

Efficient Algorithms for the Maximum Convex Sum

Problem

A thesis

submitted in partial fulfilment

of the requirements for Degree

of

Doctor of Philosophy

in the

University of Canterbury

by

Mohammed Thaher

Supervision Committee

Prof. Tadao Takaoka, University of Canterbury Supervisor

Prof. Jennifer Brown, University of Canterbury Co-Supervisor

Department of Computer Science and Software Engineering

 University of Canterbury

2014

This thesis is dedicated to

my parents, wife and daughters for their endless love and constant support.

Abstract

his research is designed to develop and investigate newly defined problems: the

Maximum Convex Sum (MCS), and its generalisation, the K-Maximum Convex Sum (K-MCS),

in a two-dimensional (2D) array based on dynamic programming. The study centres on the

concept of finding the most useful informative array portion as defined by different parameters

involved in data, which is generically expressed in this thesis as the Maximum Sum Problem (MSP).

This concept originates in the Maximum Sub-Array (MSA) problem, which relies on rectangular

regions to find the informative array portion. From the above it follows that MSA and MCS belong to

MSP. This research takes a new stand in using an alternative shape in the MSP context, which is the

convex shape.

Since 1977, there has been substantial research in the development of the Maximum Sub-

Array (MSA) problem to find informative sub-array portions, running in the best possible time

complexity. Conventionally the research norm has been to use the rectangular shape in the MSA

framework without any investigation into an alternative shape for the MSP. Theoretically there are

shapes that can improve the MSP outcome and their utility in applications; research has rarely

discussed this. To advocate the use of a different shape in the MSP context requires rigorous

investigation and also the creation of a platform to launch a new exploratory research area. This can

then be developed further by considering the implications and practicality of the new approach.

This thesis strives to open up a new research frontier based on using the convex shape in the

MSP context. This research defines the new MCS problem in 2D; develops and evaluates algorithms

that serve the MCS problem running in the best possible time complexity; incorporates techniques

to advance the MCS algorithms; generalises the MCS problem to cover the K-Disjoint Maximum

Convex Sums (K-DMCS) problem and the K-Overlapping Maximum Convex Sums (K-OMCS) problem;

and eventually implements the MCS algorithmic framework using real data in an ecology application.

Thus, this thesis provides a theoretical and practical framework that scientifically contributes

to addressing some of the research gaps in the MSP and the new research path: the MCS problem.

The MCS and K-MCS algorithmic models depart from using the rectangular shape as in MSA, and

retain a time complexity that is within the best known time complexities of the MSA algorithms.

Future in-depth studies on the Maximum Convex Sum (MCS) problem can advance the algorithms

developed in this thesis and their time complexity.

T

i

CONTENTS

ABSTRACT
LIST OF ALGORITHMS
LIST OF TABLES
LIST OF FIGURES
ACKNOWLEDGMENTS

Chapter One: INTRODUCTION .. 1

1.1 Thesis Goals and Motivation ... 3

1.2 Ph.D. Contributions .. 3

1.3 Ph.D. Publications ... 5

 1.3.1 Journal articles ... 5

 1.3.2 Conference contributions ... 5

 1.3.3 National conferences .. 6

 1.3.4 Other participations .. 6

1.4 Awards and Funds ... 7

1.5 Internships/Research visits .. 7

1.6 Outline of the thesis ... 8

Chapter Two: BACKGROUND INFORMATION .. 10

2.1 History of the Maximum Sub-Array (MSA) problem ... 11

2.2 Overview of the MSA problem in 1D and 2D .. 15

 2.2.1 Finding MSA in 1D .. 15

 2.2.2 Finding MSA in 2D .. 16

 2.2.2.1 Strip separation ... 16

 2.2.2.2 Distance Matrix Multiplication ... 18

2.3 Chapter summary .. 24

Chapter Three: K-DISJIONT MAXIMUM CONVEX SUM PROBLEM 26

3.1 The convex shape: a new approach in the MSP context ... 27

 3.1.1 Mono-directional convex shape algorithm: The algorithm of T. Fukuda et al. 32

 3.1.2 The simplified convex shape algorithm: bidirectional approach 34

ii

 3.1.2.1 Mathematical proof of the simplified algorithm using bidirectional computation..37

 3.1.2.2 The backtracking technique to determine the WN convex shape boundaries 38

3.2 The newly developed algorithm for the K-Disjoint Maximum Convex Sums (K-DMCS)
 problem ... 40
3.3 Experimental analysis .. 43

 3.3.1 Results and interpretations .. 46

 3.3.1.1 The convex shape and the rectangular shape algorithms: Algorithms (7) and (2).. 46

 3.3.1.2 The K-DMSA and K-DMCS algorithms: Algorithms (9) and (10).. 49

3.4 Chapter summary... 52

Chapter Four: K-OVERLAPPING MAXIMUM CONVEX SUM PROBLEM 54

4.1 Problem definition ... 55

4.2 The newly developed algorithm for the K-Overlapping Maximum Convex Sum (K-OMCS)
 problem .. 57
4.3 The K-OMSA and K-OMCS algorithms experimental comparisons 61

4.4. Chapter summary.. 63

Chapter Five: APPLICATION OF THE MCS (K-DMCS ALGORITHM) TO AN ECOLOGY
PROBLEM .. 66

5.1 Background .. 67

5.2 Data collection and processing .. 69

5.3 Results and discussion ... 72

5.4 Chapter summary... 77

Chapter Six: CONCLUDING REMARKS AND FUTURE WORK .. 79

6.1 Concluding remarks and future work .. 80

References ... 84

Appendix .. 93

iii

List of Algorithms

Algorithm (1): Kadane’s algorithm O(n) ... 15

Algorithm (2): 2D version of Algorithm (1) (the extended Kadane’s Algorithm); O(m2n) 17

Algorithm (3): Takaoka’s Algorithm; O(n3(log log n/log n)1/2) time ... 19

Algorithm (4): 1D prefix sum algorithm; O(n) time .. 19

Algorithm (5): W shape Algorithm ... 30

Algorithm (6): T. Fukuda’s WN shape algorithm O(n3) .. 34

Algorithm (7): The simplified WN convex shape algorithm O(n3) .. 35

Algorithm (8): Backtracking Algorithm .. 39

Algorithm (9): Bae and Takoaka’s algorithm for the disjoint case using the rectangular

shape; O(Kn3) ... 41

Algorithm (10): K-Disjoint Maximum Convex Sums algorithm (O(Kn3)) 43

Algorithm (11): K-Overlapping Maximum Convex Sum algorithm using the K-tuples

O(Kn3) ... 58

iv

List of Tables

Table 3.1: The mean running time results for finding the maximum sums and the shape
boundaries obtained using the convex shape Algorithm (7) and the rectangular shape
Algorithm (2). Sample size N = 100. The running time is measured in seconds 47

Table 3.2: Results of the Shapiro-Wilk test for testing the normal distribution of the
differences between Sconv and Srect for all six matrix sizes. ... 48

Table 3.3: The dependent-samples t-test results (N = 100) of the paired differences
(µconv - µrect) of the various matrix sizes using the convex shape Algorithm (7) and the
 rectangular shape Algorithm (2) ... 48

Table 3.4: Descriptive results for the maximum sums and running times (in seconds)
obtained using the K-DMSA (Algorithm (9)) and K-DMCS (Algorithm (10)); N = 30. K = 1, 2,
and 3 are, in order, the first, second, and third located regions. .. 50

Table 3.5: Results of the Shapiro-Wilk test for testing normal distribution of the differences
 between Sconv and Srect for all six matrix sizes on K = 1, 2, and 3. .. 51

Table 3.6: The dependent-samples t-test results of the paired differences (µconv - µrect)
of the various matrix sizes using K-DMSA and K-DMCS algorithms; N = 30. K = 1, 2, and 3
are, in order, the first, second, and third located regions. .. 51

Table 4.1: Descriptive results of the maximum sums and running times (in seconds)
obtained using the K-OMSA and K-OMCS algorithms; N = 30. K=1, 2, and 3 are, in order, the
first, second, and third located regions ... 61

Table 4.2: Results of the Shapiro-Wilk test for testing normal distribution of the
differences between Sconv and Srect for all six matrix sizes on K=1, 2, and 3 62

Table 4.3: The dependent-samples t-test results of the paired differences
(µconv - µrect) of the various matrix sizes using K-OMSA and K-OMCS algorithms; N = 30. 63

v

List of Figures

Figure (1.1): Maximum sums obtained from using two shapes in a matrix: rectangular
shape and convex shape. The algorithms used to illustrate this example have been adapted
from those that appear in the following chapters. .. 2

Figure (2.1): An example showing Kadane’s algorithm in 1D. ... 16
Figure (2.2): An example demonstrating Kadane’s algorithm in 2D 17
Figure (2.3): MSA of the area having indices (k, l), (i, j) using the prefix sum method in 2D .. 20
Figure (2.4): The column-centred problem (ACentre_column) .. 21
Figure (3.1): (a) W shape; (b) N shape ... 28
Figure (3.2): The WN convex shape ... 28
Figure (3.3): The first case of the W shape solution ... 29
Figure (3.4): The second case of the W shape solution .. 29
Figure (3.5): The third case of W shape solution .. 30
Figure (3.6): (a) to (d) figures depict the four remaining cases of the WN shape, out of
seven (Figures 3.3, 3.4, 3.5, 3.6), required to compute fWN using the mono-directional
 WN convex shape algorithm (T. Fukuda’s WN shape algorithm). .. 33

Figure (3.7): Process for solving the column-centred problem by using DMM 36
Figure (3.8): An illustration of the convex shape region.. 37
Figure (3.9): (a) the WN convex shape a + b + c; (b) the WN convex shape x + y + c 38
Figure (3.10): An illustrative example of the process of the original K-DMCS algorithm. This
shows the first, second and third regions of the located disjoint maximum sums. 42

Figure (3.11): Descriptive comparisons of the mean maximum sums obtained using the
convex shape (Algorithm (7)) and the rectangular shape (Algorithm (2)) algorithms. Sample
 size = 100. .. 46

Figure (4.1): Finding the K-OMSA by using the rectangular shape, where λ, the maximum
sum represents one of the maxima before finding the Kth overlapping maximum sums
Figure (4.2): The K overlapping maximum convex sums in a two-dimensional array where λ
represents one of the maxima before finding the Kth overlapping maximum sums. 57

Figure (5.1): Macro-invertebrates collected in streams on Mambilla Plateau between
October 2009 and March 2010. (a) Mayfly (Leptophlebiidae);(b) Stonefly (Perlidae); (c)
 Caddisflies (Hydropsychidae). ... 71

Figure (5.2): Matrix (1) includes the normalised data collated from the Mambilla Plateau
(Nigeria). In the matrix are three variables: substrate index, temperature, and numbers of
 macro-invertebrates. .. 73

Figure (5.3): Matrix (2) includes the normalised data collated from the Mambilla Plateau
 (Nigeria) taking into account three variables: DO%, temperature, and number of macro-
invertebrates. It also shows the first maximum sum by running the Algorithms (9) and
(10). The convex shape is more flexible in covering various data distributions and manifests
a greater maximum sum in comparison to the rectangular shape, which not only returns
 a smaller maximum sum, but also contains less useful data (noise). 75

vi

Figure (5.4): A comparison between the maximum sum outcomes of the rectangular shape
 and convex shape algorithms. Algorithm (10), the convex shape, achieves the maximum
sum S4=12 at K = 4. Algorithm (9), the rectangular shape, achieves a maximum sum S5=9
 at K = 5, and a maximum sum S8=3 at K= 8. The convex shape is more flexible than the
rectangular shape in covering data distribution) .. 76

vii

Acknowledgments

he words “thank you” are not a strong enough statement of my gratitude. The work on this

thesis has been an inspiring, often exciting, sometimes challenging, but always interesting

experience. It has been made possible by many other people, who have supported me.

I wish to express sincere thanks to my Ph.D. supervisors. Thank you to Professor Tadao

Takaoka for providing the inspiration for this research, and for his patience, guidance and support of

my work. His passion for Algorithm Engineering and Formal Methods Research; dedication to ‘good

science’; enthusiasm to challenge the advanced algorithms and an unrelenting attention to detail are

an inspiration to me and to all of his students. Thank you also to my co-supervisor, Professor Jennifer

Brown, for her guidance and support during this project.

Thank you to all of my family and friends for your unwavering support and encouragement.

A special thanks to my parents, Shaban Atieh Thaher and Mudellah Abdel Fattah Thaher, for their

emotional support and encouragement throughout this Ph.D. and my entire education. Thank you

also to my brothers and my parents-in-law for their endless support and encouragement. Special

thanks to my wife, Balsam Obaid, I wish to express my deepest gratitude for her constant support,

understanding and love. Thank you to my lovely daughters (Deemah and Razan) for the cheerful

moments during my study; their smiles kept me going forward.

To all of my colleagues, both staff and students, in the Department of Computer Science and

Software Engineering (CSSE) at the University of Canterbury. You have made my time in the

department that much more enjoyable. I feel honoured to have been a part of this department.

I would like to thank both Associate Professor Jon Harding and Danladi Umar from the

Freshwater Ecology Research Group (FERG), University of Canterbury, for supporting my research

and for their contribution in the application section of my thesis. I would also like to thank all the

people behind our collaborative work with biological scientists. Thanks go to Dr Hazel Chapman,

Director of Nigerian Montane Forest Project Ngel-Nyaki and Professor M.J., Winterbourn for

identifying the benthic invertebrate’s fauna in the Nigerian streams.

T

viii

Thanks to Linda Morris, Pete McHugh, Katie McHugh, Frank Burdon, Milen Marinov

(University of Canterbury) and Misa Zubairu (NMFP) who provided additional assistance at various

stages during our collaborative work. Support for this collaboration came from the University of

Canterbury, Gombe State University and the Education Trust Fund, Nigeria.

Thank you to the programme of Optimization and its Applications in Learning and Industry

(OptALI), and the people who facilitated my research visit to the University of Göttingen in Germany

(August 2012): Professor Anita Schöbel, Professor Jutta Geldermann, Dr. Marie Schmidt, Dr. Marc

Goerigk, Ruth Hübner, Robert Schieweck, and Sybille Dühring. Thank you to Professor Horst W.

Hamacheris, Professor Stefan Ruzika, Dr. Lara Turner and Bob Grün, of the Technical University of

Kaiserslautern, Germany who also facilitated my research visit in September 2012. Thanks also to

Professor Jesper Larsen from Technical University of Denmark for his supported of my visit in

October 2012. Special thanks to Professor Matthias Ehrgott, Olga Perederieieva, Antony Phillips

and Siamak Moradi from Auckland University for their support during the OptALI Summer School in

Germany on Optimization with a focus on Robust Optimization.

Special thanks to Dr Sung Eun Bae for his support and valuable research. Many thanks to the

following people: Professor Takeshi Fukuda, Professor Yasuhiko Morimoto, Professor Shinichi

Morishita, Professor Takeshi Tokuyama, Dr Elena Moltchanova, Philippa Drayton, and ChiangHau

Tay.

Last, but not least, thank you to the Royal Society of New Zealand, Canterbury branch

(RSNZ), and OptALI for their financial contributions to attend and present at the conferences and

workshops.

I couldn’t have done this without all of you. Thank you!

ix

Chapter One
[Introduction]

1 | C h a p t e r (1)

Introduction

The Maximum Sub-Array (MSA) problem is used to find the most useful informative array

portion that associates with different parameters involved in data [1, 2]. MSA was initiated to

resolve pattern recognition problems and used as a likelihood estimator (the most-likely area for

certain property) to find the brightest portion in an image [3]. Since then, the topic has been

expanding to solve other problems that stem from the original concept, such as those associated

with finding the ranking of the maximum sums. Let us define the Maximum Sum Problem (MSP) as

one that finds some portion of the given array that maximises the sum in it. In this sense MSA

belongs to MSP.

MSA can be computed for one-dimensional (1D) and two-dimensional (2D) arrays that have

positive and negative numbers. The 1D case can be called the Maximum Sum Segment Problem

(MSSP) which can be solved in linear-time using Kadane’s algorithm [1]. This involves a process of

selecting a segment of consecutive array elements that have the largest possible sum compared to

all other segments in presented data [1, 2]. In the two-dimensional case, the task is to find a 2D sub-

array that has the maximum sum compared to all other segments in a matrix [4].

Finding an MSA solution with optimum time complexity is being investigated by researchers

worldwide and has been a challenge over the past three decades [1-41]. Since 1977, various

techniques have been developed to advance algorithms to find a solution with the optimum

computation time. For example, finding MSA exhaustively took O(n6) time in an earlier work [3]. In

1998, the time complexity was reduced to subcubic time O(n3(log log n/log n)1/2) by applying the

Distance Matrix Multiplication (DMM) method [12], and its algorithm was then simplified in 2002

[14]. It was not until 2012 that an O(n3log log n/log2 n) time was achieved [41].

In previous research focused on MSA, algorithms for searching rectangular regions have

been primarily used for finding the maximum sub-arrays [1-41]. There has been almost no

investigation of using alternative shapes in implementing the MSP framework. In this research, the

MSP approach takes a new turn to explore and investigate such a component, using a shape that will

potentially improve the maximum sum outcomes for the MSP problem. It uses the convex shape.

This new approach provides a significant step towards discovering alternative robust methods to

solving MSP problems. The newly defined problem in this research is called the Maximum Convex

2 | C h a p t e r (1)

Sum (MCS). Below is a simple example to explain the difference between the maximum sums

obtained using MSA and MCS approaches, as shown in Figure 1.1.

62397531

451419923

24528652

33945322









 19 30

Figure (1.1): Maximum sums obtained from using two shapes in a matrix: rectangular shape and
convex shape. The algorithms used to illustrate this example have been adapted from those that
appear in the following chapters.

In addition to investigating a new shape in the MSP context, this research advances the

Maximum Convex Sum problem to cover generalised cases. The research establishes the K-Disjoint

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS) problems.

The newly designed algorithms achieve O(Kn3) time. Furthermore, using real datasets from ecology,

this research implements the newly developed K-DMCS method to finding K-maximum threshold

values for investigating the relationships between different environmental elements. We

collaborated with the Freshwater Ecology Research Group (FERG) at the University of Canterbury to

investigate the effects of change in land use on benthic stream communities in the highland tropical

streams of Nigeria. The use of an algorithmic approach in a real-life study contributes to both the

study of ecology and the study of MSP in a practical context.

The organisation of this chapter is as follows: Section 1.1 deals with the thesis goals and

motivation; Section 1.2 discusses the specific contributions of this study; Section 1.3 outlines the

publications that have resulted from this research; Section 1.4 acknowledges the awards and funds

received as a part of this project; Section 1.5 lists the internships and research visits; and Section 1.6

provides a very brief chapter outline for the thesis.

The MSA approach has been used to find
the maximum sum in this matrix by using
a rectangular shape algorithm. Maximum
sum = 19

The MCS approach has been used in our
research to find the maximum sum in this
matrix by using the convex shape
algorithm. Maximum sum = 30

3 | C h a p t e r (1)

1.1 Thesis Goals and Motivation

The main goal of this thesis is to investigate, develop and evaluate a framework for solving

the MCS problem. This framework can be broadly applicable and used to find the maximum sub-

arrays in 2D as the most promising portions in datasets. The framework is based on the challenging

dynamic programming approach. Previously, MSA frameworks have approached the problem of

finding maximum sums using rectangular regions. This is explored and widely covered within many

different research areas [1-41]. There is significant scope, however, for other shapes to be used in

the MSP context; this has been rarely discussed in previous studies. The new research scope can

potentially enhance outcomes for the MSP. The newly designed algorithms for the MSP using an

alternative shape can take into account achieving time complexity that is in the current range of the

MSA algorithms’ time complexity using the rectangular shape. Thus introducing an alternative

framework has been the primary motivation for our investigation of the MCS problem and more

specifically our proposition of using the convex shape in the MSP framework. This opens up a new

research area in terms of using alternative shapes in the MSP context.

The specific goals of this thesis are to:

 Develop an independent algorithmic framework to find regions that maximise the sum

within the same time complexity of the current algorithms for MSA.

 Explore and integrate various techniques to speed up the computation time for the newly

developed algorithms.

 Generalise the MCS problem to cover the K-Disjoint Maximum Convex Sums (K-DMCS) and

the K-Overlapping Maximum Convex Sums (K-OMCS) problems in 2D, having the best

possible time complexity.

 Evaluate the proposed MCS algorithms using experimental analysis.

 As a practical application, implement the theoretical algorithmic framework using real data

in an ecology application.

1.2 Ph.D. Contributions

The main contributions of this Ph.D. thesis are:

 Investigating and utilising the convex shape in the MSP context and creating a new MCS

framework. This research simplifies the algorithm of T. Fukuda et al. [42] to find the

maximum convex sum using the bidirectional approach. The simplified algorithm, using the

4 | C h a p t e r (1)

convex shape to find the maximum sums, returns a sum at least as large as that returned by

maximising over all rectangular regions (Chapter 3).

 Evaluating the simplified version of the MCS algorithm and selectively applying pre-

processing and post-processing techniques to boost the applicability of the newly defined

algorithms. The prefix sum method enhances the algorithms’ performance by bypassing

surplus addition operations. The backtracking technique, to determine the shape

boundaries, permits the generalisation of the newly developed MCS algorithm to cover cases

involving computing the K maximum sums (Chapter 3).

 Developing new algorithms using the MCS framework and generalising those for the K-

Maximum Convex Sum (K-MCS), which finds the K maximum convex regions in an input two-

dimensional array. This research develops two K-MCS algorithms to cover the K-Disjoint

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS)

concepts. The former requires the convex regions to be disjoint while the latter covers the

case where the convex regions to overlap – both algorithms run in O(Kn3) time (Chapters 3

and 4).

 Analysing experimental implementation of the devised algorithms using simulated data. In

this research experimental comparisons are made between algorithms developed as part of

the newly defined MCS problem and their corresponding counterparts of the traditional

MSA algorithms (Chapters 3 and 4).

 Applying and assessing the validity of the defined MCS problem in a real-life application. The

K-DMCS algorithm is applied to an ecology setting to find the K-maximum regions that

represent the impact of relationships in data. The research investigates the effects of change

in land use on benthic stream communities in highland tropical streams of Nigeria. The

results of this research are compared with those obtained using the traditional method

(rectangular shape in the K-DMSA). Using the K-DMCS algorithm, biologically significant

relationships between the studied variables have been successfully identified, which

essentially demonstrates the robustness of the tested approach (Chapter 5).

5 | C h a p t e r (1)

1.3 Ph.D. Publications

1.3.1 Journal article

 M. Thaher, T. Takaoka, (2013) Efficient algorithms for the Maximum Convex Sum problem.

Submitted to The Computer Journal.

1.3.2 Conference contributions (peer-reviewed papers)

Materials from this thesis have been published in peer-reviewed articles in International

Conferences, ranked ‘A’1. The ranking is based on the Excellence in Research for Australia 2010 (ERA

2010) evaluation conferences worldwide list, which can be found following this link:

http://www.core.edu.au/. The publications are:

 M. Thaher, T. Takaoka, (2010) An efficient algorithm for the k maximum convex sums. In

Proceedings of the International Conference on Computational Science (ICCS), 1-2 June, 2010,

Amsterdam, Netherlands, Procedia CS 1(1): 1474-1483 (2010), (Elservier). (Chapter 3)

 M. Thaher, T. Takaoka, (2011) An efficient algorithm for computing the K-Overlapping

maximum convex. In Proceedings of the International Conference on Computational Science

(ICCS), 1-3 June, 2011, Singapore, Singapore, Procedia CS 1(1): 1288-1295 (2011), (Elservier).

(Chapter 4)

 M. Thaher, T. Takaoka, (2013) Application of the maximum convex sum algorithm in

determining environmental variables that affect Nigerian highland stream communities. In

Proceedings of the International Conference on Computational Science (ICCS), 5-7 June, 2013,

Barcelona, Spain, Procedia CS 1(1): 909-918 (2013) (Elservier). (Chapter 5)

 M. Thaher, T. Takaoka, (2012) Improved algorithms for the K overlapping maximum convex

sum problem. In Proceedings of the International Conference on Computational Science

(ICCS), 1-3 June, 2012, Omaha, USA, Procedia CS 1(1): 754-763 (2012) (Elservier). (Chapter 6)

1
 The Australian Research Council (ARC) regards ‘A’ conferences as equivalent to A* and A journals

http://www.arc.gov.au/era/era_journal_list.htm
http://www.arc.gov.au/era/era_journal_list.htm

6 | C h a p t e r (1)

1.3.3 National conferences (papers peer-reviewed by students)

 M. Thaher, T. Takaoka, (2008) Maximum Convex Sum Problem. In the 6th New Zealand

Computer Science Research Student Conference, University of Canterbury, Christchurch, 14-

16 April 2008 (NZCSRSC 2008).

 M. Thaher, T. Takaoka, (2010) A study of the Maximum Convex Sum Problem. In the 8th New

Zealand Computer Science Research Student Conference, Victoria University, Wellington, 12-

15 April 2010 (NZCSRSC 2010).

 M. Thaher, T. Takaoka, (2011) Efficient algorithm for the Maximum Convex Sum Problem. In

the 9th New Zealand Computer Science Research Student Conference, Massey University,

Palmerston North, 18-21 April 2011 (NZCSRSC 2011).

 M. Thaher, T. Takaoka, (2012) Improved algorithm for the K-OMCSP. In the 10th New Zealand

Computer Science Research Student Conference, University of Otago, Dunedin, 11-13 April

2012 (NZCSRSC 2012).

 M. Thaher, T. Takaoka, (2013) Application for the K-DMCSP. In the 11th New Zealand

Computer Science Research Student Conference, Waikato University, Hamilton, 15-19 April

2013 (NZCSRSC 2013).

1.3.4 Other participations

 S. Weddell, T. Read, M. Thaher, and T. Takaoka, (2013) Maximum subarray algorithms for

use in astronomical imaging. Journal of Electronic Imaging, vol. 22, 2013.

 M. Thaher, T. Takaoka, (2013) Investigating Efficient Algorithms for Maximum Convex Sum

Problem. Presented at a symposium of Optimization and its Applications in Learning and

Industry (OptAli), 27-31 August, 2012, Gottingen, Germany.

 M. Thaher, T. Takaoka, (2010) MCSP show case. 2010 Departmental Post-Grad conference,

University of Canterbury, Christchurch, 31 August-1 September 2011.

7 | C h a p t e r (1)

 M. Thaher, T. Takaoka, (2011) Investigating efficient algorithms for the maximum convex

sum problem. 2011 Departmental Post-Grad conference, University of Canterbury,

Christchurch, 1- 2 September 2011.

 University of Canterbury Show Case 2010.

 University of Canterbury Show Case 2013.

1.4 Awards and Funds

 Best Ph.D. presentation in COMS2013, ICCS 2013, Barcelona, Spain.

 The Royal Society New Zealand fund, Canterbury branch (RSNZ).

 The Optimization and its Applications in Learning and Industry (OPTALI) program fund.

1.5 Internships/Research visits

 August, 2012: Research visit to the Institute for Numerical and Applied Mathematics -

Research Group Optimization at Georg-August University Goettingen, Goettingen,

Germany. I attended the OptALI Summer School where I received training which helped to

optimise my frame work and understand different methods.

 September, 2012: Research visit to the Department of Mathematics. A research visit to

Technical University of Kaiserslautern in Germany - Optimization research group. I attended

workshops as well as presented my research.

 October, 2012: Research visit to the Department of Management Engineering. A research

visit to Denmark Technical University - Optimization research group. I received training on

different methods in optimisation.

8 | C h a p t e r (1)

1.6 Outline of the thesis

Chapter 2 – MSA Background: covers a comprehensive review of the MSA theoretical and

algorithmic frameworks.

Chapter 3 – The K-DMCS problem: describes the newly defined MCS problem and its generalisation

to cover the disjoint case.

Chapter 4 – The K-OMCS problem: describes the generalisation of MCS to cover the overlapping

case.

Chapter 5 – Application of the MCS (K-DMCS algorithm) to an ecology problem.

Chapter 6 – Conclusion and future work: provides a summary of the thesis contributions, limitations

and future directions.

9 | C h a p t e r (1)

Chapter Two
[Background information]

11 | C h a p t e r (2)

This chapter provides a comprehensive review of the MSA theoretical and algorithmic

frameworks. The chapter is organised as follows: Section 2.1 discusses the state-of-the-art of the

Maximum Sub-Array (MSA) problem; Section 2.2 reviews the MSA problem in 1D and 2D; Section 2.3

provides a summary of the main points in the chapter.

2.1 History of the Maximum Sub-Array (MSA) problem

MSA is an approach that many researchers have investigated since 1977 and is an area of

research with a plethora of publications [1-41]. Researchers worldwide have contributed to the

advancement of this topic with research from IBM, AT & T Bell Labs, Kenstrel Institute, Cornell

University, University of Minnesota, University of Alabama, National Taiwan University, University of

Tokyo, University of Central Florida, University of Washington and University of Canterbury.

UIf Grenander at Brown University initially encountered problems in pattern recognition in

1977 [3] and these problems led to more investigation into MSA algorithms [2]. One of the

challenges that Grenander faced was finding the maximum sum over all rectangular regions of a

given m × n array of real numbers. The maximum likelihood estimator of a certain kind of pattern in

digitised pictures is represented by the maximum sum or maximum sub-array [3]. Grenander

initiated the computation of the maximum sum by implementing an algorithm of O(n6) time for an

array size of n × n [3]. Following this algorithm, in an attempt to reduce the time factor and to gain

more understanding of the structure, he simplified the problem to 1D [3]. The input is a one-

dimensional array of n real numbers; the output is the maximum sum obtained in any consecutive

portion (sub-array) of the input. Grenander managed to obtain O(n3) time using a one-dimensional

array, but eventually terminated his research on the maximum sub-array to solve the problem of

pattern matching, because of the high complexity of the attempted algorithms. The seed that he

planted, however, has proven to be fruitful.

Following Grenander’s attempts, Shamos and Bentley have improved the time complexity to

O(n2) and later implemented an O(n log n) time algorithm. Kadane [4] and Gries [6] presented other

linear time algorithm solutions to the time complexity problem. The two-dimensional version (n x n

array) to solve the MSA problem has been achieved in O(n3) by extending Kadane’s algorithm [2].

Smith presented an O(n) time for the 1D MSA problem, and achieved an O(n3) time solution for the

2D problem using the divide-and-conquer technique [7].

12 | C h a p t e r (2)

The current state-of-the-art in terms of the optimal time for the 1D version is O(n) [2]. The

time complexity of O(n3) for 2D MSA has been the best achievable time until Tamaki and Tokuyama

[12] devised an algorithm which achieves a subcubic time of O(n3(log log n/log n)1/2). They achieved

this time by adopting the divide-and-conquer technique, and applying the fastest known Distance

Matrix Multiplication (DMM) algorithm [5]. Takaoka later simplified this algorithm and presented an

even faster DMM algorithm [14]. More recently, Han and Takaoka achieved O(n3log log n/log2 n)

time in [41].

Bae studied the MSA problem using the rectangular shape in 2D [15-21]. He has presented

methodologies and techniques to speed up computation time for the K-Overlapping Maximum Sub-

Array (K-OMSA) and the K-Disjoint Maximum Sub-Array (K-DMSA) problems. Bae designed mesh

algorithms for the 2D MSA and K-OMSA problems [15, 16]; established O(K2 + n logK) time for the 1D

K-OMSA through sampling before candidate generation [17]; applied the sampling for the 1D K-

OMSA [18] to the 2D case; and designed a tournament for the next K-DMSA and extended this to the

2D K-DMSA [19].

Bengtsson and Chen studied K-OMSA using the rectangular shape in sorted and non-sorted

orders of the final K maximum sums and proposed an O(n + k log n) time algorithm for ranking the K

maximum sum sub-sequences [22-24]. In a further study, Chen et al. [25, 26] achieved the

equivalent complexity of O(n + K log min (K, n)) time. Bashar and Takaoka developed an algorithm to

generalise the MSA by using average case analysis whilst utilising the rectangular shape [27]. In a

different study, Ruzzo and Tompa [28] suggested a linear time algorithm that finds the K-DMSA in a

one-dimensional array by locating all high scoring segments.

In addition to the aforementioned research, T. Fukuda and his colleagues from IBM

discussed data-mining techniques based on the association rules of two numeric attributes and one

Boolean value in an acceptable region [42]. They proposed an algorithm to compute regions that

give optimal association rules for support and confidence. Their main aim was to generate two-

dimensional association rules that represented the dependence on a pair of numeric attributes. For

example, the relationship between the attributes will depend on the objective condition [42]. T.

Fukuda’s study was based on Agrawal and his colleagues’ research to find all confidence rules in vast

data [43]. Improved versions of Agrawal and his colleagues’ algorithm have been reported [44, 45],

in which the rectilinear convex shape was investigated for the first time. Furthermore, T. Fukuda et

al. [46-53] considered three classes of geometric regions: x-monotone regions, y-monotone regions

13 | C h a p t e r (2)

and rectilinear regions. The key findings of this study, based on thorough investigations, indicate the

limitation of using the x-monotone and y-monotone regions. These shapes are likely to over fit the

training database dramatically, and therefore fail to give a good prediction on the unseen dataset

[42, 46, 53, 54]. Sprague’s research [29] attempted to investigate extracting optimal association

rules over numerical attributes by using the anchored convex shape. His technique, however,

involves a limited shape that lies at the edges of the matrix and does not take into account that the

solution may lie in the inner portions of a 2D array. Researchers continue to use the rectangular

shape in research and applications of the MSA.

K. Fukuda and Takaoka’s research discussed applications for using 2D MSA algorithms [30,

31]. In their study, they used a K-DMSA algorithm in a health and environmental science setting.

They investigated the associations between particulate air pollution and acute respiratory hospital

admission counts in Christchurch, New Zealand [55-60]. Data gathering involved collecting daily

measurements of particulate air pollution with a diameter less than 10 μm (PM10) over a four year

period (1998-2002). Additionally, counts of acute respiratory hospital admissions for all age groups

from 0 to 98 years in Christchurch were collected. The morbidity rate was extracted from hospital

records of residents within a 2 km radius of the air pollution monitoring site, which was located in a

residential area. The K-DMSA detects associations among different (PM10) levels and the variation

according to different age groups, gender, and different seasons or weather changes. They stated in

their study that the K-DMSA is potentially an encouraging methodology to investigate how various

air pollution levels are related to health or climate, and this can contribute to policy making with

regard to the problem of air pollution. This study shows the potential for a transition from traditional

statistical approaches to finding rectangular portions which represent data associations.

In addition to the above study, MSA algorithms have been applied to other real-life

applications [32-35]. One such example is the application of K-DMSA algorithm to investigate suicide

rates in association with several factors [32]. This is used to identify a range of thresholds to explain

the maximum associations of the suicide rates, age groups, and social factors (including

bankruptcies, unemployment, divorce and orphan numbers). The study was conducted in

collaboration with the Ministry of Health in New Zealand, and the data have been collected for over

20 years (1983-2003). The study detected the range of threshold criteria (maximum sums) to

describe the maximum associations of the study variables. This included determining associations for

specific ranges and factor levels by introducing a new approach: changing the weight parameter, w.

The weight w is subtracted from the given array elements. This is normally the mean value, but for

14 | C h a p t e r (2)

fine tuning various w values are used in [31, 32]. The general trend is that association patterns

obtained from suicide rates have been found to be similar across the studied social factors for

females and males. The study reveals that despite the general trends, there are differences between

the two genders. For example, the age group for the suicide range in females has a wider age range

(15-64 years) compared to the males (15-59). In this study, using the K-DMSA has led to detection of

detailed threshold associations between the suicide age groups and levels of the study factors [31,

32].

Another study that used MSA algorithms is an investigation of the spatial distribution

patterns of hawthorn, grown over a 100 year period, on Porters Pass in the South Island of New

Zealand [33]. Results show how the weed’s distribution pattern has changed over the 40 year period

from 1966 to 2008. MSA algorithms have further been used in other areas such as bioinformatics,

genomic sequence analysis (GSA), computer vision (CV) and data mining (DM). Readers may refer to

[4, 35, 36] for details regarding these algorithms.

More recently, MSA algorithms were applied to optical and radio telescope applications (e.g.

wavefront detection and slope estimation, and efficient image processing) [34]. MSA algorithms

were used to develop a centroid estimator for improving the computational efficiency to

compensate for atmospheric turbulence in real-time. These algorithms improved performance in

terms of the number of clock cycles compared to using the serial processing configuration. The input

image size becomes limited, however, because to achieve the improved performance there is an

increased cost of the MSA algorithm time complexity. The MSA algorithms were also applied to

astronomical images, which were obtained for the Australian square kilometre array pathfinder

(ASKAP) project. There was a need to find MSA portions of the radio telescope images to efficiently

classify source objects. The use of MSA algorithms demonstrated operational gain, but this has a

limitation in terms of the present loading method, and is still under investigation [34].

The preceding paragraphs outline the history and the state-of-the-art research and

development of MSA problems and algorithms; the succeeding sections address the background and

conceptual information of MSA algorithms.

15 | C h a p t e r (2)

2.2 Overview of the MSA problem in 1D and 2D

2.2.1 Finding MSA in 1D

In a given array a[1..n] containing real numbers with a mixture of zero, positive and negative

numbers, the maximum sub-array contains consecutive array elements having the greatest sum. Let

ℱ = max(S), where max(S) is the operation that selects the maximum sum of contiguous elements in

a list S, which is given by Equation (2.1),

 S = ∑ a[x] | 1 ≤ i ≤ j ≤ n ……………………. (2.1)

There are different algorithms that can compute the maximum sum in linear time O(n) [4].

Kadane from Carnegie-Mellon University invented the first algorithm to solve the MSA problem in

O(n) time [1, 2]. His well-known algorithm, Algorithm (1), uses the accumulation/reset method to

find the largest maximum contiguous subsequence amongst all other segments in a 1D array of real

numbers.

Algorithm (1) scans a given 1D array (a[1..n]), accumulating a tentative sum in t. In the case

of t being greater than the current maximum s, s will be updated by t. If t becomes negative, it will

be reset to zero. The variables k and l keep track of, respectively, the beginning and ending positions

of the sub-array that has the sum s. The indices (k, l) and maximum sum s are initialised to zero. If all

 Algorithm (1): Kadane’s algorithm O(n) /* 1D MSA a[k..l] of a[1..n] */

1: Initialisation: (k, l) ← (1, 0) (empty) ; s ← 0 ; t ← 0; j ← 1;

2: for i ← 1 to n do begin

4: t ← t + a[i]

5: if t > s then begin (k, l) ← (j, i); s ← t end;

6: if t ≤ 0 then t ← 0; j ← i + 1 end /*reset the accumulation*/

7: end for

j

x=i

http://www.facebook.com/pages/w/110045855713034

16 | C h a p t e r (2)

of the elements of the array a[1..n] are negative, the resulting s will be zero having an empty

interval. An illustrated example is given in Figure 2.1.

1 k l j i n

Figure (2.1): An example showing Kadane’s algorithm in 1D.

 The computing time for Algorithm (1) is linear (O(n)). If we consider the time complexity as a

function of the input size n, then the time complexity will be O(f(n)); that is proportional to f(n).

2.2.2 Finding MSA in 2D

 2.2.2.1 Strip separation

 The MSA in a two-dimensional array can be computed for a given array of size m × n (we

assume that m ≤ n). The 2D input matrix has real numbers such as a[1, …, m, 1, …, n]. An approach to

solve an MSA problem in 2D is to extend Algorithm (1), which is the 1D Kadane’s algorithm [2]. The

extended Kadane’s algorithm used a rectangular portion to find the maximum sub-array in 2D, which

is given by Algorithm (2) [4]. Example (2.1) depicts the extended Kadane’s algorithm to find MSA for

a two-dimensional array. Suppose we find a rectangular sub-array such that a[k..i, l..j], where

coordinates (k, l) and (i, j) are indices for tracing the portion area. In this example, we let index (1, 1)

to be the top-left corner. The located rectangular region in this example is given by (3, 4) and (5, 6);

and the sum is 18.

Example (2.1): Let a be given by

 a =

62287531

451319923

24528652

33945322









The extended Kadanes’s algorithm employs the strip separation approach to find a

maximum sub-array in 2D [4]. This process involves horizontally separating the two-dimensional

s t

17 | C h a p t e r (2)

array into every possible row strip, followed by applying the 1D Kadane’s algorithm on each strip.

The principal operation of the extended Kadane’s algorithm is shown in Figure 2.2.

In this figure, the rectangular area that is defined by the bottom-right corner (x1, y1) and

top-left corner (x2, y2) would have a continually updated maximum sum, S. As for the rectangular

area defined in the strip from x to z, the tentative solution, t for this 1D area is from j to i. While

iterating through the row bounded by x and z, we assign the most updated maximum sum in the

current 1D strip to s. In other words, S keeps track of globally optimum, whereas s is for locally

optimum. Employing the strip separation approach in 2D, MSA incorporates a triply nested structure

as shown in Algorithm (2), which results in a total computational time of O(m2n). When m = n the

time complexity becomes a cubic time O(n3) [2].

Figure (2.2): An example demonstrating Kadane’s algorithm in 2D.

 Algorithm (2): 2D version of Algorithm (1) (the extended Kadane’s Algorithm); O(m2n)

1. Initialisation ((x1, y1),(x2, y2)) ← ((1, 1),(0, 0)); S ← 0; /*initial candidate is empty */

2. for z ← 1 to m do begin

 /** initialise column[][]**/

3. for i ← 1 to n do begin column[z-1][i] ← 0;

z

x
k l

 j i

s t

S

x2

x1

y2 y1
(1,1) n

m

18 | C h a p t e r (2)

4. for x ← z to m do begin

5. t ← 0; s ← 0; (k, l) ← (1, 0); /* initial candidate is empty */

6. j ← 1

7. for i ← 1 to n do begin

8. column[x][i] ← column[x-1][i] + a[x][i];

9. t ← t + column[x][i];

10. if(t > s){ s ← t ;(k, l) ← (i, j); }

11. if(t < 0){ t ← 0; j ← i+1; } /*reset the accumulation*/

12. end for

13. if (s > S) {S ← s; x1 ← x; y1 ← k; x2 ← z; y2← l;}

14. end for

15. end for

2.2.2.2 Distance Matrix Multiplication

In this section, we will briefly review the Distance Matrix Multiplication (DMM) framework

to compute the MSA in 2D. Takaoka [14] simplified the algorithm of Tamaki and Tokuyama [12] and

achieved a subcubic time. He used two concepts to improve the time complexity to subcubic for the

2D MSA problem: firstly, he translated prefix sums as distances for DMM; and secondly, he used the

divide-and-conquer (splitting and merging) technique.

 The DMM method was used in Takaoka’s algorithm [14] as the key computation process to

compute the distance product, which is outlined as follows. For two n x n matrices, A = [ai,j] and B =

[bi,j], the product C = AxB is defined by,

 ci,j = min ai,k + bk,j (i,j = 1,..,n)……………………. (2.2)

1 ≤ k ≤ n

19 | C h a p t e r (2)

In Equation (2.2), A and B are called distance matrices, and the right-hand side operation is

called DMM. The DMM algorithm in [14] runs in O(n3(log logn / log n)1/2) time, which is subcubic. The

most recent improvement of this is given in [41], which has O(n3 log log n/log2n) time. For the

purpose of this study, we refer to [14] in this chapter to explain improving the time complexity for

the newly defined problem of this study. Algorithm (3) outlines the 2D MSA algorithm using the

DMM [14].

The time complexity is improved by transforming prefix sums to distances. The prefix sum of

a one-dimensional array a at position i, is given by s[i], which is the sum of a[1], … , a[i]. The prefix

sum array is computed in linear time O(n) in 1D, Algorithm (4).

Algorithm (4): 1D prefix sum algorithm; O(n) time

1.Initialisation s[0] ← 0;

2. for i ← 1 to n do begin

3. s[i] ← s [i-1] + a[i];

4. end for

Algorithm (3):Takaoka’s Algorithm for two-dimensional array; O(n3(loglog n/ logn) 1/2) time

1: If the array becomes one element, return its value.

2: Otherwise, if m > n, rotate the array 90 degrees.

 /* Now we assume m ≤ n */

3: Let ALeft be the solution for the left half.

4: Let ARight be the solution for the right half.

5: Let ACentre_column be the solution for the column-centred problem

/* The column-centred problem is to obtain a solution array that crosses over the vertical

centre line */

6: Let the solution be the maximum of these three solutions (ALeft, ARight, ACentre_column) .

20 | C h a p t e r (2)

The prefix sum of a given two-dimensional array can be defined similarly as that of the 1D

prefix sum algorithm, Algorithm (4). The prefix sum at position s[i][j] in a two-dimensional m x n

array (a) is the sum of the array portion a[1, … , i][1, …, j] for all i and j with a boundary condition

s[i][0] = s[0][j] = 0. This was computed in O(mn) time [4].

 Considering Equation (2.3), the sum of a[k…i][l…j] is computed by the subtraction of the

prefix sums as in Equation (2.4) and depicted in Figure 2.3. This equation is obtained from the

inclusion-exclusion principle.

 𝑠[i][j] = ∑ a[p][q] …….……………………..…(2.3)

 ∑ a[p][q] = 𝑠[i][j] − s[k][𝑗] − s[𝑖][l] + s[k][l] ……………….…(2.4)

Figure (2.3): MSA of the area having indices (k, l), (i, j) using the prefix sum method in 2D

 l j

k

i

i,j

p=1,q=1

p=k,q=l

i,j

21 | C h a p t e r (2)

 To maximise the sum from a two-dimensional array, we have to find indices (k, l) and (i, j) that

maximise the ∑ a[p][q]. Using prefix sum array s, the maximum sub-array is defined by Equations

(2.5) and (2.6).

 Maximum Sum = 𝑚𝑎𝑥 𝑠[i][j] − 𝑠[k][j] − 𝑠[𝑖][l] + 𝑠[k][l] ……………(2.5)

 = 𝑚𝑎𝑥 𝑠[i][j] − 𝑠[k][j] − m𝑖𝑛 𝑠[i][l] − 𝑠[k][l] ……(2.6)

 The outer framework of Takaoka’s algorithm [14] was presented in Algorithm (3). The

column-centred problem is to obtain an array portion that crosses over the central vertical line

(ACentre_column) with the maximum sum, as in Figure 2.4. The centre problem is as follows:

 ACentre_column = 𝑚𝑎𝑥 s[i][j] − s[i][l] − s[k][j] + s[k][l] …..……..…(2.7)

 Figure (2.4): The column-centred problem (ACentre_column)

m-1,n-1,m,n

k=0,l=0,i=1,j=1

p=k,q=l

i.j

n/2

m

n

ACentre_column

1 l

1

k

i

j

m,j-1, i-1

i=1,l=0,k=0

m,n, i-1

i=1,j=1,k=0

0≤k≤i−1
0≤l≤n/2−1
1≤i≤m
n/2+1 ≤j≤n

22 | C h a p t e r (2)

 In Equation (2.7), the indices k and i, are fixed and the equations discussed above are

maximised by changing l and j. Thus the above problem is equivalent to maximizing the following,

Equation (2.8). For i = 1..m and k = 0..i − 1,

 ACentre_column [i, k] = 𝑚𝑎𝑥 − s [i][l] + s [k][l] + s [i][j] − s [k][j] …..…….…(2.8)

Let s*[i][j] = − s[j][i], then Equation (2.8) results in Equation (2.9) which is,

 ACentre_column [i,k] = 𝑚𝑎𝑥 s[𝑖][𝑗] + s*[𝑗][k] – 𝑚𝑖𝑛 s[i][l] + s*[l][k] .… (2.9)

In Equation (2.9), the first part is computed by the 𝑚𝑎𝑥-version of DMM and the second part

is computed by the DMM as noted in Equation (2.2).

 In Equation (2.10), the first and the second terms are the 𝑚𝑎𝑥-version and the 𝑚𝑖𝑛-

version, respectively. Equation (2.10) is expressed in terms of matrices, S1 and S2 having elements at

position (i, j). The (i, j) elements of S1 and S2 are given by s[i][j - 1] and s[i][j + n/2], respectively for i =

1..m; j = 1..n/2. Assume an arbitrary matrix T and its negated transpose T*. As the range of the index

k is [0 ..m - 1] which is same in both S1* and S2*, it is shifted to [1..m]. Thus, the above is computed

as,

S2S2* – S1S1*……………………………………. (2.10)

 In Equation (2.10), the multiplication of matrices, S1 and S1* is performed by the 𝑚𝑖𝑛-version of

DMM. Similarly, the multiplication of matrices, S2 and S2* is performed by the 𝑚𝑎𝑥-version of the

DMM. This is followed by the subtraction of the distance products, obtained component-wise.

Finally ACentre_column is computed by extracting the maximum from the lower triangle of the resulting

matrix [14].

0≤l≤n/2-1 n/2+1≤j≤n

𝑚𝑎𝑥 -version of the DMM 𝑚𝑖𝑛-version of DMM

0≤l≤n/2−1
n/2+1≤j≤n

23 | C h a p t e r (2)

 Algorithm (3) is applied on a square array of size n × n, where n is assumed to have a power of

2 for simplicity. It was observed by Takaoka [14] that the algorithm divided the array vertically and

then horizontally. The procedure of computing the ACentre_column (line 7, Algorithm (3)) through this

recursion of depth 2 is defined at level 0. The algorithm then splits the array horizontally and then

vertically through the next recursion of depth 2, which is called level 1. This process of splitting

continues to a higher level following the same pattern.

 Takaoka analysed the time of the process at level 0 [14]. The time is measured by the

number of comparisons. M(n) is assumed to be the time for multiplying two (n/2, n/2) matrices. The

multiplication of (n × n/2) and (n/2 × n) matrices is substituted by four multiplications of size (n/2 ×

n/2), which takes 4M(n) time. In Equation (2.10), ACentre_column considers each of the 𝑚𝑖𝑛- and 𝑚𝑎𝑥-

version of multiplications. Thus, ACentre_column involving (n × n/2) and (n/2 × n) matrices requires 8M(n)

time, and computing two smaller ACentre_column solutions involve (n/2 × n/2) matrices with 4M(n) time.

For each level, three solutions are calculated, one ACentre_column and two smaller ACentre_column, which

accounts for 12M(n) time. The following recurrence is computed for the total time T(n) as

 T(1) = 0

 T(n) = 4T(n/2) + 12M(n) ………………. (2.11)

 Takaoka presented a lemma for this process [14]. The β is assumed as an arbitrary constant

such that β > 0, M(n) is supposed to satisfy the condition M(n) ≥ (4 + β)M(n/2). Thus, the above T(n)

satisfies T(n) ≤ 12(1 + 4/β)M(n).

 It is obvious that the complexity of O(n3(log log n/log n)1/2) for M(n) satisfies the condition of

the lemma with some constant β > 0. Thus, the MSA is achieved in O(n3(log log n/ log n) 1/2) time,

which is subcubic. An extra term of O(n2) in the recursive process to count the number of operations

is also required because the maximum sum of several matrices component-wise in the algorithm is

computed during the process [14], which is absorbed in the main complexity. Studies are still

emerging in this area to build on the preceding research and to advance the MSA algorithms. In the

following chapter, we will introduce a more flexible shape to maximise the sum within the cubic time

complexity.

24 | C h a p t e r (2)

2.3 Chapter summary

This chapter provided an introduction and background to the MSA problem. Previous

research addressing the MSP and the use of the rectangular shape algorithms in the MSA framework

and applications were discussed. We proposed that outcomes for the MSP in terms of maximum

sum could be improved by using an alternative shape to the traditional rectangular shape. The

following chapters present a new approach that addresses using an alternative shape in the MSP.

25 | C h a p t e r (2)

Chapter Three
[K-Disjoint Maximum Convex Sum
problem]

27 | C h a p t e r (3)

 This chapter presents an approach that has not been previously investigated to

generalise the MSP problem in 2D using the convex shape. This study defines a new problem: the K-

Disjoint Maximum Convex Sum (K-DMCS). A new approach to solve this problem uses the WN convex

shape as a core component for implementing algorithms to find the disjoint maximum sums. The

following sections present a detailed overview of the theoretical and algorithmic frameworks for the

new approach. Research on the new approach from this study has been published in peer-reviewed

papers [38, 61-64].

 The chapter is organised as follows: Section 3.1 discusses the new approach in the MSP

context, the WN Convex shape; Section 3.2 presents the newly developed algorithm for the K-

Disjoint Maximum Convex Sum (K-DMCS) problem; Section 3.3 illustrates the experimental analysis;

and Section 3.4 provides a summary of the key points discussed in the chapter.

3.1 The convex shape: a new approach in the MSP context

 Traditionally, maximum sub-arrays in a matrix are computed using rectangular regions that

include elements which return the largest possible sums in the MSA context. The convex shape is

proposed by this research as a new method to find the regions that return the maximum sums. The

advantage of using a convex shape is due to its flexibility in covering diverse data distribution

regions. The rectangular shape has less flexibility than the convex shape, which can result in

underestimating the maximum sums of the data within the enclosed region, thereby compromising

important data portions that could otherwise maximise the sums. The T. Fukuda et al. [42]

investigation of the rectilinear convex shapes has motivated the use of a more flexible shape,

compared to the conventionally used rectangular shape, to find the maximum sub-array among a

multitude of sub-arrays. The T. Fukuda et al. investigations were limited to computing a solo region

of interest, but without the capability of further extension to find K regions in two cases: the disjoint

and overlapping cases. Our research incorporates techniques to simplify the T. Fukuda et al.

algorithm [42] for finding the maximum sums, and this is followed by the generalisation of the

simplified algorithm to iterate up to Kth maximum sum. The algorithms use the WN convex shape to

find the maximum sums. Although there exist other types of rectilinear convex shapes these are

outside the scope of this research. Instead the focus is on the main objective of this study, which is

to investigate outcomes of the initiated MCS and K-MCS and to depart from using the rectangular

shape in MSP context. For simplicity and convenience, in this thesis, the “WN convex shape” and

“convex shape” terms are interchangeable.

28 | C h a p t e r (3)

The start of this chapter provides general definitions and concepts. The WN convex shape is

comprised of the W and N shapes, which are illustrated in Figures 3.1 (a) and (b). The WN convex

shape algorithm is based on the dynamic programming method. In this method, complex problems

are broken down into sub-problems, and their collective solutions are combined to yield an overall

solution.

Figure (3.1): (a) W shape; (b) N shape.

Definition 3.1.1 The WN convex shape is defined, in this research, as a shape that has a

centre (anchor) column linked to W and N shapes (Figure 3.2). A W shape (Figure 3.1 (a)) can be

described as a region with a top contour inclining or remaining horizontal and a bottom contour

declining or remaining flat from left to right, whereas the N Shape (Figure 3.1 (b)) is a mirror image

of the W shape. In this study, the definition does not follow the geometrical convex shape definition

[61]. In Figure 3.2, at anchor column k, calculating the W shape is computed from s to t to find a

maximum sum for each s and t.

Figure (3.2): The WN convex shape

s

t

W

N

A
n

 an
ch

o
r co

lu
m

n

k

a

W

b

N

29 | C h a p t e r (3)

The maximum sum of the W shape can be calculated based on three cases: in the first case

solution of the W shape is computed by the addition of the current anchor column k from rows s to

t, denoted by (k, s, t), to the best solution that is given in the previous column k-1 (the light red

shaded area) of the same interval. Likewise the anchor column k-1 is computed recursively from the

summations of the preceding solutions obtained based on the three cases discussed herewith. This is

shown in Figure 3.3.

Figure (3.3): The first case of the W shape solution

 The second case is given by the addition of the best solution obtained from the interval of

rows s+1 to t at column k (the light red shaded area) and the element in row s at column k. This is

shown in Figure 3.4.

Figure (3.4): The second case of the W shape solution

s+1

t

s

k

t-1

s+1

t

s

k k-1

t-1

30 | C h a p t e r (3)

 The third case is given by the addition of the best solution obtained from the interval of rows

s to t-1 at column k (the light red shaded area) and the element in row t at column k. This is shown in

Figure 3.5.

Figure (3.5): The third case of W shape solution

The computation process for each of the three cases, using the W shape, yields solutions in

the form of three maximum sums for a given input of a 2D array. The W shape’s final solution for the

anchor column (k, s, t) returns the greatest value of these three maximum sums. Algorithm (5)

outlines this process, and incorporates a pre-processing procedure using the prefix sum method of

Algorithm (4). This procedure is important to avoid repeating the addition process by utilising

existing results from the previous (column-wise) summation of elements.

In Algorithm (5), a column from position s to position t in the kth column is written as (k, s,

t), which is an anchor column when it is located on the rightmost of a W shape. The maximum sum

with anchor column (k, s, t) is denoted by fW(k, [s, t]). The fW is computed as follows:

 Algorithm (5): W shape Algorithm

1: prefix_sum[0, k] ← 0 for all k /* compute prefix sum column-wise */

2: for k ← 1 to n do

3: for s = 1 to m do prefix_sum[s, k] ← sum[s-1, k] + a[s, k]

/* compute fW value */

4: fW (0, [s, t]) ← 0 for all s ≤ t

s+1

t

s

k

t-1

31 | C h a p t e r (3)

5: fW (k, [s+1, s]) ← -∞, for all k and s

6: for k ← 1 to n do

7: for all intervals of [s, t] in increasing order of t-s where s ≤ t do

8: sum[k, s, t] ← prefix_sum[t, k] – prefix_sum[s-1, k]

 fW (k-1, [s, t])+sum[k, s, t] (case 1)

9: fW (k, [s, t]) ← max fW (k, [s+1, t])+a[s, k] (case 2)

 fW (k, [s, t-1])+a[t, k] (case 3)

where,

fW (k,[s, t]) is the anchor column which has the maximum value out of the three cases;

sum[k, s, t] is the sum of the kth column from position s to position t used in the first case;

a[s, k] is the element in row s at column k;

and a[t, k] is the element in row t at column k.

Theorem (3.1.1) fW (k, [s, t]) is the maximum value of the sum of a W shape with an anchor

column (k, s, t).

Proof. The proof is based on a double induction on k and t-s from smaller to larger anchor

columns. Let k = 1 for the basis. It is easy to verify fW (1, [s, s]) = sum[1, s, s], noting fW (1, [s+1, s]) = 0.

Now for general s and t, case (1) is sum[1, s, t], since fW(0, [s, t]) = 0. Suppose the Theorem is true for

t-s = c-1 for some c, where c is an arbitrary value. We prove fW(1, [s, t]) = sum[1, s, t]. From induction

we have fW(1, [s+1, t]) = sum[1, s+1, t]. Thus, case (2) is fW(k, [s+1, t])+a[s, k] = sum[k, s, t]. Case (3) is

similar. From the program (algorithm (5), line 9), fW(1, [s, t]) = max{sum[1, s, t], sum[1, s, t], sum[1, s,

t]} = sum[1, s, t]. Similarly we can prove fW(k, [s, s]) is correctly computed.

Now suppose Theorem (3.1.1) is true for k-1 > 0 and t-s-1 > 0. The maximum value of the W

shape with the anchor column (k, s, t) is obtained from three smaller anchor columns of W shapes:

the W shape with the anchor column (k-1, s, t), the W shape with the anchor column (k, s+1, t), and

the W shape with the anchor column (k, s, t-1). From the induction hypothesis, the fW value of these

W shapes is maximum with respect to the three parameters. The three cases in the program (line 9,

32 | C h a p t e r (3)

Algorithm (5)) correspond to those three W shapes and the maximum fW (k, [s, t]) is successfully

computed by Algorithm (5).

3.1.1 Mono-directional convex shape algorithm: The algorithm of T. Fukuda et al.

 Using a mono-directional approach, the algorithm of T. Fukuda et al. (T. Fukuda’s algorithm)

uses seven cases to compute a WN shape. Three of these cases are covered as part of Algorithm (5);

the remaining four cases are depicted in Figure 3.6 and computed in Algorithm (6). This algorithm

processes the array in one direction from left to right; hence, the name mono-directional. The fourth

case is based on the fW in line 6 of Algorithm (6) and Figure 3.6(a), which was earlier explained in the

W shape definition. To compute the solution for this case, we firstly need to find the three cases

from Algorithm (5) (line 9), as in Figures 3.3, 3.4 and 3.5. The fifth case is based on the addition of

the solution of fWN from position s to position t at column k-1 to the sum from position s to position t

at column k (Figure 3.6(b)). The sixth case (Figure 3.6(c)) is based on the solution of fWN for the

interval from position s-1 to t; the value a[s-1, k] is subtracted from the interval at the kth column.

The seventh case (Figure 3.6(d)) is based on the solution of fWN for the interval from position s to t+1

at the kth column. The value a[t+1, k] is subtracted from the interval at the kth column. A max

operation was used to select the largest value of the four sums.

33 | C h a p t e r (3)

Figure (3.6): (a) to (d) figures depict the four remaining cases of the WN shape, out of seven (Figures 3.3, 3.4,

3.5, 3.6), required to compute fWN using the mono-directional WN convex shape algorithm (T. Fukuda’s WN

shape algorithm).

In algorithmic terms, fWN in Algorithm (6) is computed as follows: Let a be an array of size m x

n containing real numbers. Due to the triply nested structure in Algorithm (6), when m = n, the time

complexity is O(n3):

k k-1

s+1

k k-1

s-1

t

b

d

a

c

k-1

s

t+1

t

s

k

t-1

s

t

k-1 k

s

t

s+1

t-1

34 | C h a p t e r (3)

 Algorithm (6): T. Fukuda’s WN shape algorithm O(n3).

1: Initially, assume all fW(k, [s, t]) are computed from Algorithm (5)

2: fwN (0, [s, t]) ←0

3: For all s < t

4: For k ← 1 to n do

5: For all intervals of [s, t] where, s < t do

 fW (k-1, [s, t]) + sum[k, s, t] (case 4)

6: fWN (k, [s, t]) ← max fWN (k-1, [s, t]) + sum[k, s, t] (case 5)

 fWN (k, [s-1, t]) - a[s-1][k] (case 6)

 fWN (k, [s, t+1]) - a[t+1][k] (case 7)

where,

 fWN is a function to find the WN shape such that fWN (k,[s, t]) is the max value of the four

cases from position s to position t in column k at the rightmost of the shape;

sum[k, s, t] is the sum of column k from position s to position t;

a[s-1, k] and a[t+1, k] are the values subtracted in the third and fourth cases, respectively.

In Algorithm (6), the anchor column is placed at the rightmost column of each WN shape. As

discussed, this algorithm deals with seven cases; three for the W shape and four for the WN shape.

In the next section we address how we can deal with essentially three cases to replace the seven

cases, considering the fact that the W and N shapes are symmetrical.

3.1.2 The simplified convex shape algorithm: bidirectional approach

The WN convex shape is an amalgamation of the W shape and its mirrored image, the N

shape. The W shape in the left part of the WN convex shape is considered as the primary shape in

the creation of the N shape due to the property of its widening from left to right. This was outlined

in Algorithm (5). The bidirectional technique is used to co-join the W shape with the N shape at the

common anchor column (k, s, t) to find the solution of the WN convex shape. The algorithm used to

compute the W shape is now used in its modified form to compute the N shape, which is widening

35 | C h a p t e r (3)

from right to left. The anchor column (k, s, t) of the W shape is located on its rightmost position,

whereas for the N shape it is located on its leftmost position. As discussed above, when the two

shapes are co-joined at the common anchor column (k, s, t), it results in a duplication from the

overlapping at the column. Thus one of the sums at the common anchor column (k, s, t) is subtracted

from the WN convex shape to compute the final solution. Our approach simplifies T. Fukuda’s

algorithm by discarding four of the seven cases yet computing the final solution using three cases.

Mathematical proof of this is given in Section 3.1.2.1. The simplification and mathematical proof of

this study have been presented in [61].

The fWN can be derived using our version of the simplified algorithm, Algorithm (7), to

compute the WN convex shape. This algorithm has a triply nested structure. When m = n, the time

complexity is O(n3).

The following section outlines some of the challenges faced in reducing the time complexity

to subcubic for the WN convex shape. The time complexity to find the maximum WN convex sum is

O(n3). We attempted to improve this time complexity using the concept of the Distance Matrix

Multiplication (DMM) approach, used for reducing the time complexity of the rectangular shapes as

discussed earlier in Chapter 2. Here, we demonstrate the ways in which this approach cannot readily

be applied to the WN convex shape.

In the MSA approach, Takaoka [14] reduced the time complexity from O(n3) to O(n3(log log

n/log n)1/2) using Algorithm (3). This was achieved by finding the maximum value of the three

 Algorithm (7): The simplified WN convex shape algorithm O(n3)

1: Let sum(k, [s, t]) be the column sum from s to t of the kth column.

2: Compute W shape from left to right for each k, s and t in fW.

3: Compute N shape from right to left for each k, s and t, resulting in fN.

4: For k ← 1 to n do

5: For s ← 1 to n do

6: For t ← s to n do

 fWN (k,[s, t])← (fW (k,[s, t]) + fN (k,[s, t]– sum(k,[s, t]) /** the subtraction removes the

duplication **/

7: Take the maximum of fWN (k,[s, t]) for all k, s, t.

36 | C h a p t e r (3)

solutions, ARight, ALeft and ACentre_column shown in Figure 3.7. Using Algorithm (3), the ARight and ALeft can

be found recursively on the right and left sides of the input array. The crucial part in Takaoka’s

solution is based on solving the ACentre_column problem. This problem is defined as finding the solutions

that cross over the central vertical line (i.e. in the middle of the input array) discussed in Chapter 2.

The ACentre_column region is divided into two sub-arrays, namely ACentre_column_Left and ACentre_column_Right.

These are homogenous rectangular portions and can be easily connected after the DMM is applied.

Thus, the solution becomes readily available because mathematically the two sub-matrices can be

added in O(n2) time to obtain the ACentre_column solution, as in Equation (2.10).

Figure (3.7): Process for solving the column-centred problem by using DMM.

m

c11 c12

c 21 c22
 ,

 .

 .

 ci,k

a11 a12

a21 a22
 ,

 .

 .

 ai,k

b11 b12

b21 b22
 ,

 .

 .

 bi,k

n/2

1

1

DMM is used to compute optimal rectangular shape solutions touching the center line from left
and from right. To compute the ACentre_column solution for the sub-arrays that crosses over the
central vertical line, the operation C = B – A is performed in O(n

2
) time. The rectangular shape

regularity facilitates this connection of the two disjoint sub-matrices, A and B, where A= S2S2*
and B = S1S1* as in Equation (2.10).

The overall solution based on the maximum of the three solutions (ARight, ALeft, ACentre_column)

−

ARight

ALeft

n

k

j

ci,k = bi,k − ai,k

S1S1* S2S2*

i

l

ai,k

bi,k

ACentre_column

=

37 | C h a p t e r (3)

The primary reason for the difficulty of using DMM in achieving subcubic time for the MCS

problem is that the anchor column of the maximum WN shape may not necessarily fall on the central

vertical line (see Figure 3.7). Thus the approach of computing the best W shape touching the centre

line from the left, and the best N shape touching from the right cannot be undertaken, to find the

solution for the centre problem. This is illustrated in Figure 3.8, which highlights the co-joining of the

W shape and N shape to form the WN convex shape at the anchor column (k, s, t), at any position

within the input matrix.

Figure (3.8): An illustration of the convex shape region

3.1.2.1 Mathematical proof of the simplified algorithm using bidirectional computation

The following is a proof of the correctness of the bidirectional approach to compute the WN

convex shape at an anchor column (k, s, t): fW = a + c, fN = b + c and fWN = a + b + c (Figure 3.9(a))

[61]. Suppose fWN is not maximum for the anchor column (k, s, t), then there must be another shape

(Figure 3.9(b)) at the same anchor column with the sum x + y + c > a + b + c.

W shape

The convex shape algorithm connects the two shapes (W shape and N shape) at an anchor
column (k, s, t) at any position within the input matrix. The anchor column coordinates of the
convex shape (the boundaries of the shape) keep changing in an irregular manner based on the
solution, and the anchor column may not necessarily fall on the central vertical line. This makes
the column-centred problem difficult to define in the MCS context.

N shape

38 | C h a p t e r (3)

Figure (3.9): (a) the WN convex shape a + b + c; (b) the WN convex shape x + y + c

This implies, if x + y > a + b, then x > a or y > b, otherwise x  a and y  b, which would be a

contradiction. If x > a, then x + c > a + c, contradicts with maximum W. If y > b, this contradicts with

maximum N. Thus, fWN (k,[s, t]) is the maximum WN at anchor column (k, s, t).

3.1.2.2 The backtracking technique to determine the WN convex shape boundaries

To generalise MCS to K-MCS, which is to compute K maximum convex sums, two cases can

be defined namely, disjoint and overlapping. The backtracking technique can be applied to identify

the boundaries of the WN convex shape regions for the above two cases; this chapter focuses on the

disjoint case. Locating the boundaries involves backtracking the recorded solutions from the three

cases for fW and fN. Whilst in the process of finding the maximum sums (a process outlined in

Algorithm (7)), the anchor column coordinates and the solutions that contribute to the results of fW

and fN are recorded as preparation for the backtracking process. This is presented in Algorithm (8)

for fW. Hence, the backtracking approach locates the actual WN convex shape reversely, column by

column, until converging where the solution originated.

 The backtracking technique allows the MCS problem to be extended to cover the disjoint case

that branches out from it. Determining the shape boundaries is important to generalise the problem

to cover the disjoint case. Such a generalisation is essential not only to locate the first selection of

segments of consecutive array elements that have the largest possible sum, but also to find the

second, third and up to the Kth region. Computing these regions makes it feasible to apply the

generalised MCS algorithms to real-life datasets. These generalised problems are discussed in

Chapters 3 and 4 of this thesis; here the primary focus is the backtracking technique.

k
 a

b

c

k

t

s

x
y

c

s

t

k

39 | C h a p t e r (3)

 Algorithm (8) outlines the backtracking process of the W shape solutions. The backtracking

of the N shape solutions are processed likewise in the opposite direction to the W shape. In

Algorithm (8), let the anchor column indices (k, s, t) of the maximum sums be km, sm, and tm,

respectively. These indices are used to backtrack the W convex shapes. Let array bw store the values

of the three cases (1, 2, or 3) in Algorithm (5) to keep a record for the backtracking directions. In

case 1, the current solution at column k is backtracked one step back to its previous solution at k-1

having the same interval (s, t). The previous solution at column k-1 is located on the left-side of the

current solution at column k in the W shape (backtracked case 1 of Algorithm (5)). In case 2, the

solution at column k is backtracked to its previous solution at s+1 (backtracked case 2 of Algorithm

(5)). In case 3, the current solution at column k is backtracked to its previous solution at t-1

(backtracked case 3 of Algorithm (5)). An array bn is used to store the values of the three cases (1, 2,

or 3) to backtrack the N shapes. Let region[] (in line 1 of Algorithm (8)) be an m x n array to identify

the boundaries of a shape. The array elements are all initialised to zeros (0s). In the backtracking

process, for each column k, the upper boundary and the lower boundary of the shape are set to 1.

The output of Algorithm (8) returns the solution boundaries (fW) assigned as 1s and the rest of the

array remains set to 0s.

 Algorithm (8): Backtracking Algorithm

1: initialise elements in region as zeros

2: set k as km /* Where, (km, sm, tm) is the anchor column of the maximum sum*/

3: set s as sm

3: set t as tm

4: while k > 0 and fW (k, [s, t]) > 0

5: region[s][k] ← 1

6: region[t][k] ← 1

7: decrement k if bw at (k, s, t) is case 1

8: increment s if bw at (k, s, t) is case 2

9: decrement t if bw at (k, s, t) is case 3

10: end loop

40 | C h a p t e r (3)

3.2 The newly developed algorithm for the K-Disjoint Maximum Convex Sums
(K-DMCS) problem

The problem of MCS has been generalised to cover the disjoint case. The newly defined K-

Disjoint Maximum Convex Sum (K-DMCS) problem is to find the K maximum sums that are disjoint by

using the WN convex shape. The K-Disjoint Maximum Sub-Array (K-DMSA) problem using the

rectangular shape was previously introduced by Bae and Takoaka [4]. In the present study, our

newly developed algorithm uses the convex shape to find the first maximum convex sum, second

maximum convex sum, and up to the K maximum convex sum from the remaining portions. The K-

DMCS algorithm computes this process in a time complexity O(Kn3), which is same as that of the

disjoint case of the K-MSA algorithm [4]. The developed K-DMCS algorithm is published as part of

[61]. The new algorithm for the K-DMCS problem returns higher maximum sums than the K-DMSA

which is later verified in Section 3.3.

After reviewing the background to the K-DMSA problem and corresponding algorithms, the

new K-DMCS algorithm is presented later in this section. The K-DMSA problem was initially studied

by Ruzzo and Tampa in 1D [28]. They designed a linear time algorithm that found all disjoint

maximum sub-arrays for a one-dimensional array [28]. Later studies investigated the problem in 2D

[4, 17, 18]. Bae and Takaoka [4] extended the 2D Kadane’s Algorithm (Algorithm (2)) to address the

disjoint case, which is classified as a greedy approach by Anzai et al. [39]. The K-DMSA algorithm was

implemented in this research and is given in Algorithm (9). The process of finding the first

rectangular shape was explained in Chapter 2 (Section 2.2.2.1). Algorithm (9) extended the problem

to find the Kth maximum sub-array. In this algorithm, the next maximum sub-array was found, whilst

avoiding any duplication by assigning negative infinity to the first located rectangular shape. This

procedure was repeated for the second, third, and up to the Kth maximum sub-arrays. The time

complexity of Algorithm (9) was O(Kn3) having a three for-loop (nested) structure [4]. This algorithm

was adopted in K. Fukuda’s data mining studies to find peaks of data using real-life applications [30,

31]. The algorithm captured regions that potentially represented the data [30, 31].

41 | C h a p t e r (3)

The new Algorithm (10) incorporates the aforementioned approaches to obtain the

maximum sums by using the WN convex shape to compute the K-DMCS. The process includes finding

the W shape, N shape and the combined WN shape, and integrates the prefix sum and backtracking

techniques. Algorithm (10) is implemented to find the K disjoint shapes having the maximum sums

of the first (K = 1), second (K = 2), third (K = 3) and up to the Kth regions. Once the first maximum

sum is found, the algorithm excludes the K = 1 region in the search for the second maximum sum (K

 Algorithm (9): Bae and Takoaka’s algorithm for the disjoint case using the rectangular
shape; O(Kn3), when m = n
1: Initialisation ((x1, y1),(x2, y2)) ← ((1,1), (0, 0)); S ← 0; iter ← 0 /* the initial candidate is

empty */

2: while (iter < K){ /* K is the limit of the disjoint rectangular shapes */

3: for z ← 1 to z ≤ m do{

4: for i ← 1 to i ≤ n do column[z-1][i]←0;

5: for x ← z to x ≤ m do {

6: t ← 0; s ← − ∞ ; k ← 0; l ← 0; j ← 1;

7: for i ←1 to i ≤ n do {

8: column[x][i] ← column[x-1][i]+a[x][i];

9: t ← t + column[x][i];

10: if(t > s){s←t; k←i; l←j;}

11: if(t < 0){t←0; j←i+1;} /* reset the accumulation*/

12: end for /* i */

13: if(s > S){S←s; x1←x; y1←k; x2←z; y2←l;}

14: end for /* x */

15: end for /* z */

/ * S is the Maximum Sub-Array using the rectangular shape; bottom-right corner is (x1, y1); top-

left corner is (x2, y2) */
16: Output (x2, y2),(x1, y1), S

17: for (i←x2; i≤x1; i++)

18: for (j←y2; j≤y1; j++) a[i][j]← − ∞ ;

19: iter++; /* iterate to find the next rectangular shape*/

20: end while

42 | C h a p t e r (3)

= 2) as illustrated in Figure 3.10. The array is then processed to find the third maximum sum (K = 3),

discarding the regions at both K = 1 and K = 2. The algorithm consecutively processes the remaining

array portions following the same procedure, while discarding the accumulated regions that return

the maximum sums. The algorithm identifies these discarded regions via the assigned negative

infinity. This procedure continues until it reaches the Kth maximum convex sum. The WN convex

shapes that were assigned negative infinity in every iteration are placed in triply nested loop

structure giving a time complexity of O(Kn3).

Start of the disjoint process First disjoint maximum convex sum is captured
 by Algorithm (10)

K = 1

Second disjoint maximum convex sum

K = 2

 Third disjoint maximum convex sum

 K = 3

Figure (3.10): An illustrative example of the process of the original K-DMCS algorithm. This
shows the first, second and third regions of the located disjoint maximum sums.

End of the disjoint process

−∞

−∞

−∞

−∞

−∞

−∞

−∞

−∞

43 | C h a p t e r (3)

The following pseudo code outlines the K-DMCS algorithm, with an output of the located

disjoint convex shapes, and the maximum convex sums of the regions:

3.3 Experimental analysis

The previous sections outlined the theoretical framework and implementation of MSA and

MCS algorithms in the MSP context. This section2 discusses two experimental phases, where we

made experimental comparisons to assess the differences in outcomes obtained using the MSA and

MCS approaches. The first phase focused on an analysis of experiments designed to assess the

differences in outcomes obtained using the rectangular shape algorithm (Algorithm (2)) and the

convex shape algorithm (Algorithm (7)). The second phase focused on comparing outcomes of the

two algorithms that covered the disjoint case: the rectangular shape K-Disjoint Maximum Sub-Array

algorithm (Algorithm (9)) and the K-Disjoint Maximum Convex Sums algorithm (Algorithm (10)). The

comparisons were based on outcomes from finding a selection of segments of consecutive array

elements that have the largest possible sum compared with all other segments in the presented

data. Large matrices of different sizes were used in the experiments to find the maximum sum.

2
 We consulted the University of Canterbury statistician, research consultancy services, to ensure that this

section’s statistical procedures adequately fulfilled the study aims.

Algorithm (10): K-Disjoint Maximum Convex Sums algorithm; (O(Kn3)), when m = n

1: read input matrix, a

2: While not all K solutions are found

3: perform WN shape calculation

4: for each column k, 1 ≤ k ≤n

5: for each top index s, 1 ≤ s ≤ m

6: for each bottom index t, s ≤ t ≤ m

7: set sum of overlap anchor column as ac ← prefix[t][k] - prefix[s][k]

8: WN shape ← W shape solution at (k,s,t) + N shape solution at (k,s,t) − ac

10: end top index s

11: end bottom index t

12: end column k

13: replace WN solution with negative infinity by backtracking W and N shapes

14:end while

44 | C h a p t e r (3)

The underlying procedures to compute the maximum sums and running times for the two

algorithms differed from each other. It was expected that using the convex shape algorithms would

yield maximum sums that are no smaller than those of the rectangular shape algorithms. The

experiments’ running times of each algorithm were expected to be constant across all experiments

for a given matrix size; but even so, due to processor precision this would vary by an order of

milliseconds for large matrix sizes. The convex shape algorithms included more operations to find

the maximum sum and required more running time compared to the rectangular shape algorithms.

During the measurement of the running time in the experiments, we considered the length of time

that was taken to locate the exact shapes because in addition to returning the sum, we returned the

exact shape boundaries. In the convex shape algorithms, the backtracking process to find the shape

coordinates (explained in Algorithm (8)) was applied after computing the sums. The convex shape

algorithms required post-processing of a manifestation of three-dimensional (3D) coordinates

represented by the three indices: s, t, and k, where s and t determine the interval, and k determines

the current column. For the rectangular shape algorithms, the region location was found by

determining the two indices x and y in 2D (such that, (x2, y2) and (x1, y1) in Algorithm (2)). The

running time to find the actual convex shape and its boundaries is more than that for the rectangular

shape because of the complexity in processing the convex shape using three coordinates compared

to using two coordinates for the rectangular shape. Although the convex shape algorithms were

more complicated and involved more operations compared to the rectangular shape algorithms, the

time complexities were asymptotically the same for the corresponding algorithms.

The experiments were conducted using a 2.66 GHz Intel® CoreTM2 Quad Processor Q8400

cache size: 4MB 1333MHZ 2 DUO Processors, each processor had CPU of 2.66GHz with 8GB 667MHz

DDR2 RAM. The two algorithm implementations were written in C programming language. The

system was installed with Fedora 18 Linux Operating System equipped with kernel version 3.11.10-

100. The matrices were randomly generated using a built-in function in C programming language:

rand(). This function returns a random number in the range of 0 to a very large number (231); we

used modular arithmetic to wrap around the random number (r) to range between 0 and 198. We

then subtracted r from 99, which gives a random number in the range between -99 to 99. The GNU

compiler gcc (Version 4.1.3) was used in the random number generation process.

We randomly generated N matrices ranging in size with n x n dimensions. Determining an

adequate sample size N to detect any significant differences, if any, could have been based on

knowledge and information obtained from previous research, but because studies are lacking in the

45 | C h a p t e r (3)

project’s field we were unable to use this option. Alternative methods were available to estimate N

using power analysis [65]. We used a priori power analysis using the G*Power 3.1.9 statistical

package to determine a suitable sample size N [65]. This analysis required specifying three factors

alpha, beta and effect size (Es) [65-67]. The alpha is the probability of a type I error (i.e. probability of

rejecting a correct null hypothesis), beta is the probability of a type II error (i.e. probability of

accepting a false null hypothesis), and effect size is the standardised magnitude of the difference

between the two groups [65, 67]. Because the magnitude of the difference between the groups is

not known, a conservative approach was adopted in determining parameter values for the analysis

[65]. We let alpha = .05; power (1 - beta) = .95; and effect size = 0.30. Based on these parameters,

the analysis recommended a sample size of 100 and therefore 100 random matrices were generated

in each matrix size to compare the differences in outcomes obtained using the convex shape and

rectangular shape algorithms.

We introduced the following notation for convenience: Sconv and Srect denote the maximum

sum outcome obtained using the convex and rectangular shapes algorithms, respectively; µconv and

µrect denotes the mean maximum sum outcome obtained using the convex and rectangular shapes

algorithms, respectively. Size n, (for n = 50, 100, …, 600) denotes the matrix size, from 50 x 50 to 600

x 600 (e.g. Size 100 = 100 x 100).

The convex shape and rectangular shape experimentation groups were related because the

quantitative measurements of the sums (Sconv and Srect) were obtained from the same matrix. A

dependent-sample statistical test was used as part of the inferential investigation. SPSS (version 20)

was the software package used for the statistical analysis [68, 69]. The paired-samples t-test in SPSS

was used to evaluate the statistical significance of the difference between the two related groups’

means and its standardised magnitude [70]. Throughout the analysis, we used a significance level (p-

value) of .05 (Confidence Interval (CI) was set to 95%).

Prior to using the paired-samples t-test, we checked that the assumptions were not violated

[70]. This was necessary to ensure the validity of the test results [66, 71, 72]. The assumptions were:

the dependent variable is continuous, the related groups were in two categorical levels (i.e. two

shapes: rectangular and convex), influential outliers were detected and adequately dealt with, and

the distribution of the paired differences (in the dependent variable) was approximately normally

distributed [70, 73, 74]. The paired t-test is not very sensitive to deviations from normality for

sample sizes N ≥ 30 because of the Central Limit Theorem (CLT) [70, 73, 75].

46 | C h a p t e r (3)

The first two assumptions were directly checked from the observations. The latter two

assumptions were assessed using SPSS functions, including numerical (Shapiro-Wilk test) and

graphical tests (boxplot, histogram, and qq-plots) [70, 74]. Extreme outliers were removed if they

obscured the normality distribution of the dependent variable, to prevent threats to the validity of

the statistical test. The normality distribution of the paired differences was checked using the

Shapiro-Wilk test and qq-plots [70, 74]. The former is a robust numerical test to check the normality

distribution of a variable, whereas the qq-plot involves decisions based on visual inspections [74].

3.3.1 Results and interpretations

3.3.1.1 The convex shape and the rectangular shape algorithms: Algorithms (7) and (2)

The descriptive results from running the two algorithms were in accordance with the

theoretical prospects. Figure 3.11 and Table 3.1 demonstrate the differences between the two

algorithm outcomes and their directions. The observed differences in Figure 3.11 and Table 3.1

comply with expectations, which had been based on the outlined underlying processes and their

mechanisms. The paired-samples t-test was used to assess the statistical significance of the

differences.

Figure (3.11): Descriptive comparisons of the mean maximum sums obtained using the convex shape
(Algorithm (7)) and the rectangular shape (Algorithm (2)) algorithms. Sample size = 100.

47 | C h a p t e r (3)

Table 3.1: The mean running time results for finding the maximum sums and the shape boundaries obtained
using the convex shape Algorithm (7) and the rectangular shape Algorithm (2). Sample size N = 100. The
running time is measured in seconds.

Matrix Size Shapes Min Max Mean Standard
Deviation

(600 x 600) Convex* 49.45 50.91 49.74 0.21

 Rectangular† 1.32 1.44 1.36

0.02

(500 x 500) Convex 28.5 29.5 28.72 0.17

 Rectangular 0.78 0.84 0.8

0.01

(400 x 400) Convex 14.29 14.73 14.41 0.07

 Rectangular 0.4 0.44 0.42

0.01

(300 x 300) Convex 5.89 6.58 5.97 0.07

 Rectangular 0.18 0.19 0.19

0.00

(200 x 200) Convex 1.75 1.81 1.77 0.01

 Rectangular 0.06 0.06 0.06

0.00

(100 x 100) Convex 0.11 0.16 0.13 0.01

 Rectangular 0.01 0.01 0.01 0.00

*Convex: Algorithm (7) running time to obtain Sconv and to backtrack the shape boundaries using
the three indices: s, t, and k.
†Rectangular: Algorithm (2) running time to obtain Srect and to locate the region using the two
coordinates x and y.

The paired t-test assumes that the differences between Sconv and Srect are approximately

normally distributed. To ensure the normality assumption has been met, we interpret the box plot

and histogram for the differences between Sconv and Srect for all six matrix sizes. These showed the

sample data was approximately normal for matrix sizes 200, 300, 400, 500, and 600. Removing an

outlier in matrix size 100 resolved a slight deviation from normality. The qq-plots for each matrix size

also suggest no significant deviations from normality. This was numerically confirmed using the

Shapiro-Wilk test. This was statistically non-significant (p > .05) for all matrix sizes (Table 3.2), which

gave no evidence against the hypothesis that the underlying population differences are normally

distributed. Hence, there is no evidence against the assumption that the sample data are normally

distributed and that there is no threat to the statistical analysis.

48 | C h a p t e r (3)

Table 3.2: Results of the Shapiro-Wilk test for testing the normal distribution of the

differences between Sconv and Srect for all six matrix sizes.

Matrix Size Shapiro-Wilk p-value

600 0.916 > 0.05

500 0.410 > 0.05

400 0.771 > 0.05

300 0.552 > 0.05

200 0.156 > 0.05

100 0.239 > 0.05

Findings from the paired-samples t-test (Table 3.3) showed strong evidence of the difference

between the maximum sums obtained from the convex shape and the rectangular shape algorithms

for each matrix size. The results show that there was a statistically significant increase (p < .01) in the

maximum sums outcome of the convex shape compared to the rectangular shape algorithm’s

maximum sums outcome. The standardised effect sizes indicate a large magnitude of difference

between the two algorithms’ outcomes, ranging from Es = 10 to Es = 14 across the various matrix

sizes. These findings are important in confirming positive implications of using the convex shape to

find the maximum sums in comparison to using the rectangular shape in the MSP framework. The

new approach increased the likelihood of scoring improved results, since maximising over all of the

convex regions return maximum sums that are no smaller than those maximised over the

rectangular regions. In other words, in the case of not obtaining equivalent results it is inevitable

that there will be larger overlapping maximum convex sums. It is essential to use methods that

permit making the most of presented data and prevent missing potentially important regions.

Table 3.3: The dependent-samples t-test results (N = 100) of the paired differences (µconv -
µrect) of the various matrix sizes using the convex shape Algorithm (7) and the rectangular
shape Algorithm (2).

Matrix Size Paired Differences (µconv - µrect)
95% Confidence Interval [Lower, upper]

Sig.
(p-value)

600x600

112373 [110818, 113928]

<.01

500x500 91950 [90594, 93307] <.01

400x400 70031 [68913, 71148] <.01

300x300 49522 [48760, 50284] <.01

49 | C h a p t e r (3)

200x200 30229 [29723, 30735] <.01

100x100 12742 [12491, 12992] <.01

3.3.1.2 The K-DMSA and K-DMCS algorithms: Algorithms (9) and (10)

In the previous section evidence was presented for the analytical differences in the

maximum sum outcomes using Algorithms (2) and (7). This section outlines experiments to assess

differences of results for the K-DMSA and K-DMCS algorithms: Algorithms (9) and (10), respectively.

The expectation for this section is that the pattern of results observed above will be similar. Using

these findings as guidelines and adapting the power analysis calculation, a sample size N = 30 was

selected. This sample size was chosen as being sufficient to detect differences and dismiss potential

threats to the validity of the statistical test. Table 3.4 describes the outcomes obtained using the K-

DMCS (Algorithm (10)) and K-DMSA (Algorithm (9)), where K=1, 2, and 3 are, in order, the first,

second, and third located regions. Differences and their directions between the two algorithms’

outcomes were clear from the observed categorical figures of the corresponding K digits. The

differences, as noted previously, are because of the distinctions between the algorithmic framework,

their core shapes, and the ways in which the two algorithms function.

50 | C h a p t e r (3)

Table 3.4: Descriptive results for the maximum sums and running times (in seconds) obtained

using the K-DMSA (Algorithm (9)) and K-DMCS (Algorithm (10)); N = 30. K = 1, 2, and 3 are, in

order, the first, second, and third located regions.

Disjoint maximum sub-arrays
(rectangular shape)†

Disjoint maximum convex sums
(convex shape)*

Matrix
Size

Mean
Outcome

K=1 K=2 K=3 K=1 K=2 K=3

300x300 Sum 27483 11665 8240 76994 31675 21779
 Running Time 0.54 7.42

250x250 Sum 21247 9936 7477 60914 26433 18496
 Running Time 0.31 4.45

200x200 Sum 17775 7338 5501 48093 19867 14103
 Running Time 0.15 2.04

150x150 Sum 13090 6257 3961 33940 14365 9179
 Running Time 0.06 1.04

100x100 Sum 8792 3843 2690 21061 8088 5861
 Running Time 0.03 0.24

50x50 Sum 3923 1820 1235 9160 3314 2269
 Running Time 0.002 0.02

†Rectangular shape: Algorithm (9) K-disjoint maximum sub-arrays and the experiments running time.
The time complexity is O(Kn3).
*Convex shape: Algorithm (10) K-disjoint maximum convex sums and the experiments running time. The
time complexity is O(Kn3).

The normality assumption of the differences between Sconv and Srect for all six matrix sizes was

checked. The boxplot and histogram of the differences both showed that the sample data was

approximately normal for the disjoint outcomes of the matrix sizes 300, 250, 200 (K = 1 and K = 3),

150, 100, and 50. Removing two influential outliers in matrix size 200 in the second disjoint region (K

= 2) outcome resolved a deviation from normality. The patterns in the qq-plots for each matrix size

seem to be consistent with the assumption of normality. The Shapiro-Wilk test gave no evidence (p >

0.05) against the hypothesis that the underlying population differences are normally distributed

(Table 3.5), for all matrix sizes. Thus, there appears to be no evidence against the assumption that

the sample data were approximately normally distributed.

51 | C h a p t e r (3)

Table 3.5: Results of the Shapiro-Wilk test for testing normal distribution of the

differences between Sconv and Srect for all six matrix sizes on K = 1, 2, and 3.

Shapiro-Wilk p-value (p > .05)

Matrix
Size

K=1 K=2 K=3

300x300 .096 .461 .253

250x250 .666 .179 .924

200x200 .982 .449 .759

150x150 .796 .832 .183

100x100 .566 .778 .740

50x50 .958 .064 .303

Findings from the paired-samples t-test (Table 3.6) show evidence of the difference between

the maximum sums outcome obtained from the K-DMCS algorithm and those from the rectangular

shape algorithm, for each matrix size. There were statistically significant increases (p < .01) in the K

disjoint maximum sums outcomes of the convex shape algorithm compared to those of the

rectangular shape algorithm. The standardised magnitudes of differences were relatively large (1.5 <

Es < 13) for the given matrix sizes, which suggests a potential advantage of using the convex shape to

obtain the K disjoint maximum sums compared to using the rectangular shape in the MSP

algorithms. The interpretation of this can be attributed to the flexibility of the convex shape when

seeking maximum convex regions, which otherwise could not be covered using the rectangular

segments. Thus, from both the experiment findings and the underpinning theoretical knowledge, the

convex shape provides a ‘win-win’ situation because the convex regions maximum sums will be at

least equivalent, if not exceed those of the rectangular regions maximum sums.

Table 3.6: The dependent-samples t-test results of the paired differences (µconv - µrect) of the
various matrix sizes using K-DMSA and K-DMCS algorithms; N = 30. K = 1, 2, and 3 are, in order,
the first, second, and third located regions.

Matrix
Size

K Paired Differences (µconv – µrect)
95% CI [Lower, upper]

Sig.
(p-value)

300x300 1 49512 [48014,51010] < 0.01

 2 20010 [17827,22194] < 0.01

 3 13539 [11991,15088] < 0.01

250x250 1 39667 [38403,40931] < 0.01

 2 16497 [14796,18198] < 0.01

 3 11019 [9311,12727] < 0.01

52 | C h a p t e r (3)

200x200 1 30318 [29295,31342] < 0.01

 2 11446 [10189,12703] < 0.01

 3 8602 [7514,9690] < 0.01

150x150 1 20849 [20031,21668] < 0.01

 2 8108 [6795,9421] < 0.01

 3 5219 [4337,6100] < 0.01

100x100 1 12269 [11786,12752] < 0.01

 2 4245 [3594,4896] < 0.01

 3 3171 [2751,3591] < 0.01

50x50 1 5236 [5014,5459] < 0.01

 2 1494 [1192,1797] < 0.01

 3 1033 [808,1259] < 0.01

3.4 Chapter summary

 All previous MSA studies have focused upon using the rectangular shape to obtain the

maximum sums. In our research, a different approach to this focus is presented. This approach is

manifested by using the convex shape in the MSP context, and defining a new problem, the MCS.

The rationale behind using the convex shape is its flexibility to cover at least the same regions as

those processed by the rectangular shape algorithms, but with the added advantage of the

possibility of detecting potentially overlooked maximum sum regions.

This study’s contributions to the field of MSP are described here. The new MCS problem is

defined and a simplified preliminary MCS algorithm is implemented. A bidirectional approach is used

to implement a more efficient algorithm which has the same time complexity compared to the base

algorithm developed by T. Fukuda et al. The new version of the MCS algorithm has been evaluated

and integrated techniques to advance its operational utility. The prefix sum has been used as a pre-

processing technique to overcome the costly repetition of unnecessary operations. Backtracking is

used as a post-processing technique to determine the maximum convex sum region boundaries,

which thereby allows for further development of the algorithm. Most significant is the development

of an original algorithm that generalises the MCS problem to cover the K disjoint maximum convex

sums, running in O(Kn3) time complexity.

53 | C h a p t e r (3)

Chapter Four

[K-Overlapping Maximum Convex Sum

problem]

55 | C h a p t e r (4)

A new problem of the K-Overlapping Maximum Convex Sum (K-OMCS) using the WN convex

shape is presented in this chapter, and is also published in [62], a paper that is an outcome of this

research. Prior to this, Bengtsson and Chen studied the overlapping MSA problem in 1D [22-24].

Their algorithm produced a list of K maximum sub-arrays in sorted order in a time complexity of

O(n+Klog n) [22-24]. Bae also investigated the K-OMSA problem in 1D; no particular order was

assumed in his work [16]. Takaoka [14] further advanced Bae’s algorithmic framework in 1D based

on the DMM. He developed an algorithm to compute a very small K: K ≤ O((α log n/log log n)1/2),

where 0 ≤ α ≤ 1. The problem was thereby extended to 2D with a time complexity O(Kn3) [16]. Bae

and Takaoka [19] developed an algorithm to solve the problem in subcubic time with a very small K:

K ≤ O((log n/log log n)1/2). The field of MSA research to find the maximum sums in the best time

complexity has evolved and there is now a robust body of scholarly works and publications

addressing the problem using the rectangular shape [17-21]. None of the existing MSA studies have

attempted to investigate this problem by using a shape other than a rectangular one. In this

research, however, we have deviated from using the traditional rectangular shape for the MSA

problem. Rather we use the convex shape, and thus initiate a new research area in the MCS field.

This new approach improves the maximum sums outcomes within the time complexity of the

existing algorithms [38, 61, 63, 64]. We have continued our research beyond the newly formulated

problems (MCS and K-DMCS) to address the K-OMCS problem [62]. In this Chapter, we formalise the

definition of the new overlapping problem and present the K-OMCS algorithm in O(Kn3) time.

 This chapter is organised as follows: Section 4.1 defines the problem; Section 4.2 presents the

newly developed algorithm for the K-Overlapping Maximum Convex Sum (K-OMCS) problem; Section

4.3 discusses the experimental analysis, and Section 4.4 provides a chapter summary.

4.1 Problem definition

We start by defining the K-overlapping maximum sub-array problem using a basic case of a

one-dimensional array which provides a preliminary insight into the problem. The problem is then

elaborated to the two-dimensional array, also using the rectangular shape, before discussing our

new approach, using the convex shape (Algorithm (11)).

56 | C h a p t e r (4)

 For a given array a[1..n] containing positive and negative numbers and 0, the maximum sub-

array is the consecutive array elements that add up to the greatest sum. Let MAX(K, L) be the

operation that selects the K largest elements in a list L. The definition of the K overlapping maximum

sub-arrays is given in Equation (4.1) below:

 R = MAX (K, L), where L = ∑a[x] | 1 ≤ i ≤ j ≤ n ………………. (4.1)

Here, the K maximum sums are stored in R[1..K]. Note that the solution set, R, is in sorted

order.

 Example (4.1):

 Let array a = {3, 51, -41, -57, 52, 59, -11, 93, -55, -71, 21, 21}, where the first element is

indexed as 1 and the last element is indexed as 12 i.e. a[1] = 3 and a[12] = 21. The size of array a is

12 and a total of 78(= 12(12+1)/2) sub-arrays exist. Amongst this set, the first maximum sub-array is

193. This results from a[5]+a[6]+a[7]+a[8]. We denote the first maximum sub-array by 193(5, 8).

When overlapping is allowed, the second and third maximum sub-arrays are 149(1, 8) and 146(2, 8).

The 78th overlapping maximum sub-array is −126 (9, 10). Using this example, we can elaborate the

problem in 2D.

 Bae and Takaoka [16] utilised the rectangular shape to find the K-overlapping maximum sub-

arrays in 2D. They devised an algorithm based on prefix sum for 1D where sum[i]=a[1]+..+a[i], which

is pre-computed as sum[i-1]+a[i] in O(n) time as highlighted in Algorithm (4). Their 1D algorithm

maintains a list of the preceding K minimum prefix sums amongst sum[0],..,sum[i-1] for every

position i (i.e. mini=min{sum[0]..sum[i-1]}), where sum[0]=0. This results in K candidates for every

position i by computing sum[i]-x, where x is the K minimum prefix sums (candi = sum[i] -

min{sum[0]…sum[i-1]). Finally the maximum of these candidates is selected i.e. max_sum = max

{cand1,cand2, …

candn-1,candn}. The same steps can further be extended to be applied in 2D. This

algorithm has O(Kn) time for 1D and O(Kn3) time for 2D. The readers may refer to [16] for the

detailed procedure. An example is given in Figure 4.1 to outline the K-OMSA solution in 2D. This is to

find all possible K overlapping sub-arrays such that the overlapped rectangular segments are ranked

from highest to lowest based on their sums in a matrix a. The first maximum sum in Figure 4.1 is 114

and the next overlapping maximum sum is 111. This process continues until all of the K overlapping

maximum sub-arrays are found.

j

x=i

57 | C h a p t e r (4)

Figure (4.1): Finding the K-OMSA by using the rectangular shape, where λ, the maximum sum
represents one of the maxima before finding the Kth overlapping maximum sums.

4.2 The newly developed algorithm for the K-Overlapping
Maximum Convex Sum (K-OMCS) problem

This section presents the new approach of finding the K overlapping maximum sums using

the WN convex shape. The implementation of the convex shape algorithm, which finds the first

maximum convex sum, was discussed in Chapter 3. Finding the first maximum sum can be advanced

to finding the K overlapping maximum convex sums, as shown in Figure 4.2. The newly developed

algorithm of the K-OMCS problem is outlined in Algorithm (11).

Figure (4.2): The K overlapping maximum convex sums in a two-dimensional array where λ
represents one of the maxima before finding the Kth overlapping maximum sums.

 In Algorithm (11), we extend the single values of fW and fN of Algorithm (7) to K-tuples

expressed by Fw and FN. The tentative maximum sum and the currently accumulated sum are also

First Maximum Convex Sum

λ Maximum Convex Sum

Kth Maximum Convex Sum

Second Maximum Convex Sum

58 | C h a p t e r (4)

extended to K-tuples in Bae and Takaoka’s study, which used the rectangular shape [16]. Using the

convex shape approach, Algorithm (11) employs the K-tuples which are as follows: Suppose L is a K-

tuple (a1, a2, …, aK). For a single value x, L + x is defined by L + x = (a1 + x,a2 + x, …, aK + x). L − x is

similarly defined. For sorted K-tuples L1, L2, …, Lm,, max{L1, L2, …, Lm} are the largest K numbers in the

merged list of L1, L2 , …, Lm. For two K-tuples L1 and L2, L1 + L2 are the largest K numbers from the set

and the Cartesian sums are used as {x + y | x is in L1 and y is in L2} [76]. The time complexity to find

the K-OMCS solution can be computed in O(Kn3). The proof of the time complexity is explained in the

proof of Theorem 4.1. In the following, capital F is used to signify K-tuples.

 Algorithm (11): K-Overlapping Maximum Convex Sums algorithm using the K-tuples

O(Kn3)

/* compute prefix_sum */

1: prefix_sum[0, k] = 0 for all k

2: for k=1 to n do

3: for s=1 to m do prefix_sum[s, k]=sum[s-1, k] + a[s, k]

/* compute FW */

4: FW (0, [s, t])←(0, - …, -) for all s  t // 0 followed by (K-1) -

5: FW (k, [s+1, s])←(- ,- , ….., -) for all k and s

6: for k←1 to n do

7: for all intervals of [s, t] in increasing order of t-s where s  t do

8: sum[k, s, t] = prefix_sum[t, k] – prefix_sum[s-1, k]

 FW (k-1, [s,t])+sum[k, s, t] (extended case 1)

9: FW (k, [s,t]) ← max FW (k, [s+1,t])+a[s, k], (extended case 2)

 FW (k, [s, t-1])+a[t, k] (extended case 3)

10: end for s, t

11: end for k

12: FN is similarly computed from right to left.

/** Finalisation **/

13: For k←1 to n do

14: For s←1 to n do

59 | C h a p t e r (4)

15: For t←s to n do

16: FWN (k,[s, t])← (FW (k,[s, t]) +FN (k,[s, t]) – sum[k, s, t])

17: end for t

18: end for s

19: end for k

20: F = max{ FWN (k,[s, t])} for all k, s, t

In Algorithm (11), Finalisation takes O(Kn3) time (lines 13-19). This is because to compute FWN

(k, [s, t]) = (FW (k, [s, t]) + FN (k,[s, t]) – sum[s, t, k]), the result is placed in a triply nested structure.

The addition operation ‘+’ of the two K-tuples (FW (k, [s, t]) and FN (k, [s, t])) can be calculated in O(K)

time [76]. If sorted order is required for the K solutions, they can be sorted at the end taking

O(KlogK) time.

 Theorem 4.1 FW (k, [s, t]) is the K maximum values of the sum of the W shape having the

anchor column (k, s, t).

Proof. The proof is based on double induction on k and t-s from smaller to larger anchor

columns. This proof is similar to that of Theorem 3.1.1 in Chapter 3. However, Theorem 3.1.1 is

related to single values, whereas, Theorem 4.1 deals with K-tuples.

 Let the basis be k = 1. It is easy to verify FW (1, [s, s]) = (sum[1, s, s], -∞, …, -∞), noting FW (1,

[s+1, s]) = (-∞, -∞, …, -∞). Now for general s and t, case 1 is (sum[1, s, s], -∞, …, -∞), since FW (0, [s, t])

= (0, -∞, …, -∞). Suppose Theorem 4.1 is true for t-s = c-1 for some c, where c is an arbitrary value.

We prove FW (1, [s, t]) = (sum[1, s, t], -∞…, -∞). From induction we have FW (1, [s+1, t]) = (sum[1, s+1,

t], -∞…, -∞). Thus, case 2 is FW (1, [s+1, t]) + a[s, 1] = (sum[1, s, t] , -∞, …, -∞) . Case 3 is similar. Based

on the program (algorithm (11), line 9).Thus

 FW (1, [s, t]) = max{(sum[1, s, t], -∞, …, -∞), (sum[1, s, t], -∞, …, -∞), (sum[1, s, t], -∞, …, -∞)}.

Similarly we can prove FW (k, [s, s]) = (fW [k, s, s] , -∞, …, -∞) .

Now suppose Theorem 4.1 is true for k -1 > 0 and t-s-1 > 0. The K maximum values of the W

shape with the anchor, column(k, s, t), are obtained from three smaller W shapes: the W shape with

column(k-1, s, t), the W shape with column(k, s+1, t), and the W shape with column(k, s, t-1). From

the induction hypothesis, the FW values of those W shapes are maximum with those three anchor

60 | C h a p t e r (4)

columns. The three cases in the program correspond to those three W shapes. The maximum values

for FW (k, [s, t]) are correctly computed by Algorithm (11), because the algorithm chooses maximum

K values out of the three K values obtained from all possibilities of the three cases.

Let FWN (k, [s,t]) be the K maximum values of the WN convex shapes with the anchor column

(k, s, t).

Finalisation (Algorithm (11))

For k = 1 to n

 For s = 1 to n do for t = s to n do

 FWN (k, [s,t]) = FW (k, [s,t]) + FN (k, [s,t]) – sum[k, s, t]

F=max{ FWN (k,[s, t])} for all k, s, t

To prove the correctness of Finalisation, we need the following lemma by Frederickson [76].

Lemma 4.1 Let X={x1, ..., xn} and Y={y1, ..., yn} be sets of n numbers each. Let X + Y, be called

the Cartesian sum, and defined by X + Y = {xi + yj | xi  X, yj  Y}. The largest n numbers from X + Y

can be computed in O(n) time. Let us denote the set of n largest numbers by X + Y for simplicity.

Theorem 4.2 Finalisation computes FWN (k, [s,t]) correctly in O(Kn3) time. Then K maximum

WN sums are computed.

Proof. The proof in Section 3.1.2.1 is generalised to K-tuples. Proof is by contradiction. In the

following fW and fW’ are the fW values of the two W shapes with the same anchor column (k, s, t). fN

and fN’ are similar. Suppose there is an anchor column (k, s, t) such that

 fW (k, [s,t]) + fN (k, [s,t]) – sum[k, s, t] < fW’(k, [s,t]) + fN’(k, [s,t]) – sum[k, s, t] (*)

where fW (k, [s,t]) + fN (k, [s,t]) – sum[k, s, t] is in the K-tuple and fW’(k, [s,t]) + fN’(k, [s,t]) – sum[k, s, t]

is not in the K-tuple. The inequality (*) is characterised in the same way as a+b+c < x+y+c in Section

3.1.2.1, which leads to a contradiction. The last part of Algorithm (11), line 20, can be computed by

repeating the framework of F  max{FWN (k,[s, t])} for all k, s, t, taking O(Kn3) time.

61 | C h a p t e r (4)

4.3 The K-OMSA and K-OMCS algorithms experimental comparisons

The previous section outlined the theoretical framework and implementation of the K-OMCS

problem, Algorithm (11). In this section, the experimental comparisons to assess the differences are

discussed for outcomes obtained using the K-OMCS algorithm and the K-OMSA algorithm [16]. The

procedures are the same as those which were outlined in Chapter 3 for running the experiments and

conducting the statistical analysis. Comparisons of the differences between results of the K-OMCS

and K-OMSA algorithms using inferential statistics are presented. Based on the preceding analytical

findings and the theory supporting it, there was an expectation to see patterns that are generally

similar to those outlined in the experimentation section of Chapter 3. A sample size of 30 was used

based on current expectations, previous findings and the underpinning theoretical knowledge. Table

4.1 describes the outcomes obtained using the K-OMCS and K-OMSA, where K = 1, 2, and 3 are, in

order, the first, second, and third located regions.

Table 4.1: Descriptive results of the maximum sums and running times (in seconds) obtained using

the K-OMSA and K-OMCS algorithms; N = 30. K=1, 2, and 3 are, in order, the first, second, and third

located regions.

 Overlapping maximum sub-
arrays (rectangular shape)†

Overlapping maximum convex sums
(convex shape)*

Matrix
Size

Mean
Outcome

K=1 K=2 K=3 K=1 K=2 K=3

300x300 Sum 28719 28604 28512 77304 77303 77303

 Running Time 1.23 8.96

250x250 Sum 21412 21279 21206 60658 60657 60656

 Running Time 0.72 5.56

200x200 Sum 17381 17255 17187 47470 47469 47469

 Running Time 0.37 2.82

150x150 Sum 13473 13365 13307 34238 34237 34236

 Running Time 0.16 1.17

100x100 Sum 8887 8830 8774 21225 21224 21223

 Running Time 0.05 0.35

50x50 Sum 4619 4581 4538 9987 9986 9984

 Running Time 0.01 0.04

†Rectangular shape: the K overlapping maximum sub-arrays algorithm using the rectangular shape
runs in O(Kn3) time complexity.
*Convex shape: the K overlapping maximum convex sums algorithm runs in O(Kn3) time complexity.

62 | C h a p t e r (4)

The normality assumption of the differences between Sconv and Srect for all six matrix sizes was

checked. The boxplot and histogram were checked for differences; both showed the sample data

were approximately normal for the overlapping maximum sums of each of the matrix sizes. The qq-

plots for each matrix size were consistent with the assumption of normality. The Shapiro-Wilk test

gave no evidence against the hypothesis that the underlying population differences are normally

distributed (Table 4.2), for all matrix sizes (Shapiro-Wilk p > 0.05). Thus, there is no evidence against

the assumption that the sample data was approximately normally distributed.

Table 4.2: Results of the Shapiro-Wilk test for testing normal distribution of the differences

between Sconv and Srect for all six matrix sizes on K = 1, 2, and 3.

Shapiro-Wilk p-value (p > .05)

Matrix
Size

K=1 K=2 K=3

300x300 .906 .936 .915

250x250 .296 .267 .247

200x200 .648 .657 .710

150x150 .108 .120 .122

100x100 .386 .438 .485

50x50 .306 .315 .287

Findings from the paired-sampled t-test (Table 4.3) for each matrix size showed strong

evidence of the differences between the K overlapping maximum sums obtained using the K-OMCS

and K-OMSA. There were statistically significant increases (p < .01) in the K overlapping maximum

sums outcomes obtained using the K-OMCS algorithm compared to using K-OMSA algorithm. The

effect sizes showed that there were large differences between the two algorithms’ K overlapping

maximum sums (8 < ES < 13). Findings from the experiments signify the notion of using the convex

shape in the MSP context, which would improve maximising over the ‘promising’ regions compared

to using the rectangular shape in the same context.

In the main, these findings endorse the new approach of this study as it provides potential

benefits relating to the sensitivity of finding maximum sum regions. As noted above, maximising

over all of the convex regions will return maximum sums that are no smaller than those maximised

over all the rectangular regions. It is evident that results from both algorithms will be different, in

the form of increased maximum convex sums, unless equivalent to those of the rectangular shape

maximum sums. The likelihood of optimising the overall findings will increase, when using methods

that will reach portions that were previously overlooked.

63 | C h a p t e r (4)

Table 4.3: The dependent-samples t-test results of the paired differences (µconv - µrect) of the
various matrix sizes using K-OMSA and K-OMCS algorithms; N = 30.

Matrix
Size

K Paired Differences (µconv - µrect)
(95% CI [Lower, upper])

Sig.
(p-value)

300x300 1

48586 [46944,50227] < 0.01

2 48699 [47070,50329] < 0.01

3 48791 [47162,50420] < 0.01

 250x250 1 39246 [37927,40564] < 0.01

2 39378 [38058,40697] < 0.01

3 40139 [38312,41966] < 0.01

 200x200 1 30089 [29059,31119] < 0.01

2 30214 [29181,31248] < 0.01

3 30282 [29251,31313] < 0.01

 150x150 1 20765 [20017,21513] < 0.01

2 20872 [20121,21622] < 0.01

3 20929 [20184,21675] < 0.01

 100x100 1 12338 [11764,12912] < 0.01

2 12394 [11818,12970] < 0.01

3 12449 [11879,13019] < 0.01

 50x50 1 5368 [5206,5529] < 0.01

2 5405 [5247,5563] < 0.01

3 5446 [5293,5599] < 0.01

64 | C h a p t e r (4)

4.4. Chapter summary

This chapter presented the original algorithm to find the K overlapping maximum convex

sums: K-OMCS algorithm, with O(Kn3) time. This is the same time complexity as that of the

rectangular shape algorithm [16]. The convex shape to find the K overlapping maximum convex sums

was verified to return improved maximum sums compared with those of the rectangular shape. The

work presented in this chapter has been published in a peer-reviewed paper [62]. The experiments

showed that the first, second and third maximum convex sum regions overlap heavily. In future

work, we could impose the condition that subsequent sums cannot overlap by more than 50%. This

gives scope for further improvements to advance the usability of the algorithm for real-life

applications.

65 | C h a p t e r (4)

Chapter Five

[Application of the MCS (K-DMCS

algorithm) to an ecology problem]

67 | C h a p t e r (5)

In this chapter, we applied the newly developed K-Disjoint Maximum Convex Sum (K-DMCS)

algorithm to a real-life application. The study presented in this chapter has been published in a peer-

reviewed paper [63]. We investigated the effects of land use changes on benthic stream

communities in highland tropical streams of Nigeria. A collaboration between computer scientists

and freshwater biologists was established to implement and examine the robustness of this

approach compared to a traditional method that used a rectangular shape in the K-Disjoint

Maximum Sub-Array (K-DMSA) algorithm. This new approach, which uses a convex shape as

compared to a rectangular shape, is expected to maximise the sums and to locate efficiently the

maximum sum regions. This new approach was applied to data3 (Appendix A) that were collated

from 55 tropical highland streams on the Mambilla Plateau, Nigeria to investigate the interactions

between substrate index, dissolved oxygen percentage (DO%) and temperature with number of

macro-invertebrates (taxa). The K-DMCS algorithm located the K-maximum threshold values. This

was achieved by implementing the algorithm to maximise the sum of elements of a selected portion

of a 2D array on two sets of data and their interactions in relation to taxa: substrate index at a range

of temperatures, and dissolved oxygen percentage at a range of temperatures. The K-DMCS

algorithm successfully detected the various temperatures between the different categories of the

substrate index and dissolved oxygen percentage, and the way in which these variables affect the

numbers of macro-invertebrates. Furthermore, applying the algorithm revealed that the number of

macro-invertebrates differs according to land use (e.g. forestry and agriculture). The new method

used in this research is encouraging in its capability to find the relationship among various

environmental parameters and macro-invertebrate distribution and diversity. This method can

potentially be applied to other real-life applications that require finding associations between

different parameters.

5.1 Background

 It is essential for real-life studies to use analysis techniques and approaches that yield

accurate outcomes, such as those when investigating relationships between different elements in

ecological applications. This section reviews some of the key studies that are relevant to the

ecological problem presented in this chapter, and the application of algorithms to real-life problems.

3
 The data was obtained from the Freshwater Ecology Research Group (FERG) in 2013, with permission from Professor Jon

Harding (FERG, University of Canterbury). This data is not available for other studies, without the express permission of
Professor Harding.

68 | C h a p t e r (5)

Habitat preference is widely viewed as a major process influencing the distribution and

density of macro-invertebrates, but identifying and quantifying associated factors is not an easy task.

Many hidden factors can be involved, and potential causal factors may be indefinable, such as

physico-chemical parameters and land use. Studies of invertebrate interaction with habitat and

environmental factors have focused on traditional ecological approaches. As an example, a study in

New Zealand investigated the magnitude of effects of substrate particle size, and the influence of

physical factors on benthic macro-invertebrates in 88 New Zealand Rivers [77]. In a second study,

substrate size preferences of macro-invertebrates were more clearly demonstrated by the

comparison of different substrates (e.g. boulders, cobbles) [78]. Although changes in light intensity

were found to have a significant influence on the periodicity of drifting organisms [78], there is little

information about other factors that may also affect the drift fauna of slow-flowing waters [79]. The

importance of current velocity and substrate type in determining the benthic distribution of

invertebrates is also well known [80-83].

 The use of algorithmic methods has much to offer the biological sciences. Algorithms can

contribute to knowledge discovery by extracting new aspects of results and permit new insights, in

addition to those derived from general statistical methods. This real-life study provides new insights

into the collaborative research, which is detailed as follows. Despite the presence world wide of a

large number of studies on macro-invertebrate communities that relate substrate and other physical

parameters with macro-invertebrates, apart from Olomukoro and colleagues’ study [84], research

on macro-invertebrate colonisation of the natural substrate in Nigerian streams is lacking. Reports

informed by analysis that is based on appropriately chosen approaches and techniques help decision

makers in policy development and for management processes in environmental studies. These

approaches need to have attributes such as quality of performance, computation time, flexibility,

and data applicability. A specific example is presented in this chapter. Researchers in benthic ecology

and other environmental gradients traditionally apply statistical analysis to understand outcomes

from their research data. An alternative approach for analysing data in ecology is to use advanced

computer algorithms. Although the use of algorithmic computations is still in its infancy [31], there

are emerging and promising approaches using algorithms to analyse datasets. The rationale behind

using the K-DMCS approach for this particular study is two-fold. Firstly, the flexibility of this

algorithm in adapting to the nature of the data in order to detect the maximum events of interest,

and secondly, two-dimensional observations can take many multiple dimensions. In this research,

we study the effects of two relationships: the correlation between substrate index and temperature

and their influence on macro-invertebrates’ habitat preference in streams; and the correlation

69 | C h a p t e r (5)

between dissolved oxygen percentage and temperature and their influence on the macro-

invertebrates’ habitat preference in streams.

 In this study we applied the K-Disjoint Maximum Convex Sum algorithm (K-DMCS), which

has been developed as part of this research, using the convex shape. Algorithms using the

rectangular shape, the K-MSA algorithms, have been previously used in applications, as was outlined

in Chapter 2. Studies using the K-DMSA included that of the K. Fukuda and Takaoka’s study to

investigate air pollution and health effects [30]. They used the K-DMSA algorithm to identify the

association between PM10 and admission counts patients over a wide range of age groups (in 5

yearly intervals from 0 to 98 years old). They investigated this by detecting rectangular regions (K-

maximum sub-arrays) with maximum hospital admission counts, rather than determining a

regression coefficient relating the variables [30]. Use of the K-DMSA method was also explored

elsewhere [4, 31-34]. In a given 2D array, the K-DMSA algorithm finds disjoint sub-arrays that

maximize the sum. These disjoint sub-arrays are rectangular regions covering up to the Kth

maximum sub-array, where K can be specified by the user or the application. These regions have the

most promising portions in the dataset, which provide knowledge to represent large data inputs.

Although using the rectangular shape could lead to the promising regions, it fails to provide a flexible

enough shape that potentially could cover various data distributions. This motivated us to propose a

new method using the convex shape and to apply it to situations such as the one described above.

The convex shape is a relatively complex shape compared to the rectangular shape [61]. It requires

three dimensions, resulting in cubic computing time, to determine the actual shape in a given

matrix. Using the convex shape approach accurately determines the peaks of data by optimising the

sums. This study advances our work reported in [61-63] but with the addition of a potential

application for the K-DMCS algorithm.

 5.2 Data collection and processing

The convex shape algorithm and its extended version (K-DMCS) were implemented in

Chapter 3 using simulated data. We also implemented the K-DMCS algorithm using real data

obtained from a study that was conducted in the tropical Montane mountain region of the Mambilla

Plateau, in the south-eastern corner of Taraba state, Nigeria (11o- 6oE and 6o- 7oN). Streams sampled

were near Yelwa village in the headwaters of the Donga River. The Mambilla Plateau experiences

two main seasons: rainy and dry. The rainy season lasts on average 250 days, from late March until

the end of October, and the dry season runs from November until mid-March. The mean annual

rainfall exceeds 1780 mm, peaking in June and July, but due to its elevation, at nearly 1500m above

70 | C h a p t e r (5)

sea-level, the daily mean temperature rarely exceeds 30oC. During the sampling period (October

2009 to March 2010), the mean air temperature was 24oC. The vegetation varied markedly across

the 55 streams. In the tropical Montane rainforest, the riparian vegetation was dominated by

Deinbollia pinnata, Santiria trimera, Rafania, Croton macrostachyus, Anthonotha noldeae, and Ficus

803. On the intensive grazing and pasture land, however, trees such as Acasia senegalensis, Polyscius

fulva, Beeilschmedia, Pouteria altissima, and Bridelia speciosa dominated. In the Montane rainforest

streams, substrates were mainly larger substrate sizes particularly boulders, cobbles, and sand, while

in the intensively grazed pastures and cropping streams, substrates were dominated by sand or

mud.

 A total of 55 headwater streams (first and second order) were sampled (Appendix A).

Streams were selected to provide at least five replicates in nine different land uses. These land uses

were: continuous tropical montane rainforest, forest fragment, intensive grazing, open pasture

cabbage and maize fields, tea and banana plantations, and eucalyptus forests. Each stream was

sampled for both physical and chemical parameters: fine particulate organic matter (FPOM), coarse

particulate organic matter (CPOM), algae, and benthic invertebrates. All sites were sampled on a

single occasion during the tropical dry season between October 2009 and March 2010.

To compare the diversity, density, and composition of benthic invertebrate communities

among the different land uses both qualitative and quantitative samples were collected. At each site,

five Surber samples (30 cm x 30 cm, 500 μm mesh size) were collected from riffles. In order to get a

more extensive species list, a single composite kick-net sample (mesh 500 μm) was also collected

from a range of different micro-habitats in each stream. Additionally, leaf packs, wood jams, and

moss were included in this kick-net sample. Macro-invertebrates collected include mayfly

(Leptophlebiidae), stonefly (Perlidae) and caddisflies (Hydropsychidae) (Figure 5.1). These species

are pollution sensitive and are therefore useful as bio-indicators of environmental degradation.

71 | C h a p t e r (5)

 Figure (5.1): Macro-invertebrates collected in streams on Mambilla Plateau between October
2009 and March 2010. (a) Mayfly (Leptophlebiidae);(b) Stonefly (Perlidae); (c) Caddisflies
(Hydropsychidae).

Ash-free dry mass (AFDM) of algae and moss were obtained by scraping stones with a wire

brush and washing the slurry into clean bottles. These samples were later filtered using a syringe and

filter paper and subsequently weighed in the laboratory. A composite FPOM sample was obtained by

placing a 60 μm net in the stream for 20 minutes. The FPOM was transferred into a bottle in the

field, and filtered; oven dried, and weighed in the laboratory. CPOM was obtained from the Surber

samples. The CPOM was oven dried and ashed at 450oC for three hours to calculate AFDM.

 All collected benthic invertebrates were preserved in 70% ethanol in the field and returned to

the laboratory for analysis. In the laboratory, samples were filtered using a 500μm sieve, sorted, and

identified to the lowest taxonomic level possible. The taxonomy of Nigerian aquatic invertebrates is

poorly known therefore we used a combination of keys by [85, 86].

 At each site, representative reaches at least 10 m long containing a riffle/run/pool complex

were selected. Furthermore, physico-chemical factors were measured in situ including temperature,

pH, conductivity (using a 4-star Orion pH/conductivity portable meter), and dissolved oxygen

percentage (using WTW oxygen meter). Filtered water samples were also collected. These were

analysed in the laboratory for nitrate and phosphate content using the Molybdenum blue

calorimetric method (R.J. Hill laboratories Ltd, Hamilton New Zealand).

 In the field, parameters such as substrate size and composition, wetted width, depth, and

current velocity were measured. Channel stability was also evaluated at each site using the method

of Pfankuch [87]. The K-DMCS algorithm we had recently developed was then applied to the data to

examine the impacts of the two relationships of particular interest, namely: the relationship

between substrate index and temperature and the influence on the habitat preference of macro-

a

b

c

72 | C h a p t e r (5)

invertebrates in streams, and the relationship between dissolved oxygen percentage and

temperature and the influence on the habitat preference of macro-invertebrates in streams.

5.3 Results and discussion

 The K-DMCS algorithm, Algorithm (10) was implemented to find optimal association results

between the research parameters using the convex shape. The results were compared with the

results from Algorithm (9), which used the rectangular shape, to find the maximum sub-arrays. In

Figures 5.2, 5.3, and 5.4, we set K = 3 and the three disjoint maximum sums are expressed as S1, S2

and S3. A weight factor, w is introduced to show various degrees of maximum sub-array in different

regions of the matrix as formulated in Equation (5.1). This weight factor in most cases is the mean

value of all elements in matrix M, or can be determined by the user. This process is used to

normalise the matrix so it has positive and negative values. In Equation (5.1), where M’ is the matrix

after normalisation, M is the original matrix and w is an anchor value.

 M’ = M – w …………………..…………. (5.1)

 The number of macro-invertebrates were analysed based on the two environmental

parameters under investigation: substrate index and dissolved oxygen percentage with temperature.

First we investigated the relationship between substrate index and temperature and its influence on

the macro-invertebrate habitat preference in streams. We started our procedure by normalising the

original matrix (M) through subtracting the anchor value (w = 28) using Equation (5.1); the matrix

elements are normalised numbers of macro-invertebrates. The normalised data are stored in Matrix

(1) in Figure 5.2. Algorithms (9) and (10) were run on Matrix (1). The first three peaks from the data

showed the same regions, suggesting that maximising over all convex regions returns a value that is

at least as large as that returned by maximising over all rectangular regions.

73 | C h a p t e r (5)

 Temperature °C

 V. Low Low Med High V. High Ex.High

Su
b

strate
 In

d
e

x

3 -- < 3.5 -28 3 10 -11 35 -7

3.5 -- < 4 -23 -28 -19 -17 -28 -21

4 -- < 4.5 -25 -28 -7 -28 -25 -21

4.5 -- < 5 -28 -19 -11 -28 -28 -28

5 -- < 5.5 0 -4 -13 -28 -28 -28

5.5 -- < 6 -28 -28 54 -28 -22 -28

6 -- < 6.5 -28 -15 -16 -20 -28 -28

6.5 -- < 7 -28 -28 -15 -11 -28 -28

7 -- < 7.5 -28 -28 -28 -16 -22 -28

7.5 -- < 8 -5 -28 39 78 -5 -28

Figure (5.2): Matrix (1) includes the normalised data collated from the Mambilla
Plateau (Nigeria). In the matrix are three variables: substrate index, temperature, and
numbers of macro-invertebrates.

 The findings of this study suggest that macro-invertebrates have a preference for large

substrate size. Three major peak areas were captured by the two Algorithms (9) and (10). These

peaks were based on the interactions between temperature, substrate index and macro-

invertebrates (Figure 5.2). The first peak was the medium to high temperature range in habitats with

large substrate size (e.g. boulders) which supported the highest density of macro-invertebrates; this

region had the first maximum convex sum (S1 = 117). The second peak was the medium temperature

in habitats with moderate substrate type (e.g. cobbles) which was the next favourable; this region

had the second maximum convex sum (S2 = 54). The third peak was at a very high temperature and

low substrate index (e.g. mud and sand) where the lowest macro-invertebrate density was recorded;

this region had the third maximum convex sum (S3 = 37).

The rectangular shape Algorithm (9) and the convex shape Algorithm (10) return the
same result for K = 1, S1 = 117.

Algorithm (9) and the Algorithm (10) return the
same result for K = 3, S3 = 37.

Algorithm (9) and Algorithm (10) return the same
results for K = 2, S2 = 54.

74 | C h a p t e r (5)

Results from this research also showed the interaction of macro-invertebrates with

temperature and dissolved oxygen percentage analysed using the K-DMCS algorithm – Matrix (2) in

Figure 5.3. Matrix (2) represents the interactions between temperature, dissolved oxygen

percentage and macro-invertebrates. The anchor value (w = 7) is shown in Figures 5.3 and 5.4. In

these figures, the first peak region (S1 = 364) is captured by Algorithm (10). We identified three

important informative areas: (a) at medium and high temperature ranges habitats having DO%

between 46 – <49 to 76 or more recorded the highest macro-invertebrate richness; (b) high

temperature to extremely high temperature ranges in habitats with DO% 61 – <64 is next in macro-

invertebrate richness; and (c) at very low temperatures in habitats having DO% 67 – < 70 the lowest

macro-invertebrate richness was recorded. The convex shape successfully identifies these areas.

 Others have had similar results in different geographic contexts. For example, Quinn et al.

[77], who studied the magnitude of effects of substrate particle size on benthic invertebrates in 88

New Zealand Rivers, found that the distribution of common macro-invertebrates in the Mohaka

River indicated significant substrate preference, where taxonomic richness and total densities of

macro-invertebrates were least in patches of sand and small gravel. Jowett and Richardson [88]

investigated microhabitat preferences of benthic invertebrates in Waingawa River, New Zealand.

Their study reported that mayflies, stoneflies, cased caddisflies, and Diptera show a preference for a

substrate index of more than 6 (boulder/cobbles) and beetles’ preference for a substrate index of

about 5.6 (gravel/cobble) habitat, while the operational taxonomic unites (OTUs) spread to occupy

the full range of particulate substrate. The pollution sensitive macro-invertebrates (Mayflies larvae,

stoneflies larvae and caddisflies larvae) were mostly associated with habitats having big substrates.

75 | C h a p t e r (5)

 Temperature °C

 V. Low Low Med High V. High Ex.High

D
isso

lved
 O

xyge
n

 %

 < 28 -7 -7 -7 5 -7 1

28 – < 31 -7 -7 -7 4 3 -7

31 – < 34 -7 4 -7 -7 -1 -7

34 – < 37 -7 -7 -7 -7 -1 -7

37 – < 40 -7 -7 -7 -7 -4 0

40 – < 43 -7 -4 15 -7 -7 -7

43 – < 46 -7 -7 -7 -7 -7 -7

46 – < 49 -7 -7 -7 3 -7 -7

49 – < 52 -7 -7 -7 15 -7 -7

52 – < 55 -7 -7 12 -7 14 -2

55 – < 58 -2 -1 30 -7 -7 0

58 – < 61 -7 -7 17 3 -7 -7

61 – < 64 -7 -7 24 -7 34 6

64 – < 67 -7 4 15 -7 -7 -7

67 – < 70 16 15 7 15 -7 -7

70 – < 73 -7 17 42 10 10 -7

73 – < 76 1 13 22 39 -7 -7

76 or more -7 -7 27 6 -7 -7

Figure (5.3): Matrix (2) includes the normalised data collated from the Mambilla Plateau (Nigeria)
taking into account three variables: DO%, temperature, and number of macro-invertebrates. It also
shows the first maximum sum by running the Algorithms (9) and (10). The convex shape is more
flexible in covering various data distributions and manifests a greater maximum sum in comparison
to the rectangular shape, which not only returns a smaller maximum sum, but also contains less
useful data (noise).

Maximum sum using the rectangular
shape Algorithm (9) for K =1, S1 = 277.

Maximum sum using the convex shape Algorithm
(10): for K= 1, S1 = 364.

76 | C h a p t e r (5)

The choice of the convex shape supported a more efficient way of capturing all datasets at

once; this is outlined in Matrix (2) of Figure 5.4.

 Temperature °C
 V. Low Low Med High V. High Ex. High

D
isso

lved
 O

xyge
n

 %

 < 28 -7 -7 -7 5 -7 1

28 – < 31 -7 -7 -7 4 3 -7

31 – < 34 -7 4 -7 -7 -1 -7

34 – < 37 -7 -7 -7 -7 -1 -7

37 – < 40 -7 -7 -7 -7 -4 0

40 – < 43 -7 -4 15 -7 -7 -7

43 – < 46 -7 -7 -7 -7 -7 -7

46 – < 49 -7 -7 -7 3 -7 -7

49 – < 52 -7 -7 -7 15 -7 -7

52 – < 55 -7 -7 12 -7 14 -2

55 – < 58 -2 -1 30 -7 -7 0

58 – < 61 -7 -7 17 3 -8 -7

61 – < 64 -7 -7 24 -7 34 6

64 – < 67 -7 4 15 -7 -7 -7

67 – < 70 16 15 7 15 -7 -7

70 – < 73 -7 17 42 10 10 -7

73 – < 76 1 13 22 39 -7 -7

Figure (5.4): A comparison between the maximum sum outcomes of the rectangular shape
and convex shape algorithms. Algorithm (10), the convex shape, achieves the maximum
sum S4 = 12 at K = 4. Algorithm (9), the rectangular shape, achieves a maximum sum S5 = 9
at K = 5, and a maximum sum S8 = 3 at K = 8. The convex shape is more flexible than the
rectangular shape in covering data distribution.

The rectangular shape Algorithm (9)
finds this region at K = 5, S5 = 9.

The convex shape Algorithm (10) finds this
region at K = 4, S4 = 12.

The rectangular shape Algorithm (9) finds
this region at K = 8, S8 = 3.

77 | C h a p t e r (5)

5.4 Chapter summary

 Scientific investigations in this chapter were achieved by establishing collaboration between

the Algorithm Engineering and Formal Methods Research Group (AEFMRG) and the Freshwater

Ecology Research Group (FERG), University of Canterbury (New Zealand). The collated data in this

study were gathered by one of the originators of this research, who is a member of FERG, University

of Canterbury. The collaboration investigated the effects of land use changes on benthic stream

communities in highland tropical streams on Mambilla Plateau in North-East Nigeria using the newly

developed K-DMCS algorithm. In previous research the K-DMSA algorithm was used in several

applications. It has been natural for these studies to focus on using the rectangular shape in the MSA

frameworks, because of the lack of studies exploring alternative shapes for MSP. The MSP has taken

a new turn by using the concept of maximum convex sums. The convex shape has several useful

attributes that increase the utility of MSP in real-life applications. In this chapter, we demonstrated

that although there is the same time complexity for both algorithms the maximum sums are

improved when using the convex shape in preference to the rectangular shape in the MSP context.

This research applied the K-DMCS algorithm to an ecology setting, where it demonstrated improved

results compared to outcomes obtained from applying the rectangular shape.

 The K-DMCS algorithm successfully detected various temperatures between different

categories of the substrate index or dissolved oxygen percentage, and the ways in which these

variables affected the number of macro-invertebrates showed a preference for a large substrate

size. The pollution sensitive macro-invertebrates (mayflies larvae, stoneflies larvae and caddisflies

larvae) were most closely associated with habitats having a large substrate index. An experimental

investigation using the K-DMCS algorithm by changing the weight parameter successfully returns

specific and detailed results by maximising the sum to find the peaks of the data. Overall, this study

provides a new approach that potentially can be applied to other MSP applications.

78 | C h a p t e r (5)

Chapter Six

[Concluding remarks and future work]

80 | C h a p t e r (6)

6.1 Concluding remarks and future work

Since 1977 MSA research has focused on using the rectangular shape for computing the

maximum sub-arrays [1-41]. This approach, whilst useful in some contexts can be further enhanced

for MSP by using a different shape. Using the convex shape in the MSP context offers the flexibility

to locate regions that have the maximum sums. There is a lack of studies in exploring and applying a

new shape in the MSP context; studies have rarely explored this frontier for examining a new shape

to find the maximum sums with best possible time complexity. This research creates a different

perspective for MSP and introduces a new shape for it. We have deviated from what has been the

previous norm for exploring and investigating new methods to improve MSP outcomes and its

efficacy for potential applications. Our approach to MCS provides a firm foundation and a new

research path for developing further versatile algorithms for problems associated with MSP.

This chapter highlights the main contributions of this thesis to the MSP:

 Investigation and application of a convex shape in the MSP context and creation of a new

MCS framework. We developed an independent MCS algorithmic framework to find

regions that maximise the sum, running within the state-of-the-art time complexity of MSA

algorithms. At the start, to explore the convex shape in the MSP context, T. Fukuda’s

algorithm was simplified to find the maximum convex sums. This simplification created an

algorithm that uses three cases compared to the seven required for T. Fukuda’s algorithm,

and both yielded the same results. The bidirectional approach was applied to achieve this

goal. The simplified algorithm, using the convex shape, returned a sum at least as large as

that returned by the rectangular shape algorithm. This algorithm was then evaluated to

create the groundwork for developing advanced MCS algorithms (Chapter 3).

 Integration of pre-processing and post-processing techniques to increase the effectiveness

of the newly developed MCS algorithms and their utility in real-life applications. We used

the prefix sum method to enhance the algorithms’ performance by eliminating costly

repetitions. We also devised the algorithms to use the backtracking technique to back

trace and precisely determine the shape boundaries. This creative method provided

adequate grounds for the generalisation of the newly developed MCS algorithms to cover

cases involving computation of the K maximum sums (Chapter 3).

81 | C h a p t e r (6)

 Development of new algorithms using the MCS framework and the generalisation of those

for the K-Maximum Convex Sum (K-MCS), which finds the K maximum convex regions in an

input two-dimensional array. We developed two K-MCS algorithms to cover the K-Disjoint

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS) –

both algorithms running in O(Kn3) time (Chapters 3 and 4).

 Conducted scientifically designed experiments using simulated data to evaluate outcomes of

the newly devised MCS algorithms in comparison with their MSA counterpart. We

implemented the algorithms on the simulated data to make the comparisons and carry out

statistical analysis. These revealed the relevance and vitality of exploring the diversion from

using the rectangular shape in the MSP approach and the introduction of the convex shape

in that context, because the convex shape algorithm returns significantly larger maximum

sums (Chapters 3 and 4).

 Application of the newly defined MCS problem to a real-life setting. We established

collaboration with the ecologists from the University of Canterbury. We implemented the

theoretical framework and algorithms using data extracted from an ecological experiment.

We used the K-DMCS algorithm to find the K-maximum regions that represent relationships

and interactions in the data. We investigated the effects of changes in land use on benthic

stream communities in highland tropical streams of Nigeria. We compared the results to

those obtained by using the traditional method (rectangular shape in the K-DMSA). Using

the K-DMCS algorithm we successfully detected biologically significant relationships

between the study variables, as well as demonstrating the applicability of our approach to

real-life contexts (Chapter 5).

 To conclude, this research provides the theoretical and practical framework that makes a

significant scientific contribution to addressing some of the research gaps in MSP problem and the

new research path, the MCS problem. The MCS algorithmic model departs from using the

rectangular shape as in MSP, and retains a time complexity that is within the best known time

complexities of the MSA algorithms. The study provides a strong foundation for further

investigations in this new area of research. Future in-depth studies on the Maximum Convex Sum

(MCS) problem can advance the algorithms developed in this thesis and their time complexity.

82 | C h a p t e r (6)

Future studies will include research to improve the time complexity of the simplified convex

shape algorithm with the aim of achieving subcubic time. Our research has demonstrated computing

the first maximum convex sum running in O(n3) time. Further research can investigate improving the

time complexity of our original K-OMCS algorithm, from O(Kn3) to a subcubic time by reducing the

time complexity for the heavily overlapped regions. Such a future study could impose the condition

that the subsequent maximum sums within the matrix do not overlap by more than 50%. This may

result in more efficient algorithms for real-life applications. We have already commenced

preliminary investigations into this with the goal of improving the computational time of the

algorithms developed in this thesis [38]. The possibility of improving the time complexity for the K-

OMCS from O(Kn3) to O(n3+Kn2) is demonstrated in this exploratory paper [38]. This algorithm is

based on the conjecture that identical shapes are reported at most n times. That is, if there are n

identical shapes, the duplication check process requires additional computation time. Improving the

time complexity needs rigorous further investigations, specifically into the process of checking the

identical shapes.

83 | C h a p t e r (6)

References

85 | R e f e r e n c e s

[1] J. Bentley, "Programming pearls: algorithm design techniques," vol. 27, ed: ACM, 1984, pp.

865-873.

[2] J. Bentley, "Programming pearls: perspective on performance," vol. 27, ed: ACM, 1984, pp.

1087-1092.

[3] U. Grenander, Pattern analysis vol. 2. New York: Springer-Verlag, 1978.

[4] S. E. Bae, "Sequential and parallel algorithms for the generalized maximum subarray

problem," Ph.D.Thesis, University of Canterbury, New Zealand, 2007.

[5] T. Takaoka, "A new upper bound on the complexity of the all pairs shortest path problem,"

Information Processing Letters, vol. 43, pp. 195-199, 1992.

[6] D. Gries, "A note on a standard strategy for developing loop invariants and loops," Science of

Computer Programming, vol. 2, pp. 207-214, 1982.

[7] D. R. Smith, "Applications of a strategy for designing divide-and-conquer algorithms,"

Science of Computer Programming, vol. 8, pp. 213-229, 1987.

[8] Z. Wen, "Fast parallel algorithms for the maximum sum problem," Parallel Computing, vol.

21, pp. 461-466, 1995.

[9] K. Perumalla and N. Deo, "Parallel algorithms for maximum subsequence and maximum

subarray," Parallel Processing Letters, vol. 5, pp. 367–373, 1995.

[10] K. Qiu and S. Akl, "Parallel maximum sum algorithms on interconnection networks," Queen’s

University, Department of Computer and Information Science, Tech. Rep., 1999.

[11] K. Qiu and S. G. Akl, "Finding the maximum subsequence sum on interconnection networks,"

Int. J. Parallel Emerg. Distrib. Syst., vol. 22, pp. 371-385, 2007.

[12] H. Tamaki and T. Tokuyama, "Algorithms for the maximum subarray problem based on

matrix multiplication," in Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

Algorithms, San Francisco, California, USA, 1998, pp. 446-452.

[13] T.-C. Lin and D. T. Lee, "Randomized algorithm for the sum selection problem," Theoretical

Computer Science, vol. 377, pp. 151-156, 2007.

[14] T. Takaoka, "Efficient algorithms for the maximum subarray problem by distance matrix

multiplication," Electronic Notes in Theoretical Computer Science, vol. 61, pp. 191-200, 2002.

[15] S. E. Bae and T. Takaoka, "Parallel approaches to the maximum subarray problem," in

Proceedings of the 7th Japan-Korea Workshop on Algorithms and Computation, 2003, pp. 94-

104.

86 | R e f e r e n c e s

[16] S. E. Bae and T. Takaoka, "Algorithms for the problem of k maximum sums and a VLSI

algorithm for the k maximum subarrays problem," in Proceedings of the 7th International

Symposium on Parallel Architectures, Algorithms, and Networks, 2004, pp. 247–253.

[17] S. E. Bae and T. Takaoka, "Improved algorithms for the K-maximum subarray problem for

small K," in Proceedings of the 11th Annual International Conference on Computing and

Combinatorics, 2005, pp. 621-631.

[18] S. E. Bae and T. Takaoka, "Algorithm for K disjoint maximum subarrays," in Computational

Science – ICCS 2006. vol. 3991, V. Alexandrov, G. Albada, P. A. Sloot, and J. Dongarra, Eds.:

Springer Berlin Heidelberg, 2006, pp. 595-602.

[19] S. E. Bae and T. Takaoka, "Improved algorithms for the K-maximum subarray problem,"

Computer Journal, vol. 49, pp. 358-374, 2006.

[20] S. E. Bae and T. Takaoka, "Ranking Cartesian Sums and K-maximum subarrays," Department

of Computer Science and Software Engineering, University of Canterbury, Tech. Rep. TR-

COSC 03/08, 2006.

[21] S. E. Bae and T. Takaoka, "Algorithms for K-disjoint maximum subarrays," International

Journal of Foundations of Computer Science, vol. 18, pp. 319-339, 2007.

[22] F. Bengtsson and J. Chen, "Efficient Algorithms for k Maximum Sums," in Algorithms and

Computation. vol. 3341, R. Fleischer and G. Trippen, Eds.: Springer Berlin Heidelberg, 2005,

pp. 137-148.

[23] F. Bengtsson and J. Chen, "A note on ranking k maximum sums," Lulea University of

Technology, Tech. Rep. 2005:08, 2005.

[24] F. Bengtsson and J. Chen, "Ranking k maximum sums," Theoretical Computer Science, vol.

377, pp. 229-237, 2007.

[25] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao, "Improved algorithms for the k

maximum-sums problems," in Algorithms and Computation. vol. 3827, X. Deng and D.-Z. Du,

Eds.: Springer Berlin Heidelberg, 2005, pp. 799-808.

[26] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao, "Improved algorithms for the k

maximum-sums problems," Theoretical Computer Science, vol. 362, pp. 162-170, 2006.

[27] M. Bashar, "Average case analysis of algorithms for the maximum subarray problem," M.Sc.

Thesis, University of Canterbury, New Zealand, 2007.

[28] W. L. Ruzzo and M. Tompa, "A Linear time algorithm for finding all maximal scoring

subsequences," in Proceedings of the 7th International Conference on Intelligent Systems for

Molecular Biology, 1999, pp. 234-241.

87 | R e f e r e n c e s

[29] A. P. Sprague, "Extracting optimal association rules over numeric attributes," in Proceedings

of the 36th annual Southeast regional conference, 1998, pp. 59-63.

[30] K. Fukuda and T. Takaoka, "Analysis of air pollution (PM10) and respiratory morbidity rate

using K-maximum sub-array (2-D) algorithm," in Proceedings of the 2007 ACM symposium on

Applied computing, Seoul, Korea, 2007, pp. 153-157.

[31] K. Fukuda, "Computer-enhanced knowledge discovery in environmental science," Ph.D.

Thesis, University of Canterbury, New Zealand, 2008.

[32] K. Fukuda and T. Takaoka, "Investigation of the maximum association for suicide rate and

social factors using computer algorithm," in International Congress on Modelling and

Simulation (MODSIM07), 2007, pp. 1381-1387.

[33] K. Fukuda, J. Brown, P. Williams, and J. Kean., "The K-maximum subarray algorithm as an

alternative clustering analysis for the spatial weed aggregation pattern," presented at the

59th Annual Conference of the New Zealand Statistics Association, Hamilton, New Zealand,

2008.

[34] S. J. Weddell, T. Takaoka, T. Read, and R. Candy, "Maximum subarray algorithms for use in

optical and radio astronomy," in Proceedings of Optical Engineering & Applications: Image

Reconstruction from Incomplete Data VII, San Diego, CA, USA, 2012, pp. 8500-24.

 [35] T. Takaoka, N. K. L. Pope, and K. E. Voges, "Algorithms for Data Mining," in Business

Applications and Computational Intelligence: IGI Global, 2006, pp. 291-315.

[36] S. Weddell and B. Langford., "Hardware implementation of the maximum subarray algorithm

for centroid estimation," in Proceedings of the 21st Image and Vision Computing Conference

New Zealand (IVCNZ 2006), 2006, pp. 511–515.

 [37] S. M. Lee, "Sub-cubic time algorithm for the k-disjoint maximum subarray problem," M.Sc.

Thesis, University of Canterbury, New Zealand, 2011.

[38] M. Thaher and T. Takaoka, "Improved algorithms for the K overlapping maximum convex

sum problem," Procedia Computer Science, vol. 9, pp. 754-763, 2012.

[39] S. Anzai, J. Chun, R. Kasai, M. Korman, and T. Tokuyama, "Effect of corner information in

simultaneous placement of K rectangles and tableaux," in Proceedings of the 16th Annual

International Conference on Computing And Combinatorics, Nha Trang, Vietnam, 2010, pp.

235-243.

[40] S. E. Bae and T. Takaoka, "Improved algorithms for the K-maximum subarray problem for

small K," in Computing and Combinatorics. vol. 3595, L. Wang, Ed.: Springer Berlin

Heidelberg, 2005, pp. 621-631.

88 | R e f e r e n c e s

[41] Y. Han and T. Takaoka, "An O(n3 log log n/log2 n) time algorithm for all pairs shortest paths,"

in Algorithm Theory – SWAT 2012. vol. 7357, F. Fomin and P. Kaski, Eds.: Springer Berlin

Heidelberg, 2012, pp. 131-141.

[42] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "Data Mining with optimized two-

dimensional association rules," ACM Trans. Database Syst., vol. 26, pp. 179-213, 2001.

[43] R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in

large databases," SIGMOD Rec., vol. 22, pp. 207-216, 1993.

[44] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules in large databases,"

in Proceedings of the 20th International Conference on Very Large Data Bases, 1994, pp.

487-499.

[45] J. S. Park, M.-S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association

rules," in Proceedings of the 1995 ACM SIGMOD international conference on Management of

data, San Jose, California, USA, 1995, pp. 175-186.

[46] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "Data mining using two-dimensional

optimized association rules: scheme, algorithms, and visualization," in Proceedings of the

1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec,

Canada, 1996, pp. 13-23.

[47] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "Constructing efficient decision trees

by using optimized numeric association rules," in Proceedings of the 22th International

Conference on Very Large Data Bases, 1996, pp. 146-155.

[48] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama., "Data mining using two-dimensional

optimized association rules Scheme and algorithms," Tech. Rep., IBM Tokyo Research

Laboratory, 1996.

[49] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "Mining optimized association rules

for numeric attributes," presented at the Proceedings of the fifteenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems, Montreal, Quebec, Canada, 1996.

[50] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "SONAR: system for optimized

numeric association rules," ACM SIGMOD Record, vol. 25, p. 553, 1996.

[51] Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama, "Implementation and evaluation of

decision trees with range and region splitting," Constraints, vol. 2, pp. 401-427, 1997.

[52] Y. Morimoto, H. Ishii, and S. Morishita, "Efficient construction of regression trees with range

and region splitting," in Proceedings of the 23rd International Conference on Very Large Data

Bases, 1997, pp. 166-175.

89 | R e f e r e n c e s

[53] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, "Computing optimized

rectilinear regions for association rules," in Proceedings of the 3rd International Conference

on Knowledge Discovery and Data Mining, 1997, pp. 96–103.

[54] C. Apte, S. Hong, S. Prasad, and B. Rosen, "Ramp: Rules abstraction for modelling and

prediction," IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY,

Tech. Rep. RC-20271, 1996.

[55] B. Forsberg, N. Stjernberg, and S. Wall, "People can detect poor air quality well below

guideline concentrations: a prevalence study of annoyance reactions and air pollution from

traffic," Occup Environ Med, vol. 54, pp. 44-8, 1997.

[56] G. Touloumi, K. Katsouyanni, D. Zmirou, J. Schwartz, C. Spix, A. P. de Leon, et al., "Short-term

effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA

project. Air Pollution and Health: a European Approach," Am J Epidemiol, vol. 146, pp. 177-

85, 1997.

[57] H. R. Anderson, S. A. Bremner, R. W. Atkinson, R. M. Harrison, and S. Walters, "Particulate

matter and daily mortality and hospital admissions in the west midlands conurbation of the

United Kingdom: associations with fine and coarse particles, black smoke and sulphate,"

Occup Environ Med, vol. 58, pp. 504-10, Aug 2001.

[58] R. T. Burnett, M. Smith-Doiron, D. Stieb, M. E. Raizenne, J. R. Brook, R. E. Dales, et al.,

"Association between ozone and hospitalization for acute respiratory diseases in children

less than 2 years of age," Am J Epidemiol, vol. 153, pp. 444-52, 2001.

[59] F. Dominici, "Invited commentary: air pollution and health-what can we learn from a

hierarchical approach?," Am J Epidemiol, vol. 155, pp. 11-5; discussion 16, 2002.

[60] J. Q. Koenig, Health effects of ambient air pollution: how safe is the air we breathe? Boston:

Kluwer Academic, 2000.

[61] M. Thaher and T. Takaoka, "An efficient algorithm for the maximum convex sums," Procedia

Computer Science, vol. 1, pp. 1475-1483, 2010.

[62] M. Thaher and T. Takaoka, "An efficient algorithm for computing the K-overlapping

maximum convex sum problem," Procedia Computer Science, vol. 4, pp. 1288-1295, 2011.

[63] M. Thaher, D. Umar, T. Takaoka, and J. Harding, "Application of the maximum convex sum

algorithm in determining environmental variables that affect Nigerian highland stream

benthic communities," Procedia Computer Science, vol. 18, pp. 909-918, 2013.

[64] S. J. Weddell, T. Read, M. Thaher, and T. Takaoka, "Maximum subarray algorithms for use in

astronomical imaging," Journal of Electronic Imaging, vol. 22, 2013.

90 | R e f e r e n c e s

[65] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, "GPower 3: a flexible statistical power

analysis program for the social, behavioral, and biomedical sciences," Behavior research

methods, vol. 39, pp. 175-191, 2007.

[66] B. H. Cohen, J. Welkowitz, and R. B. Lea, Introductory statistics for the behavioral sciences.

Chichester: John Wiley & Sons, 2011.

[67] G. Cumming, Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-

analysis. Hoboken: Taylor & Francis, 2011.

[68] E. Huizingh, Applied statistics with SPSS. Thousand Oaks, Calif: SAGE, 2007.

[69] E. T. Berkman and S. P. Reise, A conceptual guide to statistics using SPSS. Thousand Oaks:

Sage Publications, Inc, 2012.

[70] K. Black, J. Asafu-Adjaye, N. Khan, N. Perera, P. Edwards, and M. Harris, Australasian

business statistics. Milton, Qld: John Wiley & Sons Australia, 2007.

[71] S. Nolan and T. Heinzen, Statistics for the Behavioral Sciences: Worth Publishers, 2011.

[72] F. E. Grubbs, "Procedures for Detecting Outlying Observations in Samples," Technometrics,

vol. 11, pp. 1-21, 1969.

[73] J. Schwab. (2006). Paired-Samples T-Test of Population Mean Differences [Online]. Available:

http://www.utexas.edu/courses/schwab/sw388r6_fall_2006/SolvingProblems/Homework%

20Problems%20-%20Paired%20Samples%20T-Test.ppt [Accessed 1 April 2014]

[74] N. Razali and Y. Wah, "Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors

and Anderson-Darling tests," Journal of Statistical Modeling and Analytics, vol. 2, 2011.

[75] Boston University School of Public Health. (2014). The Role of Probability: Sampling

Distributions [Online]. Available: http://sphweb.bumc.bu.edu/otlt/MPH-

Modules/BS/BS704_Probability/BS704_Probability11.html [Accessed 1 April 2014]

[76] G. N. Frederickson and D. B. Johnson, "The complexity of selection and ranking in X + Y and

matrices with sorted columns," Journal of Computer and System Sciences, vol. 24, pp. 197-

208, 1982.

[77] J. M. Quinn and C. W. Hickey, "Magnitude of effects of substrate particle-size, recent

flooding, and catchment development on benthic invertebrates in 88 New-Zealand rivers,"

New Zealand Journal Of Marine And Freshwater Research, vol. 24, pp. 411-427, 1990.

[78] T. Waters, "Invertebrate drift-ecology and significant to stream fishes," in Symposium on

Salmon and trout in streams, H. R. MacMillan lectures in fisheries, Vancouver. Edited by T.G.

Northcote., University of British, Columbia, Vancouver, 1969, pp. 121-134.

[79] L. D. Corkum, "A comparative study of behaviour relating to differential drift of two species

of mayflies," Ph.D. Thesis, University of Toronto, Canada, 1976.

91 | R e f e r e n c e s

[80] K. W. Cummins, "Factors Limiting the Microdistribution of Larvae of the Caddisflies

Pycnopsyche lepida (Hagen) and Pycnopsyche guttifer (Walker) in a Michigan Stream

(Trichoptera: Limnephilidae)," Ecological Monographs, vol. 34, pp. 271-295, 1964.

[81] K. W. Cummins and G. H. Lauff, "The influence of substrate particle size on the

microdistribution of stream macrobenthos," Hydrobiologia, vol. 34, pp. 145-181, 1969.

[82] H. B. N. Hynes, The ecology of running waters. Liverpool: Liverpool University Press, 1970.

[83] W. Minshall, " Aquatic insect-sbstratum relationships.," in The ecology of aquatic insects, V.

H. Resh and D. M. Rosenberg, Eds., New York, Praeger, 1984, pp. 358-400.

[84] J. O. Olomukoro and U. Okologume, "Macroinvertebrate colonisation of artificial substrates

in a Nigerian river I: gravel and leaf litter," African Journal of Aquatic Science, vol. 33, pp.

143-143, 2008.

[85] M. J. Winterbourn, K. L. D. Gregson, S. New Zealand Limnological, and Z. Entomological

Society of New, Guide to the aquatic insects of New Zealand vol. 9. Auckland, NZ:

Entomological Society of New Zealand, 1989.

[86] T. J. Blakely, An illustrated guide to the freshwater macroinvertebrates of Singapore:

University of Canterbury - School of Biological Sciences, 2010.

[87] J. Pfankuch, Stream reach inventory and channel stability evaluation: a watershed

management procedure: U.S. Dept. of Agriculture, Forest Service, Northern Region, 1975.

[88] I. G. Jowett and J. Richardson, "Microhabitat preferences of benthic invertebrates in a New

Zealand river and the development of in stream flow habitat models for Deleatidium spp,"

New Zealand Journal of Marine and Freshwater Research, vol. 24, pp. 19-30, 1990.

92 | R e f e r e n c e s

Appendix

Appendix (A): Real-life data collated by the Freshwater Ecology Research Group (FERG) and

processed by the Algorithm Engineering and Formal Methods Research Group (AEFMRG) to study

the effects of land use changes on benthic stream communities in highland tropical streams on

Mambilla Plateau north-east Nigeria using the newly developed K-DMCS algorithm.

Site code Site name Land-use

Subtract
index temp.º C %DO

%
forest

%
pasture Taxa

1. 1 AG1 Canselor 2 Eucal 5.8 18.1 61.8 10 90 24

2. AG10 Bapa Zubairu 1 Tea 7.9 20.1 61.8 5 95 8

3. AG11 Mohamadu 1 Tea 3 23.5 63.3 2 98 13

4. AG12 Godfree 1 Tea 3 21.2 70.6 20 80 17

5. AG13 Mal. Ali Banana 7.3 21.7 31.7 25 75 6

6. AG14 Head Master Banana 3.4 21.6 29.5 15 85 10

7. AG16 Alh. Yusuf 1 Maiz 4 17.6 71 10 90 21

8. AG17 Alh. Lawan Grazing 3 15.8 64.9 10 90 11

9. AG2 Canselor 3 Grass 5.6 18.8 54.4 10 90 19

10. AG21 Alh. Yusuf 3 Grass 4.5 17.1 41.1 5 95 17

11. AG22 Alh. Yusuf 2 Eucal 3 23.9 26.1 5 95 8

12. AG23 Alh. Bayero 1 Grazing 5 14.2 74.5 3 97 8

13. AG24 Alh. Bayero 2 Grazing 3 18.3 66.4 3 97 12

14. AG25 Misa 1 Maiz 3.2 20 47.8 2 98 10

15. AG26 Misa 2 Maiz 3.3 16.1 69.9 2 98 9

16. AG27 Misa 3 Maiz 3 21.2 54.6 0 100 21

17. AG28 Jacob 1 Cabage 3 20.6 50 0 100 7

18. AG29 Jacob 2 Cabage 3 23 54.4 0 100 5

19. AG3 Canselor 4 Grass 6 16.9 68.7 20 80 13

20. AG30 Ruqaya 1 Cabage 3 17.8 68.2 0 100 14

21. AG31 Ruqaya 2 Cabage 3 22.4 61.3 0 100 10

22. AG32 Habiba K Cabage 3.8 23.6 39.3 0 100 7

23. AG33 Yelwa Banana 4.3 21.1 38.8 0 100 3

24. AG39 Alh. Kato 2 Grass 3.8 14.4 57.8 0 100 5

25. AG4 Alh. Dambi 1 Grass 3 15.5 31.4 20 80 11

26. AG5 Alh. Dambi 2 Eucal 4 15.9 40.7 5 95 3

27. AG6 Alh. Isa 1 Banana 4.5 15.2 55.7 5 95 6

28. AG7 Fragment. C Grass 6.2 18.5 58.1 10 90 12

29. AG8 Bobbo 1 Tea 3.8 17.3 74.2 10 90 9

30. AG9 Bapa Saedu 1 Tea 3.8 20.2 30.9 20 80 11

31. MG34 Mustapha 1 Mining 5 15.5 70.1 0 100 24

32. MG35 Counselor 1 Mining 5 14.7 73.4 0 100 20

33. MG36 Mustapha 2 Mining 5 17.3 66.3 0 100 10

34. MG37 Alh. Umaru Mining 5.6 17.1 75.6 0 100 20

35. MG38 Jauro Saedu Mining 5.8 18.5 57.6 0 100 19

36. NF1 Fragment A Maiz 7 18.5 77.1 100 0 13

37. NF10 J.S.H 4 C/forest 3.2 17.2 58.7 100 0 12

38. NF15 Luga Ginnaji 2 M/forest 6.4 20.8 69.2 100 0 8

39. NF16 Luga ginnaji 3 M/forest 7.8 20.3 73.7 100 0 27

40. NF17 Luga Ginnaji 1 M/forest 7.8 20.9 79 100 0 13

41. NF18 Luga Ginnaji 8 M/forest 7.7 21.7 61.7 98 2 17

42. NF19 Luga Ginnaji 9 M/forest 7.8 20.5 60.4 98 2 10

43. NF2 Fragment B1 Grazing 5 18.78 40.5 100 0 5

44. NF20 Luga Ginnaji 10 M/forest 7.6 22 61.7 95 5 6

45. NF21 Luga Ginnaji 6 M/forest 6.7 20 70.1 95 5 17

46. NF22 Luga Ginnaji 7 M/forest 7.9 20.2 73.5 95 5 19

47. NF23 Luga Ginnaji 5 M/forest 7.5 20.4 50.6 95 5 15

48. NF24 Luga Ginnaji 4 M/forest 7.7 19.4 67.6 96 4 14

49. NF3 Fragment B2 Banana 5.5 22.7 35.4 100 0 6

50. NF4 Fragment D Eucal 7.3 19.1 15.1 100 0 12

51. NF5 Alh. Isa 2 Eucal 4.4 24.3 55.5 100 0 7

52. NF6 Augustine trans C/forest 7.9 17.3 56 100 0 18

53. NF7 J.S.H 1 C/forest 7.6 17.3 76.6 100 0 21

54. NF8 J.S.H 2 C/forest 7.6 17.8 70.9 100 0 28

55. NF9 J.S.H 3 C/forest 7.7 13 67.9 100 0 23

