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ABSTRACT 
 

The Building Research Establishment (BRE) of the United Kingdom has developed a 
simple design method for the determination of the capacity of composite slabs in fire. The 
method, based on ambient temperature large-deflection plastic theory, predicts the capacity by 
calculating the enhancement added by tensile membrane action to the theoretical yield-line 
load of the slab.  Tensile membrane action is a load-carrying mechanism experienced by thin 
slabs undergoing large vertical deflections, where stretching of the midplane produces a 
central area of tensile force balanced by a peripheral ring of compressive force.  The use of 
this mechanism in structural fire engineering introduces safety and economy, as a large 
number of floor beams can be left unprotected.  The method, developed on the assumption 
that the slabs are simply-supported, also assumes that the development of the tensile 
membrane mechanism is maintained at elevated temperatures.  An analytical procedure for 
the determination of this membrane capacity has recently been developed by the University of 
Edinburgh. It argues that the development of tensile membrane action at elevated 
temperatures differs from that at ambient temperature, and that the tensile forces developed in 
the centre of the slab can only be balanced by sufficient anchorage along the slab’s 
boundaries.  Experimental investigations on large-deflection behaviour of simply-supported 
slabs at ambient and elevated temperatures, conducted at the University of Sheffield, have 
confirmed the variation in the mechanism at ambient and elevated temperatures, but have 
identified that the load-carrying capacity can be effectively developed without the horizontal 
anchorage along the slab’s boundaries. 

These observations have led to the belief that thermal gradients, acting alone through 
the depth of the slab, can induce considerable amounts of tensile membrane action. This paper 
therefore investigates this phenomenon in simply-supported thin slabs.  It examines 
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displacements and stresses developed at ambient and elevated temperatures, using the 
Rayleigh-Ritz approach.  Good comparisons are made with finite element analyses. 
 
 
1. INTRODUCTION 
 

Real building fires and full-scale fire tests on steel-framed structures have shown that 
buildings possess inherent fire resistance far greater than their perceived capacities.  The 
survival of buildings such as the uncompleted 14-storey building construction in Broadgate, 
London in 1990 and the Cardington fire tests of the 1990s have led to the understanding that 
conventional methods of protecting all steel members are very conservative1.  In fire, if 
compartmentation is maintained and composite slabs are allowed to undergo large vertical 
deflections and two-way bending, then slabs generate a higher self-sustaining load-carrying 
capacity through a mechanism known as tensile membrane action.  This mechanism, which 
increases its load capacity with increasing vertical deflection, develops as the mid-plane of the 
slab is stretched to produce a central area of tensile force balanced by a peripheral ring of 
compressive force.  The effective utilisation of this capacity in structural fire engineering 
provides sufficient safety and economy, as a greater number of beams in a floor slab can be 
left unprotected 2.  Subsequent to the Cardington tests, the BRE developed a simple design 
method to predict the load-carrying capacity of composite slabs in fire incorporating tensile 
membrane action 3, 4.  The method calculates the enhancement membrane action provides in 
addition to the traditional flexural capacity of the slab, by considering ambient temperature 
conditions.  Failure is based on the formation of a full-depth crack across the shorter span of 
the slab3, 4.  It is assumed that the mechanism at ambient temperature is maintained at elevated 
temperatures3, and an SCI design guide has been produced to facilitate the use of the method1. 

To use the BRE Membrane Action Method in the design of composite slabs in fire, a 
floor plate is divided into square or rectangular panels, as shown in Fig. 1.  Within a panel, the 
 

 
Fig. 1: Rectangular and Square Slab Panels 

 
beams are left unprotected with protected beams on the perimeter2.  The method, which refers 
to observations at Cardington, assumes that the reinforcement across the perimeter of the 
panel fractures, due to large hogging moments 3.  The slab panel is therefore treated as a 
simply supported slab on edges that resist vertical deflection.  At elevated temperatures the 
lower layers of composite slabs are at high temperatures.  Because of the low resistance of 
steel to heat, the contribution of the steel deck to the capacity of the concrete slab is 
negligible.  Tests have also shown that the steel deck de-bonds from the concrete at elevated 
temperatures.  As a result, the effective slab depth providing the necessary tensile membrane 

(a) Rectangular Slab Panel (b) Square Slab Panels 

Unprotected beams 

Protected beams 



capacity is represented as a flat slab3, as in Fig. 2 below.  In the figure, a is the longer span, b 
is the shorter span and h is the thickness. 
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Fig. 2: Flat Slab with its dimensions 

 
Cameron and Usmani5, 6 have proposed a new design method to determine the 

membrane capacity of composite floors in fire.  Their analytical method, developed from 
classical large-deflection theory, is a 3-step process that generates a temperature distribution 
through the slab; consisting of a mean temperature increase and a thermal gradient, then 
determines the vertical deflection and stress-strain distribution due to the thermally induced 
strains and, using an energy method, calculates the membrane capacity of the slab.  The 
method assumes that the tensile forces developed in the slab can only be balanced by the 
provision of anchorage along the slab boundary.  It assumes that this horizontal anchorage 
will be provided by the adjacent slabs, where an interior slab is concerned, but proposes that 
the design of composite beams on the edges of buildings and their connections should account 
for the required lateral restraint to the slabs in addition to the vertical restraint they provide. 

Tests by Foster et al.7, 8on small-scale simply-supported flat slabs at the University of 
Sheffield have shown that the mode of failure of concrete slabs in fire differs from what is 
observed at ambient temperature.  At elevated temperatures, thermal bowing of the slab 
induces double-curvature bending which generates full-depth cracking across the shorter span 
of the slab, which may lead to an eventual yield-line type of failure mechanism7, 8.  The 
observations and the magnitudes of vertical deflections reached in these small-scale tests have 
suggested that thermal gradients acting alone through the depth of the slab can cause 
significant amounts of tensile membrane action in simply-supported slabs.  Contrary to the 
suggestion by the Cameron and Usmani 5, 6, it does not seem to be necessary to provide 
horizontal edge restraint to sustain this load-carrying mechanism. 

The research reported here, as part of a larger investigation into the analytical 
quantification of membrane capacity of simply-supported composite slabs in fire, looks at an 
initial investigation into the effects of these thermal gradients on the development of tensile 
membrane action and the associated stresses, using the variational Rayleigh-Ritz Method.  
The development of tensile membrane action at ambient and elevated temperatures is 
considered, and good comparisons are made with the finite element package Vulcan9-10, 
developed over the years at the University of Sheffield. 
 
 
2. LARGE DEFLECTION PLATE THEORY 
 

Classical plate theory for medium-thick plates assumes that: 
• the deflection of the mid-surface is small compared with the thickness of the plate 
• the mid-plane remains unstrained subsequent to bending 



• lines initially normal to the mid-surface remain normal to that surface after bending 
and stresses normal to the mid-plane are small compared with those in the plane of the 
plate and may therefore be neglected11 

For thin plates undergoing large deflections, the first two assumptions in medium-thick plate 
theory are modified to account for the straining of the mid-surface, due to stretching of the 
plate and the contribution of the out-of-plane deflection12.  The governing equations for large 
deflection theory of plates are defined as 12: 
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F is a stress function such that: 
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and xN , yN  and xyN  are the forces per unit length in the directions x, y and xy, with w, q and 
D being the vertical deflection, the load per unit area and the flexural rigidity of the plate 
respectively.  For a plate whose origin of co-ordinates is at a corner, as in Fig. 2, exact 
solutions to the governing equations of large deflection theory can be obtained if the 
following functions are defined as12: 
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However, approximate solutions for the plate load-deflection behaviour are obtained if 
the variational Rayleigh-Ritz Method is employed12.  The method requires that the 
mechanical strain energy of the plate, considering both stretching and bending, is obtained, 
and the amplitudes of any shape functions used in the generation of the strain and potential 
energies are determined by minimising the total potential energy.  The coefficients 
determined can then be used to approximate the deflected shapes and stresses in the plate.  
The total strain energy and the strains at any point in the slab are given by: 
 

∫∫∫ 



 −

+++
−

= dxdydzvv
v

EV xyyxyx
222

2 2
12

)1(2
γεεεε  (7) 

 

yx
wz

y
w

x
w

x
v

y
u

y
wz

y
w

y
v

x
wz

x
w

x
u

xy

yx

∂∂
∂

−
∂
∂

∂
∂

+







∂
∂

+
∂
∂

=

∂
∂

−







∂
∂

+
∂
∂

=
∂
∂

−







∂
∂

+
∂
∂

=

2

2

22

2

22

2

2
1,

2
1

γ

εε
 (8) 

 



To use the Rayleigh-Ritz Method functional expressions are defined for the 
displacements in the x, y and z directions, such that these expressions satisfy the geometric 
and natural boundary conditions.  For the analyses, the origin is set in the centre of the plate 
(Fig. 3) and, given the symmetry of the problem, quarter-sections are modelled. 
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(a) Full Plate (b) Quarter Section 

Fig. 3: Typical plate with its dimensions 
 
The geometric and natural boundary conditions are: 
 

2
,0 axN x ±==     

2
,0 axM x ±==  

2
,0 byN y ±==     

2
,0 byM y ±==  

22
02

2

2

2 byandaxon
y
w

x
ww ±=±==

∂
∂

=
∂
∂

=  

 
 
3. SOLUTION OF THE LARGE-DEFLECTION PROBLEM 
 
3.1 Research on Solutions of Large-Deflection Plate Problems 
 

Attempts have been made by a number of researchers to approximate vertical 
deflections and stresses of thin plates under large deflections using the principle of minimum 
potential energy.  Berger13 proposed a strain energy equation that ignored the second invariant 
of the mid-surface strains. However, subsequent research established the ineffectiveness of 
this equation for plates with movable boundaries14.  Banerjee and Datta15 proposed a method 
that linearised the total potential energy with an expression, in terms of a factor and the 
vertical deflection, which gave good results if the right factor was chosen.  However, there 
could be no physical justification for the selection of specific values for the factor.  Boresi and 
Turner16 proceeded by maintaining the non-linear energy equations and defining functional 
expressions for the in-plane strains in the x and y directions, and for the vertical deflection.  
Odd-numbered double Fourier series expressions were used for the strains and the vertical 
deflections. 

 
3.2 Solution Adopted  
 

For large deflection of plates, the mid-surface strains depend on the stretching of the 
mid-surface and the contribution of vertical deflection.  Preliminary finite element analysis 
and observations from tests show that, for simply supported slabs subjected to large 
deflections, the edges (including the corners) are pulled-in.  However, the expressions 
proposed by Boresi and Turner16 artificially keep the corners fixed in position, preventing the 
slab from attaining appreciable magnitudes of displacement.  The expressions are modified to 



suit the observations.  The in-plane strain expressions therefore require the use of the full 
Fourier series instead of just the odd-numbered terms. The strains are thus defined as: 
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with the out-of-plane deflection as: 
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4. AMBIENT AND ELEVATED-TEMPERATURE RAYLEIGH-RITZ ANALYSES 
 

Tensile membrane action is deemed to have developed in a thin plate when vertical 
displacements are of the order of the thickness of the plate. Thus, regardless of the type of 
action imposed on the plate, the development of the mechanism can be observed once the 
magnitudes of vertical deflections are about the thickness of the plate. 

The analyses were carried out on quarter-sections of horizontally unrestrained linear-
elastic plates of dimensions 5000mm×5000mm×100mm.  The plates had a modulus of 
elasticity of 18000N/mm2 and a Poisson’s ratio of 0.25.  The software used for the analytical 
study was MAPLE 9.5 (by Waterloo Maple Inc.).  Comparisons were made with the 
geometrically non-linear finite element analysis program Vulcan 9-10, but a linear-elastic 
material was used.  For membrane tractions and stresses, results were taken at Gauss points 
and compared with those obtained from the analytical solution.  The comparisons were made 
with results along 3 lines in the plate. These were along the centre-line, the edge and mid-way 
between these lines (see the legends in Figs. 7 and 13). 
 
4.1 Ambient Temperature Analysis 
 

A 100kN/m2 (0.1N/mm2) load was placed on the plate.  The displacements and 
subsequent strains and stresses were determined.  The horizontal displacements (u and v) in 
the x and y directions are given by: 
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Resulting plate deflections, membrane tractions and stresses are given in Figs. 4-9.  In the 
figures that follow, the continuous lines represent the results from the analytical model while 
the broken lines represent the results from the Vulcan finite-element analysis, as shown in 



Fig. 4.  A legend for each plot is given in Fig. 7 ((a) for vertical displacements, (b) for mid-
plane horizontal displacements, (c) for membrane tractions and (d) for stresses). 
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Fig 4:  Ambient-temperature vertical 

displacements 
Fig 5:  Ambient-temperature in-plane 
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(a) Vertical Displacement (b) In-plane Displacement 
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Fig 6:  Ambient-temperature membrane 
tractions across span 

Fig 7:  Ambient-temperature Legends 
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Fig 8:  Ambient-temperature bottom layer 

stress distribution 
Fig 9:  Ambient-temperature top layer 

stress distribution 
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VULCAN Analysis



4.2 Elevated Temperature Analysis 
 

At elevated temperatures the thermal strain given by Tt ∆= αε  (where α is the 
coefficient of thermal expansion and ΔT = T-T0 is the change in temperature at the depth 
being considered) influences the mechanical strains developed in the plate.  For the analysis α 
is kept constant at 10×10-6/oC.  As the aim is to investigate the effects of thermal gradients 
only, steady state conditions are used and a version of the Vulcan software which maintains 
room-temperature material properties is used for the comparison.  The Young’s modulus of 
the material is therefore kept at 18000N/mm2 in all layers, regardless of the imposed 
temperature gradient.  No loads are imposed on the plate for the elevated-temperature 
analysis.  The linear temperature variation between temperatures T2 on the bottom face and T1 
on the top face is defined as17: 
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Therefore the mechanical strain at any point in the slab is obtained as: 
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The in-plane displacements thus become: 
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Similarly, the displacements and subsequent strains and stresses can be determined.  Results 
for plate deflections, membrane tractions and stresses are given in Figs. 10-15 for a thermal 
gradient of 7°C/mm.  The continuous lines in the subsequent figures represent the results from 
the analytical model, while the broken lines represent the results from the Vulcan finite-
element analysis, as shown in Fig. 10. Legends for the plots are given in Fig. 13 ((a) for 
vertical displacements, (b) for mid-plane horizontal displacements, (c) for membrane tractions 
and (d) for stresses).   
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Fig 10:  Elevated temperature vertical 

displacements 
Fig 11:  Elevated temperature in-plane 

displacements 
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(a) Vertical Displacement (b) In-plane Displacement 

2
a

x

2
b

yN
y 4

by =

2
by =

0=y

yN

yN

 

2
a

2
by

x

4
by =

2
by =

0=y

xσ

xσ

xσ

 

-2500

-2000

-1500

-1000

-500

0

500

1000

0 500 1000 1500 2000 2500

Distance along span (mm)

M
em

br
an

e 
Tr

ac
tio

n 
(N

/m
m

)

y=0

y=b/4

y=b/2

 (c) Membrane Tractions (d) Stresses 

Fig 12:  Elevated temperature membrane 
tractions across the span 

Fig 13:  Elevated temperature legends 

 

-100

-80

-60
-40

-20

0

20

40
60

80

100

0 500 1000 1500 2000 2500

Distance along span (mm)

St
re

ss
 (N

/m
m

2 )

y=0
y=b/4 y=b/2

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Distance along span (mm)

St
re

ss
 (N

/m
m

2 )

y=0

y=b/4
y=b/2

 
Fig 14:  Elevated temperature bottom layer 

stress distribution 
Fig 15:  Elevated Temperature Top Layer 

Stress Distribution 
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5. DISCUSSIONS 
 

The analytical solutions and the Vulcan results are in very good agreement. Fig.4 
shows the ambient-temperature central vertical deflection as 124mm, which is greater than the 
thickness of the slab, confirming the tensile membrane mechanism.  The horizontal 
displacements (Fig. 5) emphasize the existence of a tensile area with a surrounding ring of 
compression.  The central portion of the plate is stretched, but the edges and corners are 
pulled-in towards the centre of the slab, creating the ring of compression.  A plot of 
membrane forces per unit length across the span is shown in Fig. 6.  Tensile forces are 
observed in the middle of the slab, and these decrease in magnitude and eventually become 
compressive forces towards the edge.  Across the boundary, membrane tractions are zero in 
accordance with the set boundary conditions.  Fig. 8 and Fig. 9 confirm the presence of tensile 
and compressive stresses, in the bottom and top layers respectively, of a plate loaded at 
ambient temperature.  It also shows the compressive stresses that develop along the mid-
section of the edge due to the inward movement of the edge; this stress reduces in magnitude 
along the edge, towards the corners. 

The through-depth temperature expression used (Equation 14) combines a mean 
temperature increase with a thermal gradient.  The thermal gradient induces vertical 
deflections, and as Fig. 10 shows, the central deflection from the elevated-temperature 
analysis (126mm) also exceeds the thickness of the plate, indicating the presence of tensile 
membrane action.  A uniform thermal expansion would have produced horizontal 
displacements of 8.75mm along the edge of the plate, but stretching of the mid-regions of the 
plate and the corresponding inward movement of the edges and corners generate the 
displacements shown in Fig. 11.  In similar fashion to the ambient-temperature case, 
membrane tractions are plotted in Fig. 12.  These also show the presence of tensile forces in 
the centre of the plate with compressive forces along the periphery.  When an unloaded slab is 
exposed to heat on its bottom surface, thermal expansion of hotter lower layers against cooler 
upper layers creates compressive stresses in the lower layers and tensile stresses in the upper 
layers (Fig. 14 and Fig. 15). 

For the central region of the plate, where tensile membrane forces are present, the 
method gives a good prediction of the stresses, but fails to do so for the area where in-plane 
stresses are controlled by the presence of the compressive ring.  An investigation into this 
behaviour, conducted on uniformly heated plates, revealed that, due to the limitations of the 
Rayleigh-Ritz approach, complete convergence was only attainable with excessively high 
numbers of strain and vertical displacement expressions.  An automatic solution procedure 
has proved very difficult to implement, as the procedure could not be transformed into a 
numerical process. 
 
 
6. CONCLUSION 
 

The method has shown that differential thermal expansion through the depth of a 
simply-supported slab can induce a considerable amount of tensile membrane action.  It has 
also proved that it is not necessary to design edge beams and their connections to provide 
lateral restraint as the compressive ring develops, irrespective of the horizontal restraint along 
the boundary.  The next step in the project is to investigate the influence of these thermal 
gradients and restraints along the boundary on the development of membrane action.  It is 
hoped that this research will help establish the true mechanism of tensile membrane action in 
composite slabs at high temperatures, so that the necessary steps can be taken to harness this 
self-sustaining load-carrying mechanism. 
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