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SUMMARY:

The paper discusses modelling of cyclic stressrstysahaviour of soil, in particular a simple modle&t can
produce a desired stiffness and hysteretic damfzin@ given strain level as observed in laboratesting is
formulated. The unloading-reloadinglationship is developed for total stress seissiiee response analysis with
appropriate damping at large strain. The constiéuthodel employs a hyperbolic equation as the bmwkb
curve, and uses a modification of the extended Mpasinloading-reloading relationship leading to eotr
measured modulus reduction and damping curves wimadusly. A quasi-static cyclic loading of insieg
amplitude is used to demonstrate the model’s perdoce and its capability to allow improved modejlof the
magnitude of energy dissipation based on an exjetiah program on native sandy soils from Christchur
New Zealand.
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1. INTRODUCTION

The dynamic response of soil deposits beneathea @itmmonly referred to as site response, hasréfisant
influence on the ground motion hazard of engineesedctures. The properties that typically needbo
determined in order to characterize a particuldrsite include shear modulug, and material damping ratib,
amongst others. Shear modulus represents the sfiffess of the soil and can essentially be carsid as the
slope of the shear stress - shear strain relafijpresid is denoted as tangent shear mod@uslt can also be
approximated as degree of inclination of a loogphie case of dynamic loadings as illustrated in féguand in
this case, it is known as secant shear mod@yd)amping ratioh, is a measure of the proportion of dissipated
energy to the maximum retained energy during alsicgcle of shear deformation or simply a meastire o
breadth of the loop (Fig. 1).
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Figure 1. Secant shear moduluS,, and material damping ratib, during cyclic loading



The relationship between secant shear mod@ysand shear strain amplitude is commonly charasdrby
shear modulus reduction curves (e.g. Fig. 2a). Ats® nonlinearity in the stress-strain relatiopshhich leads
to energy dissipation per cycle, results in theemak damping ratioh increasing with shear strain (Figure 2b).

1 — T T T T T 20 T T T T
3 L i i
1S L 4 i
O 0.8+ - .
o F 1 15 =
3 | I ]
2 06/ 1 £ 1
o V.0 — N
= 1 = -
§ I ] g’ 10 -
5 i
& 04 1 E 1
E i 1 al 6 i
'c—é 0.2+ : )
B I (a) % h :
=z F o — B
0 Lol Lol Ll R RET 0I el ) Ll ol L
0.0001  0.001 0.1 0.1 1 00001 0001 001 0.1 1
Shear Strain, % Shear Strain, %

Figure 2. (a) Normalized modulus reduction curve and, (b) nomlimaaterial damping ratio curve

Mathematical models, which are capable of predictiail response in future possible earthquakesteanaired

in order to theoretically understand local siteceff. Depending to the desired level of accuraclysamplicity,
three general broad classes of soil models have pegposed, namely equivalent linear models, cydtal
stress nonlinear models (Hardin and Drnevich, 1%&@nberg and Osgood, 1943), and advanced constituti
models which incorporates pore pressure generffiooz, 1967, Momen and Ghaboussi, 1982, Dafali8@g861
Kabilamany and Ishihara, 1990, Gutierrez et al9319Cubrinovski and Ishihara, 1998). Equivalente#n
analysis is the simplest and most widely employeldesie but has several important limitations. Wherea
advanced constitutive models can represent marailsieff dynamic soil behaviour, but numerous pairanse
which must be determined through laboratory anid fiests limit its use for many common practicabigems
(Kramer, 1996).

Cyclic total stress nonlinear models can approx@éiyasimulate the actual stress-strain path duripgic
loading and therefore represent the shear stresfdtie soil for engineering purposes. These modetserally
have a backbone curve and a set of unloading-rieigadles which can represent the total stress\beta of

the soil (e.g. Kramer, 1996). Generally, the shafpthe backbone curve is determined by the maxinshear
modulus, G, Shear strengthr., and several curve-fitting parameters. Darend20i0() and Phillips and
Hashash (2009) proposed a modified hyperbolic éguas a backbone curve based on an earlier work by
Hardin and Drnevich (1972):
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wheret is shear stresy;is shear straing and are dimensionless factors. In the original forrogmsed by
Hardin and Drnevich (1972) = = 1. In this model, the reference strain is defias:
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Using equations (1) and (2) the normalized modtédsiction curve can be evaluated as:
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A practical problem with the definition of referenstrain, , is that the shear strength is often not available
Therefore, a pseudo-reference strain is proposdzetased for low to moderate strain levels (Stewearal.,
2008). The pseudo-reference strain is defined faol@boratory modulus reduction curve as the shiainsat
which G/Gax = 0.5 (Figure 2.a). This definition is resulted from lypolic fits of modulus reduction curve
according to equation (3). The advantage of udiegpseudo-reference strain is that in the absefhc®terial-
specific tests, empirical relationships exist tedict it from other state parameters (Darendel130a and S8

are fitting parameters generally taken<dsand 1, respectively. i value is adopted as greater than one, the

. al y% .
shear stress reaches a maximum valye, at % (Fig. 1a).
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Figure 3. (a) Effect ofa on hyperbolic curve, (b) a hyperbolic backboneveland Masing unloading-reloading
branches

Masing rules or modified Masing rules are oftendus®e conjunction with the backbone curve to desetibe
unloading-reloading behaviour of soil. In the mastif Masing rule, if a stress reversal occurs abiatplefined
by (va 1o, the stress-strain curve is identical to the shajpbackbone curve but enlarged by a facton sf 2
(Fig. 3b), which is given by:
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If the unloading or reloading curve exceeds the imamr past strain and intersects the backbone cutve,
follows the backbone curve until the next revepsaht. If an unloading or reloading curve crossesialoading
or reloading curve from the previous cycle, thehdatlows that of the previous cycle.

By applying Masing rule to a hyperbolic model, it&ra (1996) showed that the damping ratio at esicin
level can be obtained as:
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It can be seen that damping ratio convergesnie=-2).637 when shear strain amplitude becomes isfinlarge.
The magnitude of damping predicted by Masing rsiledt supported by experimental test results obseirvthe
course of this study and values reported by otfi¢asdin and Drnevich, 1972, Ishihara, 1996, Darénge01,
Stewart et al., 2008). Figure 4.a illustrates thgihg Masing criteria the area of the hysteresip lie greater than
that measured by experimental test data resultimayérestimation of damping ratio especially fogtt@r shear
strain level (Fig. 4b). The overestimation of hyste damping induced by employing Masing critecan
unconservatively lead to underestimation of somé¢hefseismic response parameters especially imititeer
frequency range (Stewart et al., 2008, Silva e28i00).

A solution of the aforementioned damping problenthwiasing criteria has been proposed by Phillipd an
Hashash (2009). Based on an earlier work by Dafer@2@01), Phillips and Hashash (2009) developed a
reduction factor to modify the unloading-reloadieguations from those of the Masing criterion. Equa6
presents the functional form for the damping reiductactor proposed by Phillips and Hashash (2009):
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Figure 4. Comparison of experimental and Masing-based catdlaysteresis loop (a), damping ratio curve (b)
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whereG,, is secant modulus corresponding to the maximurarshigain levely, andp,, p, andps are non-

dimensional coefficients selected to obtain thet Ipessible fit with the target damping curve. ThHamping

reduction factor given by equation (6) is usedhie tinloading-reloading relationship given by eqrat(7)

(Hashash et al., 2010):
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While functional form in equations (6) and (7) p® an improved match between the experimental and
mathematical damping curves, the tangent modultiseapoint of reversal reduces with the reductextdr and

therefore is not equal G, This is inconsistent with experimental evidenoe gand behaviour under cyclic
loading (Hardin and Drnevich, 1972, Hardin, 1978).

r=F(y,)| 2 (7)

Given a soil model for symmetrical loadings, Py&879) proposed an alternative unloading-reloadirlg n



which the Masing coefficient can deviate from two, in order to extend the Magsiodel for use with irregular
loadings. A factorn greater than two allows simulation of cyclic haritg, while cyclic softening can be
modelled by assuming a value ofless than two (Lo Presti et al., 2006). The objecbf this paper is to
illustrate that the same idea can be employed a&ilyilto simulate any target damping ratio curvennydifying
the Masing criterion.

2.HYSTERETIC DAMPING FORMULATION

The backbone describing the monotonic stress-steairve is modelled using the modified hyperbolic
relationship stated in equation (1) in whiBhs assumed to be equal to 1. The cyclic behavimuynloading-
reloading branches, has been modelled using a iddifersion of Masing criterion. A parametes, is
introduced for the unload-reload curves. Moreotteg,parameten, is allowed to vary depending on the desired
level of hysteretic damping.

To preserve the simplicity of the solution propossdMasing (1926), as well as achieving a betteeagent
between the experimental and modelled hysteretiopiteg, two conditions need to be satisfied. Fithg

unloading-reloading curves for symmetrical periaga cyclic loadings should form a closed loopdny level

of shear strain and moreover, be similar in shapihat of the initial loading curve. Second, thegant shear
modulus on each reversal point should assume & ‘egjual to the initial tangent modulus for theiahitoading

curve,Guax

To meet the first condition, unload-reload equatiane required in which the shear stress at relvposats be
equal but with opposite signs; in other words, paints A(4s, 7,) and B¢, -7) should fall on the unloading
and reloading branches. This can be confirmed pgding equation (1.4) and using equation (1) taiob

G, V—nya
a = 7 (8)
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It is obvious that pointé andB both fall on the above curve considering a Masioefficientn, to be equal to
two. However, this may not be true for an arbitreajue ofn. Solving equation (8b) fog and for a general-
value, and entering poiin the equation yields:
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Therefore, any adopted combinationgzindn which satisfies equation (9) will result to a @ddoop hysteresis
(Fig. 5). The next step would involve the areahsf loop to be in agreement with material dampinyeuthe
former representing a measure of the hystereticpifagn A bestn value can readily be obtained by iteration,
matching the damping ratio from experimental tesults and the one calculated by unloading-rel@pdite.
Oncen is adopted, curvature variabgecan be obtained using equation (9).

It can be shown that the derivative of the unloaldad equation at the reversal points is equahéoinitial
tangent modulus and hence the second conditionimsmalid.

For shear strain levels larger than reference stteain yy, coefficienta in the backbone curve can be shown as
an alternative parameter to be considered aloniy Masing coefficienn in order to match the experimental
damping curve with the mathematical model.
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Figure 5. Varying Masing coefficienty, and curvature parametey,

Hence to summarise, the proposed constitutive motildes equation (1.1) for the monotonic behaviand
equations (1.8) and (1.9) for the unloading-relogdéquations in order to improve the match betwinen
experimental and modelled hysteretic damping.

3. COMPARISON OF THE PROPOSED RELATIONSHIP WITH EXPERIMENT

A series of cyclic drained triaxial tests have beenducted on sand obtained from Fitzgerald Avesite in
Christchurch, New Zealand. The confining pressues Wept constant at a value of 100 kPa for allstest
examined below. Compression-extension loading eyelere imposed by a Servo controller at a constant
frequency under drained conditions. The force a@pptd the specimen and the displacement at theftdipe
specimen was recorded in addition to cell presantevolume change.

The moist tamping method was used for specimenapagipn. A total of 10 layers of predetermined diizs

of moist soil were worked into a prescribed thickneCO, was percolated up through the specimen using
pressure to promote full specimen saturation. Datad water was flushed through the sample andadhwple
was then saturated using a 100 kPa back pressdriefarovernight. The soil sample was considerddrated
when the SkemptoB-value was equal to or more than 0.96. Each specimses consolidated isotropically under
confining pressure’. = 100 kPa. The specimens were then loaded witll@ Bz sinusoidal cyclic loading.
Standards of Japanese geotechnical society (2@@0)alboratory shear tests are employed as guidebne
measure the dynamic properties of tested material.

Figure 6 illustrates the normalized modulus reduciénd material damping curves are plotted onlycfean
sands with varying relative density. To obtain @&, results from experimental results the secant Ytng
moduli obtained from cyclic triaxial tests were gerted to secant shear moduli assuming Poissotits vae=
0.1.

In order to simulate the experimental modulus rédaccurves shown in Figure (6a) with the hyperboli
equation given by equation (3), least square en@thod is employed to estimate the required parensat the
hyperbolic model. Each curve presented in Figued {§ considered separately in this case; therefaraique
set of parametersi(y;) for hyperbolic equation is defined for each test.

Hardin and Drnevich (1972) illustrated that consitg some assumptions, a relationship between stesin
and damping can be derived. Hence a similar hygierbquation can be established for material dagpimve:
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whereh., is the maximum value of the damping ratio whistsiiggested as between 25% and 33% for clean
sands. A good fit between the equation (10) anceriztdamping curve requires evaluating a differsett of
curvature coefficientg and reference straip. Therefore, a similar approach to the modulus e¢gdn curve is
taken to fit equation (10) to experimental dampiegults. It is to be noted that equation (10) iegplihat at a
very low strain range the damping ratio is closez&vo, hence small strain damping must be sepgratel
accounted for in the viscous damping matrix forgidomain solutions; this is shown with the solitelin Fig.
7b. This is in contrary to laboratory findings Hsstrated by dotted points in Fig. 7b and alsovatndy Stokoe

et al. (1999); but since the overdamping due toleyiipg Masing’s rules occurs at higher strain rasgeis
sufficient for the purpose of this work to use #®ve equation.
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Figure 6. (a) Normalized modulus reduction, and (b) matetaahping curves for Christchurch sand

Figure 7 illustrates a comparison between the st&®in and damping ratio-strain obtained using th
aforementioned relationships in comparison to erpemtal results for a particular specimen, FBS.
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Figure 7. Comparison of hyperbolic stress-strain back-bonmgec(a) and material damping curve (b) with
experimental test results for test FB-8



4.RESULTS

A symmetrical cyclic shear strain time series wapleyed to evaluate the performance of the proposedel.
Subsequent strain cycles are obtained as twiceartiglitude of the previous cycle (Fig. 8a). Basedtloa
imposed shear strain time series in Fig 8a, tharséteess response in Fig 8.b was computed usingrticedure
explained in section 2.
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Figure 8. (a) Input shear-strain time history, (b) computhdas stress time history for test FB-5

Fig. 9 presents stress-strain hysteresis loopsrgereby employing either Masing criteria or maetifiMasing
criteria explained above. The solid line represémtsmodified Masing behaviour developed here apdiashed
line of the conventional Masing rule. It is illusted that the breadth of the loops for higher sttavels are
smaller for modified relationships implying loweysteretic damping. This difference between the tmethods
in damping is explicitly illustrated in Fig. 9b, weh also illustrates the experimental test resditeaxial results
for a particular test (FB-5) are represented bynapecles. It can be seen that modified Masing rslleapable of
capturing experimental damping ratios quite well.

It is to be noted that the tangent shear modulubeatreversal points are equal to initial shear uheg] G-
This is not affected by increase of cyclic shemistamplitude.
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Figure 9. (a) Comparison of stress-strain hysteresis loaps(la) damping ratio curves using Masing and
modified Masing criterion



The Masing coefficienty, is not constant and therefore varies with inceafsshear strain level. In Figure 10, n-
values are plotted against shear strain for sahdgar@ble relative densities. A smoother plot denobtained
assuming smaller shear strain increments in thetitime history introduced in Figure 8a. An n-vakrmaaller
than two is required to circumvent the overdampésge introduced by employing Masing criterion.

It is envisaged that a similar procedure can beezhout for different types of soils having vargioonditions in
order to develop a relationship betweewnalue and shear strain amplitude. The computedlues can then be
employed directly in 1-D site response analysdsetter simulate the experimental modulus and dagngimves
for a wide strain range. A functional form can l#ained forn-value in terms of shear strain, relative density,
fines content etc. carrying out similar procedures.
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Figure 10. Masing factor versus shear strain level for différdean sand with variable relative density

5. CONCLUSIONS

A new simple equation was proposed for modellinguofoading-reloading branches of cyclic stressistra
hysteresis loops for sandy soils. The proposed ggies the hyperbolic model as the backbone tesemt the
modulus reduction curve. A simple cyclic shearisttame series was employed to compute the sheassss
and evaluate the performance of the model.

It was shown that the equation is capable of camjuany desired level of energy dissipation asrection of
shear strain in contrast to conventional modelsctvhiend to overestimate damping. A paramegecan be
obtained for any given shear strain amplitude itleorto match the damping produced by the numenalel
with the observed behavior in the laboratory. Tfeee both the modulus reduction and damping cucessbe
simulated simultaneously.

It was illustrated that Masing coefficient should be smaller than two, in order to matchhtysteretic damping
with the measured strain dependent damping.
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