 2.6 [1.4, 5.1] 

7 36 – 42 hours -0.2 [-1.6, 1.6] 2.5 [1.2, 4.7] 

8 42 – 48 hours -0.1 [-1.2, 1.1] 2.1 [1.0, 4.1] 

 

 

Table 5.10:   Reductions in the interquartile range and median BG per patient range of hour-

to-hour percentage BG change over time during cool and warm after as per 6-hour blocks of 

data 

 

BG Variability 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
%  Reduction 

of IQR 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            

  (0 - 6 vs. 6 - 12 hr) 
2.4 0.07 14.7 0.2 

Block 2-3 (C)            

  (6 - 12 vs. 12 - 18 hr) 
15.5 0.09 3.4 0.1 

Block 3-4 (C)            

  (12 - 18 vs. 18 - 24 hr) 
5.5 0.2 10.7 0.5 

Block 4-5 (C-W)    

  (18 - 24 vs. 24 - 30 hr) 
-22.6 0.06 4.0 0.9 

Block 5-6 (W)    

  (24 - 30 vs. 30 - 36 hr) 
-5.1 0.5 -8.3 0.3 

Block 6-7 (W)    

  (30 - 36 vs. 36 - 42 hr) 
9.0 0.06 3.8 0.6 

Block 7-8 (W)    

  (36 - 42 vs. 42 - 48 hr) 
26.5 0.5 16.0 0.1 

P-values calculated using Kolmogorov-Smirnov test   
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These results show that BG variability decreases over time from cool to warm, with 

consistent decrease for the first 24 hours of treatment. However, sudden BGV increases are 

shown between 24 – 36 hours, particularly during cool-warm transition period followed by a 

continuing decrease from 36 hours onwards. These small decreases are observed 

insignificantly (p > 0.05) between these time blocks, which match with previous results and 

analysis based on 12-hour blocks. 

 

5.3.2 Results by Sub-Cohort 

 

5.3.2.1   BG Level Analysis 

 

Table 5.11 presents the summary of BG level results and analysis for OHCA Sub-Cohorts. 

The summary shows that BG levels are high during the cool period and significantly decrease 

(p<0.05) over time for the first 2 days of ICU stay. However, there are approximately around 

30-35% of each sub-cohort patients that have contrasting results against the overall trend. 

Majority of the OHCA sub-cohorts have shown improvement from cool to warm (p<0.05), 

with consistent trends among all OHCA sub-cohorts except for the Diabetes group. 

 

Table 5.11:  Summary of BG level results and analysis for OHCA Sub-Cohorts 

OHCA Sub-Cohort 
No of 

Patients 

 

 

No of 

Samples 

[Hour] 

Median BG 

[IQR] at cool 

period 
[mmol/L] 

Median BG 

[IQR]  at 

warm period 
[mmol/L] 

% patients 

had higher 

BG at cool 

period  
[Diff(Cool-

warm)] 

p-value 

Overall OHCA cohort 180 7812 9.7 [6.9, 13.0] 8.5 [6.1, 11.5] 70% < 0.05 

Survived Patients 98 4337 9.1 [6.8, 11.7] 7.8 [5.8,   9.9] 70% < 0.05 

Non-Survived Patients 82 3475 9.2 [6.6, 12.2] 8.3 [6.0, 10.9] 70% < 0.05 

Diabetes Patients 23 1021 8.8 [7.0, 11.5] 8.1 [6.2, 11.2] 70% 0.3 

Non-Diabetes Patients 157 6791 9.3 [6.7, 12.6] 8.1 [5.9, 10.6] 70% < 0.05 

Male Patients 143 6223 9.4 [6.8, 12.6] 8.4 [6.1, 11.3] 70% < 0.05 

Female Patients 37 1589 8.6 [6.3, 11.2] 7.3 [5.7, 9.1] 70% < 0.05 

ROSC < 15 mins 63 2811 8.7 [6.6, 11.3] 7.7 [5.8, 10.2] 65% < 0.05 

ROSC < 30 mins 89 3797 8.8 [6.4, 11.8] 8.1 [6.0, 10.6] 70% < 0.05 

ROSC > 30 mins 28 1204 8.5 [6.3, 11.8] 7.2 [5.7, 8.9] 65% < 0.05 
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5.3.2.2   BG Variability Analysis 

 

Table 5.12 presents the summary of BG variability results and analysis for OHCA Sub-

Cohorts. The median BG variability results show that BG is more variable during cool than 

warm, and the results are consistent among the sub-cohorts. However, there are around 60% - 

70% patients that have contrasting results, where BG variability is higher during the warm 

period, in contrast to the overall trend.   

 

Table 5.12:   Summary of BG variability results and analysis for OHCA Sub-Cohorts 

OHCA Sub-Cohorts 
No of 

Patients 

 

No of 

Samples 

[Hour] 

Median BG 

variability 

[IQR] at cool 

period 
[%∆SI] 

Median BG 

variability 

[IQR]  at 

warm period 
[%∆SI] 

% patients 

had higher 

BGV during 

cool period 
[Diff(Cool-

warm)] 

p-value 

Overall OHCA cohort 180 7812 -0.6 [-2.3,1.0] 0.2 [-1.6, 1.9] 30% 0.3 

Survived Patients 98 4337 -0.5 [-1.9,0.9] -0.1[-1.5, 1.7] 40% 0.3 

Non-Survived Patients 82 3475 -0.7 [-2.6,1.0] 0.2 [-1.4, 1.7] 30% 0.3 

Diabetes Patients 23 1021 -0.4 [-1.7,0.7] -0.2 [-1.4,1.4] 40% 0.1 

Non-Diabetes Patients 157 6791 -0.6 [-2.4,1.1] 0.2 [-1.6, 1.8] 30% 0.4 

Male Patients 143 6223 -0.5 [-2.3,1.0] -0.1 [-1.6,1.8] 30% 0.3 

Female Patients 37 1589 -0.9 [-2.2,0.9] 0.2 [-1.3, 1.6] 30% 0.2 

ROSC < 15 mins 63 2811 -0.5 [-1.8,0.8] -0.2 [-1.4,1.6] 30% 0.1 

ROSC < 30 mins 89 3797 -0.6 [-2.6,1.3] -0.2 [-1.5,1.6] 35% 0.4 

ROSC > 30 mins 28 1204 -0.9 [-2.6,0.7] 0.3 [1.7,1.9] 25% 0.3 
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5.4   Discussion 

 

Hypothermia leads to lowering of human metabolic rate, including changes in energy 

metabolism (Melhuish, 2009). It also affects metabolism by reducing the production of 

hormones and enzymes from the pancreas and other organs, such as insulin, glucagon and 

adrenaline (Escolar et al., 1987, Escolar et al., 1990, Torlinska et al., 2002), which 

significantly alter metabolic balance and the stress response to insult. Hence, it is expected 

that during hypothermia, internal insulin production, its concentration and insulin sensitivity 

should be lower than normal and the stress response may be modulated to an unknown extent. 

Thus, it is hypothesized that BG may then be higher, as seen clinically in other studies for 

OHCA patients (Cueni-Villoz et al., 2011). Hence, glycaemic control would be more difficult 

given lower insulin sensitivity, requiring more insulin and potentially resulting in greater 

variability and hypoglycaemia. This outcome would typically be exacerbated by the stress of 

the initial insult. 

 

5.4.1       Blood glucose level 

 

BG level results for both per-cohort and per-patient analysis suggest that OHCA 

patients undergoing hypothermic treatment have higher BG levels at cool and decrease over 

time. This results determine general trends for blood glucose levels and are consistent with 

other BG level ICU studies (Neumar et al., 2008). These results are also supported by (Cueni-

Villoz et al., 2011), who have recently showed that mild TH or cool period was associated 

with higher BG levels, increased BG variability, and greater insulin requirements compared 

to the post-rewarming normothermic phase. These researchers were also found that mean BG 

level was higher during hypothermia, but not associated with hospital mortality. 

 

Further studies from both 12-hour and 6-hour blocks analysis show that the decrease in BG 

level during the first 12 hours is large and statistically significant (p<0.05) for this 

cohort. The rapid decreases in BG level are likely due to restart of human physiological 

systems and metabolic activities for these patients (Pretty et al., 2012). After 12 hours, BG 

level shows smaller decrease with no significant different except for block 5-6 (warm) which 

is between (24-30 hrs) and (30-36 hrs). BG is increased by knowing its negative values and 

are likely due to poor neurological outcome (Daviaud et al., 2014). Hence, this results gives 
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an idea of glycemic variability and evolution for this cohort which looks more dynamics and 

responsive during these periods. 

 

Analysis of OHCA sub-cohorts for BG level show that most of the sub-cohorts are recovering 

well based on percentage of BG decrease over time from overall summary. It is evidence that 

diabetic sub-cohort has shown some BG decrease from cool to warm, but with slow progress 

(p=0.3).In fact, this sub-cohort patients experience longer BG level increase during transition 

and warm periods. These findings will lead to a more special control requirement for treating 

OHCA patients with special conditions such as diabetic. 

 

5.4.2       Blood glucose variability 

 

In general, per-cohort and per-patient results suggest that there are no significant BG 

variability differences between cool and warm periods, although variability during the cool 

period is slightly higher than the warm period. Both results determine general trends for 

blood glucose variability and are consistent with similar studies by (Cueni-Villoz et al., 

2011), who have recently showed that mild TH or cool period was associated with increased 

BG variability.   

  

Further studies from both 12-hour and 6-hour blocks analysis show that majority of increased 

BG variability events occur during transition (cool-warm) and warm periods. The BGV 

increase indicates some potential stress across the cool-warm transition with negative 

reductions. These results are likely influenced by local treatment protocol and change of 

physiological conditions due to body temperature increase from cool to warm between 24 – 

36 hours. Recent studies by (Daviaud et al., 2014) concerning BG variability found that for 

low level of BG, high variations were more frequently observed in patients with a poor 

outcome.   Hence, these findings reveal that some sub-cohorts might experience longer poor 

outcome that the others and occurs anytime during treatment (Kauffmann et al., 2011, 

Meynaar et al., 2012) . In fact, high BG variations found during low BG level seems to be 

true since BG level decrease over time from cool to warm. 

 

Analysis of OHCA sub-cohorts for BG level show that most of the sub-cohorts are recovering 

well based on percentage of BG decrease over time from overall summary as well as both 12 

-hour and 6-hour blocks analysis except for diabetic sub-cohort. It is evidence that diabetic 
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sub-cohort has shown some BG decrease from cool to warm, but with slow progress 

(p=0.3).In fact, this sub-cohort patients experience longer BG level increase during transition 

and warm periods. These findings will lead to a more special control requirement for treating 

OHCA patients with special conditions such as diabetic. 

 

5.4.3       Implications for glycaemic control 

  

The demographic patient data by cohort in chapter 3 summarizes the glycaemic management 

inputs and outputs for OHCA patients, treated with hypothermia. In general, patients were 

given the substantial amount of insulin during both periods, but less amount of nutrition at 

cool. As a result, BG levels are recorded high during cool and more likely within the 4 – 7 

mmol/L glycaemic range at warm.     

 

It is recognized that these variations in insulin and nutrition delivery will result in different 

glycaemic outcomes. These results show that the glycaemic control protocols to treat 

hypothermic OHCA patients had different performance. They also indicate the need for 

patient-specific approaches to balance insulin and nutrition in a patient-specific manner (Fisk 

et al., 2012). The evolution and metabolic dynamics among these patients is also similar 

during hypothermia and the first 24 hours of normothermia. 

 

Clinically, these results have significant potential implications for managing glycaemia while 

treating OHCA patients especially during hypothermia, followed by the first 24 hours of 

rewarming. It is important to understand these dynamics, especially those unique to a cohort, 

when implementing glycaemic control, since glycaemic variability and hypoglycaemia are 

independent risk factors for the critically ill (Egi et al., 2006, Bagshaw et al., 2009, Krinsley, 

2009). More specifically, these results suggest that any insulin therapy should not over use 

insulin as per Pretty et.al (Pretty et al., 2012), while treating this cohort patients. Due to high 

level of insulin resistance and the saturation of insulin action (Natali et al., 2000), modulating 

carbohydrate and nutrition inputs might also be explicitly considered (Chase et al., 2008b). In 

particular, early or, excessive nutritional regimes might be avoided in consideration of better 

managing the metabolic dynamics observed in this study. 
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5.5   Summary 

 

This study analyses the glycaemic outcomes of OHCA patients treated with hypothermia. It 

analyses blood glucose (BG) level, its variability and evolution of post-cardiac arrest patients   

who were undergoing hypothermic treatment. It is the first study to fully quantify or 

characterize BG evolution in this cohort including level and variability of both cohort and 

per-patient level.   

 

OHCA Patients treated with hypothermia saw consistently decreasing BG over time, but 

evidenced greater variability, counter to normal trends where both metrics tend to go down 

over the first 48 hours (Pretty et al., 2012). This trend can result in more insulin demand 

during hyperglycemia and a greater risk of hypoglycemia as variability rises, all of which 

indicates the need for patient-specific approaches in each phase. 

 

These results present the first analysis of the hourly evolution of BG level and variability on a 

cohort and per-patient basis. They should lead to better understanding of patient 

physiological conditions based on different perspective such as glycemic outcomes, as well 

as providing the data to implement safer and more accurate glycemic control in this cohort. 

Finally, the outcome of this studies strongly suggest the need to consider both control of BG 

level and minimization of BG variability to improve post-resuscitation care of OHCA 

patients treated with hypothermia. 
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Chapter 6: Exogenous Insulin and Nutrition Analysis                                               
 

 

 

This chapter describes a preliminary study of Out-of-Hospital Cardiac Arrest (OHCA) 

patients based on exogenous insulin and nutrition characteristics during hypothermia (cool 

period) and normothemia (warm period). It analyses the impact of exogenous insulin and 

nutrition modulation during therapeutic hypothermia (TH) on glycaemic outcome. Patient 

data was analysed based on the cohorts, defined in Chapter 3.     

 

6.1   Introduction 

 

Exogenous insulin and nutrition administration play influential role in ICU patient treatment 

progress. The amount of insulin and nutrition is determined based on per-patient physiology 

and metabolic conditions, which were analysed in chapter 4 and 5 previously. Additional 

considerations such as secretion of endogenous insulin and other hormones by pancreas will 

eventually affect the decision as the trend is non-linear (Mitsis et al., 2009) . 

  

This study analyses exogenous insulin and nutrition administration of out of hospital cardiac 

(OHCA) arrest patients from who were undergoing hypothermic treatment. The results 

should provide better understanding of the input elements of these patients for metabolic 

management and their relation with metabolic and glycaemic evolution in the cohort. 

 

6.2   Subjects and Methods 

 

6.2.1 Patients and Data  

 

This analysis was performed on a same ICU cohort of 180 OHCA patients (7812 hours) 

treated with hypothermia from Erasme Hospital, Belgium and Lausanne Hospital, 

Switzerland as per explained in Section 3.1. A summary of the full cohort and sub-cohorts is 

presented in the Table 4.1.   
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6.2.2 Analyses and Metrics  

 

External insulin and nutrition during the cool (T<35
o
C) and warm (T>37

o
C) periods were 

identified from patient data and analysed as follows: 

i)  Overall cohort patient. 

ii)  Analysis of patient by 12-hour block. 

iii)  Analysis of patient by 6-hour block.  

 

Cohort analysis assessed external insulin and nutrition infusions hourly for the entire cohort, 

and shows trends based on the overall group behaviour. Per-patient analysis examined both 

inputs by median values per-patient within each timeframe.   

 

External insulin and nutrition analysis of patients using 12-hour and 6-hour blocks is 

described in the Table 4.1. This method will examine group behaviour and assess its changes 

for every 12 and 6 hour blocks of the entire treatment from cool to warm periods. For cohort 

analysis, external insulin and nutrition data from all patients was grouped into each 

appropriate time-block. Median values for each time-block were calculated for comparison to 

the previous block, thus capturing overall cohort changes over time. For per-patient analysis, 

the median insulin and nutrition inputs were calculated for each patient, for each time-block, 

compared to the previous block. 

 

External insulin and nutrition data are non-Gaussian and were thus compared using non-

parametric cumulative distribution functions (CDFs) and non-parametric statistics. All 

distributed data were compared using a Wilcoxon rank-sum test (Mann-Whitney U-test) 

comparing median values.  In all cases, p < 0.05 is considered statistically significant.  
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6.3   Results on Exogenous Insulin 

 

6.3.1 Results for complete cohort 

 

Figure 6.1 presents the cumulative distribution functions (CDFs) of hourly external insulin 

infusion for both cool and warm periods by cohort (left panel) and median hourly per-patient 

(right panel) for all ICU patients. Table 6.1 summarizes exogenous insulin results and 

analysis for overall OHCA cohort. 

 

Per-Cohort Analysis 

 

Per-Patient Analysis 

 

 

 

Fig. 6.1:  Exogenous insulin distribution by cohort (left) and per-patient median (right) during cool and 

warm after periods for all ICU patients 

 

Table 6.1:  Summary of Exogenous Insulin results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median Ex. Insulin 

[IQR] [U/hr] 

Per-Patient 

Median Ex. Insulin 

[IQR] [U/hr] 

1 Cool 

 
0 – 24 hours 2.95 1.80 

2 Warm 

 
24 – 48 hours 2.51 1.65 

  
p-value 

0.5 

 
0.5 
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The results in the Table 6.1 show that exogenous insulin levels are initially higher during the 

cool period and lower during the warm period, but the difference are not significant (p > 

0.05). However, there are around 35% (63 patients) of all patients that have contrasting 

results, where insulin is higher during the warm period, in contrast to the overall trend. 

 

Figure 6.2 presents the 12-hour block exogenous insulin by cohort (left panel) and median 

per-patient (right panel). Table 6.2 presents the summary of insulin infusion results based on 

12-hour blocks and Table 6.3 presents the decrease in median per-patient insulin infusion 

between successive blocks.   

  

 Per-Cohort  

 

Per-Patient 

 

Fig. 6.2:  Exogenous Insulin distribution per-cohort (left) and per-patient median (right) for OHCA patients, 

treated with hypothermia using 12 hour blocks of data. Blue colour represent cool period and red colour 

represent warm   

 

 

Table 6.2:  Summary of exogenous insulin results for OHCA cohort based on 12-hours 

block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median Ex. Insulin 

[IQR] [U/hr] 

Per-Patient 

Median Ex. Insulin 

[IQR] [U/hr] 

1 1 
0 – 12 hours 3.02 1.70 

2 12 – 24 hours 2.45 1.40 

2 3 24 – 36 hours 3.20 1.20 

4 36 – 48 hours 2.70 1.19 
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The results and analyses from the Table 6.3 for both per-cohort and per-patient suggest that 

Ex. insulin infusion are initially high during the cool period and decreases over time for the 

first 2 days in the ICU. However, the decrease is not significant during these period, which 

suggest that the amount of exogenous insulin given to OHCA patients is not much difference 

between cool and warm. 

 

Table 6.3:   Decreasing cohort and per patient median insulin infusion during cool and warm 

(12-hour blocks of data) 

 

Ex. Insulin 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            

  (0 - 12 vs. 12 - 24 hr) 
18.6 0.07 17.9 0.5 

Block 2-3 (C-W)    

  (12 - 24 vs. 24 - 36 hr) 
-30.4 0.2 14.3 0.7 

Block 3-4 (W)        

(24 - 36 vs. 36 - 48 hr) 
15.9 0.6 0.3 0.7 

 P-values calculated using Wilcoxon rank-sum test   
  

 

Per-Cohort  

 

Per-Patient 

 

Fig. 6.3: Exogenous Insulin distribution per-cohort (left) and per-patient median (right) for OHCA patients, 

treated with hypothermia using 6 hour blocks of data.   
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Table 6.4:  Summary of Exogenous Insulin results for overall OHCA cohort based on 6-hour 

block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median Ex. Insulin 

[IQR] [U/hr] 

Per-Patient 

Median Ex. Insulin 

[IQR] [U/hr] 

1 

1 0 – 6 hours 3.56 3.70 

2 6 – 12 hours 2.50 2.52 

3 12 – 18 hours 2.25 2.31 

4 18 – 24 hours 2.50 2.37 

2 

5 24 – 30 hours 2.55 2.46 

6 30 – 36 hours 2.62 2.70 

7 36 – 42 hours 2.00 2.00 

8 42 – 48 hours 2.00 2.00 

 

 

Table 6.5:   Decreasing cohort and per patient median Exogenous Insulin during cool and 

warm as per 6-hour blocks of data 

 

Ex. Insulin 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            

  (0 - 6 vs. 6 - 12 hr) 
29.8 0.2 31.2 0.2 

Block 2-3 (C)            

  (6 - 12 vs. 12 - 18 hr) 
10.0 0.4 8.5 0.4 

Block 3-4 (C)            

  (12 - 18 vs. 18 - 24 hr) 
-11.1 0.6 -2.6 0.9 

Block 4-5 (C-W)    

  (18 - 24 vs. 24 - 30 hr) 
-2.0 0.9 -3.8 0.6 

Block 5-6 (W)    

  (24 - 30 vs. 30 - 36 hr) 
-2.7 0.9 -9.8 0.5 

Block 6-7 (W)    

  (30 - 36 vs. 36 - 42 hr) 
23.7 0.8 25.9 0.5 

Block 7-8 (W)    

  (36 - 42 vs. 42 - 48 hr) 
0.0 0.8 0.0 0.9 

 P-values calculated using Wilcoxon rank-sum test   
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Figure 6.3 presents the 6-hour block exogenous insulin by cohort (left panel) and median per-

patient (right panel). Table 6.4 presents the summary of insulin results based on 6-hour block 

and Table 6.5 presents the decrease in median insulin between successive blocks. The results 

and evolution of exogenous insulin, both per-cohort and per-patient reveal that even though 

insulin infusions are initially high during the cool period and decrease over time, there is an 

increased of amount of insulin given between block 4 (18-24 hours) and block 6 (30-36 

hours) before it returns to decreasing over time in subsequent blocks. This increase occurs 

during the   transition from cool to warm and suggest that there is a unique evolution which 

demand for more exogenous insulin infusion during these time periods. Further analysis and 

comparison with other parameters, such as blood glucose and insulin sensitivity will be 

explained in Chapter 8. 
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6.3.2 Results for sub-cohorts 

 

Table 6.6 presents the summary of Ex. Insulin results and analysis for OHCA Sub-Cohorts. 

The summary shows that all OHCA sub-cohorts are consistent with the overall OHCA 

cohort. In general, analyzing the overall OHCA patients is sufficient even though the cohort 

consists of various different backgrounds. Importantly, the clinical outcome of ROSC sub-

cohort showed no difference in exogenous insulin delivered.     

 

Table 6.6:  Summary of Ex. Insulin results and analysis for OHCA Sub-Cohorts 

OHCA Sub-Cohort 
No of 

Patients 

Median Ex. 

Insulin [IQR] 

at cool period 

[U/hr] 

Median Ex. 

Insulin [IQR]  

at warm period 

[U/hr] 

% patients 

had higher 

Ex. Insulin at 

cool period  

[Diff(Cool-

warm)] 

p-value 

Overall OHCA cohort 180 1.8 [1.0, 3.3] 1.6 [0.9, 3.7] 65% 0.5 

Survived Patients 98 1.7 [1.0, 3.0] 1.4 [0.7, 3.1] 65% 0.3 

Non-Survived Patients 82 2.0 [1.0, 3.4] 1.4 [0.8, 2.9] 65% 0.3 

Diabetes Patients 23 1.9 [1.1, 3.2] 1.7 [0.9, 2.9] 40% 0.7 

Non-Diabetes Patients 157 1.7 [1.0, 3.0] 1.5 [0.8, 3.5] 70% 0.4 

Male Patients 143 1.9 [1.1, 3.3] 1.7 [0.9, 3.7] 60% 0.5 

Female Patients 37 1.6 [1.0, 2.7] 1.0 [0.6, 1.9] 70% 0.1 

ROSC < 15 mins 63 1.4 [0.9, 2.5] 1.0 [0.6, 2.6] 70% 0.4 

15 < ROSC < 30 mins 89 2.0 [1.0, 3.9] 1.4 [0.8, 3.3] 70% 0.4 

ROSC > 30 mins 28 2.5 [1.1, 5.0] 1.5 [0.8, 4.1] 70% 0.3 
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6.4   Results on Nutrition/ Dextrose Administration 

 

6.4.1 Results for complete cohort 

 

Figure 6.4 presents the cumulative distribution functions (CDFs) of hourly nutrition/ dextrose 

modulation for both cool and warm periods by cohort (left panel) and median hourly per-

patient (right panel) for all ICU patients.  Table 6.7 presents summary of nutrition results for 

overall OHCA cohort. These results show that the OHCA patients were given lower amounts 

of nutrition/dextrose during the cool period (at initial), and significantly (p < 0.05) increased 

over time during the first 2 days of treatment. However, there are around 35% (63 patients) of 

all patients that have contrasting results, where nutrition is higher during the cool period. 

 

Per-Cohort Analysis Per-Patient Analysis 

 
 

Fig. 6.4:  Nutrition/ dextrose level distribution by cohort (left) and per-patient median (right) during 

cool and warm periods for all ICU patients 

 

Table 6.7:  Summary of nutrition results for overall OHCA cohort.   

 

 

Day 

 

Period Hours Range 

Per-Cohort 

Median Nutrition 

[IQR] [g/hour] 

Per-Patient 

Median Nutrition 

[IQR] [g/hour] 

1 Cool 

 
0 – 24 hours 2.58 2.50 

2 Warm 

 
24 – 48 hours 3.72 3.23 

  p-value 

 
< 0.05 < 0.05 
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Figure 6.5 presents the 12-hour block nutrition/dextrose by cohort (left panel) and median 

per-patient (right panel). Table 6.8 presents the summary of nutrition/dextrose results based 

on 12-hours block and table 6.9 presents the decrease in median nutrition/dextrose between 

successive blocks.  The results and analyses show that nutrition/dextrose during the cool 

period (initially), and increased over time during the first 2 days of treatment. However, the 

increase is significant comparing the cool period to the warm period (Table 6.4). 

 

 

 

 Per-Cohort  

 

Per-Patient 

 

Fig. 6.5:  Nutrition/ dextrose distribution per-cohort (left) and per-patient median (right) for OHCA patients, 

treated with hypothermia using 12 hour blocks of data. Blue colour represent cool period and red colour 

represent warm   

 

 

Table 6.8:  Summary of nutrition results and analysis for overall OHCA cohort based on 12-

hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median Nutrition 

[IQR] [g/hour] 

Per-Patient 

Median Nutrition 

[IQR] [g/hour] 

1 1 
0 – 12 hours 2.60 1.48 

2 12 – 24 hours 3.10 2.10 

2 3 24 – 36 hours 4.63 2.50 

4 36 – 48 hours 4.22 2.74 
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Table 6.9:   Decreasing cohort and per patient median nutrition during cool and warm (12-

hour blocks of data) 

 

Nutrition 

analysis 
Cohort analysis Per-patient analysis 

 [12-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 12 vs. 12 - 24 hr) 

-19.4 < 0.05 -41.5 < 0.05 

Block 2-3 (C-W)    
  (12 - 24 vs. 24 - 36 hr) 

-49.7 < 0.05 -19.1 < 0.05 

Block 3-4 (W)        
(24 - 36 vs. 36 - 48 hr) 

8.8 0.6 -9.6 0.8 

 P-values calculated using Wilcoxon rank-sum test   
  

Figure 6.6 presents the 6-hour block nutrition/dextrose by cohort (left panel) and median per-

patient (right panel). Table 6.10 presents the summary of nutrition/dextrose results based on 

6-hour block and Table 6.11 presents the decrease in median nutrition/dextrose between 

successive blocks.  The results reveal that even though nutrition/dextrose is initially low 

during the cool period and increases over time, right after the transition from cool to warm 

and specifically between block 5 (24-30 hours) and block 6 (30-36 hours), it decreases. Thus, 

the highest amount of nutrition/ dextrose given occurs during the warm period, right after 

transition from cool to warm and suggests that there is a unique evolution that demands more 

nutrient/dextrose during these time periods compared to a largely decreasing insulin trend in. 

  

Per-Cohort  

 

Per-Patient 

 

Fig. 6.6: Nutrition/ dextrose distribution per-cohort (left) and per-patient median (right) for OHCA patients, 

treated with hypothermia using 6 hour blocks of data.   
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Table 6.10:  Summary of nutrition/dextrose results and analysis for overall OHCA cohort 

based on 6-hours block.   

 

 

Day Block Hours Range 

Per-Cohort 

Median Nutrition 

[IQR] [U/hr] 

Per-Patient 

Median Nutrition 

[IQR] [U/hr] 

1 

1 0 – 6 hours 2.70 3.53 

2 6 – 12 hours 3.34 4.43 

3 12 – 18 hours 4.00 5.60 

4 18 – 24 hours 4.06 6.00 

2 

5 24 – 30 hours 6.00 7.23 

6 30 – 36 hours 6.00 7.09 

7 36 – 42 hours 5.09 6.80 

8 42 – 48 hours 5.00 6.66 

 

Table 6.11:   Decreasing cohort and per patient median nutrition/dextrose during cool and 

warm as per 6-hour blocks of data 

 

Nutrition 

analysis 
Cohort analysis Per-patient analysis 

 [6-hr blocks] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Block 1-2 (C)            
  (0 - 6 vs. 6 - 12 hr) 

-24.0 < 0.05 -25.3 < 0.05 

Block 2-3 (C)            
  (6 - 12 vs. 12 - 18 hr) 

-19.3 < 0.05 -26.4 < 0.05 

Block 3-4 (C)            
  (12 - 18 vs. 18 - 24 hr) 

-1.9 < 0.05 -7.3 < 0.05 

Block 4-5 (C-W)    
  (18 - 24 vs. 24 - 30 hr) 

-47.9 < 0.05 -20.5 < 0.05 

Block 5-6 (W)    
  (24 - 30 vs. 30 - 36 hr) 

0.1 0.5 2.0 0.5 

Block 6-7 (W)    
  (30 - 36 vs. 36 - 42 hr) 

15.2 0.8 4.2 0.9 

Block 7-8 (W)    
  (36 - 42 vs. 42 - 48 hr) 

1.8 0.9 1.9 0.7 

 P-values calculated using Wilcoxon rank-sum test   
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6.4.2 Results for sub-cohorts 

 

Table 6.13 presents the summary of nutrition/dextrose results and analysis for OHCA Sub-

Cohorts. The summary shows that results and analysis among all OHCA sub-cohorts are 

consistent with overall OHCA cohort. Most of the sub-cohorts had significant increase in 

nutrition intake from cool to warm, except sub-cohorts where 15 < ROSC < 30 mins, and 

ROSC > 30 mins.     

 

  

Table 6.12:  Summary of nutrition/dextrose results for OHCA Sub-Cohorts 

OHCA Sub-Cohort 
No of 

Patients 

Median 

Nutrition 

[IQR] in cool 

period 

[g/hour] 

Median 

Nutrition 

[IQR]  in 

warm period 

[g/hour] 

% patients 

had higher 

Nutrition in 

cool period  

[Diff(Cool-

warm)] 

p-value 

Overall OHCA cohort 180 2.5 [0.8, 3.5] 3.2 [1.6, 5.3] 30% < 0.05 

Survived Patients 98 2.6 [0.9, 3.9] 3.2 [1.6, 5.0] 30% < 0.05 

Non-Survived Patients 82 2.1 [0.9, 3.4] 3.0 [2.0, 4.8] 30% < 0.05 

Diabetes Patients 23 2.1 [1.0, 4.2] 4.2 [2.0, 6.2] 15% < 0.05 

Non-Diabetes Patients 157 2.1 [0.8, 3.5] 3.0 [1.6, 5.1] 35% < 0.05 

Male Patients 143 2.5 [1.0, 3.5] 3.1 [1.5, 5.1] 35% < 0.05 

Female Patients 37 2.1 [0.7, 3.2] 3.7 [2.0, 5.7] 25% < 0.05 

ROSC < 15 mins 63 2.5 [0.9, 4.1] 4.2 [2.2, 5.9] 30% < 0.05 

15 < ROSC < 30 mins 89 2.5 [1.1, 3.3] 2.7 [1.4, 4.8] 30% 0.2 

ROSC > 30 mins 28 2.1 [1.3, 3.5] 2.2 [0.5, 4.1] 40% 0.7 
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6.5   Discussion 

 

6.5.1       Exogenous Insulin and Nutrition Modulation during cool and warm 

 

This studies show that upon admission into ICU, OHCA patients treated with hypothermia 

received more exogenous insulin during the cool period and that these infusions decrease 

over time as does hyperglycaemia, as seen in Chapter 5. However, similar cohort were given 

small amount of nutrition / bolus at initial treatment and increased significantly over time 

during hypothermia.  

 

During the warm period, it is obvious that the OHCA patients had received more exogenous 

insulin and nutrient for the first 12 hours of warm period before decreasing the amount at the 

consequent blocks. The increased amount of insulin and nutrient given between block 5 (24 – 

30 hours) and block 6 (30 – 36 hours) is likely due to slight increase in BG level and 

variability during these periods which lead to physiological stress. These results are 

consistent with BG level results as shown in Chapter 5. 

  

6.5.2       The effect of Insulin and Nutrition Control Approach 

  

Previous studies have proved that modulating nutritional rates in addition to insulin can 

achieve very tight control, more successfully than using insulin alone (Chase et al., 2006a). 

For example, van den Berghe et al (van den Berghe et al., 2001) used an average of ~3U/hr 

during trials. Additionally, modulating nutrition also provides a potentially safer method for 

highly critical ill patients (Van den Berghe et al., 2006a). More specifically, as patient 

condition evolves, feed reductions allow less insulin to be used for the same or greater  

glycaemic  reduction,  avoiding  saturation  and/or  sudden  changes  in  glycaemic  level  due  

to excessive insulin. 

  

In  this  study,  dynamic  increases  and  reductions  in  enteral  glucose  administration  rates  

were  used  to assist glycaemic control during cool and warm periods. In fact, the high blood 

glucose level at the beginning of cool period would demand more insulin infusion required at 

initial before decreases over time, thus implies a reasonable decay of glucose appearance in 

the bloodstream. In contrast, the nutritional feed increase from the beginning until cool-warm 

transition period would indicate the patients’ metabolic/ energy demand, following the 
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increase in body temperature from cool to warm. However, as glucose drops are relatively 

slow, but sudden low glycaemic levels can be raised relatively rapidly by increasing the feed 

rate, special care in nutritional feed is required since the patient is still experiencing 

hyperglycaemia and had low metabolic activities during cool period, but needs some glucose 

to rewarm his/ her body. 

  

Overall, this approach of modulating nutrition in addition to exogenous insulin is a significant 

method from other approaches in this field, which use insulin alone. It is supported by recent 

studies that low-calorie (or low dextrose) nutritional inputs reduce hyperglycaemia (Ahrens et 

al., 2005, Dickerson, 2005, McCowen et al., 2000, Patino et al., 1999) and above ~30%  of  

standard  goal  feed  rates  do  not  increase  infectious  complications (Krishnan et al., 2003, 

Rubinson et al., 2004). However, it should be noted that insulin plays multiple roles that are 

both metabolic and non-metabolic. As a result, an insulin plus nutrition approach as presented 

here may have a lesser effect on mortality in a longer randomized trial due to using reduced 

levels of insulin (van den Berghe et al., 2001, Van den Berghe et al., 2006a). 
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6.6   Summary 

 

This study analyses the impact of exogenous insulin and nutrition modulation during 

therapeutic hypothermia (TH) on glycaemia outcome. There are three (3) main results from 

this analysis. 

 

1. Glycemic control during hypothermia and rewarming has achieved by modulating 

dextrose more than exogenous insulin, thus matches results seen in SPRINT control (Chase et 

al., 2008b) . 

  

2.  Some patient sub-cohorts saw major increases in nutrition from cool to warm such as 

diabetes and ROSC < 15 min. Since the significant increase in nutrition occurs while insulin 

modulation is steadily consistent. This shows that patients with diabetes or ROSC < 15 sub-

cohorts are likely to experience major stress hyperglycemia than other sub-cohorts, thus need 

further research. 

 

3. In view of control implications, both exogenous insulin and nutrition show major 

increase at transition (18 – 30 hours) while nutrition delayed or maintain doses for another 6 

hours after transition, thus falls steadily by blocks. 
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Chapter 7: Stochastic Insulin Sensitivity Modelling Analysis 
 

 

 

This chapter presents the adaptation of a stochastic model for SI prediction from adult critical 

care to the unique clinical and physiological case of the OHCA patients, treated with 

hypothermia. Clinically validated, model-based insulin sensitivity (SI) (Chase et al., 2010, 

Evans et al., 2011)  is used to provide a more accurate measure of patient metabolic state and 

its stochastic modelling during cool and warm periods. Modifications to the initial kernel 

density estimation model are made to explore and optimise the relationship between model 

accuracy in predicting ranges of SI variability and the underlying clinical data and dataset. 

Patient data was analysed for the cohort and sub-cohorts defined in Chapter 3, and results 

were summarized.   

 

7.1 Introduction 

 

Model-based glycaemic control methods using both insulin and/or nutrition modulation have 

been employed successfully in the control of hyperglycaemia, as reviewed by Chase et al. 

(Chase et al., 2006b). These methods allow the derivation of patient metabolic state, SI in this 

case, by using serial blood glucose (BG) measurements, and records of nutrition and insulin 

administration (Chase et al., 2007b). Once the current SI has been identified, prediction of 

future SI would allow predictions of outcome BG concentration for an intended insulin and 

nutrition intervention.  

 

Variations in the SI parameter reflect the metabolic response to stress (McCowen et al., 2001) 

and drug therapy (Pretty et al., 2011). Thus, tracking and forecasting this parameter is 

important to provide safe glycaemic control in highly dynamic Out-of-Hospital Cardiac 

Arrest (OHCA) patients, treated with hypothermia. Since stochastic modelling has shown its 

ability to quantify the probability of a future SI  (Lin et al., 2008), the resulting distribution of 

BG concentrations that would result from a given intervention can be determined (Lin et al., 

2008, Le Compte et al., 2010, Evans et al., 2011, Fisk et al., 2012). This information can be 

used to guide both insulin and/or nutrition interventions, which is the key to avoid unintended 

hypoglycaemia, improve overall glycaemic control, and identify periods of potential high 

glucose variability that may be indicative of unusual clinical events (Thomas et al., 2014). 
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7.2 Subjects and Methods 

 

7.2.1  Patients and Data  

 

This analysis was performed on a same ICU cohort of 180 OHCA patients (7812 hours) 

treated with hypothermia from Erasme Hospital, Belgium and Lausanne Hospital, 

Switzerland as per explained in Section 3.1. A summary of the full cohort and sub-cohorts is 

presented in the Table 4.1.   

 

7.2.2  Analyses and Metrics  

 

 Stochastic model of insulin sensitivity will be analysed as follows: 

i)  Overall cohort patient. 

ii)  Analysis of patient by 12-hour block. 

iii)  Analysis of patient by 6-hour block.  

 

Overall cohort analysis assessed the stochastic model behaviour of insulin sensitivity during 

both cool and warm, which includes percentage of SI and BG within prediction interval and 

analysis of modifying kernel density estimation. 

 

The stochastic model of SI using 12-hour and 6-hour blocks is described in the Table 4.1. 

This method will examine stochastic model group behaviour and assess its changes for every 

12 and 6 hour blocks of the entire treatment from cool to warm periods. The analysis includes 

percentage of SI and BG within prediction interval and analysis of modifying kernel density 

estimation.  
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7.2.3 The Stochastic Model 

 

A 2-D kernel density estimation method is used to construct the stochastic model that 

describes the hourly transition of SI. The kernel density method combines probability 

distribution functions for each point of data to generate an overall density function for the 

dataset. This method has the advantage of producing a smooth, physiologically likely, 

continuous function across the parameter range to provide continuity when interpolating SI 

forecasts to account for each particular patient state. It also automatically accounts for any 

possible multimodality where the density of data may show several distinct peaks 

corresponding to patterns of changes in SI. The overall result is a bivariate probability density 

function for the potential parameter values.  

 

The goal of this statistical model is to quantify the range of SI one or more hours ahead in 

time (SI,n+1) based on available data (SI, n , SI ,n − 1 , SI ,n − 2 , . . ., SI ,0) to guide real-time clinical 

control (Evans et al., 2011, Lin et al., 2011, Thomas et al., 2014). Thus, it is important that 

the model is also cohort-specific as possible for greatest accuracy.  

 

A 2-D kernel density method is chosen because the distribution of SI, n+1 varies with SI, n, and 

cannot be simply described with a single standard statistical distribution (Lin et al., 2008). 

Thus, variations in SI can be treated as a Markov process. A Markov process has the property 

that the conditional probability density function of future states of the process, given the 

current state, depends only upon the current state. Therefore, using the Markov property of 

the stochastic behaviour of SI, the conditional probability density of SI ,n+1 taking on a value y 

can be calculated by knowing SI ,n = x. Model equations and its derivations were defined in 

(Lin et al., 2006, Lin et al., 2008). 

 

𝑃(𝑆𝐼,𝑛+1 = 𝑦|𝑆𝐼,𝑛 = 𝑥) =
𝑃(𝑆𝐼,𝑛 = 𝑥, 𝑆𝐼,𝑛+1𝑦)

𝑃(𝑆𝐼,𝑛 = 𝑥)
 

(7.1) 

 

Considering the fitted SI in a 2-D space. (𝑆𝐼,𝑛 𝑆𝐼,𝑛+1 ), the joint probability density function 

across the x–y (SI, n – SI, n+1) plane is defined by the fitted values shown by the dots, whose 

coordinates are denoted by xi and yi : 
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P(x, y) =    
1

𝑛
 ∑

𝜑 (𝑥;  𝑥𝑖, 𝜎𝑥𝑖 
2 )

𝑃𝑥𝑖

𝑛

𝑖=1

 
𝜑(𝑦; 𝑦𝑖, 𝜎𝑦𝑖

2    )

𝑃𝑦𝑖
 

 

(7.2) 

where: 

 

𝑃𝑥𝑖  =   ∫ 𝜑(𝑥; 𝑥𝑖, 𝜎𝑥𝑖
2

𝑆𝐼,𝑢𝑝𝑝𝑒𝑟

𝑆𝐼,𝑙𝑜𝑤𝑒𝑟

 ) 𝑑𝑥     

 

 

 

(7.3) 

 

𝑃𝑦𝑖  =   ∫ 𝜑(𝑦; 𝑦𝑖, 𝜎𝑦𝑖
2

𝑆𝐼,𝑢𝑝𝑝𝑒𝑟

𝑆𝐼,𝑙𝑜𝑤𝑒𝑟

 ) 𝑑𝑦    

 

 

(7.4) 

 

Effectively, the joint 2-D probability density function is the normalized summation of normal 

probability density functions 𝜑(𝑥; 𝑥𝑖 , 𝜎𝑥𝑖
2  )  centered at each individual data point. It thus 

turns discrete data into a smooth analytically defined function. 

 

In Equations (7.2)–(7.4), the variance 𝜎 at each data point is a function of the local data 

density in a centred and orthonormalised space of x and y. Putting Equations (7.3) and (7.4) 

into Equation (7.2) normalises each 𝜑(𝑥; 𝑥𝑖 , 𝜎𝑥𝑖
2  ) and 𝜑(𝑥; 𝑥𝑖 , 𝜎𝑥𝑖

2  ) in the positive domain, 

effectively putting boundaries along 𝑥 = 𝑆𝐼,𝑙𝑜𝑤𝑒𝑟 and 𝑦 = 𝑆𝐼,𝑢𝑝𝑝𝑒𝑟, and enforcing the 

physiological validity of the SI values.  

 

In Equation (7.1), the right hand side denominator can be calculated by integrating Equation 

(7.2) with respect to y. Hence, Equation (7.1) can be calculated: 

 

P(𝑆𝐼,𝑛+1  =  y | 𝑆𝐼,𝑛 =  x)  =  ∑ 𝜔𝑖(𝑥)

𝑛

𝑖=1

𝜑(𝑦; 𝑦𝑖, 𝜎𝑦𝑖
2  )

𝑃𝑦𝑖
 

 

 

 

(7.5) 

where: 
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𝜔𝑖(𝑥) =  

𝜑 (𝑥;  𝑥𝑖, 𝜎𝑥𝑖 
2 )

𝑃𝑥𝑖
⁄

 ∑
𝜑 (𝑥;  𝑥𝑗, 𝜎𝑥𝑗 

2 )
𝑃𝑥𝑗

⁄𝑛
𝑗=1

 

 

(7.6) 

Thus, knowing SI, n = x at hour n, the probability of SI, n+1 = y at hour (n+1) can be calculated 

using Equations (7.5) and (7.6) across the x–y plane. Where there is a higher density of data, 

more certainty can be drawn on the “true” behavioural pattern. 

 

In conclusion, Equations (7.5) and (7.6) define the 2-dimensional kernel density estimation in 

conditional SI variability. Note that SIn+1 variability is “conditional” because it depends on the 

prior state SIn. More specifically, knowing SI at any hour n, SIn = x, the probability of SI at 

hour n + 1, SIn+1 = y, can be calculated from Equation (7.5). 

 

In summary, the 2-dimensional kernel density estimation method creates a smooth, 

continuous model surface that reflects the sample data pattern. Note that the example shown 

is the “conditional” 2-dimensional kernel density estimate function as defined in Equation 

(7.5). Every slice of the surface in panel C along the y axis is the probability distribution in y 

(SIn+1) given x (SIn), and therefore its area under the curve along the y axis sums to 1.0. In 

comparison, the kernel density estimation joint probability function defined in Equation (7.2) 

has the volume under the 3-D surface equal to 1.0. The final 3-D SI stochastic model is thus 

developed and shown in Figure 7.2 for the data set used for this study. 

 

Based on results from in-sample tests, where the stochastic model is generated from the entire 

retrospective dataset and tested on the same data, and out-of-sample tests, where different 

subsets of data are used for model generation and testing, the kernel density estimator was 

modified by multiplying the variance estimators by a constant c (i.e., cσx and cσy) to explore 

the model probability bound determination for this data. This adjustment to the variance 

estimator effectively adjusts the kernel bandwidth and the degree of smoothing over the data. 
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7.3 Stochastic Analysis by Overall Cohort 

 

7.3.1    Hourly Insulin Sensitivity Variation in OHCA Patients 

  

Figure 7.1 presents the distribution of hourly variation in SI for the 180 OHCA patients 

during cool (4987 hours) and warm (5001 hours) periods. Approximately 85% of the values 

during cool period, and 70% during warm period are below 1.0 x 10
-3

 L/(mU.min). The 

results show that the hourly variation of SI is wider during cool period, but there are higher SI 

values in the warm period. 

 

Cool  Warm 

  

Fig. 7.1:   Distribution of hourly variation in SI for OHCA patients, treated with hypothermia during cool (left) 

and warm (right) periods as presented in 2-D kernel density method. 

 

 

7.3.2 Conditional Probability Density Function 

 

Figure 7.2 presents the conditional probability density plot for the stochastic model described 

in Section 7.2.3. These 3-D plots indicate the overall cohort variations in SI at the x-y plane 

and the conditional probability density of SI,n+1 at the z-plane. The results show that the 

conditional probability density p[SI(n+1)|SI(n)] at the value SI < 1.0 x 10
-3

 during the cool period 

is wider than during the warm period.   
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Cool  Warm 

 
 

Fig. 7.2:   Conditional probability density function SI, n+1 knowing SI, n  for OHCA patients, treated with 

hypothermia during cool (left) and warm (right) periods. The structure of the plot is unimodal in the region S I, n 

< 1.0 x 10
-3

 and SI, n+1 < 1.0 x 10
-3

, corresponding to the region of dataset density. 

 

Figure 7.3 presents the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentile probability bounds calculated 

for both cool and warm periods by integrating the conditional probability density function in 

Figure 7.2, including the distributing points. In return, the forecasted BG values are 

calculated based on an equal-tailed 0.9 probability interval of SI (i.e. BGn+1 = [f(SI95), f(SI5)]) 

(Lin et al., 2006). 

 

Cool  Warm 

  

Fig. 7.3:   Probability interval and distribution of hourly variation in SI for OHCA patients, treated with 

hypothermia during cool (left) and warm (right) periods.   
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7.3.3 Stochastic Model Prediction Width 

 

Table 7.1 shows the in-sample results of stochastic model prediction widths for both cool 

(ncool = 4622 predictions) and warm (nwarm = 4832 predictions) periods at c=1. The number of 

predictions is less than the total hours of SI as the patient data records are not always evenly 

divisible by 1h, and predictions can only be computed after the second hour of patient data.  

 

Table 7.1: Sample results for stochastic model prediction widths at c= 1 

Variable 
Prediction width / 

Range 

Value 

Cool Warm 

% SI within prediction 

interval 

[25
th

 – 75
th

 ] 60.7 % 62.8 % 

[5
th

 – 95
th

 ] 90.2 % 92.1 % 

% BG within prediction 

interval 

[25
th

 – 75
th

 ] 59.4 % 62.1 % 

[5
th

 – 95
th

 ] 92.6 % 92.8 % 

BG prediction interval width 
[25

th
 – 75

th
 ] 2.8  mmol/L 1.9 mmol/L 

[5
th

 – 95
th

 ] 8.0 mmol/L 5.4 mmol/L 

Median absolute percent BG point prediction error 5.5 % 5.0 % 

Median absolute BG point prediction error 0.4 mmol/L 0.35 mmol/L 

Data are presented as cohort median (ncool = 4622 predictions and nwarm = 4832 predictions) 

 

For the cool period, SI predictions (60.7%) were within the (25th–75th) probability intervals, 

corresponding to 59.4% of BG predictions. Similarly, 90.2% of SI predictions were within the 

(5th–95th) probability intervals, corresponding to 92.6% of BG predictions. Thus, the 

proportion of fitted SI and predicted BG values that fell within the (25th–75th) probability 

intervals were measurably higher than the expected 50%, but approximately closer to 90% for 

the (5th–95th) probability intervals. The overall median absolute prediction error comparing 

predicted BG based on the 50th percentile of predicted SI to the interpolated value from 

retrospective data is 5.5%, corresponding to an average BG error of 0.4 mmol/L. The width 

of the (25th–75th) BG probability interval is 2.8 mmol/L. Similarly, the (5th–95th) BG 

probability interval width is 8.0 mmol/L. 
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For the warm period, the median absolute percentage BG point prediction error comparing 

predicted BG based on the 50th percentile of predicted SI to the interpolated value from 

retrospective data is 5.0%, corresponding to an average BG error of 0.35 mmol/L. The width 

of the (25th–75th) BG probability interval is 1.9 mmol/L and the (5th–95th) BG probability 

interval width is 5.4 mmol/L. SI predictions of 62.8% were within the (25th–75th) probability 

intervals, corresponding to 62.1% of BG predictions. Similarly, 92.1% of SI predictions were 

within the (5th–95th) probability intervals, corresponding to 92.8% of BG predictions.  Thus, 

the proportion of fitted SI and predicted BG values that fell within the (25th–75th) were 

measurably higher than expected 50% but closer to the expected 90% within (5th–95th) 

probability intervals. 

 

7.3.4 Cross-Validation Comparison Studies 

 

Table 7.2 and 7.3 shows the results of the cross validation comparison study for 180 patients’ 

cohort during cool and warm respectively. Generally, these results are consistent between 

groups, suggesting that the overall model contains sufficient data to account for the range of 

dynamics observed in this cohort.    

 

Table 7.2: Cross-validation comparison study for 180 patient cohort (Cool period) 

Group 

[Cool] 

Groups 

used to 

create 

model 

% SI within interval % BG within 

interval 

BG interval width 

(mmol/L) 

BG point 

prediction 

error (%) 

BG point 

prediction 

error 

(mmol/L) 

[25th -75th] [5th- 95th] [25th-75th] [5th- 95th] [25th-75th] [5th- 95th] 

1 [-,2,3,4,5] 60.1 90.5 48.4 87.6 2.5 7.4 15.0 1.1 

2 [1,-,3,4,5] 61.2 90.0 49.5 89.7 2.5 7.6 9.5 0.65 

3 [1,2,-,4,5] 61.9 90.8 57.8 94.1 2.8 8.0 4.0 0.3 

4 [1,2,3,-,5] 61.9 90.8 59.6 95.6 2.9 8.5 4.0 0.3 

5 [1,2,3,4,-] 62.6 90.7 58.8 94.5 3.1 8.7 3.5 0.3 

Overall [1,2,3,4,5] 60.7 90.2 59.4 92.6 2.8 8.0 5.5 0.4 

 

 

 

 

 

 



113 
 

Table 7.3: Cross-validation comparison study for 180 patient cohort (Warm period) 

Group 

[Warm] 

Groups 

used to 

create 

model 

% SI within interval % BG within 

interval 

BG interval width 

(mmol/L) 

BG point 

prediction 

error (%) 

BG point 

prediction 

error 

(mmol/L) 

[25th -75th] [5th- 95th] [25th-75th] [5th- 95th] [25th-75th] [5th- 95th] 

1 [-,2,3,4,5] 64.1 92.3 62.5 93.1 1.7 5.2 12.5 1.0 

2 [1,-,3,4,5] 64.0 92.6 62.7 92.9 1.7 4.6 7.0 0.5 

3 [1,2,-,4,5] 61.7 91.8 61.7 92.9 1.9 5.7 4.5 0.3 

4 [1,2,3,-,5] 63.1 92.7 61.9 92.9 1.9 5.5 4.5 0.3 

5 [1,2,3,4,-] 63.8 92.8 64.0 93.4 2.0 5.7 4.0 0.3 

Overall [1,2,3,4,5] 62.8 92.1 62.1 92.8 1.9 5.4 5.0 0.35 

 

7.3.5 Probability Bound-Determination 

 

Table 7.4 shows the effect of modifying the kernel density estimation for several values of c, 

ranging from 0.1 to 3.0 for the stochastic model derived from OHCA retrospective data. For 

this cohort, the increase of c values higher than 1.0, yield better coverage widths that contain 

numbers closer to the approximately expected proportion of original sample data values. 

Thus for cool period, the value c=1.0 enables SI probability values to provide equivalent BG 

optimal coverage in the (25th–75th) intervals with 60.7% and 59.4% and in the (5th–95th) 

intervals with 90.2% and 92.6% respectively. Similarly, for warm period, the value c=3.0 will 

ensure SI probability values to provide equivalent BG optimal coverage in the (25th–75th) 

intervals with 64.9% and 59.8% and in the (5th–95th) intervals with 91.5% and 91.1% 

respectively.   

 

Table 7.4: Comparison of probability bounds for modifications of kernel density estimator 

(σ`x = cσx AND σ`y = cσy) during both cool and warm periods.  

 

 

C 

  

 Cool Period Warm Period 

% of SI within 

probability bounds 

% of BG within 

prediction bounds 

% of SI within 

probability bounds 

% of BG within 

prediction bounds 

[25th-75th] [5th-95th] [25th-75th] [5th-95th] [25th-75th] [5th-95th] [25th-75th] [5th-95th] 

0.1 49.3 87.8 49.4 89.3 45.5 83.7 40.7 80.5 

0.2 50.2 88.4 50.3 87.7 48.2 84.4 42.4 80.8 

0.3 51.1 88.5 51.2 90.3 50.4 85.2 44.0 80.8 

0.5 53.5 88.6 53.4 91.1 52.2 85.9 47.7 81.1 

1.0 60.7 90.2 59.4 92.6 55.8 87.1 49.1 82.8 

1.5 66.2 91.3 65.3 94.5 58.0 88.9 51.2 84.5 

2.0 69.6 92.1 70.1 96.4 60.4 90.1 53.2 87.1 

2.5 72.2 92.7 74.3 97.5 62.8 91.2 57.3 89.3 

3.0 74.0 93.4 77.6 98.3 64.9 91.5 59.8 91.1 

Ideal 50% 90% 50% 90% 50% 90% 50% 90% 
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 Results in Table 7.4 at c=1.0 during cool period and c=3.0 during warm period are further 

reflected in Figure 7.4 which shows the probability-bound determination for raw SI data and 

its corresponding BG forecasted values based on an equal-tailed 0.90 SI probability interval. 

 

 COOL PERIOD 
Given kernel density estimator c = 1.0 

 

(A) 

WARM PERIOD 
Given kernel density estimator c = 3.0 
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Fig. 7.4:    Probability-bound determination for raw SI data and corresponding BG forecasted values based on an 

equal-tailed 0.90 probability interval of SI between 5
th

 -95
th

 at local variance estimator, both cool ( c=1.0) and 

warm (c=3.0) period. The solid lines represent the 5%, 25%, 50%, 75% and 95% probability bounds.    

 

The difference of optimal c values between cool and warm suggests that the variation and 

stochastic modelling for both periods are different, leading to different control requirements 

to ensure safe glycaemic control in the highly dynamic conditions. In particular, c=1.0 could 

be suitable during cool period since the SI data is more dense at lower percentiles, but at high 
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variation. However, at warm conditions, the stochastic model shows higher probability 

distribution coverage of SI variations, which usually occur when SI data distribution is wider, 

less variable and closer to ideal percentage within bounds. Thus, c=3.0 would be a better 

level of stochastic control for this cohort during warm period. 

 

 
 

Fig. 7.5:  Simulated trial using model-based control with stochastic model forecasts. The top plot shows the 

comparison between blood glucose concentration under simulated control (blue line) and retrospective control 

(red line). The middle plot shows model-fitted SI (green line) and the bottom plot shows administration of 

insulin during simulated control (pink line) compared to retrospective control (blue line). The yellow shaded 

areas in the top and middle plots show the 5
th

-95
th

 percentile of forecasted BG and SI respectively. 

 

Figure 7.5 shows a simulated trial results for individual OHCA patient, demonstrating the 

combination of Intensive Control Insulin-Nutrition Glucose (ICING) system model and the 

stochastic model, specifically the model forecasts for the 5
th

 and 95
th

 percentiles of future SI. 

These values are substituted into equation (2.32), and systems of equations are solved over 

the forecast interval to generate the series of future BG based on variability in SI. The result 

of forecasted BG is compared to the interpolated value from retrospective or clinical data to 

determine model forecast performance. 

 Cool period  Warm period  Idle period between cool and warm 
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7.4 Stochastic Analysis by 12-hours Block 

 

7.4.1 Stochastic Model Prediction Width 

 

Table 7.5 shows the in-sample results of stochastic model prediction widths based on 12 

block hours analysis at c=1. 

 

Table 7.5: Stochastic model prediction widths at c= 1 based on 12-block analysis 

Variable 

Prediction 

width / 

Range 

Cool Warm 

Block 1     

[0-12 hrs] 

Block 2        

[12-24 hrs] 

Block 3     

[24-36 hrs] 

Block 4     

[36-48 hrs] 

% SI within prediction 

interval 

[25
th

 – 75
th

 ] 58.7 55.1 52.7 50.7 

[5
th

 – 95
th

 ] 90.4 88.1 87.7 86.7 

% BG within prediction 

interval 

[25
th

 – 75
th

 ] 51.5 50.7 48.1 46.6 

[5
th

 – 95
th

 ] 91.2 88.2 85.1 84.7 

BG prediction interval 

width (mmol/L) 

[25
th

 – 75
th

 ] 3.5 2.1 2.0 1.8 

[5
th

 – 95
th

 ] 9.8 5.9 5.7 4.9 

Median absolute percent BG point 

prediction error (%) 
4.5 6.5 4.5 6.0 

Median absolute BG point prediction 

error (mmol/L) 
0.35 0.4 0.3 0.4 

  

Generally, SI and BG prediction interval coverage meets the prediction expectation despite 

exceeding its ideal values of 50% and 90% for both (25
th

 – 75
th

) and (5
th

-95
th

) interval width 

respectively. To improve the percentage optimization of prediction internal coverage, it is 

suggested that the stochastic model uses smaller values of local variance estimator for each 

time block. BG probability interval width for both (25
th

 – 75
th

) and (5
th

-95
th

) is wider at block 

1, and subsequently decreased for the remaining blocks. The median 1-h absolute BG 

prediction error, comparing predicted BG based on the median of predicted SI to the 

interpolated value from retrospective data is ranged between 4.5 – 6.5 %, corresponding to an 

average BG errors of 0.3 – 0.4 mmol/L. Thus, the proportion of fitted SI and predicted BG 

values that fell within the (25
th

 – 75
th

) and (5
th

 – 95
th

) probability intervals for 12-hour block 

analysis were measured higher than the expected 50% and 90%. 
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7.4.2 Probability Bound-Determination 

 

Table 7.6 shows the effect of modifying the kernel density estimation for several values of c, 

ranging from 0.1 to 3.0 based on 12-hour block analysis. For this cohort, the increase of c 

values higher than 1.0, yield better coverage widths to the approximately expected proportion 

of original sample with highly variable data values. In contrast, lower values of c provides 

better coverage widths for original sample with less variable data values, especially at higher 

values of SI where data are less dense. Besides, the modification of the kernel bandwidth will 

also affect the subsequent degree of smoothing, where the probability distribution becomes 

less smooth due to smaller c (c < 1.0). 

 

To improve the percentage optimization of prediction internal coverage, this analysis 

suggested that the stochastic model uses bigger values of local variance estimator (c > 1.0), 

for each time block. The results has shown that for block 1, c=1.0 and followed by block 2 

(c=1.5), and block 3 and 4 (c=2.0 and 2.5). The trend shows the value of estimator, c is 

increasing as SI increases from cool to warm. The difference of optimal c values between 12-

hour blocks suggests that the variation and stochastic modelling for each time block is 

different, leading to different control requirements to ensure safe glycaemic control in the 

highly dynamic conditions. 

 

Table 7.6: Comparison of probability bounds for modifications of kernel density estimator 

(σ`x = cσx AND σ`y = cσy) based on 12-hour block analysis 

 

 

c 

  

 Cool Period Warm Period 

% of SI within  

probability bounds 

at Block 1  

[0 – 12] hours 

% of SI within 

probability bounds 

at Block 2  

[12 – 24] hours 

% of SI within  

probability bounds 

at Block 3  

[24 – 36] hours 

% of SI within  

probability bounds 

at Block 4  

[36 – 48] hours 

[25th-75th] [5th-95th] [25th-75th] [5th-95th] [25th-75th] [5th-95th] [25th-75th] [5th-95th] 

0.1 51.6 88.9 47.5 85.8 45.4 83.8 44.4 81.9 

0.2 51.4 89.3 47.7 86.2 47.1 84.1 45.3 83.2 

0.3 51.7 89.5 49.1 86.8 49.9  84.4 47.0 84.6 

0.5 53.1 89.7 52.1 87.3 51.1 86.2 48.6 85.3 

1.0 58.7 90.4 55.1 88.1 52.7 87.7 50.7 86.7 

1.5 62.7 91.0 58.4 90.0 54.9 89.2 51.5 87.4 

2.0 65.6 91.5 62.7 90.5 56.0 90.4 53.1                              89.0 

2.5 67.3 92.3 64.3 91.4 59.2 92.2 54.7 90.4 

3.0 68.0 92.8 66.2 91.9 63.1 93.3 57.5 92.7 

Ideal 50% 90% 50% 90% 50% 90% 50% 90% 
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7.5 Stochastic Analysis by 6-hour Block 

 

7.5.1 Stochastic Model Prediction Width 

 

In addition to 12-hour block analysis, further stochastic analysis by 6-hour block is carried 

out in similar method to analyse SI variation and forecasting evolution for this cohort in more 

details. Table 7.7 presents the in-sample results of stochastic model prediction widths based 

on 6 hour block analysis at c=1. 

 

Table 7.7: Stochastic model prediction widths at c= 1 based on 6-hour block analysis 

Variable 

Predicti

on width 

/ Range 

Cool Warm 

Block 1     

[0-6 hrs] 

Block 2        

[6-12 
hrs] 

Block 3     

[12-18 
hrs] 

Block 4     

[18-24 
hrs] 

Block 5     

[24-30 
hrs] 

Block 6     

[30-36 
hrs] 

Block 7     

[36-42 
hrs] 

Block 8    

[42-48 
hrs] 

% SI within 

prediction 

interval 

[25
th

 – 

75
th

 ] 

58.7 57.2 56.9 55.5 51.9 52.1 52.6 52.6 

[5
th

 –  

95
th

 ] 

90.4 89.5 89.0 87.3 87.2 88.2 88.3 87.7 

% BG within 

prediction 

interval 

[25
th

 – 

75
th

 ] 

52.4 51.5 50.3 49.2 47.2 46.8 47.1 47.3 

[5
th

 –  

95
th

 ] 

91.1 89.0 88.2 86.5 84.7 83.2 83.5 83.3 

BG prediction 

interval width 

[25
th

 – 

75
th

 ] 

4.2 2.7 2.2 2.1 2.0 1.9 1.9 1.7 

[5
th

 –  

95
th

 ] 

10.9 7.3 6.1 5.9 5.2 6.4 5.4 4.5 

Median absolute percent 

BG point prediction error 

2.5 6.5 4.5 7.0 4.0 5.5 4.5 5.5 

Median absolute BG point 

prediction error (mmol/L) 

0.2 0.4 0.3 0.45 0.25 0.4 0.35 0.35 

  

The results show that SI and BG prediction interval coverage meets the prediction expectation 

despite exceeding its ideal values of 50% and 90% for both (25
th

 – 75
th

) and (5
th

-95
th

) interval 

width respectively. BG probability interval width for both (25
th

 – 75
th

) and (5
th

-95
th

) is wider 

at block 1, and subsequently decreased for the remaining blocks, except block 6. This is due 

to higher BG variation as a results of TGC for this cohort. 

 

The median 1-h absolute BG prediction error, comparing predicted BG based on the median 

of predicted SI to the interpolated value from retrospective data is ranged between 2.5 – 7.0 

%, corresponding to an average BG errors of 0.2 – 0.5 mmol/L. It is also observed that the 

proportion of fitted SI and predicted BG values that fell within the (25
th

 – 75
th

) and (5
th

 – 95
th

) 

probability intervals for 6-hour block analysis were measured higher than the expected 50% 
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and 90%. Thus, majority of the 6-hour block stochastic model analysis results match with the   

12-hour block stochastic model analysis which suggest that further stochastic control will be 

sufficient with 12-hour block stochastic models. 

 

7.5.2 Probability Bound-Determination 

 

Table 7.8 shows the effect of modifying the kernel density estimation for several values of c, 

ranging from 0.1 to 3.0 based on 6 hour block analysis. For this cohort, the results has shown 

that for block 1, c=1.0 and followed by block 2 to block 3 (c=1.5), and block 4 to block 5 

(c=2.0). The trend shows that the value of estimator, c is increasing as SI increases from cool 

to warm, and match with 12-hour block stochastic model analysis as shown in the Table 7.6. 

 

 

 

 

 

 

 

.   
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Table 7.8: Comparison of probability bounds for modifications of kernel density estimator (σ`x = cσx AND σ`y = cσy) based on 6-hour block 

analysis 

 

 

 

C 

  

 Cool Period Warm Period 

% of SI within  

probability bounds 

at Block 1  

[0 – 6] hours 

% of SI within 

probability bounds 

at Block 2  

[6– 12] hours 

% of SI within  

probability bounds 

at Block 3  

[12 – 18] hours 

% of SI within  

probability bounds 

at Block 4  

[18 – 24] hours 

% of SI within  

probability bounds 

at Block 5  

[24 –  ] hours 

% of SI within  

probability bounds 

at Block 6  

[36 – 48] hours 

% of SI within  

probability bounds 

at Block 7  

[36 – 48] hours 

% of SI within  

probability bounds 

at Block 8  

[36 – 48] hours 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

[25th-

75th] 

[5th- 

95th] 

0.1 51.6 88.9 52.7 85.3 53.5 85.8 51.7 86.0 44.9 84.2 45.0 85.3 45.5 85.5 46.2 85.6 

0.2 51.4 89.3 53.5 86.2 54.3 86.6 52.1 86.2 45.3 84.5 45.4 85.8 46.2 85.8 46.7 85.9 

0.3 51.7 89.5 54.0 86.9 54.7 86.9 53.5 86.6 46.3 85.8 46.7 86.6 47.4 86.6 48.0 86.7 

0.5 53.1 89.7 55.6 88.8 55.1 87.8 54.3 87.4 48.4 86.5 48.6 87.0 49.2 87.1 49.3 87.3 

1.0 58.7 90.4 57.2 89.5 56.9 89.0 55.5 87.3 51.9 87.2 52.1 88.2 52.6 88.3 52.6 87.7 

1.5 62.7 91.0 58.9 90.7 58.0 90.6 57.2 88.2 54.9 87.8 55.2 88.6 55.5 88.8 55.7 88.3 

2.0 65.6 91.5 61.0 93.5 60.2 92.1 59.2 90.7 55.6 90.3 56.1 89.3 56.2 89.5 57.2 88.9 

2.5 67.3 92.3 63.4 94.2 62.7 92.5 60.8 92.4 56.2 91.9 55.8 90.9 57.3 90.1 58.5 89.5 

3.0 68.0 92.8 65.7 94.9 63.9 92.6 62.1 92.9 56.7 92.8 57.5 91.2 57.9 91.3 59.0 90.7 

Ideal 50% 90% 50% 90% 50% 90% 50% 90% 50% 90% 50% 90% 50% 90% 50% 90% 
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7.6 Stochastic Analysis by Sub-Cohort 

 

7.6.1 Stochastic Model Prediction Width 

 

Tables 7.9 and 7.10 show summary of cross-validation comparison study for OHCA sub-

cohorts at both cool and warm respectively with c=1. Looking at these tables, it must be 

noted that SI and BG results for all sub-cohorts are not much different compared to the 

overall OHCA cohort, even though the percentage of SI and BG values within interval during 

warm are slightly higher than cool for each respective sub-cohorts. This outcome suggests 

that stochastic models derived from the overall cohort are different between cool and warm, 

but applicable for sub-cohorts, regardless of patient background and any other status. 

 

Predicting BG values based on an equal-tailed 0.90 SI probability interval is a more practical 

forecasting approach (Lin et al., 2008, Evans et al., 2011, Fisk et al., 2012) . Ideally, the 

probability-bound determination for raw SI data and its corresponding BG forecasted values 

based on an equal-tailed 0.90 SI probability interval must be about the same. In general, the 

sub-cohort analysis shows that the SI percentage coverage in the (25th–75th) and the (5th–

95th) intervals and BG percentage coverage in the (25th–75th) and the (5th–95th) intervals 

are not much different within a tolerance of ± 3.0%. 

 

However, there are two sub-cohorts that show differences greater than ± 3.0% which are 

Diabetes and ROSC > 30 mins. For example, the SI and BG percentage coverage in the (5th–

95th) interval for diabetic sub-cohort during cool period is 87.8 % and 95.1 % respectively 

and the difference is 7.3%. Since the error and bounds are larger for diabetes and ROSC > 30 

mins, predicting BG values based on an equal-tailed 0.90 SI probability interval is most likely 

inaccurate for both cool and warm periods in these cases. Thus, if making a stochastic model 

for these sub-cohorts, values of c >1.0 would be required. 
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 Table 7.9: Cross-validation comparison study for OHCA sub-cohorts (Cool period) at c=1. 

  

OHCA  

Sub-Cohort  
 

 No of 

Patient 

% SI within interval % BG within interval 
BG interval width 

(mmol/L) 
BG point 

prediction 

error (%) 

BG point 

prediction 

error 

(mmol/L) 
[25th -75th] [5th- 95th] [25th-75th] [5th- 95th] [25th-75th] [5th- 95th] 

Overall OHCA cohort 180 
60.7 90.2 59.4 92.6 2.8 8.0 5.5 0.4 

Survived Patients 98 64.6 91.5 64.4 93.8 2.5 7.5 4.0 0.3 

Non-Survived Patients 82 60.0 89.7 61.5 94.2 3.1 8.9 7.0 0.5 

Diabetes Patients 23 68.6 83.4 65.0 87.2 3.8 8.7 12.5 1.2 

Non-Diabetes Patients 157 60.9 90.0 58.4 92.5 2.6 7.7 6.5 0.45 

Male Patients 143 61.8 90.8 59.8 92.8 2.7 8.0 5.0 0.35 

Female Patients 37 64.8 89.6 61.7 94.7 3.1 8.4 7.0 0.45 

ROSC < 15 mins 63 69.3 92.7 66.4 93.7 2.7 7.9 2.5 0.2 

ROSC < 30 mins 89 61.1 90.5 63.3 94.4 2.8 7.7 8.0 0.55 

ROSC > 30 mins 28 63.5 87.8 66.8 95.1 2.6 11.2 15.5 1.5 

 

 

Table 7.10: Cross-validation comparison study for OHCA sub-cohorts (Warm period) at c=1. 

  

OHCA  

Sub-Cohort  
 

 No of 

Patient 

% SI within interval % BG within interval 
BG interval width 

(mmol/L) 
BG point 

prediction 

error (%) 

BG point 

prediction 

error 

(mmol/L) 
[25th -75th] [5th- 95th] [25th-75th] [5th- 95th] [25th-75th] [5th- 95th] 

Overall OHCA cohort 180 
62.8 92.1 62.1 92.8 1.9 5.4 5.1 0.35 

Survived Patients 98 66.3 93.1 63.2 93.0 1.8 4.6 5.2 0.35 

Non-Survived Patients 82 63.0 92.6 56.1 93.9 2.0 6.4 4.5 0.35 

Diabetes Patients 23 68.1 94.9 63.8 96.3 2.8 7.9 8.0 0.5 

Non-Diabetes Patients 157 63.4 92.4 61.7 92.7 1.7 4.7 5.5 0.4 

Male Patients 143 63.2 92.2 61.8 92.9 1.9 5.3 5.0 0.35 

Female Patients 37 61.4 95.5 61.6 95.3 1.7 5.5 5.5 0.35 

ROSC < 15 mins 63 65.6 92.5 63.8 93.5 2.1 5.7 4.0 0.3 

ROSC < 30 mins 89 69.6 95.0 65.4 93.8 1.8 5.4 5.5 0.4 

ROSC > 30 mins 28 61.4 95.3 56.8 93.9 1.5 4.5 7.0 0.5 
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7.6.2 Probability Bound-Determination 

 

Table 7.11 shows the summary analysis of the effect of modifying kernel density estimation, 

c ranging from 0.1 to 4.0 for OHCA sub-cohorts. In general, the increased values of c yield 

wider coverage width whereas the decreased value of c yields narrow coverage width. 

  

Table 7.11: Cross-validation comparison study for 180 patient cohort (Warm period) 

  

OHCA  

Sub-Cohort  

 

 No of 

Patient 

 c, Kernel Density Estimator 
[Range: 0.1 – 4.0] 

 Cool Period
 

 Warm Period 

Overall OHCA cohort 180 1.0 3.0 

Survived Patients 98 1.0 2.0 

Non-Survived Patients 82 1.5 3.5 

Diabetes Patients 23 1.5 4.0 

Non-Diabetes Patients 157 1.0 3.0 

Male Patients 143 1.0 3.0 

Female Patients 37 1.0 3.0 

ROSC < 15 mins 63 1.0 2.0 

ROSC < 30 mins 89 1.0 2.5 

ROSC > 30 mins 28 1.5 4.5 

 

Looking at the above table, it must be noted that kernel density estimator for all sub-cohorts 

are not much different compared to the overall OHCA cohort for both cool and warm. 

However, there are two sub-cohorts that show unique kernel density estimator results which 

are diabetes (1.5, 4.0) and ROSC > 30 mins (1.5, 4.5). These results shown in the bracket are 

out of range compared to overall OHCA cohort and other sub-cohorts. Since kernel density 

estimator difference is highest for both diabetes and ROSC > 30 mins, the system need more 

powerful controller and may require further specific module in order to process the data and 

match with the variation difficulties from these two sub-cohorts. 
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7.7 Discussion 

 

The stochastic model presented in this paper is constructed by the distribution of insulin 

sensitivity variation using a 2-D kernel density method. This model has been employed 

previously on a cohort of adult intensive care (Lin et al., 2008) and neonatal intensive care 

patients (Le Compte et al., 2010). The percentage SI within prediction interval results by Lin 

et al. of 54.0% within the (25th–75th) probability bound shows that normal adult ICU 

patients with normal body temperature produce far closer to the ideal 50%, followed by 

neonates’ results by Le Compte et al. which record 62.6% at the same interval. However, the 

stochastic model results of 60.7% at cool and 62.8% at warm on the same probability bound 

for the OHCA patients, treated with hypothermia as shown in Table 7.1 appear to be unique 

and surprisingly more similar to neonates (Le Compte et al., 2010) .  Additionally, the model-

based SI parameter used in this study is also model-specific, and thus may also account for 

different physiological effects in cardiac arrest patients compared to normal adult ICU 

patients both during cool and the first 24 hours of warm period after induced hypothermia.  

 

The kernel density estimator (c) method employed in this stochastic model provides a layer of 

safety as wider probability bounds would be more likely to capture dynamics and any 

changes not observed in the cohort. The choice of kernel density estimator depends on the SI 

data variations, and its corresponding BG forecasted values based on an equal-tailed 0.90 SI 

probability interval between 5
th

 – 95
th

 at local variance estimator. Lower values of c means 

the distribution of SI is narrower, and vice versa. The correct choice of c will ensure the 

prediction accuracy is maintained at 90% of total distribution. 

 

As the (5
th 

- 95
th

) band is what has been used for control previously (Le Compte et al., 2010), 

these cohort shows that they are closer to ideal 90%. However, wider coverage bands may 

also have impact on glycaemic control performance. As the wider probability band might be 

useful to avoid potential hypoglycaemia, it may also force a controller to maintain a mildly 

hyperglycaemic state. This is very true for OHCA patients, treated with hypothermia as the 

overall BG interval width of the (5th–95th) percentile probability band for c = 1.0 were 8.0 

mmol/L and 5.4 mmol/L during cool and warm respectively, which is relatively very wide 

and would likely to have a significant impact on performance for a controller targeting a 

typical range between 4–7 mmol/L or 3 mmol/L BG interval width.    
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The cross validation comparison study for the 180 patient cohort showed consistent results, 

suggesting that the cohort dataset is large enough to reasonably reflect the vast majority of 

target patients presented. However, the contrasting trend has shown for patients group during 

warm period, where the percentage of SI within this interval is higher than the percentage of 

forecasted BG. In fact, this trend matches results for adult intensive care (Lin et al., 2008) and 

neonatal intensive care patients (Le Compte et al., 2010). Thus, this is also appear to be 

another unique findings for this cohort suggesting different control scheme should be defined 

for cool and warm periods. 

 

Modifying local data density variance estimator c to the value greater than 1.0 will result in 

more accurately distributions that better reflect the observed data prediction coverage (Le 

Compte et al., 2010). However,  60% of SI and BG distributions for the OHCA patients’ 

cohort are within the (25th–75th) prediction interval and around 5% -12% are out of bound 

for both cool and warm periods. Thus, a more robust modelling is required for highly variable 

patient.  Hence, value of c = 1.0 and 3.0 provides the best tradeoff of bias and variance during 

cool and warm periods respectively. These chosen probability bound values have shown 

smooth probability bounds containing an appropriate proportion of prediction to obtain the 

desired prediction and glycaemia control performance at different physiology conditions. 

 

7.8 Summary 

 

Overall, this stochastic method and analysis in this study provides predictions based on a 

cohort dataset. The prediction bounds for more dynamic patients are difficult to decide since 

the SI variability distribution for this cohort is unique, particularly during cool period.  This 

observation is far differing than for the less dynamic patients who are typically more 

conservative. Thus, the probability bounds are optimized in a cohort sense, but not 

necessarily applicable on a per-patient basis.   
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Chapter 8: Summary of OHCA Patient Analysis   
 

 

 

This chapter presents the analysis summary of OHCA patients based on metabolic, 

glycaemic, and exogenous insulin and nutrition characteristics and evolution during 

hypothermia (cool period) and normothemia (warm period). Patients were analysed based on 

overall cohort, sub-cohorts, and 6 and 12 hour time block. Results from each patient 

characteristics were combined and summarized. Finally, the summary of main findings from 

this study determines control design consideration for this cohort. 

  

8.1   Overview of OHCA Patient Analysis 

 

The overview of OHCA patient analysis is shown in Figure 8.1. In general, OHCA patients 

were undergone preliminary analysis during cool and warm before proceeding with new 

glycaemic controller design and development. The analysis is equally important as the 

controller development since it provides scientific evidence and understanding of patients’ 

physiology and metabolic evolution especially during cool and warm. Besides, this analysis 

will embark further discussion and predictions on why these unique phenomena occur at 

specific time range. Hence, the outcome will benefit glycaemic controller development with 

proposed clinical settings.  

 

 The analyses are divided into 3 main parts: 

 

i)  Input 

Exogenous insulin and nutrition are regarded as ‘inputs’ in the system since OHCA 

patient will receive these materials during treatment. Thus, the analysis of inputs will 

give an idea of how determine the best insulin and nutrition modulation strategy to 

deal with highly resistive and variable patient, particularly at critical situation and 

time. This idea in turn will be adopted and implemented in control design.   
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ii)  System 

Model-based insulin sensitivity (SI), generated from the ICING model will be able to 

describe metabolic system behaviour of OHCA patient. Thus, the analysis will 

provide scientific information about patient metabolic level and evolution over time, 

from cool to warm conditions. The understanding of SI evolution is vital for design 

and implementation glycaemic control. In addition to that, model-based SI can be 

exploited to create its stochastic model, which describes the metabolic variability 

conditions of the patient. Analysis of SI stochastic model is important for improving 

stochastic control, particularly in reducing metabolic and glycaemic variability. 

  

iii)  Output 

Blood glycose (BG) is regarded as ‘output’ in the system since this metric will be 

measured and monitored during treatment. Thus, the analysis of glycaemic output will 

give an idea of how OHCA patient physiological and metabolic conditions response 

to insulin and nutrition administration as well as other inputs. This idea in turn will be 

adopted and implemented in control design.   

 

 

These parameters will undergo the same analysis method and format since it is easier to 

gather results, analyse and summarize, which lead to better interpretation of unique 

phenomena at certain conditions and time. The overall analysis will allow interpretation and 

comparison of OHCA patients during cool and warm, while the time-block analysis will 

allow the same interpretation at specific time range. Thus, this will provide better reference 

and guidance in the effort to develop and implement safer metabolic management. 
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Fig. 8.1:   Overview of OHCA patient analysis 
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8.2    Analysis Summary by Overall Cohort 

 

8.2.1 Statistical Analysis Summary 

 

A statistical analysis which summarize OHCA patient assessment results per-cohort based on 

metabolic, glycaemic, and exogenous insulin and nutrition characteristics and evolution 

during hypothermia (cool period) and normothemia (warm period) is presented in the Table 

8.1. Stochastic model of SI during cool and warm will use Kernel Density Estimator, c in this 

analysis. 

Patient conditions and problem identifications is added in the list to explain about physiology 

and metabolic conditions during cool and warm. Any problems identified or unique 

phenomena observed from the analysis shall be included. Treatment observation will describe 

about how treatment was done based on insulin and nutrition analysis. 

  

 Referring to the Table 8.1, it shows that OHCA patient had very low metabolic activity 

during cool period but significantly increased over time. This shows that generally OHCA 

patients have improved physiologically and metabolically during treatment in ICU. 

Additionally, these patient would have higher metabolic variability during cool and decreases 

at warm. However, the metabolic variability decrease is not significant, implying that not 

much different in this aspect between cool and warm for the first 48 hours of treatment. 

Hence, implementing conventional glycaemic control on these patients is difficult, suggesting 

that model-based patient specific approach should be the way during this duration. 

 

The physiology and metabolic conditions during cool and warm is also influencing the 

glycaemic outcome of the patient. The summary results in the Table 8.1 show that BG during 

cool is significantly higher than warm. This shows that these patients were undergo 

glycaemic control successfully during treatment in ICU, resulted in BG level decrease from 

cool to warm. However, glycaemic variability decrease is not significant, implying that not 

much different between cool and warm for the first 48 hours of treatment. Thus, this shows 

that implementing glycaemic control can only improve BG level, but difficult to reduce BG 

variability using these method due to high metabolic variability. 
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Insulin and nutrition administration presents how the treatment was done on OHCA patients. 

In this summary, it shows that more exogenous insulin is given during cool than warm. This 

trend match with the fact that BG is higher during cool period and decreases over time. 

However, the feeding decrease is not significant, implying that not much different or less 

modulation of insulin during cool and warm for the first 48 hours of treatment.  

 

Unlike insulin, less nutrition is given during cool and significantly increases over time. This 

is because when the patient was initially admitted and hypotenized, blood glucose level is 

very high and demand more insulin to decrease. However, metabolic activity is low but 

highly variable. As metabolic activity increased and glycaemic level decreased, it is predicted 

that the body needs more energy. The situation is exaberated by the temperature rise from 

cool to warm. Hence, nutrition modulation plays significant role during treatment which 

support patients glucose needs while insulin amount is maintained to support metabolic 

activities.  

 

With these insulin and nutrition modulation strategy, it resulted in improving glycaemic level 

but difficult to reduce BG variability using this method due to high metabolic variability. 

However, these findings is important to enable current glycaemic control method for OHCA 

patients is studied carefully, understand its background and problems and finally model the 

suitable controller to overcome the problems. 
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Table 8.1:  Summary of SI results for overall OHCA cohort.   

 

 

Variable 

 

Metrics 

Period (2 days in ICU)  

p-value Cool Warm 

Insulin 

Sensitivity (SI) 

[L/mU/min]1.0 

 

Median SI [IQR] 

[L/mU/min] 

2.4 x 10
-4

                 

[1.1, 3.5] x 10
-4

 

5.2 x 10
-4

               

[2.8, 8.3] x 10
-4

 
p < 0.05 

Median %∆SI 

[IQR][%] 

2.3  

[-0.8, 8.9] 

 0.4  

[-2.5, 3.4] 
0.08 

Blood Glucose 

(BG) [mmol/L] 

Median BG [IQR] 

[L/mU/min] 
7.4  

[6.5, 8.5] 

 6.5  

[5.8, 7.4] 

p < 0.05 

Median %∆BG 

[IQR][%] 
-2.8  

[-5.6, -0.9] 

-1.5 

[ -3.4, 1.0] 

0.08 

Insulin Infusion 

(U) [U/hour] 

Median U [IQR] 

[U/hour] 
1.80 

[1.0, 3.3] 

1.65 

[0.9, 3.7] 

0.5 

Dex / Nutrition 

(P) [g/hour] 

Median P [IQR] 

[g/hour] 
2.50 

[0.8, 3.5] 

3.23 

[1.6, 5.3] 

p < 0.05 

Stochastic 

Model of SI 

Kernel Density 

Estimator, c 
1.0 3.0  

Patient conditions and problem 

identifications 

Lower metabolic 

activities due to low 

body temperature.        

T < 35
o
 

-------------------------- 

Low SI but highly SI 

resistance and variable. 

-------------------------- 

Higher BG level and 

variability. 

  

Metabolic activities 

increased at optimum 

working temperature. 

36.5
o
 < T < 37.5

o
 

------------------------- 

SI increases, lower SI 

resistance and less 

variable. 

------------------------- 

BG level decreases 

and variability 

reduced but not 

significant. 

 

Treatment observations 

 

Patients were given 

higher doses of 

exogenous insulin. 

--------------------------- 

Received average 

amount of nutrition. 

 

Patients were given 

slightly lower doses of 

exogenous insulin   

------------------------- 

Received significant 

increase amount of 

nutrition. 
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8.2.2 Analysis Summary by 6-hour and 12-hour blocks 

 

Table 8.2 and Table 8.3 illustrate statistical analyses which summarize OHCA patients’ 

metabolic, glycaemic, and exogenous insulin and nutrition characteristics and evolution based 

on 12-hour and 6-hour blocks respectively.   

  

Analysis summary by 12-hour blocks shows that OHCA patients had low metabolic activity 

during block 1 (0 -12 hours) but significantly increased over time. However, these patients 

would have higher metabolic variability during cool and significantly decreases for the first 

24 hours of treatment. After 24 hours, the metabolic variability decrease is not significant. 

This results match with overall analysis summary (Table 8.1) and analysis by 6-hour block 

(Table 8.3), which indicate that implementing glycaemic control is difficult with different 

characteristics and evolution for each time block, suggesting that developing control based on 

per time block should be another alternative apart from per cohort. 

 

The summary results in the Table 8.2 and Table 8.3 show that these patients were undergo 

glycaemic control successfully during treatment in ICU, resulted in BG level decrease 

significantly from block 1 (0 -12 hours) over time. However, glycaemic variability decrease 

is not significant, implying that not much different between these time blocks for the first 48 

hours of treatment. This results match with overall analysis summary (Table 8.1) and analysis 

by 6-hour block (Table 8.3), which indicate that that implementing glycaemic control can 

only improve BG level, but difficult to reduce BG variability due to variations of  metabolic 

variability between each time blocks. 

 

Insulin and nutrition administration presents how the treatment was done on OHCA patients 

per each time block. In this summary, it shows that more exogenous insulin is given during 

block 1 (0 -12 hours) but decreased over time insignificantly. In contrast, less nutrition is 

given during when the patient is initially admitted to ICU, and significantly increases over 

time. This results match with overall analysis summary and analysis by 6-hour block. With 

these insulin and nutrition modulation strategy, it resulted in improving glycaemic level but 

difficult to reduce BG variability due to high metabolic variability. However, this finding is 

important to study current glycaemic control method for OHCA patients based on per time 

block. 
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Table 8.2:  Summary of results for overall OHCA cohort based on 12-hour block analysis 

 

 

Variable 

 

Metrics 

Cool Period [0-24 hours] Warm Period [24-48 hours] 

Block 1 

[0-12] hours 

Block 2 

[12-24] hours 

Block 3 

[24-36] hours 

Block 4 

[36-48] hours 

Insulin 

Sensitivity (SI) 

[L/mU/min] 

 

Median SI [IQR] 

[L/mU/min] 

1.9 x 10
-4

                     

[1.0, 3.0] x 10
-4

 

2.7 x10
-4   

[1.2, 4.5] x 10
-4

 

4.8 x10
-4   

[2.5, 8.3] x 10
-4

 

5.2 x10
-4   

[3.0, 8.5] x 10
-4

 

Median %∆SI 

[IQR][%] 

9.0  

[5.1, 17.0] 

5.8  

[2.8, 10.3] 

4.8  

[2.8, 9.5] 

4.8  

[2.7, 9.2] 

Blood Glucose 

(BG)[mmol/L] 

Median BG [IQR] 

[L/mU/min] 
7.6  

[6.5, 9.3] 

6.9  

[5.9, 8.2] 

6.7  

[6.0, 7.8] 

6.4  

[5.7, 7.6] 

Median %∆BG 

[%][IQR] 
3.9  

[2.1, 8.2] 

3.8  

[1.8, 6.6] 

3.3  

[2.2, 6.6] 

3.3  

[1.8, 6.1] 

Insulin Infusion 

(U) [U/hour] 

Median U [IQR] 

[U/hour] 
2.7 2.4 2.2 2.2 

Dex / Nutrition 

(P) [g/hour] 

Median P [IQR] 

[g/hour] 
2.5 4.1 4.5 3.8 

Stochastic 

Model of SI 

Kernel Density 

Estimator, c 
1.0 0.5 0.3 0.3 

Patient conditions and problem 

identifications 

Maintenance phase   

---------------------------- 

 Low SI, but highly 

resistance and variable 

----------------------------- 

High BG and variability 

 

Rewarming phase 

-------------------------- 

Low SI, but start 

rising, and variable 

-------------------------- 

Reduced BG and 

variability 

Rewarming phase 

---------------------------- 

 SI start rising, and 

variable 

----------------------------- 

Reduced BG and 

variability 

Maintenance phase  

--------------------------- 

 SI rising, and variable 

--------------------------- 

Reduced BG and 

variability 

Treatment observations 

 

High insulin, low 

nutrition 

Average insulin and 

nutrition 

High insulin and 

nutrition 

Average insulin and 

nutrition 
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Table 8.3:  Summary of results for overall OHCA cohort based on 6-hour block analysis 

  

 

Variable 

 

Metrics 

Cool Period [0-24 hours] Warm Period [24-48 hours] 

Block 1 

[0-6] hours 

Block 2 

[6-12] hours 

Block 3 

[12-18] hours 

Block 4 

[18-24] hours 

Block 5 

[24-30] hours 

Block 6 

[30-36] hours 

Block 7 

[36-42] hours 

Block 8 

[42-48] hours 

Insulin Sensitivity 

(SI) 

[L/mU/min] 

 

Median SI [IQR] 

[L/mU/min] 

1.5 x10-4   

[0.6, 2.6] x10-4 

1.9 x10-4   

[0.9, 3.2] x 10-4 

2.1 x10-4   

[1.0, 4.0] x 10-4 

3.0 x10-4   

[1.2, 5.1] x 10-4 

4.5 x10-4   

[2.2, 8.3] x 10-4 

4.4 x10-4   

[1.7, 8.7] x 10-4 

4.8 x10-4   

[2.6, 7.7] x 10-4 

5.0 x10-4   

[2.7, 8.5] x 10-4 

Median %∆SI 

[IQR][%] 

10.7  

[4.7, 25.6] 

6.8  

[3.4, 14.4] 

5.8  

[2.9, 10.9] 

4.3  

[2.0, 8.6] 

4.0  

[2.4, 8.8] 

4.5  

[2.1, 9.0] 

4.3  

[2.1, 7.1] 

4.2  

[1.5, 6.3] 

Blood Glucose 

(BG)[mmol/L] 

Median BG[IQR] 

[L/mU/min] 

8.3  

[7.1, 10.8] 

7.5  

[6.5, 8.9] 

7.3  

[6.3, 8.4] 

6.9  

[5.9, 8.1] 

6.8  

[5.9, 8.0] 

7.0  

[6.3, 8.0] 

6.9  

[6.0, 7.9] 

6.8  

[5.8, 7.8] 

Median %∆BG 

[IQR][%] 

3.4  

[1.7, 6.6] 

2.9  

[1.6, 5.3] 

2.8  

[1.2, 4.8] 

2.5  

[1.1, 4.7] 

2.4  

[1.4, 4.2] 

2.6  

[1.4, 5.1] 

2.5  

[1.2, 4.7] 

2.1  

[1.0, 4.1] 

Insulin Infusion  

(U) [U/hour] 

Median U [IQR] 

[U/hour] 

3.70 2.52 2.31 2.07 2.16 2.70 2.00 2.00 

Dex / Nutrition (P) 

[g/hour] 

Median P [IQR] 

[g/hour] 

3.53 4.43 5.60 6.00 7.23 7.09 6.80 6.66 

Stochastic Model 

of SI 

Kernel Density 

Estimator, c 

1.0 0.5 0.5 0.5 0.5 0.3 0.3 0.3 

Patient conditions and problem 

identifications 
Maintenance phase   

---------------------------- 

 Low SI, but highly 

resistance and variable 

----------------------------- 

High BG and variability 

 

Rewarming phase 

-------------------------- 

Low SI, but start rising, 

and variable 

-------------------------- 

Reduced BG and 

variability 

Rewarming phase 

---------------------------- 

 SI start rising, and 

variable 

----------------------------- 

Reduced BG and 

variability 

Maintenance phase  

--------------------------- 

 SI rising, and variable 

--------------------------- 

Reduced BG and 

variability 

Treatment observations 

 
High insulin, low 

nutrition 

Average insulin and 

nutrition 

High insulin and 

nutrition 

Average insulin and 

nutrition 
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8.3   Analysis by Sub-Cohort 

 

Table 8.4 presents statistical analyses which summarize OHCA patients’ metabolic, 

glycaemic, and exogenous insulin and nutrition characteristics and evolution by sub-cohorts. 

  

Generally, majority of results from sub-cohorts match with overall OHCA patients which 

suggest that analysis of overall OHCA patients is sufficient to represent each sub-cohort. 

However, it is observed that diabetes sub-cohort has shown difficulties to decrease BG level 

even though the treatment received are the same as the other sub-cohorts. 
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Table 8.4:  Analysis summary for OHCA patients by sub-cohort 

 

Analysis Summary 

by Sub- Cohort 
No 

 

Insulin Sensitivity 

(SI) [L/mU/min] 

 

SI Variability 

(%∆SI) [%] 

Blood Glucose 

(BG)[mmol/L] 

 

 BG Variability 

(%∆BG) [%] 

Insulin Infusion 

(U) [U/hour] 

Dex / Nutrition  

(P) [g/hour] 

Cool Warm 
p-

value 
Cool Warm 

p-

value 
Cool Warm 

p-

value 
Cool Warm 

p-

value 
Cool Warm 

p-

value 
Cool Warm 

p-

value 

All OHCA patients 180 
2.5 

x10-4  
 5.4 

x10-4  
< 

0.05 
 1.2   0.2  0.08 9.7   8.5   

< 

0.05 
-0.6  0.2 0.3 1.8  1.6   0.5 2.5   3.2   

< 

0.05 

Survived Patients 98 
2.5 

x10-4 

 5.8 

x10-4 

< 

0.05 
1.0   0.3  0.1 9.1   7.8   

< 

0.05 
-0.5  -0.1 0.3 1.7   1.4   0.3 2.6   3.2   

< 

0.05 

Non-Survived 

Patients 
82 

2.2 

x10-4 

 5.1 

x10-4 

< 

0.05 
1.4  0.07 0.2 9.2   8.3   

< 

0.05 
-0.7  0.2  0.3 2.0   1.4   0.3 2.1   3.0   

< 

0.05 

Diabetes Patients 23 
2.3 

x10-4 

 4.1 

x10-4 

< 

0.05 
1.0 0.04 0.3 8.8   8.1   0.3 -0.4 -0.2 0.1 1.9   1.7   0.7 2.1   4.2   

< 

0.05 

Non-Diabetes 

Patients 
157 

2.4 

x10-4 

 5.7 

x10-4 

< 

0.05 
1.2   0.3 0.06 9.3   8.1   

< 

0.05 
-0.6 0.2 0.4 1.7   1.5   0.4 2.1   3.0   

< 

0.05 

Male Patients 

 
143 

2.5 

x10-4 

 5.6 

x10-4 

< 

0.05 
1.0  0.3 0.09 9.4   8.4   

< 

0.05 
-0.5 -0.1 0.3 1.9   1.7   0.5 2.5   3.1   

< 

0.05 

Female Patients 

 
37 

2.0 
x10-4 

 4.8 
x10-4 

< 
0.05 

1.5  -0.3 0.5 8.6   7.3   
< 

0.05 
-0.9 0.2 0.2 1.6   1.0   0.1 2.1   3.7   

< 

0.05 

ROSC < 15 mins 

 
63 

2.7 
x10-4 

 5.7 
x10-4 

< 
0.05 

1.0  0.3 0.2 8.7   7.7   
< 

0.05 
-0.5 -0.2 0.1 1.4   1.0   0.4 2.5   4.2   

< 

0.05 

ROSC < 30 mins 

 
89 

2.3 

x10-4 

 5.3 

x10-4 

< 

0.05 
1.2  0.2 0.3 8.8   8.1   

< 

0.05 
-0.6 -0.2 0.4 2.0   1.4   0.4 2.5   2.7   0.2 

ROSC > 30 mins 

 
28 

2.0 

x10-4 

 5.3 

x10-4 

< 

0.05 
1.4  -0.1 0.5 8.5   7.2   

< 

0.05 
-0.9 0.3 0.3 2.5   1.5   0.3 2.1   2.2   0.7 

* Results comparison based on per-cohort 
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8.4   Control Design Considerations 

 

 

Hyperglycaemia or high blood sugar (glucose) is prevalent in critical care (Capes et al., 2000, 

McCowen et al., 2001, Mizock, 2001, van den Berghe et al., 2001) which increases the risks 

of further complications and mortality (Capes et al., 2000, van den Berghe et al., 2001, 

Krinsley, 2003) . An analysis summary of OHCA patient, treated with hypothermia shown in 

this chapter suggests that the main intention of glycaemic control on these cohort during cool 

and warm is solely to maintain blood glucose level within normal range (4.4 to 6.1 mmol/L) 

(Plank et al., 2006b), even though the metabolic and physiological conditions are still 

unstable. This is obvious since consistent insulin dosage is given to the patients throughout 

the first 2 days of treatment, while modulating nutrient ensures patients glucose needs to 

support metabolic activities. As a results, majority of blood glucose levels (Table 8.3) are 

recorded at moderate level (6.1 to 8.0 mmol/L), except for block 1 (0-6 hours). 

 

The success in maintaining blood glucose level within 6.1 to 8.0 mmol/L at this stage is 

important since the patients had highly insulin resistant and variable during the first 2 days of 

cool and warm. The difficulties in dealing with these metabolic and physiological 

backgrounds paid off by maintaining blood glucose at these levels before further decrease to 

within normal range. Hence, exogenous insulin and nutrition administration approach for this 

cohort is the key for successful glycemic control. However, the ability of insulin and nutrition 

modulation method to reduce BG level for this cohort does not reflect the mortality statistics 

as shown in the Table 3.4. There are about 45.6% OHCA patient who were not survived after 

undergo the same therapies as mention above. This fact is supported by a study of survival 

rates from OHCA found that 14.6% of those who had received resuscitation by ambulance 

staff survived as far as admission to hospital. Of these, 54% died during admission, half of 

these within the first 24 hours, while 46% survived until discharge from hospital. Of those 

who were discharged from hospital, 70% were still alive 4 years (Cobbe et al., 1996). This 

shows that mortality rate is still high even though glycaemia control is implemented and 

successfully maintaining blood glucose level within 6.1 to 8.0 mmol/L at this stage. The 

question is, besides hyperglycemia what else causing a cardiac arrest patient to increase its 

mortality rate? 
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Referring to the summary results in the Table 8.1-8.3, it shows that glycaemic variability 

(%∆BG) decrease is not significant, implying that there is not much different in glycaemic 

variability between cool or warm for the first 48 hours of treatment (p > 0.05). Since there are 

about 45.6% OHCA patient who were not survived after undergo the same therapies, the 

inability of glycemic control to reduce glycemic variability significantly from cool to warm 

might be the possible cause of cardiac arrest patient’s high mortality rate. This fact is 

consistent with similar studies by Krinsley (Krinsley, 2009), who have showed that increased 

glycaemic variability is associated with mortality in critically ill patients. Additionally, the 

event of hypoglycaemia (BG < 2.22 mmol/L) is potentially increased during rewarming (Lee 

et al., 2013), which is also contributed to higher risk of death (Finfer et al., 2012). 

 

Thus, even though the glycaemic control scheme implemented on these cohort has shown 

successful in maintaining blood glucose level within 6.1 to 8.0 mmol/L throughout the 

treatment from cool to warm, but the fact that only 54.4% survive from this method has 

ruined its reputation. This method is unable to decrease glycemic variability significantly as 

mentioned above. Hence, different glycemic control approach and settings should be 

proposed in order to overcome the problems posed by this cohort.   

 

In order to develop suitable glycaemic controller for OHCA patients, treated with 

hypothermia, the design should consider several problems identified from the above analysis: 

 

i) Very low metabolic activities, but high glycaemic level at initial (cool period), 

which demand too much insulin given during cool period 

 It is not surprised that an OHCA patient, treated with hypothermia will have a very 

high blood glucose level at the initial of cool period. Hyperglycaemia is dangerous 

and demand more insulin externally. However, an overdose insulin infusion might 

increase metabolic variability, which will influence higher glycaemic variability, 

which may cause hypoglycaemia and associated with mortality. Thus, controller 

design should consider higher BG target (Moghissi et al., 2009), and gradually BG 

decrease from cool to warm rather than drastic change. This consideration will affect 

insulin and nutrition administration to ensure safe and reliable glycaemic control. 
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ii) High glycaemic variability due to metabolic variability, which may cause 

hypoglycaemia episode and associated with mortality. 

The event of hypothermia and the first 24 hours of rewarming is critical for an OHCA 

patient since metabolic conditions is unstable and highly variable especially at 

transition period between cool and warm. This may cause hypoglycemia, which is 

associated with mortality (Egi et al., 2006, Bagshaw et al., 2009, Krinsley, 2009). It 

was notable that modulating both insulin and nutrition inputs may achieve good 

control with lesser insulin and reduces hypoglycemic risk. Thus, controllers with the 

ability to adapt patient-specific metabolic conditions and forecast possible future 

parameter values such as blood glucose should be able to provide better modulation of 

insulin and nutrition inputs.  

 

However, the unique metabolic evolution and variability found in OHCA cohort during the 

cool-warm transition period between 18 – 30 hours (Sah Pri et al., 2014)  suggested that 

either higher BG targets (Moghissi et al., 2009) , and/or adding nutritional intake (Suhaimi et 

al., 2010) must be considered, in addition to patient-specific adaptive glycaemia control. 
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8.5   Control Performance Measures 

 

Understanding the difficulties and defining desired controller performance is the first step to 

controller design. A variety of performance metrics have been used in different critical care 

glycaemic studies, with their differences often confounding direct comparisons between 

studies.  These metrics can be summarised as five basic goals: 

 

i) Mean blood glucose level   

 

Mean blood glucose level is calculated over all measurements (Krinsley, 2004) or over 

limited measurements, such as first morning measurement (van den Berghe et al., 2001, Van 

den Berghe et al., 2003). The average is the simplest performance measure and the one used 

in both landmark clinical studies.  However, it provides no further information on glucose 

excursions or tightness of control. In addition, an average value should utilise all blood 

glucose measurements and not just a morning average (van den Berghe et al., 2001), which 

can hide variability and poor control. 

 

ii) Distribution of blood glucose level:   

 

Most studies report an average glycaemic level and standard deviation, assuming blood 

glucose measurements are normally distributed. As a negative blood glucose concentration is 

physically impossible, a log-normal distribution provides a more accurate representation of 

the underlying spread of measurements. Finally, empirical cumulative distribution functions 

provide a framework to display all measurements and allow interpretation of results for any 

desired glycaemic band. 

 

iii) Time in a glycaemic band:   

 

Time in a glycaemic band is calculated as the time or percentage of measurements in a 

specific band, such as 4–6.1 mmol/L (Wong et al., 2006a, Wong et al., 2006b) or 4.5–6.1 

mmol/L (Plank et al., 2006b). Maximising this metric is essentially equivalent to minimising 

the Hyperglycaemic Index (HGI) or area under the blood glucose level curve (Van den 

Berghe, 2004, Vogelzang et al., 2004). This metric provides a surrogate measure of the 

average value, as well as an indication of the tightness of the glycaemic control result.  Using 



142 
 

multiple overlapping or contiguous bands provides a good definition of the total glucose 

distribution under control. 

 

iv) Glucose variability:   

 

Glucose variability measured as the standard deviation or 90% interval over the data. This 

metric has only been employed recently (McDonnell et al., 2005) and measures the tightness 

of blood glucose control around the average or target value. However, it provides no 

indication of the absolute glycaemic levels obtained and some methods assume normal or 

other statistical distributions that may not match the data. Hence, confidence intervals 

determined from the data may prove more useful.    

 

v) Hypoglycaemic episodes:   

 

Hypoglycaemic episodes measured as the number or percentage of measurements that are 

below a defined hypoglycaemic threshold. The typical definition is 2.2 mmol/L, although 

some studies use higher thresholds (Lonergan et al., 2006b, Plank et al., 2006b). Variability 

also captures some of this information when associated with the average or median glucose 

values. More importantly, this measure is a critical indicator of the safety of the control 

methods used. 

 

Finally, clinical end-points such as mortality are a patient-specific outcome and tied to the 

control of glucose on a per-patient basis.  Whole cohort results allow analysis of the full 

glycaemic control data set to assess outcomes such as hypoglycaemia, which has a typically 

low incidence rate but great clinical implications.  Thus, each categorisation method provides 

a different insight into the data, and both are required to clearly describe the performance of a 

particular protocol (Goldberg et al., 2006). 
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Chapter 9: STAR Control Performance Analysis and Virtual 

Trials   
 

 

This chapter presents a comparative study of STAR controller performance over Out-of-

Hospital Cardiac Arrest (OHCA) patients based on general and OHCA-specific stochastic 

models. It analyses the improvement in glycaemic control that can be achieved by these 

stochastic models during treatment, including the evolution of blood glucose and its 

variability. 

   

9.1 Introduction 

 

Cardiac arrest patients in particular have benefited from TGC (van den Berghe et al., 2001), 

but can be highly insulin resistant and variable, especially during the first 24 hours of stay 

(Pretty et al., 2012). Hypothermia or lowering body temperature below 35 degree Celsius is 

increasingly used to treat out of hospital cardiac arrest (OHCA) (Hayashi, 2009, Turk, 2010) 

and these patients often simultaneously receive insulin. During hypothermia, physiological 

and metabolic conditions can be highly variable, unstable and beyond patient-specific 

prediction. The result leads to ad-hoc treatment protocols based primarily on local clinical 

experience.  

  

The development and implementation of glycaemic control for the OHCA cohort is not 

straightforward, as the cohort is known to be highly resistant and metabolically variable, 

particularly during hypothermia and the first 24 hours after rewarming (Sah Pri et al., 2014) . 

However, the OHCA patient analysis summary from Chapter 8 should lead to better 

understanding of patient physiological conditions and its evolution from various perspectives, 

such as metabolic and glycaemic outcomes. Thus, input from that analysis could prove very 

important to develop safer and more accurate glycaemic control in this cohort. 

 

Several design parameters must be considered in designing this glycaemic control algorithm. 

Virtual trial offers the opportunity to explore control strategies in simulation before pilot 

clinical trials (Lonergan et al., 2006a, Chase et al., 2007b) . In particular, the proposed control 

algorithm needs to reduce elevated blood glucose levels in a controlled, predictable manner 
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while directly accounting for external nutrition. The controller must also account for inter and 

intra- patient variability and varying physiological condition. Hence, it must be adaptive 

and/or able to identify changes in patient dynamics, particularly with respect to insulin 

sensitivity. The protocol should also require relatively infrequent (1-3 hours) sensor 

measurements to minimise labour and comply with existing protocols to ensure the method 

developed could be readily implemented in a clinical environment (Chase et al., 2008a, 

Mackenzie et al., 2005). 

 

STAR (Stochastic TARgeting) is a stochastic targeted, model based glycaemic control 

framework (Evans et al., 2012, Evans et al., 2011, Fisk et al., 2012, Le Compte et al., 2009, 

Le Compte et al., 2012) that uses a time varying insulin sensitivity (SI [L/mU/min]) (Chase et 

al., 2010) to provide an adaptive patient-specific response that accounts for both inter-patient 

variability and future intra-patient variability over time. This insulin sensitivity characterizes 

a patient’s current metabolic state, and likely future changes in that state are forecast using 

population based stochastic modelling (Lin et al., 2008). This approach creates a range of 

possible future insulin sensitivity outcomes based on a patient’s current insulin sensitivity. It 

enables a treatment to be selected that best overlaps the range of possible BG outcomes with 

a clinically defined target band, and a prescribed, typically 5
th

 percentile, level of 

hypoglycaemic risk. Detailed descriptions of stochastic model methods and the STAR 

protocol can be found in Section 2.5.2. 

 

The performance and safety of STAR is highly dependent on the effectiveness of the 

stochastic modelling. Poor stochastic forecasting results in poor glycaemic control (Dickson 

et al., 2013). High variability in insulin sensitivity over time and between patients has been 

shown to limit possible performance of glycaemic control in simulation (Chase et al., 2011b, 

Dickson et al., 2012). Conservatively, high variability results in overly conservative 

stochastic models for some critical care patients. The resulting stochastic forecasting bands 

are wide, which may not be representative of the overall OHCA cohort, resulting in lower 

doses of insulin and higher BG levels. To enable better and equally safe control for this 

cohort of patients, the stochastic model used needs to be improved.  
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More specifically, the current STAR controller employs a stochastic model derived from 

adult ICU clinical data from patients treated using the SPRINT protocol. It include all 

diagnoses and all days of stay (Lin et al., 2008, Fisk et al., 2012). Thus, a new stochastic 

model will be developed, specifically for the OHCA cohort, and cool-warm periods. The 

analysis includes blood glucose (BG) level and variability, and control performance in 

treating OHCA patients.   

 

9.2  Subjects and Methods 

 

9.2.1   Patients and Data  

 

This analysis was performed on a cohort of 180 OHCA patients (7812 hours) treated with 

hypothermia, shortly after admission in the Intensive Care Units (ICUs) of Erasme Hospital, 

Belgium and Lausanne Hospital, Switzerland. Patients were on local AGC protocols. BG and 

temperature readings were taken 1-2 hourly. Data were divided into three periods: 1) cool 

(T<35
o
C); 2) an idle period of 2 hours as hypothermia was removed; and 3) warm (T>37

o
C). 

A maximum of 24 and a minimum of 15 contiguous hours for each period were considered, 

ensuring a balance of contiguous data between periods. A summary of the full cohort with 

sub-analysis studies are presented in Chapter 3. 

 

9.2.2 Controller Development and Implementation  

 

The model-based insulin sensitivity parameter SI, drives the dynamics of the blood glucose 

model and has been shown to be independent of the exogenous insulin and nutrition 

administration inputs from which it is identified (Chase et al., 2010). As a results, once a 

patient-specific profile of time-varying insulin sensitivity is identified from clinical data, it 

can be used to simulate and predict blood glucose concentration based on different insulin 

and nutrition control schemes. Such analyses have been used extensively in protocol design 

for adult critical care using the model  (Chase et al., 2007b, Lonergan et al., 2006b)  and 

others (Wilinska et al., 2008). 

 

The clinical implementation procedure for a virtual trial of a model-based controller is shown 

in Figure 10.1. A BG measurement and subsequent controller intervention represents one 

cycle of the loop. The virtual trial procedure replaces the ‘Patient’ with a forward solution of 
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the model using an insulin sensitivity profile previously generated from retrospective clinical 

data. Sensor noise and other variations can be included as required (Lonergan et al., 2006b, 

Chase et al., 2007b) .  

 

 

 

 

Fig. 9.1:   Virtual trial procedure 

 

To create a virtual trial patient, their blood glucose history, along with the administered 

insulin and nutrition history, are used to fit the patient-specific insulin sensitivity profile. This 

 START 

Input fitted insulin 
sensitivity profile 

Take a ‘virtual’ BG 
measurement 

Use a Controller to 
determine new insulin 
& dextrose rates 

Generate a model BG 
curve to use for next 
‘virtual’ BG measurement. 

Save output data 

Produce a figure 
comparing input data 
& simulated trial 

END 

Simulated trial 
complete? 

NO 

YES 

Loop through the 
entire length of fitted 
insulin sensitivity 
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SI profile is then used by the controller to solve Equations 2.16 - 2.22 (Chapter 2) to predict 

blood glucose concentration based on controller specified insulin and nutrition rates. Several 

combinations of infusion rates can be simulated to select the dosage that will most likely 

meet target BG concentration or other criteria. Thus, the model-based controller adapts to the 

current metabolic state of the cardiac arrest patients in real-time.   

 

In this research, virtual trials were carried out over all OHCA cohort by using a clinically 

validated model (Chase et al., 2007b, Chase et al., 2008b, Le Compte et al., 2009) .  Insulin 

sensitivity (SI) generated from each patient is used as the critical marker of a patient’s 

metabolic state, and is assumed independent of the insulin and nutrition inputs. There are 

strong reasons why virtual trials simulation is used extensively throughout these studies: 

i) Virtual trials enable the rapid testing of new TGC intervention protocols, as well as 

 analysis with respect to glycaemic control protocol performance, safety from 

 hypoglycaemic, clinical burden, and the ability to handle dynamic changes in patient 

 metabolic state (Lin et al., 2006, Chase et al., 2008b).  

ii) Virtual patients trial methods presented are validated in their ability to accurately 

 simulate in advance the clinical results of an independent TGC protocol, and directly 

 enabling rapid design and optimization of safe and effective TGC protocols (Chase et 

 al., 2010). 

 

The STAR controller has already fulfilled the control requirements defined in Chapter 8 and 

has already shown its capability to perform tight glycaemic control over general ICU patients 

(Fisk et al., 2012). The controller is patient-specific, effectively manages BG level within 4 – 

7 mmol/L and has an element of prediction. The stochastic features in the controller provide 

the ability to adapt to future patient-specific variations. The algorithm for STAR controller is 

shown in the Figure 2.10. 

 

The new stochastic model for a specific STAR-OHCA controller is developed using this 

retrospective OHCA cohort data. The model is generated from changes in insulin sensitivity 

over this cohort. Hence, it is more specialized for OHCA patients, compared to the current 

stochastic model used by STAR. The stochastic model for this controller uses the best kernel 

density estimation values [c] during cool (c=1) and warm (c = 3), as determined in Chapter 7. 
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Fig 9.2: The STAR-OHCA Controller Algorithm 

New OHCA Patient                   

Patient data with current BG, Insulin 

and Nutrition 

OHCA-STAR         
Controller Interface 

Simulated BG 
       Insulin 
   Nutrition 

 Is this the first 

BG measure? 

Start on standard 

insulin dose until 2 

BG measures are 

available 

Solve ICING model differential 

equations with known SI profile to 

get simulated BG 

Yes 

No 

Fit SI over last 

measurement interval 

using ICING model 

Forecast likely changes in SI 

(Stochastic modelling based on current SI) 

 

S I
 

tn 
Time 

5th 

50th 

95th 

Choose insulin / nutrition           

(Treatment chosen to put 5
th

 percentile 

BG outcome on target band for OHCA) 

 

B
G

 

tn 
Time 

5th 

50th 

95th 

Target band 



150 
 

 

The model-based STAR-OHCA controller is implemented using the same clinically validated 

metabolic system model and stochastic models. The algorithm for STAR-OHCA controller is 

shown in the Figure 9.2. Controller assessment was carried for the following cases: 

 

i)  STAR controller with insulin input only, maintain original dextrose. The controller is 

denoted as STAR 1 throughout the assessment. 

ii) STAR controller with modulating insulin and nutrition/ dextrose over 30% goal feed 

if such patients exist, else insulin input only. The controller is denoted as STAR 2 

throughout the assessment. 

iii)  STAR-OHCA controller with insulin input only, maintain original dextrose. The 

controller is denoted as STAR-OHCA 1 controller throughout the assessment. 

iv)  STAR-OHCA controller with modulating insulin and nutrition/ dextrose over 30% 

goal feed if such patients exist, else insulin input only. The controller is denoted as 

STAR-OHCA 2 controller throughout the assessment. 

 

Results and performance are compared with the retrospective clinical data. 

 

 

9.2.3 Analyses and Metrics  

 

Control performance outcomes are compared and analysed statistically by percentage time in 

the 4-8 mmol/L band and percentage BG > 10 mmol/L. Safety is evaluated in the percentage 

BG < 4.0 mmol/L and number of patients with severe hypoglycaemia (BG < 2.22 mmol/L). 

As the STAR framework is the same in all cases, controller effort is not assessed. These data 

are non-Gaussian and were thus compared using non-parametric cumulative distribution 

functions (CDFs) and non-parametric statistics. All distributed data were compared using a 

Wilcoxon rank-sum test (Mann-Whitney U-test) comparing median values.  In all cases, p < 

0.05 is considered statistically significant.  
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9.3 Virtual Trial Analysis and Discussion 

 

9.3.1 Comparative Analysis with the Retrospective Data 

 

Figure 9.3 shows the cumulative distribution functions (CDFs) of hourly BG level for the 

retrospective data, and the STAR and STAR-OHCA controller combination for the cool (left 

panel) and warm (right panel) periods. Table 9.1 summarizes the BG level results. Table 9.2 

presents a comparative analysis of these controllers. The results show that four controllers 

had significantly lower BG in the warm period (p < 0.05) than the retrospective data. The 

cool periods were similar. 

 

  

Cool   Warm 

  

Fig. 9.3:  Cumulative distribution functions (CDFs) of hourly BG level for the retrospective 

data and the STAR and STAR-OHCA controller combination, both cool (left panel) and 

warm (right panel) periods. 
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Table 9.1: Summary of BG level results for retrospective data, and STAR and STAR-OHCA 

controller combination   

 

Controllers 

Median BG 

[IQR] at cool 

period 

[mmol/L] 

Median BG 

[IQR]  at warm 

period 

[mmol/L] 

% patients had 

higher BG at cool   

[Diff(Cool-

warm)] 

p-value 

STAR Controller 1 

 
7.2 [5.9, 8.5] 5.9 [5.1, 6.9] 75%  

< 0.05 

STAR Controller 2 

 
7.5 [6.1, 9.1] 6.1 [5.2, 7.5] 70% 

< 0.05 

STAR-OHCA Controller 1 

 
6.7 [5.7, 8.1] 5.6 [5.0, 6.7] 70% < 0.05 

STAR-OHCA Controller 2 

 
7.1 [5.7, 8.6] 5.9 [5.1, 7.0] 70% < 0.05 

Retrospective Data 

 
7.4 [6.5, 8.5] 6.5 [5.8, 7.4] 70 % 

< 0.05 

P-values calculated using Wilcoxon rank-sum test   
 

 

Table 9.2: BG level comparative analysis of stochastic based controllers with the 

retrospective data. 

 

BG Level 

Analysis 
 Cool Period  Warm Period 

 [Controllers] 
% Decrease at 

median 
p-value 

% Decrease at 

median 
p-value 

Retrospective vs 

STAR Controller 1            
6.5 

0.22 
13.0 

< 0.05 

Retrospective vs 

STAR Controller 2            
1.7 

0.12 
9.3 

0.05 

Retrospective vs 

STAR-OHCA 

Controller 1            

32.1 0.18 25.2 < 0.05 

Retrospective vs 

STAR-OHCA 

Controller 2            

19.8 0.08 23.2 < 0.05 

 P-values calculated using Wilcoxon rank-sum test   
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Figure 9.4 shows the cumulative distribution functions (CDFs) of hourly BG variability for 

the retrospective data and stochastic based controllers. Table 9.3 summarizes the results. 

Table 9.4 presents the BG variability comparative analysis. While BG variability is slightly 

higher for the stochastic based controllers, the changes are not statistically or clinically 

significant. This variability is likely a result of lowering BG levels further in the warm period 

than the retrospective control was able to accomplish. 

  

 

Cool  Warm 

  

Fig. 9.4: Cumulative distribution functions (CDFs) of hourly BG variability for retrospective 

data and stochastic based controllers, both cool (left panel) and warm (right panel) periods.   
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Table 9.3:  Summary of BG variability results for retrospective data and stochastic based 

patient-specific controllers 

 

Controllers 

Median BG 

variability 

[IQR] at cool 

period 

[%∆BG] 

Median BG 

variability 

[IQR]  at warm 

period 

[%∆BG] 

% patients had 

higher BGV 

during cool 

period 

[Diff(Cool-

warm)] 

p-value 

STAR Controller 1 

[With insulin only] 

-3.9 [-7.5, -1.7] -1.9 [-5.3, 1.5] 35 0.24 

STAR Controller 2 

[With insulin and dextrose] 

-3.9 [-6.6, -1.5] -1.7 [-3.1, 1.5] 30 0.15 

STAR-OHCA Controller 1 

[With insulin only] 

-2.9 [-5.4, -1.7] -1.8 [-3.4, 1.1] 30 0.21 

STAR-OHCA Controller 2 

[With insulin and dextrose] 

-2.9 [-5.2, -1.6] -1.8 [-2.9, 1.1] 30 0.11 

Retrospective Data 

 

-2.8 [-5.7, -0.9] -1.5 [-3.3, 1.0] 30 0.30 

P-values calculated using Wilcoxon rank-sum test   
 

 

Table 9.4:  BG variability comparative analysis of patient-specific controllers with the 

retrospective data. 

 

BG Variability 

Analysis 
 Cool Period  Warm Period 

 [Controllers] 
%  Reduction 

of IQR 
p-value 

%  Reduction  

of IQR 
p-value 

Retrospective vs 

STAR Controller 1            
-36.8 0.34 -43.9 0.51 

Retrospective vs 

STAR Controller 2            
-35.8 0.28 -46.1 0.4 

Retrospective vs 

STAR-OHCA 

Controller 1            

-25.7 0.22 -37.6 0.06 

Retrospective vs 

STAR-OHCA 

Controller 2            

-30.1 0.15 -36.2 0.12 

 P-values calculated using Wilcoxon rank-sum test   
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9.3.2 Control Performance Analysis   

 

Table 9.5 and Table 9.6 presents the summary of STAR, STAR-OHCA and retrospective 

controller performance analysis during cool and warm respectively. This summary compares 

the performance of STAR and STAR-OHCA controller with retrospective or clinical data. 

 

During the cool period, stochastic-based controllers have shown better performance in 

managing glycaemia than retrospective control. These stochastic-based controllers delivered 

a higher percentage of BG within desired glycemic bands and a lower percentage of BG 

within the hyperglycemic band. In contrast, the retrospective control had performed much 

better in ensuring safety and minimizing hypoglycemic events among the cardiac arrest 

patients than other stochastic-based controllers. This outcome is illustrated by lower 

percentages of BG < 4 mmol/L. 

 

During warm period, all controllers have shown some improvement compared to the cool 

period. However, the trend remain the same where STAR controllers have shown better 

performance in managing glycaemia than the retrospective data. This time, they have 

delivered higher percentage of BG within desired glycemic band and lower percentage of BG 

within the hyperglycemic band as compared to the non-stochastic-based controllers.  

 

In terms of glycemic safety, all controllers have shown some increase in percentage of BG < 

4 mmol/L during the warm period compared to the cool period. The increase have also 

increased the number of hypoglycemic events among the OHCA patients for model-based 

controllers, except for retrospective data. Stochastic-based controllers have shown poor 

performance in ensuring safety during warm where percentage of BG < 4 mmol/L has 

increased to 5% and around 4 patients experienced hypoglycemic episode during treatment. 

This has revealed that for OHCA cohort, glycemic variability is increased during rewarming 

or at transition period between cool and warm which is also matched with metabolic 

evolution studies (Sah Pri et al., 2014).  
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Table 9.5:  Summary of STAR, STAR-OHCA and retrospective controller performance analysis during cool period 

 

 

Table 9.6:  Summary of STAR, STAR-OHCA and retrospective controller performance analysis during warm period 

 

Summary of STAR, STAR-OHCA and 

retrospective controller performance analysis 

during  cool period 

 

Retrospective 

Data 
 

STAR   

Controller 1 
  

STAR   

Controller 2 
  

STAR-OHCA 

Controller 1 
  

STAR-OHCA 

Controller 2 
  

Whole cohort statistics:      

Total patients, number (n) 180 180 180 180 180 

Total treatment, hours (h) 3693 3693 3693 3693 3693 

BG Median [IQR],  (mmol/L) 7.6 [6.3, 9.7] 7.1 [5.6,8.9] 7.7 [6.0 , 9.7] 6.1 [5.2, 7.8] 6.3 [5.2, 8.5] 

Hyperglycaemic bands:      

% BG > 10.0 mmol/L  22.8 17.2 22.8 12.0 15.0 

% BG within 8.0 – 10.0 mmol/L  20.8 18.8 22.7 12.0 15.4 

Desired glycaemic bands:      

% BG within 4.0 – 8.0 mmol/L 55.8 61.0 51.6 74.3 68.2 

% BG within 4.0 – 7.0 mmol/L 37.5 44.3 36.4 61.8 56.7 

Safety glycaemic bands:      

% BG < 4.4 mmol/L 1.4 5.5 5.7 4.0 3.6 

% BG < 4.0 mmol/L 0.6 3.1 2.9 1.8 1.4 

% BG < 2.22 mmol/L 0.0 0.04 0.0 0.03 0.0 

No of patients < 2.22 mmol/L 0 1 0 1 0 

Interventions:      

Median insulin rate [IQR] (U/hr) 2.0 3.5 4.0 4.5 6.0 

Median glucose rate [IQR] (g/hr) 4.0 3.9 4.2 2.2 3.3 

Med. glucose rate [IQR] (% goal) 61.2 60.0 64.2 34.2 50.0 

Summary of STAR, STAR-OHCA and 

retrospective controller performance analysis 

during warm period 

 

Retrospective 

Data 
 

STAR   

Controller 1 
  

STAR 

Controller 2 
  

STAR-OHCA 

Controller 1 
  

STAR-OHCA 

Controller 2 
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Whole cohort statistics:      

Total patients, number (n) 180 180 180 180 180 

Total treatment, hours (h) 3760 3760 3760 3760 3760 

BG Median [IQR],  (mmol/L) 6.8 [5.9, 8.0] 6.0 [5.2, 7.1] 6.2 [5.4, 7.5] 5.4 [5.0, 6.3] 5.5 [5.0, 6.6] 

Hyperglycaemic bands:      

% BG > 10.0 mmol/L  8.1 4.4 7.0 2.7 4.4 

% BG within 8.0 – 10.0 mmol/L  17.1 10.6 13.2 6.5 8.7 

Desired glycaemic bands:      

% BG within 4.0 – 8.0 mmol/L 74.0 80.0 74.9 87.5 84.6 

% BG within 4.0 – 7.0 mmol/L 53.5 67.3 61.5 79.7 76.1 

Safety glycaemic bands:      

% BG < 4.4 mmol/L 2.4 8.7 8.0 6.2 4.7 

% BG < 4.0 mmol/L 0.8 5.0 4.9 3.3 2.3 

% BG < 2.22 mmol/L 0.0 0.5 0.3 0.3 0.2 

No of patients < 2.22 mmol/L 0 4 4 4 3 

Interventions:      

Median insulin rate [IQR] (U/hr) 1.0 1.5 2.0 2.0 2.0 

Median glucose rate [IQR] (g/hr) 6.4 4.6 6.1 5.2 6.5 

Med. glucose rate [IQR] (% goal) 97.4 70.6 93.2 80.0 99.4 
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9.3.3 Dealing with Hypoglycaemic Episodes   

 

Figure 9.5 and 9.6 present patient plots who had experienced hypoglycemia after simulation 

with STAR1-OHCA and STAR2-OHCA controller respectively, during warm period.   

 

 

Erasme 128 Lausanne 43 

 
 

Lausanne 57 Lausanne 135 

  

 

Fig. 9.5:  BG control during virtual trial for OHCA patients. These patients had experienced 

hypoglycemia after simulation with STAR1-OHCA controller during warm period.   
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Erasme 128 

 

Lausanne 57 Lausanne 135 

  

 

Fig. 9.6:  BG control during virtual trial for OHCA patients. These patients had experienced 

hypoglycemia after simulation with STAR2-OHCA controller during warm period.   

 

In general, these results have suggested that hypoglycemia have occurred for the first 12 

hours of warm period. This indicates that the sudden drop of insulin sensitivity (SI) before or 

in the first few hours of warm period, followed by continued rise which cause hypoglycemia. 

This result match with the metabolic evolution and variability uniqueness of the OHCA 

cohort, particularly at transition period between cool and warm (Sah Pri et al., 2014). Thus, it 

is suggested that these controller should consider adding nutritional intake (Suhaimi et al., 

2010) and limit the insulin infusion during this period, in addition to patient-specific adaptive 

glycaemia control. In specific, for the first 12 hours of rewarming, set the controller to limit 

maximum insulin dose at 2U or 3U, while adding more dextrose to 20% or 40%. 
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9.4   Summary 

 

Knowing that this cohort has high metabolic variation, the additional element of stochastic 

provides better control. With its capability to predict future BG ranges based on current BG 

level and insulin sensitivity, it allows the controller to select the best possible intervention for 

performance and safety. Thus, results from virtual trials have shown that a STAR controller, 

with cohort-specific stochastic models can significantly improve performance. 

 

The performance of STAR-OHCA controller during cool and warm, with both insulin and 

nutrition inputs is slightly better than the controller with insulin only. By adding nutrition / 

dextrose input, it will elevate higher BG level, which resulted in more BG percentage within 

hyperglycaemic band. Even though the percentage of BG within the desired bands would be 

slightly less, but this approach will improve safety and minimize hypoglycaemic episodes. 

 

STAR-OHCA controller with modulating insulin and nutrition/ dextrose over 30% goal feed 

appears to be the best controller for OHCA patients based on virtual trial simulation. The 

controller has performed well in glycaemic management, while minimizing the number of 

patients who have BG < 2.22 mmol/L to 3 patients only. These patients represent 1.7% of 

OHCA cohort, which is relatively very low for the controller, compared to any published 

protocol, which normally average of 8-15% hypoglycaemic episodes. 
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Chapter 10: Conclusion  
 

 

The work in this thesis presents the development of a complete system for model-based 

glycaemic control in cardiac arrest patients. It covers the analysis of cohort data to proof-of-

concept virtual trials. A valid physiological system model (ICING-2 model) was employed to 

determine patient-specific metabolic state. Prediction and control were assisted by a 

stochastic model of insulin sensitivity variation as part of a STAR framework approach. A 

clinical simulation framework built around trials on ‘virtual patients’ provided an 

environment to optimise protocol development. The finalized system is thus ready for clinical 

validation and eventual use. 

 

10.1     Introduction 

 

Out-of-Hospital Cardiac Arrest (OHCA) patients often experience hyperglycaemia (Neumar 

et al., 2008, Taylor et al., 1994). These patients belong to one group who can be highly 

insulin resistant and variable, particularly on the first two days of stay (Pretty et al., 2012), as 

well as those who may particularly benefit from glycaemic control (van den Berghe et al., 

2001). Therapeutic hypothermia (TH) is often used with OHCA patients to protect against 

brain injury (Eisenburger et al., 2001, Lee and Asare, 2010), which leads to a lowering of 

metabolic rate, reduce plasma insulin, induce insulin resistance and alter blood glucose 

homeostasis (Cueni-Villoz et al., 2011). One of the adverse events associated with 

hypothermic therapy is a decrease in insulin sensitivity and endogenous insulin secretion 

(Hayashi, 2009). Recent studies in adults have shown that a 17% - 45% reduction in mortality 

can be gained if tight glucose regulation is achieved to average levels from 6.0 mmol/L - 7.75 

mmol/L (Chase et al., 2008b, Krinsley, 2004, van den Berghe et al., 2001) . However, such a 

level of tight control is difficult to achieve for the cardiac arrest patients who are already 

highly insulin resistant and variable (Pretty et al., 2012). The goals for this research is to 

develop effective and safe tight glycaemic control for OHCA patient, treated with 

hypothermia. 
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10.2 OHCA Patient Analysis   

 

The OHCA patient analysis in this research studied the physiology and patient background 

per-cohort and per-patient, which involve inputs (external insulin and nutrition), output 

(blood glucose) and metabolic behaviour (insulin sensitivity) during the cool and warm 

periods. A validated ICING-2 model of the glucose regulatory system from adult critical care 

was employed for the case of OHCA patients treated with hypothermia, to create virtual 

patients and analyse metabolic response. Model performance and its accuracy was within 

variations that would also account for dynamic patient evolution. The model thus provided a 

first in-silico result for capturing the metabolic dynamics of OHCA patients treated with 

hypothermia. Its validity and accuracy are equally important, as the results would be used to 

lead to good glycaemic control for this specific cohort. 

 

Analyses of metabolic evolution assessed the metabolic impact of cardiac arrest and 

subsequent hypothermic treatment. In particular, the level and variability of insulin sensitivity 

(SI) over time are presented for the first time and display unique characteristics, specific to 

this cohort. Generally, SI level is much lower during hypothermia and consistently increases 

over time, during both the cool and warm periods. Insulin sensitivity is more variable during 

the cool period and shows contrasting behavior during the cool-warm transition period 

between 18 – 30 hours, which indicates that there are major changes in physiology and 

metabolic conditions at the transition between cool and warm. This is a unique outcome 

never observed in other critically ill cohorts (Sah Pri et al., 2014).   

 

Analyses of glycemic evolution and outcomes of OHCA patients treated with hypothermia 

saw consistently decreasing BG over time, but evidenced greater variability, counter to 

typical trends in the critically ill, where both metrics tend to go down over the first 48 hours 

(Pretty et al., 2012). This trend can result in more insulin demand during hyperglycemia and a 

greater risk of hypoglycemia as variability rises, all of which indicates the need for patient-

specific approaches in each phase. Thus, the outcome of this studies strongly suggest the need 

to consider both control of BG level and minimization of BG variability to improve post-

resuscitation care of OHCA patients treated with hypothermia. 
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The impact of exogenous insulin and nutrition modulation during therapeutic hypothermia 

(TH) on glycaemia outcome has also been studied in this research apart from insulin 

sensitivity and glycemic analysis. Glycemic control during hypothermia and rewarming has 

achieved by modulating dextrose more than exogenous insulin. In view of control 

implications, both exogenous insulin and nutrition show major increases at the transition (18 

– 30 hours), while nutrition is delayed or maintained for another 6 hours after transition, and 

afterward falls steadily by blocks. These trends lead to more difficult control and increased 

risk in these periods. 

 

A stochastic model to provide insulin sensitivity predictions was developed from a set of 

insulin sensitivity data for the OHCA cohort. The model provided conservative prediction 

estimators that resulted in greater coverage than expected from the probability bounds. 

Modifying the data density estimator by introducing a constant scaling factor showed 

appropriate coverage was obtained at approximately 10-50% of the original value. Desired 

prediction performance can be obtained by choosing suitable value of scaling factor for the 

probability bound. Importantly, cool and warm periods showed very different stochastic 

behaviour, further reinforcing the need for cohort specific models in this case. 

 

Finally, these studies all show the need for patient-specific glycemic management to ensure 

good control and safety during treatment. These results could have significant potential 

clinical impact on the metabolic treatment of these patients. As a result, changes in clinical 

therapy are suggested to safely treat these patients, particularly as they transition from cool to 

warm. 

 

10.3 Control Design Requirements and Specifications 

 

The OHCA patient analysis was summarized, where results and analysis from the inputs 

(external insulin and nutrition), output (blood glucose) and metabolic behaviour (insulin 

sensitivity) were gathered to observe the overall situation from cool to warm as well as based 

on time block, 12-hour / 6-hour blocks. This information was used to come up with control 

design requirement and specifications. 
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The main objective of glycaemic control design requirements and specifications is to 

minimize glycaemic variability and hypoglycaemia, while maintaining BG level at desired 

target levels. This new control definitions and clinical settings have led to a new glycaemic 

controller development specifically for OHCA patients, treated with hypothermia. The 

development of a stochastic-based STAR-OHCA controller inherits some methods from the 

STAR framework used previously, but with modifications to the stochastic models, based on 

this retrospective OHCA data. The overall approach is thus a new control method for this 

specific and unique cohort. 

  

10.4 Virtual Trials Validation 

    

Results from virtual trials simulation have shown that stochastic based control such as STAR 

and STAR-OHCA can provide better glycemic management performance for OHCA patients, 

in both the cool and warm periods, compared to retrospective data. In contrast, stochastic-

based controllers may be less able to ensure safety and minimizing hypoglycemic events 

during the cool-warm transition period. However, limiting insulin dosing at this time solves 

this issue. 

 

All controllers are also struggled to minimize hypoglycemic events. These last results show 

that the performance of stochastic based control have limits, but can provide safe and 

effective control of this highly unique metabolic situation.  
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Chapter 11: Future Work  
 

 

The patient analysis, models development and control methods presented in this thesis 

provide a framework for glucose control in OHCA patients, treated with hypothermia. These 

developments open the doors for wider use of tight glucose control as a treatment in highly 

critical care such as cardiac arrest patients with physiological conditions in cool and warm, as 

well as in further research opportunities. 

 

11.1 Reviewing Endogenous Insulin Secretion (Uen) Parameters for the ICING-2 

Model during Cool and Warm 

 

The endogenous insulin secretion model based as a function of BG (Equation 2.45) in the 

ICING-2 model was successfully developed by Pretty (Chase et al., 2007b). Its upper and  

lower  bounds  on  pre-hepatic  insulin  secretion  rates  of Umin  (1000 mU/hr ) and Umax 

(16000 mU/hr) were defined  by (Chase et al., 2010) and (Chase et al., 2008a). The parameter 

k1 and k2 of this model were determined based on distribution of c-peptide and BG samples 

obtained from clinical trials studying sepsis in Christchurch Hospital ICU. However, these 

clinical trials did not consider change of human body temperature will affect the accuracy of 

Uen as well as the ICING-2 model in calculating model-based insulin sensitivity. In particular, 

there was no separation of samples taken between cool and warm body temperature during 

the trials. 

 

Thus, it is recommended that a comprehensive study on endogenous insulin secretion should 

be conducted to validate the endogenous insulin secretion model based as a function of BG 

(Equation 2.45) in the ICING-2 model particularly during cool and warm. It would be best if 

these samples are obtained from cardiac arrest patient treated with hypothermia. The outcome 

results should lead to the ICING-2 model parameter review. 
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11.2 Clinical Trials for Performance Validation 

 

Controller performance is assessed based on virtual trials. The selection STAR-OHCA 

controller for tight glycaemic control refers to virtual trial results. However, these results 

were not validated clinically. Thus, there is a need for validating its control performance 

against real patients by conducting clinical trials against OHCA patients. While do trial, 

additional data from patient could be recorded such as blood pressure, and heart bit, as well 

as sample c-peptide for endogenous insulin secretion analysis during cool and warm. 

 

Additionally, these clinical trials can also validate the accuracy of the ICING-2 model in 

generating model-based insulin sensitivity during cool and warm. The model performance 

can be compared between virtual trial and clinical trial results. Thus, the outcome should be 

able to determine model errors and explore ways of improving these errors separately 

between cool and warm.  

. 

11.3 Investigation of Stochastic Control based on Sub-Cohort Models 

 

The stochastic models presented in this thesis are created using 180 OHCA patients’ 

intensive care data, which include overall cohort and sub-cohorts. Further observations of 

metabolic behaviour between patients sub-cohort were analysed in the sub-chapter 4.3.2 and 

the results showed unique insulin sensitivity variation across each sub-cohort. A summary of 

sub-cohort results based 6 hour block analysis can also be referred to Appendix 1 and 2. 

These studies have helped better understanding of metabolic dynamics for each sub-cohort. 

Thus, advance study on stochastic model and control between sub-cohorts should create the 

opportunity to improve the stochastic based controller problems in reducing BG variability 

and minimizing hypoglycaemic event.  It is recommended that virtual and clinical trials 

should be conducted based on sub-cohorts stochastic model in search for better tight 

glycaemic control (TGC). In addition to that, the outcome of this study should lead to 

identifying better potential illness biomarker for future OHCA treatment and control such as 

ROSCs and diabetes. 
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11.4  Further Improvement of STAR-OHCA Controller 

 

The outcome of research studies have shown that the performance of stochastic based control 

such as STAR and STAR-OHCA have a limit. Even though these controllers were the best 

for effective TGC, but it is too risky to implement on highly variable patients, in particular 

during transition period at warm (Sah Pri et al., 2014). In order to improve the controller, it is 

suggested that: 

  

i)  Combine patient-specific stochastic-based control with targeted control approach, 

particularly in setting the upper and lower glycaemic limit. 

It is noted that for STAR controller, upper and lower limits are set by the stochastic 

model whereas for Targeted controller (Chase et al., 2005, Magee, 2007), both limits 

are set by the end user. With these features, STAR controller is more patient-specific 

and suitable for optimization control. Targeted controller is suitable for robust control 

since the controller is good in enforcing BG values within the desired target range. 

Thus, by combining both features, the controller can behave as patient-specific 

stochastic-based with targeted glycaemic range control. 

 

ii) Applying separate stochastic model method (Thomas et al., 2014), particularly at the 

transition period (rewarming phase) during warm conditions. 

 The 12-hour block approach can be applied during warm period, where a stochastic 

model can be developed solely for the first 12 hours of warm period, followed by 

another stochastic model for the subsequent hours after rewarming. 
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Appendix 1 

Summary of increasing cohort and per patient median SI during cool and warm as per 6-hour blocks for all OHCA sub-cohorts 

SI Level 

analysis 
 [6-hr 

blocks] 

No of 

Patients 

Block 1-2 (C) 

(0 - 6 vs. 6 - 12 hr) 

Block 2-3 (C) 

(6 - 12 vs. 12 - 18 hr) 

Block 3-4 (C) 

(12 - 18 vs. 18 - 24 hr) 

Block 4-5 (C-W) 

(18 - 24 vs. 24 - 30 hr) 

Block 5-6 (W) 

(24 - 30 vs. 30 - 36 hr) 

Block 6-7 (W) 

(30 - 36 vs. 36 - 42 hr) 

Block 7-8 (W) 

(36 - 42 vs. 42 - 48 hr) 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 
% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

% 

Increase 
at 

median 

p-

value 

All 

OHCA 

patients 

 

180 30.6 <0.01 30.4 <0.01 8.9 0.1 8.8 0.2 31.3 <0.01 42.6 0.01 57.4 <0.01 52.1 <0.01 -1.5 0.16 -2.2 0.6 2.8 0.22 9.3 0.4 5.0 0.3 5.3 0.6 

Survived 

Patients 

 

98 33.0 <0.01 26.4 0.05 15.5 0.01 26.6 0.3 28.1 <0.01 31.1 0.03 51.2 <0.01 46.5 <0.01 -1.8 0.4 0.2 0.8 7.4 0.5 4.2 0.6 0.6 0.3 9.1 0.6 

Non-

Survived 

Patients 

82 31.3 <0.01 18.6 0.05 8.2 0.3 18.0 0.4 26.7 <0.01 31.0 0.02 76.3 <0.01 64.3 <0.01 -2.7 0.2 4.1 0.5 -3.4 0.4 0.5 0.4 10.6 0.6 4.6 0.9 

Diabetes 

Patients 

 

23 28.2 0.04 45.3 0.02 4.4 0.3 4.0 0.8 53.0 0.05 50.7 0.3 29.0 <0.01  22.2 <0.01 -25.3 0.1 -6.0 0.7 17.2 0.3 22.4 0.6 10.0 0.3 8.6 0.8 

Non-

Diabetes 

Patients 

157 31.2 <0.01 30.3 0.02 10.3 0.02 7.0 0.2 27.3 <0.01 44.1 0.03 64.7 <0.01 63.9 <0.01 -0.4 0.4 -4.2 0.7 5.3 0.3 9.6 0.5 2.6 0.4 8.4 0.7 

Male 

Patients 

 

143 36.6 <0.01 45.6 <0.01 6.3 0.1 -0.5 0.4 25.2 <0.01 32.0 0.05 61.5 <0.01 55.8 <0.01 -3.2 0.2 -4.0 0.6 7.0 0.2 8.3 0.4 3.2 0.1 11.3 0.5 

Female 

Patients 

 

37 1.0 0.6 7.6 0.5 46.0 0.03 13.6 0.4 47.0 <0.01 79.0 0.1 45.0 <0.01 55.6 0.07 3.6 0.8 -0.4 0.9 -1.3 0.7 10.3 0.8 -9.6 0.4 -5.5 0.9 

ROSC < 

15 mins 

 

63 36.0 <0.01 52.0 0.06 10.7 0.02 18.6 0.2 43.8 <0.01 26.9 0.08 43.6 <0.01 40.1 <0.01 -5.9 0.06 -6.0 0.6 -1.7 0.8 -0.4 0.9 4.0 0.3 12.8 0.5 

ROSC < 

30 mins 

 

89 30.0 <0.01 28.2 0.02 9.7 0.2 24.4 0.5 13.0 0.1 17.0 0.1 72.0 <0.01 78.5 <0.01  0.9 1.0 3.7 0/9 4.4 0.2 16.8 0.3 7.2 0.4 -0.1 0.9 

ROSC > 

30 mins 

 

28 4.2 0.6 25.0 0.2 14.8 0.3 30.0 0.6 22.4 0.1 -14.0 0.3 57.5 <0.01 39.0 <0.01 -6.6 0.4 24.0 0.7 26.0 0.2 -39.0 0.6 3.0 0.7 -2.5 1.0 

P-values are calculated using Wilcoxon rank-sum test   
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Appendix 2 
 

Summary of reductions in the interquartile range and median SI per patient range of hour-to-hour percentage SI change over time during cool and 

warm after as per 6-hour blocks of data for all OHCA sub-cohorts 

 

SI 

variability 

analysis 
 [6-hr 

blocks] 

No of 

Patients 

Block 1-2 (C) 

(0 - 6 vs. 6 - 12 hr) 

Block 2-3 (C) 

(6 - 12 vs. 12 - 18 hr) 

Block 3-4 (C) 

(12 - 18 vs. 18 - 24 hr) 

Block 4-5 (C-W) 

(18 - 24 vs. 24 - 30 hr) 

Block 5-6 (W) 

(24 - 30 vs. 30 - 36 hr) 

Block 6-7 (W) 

(30 - 36 vs. 36 - 42 hr) 

Block 7-8 (W) 

(36 - 42 vs. 42 - 48 hr) 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort analysis Per-patient 

analysis 

Cohort analysis Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 

Cohort 

analysis 

Per-patient 

analysis 
% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

% 

Reduction 

of IQR 

p-

value 

% 

Decrease 

at 

median 

p-

value 

All 

OHCA 

patients 

180 23.4 0.02 36.3 <0.01 15.8 0.9 13.5 0.1 11.7 0.63 26.8 0.03 9.4 0.6 7.8 0.8 -8.5 0.5 -13.5 0.8 13.7 0.4 4.1 0.7 10.7 0.04 19.1 0.03 

Survived 

Patients 

 

98 21.6 0.05 26.5 0.03 13.3 0.03 14.5 0.3 22.4 0.15 28.0 0.05 9.4 <0.01 8.9 0.06 -6.4 <0.01 -12.8 0.08 15.1 0.6 16.4 0.43 17.2 0.9 9.4 0.2 

Non-

Survived 

Patients 

82 28.0 0.9 45.2 0.06 21.5 0.01 16.4 0.2 13.6 0.4 21.6 0.2 25.0 <0.01 24.2 0.03 -15.7 <0.01 -17.8 0.09 15.5 0.6 10.1 0.7 2.8 0.02 24.6 0.06 

Diabetes 

Patients 

 

23 8.0 0.5 -11.4 0.7 35.0 0.5 35.7 0.4 8.0 0.04 35.6 0.2 -28.3 0.1 -125.0 0.08 -13.5 0.3 22.2 0.5 0.7 0.9 20.7 0.5 44.6 0.3 38.1 0.05 

Non-

Diabetes 

Patients 

157 25.0 0.02 42.6 <0.01 14.5 0.7 8.8 0.1 9.6 0.9 28.0 0.06 14.3 <0.01 9.9 0.03 -7.0 <0.01 -7.4 0.08 13.4 0.5 -2.6 0.8 5.5 
0.07 

 
16.3 0.1 

Male 

Patients 

 

143 21.3 0.04 40.0 <0.01 14.2 0.7 17.0 0.08 15.3 0.6 24.0 0.04 4.7 <0.01 3.6 0.06 -8.8 <0.01 -20.0 0.8 14.7 0.6 4.0 0.9 8.5 0.08 21.7 0.03 

Female 

Patients 

 

37 28.7 0.5 15.2 0.8 27.5 0.6 15.0 0.7 -1.3 0.9 22.4 0.4 19.0 <0.01 20.0 0.03 -7.0 0.5 10.5 0.7 14.0 0.5 20.7 0.3 14.1 0.2 5.5 0.8 

ROSC < 

15 mins 

 

63 17.4 0.7 33.8 0.04 16.0 0.8 18.2 0.6 26.3 0.8 27.8 0.1 -48.1 <0.01 -20.8 0.05 13.5 0.2 5.7 0.2 -4.7 0.6 -11.9 0.7 30.0 0.6 26.4 0.08 

ROSC < 

30 mins 

 

89 7.0 <0.01 29.2 0.02 23.5 0.9 15.0 0.1 16.0 0.4 28.6 0.1 24.1 <0.01 10.6 0.02 -20.8 <0.01 -20.0 0.07 20.0 0.7 15.4 0.6 10.0 0.01 15.9 0.2 

ROSC > 

30 mins 

 

28 56.4 0.5 45.0 0.04 5.5 0.5 43.7 0.4 -17.5 0.6 14.1 0.5 40.2 <0.01 24.6 0.04 -30.7 <0.01 -18.5 0.07 14.3 0.7 16.3 0.6 -34.4 0.08 -7.2 0.8 

P-values are calculated using Kolmogorov-Smirnov test   

 


