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Abstract 
 

his research is designed to develop and investigate newly defined problems: the 

Maximum Convex Sum (MCS), and its generalisation, the K-Maximum Convex Sum (K-MCS), 

in a two-dimensional (2D) array based on dynamic programming. The study centres on the 

concept of finding the most useful informative array portion as defined by different parameters 

involved in data, which is generically expressed in this thesis as the Maximum Sum Problem (MSP). 

This concept originates in the Maximum Sub-Array (MSA) problem, which relies on rectangular 

regions to find the informative array portion. From the above it follows that MSA and MCS belong to 

MSP. This research takes a new stand in using an alternative shape in the MSP context, which is the 

convex shape. 

 

Since 1977, there has been substantial research in the development of the Maximum Sub-

Array (MSA) problem to find informative sub-array portions, running in the best possible time 

complexity. Conventionally the research norm has been to use the rectangular shape in the MSA 

framework without any investigation into an alternative shape for the MSP. Theoretically there are 

shapes that can improve the MSP outcome and their utility in applications; research has rarely 

discussed this. To advocate the use of a different shape in the MSP context requires rigorous 

investigation and also the creation of a platform to launch a new exploratory research area. This can 

then be developed further by considering the implications and practicality of the new approach.  

 

This thesis strives to open up a new research frontier based on using the convex shape in the 

MSP context. This research defines the new MCS problem in 2D; develops and evaluates algorithms 

that serve the MCS problem running in the best possible time complexity; incorporates techniques 

to advance the MCS algorithms; generalises the MCS problem to cover the K-Disjoint Maximum 

Convex Sums (K-DMCS) problem and the K-Overlapping Maximum Convex Sums (K-OMCS) problem; 

and eventually implements the MCS algorithmic framework using real data in an ecology application.  

 

Thus, this thesis provides a theoretical and practical framework that scientifically contributes 

to addressing some of the research gaps in the MSP and the new research path: the MCS problem. 

The MCS and K-MCS algorithmic models depart from using the rectangular shape as in MSA, and 

retain a time complexity that is within the best known time complexities of the MSA algorithms.  

Future in-depth studies on the Maximum Convex Sum (MCS) problem can advance the algorithms 

developed in this thesis and their time complexity.  
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Introduction 

 
The Maximum Sub-Array (MSA) problem is used to find the most useful informative array 

portion that associates with different parameters involved in data [1, 2]. MSA was initiated to 

resolve pattern recognition problems and used as a likelihood estimator (the most-likely area for 

certain property) to find the brightest portion in an image [3]. Since then, the topic has been 

expanding to solve other problems that stem from the original concept, such as those associated 

with finding the ranking of the maximum sums. Let us define the Maximum Sum Problem (MSP) as 

one that finds some portion of the given array that maximises the sum in it. In this sense MSA 

belongs to MSP. 

 

MSA can be computed for one-dimensional (1D) and two-dimensional (2D) arrays that have 

positive and negative numbers. The 1D case can be called the Maximum Sum Segment Problem 

(MSSP) which can be solved in linear-time using Kadane’s algorithm [1]. This involves a process of 

selecting a segment of consecutive array elements that have the largest possible sum compared to 

all other segments in presented data [1, 2]. In the two-dimensional case, the task is to find a 2D sub-

array that has the maximum sum compared to all other segments in a matrix [4].  

 

Finding an MSA solution with optimum time complexity is being investigated by researchers 

worldwide and has been a challenge over the past three decades [1-41]. Since 1977, various 

techniques have been developed to advance algorithms to find a solution with the optimum 

computation time. For example, finding MSA exhaustively took O(n6) time in an earlier work [3]. In 

1998, the time complexity was reduced to subcubic time O(n3(log log n/log n)1/2) by applying the 

Distance Matrix Multiplication (DMM) method [12], and its algorithm was then simplified in 2002 

[14]. It was not until 2012 that an O(n3log log n/log2 n) time was achieved [41].  

 

In previous research focused on MSA, algorithms for searching rectangular regions have 

been primarily used for finding the maximum sub-arrays [1-41]. There has been almost no 

investigation of using alternative shapes in implementing the MSP framework. In this research, the 

MSP approach takes a new turn to explore and investigate such a component, using a shape that will 

potentially improve the maximum sum outcomes for the MSP problem. It uses the convex shape. 

This new approach provides a significant step towards discovering alternative robust methods to 

solving MSP problems. The newly defined problem in this research is called the Maximum Convex 
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Sum (MCS). Below is a simple example to explain the difference between the maximum sums 

obtained using MSA and MCS approaches, as shown in Figure 1.1.  
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451419923

24528652

33945322









 

                                                                        

                                                                                      19                                           30 

 

 

 

 

Figure (1.1):  Maximum sums obtained from using two shapes in a matrix: rectangular shape and 
convex shape. The algorithms used to illustrate this example have been adapted from those that 
appear in the following chapters. 

 

In addition to investigating a new shape in the MSP context, this research advances the 

Maximum Convex Sum problem to cover generalised cases. The research establishes the K-Disjoint 

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS) problems. 

The newly designed algorithms achieve O(Kn3) time. Furthermore, using real datasets from ecology, 

this research implements the newly developed K-DMCS method to finding K-maximum threshold 

values for investigating the relationships between different environmental elements. We 

collaborated with the Freshwater Ecology Research Group (FERG) at the University of Canterbury to 

investigate the effects of change in land use on benthic stream communities in the highland tropical 

streams of Nigeria. The use of an algorithmic approach in a real-life study contributes to both the 

study of ecology and the study of MSP in a practical context. 

 

The organisation of this chapter is as follows: Section 1.1 deals with the thesis goals and 

motivation; Section 1.2 discusses the specific contributions of this study; Section 1.3 outlines the 

publications that have resulted from this research; Section 1.4 acknowledges the awards and funds 

received as a part of this project; Section 1.5 lists the internships and research visits; and Section 1.6 

provides a very brief chapter outline for the thesis.  

 

 

The MSA approach has been used to find 
the maximum sum in this matrix by using 
a rectangular shape algorithm. Maximum 
sum = 19 

The MCS approach has been used in our 
research to find the maximum sum in this 
matrix by using the convex shape 
algorithm. Maximum sum = 30 
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1.1 Thesis Goals and Motivation  
 

The main goal of this thesis is to investigate, develop and evaluate a framework for solving 

the MCS problem. This framework can be broadly applicable and used to find the maximum sub-

arrays in 2D as the most promising portions in datasets. The framework is based on the challenging 

dynamic programming approach. Previously, MSA frameworks have approached the problem of 

finding maximum sums using rectangular regions. This is explored and widely covered within many 

different research areas [1-41]. There is significant scope, however, for other shapes to be used in 

the MSP context; this has been rarely discussed in previous studies. The new research scope can 

potentially enhance outcomes for the MSP. The newly designed algorithms for the MSP using an 

alternative shape can take into account achieving time complexity that is in the current range of the 

MSA algorithms’ time complexity using the rectangular shape. Thus introducing an alternative 

framework has been the primary motivation for our investigation of the MCS problem and more 

specifically our proposition of using the convex shape in the MSP framework. This opens up a new 

research area in terms of using alternative shapes in the MSP context.  

 

The specific goals of this thesis are to: 

 Develop an independent algorithmic framework to find regions that maximise the sum 

within the same time complexity of the current algorithms for MSA.  

 Explore and integrate various techniques to speed up the computation time for the newly 

developed algorithms.  

 Generalise the MCS problem to cover the K-Disjoint Maximum Convex Sums (K-DMCS) and 

the K-Overlapping Maximum Convex Sums (K-OMCS) problems in 2D, having the best 

possible time complexity. 

 Evaluate the proposed MCS algorithms using experimental analysis.  

 As a practical application, implement the theoretical algorithmic framework using real data 

in an ecology application.  

 

1.2 Ph.D. Contributions 
 
The main contributions of this Ph.D. thesis are: 
 

 Investigating and utilising the convex shape in the MSP context and creating a new MCS 

framework. This research simplifies the algorithm of T. Fukuda et al. [42] to find the 

maximum convex sum using the bidirectional approach. The simplified algorithm, using the 
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convex shape to find the maximum sums, returns a sum at least as large as that returned by 

maximising over all rectangular regions (Chapter 3). 

 

 Evaluating the simplified version of the MCS algorithm and selectively applying pre-

processing and post-processing techniques to boost the applicability of the newly defined 

algorithms. The prefix sum method enhances the algorithms’ performance by bypassing 

surplus addition operations. The backtracking technique, to determine the shape 

boundaries, permits the generalisation of the newly developed MCS algorithm to cover cases 

involving computing the K maximum sums (Chapter 3).  

 

 Developing new algorithms using the MCS framework and generalising those for the K-

Maximum Convex Sum (K-MCS), which finds the K maximum convex regions in an input two-

dimensional array. This research develops two K-MCS algorithms to cover the K-Disjoint 

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS) 

concepts. The former requires the convex regions to be disjoint while the latter covers the 

case where the convex regions to overlap – both algorithms run in O(Kn3) time (Chapters 3 

and 4).  

 
 Analysing experimental implementation of the devised algorithms using simulated data. In 

this research experimental comparisons are made between algorithms developed as part of 

the newly defined MCS problem and their corresponding counterparts of the traditional 

MSA algorithms (Chapters 3 and 4). 

 

 Applying and assessing the validity of the defined MCS problem in a real-life application. The 

K-DMCS algorithm is applied to an ecology setting to find the K-maximum regions that 

represent the impact of relationships in data. The research investigates the effects of change 

in land use on benthic stream communities in highland tropical streams of Nigeria. The 

results of this research are compared with those obtained using the traditional method 

(rectangular shape in the K-DMSA). Using the K-DMCS algorithm, biologically significant 

relationships between the studied variables have been successfully identified, which 

essentially demonstrates the robustness of the tested approach (Chapter 5). 
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1.3 Ph.D. Publications 
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1
 The Australian Research Council (ARC) regards ‘A’ conferences as equivalent to A* and A journals 

http://www.arc.gov.au/era/era_journal_list.htm
http://www.arc.gov.au/era/era_journal_list.htm
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Computer Science Research Student Conference, University of Otago, Dunedin, 11-13 April 

2012 (NZCSRSC 2012). 

 

 M. Thaher, T. Takaoka, (2013) Application for the K-DMCSP. In the 11th New Zealand 

Computer Science Research Student Conference, Waikato University, Hamilton, 15-19 April 

2013 (NZCSRSC 2013). 
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 S. Weddell, T. Read, M. Thaher, and T. Takaoka, (2013) Maximum subarray algorithms for 

use in astronomical imaging. Journal of Electronic Imaging, vol. 22, 2013.  

 

 M. Thaher, T. Takaoka, (2013) Investigating Efficient Algorithms for Maximum Convex Sum 

Problem. Presented at a symposium of Optimization and its Applications in Learning and 

Industry (OptAli), 27-31 August, 2012, Gottingen, Germany. 

 

 M. Thaher, T. Takaoka, (2010) MCSP show case. 2010 Departmental Post-Grad conference, 

University of Canterbury, Christchurch, 31 August-1 September 2011. 
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Germany. I attended the OptALI Summer School where I received training which helped to 

optimise my frame work and understand different methods.  

 

 September, 2012: Research visit to the Department of Mathematics. A research visit to 

Technical University of Kaiserslautern in Germany - Optimization research group. I attended 

workshops as well as presented my research.  

 October, 2012: Research visit to the Department of Management Engineering. A research 

visit to Denmark Technical University - Optimization research group.  I received training on 

different methods in optimisation.  
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1.6 Outline of the thesis 

 

Chapter 2 – MSA Background: covers a comprehensive review of the MSA theoretical and 

algorithmic frameworks. 

 

Chapter 3 – The K-DMCS problem: describes the newly defined MCS problem and its generalisation 

to cover the disjoint case.  

 

Chapter 4 – The K-OMCS problem: describes the generalisation of MCS to cover the overlapping 

case.  

 

Chapter 5 – Application of the MCS (K-DMCS algorithm) to an ecology problem. 

 

Chapter 6 – Conclusion and future work: provides a summary of the thesis contributions, limitations 

and future directions. 
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Chapter Two  
[Background information] 
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This chapter provides a comprehensive review of the MSA theoretical and algorithmic 

frameworks. The chapter is organised as follows: Section 2.1 discusses the state-of-the-art of the 

Maximum Sub-Array (MSA) problem; Section 2.2 reviews the MSA problem in 1D and 2D; Section 2.3 

provides a summary of the main points in the chapter.  

 
2.1 History of the Maximum Sub-Array (MSA) problem  
 

MSA is an approach that many researchers have investigated since 1977 and is an area of 

research with a plethora of publications [1-41]. Researchers worldwide have contributed to the 

advancement of this topic with research from IBM, AT & T Bell Labs, Kenstrel Institute, Cornell 

University, University of Minnesota, University of Alabama, National Taiwan University, University of 

Tokyo, University of Central Florida, University of Washington and University of Canterbury.  

 

UIf Grenander at Brown University initially encountered problems in pattern recognition in 

1977 [3] and these problems led to more investigation into MSA algorithms [2]. One of the 

challenges that Grenander faced was finding the maximum sum over all rectangular regions of a 

given m × n array of real numbers. The maximum likelihood estimator of a certain kind of pattern in 

digitised pictures is represented by the maximum sum or maximum sub-array [3]. Grenander 

initiated the computation of the maximum sum by implementing an algorithm of O(n6) time for an 

array size of n × n [3]. Following this algorithm, in an attempt to reduce the time factor and to gain 

more understanding of the structure, he simplified the problem to 1D [3]. The input is a one-

dimensional array of n real numbers; the output is the maximum sum obtained in any consecutive 

portion (sub-array) of the input. Grenander managed to obtain O(n3) time using a one-dimensional 

array, but eventually terminated his research on the maximum sub-array to solve the problem of 

pattern matching, because of the high complexity of the attempted algorithms. The seed that he 

planted, however, has proven to be fruitful. 

 

Following Grenander’s attempts, Shamos and Bentley have improved the time complexity to 

O(n2) and later implemented an O(n log n) time algorithm. Kadane [4] and Gries [6] presented other 

linear time algorithm solutions to the time complexity problem. The two-dimensional version (n x n 

array) to solve the MSA problem has been achieved in O(n3) by extending Kadane’s algorithm [2]. 

Smith presented an O(n) time for the 1D MSA problem, and achieved an O(n3) time solution for the 

2D problem using the divide-and-conquer technique [7]. 
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The current state-of-the-art in terms of the optimal time for the 1D version is O(n) [2]. The 

time complexity of O(n3) for 2D MSA has been the best achievable time until Tamaki and Tokuyama 

[12] devised an algorithm which achieves a subcubic time of O(n3(log log n/log n)1/2). They achieved 

this time by adopting the divide-and-conquer technique, and applying the fastest known Distance 

Matrix Multiplication (DMM) algorithm [5]. Takaoka later simplified this algorithm and presented an 

even faster DMM algorithm [14]. More recently, Han and Takaoka achieved O(n3log log n/log2 n) 

time in [41].  

 

Bae studied the MSA problem using the rectangular shape in 2D [15-21]. He has presented 

methodologies and techniques to speed up computation time for the K-Overlapping Maximum Sub-

Array (K-OMSA) and the K-Disjoint Maximum Sub-Array (K-DMSA) problems. Bae designed mesh 

algorithms for the 2D MSA and K-OMSA problems [15, 16]; established O(K2 + n logK) time for the 1D 

K-OMSA through sampling before candidate generation [17]; applied the sampling for the 1D K-

OMSA [18] to the 2D case; and designed a tournament for the next K-DMSA and extended this to the 

2D K-DMSA [19]. 

 

Bengtsson and Chen studied K-OMSA using the rectangular shape in sorted and non-sorted 

orders of the final K maximum sums and proposed an O(n + k log n) time algorithm for ranking the K 

maximum sum sub-sequences [22-24]. In a further study, Chen et al. [25, 26] achieved the 

equivalent complexity of O(n + K log min (K, n)) time. Bashar and Takaoka developed an algorithm to 

generalise the MSA by using average case analysis whilst utilising the rectangular shape [27]. In a 

different study, Ruzzo and Tompa [28] suggested a linear time algorithm that finds the K-DMSA in a 

one-dimensional array by locating all high scoring segments.  

 

In addition to the aforementioned research, T. Fukuda and his colleagues from IBM 

discussed data-mining techniques based on the association rules of two numeric attributes and one 

Boolean value in an acceptable region [42]. They proposed an algorithm to compute regions that 

give optimal association rules for support and confidence. Their main aim was to generate two-

dimensional association rules that represented the dependence on a pair of numeric attributes. For 

example, the relationship between the attributes will depend on the objective condition [42]. T. 

Fukuda’s study was based on Agrawal and his colleagues’ research to find all confidence rules in vast 

data [43]. Improved versions of Agrawal and his colleagues’ algorithm have been reported [44, 45], 

in which the rectilinear convex shape was investigated for the first time. Furthermore, T. Fukuda et 

al. [46-53] considered three classes of geometric regions: x-monotone regions, y-monotone regions 
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and rectilinear regions. The key findings of this study, based on thorough investigations, indicate the 

limitation of using the x-monotone and y-monotone regions. These shapes are likely to over fit the 

training database dramatically, and therefore fail to give a good prediction on the unseen dataset 

[42, 46, 53, 54]. Sprague’s research [29] attempted to investigate extracting optimal association 

rules over numerical attributes by using the anchored convex shape. His technique, however, 

involves a limited shape that lies at the edges of the matrix and does not take into account that the 

solution may lie in the inner portions of a 2D array. Researchers continue to use the rectangular 

shape in research and applications of the MSA. 

 

K. Fukuda and Takaoka’s research discussed applications for using 2D MSA algorithms [30, 

31]. In their study, they used a K-DMSA algorithm in a health and environmental science setting. 

They investigated the associations between particulate air pollution and acute respiratory hospital 

admission counts in Christchurch, New Zealand [55-60]. Data gathering involved collecting daily 

measurements of particulate air pollution with a diameter less than 10 μm (PM10) over a four year 

period (1998-2002). Additionally, counts of acute respiratory hospital admissions for all age groups 

from 0 to 98 years in Christchurch were collected. The morbidity rate was extracted from hospital 

records of residents within a 2 km radius of the air pollution monitoring site, which was located in a 

residential area. The K-DMSA detects associations among different (PM10) levels and the variation 

according to different age groups, gender, and different seasons or weather changes. They stated in 

their study that the K-DMSA is potentially an encouraging methodology to investigate how various 

air pollution levels are related to health or climate, and this can contribute to policy making with 

regard to the problem of air pollution. This study shows the potential for a transition from traditional 

statistical approaches to finding rectangular portions which represent data associations. 

 

In addition to the above study, MSA algorithms have been applied to other real-life 

applications [32-35]. One such example is the application of K-DMSA algorithm to investigate suicide 

rates in association with several factors [32]. This is used to identify a range of thresholds to explain 

the maximum associations of the suicide rates, age groups, and social factors (including 

bankruptcies, unemployment, divorce and orphan numbers). The study was conducted in 

collaboration with the Ministry of Health in New Zealand, and the data have been collected for over 

20 years (1983-2003). The study detected the range of threshold criteria (maximum sums) to 

describe the maximum associations of the study variables. This included determining associations for 

specific ranges and factor levels by introducing a new approach: changing the weight parameter, w. 

The weight w is subtracted from the given array elements. This is normally the mean value, but for 
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fine tuning various w values are used in [31, 32]. The general trend is that association patterns 

obtained from suicide rates have been found to be similar across the studied social factors for 

females and males. The study reveals that despite the general trends, there are differences between 

the two genders. For example, the age group for the suicide range in females has a wider age range 

(15-64 years) compared to the males (15-59). In this study, using the K-DMSA has led to detection of 

detailed threshold associations between the suicide age groups and levels of the study factors [31, 

32]. 

Another study that used MSA algorithms is an investigation of the spatial distribution 

patterns of hawthorn, grown over a 100 year period, on Porters Pass in the South Island of New 

Zealand [33]. Results show how the weed’s distribution pattern has changed over the 40 year period 

from 1966 to 2008. MSA algorithms have further been used in other areas such as bioinformatics, 

genomic sequence analysis (GSA), computer vision (CV) and data mining (DM). Readers may refer to 

[4, 35, 36] for details regarding these algorithms.  

 

More recently, MSA algorithms were applied to optical and radio telescope applications (e.g. 

wavefront detection and slope estimation, and efficient image processing) [34]. MSA algorithms 

were used to develop a centroid estimator for improving the computational efficiency to 

compensate for atmospheric turbulence in real-time. These algorithms improved performance in 

terms of the number of clock cycles compared to using the serial processing configuration. The input 

image size becomes limited, however, because to achieve the improved performance there is an 

increased cost of the MSA algorithm time complexity. The MSA algorithms were also applied to 

astronomical images, which were obtained for the Australian square kilometre array pathfinder 

(ASKAP) project. There was a need to find MSA portions of the radio telescope images to efficiently 

classify source objects. The use of MSA algorithms demonstrated operational gain, but this has a 

limitation in terms of the present loading method, and is still under investigation [34].  

 

The preceding paragraphs outline the history and the state-of-the-art research and 

development of MSA problems and algorithms; the succeeding sections address the background and 

conceptual information of MSA algorithms.   
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2.2 Overview of the MSA problem in 1D and 2D   

2.2.1 Finding MSA in 1D  

In a given array a[1..n] containing real numbers with a mixture of zero, positive and negative 

numbers, the maximum sub-array contains consecutive array elements having the greatest sum. Let 

ℱ = max(S), where max(S) is the operation that selects the maximum sum of contiguous elements in 

a list S, which is given by Equation (2.1),  

      

             S =   ∑   a[x]      |   1 ≤ i ≤ j  ≤ n        …………………….   (2.1) 

 

There are different algorithms that can compute the maximum sum in linear time O(n) [4]. 

Kadane from Carnegie-Mellon University invented the first algorithm to solve the MSA problem in 

O(n) time [1, 2]. His well-known algorithm, Algorithm (1), uses the accumulation/reset method to 

find the largest maximum contiguous subsequence amongst all other segments in a 1D array of real 

numbers.  

                   

 

 

 

 

 

 

 

Algorithm (1) scans a given 1D array (a[1..n]), accumulating a tentative sum in t. In the case 

of t being greater than the current maximum s, s will be updated by t. If t becomes negative, it will 

be reset to zero. The variables k and l keep track of, respectively, the beginning and ending positions 

of the sub-array that has the sum s. The indices (k, l) and maximum sum s are initialised to zero. If all 

       Algorithm (1):  Kadane’s algorithm O(n) /* 1D MSA a[k..l] of a[1..n] */  

1: Initialisation: (k, l) ← (1, 0) (empty) ;  s  ← 0 ; t ← 0; j ← 1; 

2:  for i ← 1 to n do begin  

4:    t ← t + a[i] 

5:    if t > s  then begin  (k, l) ← (j, i); s  ←  t end; 

6:    if  t  ≤ 0 then  t  ← 0;  j ←  i  + 1    end    /*reset the accumulation*/ 

7: end for 

j 

x=i 

http://www.facebook.com/pages/w/110045855713034
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of the elements of the array a[1..n] are negative, the resulting s will be zero having an empty 

interval. An illustrated example is given in Figure 2.1.   

 

     

1                                 k                 l                                    j                            i                                          n 

Figure (2.1): An example showing Kadane’s algorithm in 1D.  

 

           The computing time for Algorithm (1) is linear (O(n)). If we consider the time complexity as a 

function of the input size n, then the time complexity will be O(f(n)); that is proportional to f(n).   

 

2.2.2 Finding MSA in 2D  

           2.2.2.1 Strip separation   
 
             The MSA in a two-dimensional array can be computed for a given array of size m × n (we 

assume that m ≤ n). The 2D input matrix has real numbers such as a[1, …, m, 1, …, n]. An approach to 

solve an MSA problem in 2D is to extend Algorithm (1), which is the 1D Kadane’s algorithm [2]. The 

extended Kadane’s algorithm used a rectangular portion to find the maximum sub-array in 2D, which 

is given by Algorithm (2) [4]. Example (2.1) depicts the extended Kadane’s algorithm to find MSA for 

a two-dimensional array. Suppose we find a rectangular sub-array such that a[k..i, l..j], where 

coordinates (k, l) and (i, j) are indices for tracing the portion area. In this example, we let index (1, 1) 

to be the top-left corner. The located rectangular region in this example is given by (3, 4) and (5, 6); 

and the sum is 18. 

Example (2.1): Let a be given by 

       a = 

     
62287531

451319923

24528652

33945322









 

The extended Kadanes’s algorithm employs the strip separation approach to find a 

maximum sub-array in 2D [4]. This process involves horizontally separating the two-dimensional 

s t 
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array into every possible row strip, followed by applying the 1D Kadane’s algorithm on each strip. 

The principal operation of the extended Kadane’s algorithm is shown in Figure 2.2.   

 

In this figure, the rectangular area that is defined by the bottom-right corner (x1, y1) and 

top-left corner (x2, y2) would have a continually updated maximum sum, S. As for the rectangular 

area defined in the strip from x to z, the tentative solution, t for this 1D area is from j to i. While 

iterating through the row bounded by x and z, we assign the most updated maximum sum in the 

current 1D strip to s. In other words, S keeps track of globally optimum, whereas s is for locally 

optimum. Employing the strip separation approach in 2D, MSA incorporates a triply nested structure 

as shown in Algorithm (2), which results in a total computational time of O(m2n). When m = n the 

time complexity becomes a cubic time O(n3) [2]. 

 

 

 

     

 

 

Figure (2.2): An example demonstrating Kadane’s algorithm in 2D. 

 

 Algorithm (2):  2D version of Algorithm (1) (the extended Kadane’s Algorithm); O(m2n)   

1. Initialisation ((x1, y1),(x2, y2)) ← ((1, 1),(0, 0)); S ← 0;     /*initial candidate is empty */ 

2. for z ← 1 to m do begin  

      /** initialise column[][]**/ 

3.     for i ← 1 to n do begin  column[z-1][i] ← 0; 

z 

x 
k l 

 
    j i 

s t 

S 

x2 

x1 

y2 y1 
(1,1) n 

m 
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4.        for x ← z to m do begin  

5.            t ← 0; s ← 0; (k, l) ← (1, 0);                    /* initial candidate is empty */ 

6.             j ← 1 

7.            for i ← 1 to n do begin  

8.                  column[x][i] ← column[x-1][i] + a[x][i]; 

9.                   t ← t + column[x][i]; 

10.                if(t > s ){ s ← t ;(k, l) ← (i, j); } 

11.                if(t < 0){ t ← 0; j ← i+1; }             /*reset the accumulation*/ 

12.            end for 

13.        if (s > S) {S ← s; x1 ← x; y1 ← k; x2 ← z; y2← l;} 

14.     end for 

15.    end for 

 

2.2.2.2 Distance Matrix Multiplication   

In this section, we will briefly review the Distance Matrix Multiplication (DMM) framework 

to compute the MSA in 2D. Takaoka [14] simplified the algorithm of Tamaki and Tokuyama [12] and 

achieved a subcubic time. He used two concepts to improve the time complexity to subcubic for the 

2D MSA problem: firstly, he translated prefix sums as distances for DMM; and secondly, he used the 

divide-and-conquer (splitting and merging) technique.  

 
            The DMM method was used in Takaoka’s algorithm [14] as the key computation process to 

compute the distance product, which is outlined as follows. For two n x n matrices, A = [ai,j] and B = 

[bi,j], the product C = AxB is defined by,   

 

     ci,j = min         ai,k  +  bk,j     (i,j = 1,..,n)…………………….   (2.2) 

 

1 ≤ k ≤ n  
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In Equation (2.2), A and B are called distance matrices, and the right-hand side operation is 

called DMM. The DMM algorithm in [14] runs in O(n3(log logn / log n)1/2) time, which is subcubic. The 

most recent improvement of this is given in [41], which has O(n3 log log n/log2n) time. For the 

purpose of this study, we refer to [14] in this chapter to explain improving the time complexity for 

the newly defined problem of this study. Algorithm (3) outlines the 2D MSA algorithm using the 

DMM [14]. 

 

 

                   

 

 

 

 

 

 

 

 

The time complexity is improved by transforming prefix sums to distances. The prefix sum of 

a one-dimensional array a at position i, is given by s[i], which is the sum of a[1], … , a[i]. The prefix 

sum array is computed in linear time O(n) in 1D, Algorithm (4). 

Algorithm (4):  1D prefix sum algorithm; O(n) time  

1.Initialisation s[0] ← 0; 

2. for i ← 1 to n do begin   

3.      s[i] ← s [i-1] + a[i]; 

4. end for  

 

Algorithm (3):Takaoka’s Algorithm for two-dimensional array; O(n3(loglog n/ logn) 1/2) time 

1: If the array becomes one element, return its value.  

2: Otherwise, if m > n, rotate the array 90 degrees.   

   /* Now we assume m ≤ n */ 

3: Let ALeft be the solution for the left half.  

4: Let ARight be the solution for the right half.  

5: Let  ACentre_column be the solution for the column-centred problem  

/* The column-centred problem is to obtain a solution array that crosses over the vertical 

centre line */ 

6: Let the solution be the maximum of these three solutions ( ALeft, ARight, ACentre_column) . 
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The prefix sum of a given two-dimensional array can be defined similarly as that of the 1D 

prefix sum algorithm, Algorithm (4). The prefix sum at position s[i][j] in a two-dimensional m x n 

array (a) is the sum of the array portion a[1, … , i][1, …, j] for all i and j with a boundary condition 

s[i][0] = s[0][j] = 0. This was computed in O(mn) time [4]. 

 

             Considering Equation (2.3), the sum of a[k…i][l…j] is computed by the subtraction of the 

prefix sums as in Equation (2.4) and depicted in Figure 2.3. This equation is obtained from the 

inclusion-exclusion principle. 

 

                        𝑠[i][ j]  =   ∑ a[p][q] …….……………………..…(2.3) 

 

          

                ∑ a[p][q] = 𝑠[i][ j]  −  s[k][𝑗]  −  s[𝑖][l] +  s[k][l] ……………….…(2.4) 

 

 

              

 

 

 

 

 

 

Figure (2.3): MSA of the area having indices (k, l), (i, j) using the prefix sum method in 2D 

                                 

 

    l  j 

k 

i 

i,j 

p=1,q=1 

p=k,q=l 

i,j 
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            To maximise the sum from a two-dimensional array, we have to find indices (k, l) and (i, j) that 

maximise the ∑    a[p][q]. Using prefix sum array s, the maximum sub-array is defined by Equations 

(2.5) and (2.6).  

 

 

 Maximum Sum =  𝑚𝑎𝑥                          𝑠[i][ j]  −  𝑠[k][j]  −   𝑠[𝑖][l]   +   𝑠[k][l]     ……………(2.5) 

 

 

                                = 𝑚𝑎𝑥                     𝑠[i][j] − 𝑠[k][j]     − m𝑖𝑛                      𝑠[i][l] −  𝑠[k][l]     ……(2.6) 

 

              The outer framework of Takaoka’s algorithm [14] was presented in Algorithm (3). The 

column-centred problem is to obtain an array portion that crosses over the central vertical line 

(ACentre_column) with the maximum sum, as in Figure 2.4. The centre problem is as follows:    

  

    ACentre_column =         𝑚𝑎𝑥                s[i][j] −  s[i][l] −  s[k][j]  +  s[k][l]    …..……..…(2.7) 

 

                   

           

 

 

 

 

         Figure (2.4): The column-centred problem (ACentre_column) 

 

m-1,n-1,m,n 

k=0,l=0,i=1,j=1 

p=k,q=l 

i.j 

n/2 

m 

n 

ACentre_column 

1 l 

1 

k 

i 

j 

m,j-1, i-1  

i=1,l=0,k=0 

m,n, i-1  

i=1,j=1,k=0 

0≤k≤i−1 
0≤l≤n/2−1 
1≤i≤m 
n/2+1 ≤j≤n 
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               In Equation (2.7), the indices k and i, are fixed and the equations discussed above are 

maximised by changing l and j. Thus the above problem is equivalent to maximizing the following, 

Equation (2.8). For i = 1..m and k = 0..i − 1, 

 

 

  ACentre_column [i, k]    =     𝑚𝑎𝑥                − s [i][l]  +   s [k][l]   +  s [i][j]  −  s [k][j]     …..…….…(2.8) 

 

Let s*[i][j] = − s[j][i],  then Equation (2.8) results in Equation (2.9) which is, 

 

 

   ACentre_column [i,k]    = 𝑚𝑎𝑥              s[𝑖][𝑗]  +  s*[𝑗][k]       –  𝑚𝑖𝑛                s[i][l]  +  s*[l][k]    .… (2.9) 

 

               

In Equation (2.9), the first part is computed by the 𝑚𝑎𝑥-version of DMM and the second part 

is computed by the DMM as noted in Equation (2.2). 

 

                 In Equation (2.10), the first and the second terms are the 𝑚𝑎𝑥-version and the 𝑚𝑖𝑛-

version, respectively. Equation (2.10) is expressed in terms of matrices, S1 and S2 having elements at 

position (i, j). The (i, j) elements of S1 and S2 are given by s[i][j - 1] and s[i][j + n/2], respectively for i = 

1..m; j = 1..n/2. Assume an arbitrary matrix T and its negated transpose T*.  As the range of the index 

k is [0 ..m - 1] which is same in both S1* and S2*, it is shifted to [1..m]. Thus, the above is computed 

as, 

S2S2* – S1S1*…………………………………….   (2.10) 

 

 

          In Equation (2.10), the multiplication of matrices, S1 and S1* is performed by the 𝑚𝑖𝑛-version of 

DMM. Similarly, the multiplication of matrices, S2 and S2* is performed by the 𝑚𝑎𝑥-version of the 

DMM. This is followed by the subtraction of the distance products, obtained component-wise. 

Finally ACentre_column is computed by extracting the maximum from the lower triangle of the resulting 

matrix [14]. 

0≤l≤n/2-1 n/2+1≤j≤n 

𝑚𝑎𝑥 -version of the DMM 𝑚𝑖𝑛-version of DMM 

0≤l≤n/2−1 
n/2+1≤j≤n 
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            Algorithm (3) is applied on a square array of size n × n, where n is assumed to have a power of 

2 for simplicity. It was observed by Takaoka [14] that the algorithm divided the array vertically and 

then horizontally. The procedure of computing the ACentre_column (line 7, Algorithm (3)) through this 

recursion of depth 2 is defined at level 0. The algorithm then splits the array horizontally and then 

vertically through the next recursion of depth 2, which is called level 1. This process of splitting 

continues to a higher level following the same pattern.   

              

             Takaoka analysed the time of the process at level 0 [14].  The time is measured by the 

number of comparisons. M(n) is assumed to be the time for multiplying two (n/2, n/2) matrices. The 

multiplication of (n × n/2) and (n/2 × n) matrices is substituted by four multiplications of size (n/2 × 

n/2), which takes 4M(n) time. In Equation (2.10), ACentre_column considers each of the 𝑚𝑖𝑛- and 𝑚𝑎𝑥-

version of multiplications. Thus, ACentre_column involving (n × n/2) and (n/2 × n) matrices requires 8M(n) 

time, and computing two smaller ACentre_column solutions involve (n/2 × n/2) matrices with 4M(n) time. 

For each level, three solutions are calculated, one ACentre_column and two smaller ACentre_column, which 

accounts for 12M(n) time. The following recurrence is computed for the total time T(n) as  

 

                                                            T(1) = 0 

               T(n) = 4T(n/2) + 12M(n) ……………….   (2.11) 

            Takaoka presented a lemma for this process [14]. The β is assumed as an arbitrary constant 

such that β > 0, M(n) is supposed to satisfy the condition M(n) ≥ (4 + β)M(n/2). Thus, the above T(n) 

satisfies T(n) ≤ 12(1 + 4/β)M(n). 

 
             It is obvious that the complexity of O(n3(log log n/log n)1/2) for M(n) satisfies the condition of 

the lemma with some constant β > 0. Thus, the MSA is achieved in O(n3(log log n/ log n) 1/2) time, 

which is subcubic. An extra term of O(n2) in the recursive process to count the number of operations 

is also required because the maximum sum of several matrices component-wise in the algorithm is 

computed during the process [14], which is absorbed in the main complexity. Studies are still 

emerging in this area to build on the preceding research and to advance the MSA algorithms. In the 

following chapter, we will introduce a more flexible shape to maximise the sum within the cubic time 

complexity. 
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2.3 Chapter summary 
 

This chapter provided an introduction and background to the MSA problem. Previous 

research addressing the MSP and the use of the rectangular shape algorithms in the MSA framework 

and applications were discussed. We proposed that outcomes for the MSP in terms of maximum 

sum could be improved by using an alternative shape to the traditional rectangular shape. The 

following chapters present a new approach that addresses using an alternative shape in the MSP.  
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Chapter Three    
[ K-Disjoint Maximum Convex Sum 
problem] 
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                     This chapter presents an approach that has not been previously investigated to 

generalise the MSP problem in 2D using the convex shape. This study defines a new problem: the K-

Disjoint Maximum Convex Sum (K-DMCS). A new approach to solve this problem uses the WN convex 

shape as a core component for implementing algorithms to find the disjoint maximum sums. The 

following sections present a detailed overview of the theoretical and algorithmic frameworks for the 

new approach. Research on the new approach from this study has been published in peer-reviewed 

papers [38, 61-64]. 

 
                The chapter is organised as follows: Section 3.1 discusses the new approach in the MSP 

context, the WN Convex shape; Section 3.2 presents the newly developed algorithm for the K-

Disjoint Maximum Convex Sum (K-DMCS) problem; Section 3.3 illustrates the experimental analysis; 

and Section 3.4 provides a summary of the key points discussed in the chapter.  

 

 

3.1 The convex shape: a new approach in the MSP context  
 
 
               Traditionally, maximum sub-arrays in a matrix are computed using rectangular regions that 

include elements which return the largest possible sums in the MSA context. The convex shape is 

proposed by this research as a new method to find the regions that return the maximum sums. The 

advantage of using a convex shape is due to its flexibility in covering diverse data distribution 

regions. The rectangular shape has less flexibility than the convex shape, which can result in 

underestimating the maximum sums of the data within the enclosed region, thereby compromising 

important data portions that could otherwise maximise the sums. The T. Fukuda et al. [42] 

investigation of the rectilinear convex shapes has motivated the use of a more flexible shape, 

compared to the conventionally used rectangular shape, to find the maximum sub-array among a 

multitude of sub-arrays. The T. Fukuda et al. investigations were limited to computing a solo region 

of interest, but without the capability of further extension to find K regions in two cases: the disjoint 

and overlapping cases. Our research incorporates techniques to simplify the T. Fukuda et al. 

algorithm [42] for finding the maximum sums, and this is followed by the generalisation of the 

simplified algorithm to iterate up to Kth maximum sum. The algorithms use the WN convex shape to 

find the maximum sums. Although there exist other types of rectilinear convex shapes these are 

outside the scope of this research. Instead the focus is on the main objective of this study, which is 

to investigate outcomes of the initiated MCS and K-MCS and to depart from using the rectangular 

shape in MSP context.  For simplicity and convenience, in this thesis, the “WN convex shape” and 

“convex shape” terms are interchangeable. 
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The start of this chapter provides general definitions and concepts. The WN convex shape is 

comprised of the W and N shapes, which are illustrated in Figures 3.1 (a) and (b). The WN convex 

shape algorithm is based on the dynamic programming method.  In this method, complex problems 

are broken down into sub-problems, and their collective solutions are combined to yield an overall 

solution.  

 

 

  

     

  

 

 

 

 
 

Figure (3.1): (a) W shape; (b) N shape. 

 

Definition 3.1.1 The WN convex shape is defined, in this research, as a shape that has a 

centre (anchor) column linked to W and N shapes (Figure 3.2). A W shape (Figure 3.1 (a)) can be 

described as a region with a top contour inclining or remaining horizontal and a bottom contour 

declining or remaining flat from left to right, whereas the N Shape (Figure 3.1 (b)) is a mirror image 

of the W shape. In this study, the definition does not follow the geometrical convex shape definition 

[61]. In Figure 3.2, at anchor column k, calculating the W shape is computed from s to t to find a 

maximum sum for each s and t.  

 

 

 

 

 

 

 

 

 

 

 

Figure (3.2): The WN convex shape  
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The maximum sum of the W shape can be calculated based on three cases: in the first case 

solution of the W shape is computed by the addition of the current anchor column k from rows s to 

t, denoted by (k, s, t), to the best solution that is given in the previous column k-1 (the light red 

shaded area) of the same interval. Likewise the anchor column k-1 is computed recursively from the 

summations of the preceding solutions obtained based on the three cases discussed herewith. This is 

shown in Figure 3.3.   

 

  

 

 

 

 

 

 

 

 

       

       

Figure (3.3): The first case of the W shape solution 

 

           The second case is given by the addition of the best solution obtained from the interval of 

rows s+1 to t at column k (the light red shaded area) and the element in row s at column k. This is 

shown in Figure 3.4.  

 

 

 

 

 

 

 

 

 

 

    
Figure (3.4): The second case of the W shape solution 
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   The third case is given by the addition of the best solution obtained from the interval of rows 

s to t-1 at column k (the light red shaded area) and the element in row t at column k. This is shown in 

Figure 3.5. 

 
 

 

 

 

 

    
 
 
 
 
 
         
 

Figure (3.5): The third case of W shape solution 
 
 

The computation process for each of the three cases, using the W shape, yields solutions in 

the form of three maximum sums for a given input of a 2D array. The W shape’s final solution for the 

anchor column (k, s, t) returns the greatest value of these three maximum sums. Algorithm (5) 

outlines this process, and incorporates a pre-processing procedure using the prefix sum method of 

Algorithm (4). This procedure is important to avoid repeating the addition process by utilising 

existing results from the previous (column-wise) summation of elements.  

 

In Algorithm (5), a column from position s to position t in the kth column is written as (k, s, 

t), which is an anchor column when it is located on the rightmost of a W shape. The maximum sum 

with anchor column (k, s, t) is denoted by fW(k, [s, t]). The fW is computed as follows: 

 

       Algorithm (5):  W  shape Algorithm  

1: prefix_sum[0, k] ← 0 for all k      /* compute prefix sum column-wise */ 

2: for k ← 1 to n do 

3:    for s = 1 to m do prefix_sum[s, k] ← sum[s-1, k] + a[s, k] 

/* compute fW  value */ 

4: fW (0, [s, t]) ← 0 for all s  ≤  t 
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5: fW (k, [s+1, s]) ←  -∞, for all k and s  

6: for k ← 1 to n do 

7:     for all intervals of [s, t] in increasing order of t-s where s ≤ t do 

8:           sum[k, s, t] ← prefix_sum[t, k] – prefix_sum[s-1, k] 
 

                                                       fW (k-1, [s, t])+sum[k, s, t]          (case 1)    

9:          fW (k, [s, t]) ← max        fW (k, [s+1, t])+a[s, k]                  (case 2) 

                                                       fW (k, [s, t-1])+a[t, k]                   (case 3) 

 

where,    

fW (k,[s, t])  is the anchor column which has the maximum value out of the three cases;  

sum[k, s, t]  is the sum of the kth column from position s to position t used in the first case;  

a[s, k] is the element in row s at column k;  

and a[t, k]  is the element in row t at column k.  

 

 

Theorem (3.1.1) fW (k, [s, t]) is the maximum value of the sum of a W shape with an anchor 

column (k, s, t).  

 

Proof. The proof is based on a double induction on k and t-s from smaller to larger anchor 

columns. Let k = 1 for the basis. It is easy to verify fW (1, [s, s]) = sum[1, s, s], noting fW (1, [s+1, s]) = 0. 

Now for general s and t, case (1) is sum[1, s, t], since fW(0, [s, t]) = 0. Suppose the Theorem is true for 

t-s = c-1 for some c, where c is an arbitrary value. We prove fW(1, [s, t]) = sum[1, s, t]. From induction 

we have fW(1, [s+1, t]) = sum[1, s+1, t]. Thus, case (2) is fW(k, [s+1, t])+a[s, k] = sum[k, s, t]. Case (3) is 

similar. From the program (algorithm (5), line 9), fW(1, [s, t]) = max{sum[1, s, t], sum[1, s, t], sum[1, s, 

t]}  = sum[1, s, t]. Similarly we can prove fW(k, [s, s]) is correctly computed. 

 

Now suppose Theorem (3.1.1) is true for k-1 > 0 and t-s-1 > 0.  The maximum value of the W 

shape with the anchor column (k, s, t) is obtained from three smaller anchor columns of W shapes: 

the W shape with the anchor column (k-1, s, t), the W shape with the anchor column (k, s+1, t), and 

the W shape with the anchor column (k, s, t-1). From the induction hypothesis, the fW value of these 

W shapes is maximum with respect to the three parameters. The three cases in the program (line 9, 
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Algorithm (5)) correspond to those three W shapes and the maximum fW (k, [s, t]) is successfully 

computed by Algorithm (5). 

 
 
3.1.1 Mono-directional convex shape algorithm: The algorithm of T. Fukuda et al.    
 
 
             Using a mono-directional approach, the algorithm of T. Fukuda et al. (T. Fukuda’s algorithm) 

uses seven cases to compute a WN shape.  Three of these cases are covered as part of Algorithm (5); 

the remaining four cases are depicted in Figure 3.6 and computed in Algorithm (6). This algorithm 

processes the array in one direction from left to right; hence, the name mono-directional. The fourth 

case is based on the fW in line 6 of Algorithm (6) and Figure 3.6(a), which was earlier explained in the 

W shape definition. To compute the solution for this case, we firstly need to find the three cases 

from Algorithm (5) (line 9), as in Figures 3.3, 3.4 and 3.5. The fifth case is based on the addition of 

the solution of fWN from position s to position t at column k-1 to the sum from position s to position t 

at column k (Figure 3.6(b)). The sixth case (Figure 3.6(c)) is based on the solution of fWN for the 

interval from position s-1 to t; the value a[s-1, k] is subtracted from the interval at the kth column. 

The seventh case (Figure 3.6(d)) is based on the solution of fWN for the interval from position s to t+1 

at the kth column. The value a[t+1, k] is subtracted from the interval at the kth column. A max 

operation was used to select the largest value of the four sums.  
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Figure (3.6): (a) to (d) figures depict the four remaining cases of the WN shape, out of seven (Figures 3.3, 3.4, 

3.5, 3.6), required to compute fWN using the mono-directional WN convex shape algorithm (T. Fukuda’s WN 

shape algorithm). 

 

In algorithmic terms, fWN in Algorithm (6) is computed as follows: Let a be an array of size m x 

n containing real numbers. Due to the triply nested structure in Algorithm (6), when m = n, the time 

complexity is O(n3): 
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       Algorithm (6):  T. Fukuda’s WN shape algorithm O(n3). 

1: Initially, assume all fW(k, [s, t]) are computed from Algorithm (5) 

2: fwN (0, [s, t]) ←0 

3:  For all s < t 

4:     For k ← 1 to n do 

5:        For all intervals of [s, t] where, s < t do  

 

                                                           fW (k-1, [s, t]) + sum[k, s, t]              (case 4) 

6:          fWN (k, [s, t])  ← max         fWN (k-1, [s, t]) + sum[k, s, t]            (case 5) 

                                                           fWN (k, [s-1, t]) -  a[s-1][k]                 (case 6) 

                                                           fWN (k, [s, t+1]) - a[t+1][k]                 (case 7) 

 

where, 

 fWN  is a function to find the WN shape such that  fWN  (k,[s, t]) is the max value of the four 

cases from position s to position t in column k at the rightmost of the shape; 

sum[k, s, t] is the sum of column k from position s to position t;  

a[s-1, k] and a[t+1, k] are the values subtracted in the third and fourth cases, respectively.  

 

 

In Algorithm (6), the anchor column is placed at the rightmost column of each WN shape. As 

discussed, this algorithm deals with seven cases; three for the W shape and four for the WN shape. 

In the next section we address how we can deal with essentially three cases to replace the seven 

cases, considering the fact that the W and N shapes are symmetrical.  

 

3.1.2 The simplified convex shape algorithm: bidirectional approach 

 

The WN convex shape is an amalgamation of the W shape and its mirrored image, the N 

shape. The W shape in the left part of the WN convex shape is considered as the primary shape in 

the creation of the N shape due to the property of its widening from left to right. This was outlined 

in Algorithm (5). The bidirectional technique is used to co-join the W shape with the N shape at the 

common anchor column (k, s, t) to find the solution of the WN convex shape. The algorithm used to 

compute the W shape is now used in its modified form to compute the N shape, which is widening 
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from right to left. The anchor column (k, s, t) of the W shape is located on its rightmost position, 

whereas for the N shape it is located on its leftmost position. As discussed above, when the two 

shapes are co-joined at the common anchor column (k, s, t), it results in a duplication from the 

overlapping at the column. Thus one of the sums at the common anchor column (k, s, t) is subtracted 

from the WN convex shape to compute the final solution. Our approach simplifies T. Fukuda’s 

algorithm by discarding four of the seven cases yet computing the final solution using three cases. 

Mathematical proof of this is given in Section 3.1.2.1. The simplification and mathematical proof of 

this study have been presented in [61]. 

 

The fWN can be derived using our version of the simplified algorithm, Algorithm (7), to 

compute the WN convex shape. This algorithm has a triply nested structure. When m = n, the time 

complexity is O(n3).    

 

 

 

 

 

 

 

 

 

 

 

 

 

The following section outlines some of the challenges faced in reducing the time complexity 

to subcubic for the WN convex shape. The time complexity to find the maximum WN convex sum is 

O(n3). We attempted to improve this time complexity using the concept of the Distance Matrix 

Multiplication (DMM) approach, used for reducing the time complexity of the rectangular shapes as 

discussed earlier in Chapter 2. Here, we demonstrate the ways in which this approach cannot readily 

be applied to the WN convex shape.  

 

In the MSA approach, Takaoka [14] reduced the time complexity from O(n3) to O(n3(log log 

n/log n)1/2) using Algorithm (3). This was achieved by finding the maximum value of the three 

       Algorithm (7):   The simplified WN convex shape algorithm O(n3)  

1: Let sum(k, [s, t]) be the column sum from s to t of the kth column. 

2: Compute W shape from left to right for each k, s and t in fW. 

3: Compute N shape from right to left for each k, s and t, resulting in fN. 

4: For k ← 1 to n do 

5:     For s ← 1 to n do 

6:         For t ← s to n do 

           fWN (k,[s, t])← (fW (k,[s, t]) + fN (k,[s, t]– sum(k,[s, t])    /** the subtraction removes the 

duplication **/  

7: Take the maximum of   fWN  (k,[s, t]) for all k, s, t.  
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solutions, ARight, ALeft and ACentre_column shown in Figure 3.7. Using Algorithm (3), the ARight and ALeft can 

be found recursively on the right and left sides of the input array. The crucial part in Takaoka’s 

solution is based on solving the ACentre_column problem. This problem is defined as finding the solutions 

that cross over the central vertical line (i.e. in the middle of the input array) discussed in Chapter 2. 

The ACentre_column region is divided into two sub-arrays, namely ACentre_column_Left and ACentre_column_Right. 

These are homogenous rectangular portions and can be easily connected after the DMM is applied. 

Thus, the solution becomes readily available because mathematically the two sub-matrices can be 

added in O(n2) time to obtain the ACentre_column solution, as in Equation (2.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.7): Process for solving the column-centred problem by using DMM. 
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DMM is used to compute optimal rectangular shape solutions touching the center line from left 
and from right. To compute the ACentre_column solution for the sub-arrays that crosses over the 
central vertical line, the operation C = B – A is performed in O(n

2
) time. The rectangular shape 

regularity facilitates this connection of the two disjoint sub-matrices, A and B, where A= S2S2* 
and B = S1S1* as in Equation (2.10).  
 

The overall solution based on the maximum of the three solutions (ARight, ALeft, ACentre_column)  
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The primary reason for the difficulty of using DMM in achieving subcubic time for the MCS 

problem is that the anchor column of the maximum WN shape may not necessarily fall on the central 

vertical line (see Figure 3.7). Thus the approach of computing the best W shape touching the centre 

line from the left, and the best N shape touching from the right cannot be undertaken, to find the 

solution for the centre problem. This is illustrated in Figure 3.8, which highlights the co-joining of the 

W shape and N shape to form the WN convex shape at the anchor column (k, s, t), at any position 

within the input matrix.   

 

 

 

 

 

 

 

            
            
            
            
            
            
            
            
            
            
            
            
            
            

Figure (3.8): An illustration of the convex shape region  

 

3.1.2.1 Mathematical proof of the simplified algorithm using bidirectional computation  

 

The following is a proof of the correctness of the bidirectional approach to compute the WN 

convex shape at an anchor column (k, s, t):  fW = a + c, fN = b + c and fWN  = a + b + c (Figure 3.9(a)) 

[61]. Suppose fWN is not maximum for the anchor column (k, s, t), then there must be another shape 

(Figure 3.9(b)) at the same anchor column with the sum x + y + c > a + b + c. 

 

 

 

 

W shape  

The convex shape algorithm connects the two shapes (W shape and N shape) at an anchor 
column (k, s, t) at any position within the input matrix. The anchor column coordinates of the 
convex shape (the boundaries of the shape) keep changing in an irregular manner based on the 
solution, and the anchor column may not necessarily fall on the central vertical line. This makes 
the column-centred problem difficult to define in the MCS context. 

N shape  
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Figure (3.9): (a) the WN convex shape a + b + c; (b) the WN convex shape x + y + c 

 

This implies, if x + y > a + b, then x > a or y > b, otherwise x    a and y   b, which would be a 

contradiction. If x > a, then x + c > a + c, contradicts with maximum W. If y > b, this contradicts with 

maximum N. Thus, fWN (k,[s, t]) is the maximum WN at anchor column (k, s, t). 

 

3.1.2.2 The backtracking technique to determine the WN convex shape boundaries  

           

To generalise MCS to K-MCS, which is to compute K maximum convex sums, two cases can 

be defined namely, disjoint and overlapping. The backtracking technique can be applied to identify 

the boundaries of the WN convex shape regions for the above two cases; this chapter focuses on the 

disjoint case. Locating the boundaries involves backtracking the recorded solutions from the three 

cases for fW and fN. Whilst in the process of finding the maximum sums (a process outlined in 

Algorithm (7)), the anchor column coordinates and the solutions that contribute to the results of fW 

and fN are recorded as preparation for the backtracking process. This is presented in Algorithm (8) 

for fW. Hence, the backtracking approach locates the actual WN convex shape reversely, column by 

column, until converging where the solution originated. 

 

            The backtracking technique allows the MCS problem to be extended to cover the disjoint case 

that branches out from it. Determining the shape boundaries is important to generalise the problem 

to cover the disjoint case. Such a generalisation is essential not only to locate the first selection of 

segments of consecutive array elements that have the largest possible sum, but also to find the 

second, third and up to the Kth region. Computing these regions makes it feasible to apply the 

generalised MCS algorithms to real-life datasets. These generalised problems are discussed in 

Chapters 3 and 4 of this thesis; here the primary focus is the backtracking technique.   
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                 Algorithm (8) outlines the backtracking process of the W shape solutions. The backtracking 

of the N shape solutions are processed likewise in the opposite direction to the W shape. In 

Algorithm (8), let the anchor column indices (k, s, t) of the maximum sums be km, sm, and tm, 

respectively. These indices are used to backtrack the W convex shapes. Let array bw store the values 

of the three cases (1, 2, or 3) in Algorithm (5) to keep a record for the backtracking directions. In 

case 1, the current solution at column k is backtracked one step back to its previous solution at k-1 

having the same interval (s, t). The previous solution at column k-1 is located on the left-side of the 

current solution at column k in the W shape (backtracked case 1 of Algorithm (5)). In case 2, the 

solution at column k is backtracked to its previous solution at s+1 (backtracked case 2 of Algorithm 

(5)). In case 3, the current solution at column k is backtracked to its previous solution at t-1 

(backtracked case 3 of Algorithm (5)). An array bn is used to store the values of the three cases (1, 2, 

or 3) to backtrack the N shapes. Let region[] (in line 1 of Algorithm (8)) be an m x n array to identify 

the boundaries of a shape. The array elements are all initialised to zeros (0s). In the backtracking 

process, for each column k, the upper boundary and the lower boundary of the shape are set to 1. 

The output of Algorithm (8) returns the solution boundaries (fW) assigned as 1s and the rest of the 

array remains set to 0s.  

 

 

 

 

 

 

 

 

 

 

       Algorithm (8):  Backtracking  Algorithm 

1:   initialise elements in region as zeros 

2:  set k as km /* Where, (km,  sm,  tm) is the anchor column of the maximum sum*/ 

3:   set s as sm 

3:  set t as tm 

4:  while k > 0 and  fW (k, [s, t]) > 0 

5: region[s][k] ← 1 

6: region[t][k] ← 1 

7:   decrement k if bw at (k, s, t) is case 1  

8:    increment s if bw at (k, s, t) is case 2  

9:    decrement t if bw at (k, s, t) is case 3 

10: end loop 
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3.2 The newly developed algorithm for the K-Disjoint Maximum Convex Sums 
(K-DMCS) problem 
 

The problem of MCS has been generalised to cover the disjoint case. The newly defined K-

Disjoint Maximum Convex Sum (K-DMCS) problem is to find the K maximum sums that are disjoint by 

using the WN convex shape. The K-Disjoint Maximum Sub-Array (K-DMSA) problem using the 

rectangular shape was previously introduced by Bae and Takoaka [4]. In the present study, our 

newly developed algorithm uses the convex shape to find the first maximum convex sum, second 

maximum convex sum, and up to the K maximum convex sum from the remaining portions. The K-

DMCS algorithm computes this process in a time complexity O(Kn3), which is same as that of the 

disjoint case of the K-MSA algorithm [4]. The developed K-DMCS algorithm is published as part of 

[61]. The new algorithm for the K-DMCS problem returns higher maximum sums than the K-DMSA 

which is later verified in Section 3.3. 

 

After reviewing the background to the K-DMSA problem and corresponding algorithms, the 

new K-DMCS algorithm is presented later in this section. The K-DMSA problem was initially studied 

by Ruzzo and Tampa in 1D [28]. They designed a linear time algorithm that found all disjoint 

maximum sub-arrays for a one-dimensional array [28]. Later studies investigated the problem in 2D 

[4, 17, 18]. Bae and Takaoka [4] extended the 2D Kadane’s Algorithm (Algorithm (2)) to address the 

disjoint case, which is classified as a greedy approach by Anzai et al. [39]. The K-DMSA algorithm was 

implemented in this research and is given in Algorithm (9). The process of finding the first 

rectangular shape was explained in Chapter 2 (Section 2.2.2.1). Algorithm (9) extended the problem 

to find the Kth maximum sub-array. In this algorithm, the next maximum sub-array was found, whilst 

avoiding any duplication by assigning negative infinity to the first located rectangular shape. This 

procedure was repeated for the second, third, and up to the Kth maximum sub-arrays. The time 

complexity of Algorithm (9) was O(Kn3) having a three for-loop (nested) structure [4]. This algorithm 

was adopted in K. Fukuda’s data mining studies to find peaks of data using real-life applications [30, 

31]. The algorithm captured regions that potentially represented the data [30, 31].   
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The new Algorithm (10) incorporates the aforementioned approaches to obtain the 

maximum sums by using the WN convex shape to compute the K-DMCS. The process includes finding 

the W shape, N shape and the combined WN shape, and integrates the prefix sum and backtracking 

techniques. Algorithm (10) is implemented to find the K disjoint shapes having the maximum sums 

of the first (K = 1), second (K = 2), third (K = 3) and up to the Kth regions. Once the first maximum 

sum is found, the algorithm excludes the K = 1 region in the search for the second maximum sum (K 

       Algorithm (9): Bae and Takoaka’s algorithm for the disjoint case using the rectangular 
shape; O(Kn3), when m = n 
1: Initialisation ((x1, y1),(x2, y2)) ← ((1,1), (0, 0)); S ← 0; iter ← 0 /* the initial candidate is 

empty */ 

2: while (iter < K){     /* K  is the limit of the disjoint rectangular shapes */  

3:    for z ← 1 to z ≤ m do{ 

4:       for i ← 1 to i ≤ n do column[z-1][i]←0;   

5:          for x ← z  to x ≤ m do { 

6:               t ← 0; s ← − ∞ ; k ← 0; l ← 0; j ← 1;   

7:            for i ←1 to i ≤ n do { 

8:                column[x][i] ← column[x-1][i]+a[x][i]; 

9:                 t ← t + column[x][i]; 

10:                  if(t > s){s←t; k←i; l←j;} 

11:                  if(t < 0){t←0; j←i+1;}    /* reset the accumulation*/ 

12:            end for  /* i */ 

13:       if(s > S){S←s; x1←x; y1←k; x2←z; y2←l;}  

14:     end for  /* x */ 

15:   end for  /* z */ 

/ *  S  is the Maximum Sub-Array using the rectangular shape; bottom-right corner is (x1, y1); top-

left   corner is (x2, y2) */ 
16:     Output (x2, y2),(x1, y1), S  

17:      for (i←x2; i≤x1; i++) 

18:       for (j←y2; j≤y1; j++) a[i][j]←  − ∞ ; 

19:   iter++;    /* iterate to find the next rectangular shape*/ 

20: end while  
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= 2) as illustrated in Figure 3.10. The array is then processed to find the third maximum sum (K = 3), 

discarding the regions at both K = 1 and K = 2. The algorithm consecutively processes the remaining 

array portions following the same procedure, while discarding the accumulated regions that return 

the maximum sums. The algorithm identifies these discarded regions via the assigned negative 

infinity. This procedure continues until it reaches the Kth maximum convex sum. The WN convex 

shapes that were assigned negative infinity in every iteration are placed in triply nested loop 

structure giving a time complexity of O(Kn3).  

 

 
Start of the disjoint process                                     First disjoint maximum convex sum is captured   
                                                                                                                 by Algorithm (10)   

 

K = 1            

 

            

                        

                        

                        

                        

                        

                        

                        

Second disjoint maximum convex sum   

            

 

            

K = 2                        

                        

                        

                        

                        

                        

                        

   Third disjoint maximum convex sum   

            

 

            

   K = 3                        

                        

                        

                        

                        

                        

                        

 

 
 

Figure (3.10): An illustrative example of the process of the original K-DMCS algorithm. This 
shows the first, second and third regions of the located disjoint maximum sums. 

            

End of the disjoint process   

−∞ 
 

−∞ 
 

−∞ 
 

−∞ 
 

−∞ 
 

−∞ 
 

−∞ 
 

−∞ 
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The following pseudo code outlines the K-DMCS algorithm, with an output of the located 

disjoint convex shapes, and the maximum convex sums of the regions: 

 

  

3.3 Experimental analysis  
 

The previous sections outlined the theoretical framework and implementation of MSA and 

MCS algorithms in the MSP context. This section2 discusses two experimental phases, where we 

made experimental comparisons to assess the differences in outcomes obtained using the MSA and 

MCS approaches. The first phase focused on an analysis of experiments designed to assess the 

differences in outcomes obtained using the rectangular shape algorithm (Algorithm (2)) and the 

convex shape algorithm (Algorithm (7)). The second phase focused on comparing outcomes of the 

two algorithms that covered the disjoint case: the rectangular shape K-Disjoint Maximum Sub-Array 

algorithm (Algorithm (9)) and the K-Disjoint Maximum Convex Sums algorithm (Algorithm (10)). The 

comparisons were based on outcomes from finding a selection of segments of consecutive array 

elements that have the largest possible sum compared with all other segments in the presented 

data. Large matrices of different sizes were used in the experiments to find the maximum sum.  

 

                                                           
2
 We consulted the University of Canterbury statistician, research consultancy services, to ensure that this 

section’s statistical procedures adequately fulfilled the study aims. 

Algorithm (10):  K-Disjoint Maximum Convex Sums algorithm; (O(Kn3)), when m = n 

1: read input matrix, a  

2: While not all K solutions are found         

3:       perform WN shape calculation 

4:       for each column k, 1 ≤ k ≤n 

5:        for each top index s, 1 ≤ s ≤ m 

6:     for each bottom index t, s ≤ t ≤ m 

7:           set sum of overlap anchor column as ac ← prefix[t][k] - prefix[s][k] 

8:           WN shape  ← W shape solution at (k,s,t) + N shape  solution at (k,s,t) − ac 

10:      end top index s 

11:          end bottom index t 

12:       end column k 

13:   replace WN solution with negative infinity by backtracking W and N shapes 

14:end while 
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The underlying procedures to compute the maximum sums and running times for the two 

algorithms differed from each other. It was expected that using the convex shape algorithms would 

yield maximum sums that are no smaller than those of the rectangular shape algorithms. The 

experiments’ running times of each algorithm were expected to be constant across all experiments 

for a given matrix size; but even so, due to processor precision this would vary by an order of 

milliseconds for large matrix sizes. The convex shape algorithms included more operations to find 

the maximum sum and required more running time compared to the rectangular shape algorithms. 

During the measurement of the running time in the experiments, we considered the length of time 

that was taken to locate the exact shapes because in addition to returning the sum, we returned the 

exact shape boundaries. In the convex shape algorithms, the backtracking process to find the shape 

coordinates (explained in Algorithm (8)) was applied after computing the sums. The convex shape 

algorithms required post-processing of a manifestation of three-dimensional (3D) coordinates 

represented by the three indices: s, t, and k, where s and t determine the interval, and k determines 

the current column. For the rectangular shape algorithms, the region location was found by 

determining the two indices x and y in 2D (such that, (x2, y2) and (x1, y1) in Algorithm (2)). The 

running time to find the actual convex shape and its boundaries is more than that for the rectangular 

shape because of the complexity in processing the convex shape using three coordinates compared 

to using two coordinates for the rectangular shape. Although the convex shape algorithms were 

more complicated and involved more operations compared to the rectangular shape algorithms, the 

time complexities were asymptotically the same for the corresponding algorithms.  

 

The experiments were conducted using a 2.66 GHz Intel® CoreTM2 Quad Processor Q8400 

cache size: 4MB 1333MHZ 2 DUO Processors, each processor had CPU of 2.66GHz with 8GB 667MHz 

DDR2 RAM. The two algorithm implementations were written in C programming language. The 

system was installed with Fedora 18 Linux Operating System equipped with kernel version 3.11.10-

100. The matrices were randomly generated using a built-in function in C programming language: 

rand(). This function returns a random number in the range of 0 to a very large number (231); we 

used modular arithmetic to wrap around the random number (r) to range between 0 and 198. We 

then subtracted r from 99, which gives a random number in the range between -99 to 99. The GNU 

compiler gcc (Version 4.1.3) was used in the random number generation process.  

 

We randomly generated N matrices ranging in size with n x n dimensions. Determining an 

adequate sample size N to detect any significant differences, if any, could have been based on 

knowledge and information obtained from previous research, but because studies are lacking in the 
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project’s field we were unable to use this option. Alternative methods were available to estimate N 

using power analysis [65]. We used a priori power analysis using the G*Power 3.1.9 statistical 

package to determine a suitable sample size N [65].  This analysis required specifying three factors 

alpha, beta and effect size (Es) [65-67]. The alpha is the probability of a type I error (i.e. probability of 

rejecting a correct null hypothesis), beta is the probability of a type II error (i.e. probability of 

accepting a false null hypothesis), and effect size is the standardised magnitude of the difference 

between the two groups [65, 67]. Because the magnitude of the difference between the groups is 

not known, a conservative approach was adopted in determining parameter values for the analysis 

[65]. We let alpha = .05; power (1 - beta) = .95; and effect size = 0.30.  Based on these parameters, 

the analysis recommended a sample size of 100 and therefore 100 random matrices were generated 

in each matrix size to compare the differences in outcomes obtained using the convex shape and 

rectangular shape algorithms.  

 

We introduced the following notation for convenience: Sconv and Srect denote the maximum 

sum outcome obtained using the convex and rectangular shapes algorithms, respectively; µconv and 

µrect denotes the mean maximum sum outcome obtained using the convex and rectangular shapes 

algorithms, respectively. Size n, (for n = 50, 100, …, 600) denotes the matrix size, from 50 x 50 to 600 

x 600 (e.g. Size 100 = 100 x 100). 

 

The convex shape and rectangular shape experimentation groups were related because the 

quantitative measurements of the sums (Sconv and Srect) were obtained from the same matrix. A 

dependent-sample statistical test was used as part of the inferential investigation. SPSS (version 20) 

was the software package used for the statistical analysis [68, 69]. The paired-samples t-test in SPSS 

was used to evaluate the statistical significance of the difference between the two related groups’ 

means and its standardised magnitude [70]. Throughout the analysis, we used a significance level (p-

value) of .05 (Confidence Interval (CI) was set to 95%).  

Prior to using the paired-samples t-test, we checked that the assumptions were not violated 

[70]. This was necessary to ensure the validity of the test results [66, 71, 72]. The assumptions were: 

the dependent variable is continuous, the related groups were in two categorical levels (i.e. two 

shapes: rectangular and convex), influential outliers were detected and adequately dealt with, and 

the distribution of the paired differences (in the dependent variable) was approximately normally 

distributed [70, 73, 74]. The paired t-test is not very sensitive to deviations from normality for 

sample sizes N ≥ 30 because of the Central Limit Theorem (CLT) [70, 73, 75].  
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The first two assumptions were directly checked from the observations. The latter two 

assumptions were assessed using SPSS functions, including numerical (Shapiro-Wilk test) and 

graphical tests (boxplot, histogram, and qq-plots) [70, 74]. Extreme outliers were removed if they 

obscured the normality distribution of the dependent variable, to prevent threats to the validity of 

the statistical test. The normality distribution of the paired differences was checked using the 

Shapiro-Wilk test and qq-plots [70, 74]. The former is a robust numerical test to check the normality 

distribution of a variable, whereas the qq-plot involves decisions based on visual inspections [74].  

 
 

3.3.1 Results and interpretations  

 

3.3.1.1 The convex shape and the rectangular shape algorithms: Algorithms (7) and (2) 

 

The descriptive results from running the two algorithms were in accordance with the 

theoretical prospects. Figure 3.11 and Table 3.1 demonstrate the differences between the two 

algorithm outcomes and their directions. The observed differences in Figure 3.11 and Table 3.1 

comply with expectations, which had been based on the outlined underlying processes and their 

mechanisms. The paired-samples t-test was used to assess the statistical significance of the 

differences. 

 

      
Figure (3.11): Descriptive comparisons of the mean maximum sums obtained using the convex shape 
(Algorithm (7)) and the rectangular shape (Algorithm (2)) algorithms. Sample size = 100. 
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Table 3.1: The mean running time results for finding the maximum sums and the shape boundaries obtained 
using the convex shape Algorithm (7) and the rectangular shape Algorithm (2). Sample size N = 100. The 
running time is measured in seconds. 

 

Matrix Size Shapes   Min Max Mean  Standard 
Deviation  

(600 x 600) Convex*  49.45 50.91 49.74  0.21 

 Rectangular† 1.32 1.44 1.36 
 

0.02 
 

(500 x 500) Convex 28.5 29.5 28.72  0.17 

 Rectangular 0.78 0.84 0.8 
 

0.01 
 

(400 x 400) Convex 14.29 14.73 14.41  0.07 

 Rectangular 0.4 0.44 0.42 
 

0.01 
 

(300 x 300) Convex 5.89 6.58 5.97 0.07 

 Rectangular 0.18 0.19 0.19 
 

0.00 
 

(200 x 200) Convex 1.75 1.81 1.77 0.01 

 Rectangular 0.06 0.06 0.06 
 

0.00 
 

(100 x 100) Convex 0.11 0.16 0.13 0.01 

 Rectangular 0.01 0.01 0.01 0.00 

*Convex: Algorithm (7) running time to obtain Sconv and to backtrack the shape boundaries using 
the three indices: s, t, and k.  
†Rectangular: Algorithm (2) running time to obtain Srect and to locate the region using the two 
coordinates x and y.   

 

 

The paired t-test assumes that the differences between Sconv and Srect are approximately 

normally distributed. To ensure the normality assumption has been met, we interpret the box plot 

and histogram for the differences between Sconv and Srect for all six matrix sizes. These showed the 

sample data was approximately normal for matrix sizes 200, 300, 400, 500, and 600. Removing an 

outlier in matrix size 100 resolved a slight deviation from normality. The qq-plots for each matrix size 

also suggest no significant deviations from normality. This was numerically confirmed using the 

Shapiro-Wilk test. This was statistically non-significant (p > .05) for all matrix sizes (Table 3.2), which 

gave no evidence against the hypothesis that the underlying population differences are normally 

distributed. Hence, there is no evidence against the assumption that the sample data are normally 

distributed and that there is no threat to the statistical analysis. 
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Table 3.2: Results of the Shapiro-Wilk test for testing the normal distribution of the 

differences between Sconv and Srect for all six matrix sizes.  

  
Matrix Size Shapiro-Wilk p-value 

600 0.916 > 0.05 

500 0.410 > 0.05 

400 0.771 > 0.05 

300 0.552 > 0.05 

200 0.156 > 0.05 

100 0.239 > 0.05 

 

Findings from the paired-samples t-test (Table 3.3) showed strong evidence of the difference 

between the maximum sums obtained from the convex shape and the rectangular shape algorithms 

for each matrix size. The results show that there was a statistically significant increase (p < .01) in the 

maximum sums outcome of the convex shape compared to the rectangular shape algorithm’s 

maximum sums outcome. The standardised effect sizes indicate a large magnitude of difference 

between the two algorithms’ outcomes, ranging from Es = 10 to Es = 14 across the various matrix 

sizes. These findings are important in confirming positive implications of using the convex shape to 

find the maximum sums in comparison to using the rectangular shape in the MSP framework. The 

new approach increased the likelihood of scoring improved results, since maximising over all of the 

convex regions return maximum sums that are no smaller than those maximised over the 

rectangular regions. In other words, in the case of not obtaining equivalent results it is inevitable 

that there will be larger overlapping maximum convex sums. It is essential to use methods that 

permit making the most of presented data and prevent missing potentially important regions.     

Table 3.3: The dependent-samples t-test results (N = 100) of the paired differences (µconv - 
µrect) of the various matrix sizes using the convex shape Algorithm (7) and the rectangular 
shape Algorithm (2).  

Matrix Size Paired Differences (µconv - µrect)  
95% Confidence Interval [Lower, upper] 

Sig.  
(p-value)  

 
600x600 

 
112373 [110818, 113928] 

 
<.01 
 

500x500 91950 [90594, 93307] <.01 
 

400x400 70031 [68913, 71148] <.01 
 

300x300 49522 [48760, 50284] <.01 
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200x200 30229 [29723, 30735] <.01 
 

100x100 12742 [12491, 12992] <.01 
 

 

 

3.3.1.2 The K-DMSA and K-DMCS algorithms: Algorithms (9) and (10) 
 

In the previous section evidence was presented for the analytical differences in the 

maximum sum outcomes using Algorithms (2) and (7). This section outlines experiments to assess 

differences of results for the K-DMSA and K-DMCS algorithms: Algorithms (9) and (10), respectively. 

The expectation for this section is that the pattern of results observed above will be similar. Using 

these findings as guidelines and adapting the power analysis calculation, a sample size N = 30 was 

selected. This sample size was chosen as being sufficient to detect differences and dismiss potential 

threats to the validity of the statistical test. Table 3.4 describes the outcomes obtained using the K-

DMCS (Algorithm (10)) and K-DMSA (Algorithm (9)), where K=1, 2, and 3 are, in order, the first, 

second, and third located regions. Differences and their directions between the two algorithms’ 

outcomes were clear from the observed categorical figures of the corresponding K digits. The 

differences, as noted previously, are because of the distinctions between the algorithmic framework, 

their core shapes, and the ways in which the two algorithms function.   
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Table 3.4: Descriptive results for the maximum sums and running times (in seconds) obtained 

using the K-DMSA (Algorithm (9)) and K-DMCS (Algorithm (10)); N = 30. K = 1, 2, and 3 are, in 

order, the first, second, and third located regions. 

 

  

Disjoint maximum sub-arrays  
(rectangular shape)† 

Disjoint maximum convex  sums 
(convex  shape)* 

Matrix 
Size 

Mean 
Outcome 

K=1 K=2 K=3 K=1 K=2 K=3 

300x300 Sum 27483 11665 8240 76994 31675 21779 
  Running Time 0.54 7.42 

250x250 Sum 21247 9936 7477 60914 26433 18496 
  Running Time 0.31 4.45 

200x200 Sum 17775 7338 5501 48093 19867 14103 
  Running Time 0.15  2.04  

150x150 Sum 13090 6257 3961 33940 14365 9179 
  Running Time 0.06  1.04  

100x100 Sum 8792 3843 2690 21061 8088 5861 
  Running Time  0.03   0.24  

50x50 Sum 3923 1820 1235 9160 3314 2269 
  Running Time  0.002   0.02  

†Rectangular shape: Algorithm (9) K-disjoint maximum sub-arrays and the experiments running time. 
The time complexity is O(Kn3). 
*Convex shape: Algorithm (10) K-disjoint maximum convex sums and the experiments running time. The 
time complexity is O(Kn3). 

 
 

 

The normality assumption of the differences between Sconv and Srect for all six matrix sizes was 

checked. The boxplot and histogram of the differences both showed that the sample data was 

approximately normal for the disjoint outcomes of the matrix sizes 300, 250, 200 (K = 1 and K = 3), 

150, 100, and 50. Removing two influential outliers in matrix size 200 in the second disjoint region (K 

= 2) outcome resolved a deviation from normality. The patterns in the qq-plots for each matrix size 

seem to be consistent with the assumption of normality. The Shapiro-Wilk test gave no evidence (p > 

0.05) against the hypothesis that the underlying population differences are normally distributed 

(Table 3.5), for all matrix sizes. Thus, there appears to be no evidence against the assumption that 

the sample data were approximately normally distributed. 
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Table 3.5: Results of the Shapiro-Wilk test for testing normal distribution of the 

differences between Sconv and Srect for all six matrix sizes on K = 1, 2, and 3. 

 

 

Shapiro-Wilk p-value (p > .05) 

Matrix 
Size 

K=1 K=2 K=3 

300x300 .096 .461 .253 

250x250 .666 .179 .924 

200x200 .982 .449 .759 

150x150 .796 .832 .183 

100x100 .566 .778 .740 

50x50 .958 .064 .303 

 

Findings from the paired-samples t-test (Table 3.6) show evidence of the difference between 

the maximum sums outcome obtained from the K-DMCS algorithm and those from the rectangular 

shape algorithm, for each matrix size. There were statistically significant increases (p < .01) in the K 

disjoint maximum sums outcomes of the convex shape algorithm compared to those of the 

rectangular shape algorithm. The standardised magnitudes of differences were relatively large (1.5 < 

Es < 13) for the given matrix sizes, which suggests a potential advantage of using the convex shape to 

obtain the K disjoint maximum sums compared to using the rectangular shape in the MSP 

algorithms. The interpretation of this can be attributed to the flexibility of the convex shape when 

seeking maximum convex regions, which otherwise could not be covered using the rectangular 

segments. Thus, from both the experiment findings and the underpinning theoretical knowledge, the 

convex shape provides a ‘win-win’ situation because the convex regions maximum sums will be at 

least equivalent, if not exceed those of the rectangular regions maximum sums. 

 
Table 3.6: The dependent-samples t-test results of the paired differences (µconv - µrect) of the 
various matrix sizes using K-DMSA and K-DMCS algorithms; N = 30. K = 1, 2, and 3 are, in order, 
the first, second, and third located regions. 

 

Matrix 
Size 

K Paired Differences (µconv – µrect) 
95% CI [Lower, upper] 

Sig.  
(p-value) 

    

300x300 1 49512 [48014,51010] < 0.01 

 2 20010 [17827,22194] < 0.01 

 3 13539 [11991,15088] < 0.01 

    

250x250 1 39667 [38403,40931] < 0.01 

 2 16497 [14796,18198] < 0.01 

 3 11019 [9311,12727] < 0.01 
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200x200 1 30318 [29295,31342] < 0.01 

 2 11446 [10189,12703] < 0.01 

 3 8602 [7514,9690] < 0.01 

    

150x150 1 20849 [20031,21668] < 0.01 

 2 8108 [6795,9421] < 0.01 

 3 5219 [4337,6100] < 0.01 

    

100x100 1 12269 [11786,12752] < 0.01 

 2 4245 [3594,4896] < 0.01 

 3 3171 [2751,3591] < 0.01 

    

50x50 1 5236 [5014,5459] < 0.01 

 2 1494 [1192,1797] < 0.01 

 3 1033 [808,1259] < 0.01 

 

 

3.4 Chapter summary 
 

     All previous MSA studies have focused upon using the rectangular shape to obtain the 

maximum sums. In our research, a different approach to this focus is presented. This approach is 

manifested by using the convex shape in the MSP context, and defining a new problem, the MCS. 

The rationale behind using the convex shape is its flexibility to cover at least the same regions as 

those processed by the rectangular shape algorithms, but with the added advantage of the 

possibility of detecting potentially overlooked maximum sum regions.  

 

 

This study’s contributions to the field of MSP are described here. The new MCS problem is 

defined and a simplified preliminary MCS algorithm is implemented. A bidirectional approach is used 

to implement a more efficient algorithm which has the same time complexity compared to the base 

algorithm developed by T. Fukuda et al. The new version of the MCS algorithm has been evaluated 

and integrated techniques to advance its operational utility. The prefix sum has been used as a pre-

processing technique to overcome the costly repetition of unnecessary operations. Backtracking is 

used as a post-processing technique to determine the maximum convex sum region boundaries, 

which thereby allows for further development of the algorithm. Most significant is the development 

of an original algorithm that generalises the MCS problem to cover the K disjoint maximum convex 

sums, running in O(Kn3) time complexity.   
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Chapter Four    
 

[K-Overlapping Maximum Convex Sum 

problem] 
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A new problem of the K-Overlapping Maximum Convex Sum (K-OMCS) using the WN convex 

shape is presented in this chapter, and is also published in [62], a paper that is an outcome of this 

research. Prior to this, Bengtsson and Chen studied the overlapping MSA problem in 1D [22-24]. 

Their algorithm produced a list of K maximum sub-arrays in sorted order in a time complexity of 

O(n+Klog n) [22-24]. Bae also investigated the K-OMSA problem in 1D; no particular order was 

assumed in his work [16]. Takaoka [14] further advanced Bae’s algorithmic framework in 1D based 

on the DMM. He developed an algorithm to compute a very small K: K ≤ O((α log n/log log n)1/2), 

where 0 ≤ α ≤ 1. The problem was thereby extended to 2D with a time complexity O(Kn3) [16]. Bae 

and Takaoka [19] developed an algorithm to solve the problem in subcubic time with a very small K: 

K ≤ O((log n/log log n)1/2). The field of MSA research to find the maximum sums in the best time 

complexity has evolved and there is now a robust body of scholarly works and publications 

addressing the problem using the rectangular shape [17-21]. None of the existing MSA studies have 

attempted to investigate this problem by using a shape other than a rectangular one. In this 

research, however, we have deviated from using the traditional rectangular shape for the MSA 

problem. Rather we use the convex shape, and thus initiate a new research area in the MCS field. 

This new approach improves the maximum sums outcomes within the time complexity of the 

existing algorithms [38, 61, 63, 64]. We have continued our research beyond the newly formulated 

problems (MCS and K-DMCS) to address the K-OMCS problem [62]. In this Chapter, we formalise the 

definition of the new overlapping problem and present the K-OMCS algorithm in O(Kn3) time.  

 

            This chapter is organised as follows: Section 4.1 defines the problem; Section 4.2 presents the 

newly developed algorithm for the K-Overlapping Maximum Convex Sum (K-OMCS) problem; Section 

4.3 discusses the experimental analysis, and Section 4.4 provides a chapter summary.  

 

4.1 Problem definition 

We start by defining the K-overlapping maximum sub-array problem using a basic case of a 

one-dimensional array which provides a preliminary insight into the problem. The problem is then 

elaborated to the two-dimensional array, also using the rectangular shape, before discussing our 

new approach, using the convex shape (Algorithm (11)).  
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       For a given array a[1..n] containing positive and negative numbers and 0, the maximum sub-

array is the consecutive array elements that add up to the greatest sum. Let MAX(K, L) be the 

operation that selects the K largest elements in a list L. The definition of the K overlapping maximum 

sub-arrays is given in Equation (4.1) below:   

 

 

                           R = MAX (K, L), where L =         ∑a[x]     |  1 ≤ i ≤ j ≤ n     ……………….   (4.1) 

 

Here, the K maximum sums are stored in R[1..K]. Note that the solution set, R, is in sorted 

order.  

 

 Example (4.1): 

            Let array a = {3, 51, -41, -57, 52, 59, -11, 93, -55, -71, 21, 21}, where the first element is 

indexed as 1 and the last element is indexed as 12 i.e. a[1] = 3 and a[12] = 21. The size of array a is 

12 and a total of 78(= 12(12+1)/2) sub-arrays exist. Amongst this set, the first maximum sub-array is 

193. This results from a[5]+a[6]+a[7]+a[8]. We denote the first maximum sub-array by 193(5, 8). 

When overlapping is allowed, the second and third maximum sub-arrays are 149(1, 8) and 146(2, 8). 

The 78th overlapping maximum sub-array is −126 (9, 10). Using this example, we can elaborate the 

problem in 2D.  

 

 Bae and Takaoka [16] utilised the rectangular shape to find the K-overlapping maximum sub-

arrays in 2D. They devised an algorithm based on prefix sum for 1D where sum[i]=a[1]+..+a[i], which 

is pre-computed as sum[i-1]+a[i] in O(n) time as highlighted in Algorithm (4). Their 1D algorithm 

maintains a list of the preceding K minimum prefix sums amongst sum[0],..,sum[i-1] for every 

position i (i.e. mini=min{sum[0]..sum[i-1]}), where sum[0]=0. This results in K candidates for every 

position i by computing sum[i]-x, where x is the K minimum prefix sums (candi = sum[i] - 

min{sum[0]…sum[i-1]). Finally the maximum of these candidates is selected i.e. max_sum = max 

{cand1,cand2, …
 
candn-1,candn}. The same steps can further be extended to be applied in 2D. This 

algorithm has O(Kn) time for 1D and O(Kn3) time for 2D. The readers may refer to [16] for the 

detailed procedure. An example is given in Figure 4.1 to outline the K-OMSA solution in 2D. This is to 

find all possible K overlapping sub-arrays such that the overlapped rectangular segments are ranked 

from highest to lowest based on their sums in a matrix a. The first maximum sum in Figure 4.1 is 114 

and the next overlapping maximum sum is 111. This process continues until all of the K overlapping 

maximum sub-arrays are found. 

j 

 

x=i 
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Figure (4.1): Finding the K-OMSA by using the rectangular shape, where λ, the maximum sum 
represents one of the maxima before finding the Kth overlapping maximum sums. 
 
 

4.2 The newly developed algorithm for the K-Overlapping 
Maximum Convex Sum (K-OMCS) problem  
 

This section presents the new approach of finding the K overlapping maximum sums using 

the WN convex shape. The implementation of the convex shape algorithm, which finds the first 

maximum convex sum, was discussed in Chapter 3. Finding the first maximum sum can be advanced 

to finding the K overlapping maximum convex sums, as shown in Figure 4.2. The newly developed 

algorithm of the K-OMCS problem is outlined in Algorithm (11).  

 

 

 

 

 

 

 

Figure (4.2): The K overlapping maximum convex sums in a two-dimensional array where λ 
represents one of the maxima before finding the Kth overlapping maximum sums.   

               

 In Algorithm (11), we extend the single values of fW and fN of Algorithm (7) to K-tuples 

expressed by Fw and FN.  The tentative maximum sum and the currently accumulated sum are also 

First Maximum Convex Sum  

λ Maximum Convex  Sum  

  

  

Kth Maximum Convex  Sum  

Second Maximum Convex Sum  
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extended to K-tuples in Bae and Takaoka’s study, which used the rectangular shape [16]. Using the 

convex shape approach, Algorithm (11) employs the K-tuples which are as follows: Suppose L is a K-

tuple (a1, a2, …, aK).  For a single value x, L + x is defined by L + x = (a1 + x,a2 + x, …, aK + x). L −  x  is 

similarly defined. For sorted K-tuples L1, L2, …, Lm,, max{L1, L2, …, Lm} are the largest K numbers in the 

merged list of L1, L2 , …, Lm. For two K-tuples L1 and L2, L1 + L2 are the largest K numbers from the set 

and the Cartesian sums are used as {x + y | x is in L1 and y is in L2} [76]. The time complexity to find 

the K-OMCS solution can be computed in O(Kn3). The proof of the time complexity is explained in the 

proof of Theorem 4.1. In the following, capital F is used to signify K-tuples.  

 

        Algorithm (11):  K-Overlapping Maximum Convex Sums algorithm using the K-tuples  

O(Kn3)   

/* compute prefix_sum */ 

1: prefix_sum[0, k] = 0 for all k 

2: for k=1 to n do 

3:     for s=1 to m do prefix_sum[s, k]=sum[s-1, k] + a[s, k] 

/* compute FW */ 

4: FW (0, [s, t])←(0, - …, -)  for all s  t  // 0 followed by (K-1) - 

5: FW (k, [s+1, s])←(- ,- , ….., -)  for all k and s 

6:  for k←1 to n do 

7:     for all intervals of [s, t] in increasing order of t-s where s  t do 

 

8:        sum[k, s, t] = prefix_sum[t, k]  –  prefix_sum[s-1, k] 

                                                          FW (k-1, [s,t])+sum[k, s, t]         (extended case 1) 

9:            FW (k, [s,t]) ←   max       FW (k, [s+1,t])+a[s, k],                (extended case 2) 

                                                           FW (k, [s, t-1])+a[t, k]                (extended case 3) 

10:       end for s, t 
 
11: end for k 
 

12:       FN is similarly computed from right to left. 

/** Finalisation **/ 

13: For k←1 to n do 

14:    For  s←1 to n do 
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15:       For  t←s to n do 

16:                 FWN (k,[s, t])← (FW (k,[s, t]) +FN (k,[s, t]) – sum[k, s, t]) 

17:        end for t          

18:     end for s             

19: end for k      

20:  F = max{ FWN (k,[s, t])} for all k, s, t 

   

  
In Algorithm (11), Finalisation takes O(Kn3) time (lines 13-19). This is because to compute FWN 

(k, [s, t]) = (FW (k, [s, t]) + FN (k,[s, t]) – sum[s, t, k]), the result is placed in a triply nested structure. 

The addition operation ‘+’ of the two K-tuples (FW (k, [s, t]) and FN (k, [s, t])) can be calculated in O(K) 

time [76]. If sorted order is required for the K solutions, they can be sorted at the end taking 

O(KlogK) time. 

 

   Theorem 4.1 FW (k, [s, t]) is the K maximum values of the sum of the W shape having the 

anchor column (k, s, t).  

 

Proof. The proof is based on double induction on k and t-s from smaller to larger anchor 

columns. This proof is similar to that of Theorem 3.1.1 in Chapter 3. However, Theorem 3.1.1 is 

related to single values, whereas, Theorem 4.1 deals with K-tuples.  

 

    Let the basis be k = 1. It is easy to verify FW (1, [s, s]) = (sum[1, s, s], -∞, …, -∞), noting FW (1, 

[s+1, s]) = ( -∞, -∞, …, -∞). Now for general s and t, case 1 is (sum[1, s, s], -∞, …, -∞), since FW (0, [s, t]) 

=  (0, -∞, …, -∞). Suppose Theorem 4.1 is true for t-s = c-1 for some c, where c is an arbitrary value. 

We prove FW (1, [s, t]) = (sum[1, s, t], -∞…, -∞). From induction we have FW (1, [s+1, t]) = (sum[1, s+1, 

t],  -∞…, -∞). Thus, case 2 is FW (1, [s+1, t]) + a[s, 1] = (sum[1, s, t] , -∞, …, -∞) . Case 3 is similar. Based 

on the program (algorithm (11), line 9).Thus 

      FW (1, [s, t]) = max{(sum[1, s, t], -∞, …, -∞), (sum[1, s, t], -∞, …, -∞), (sum[1, s, t], -∞, …, -∞)}. 

  

Similarly we can prove FW (k, [s, s]) = (fW [k, s, s] , -∞, …, -∞) . 

 

Now suppose Theorem 4.1 is true for k -1 > 0 and t-s-1 > 0. The K maximum values of the W 

shape with the anchor, column(k, s, t), are obtained from three smaller W shapes: the W shape with 

column(k-1, s, t), the W shape with column(k, s+1, t), and the W shape with column(k, s, t-1). From 

the induction hypothesis, the FW values of those W shapes are maximum with those three anchor 
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columns. The three cases in the program correspond to those three W shapes. The maximum values 

for FW (k, [s, t]) are correctly computed by Algorithm (11), because the algorithm chooses maximum 

K values out of the three K values obtained from all possibilities of the three cases. 

 

Let FWN (k, [s,t]) be the K maximum values of the WN convex shapes with the anchor column 

(k, s, t).  

 

Finalisation (Algorithm (11)) 

For k = 1 to n 

    For s = 1 to n do for t = s to n do 

        FWN (k, [s,t]) = FW (k, [s,t]) + FN (k, [s,t]) – sum[k, s, t]  

F=max{ FWN (k,[s, t])} for all k, s, t 

To prove the correctness of Finalisation, we need the following lemma by Frederickson [76]. 

 

Lemma 4.1 Let X={x1, ..., xn} and Y={y1, ..., yn} be sets of n numbers each. Let X + Y, be called 

the Cartesian sum, and defined by X + Y = {xi + yj |   xi  X, yj  Y}. The largest n numbers from X + Y 

can be computed in O(n) time. Let us denote the set of n largest numbers by X + Y for simplicity.  

 

Theorem 4.2 Finalisation computes FWN (k, [s,t]) correctly in O(Kn3) time. Then K maximum 

WN sums are computed.  

Proof. The proof in Section 3.1.2.1 is generalised to K-tuples. Proof is by contradiction. In the 

following fW and fW’ are the fW values of the two W shapes with the same anchor column (k, s, t). fN 

and fN’ are similar. Suppose there is an anchor column (k, s, t) such that  

             fW (k, [s,t]) + fN (k, [s,t]) – sum[k, s, t]  <  fW’(k, [s,t]) + fN’(k, [s,t]) – sum[k, s, t]   (*) 

where  fW (k, [s,t]) + fN (k, [s,t]) – sum[k, s, t] is in the K-tuple and fW’(k, [s,t]) + fN’(k, [s,t]) – sum[k, s, t] 

is not in the K-tuple. The inequality (*) is characterised in the same way as a+b+c < x+y+c in Section 

3.1.2.1, which leads to a contradiction. The last part of Algorithm (11), line 20, can be computed by 

repeating the framework of F  max{FWN (k,[s, t])} for all k, s, t, taking O(Kn3) time. 
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4.3 The K-OMSA and K-OMCS algorithms experimental comparisons 
 

The previous section outlined the theoretical framework and implementation of the K-OMCS 

problem, Algorithm (11). In this section, the experimental comparisons to assess the differences are 

discussed for outcomes obtained using the K-OMCS algorithm and the K-OMSA algorithm [16]. The 

procedures are the same as those which were outlined in Chapter 3 for running the experiments and 

conducting the statistical analysis. Comparisons of the differences between results of the K-OMCS 

and K-OMSA algorithms using inferential statistics are presented. Based on the preceding analytical 

findings and the theory supporting it, there was an expectation to see patterns that are generally 

similar to those outlined in the experimentation section of Chapter 3. A sample size of 30 was used 

based on current expectations, previous findings and the underpinning theoretical knowledge. Table 

4.1 describes the outcomes obtained using the K-OMCS and K-OMSA, where K = 1, 2, and 3 are, in 

order, the first, second, and third located regions. 

 

 

Table 4.1: Descriptive results of the maximum sums and running times (in seconds) obtained using 

the K-OMSA and K-OMCS algorithms; N = 30. K=1, 2, and 3 are, in order, the first, second, and third 

located regions. 

 

  Overlapping maximum sub-
arrays  (rectangular shape)† 

Overlapping maximum convex sums 
(convex  shape)* 

Matrix 
Size 

Mean 
Outcome 

K=1 K=2 K=3 K=1 K=2 K=3 

300x300 Sum 28719 28604 28512 77304 77303 77303 

  Running Time  1.23   8.96  

250x250 Sum 21412 21279 21206 60658 60657 60656 

  Running Time  0.72   5.56  

200x200 Sum 17381 17255 17187 47470 47469 47469 

  Running Time  0.37   2.82  

150x150 Sum 13473 13365 13307 34238 34237 34236 

  Running Time  0.16   1.17  

100x100 Sum 8887 8830 8774 21225 21224 21223 

  Running Time  0.05   0.35  

50x50 Sum 4619 4581 4538 9987 9986 9984 

  Running Time  0.01   0.04  

†Rectangular shape: the K overlapping maximum sub-arrays algorithm using the rectangular shape 
runs in O(Kn3) time complexity. 
*Convex shape: the K overlapping maximum convex sums algorithm runs in O(Kn3) time complexity. 
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The normality assumption of the differences between Sconv and Srect for all six matrix sizes was 

checked. The boxplot and histogram were checked for differences; both showed the sample data 

were approximately normal for the overlapping maximum sums of each of the matrix sizes. The qq-

plots for each matrix size were consistent with the assumption of normality. The Shapiro-Wilk test 

gave no evidence against the hypothesis that the underlying population differences are normally 

distributed (Table 4.2), for all matrix sizes (Shapiro-Wilk p > 0.05). Thus, there is no evidence against 

the assumption that the sample data was approximately normally distributed. 

 

Table 4.2: Results of the Shapiro-Wilk test for testing normal distribution of the differences 

between Sconv and Srect for all six matrix sizes on K = 1, 2, and 3.  

 

 

Shapiro-Wilk p-value (p > .05) 

Matrix 
Size 

K=1 K=2 K=3 

300x300 .906 .936 .915 

250x250 .296 .267 .247 

200x200 .648 .657 .710 

150x150 .108 .120 .122 

100x100 .386 .438 .485 

50x50 .306 .315 .287 

 

Findings from the paired-sampled t-test (Table 4.3) for each matrix size showed strong 

evidence of the differences between the K overlapping maximum sums obtained using the K-OMCS 

and K-OMSA. There were statistically significant increases (p < .01) in the K overlapping maximum 

sums outcomes obtained using the K-OMCS algorithm compared to using K-OMSA algorithm. The 

effect sizes showed that there were large differences between the two algorithms’ K overlapping 

maximum sums (8 < ES < 13). Findings from the experiments signify the notion of using the convex 

shape in the MSP context, which would improve maximising over the ‘promising’ regions compared 

to using the rectangular shape in the same context.  

In the main, these findings endorse the new approach of this study as it provides potential 

benefits relating to the sensitivity of finding maximum sum regions. As noted above, maximising 

over all of the convex regions will return maximum sums that are no smaller than those maximised 

over all the rectangular regions. It is evident that results from both algorithms will be different, in 

the form of increased maximum convex sums, unless equivalent to those of the rectangular shape 

maximum sums. The likelihood of optimising the overall findings will increase, when using methods 

that will reach portions that were previously overlooked.   
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Table 4.3: The dependent-samples t-test results of the paired differences (µconv - µrect) of the 
various matrix sizes using K-OMSA and K-OMCS algorithms; N = 30.  

 
 

Matrix 
Size 

K Paired Differences (µconv - µrect) 
(95% CI [Lower, upper]) 

Sig.  
(p-value)  

 
300x300 1 

 
48586 [46944,50227] < 0.01 

 
2 48699 [47070,50329] < 0.01 

 
3 48791 [47162,50420] < 0.01 

    250x250 1 39246 [37927,40564] < 0.01 

 
2 39378 [38058,40697] < 0.01 

 
3 40139 [38312,41966] < 0.01 

    200x200 1 30089 [29059,31119] < 0.01 

 
2 30214 [29181,31248] < 0.01 

 
3 30282 [29251,31313] < 0.01 

    150x150 1 20765 [20017,21513] < 0.01 

 
2 20872 [20121,21622] < 0.01 

 
3 20929 [20184,21675] < 0.01 

    100x100 1 12338 [11764,12912] < 0.01 

 
2 12394 [11818,12970] < 0.01 

 
3 12449 [11879,13019] < 0.01 

    50x50 1 5368 [5206,5529] < 0.01 

 
2 5405 [5247,5563] < 0.01 

 
3 5446 [5293,5599] < 0.01 
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4.4. Chapter summary  

 

This chapter presented the original algorithm to find the K overlapping maximum convex 

sums: K-OMCS algorithm, with O(Kn3) time. This is the same time complexity as that of the 

rectangular shape algorithm [16]. The convex shape to find the K overlapping maximum convex sums 

was verified to return improved maximum sums compared with those of the rectangular shape. The 

work presented in this chapter has been published in a peer-reviewed paper [62]. The experiments 

showed that the first, second and third maximum convex sum regions overlap heavily. In future 

work, we could impose the condition that subsequent sums cannot overlap by more than 50%. This 

gives scope for further improvements to advance the usability of the algorithm for real-life 

applications.  
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Chapter Five     
 

[Application of the MCS (K-DMCS 

algorithm) to an ecology problem ] 
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In this chapter, we applied the newly developed K-Disjoint Maximum Convex Sum (K-DMCS) 

algorithm to a real-life application. The study presented in this chapter has been published in a peer-

reviewed paper [63]. We investigated the effects of land use changes on benthic stream 

communities in highland tropical streams of Nigeria. A collaboration between computer scientists 

and freshwater biologists was established to implement and examine the robustness of this 

approach compared to a traditional method that used a rectangular shape in the K-Disjoint 

Maximum Sub-Array (K-DMSA) algorithm. This new approach, which uses a convex shape as 

compared to a rectangular shape, is expected to maximise the sums and to locate efficiently the 

maximum sum regions. This new approach was applied to data3 (Appendix A) that were collated 

from 55 tropical highland streams on the Mambilla Plateau, Nigeria to investigate the interactions 

between substrate index, dissolved oxygen percentage (DO%) and temperature with number of 

macro-invertebrates (taxa). The K-DMCS algorithm located the K-maximum threshold values. This 

was achieved by implementing the algorithm to maximise the sum of elements of a selected portion 

of a 2D array on two sets of data and their interactions in relation to taxa: substrate index at a range 

of temperatures, and dissolved oxygen percentage at a range of temperatures. The K-DMCS 

algorithm successfully detected the various temperatures between the different categories of the 

substrate index and dissolved oxygen percentage, and the way in which these variables affect the 

numbers of macro-invertebrates. Furthermore, applying the algorithm revealed that the number of 

macro-invertebrates differs according to land use (e.g. forestry and agriculture). The new method 

used in this research is encouraging in its capability to find the relationship among various 

environmental parameters and macro-invertebrate distribution and diversity. This method can 

potentially be applied to other real-life applications that require finding associations between 

different parameters.  

 

5.1 Background   

 

             It is essential for real-life studies to use analysis techniques and approaches that yield 

accurate outcomes, such as those when investigating relationships between different elements in 

ecological applications. This section reviews some of the key studies that are relevant to the 

ecological problem presented in this chapter, and the application of algorithms to real-life problems.  

                                                           
3
 The data was obtained from the Freshwater Ecology Research Group (FERG) in 2013, with permission from Professor Jon 

Harding (FERG, University of Canterbury). This data is not available for other studies, without the express permission of 
Professor Harding.  
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Habitat preference is widely viewed as a major process influencing the distribution and 

density of macro-invertebrates, but identifying and quantifying associated factors is not an easy task. 

Many hidden factors can be involved, and potential causal factors may be indefinable, such as 

physico-chemical parameters and land use. Studies of invertebrate interaction with habitat and 

environmental factors have focused on traditional ecological approaches. As an example, a study in 

New Zealand investigated the magnitude of effects of substrate particle size, and the influence of 

physical factors on benthic macro-invertebrates in 88 New Zealand Rivers [77]. In a second study, 

substrate size preferences of macro-invertebrates were more clearly demonstrated by the 

comparison of different substrates (e.g. boulders, cobbles) [78]. Although changes in light intensity 

were found to have a significant influence on the periodicity of drifting organisms [78], there is little 

information about other factors that may also affect the drift fauna of slow-flowing waters [79]. The 

importance of current velocity and substrate type in determining the benthic distribution of 

invertebrates is also well known [80-83].  

 

  The use of algorithmic methods has much to offer the biological sciences. Algorithms can 

contribute to knowledge discovery by extracting new aspects of results and permit new insights, in 

addition to those derived from general statistical methods. This real-life study provides new insights 

into the collaborative research, which is detailed as follows. Despite the presence world wide of a 

large number of studies on macro-invertebrate communities that relate substrate and other physical 

parameters with macro-invertebrates, apart from Olomukoro and colleagues’ study [84], research 

on macro-invertebrate colonisation of the natural substrate in Nigerian streams is lacking. Reports 

informed by analysis that is based on appropriately chosen approaches and techniques help decision 

makers in policy development and for management processes in environmental studies. These 

approaches need to have attributes such as quality of performance, computation time, flexibility, 

and data applicability. A specific example is presented in this chapter. Researchers in benthic ecology 

and other environmental gradients traditionally apply statistical analysis to understand outcomes 

from their research data. An alternative approach for analysing data in ecology is to use advanced 

computer algorithms. Although the use of algorithmic computations is still in its infancy [31], there 

are emerging and promising approaches using algorithms to analyse datasets. The rationale behind 

using the K-DMCS approach for this particular study is two-fold. Firstly, the flexibility of this 

algorithm in adapting to the nature of the data in order to detect the maximum events of interest, 

and secondly, two-dimensional observations can take many multiple dimensions. In this research, 

we study the effects of two relationships: the correlation between substrate index and temperature 

and their influence on macro-invertebrates’ habitat preference in streams; and the correlation 
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between dissolved oxygen percentage and temperature and their influence on the macro-

invertebrates’ habitat preference in streams.  

                

 In this study we applied the K-Disjoint Maximum Convex Sum algorithm (K-DMCS), which 

has been developed as part of this research, using the convex shape. Algorithms using the 

rectangular shape, the K-MSA algorithms, have been previously used in applications, as was outlined 

in Chapter 2. Studies using the K-DMSA included that of the K. Fukuda and Takaoka’s study to 

investigate air pollution and health effects [30]. They used the K-DMSA algorithm to identify the 

association between PM10 and admission counts patients over a wide range of age groups (in 5 

yearly intervals from 0 to 98 years old). They investigated this by detecting rectangular regions (K-

maximum sub-arrays) with maximum hospital admission counts, rather than determining a 

regression coefficient relating the variables [30]. Use of the K-DMSA method was also explored 

elsewhere [4, 31-34]. In a given 2D array, the K-DMSA algorithm finds disjoint sub-arrays that 

maximize the sum. These disjoint sub-arrays are rectangular regions covering up to the Kth 

maximum sub-array, where K can be specified by the user or the application. These regions have the 

most promising portions in the dataset, which provide knowledge to represent large data inputs. 

Although using the rectangular shape could lead to the promising regions, it fails to provide a flexible 

enough shape that potentially could cover various data distributions. This motivated us to propose a 

new method using the convex shape and to apply it to situations such as the one described above. 

The convex shape is a relatively complex shape compared to the rectangular shape [61]. It requires 

three dimensions, resulting in cubic computing time, to determine the actual shape in a given 

matrix. Using the convex shape approach accurately determines the peaks of data by optimising the 

sums. This study advances our work reported in [61-63] but with the addition of a potential 

application for the K-DMCS algorithm.        

 

   5.2 Data collection and processing  

The convex shape algorithm and its extended version (K-DMCS) were implemented in 

Chapter 3 using simulated data. We also implemented the K-DMCS algorithm using real data 

obtained from a study that was conducted in the tropical Montane mountain region of the Mambilla 

Plateau, in the south-eastern corner of Taraba state, Nigeria (11o- 6oE and 6o- 7oN). Streams sampled 

were near Yelwa village in the headwaters of the Donga River. The Mambilla Plateau experiences 

two main seasons: rainy and dry. The rainy season lasts on average 250 days, from late March until 

the end of October, and the dry season runs from November until mid-March. The mean annual 

rainfall exceeds 1780 mm, peaking in June and July, but due to its elevation, at nearly 1500m above 
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sea-level, the daily mean temperature rarely exceeds 30oC. During the sampling period (October 

2009 to March 2010), the mean air temperature was 24oC. The vegetation varied markedly across 

the 55 streams. In the tropical Montane rainforest, the riparian vegetation was dominated by 

Deinbollia pinnata, Santiria trimera, Rafania, Croton macrostachyus, Anthonotha noldeae, and Ficus 

803. On the intensive grazing and pasture land, however, trees such as Acasia senegalensis, Polyscius 

fulva, Beeilschmedia, Pouteria altissima, and Bridelia speciosa dominated. In the Montane rainforest 

streams, substrates were mainly larger substrate sizes particularly boulders, cobbles, and sand, while 

in the intensively grazed pastures and cropping streams, substrates were dominated by sand or 

mud. 

 

 A total of 55 headwater streams (first and second order) were sampled (Appendix A). 

Streams were selected to provide at least five replicates in nine different land uses. These land uses 

were: continuous tropical montane rainforest, forest fragment, intensive grazing, open pasture 

cabbage and maize fields, tea and banana plantations, and eucalyptus forests. Each stream was 

sampled for both physical and chemical parameters: fine particulate organic matter (FPOM), coarse 

particulate organic matter (CPOM), algae, and benthic invertebrates. All sites were sampled on a 

single occasion during the tropical dry season between October 2009 and March 2010.  

 

To compare the diversity, density, and composition of benthic invertebrate communities 

among the different land uses both qualitative and quantitative samples were collected. At each site, 

five Surber samples (30 cm x 30 cm, 500 μm mesh size) were collected from riffles. In order to get a 

more extensive species list, a single composite kick-net sample (mesh 500 μm) was also collected 

from a range of different micro-habitats in each stream. Additionally, leaf packs, wood jams, and 

moss were included in this kick-net sample. Macro-invertebrates collected include mayfly 

(Leptophlebiidae), stonefly (Perlidae) and caddisflies (Hydropsychidae) (Figure 5.1). These species 

are pollution sensitive and are therefore useful as bio-indicators of environmental degradation. 
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 Figure (5.1): Macro-invertebrates collected in streams on Mambilla Plateau between October 
2009 and March 2010. (a) Mayfly (Leptophlebiidae);(b) Stonefly (Perlidae); (c) Caddisflies 
(Hydropsychidae). 

 

Ash-free dry mass (AFDM) of algae and moss were obtained by scraping stones with a wire 

brush and washing the slurry into clean bottles. These samples were later filtered using a syringe and 

filter paper and subsequently weighed in the laboratory. A composite FPOM sample was obtained by 

placing a 60 μm net in the stream for 20 minutes. The FPOM was transferred into a bottle in the 

field, and filtered; oven dried, and weighed in the laboratory. CPOM was obtained from the Surber 

samples. The CPOM was oven dried and ashed at 450oC for three hours to calculate AFDM. 

 

             All collected benthic invertebrates were preserved in 70% ethanol in the field and returned to 

the laboratory for analysis. In the laboratory, samples were filtered using a 500μm sieve, sorted, and 

identified to the lowest taxonomic level possible. The taxonomy of Nigerian aquatic invertebrates is 

poorly known therefore we used a combination of keys by [85, 86].           

 

               At each site, representative reaches at least 10 m long containing a riffle/run/pool complex 

were selected. Furthermore, physico-chemical factors were measured in situ including temperature, 

pH, conductivity (using a 4-star Orion pH/conductivity portable meter), and dissolved oxygen 

percentage (using WTW oxygen meter). Filtered water samples were also collected. These were 

analysed in the laboratory for nitrate and phosphate content using the Molybdenum blue 

calorimetric method (R.J. Hill laboratories Ltd, Hamilton New Zealand).  

 

  In the field, parameters such as substrate size and composition, wetted width, depth, and 

current velocity were measured. Channel stability was also evaluated at each site using the method 

of Pfankuch [87]. The K-DMCS algorithm we had recently developed was then applied to the data to 

examine the impacts of the two relationships of particular interest, namely: the relationship 

between substrate index and temperature and the influence on the habitat preference of macro-

a 
 

b 
 

c 
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invertebrates in streams, and the relationship between dissolved oxygen percentage and 

temperature and the influence on the habitat preference of macro-invertebrates in streams.  

 

 

5.3 Results and discussion 

 

                The K-DMCS algorithm, Algorithm (10) was implemented to find optimal association results 

between the research parameters using the convex shape. The results were compared with the 

results from Algorithm (9), which used the rectangular shape, to find the maximum sub-arrays. In 

Figures 5.2, 5.3, and 5.4, we set K = 3 and the three disjoint maximum sums are expressed as S1, S2 

and S3. A weight factor, w is introduced to show various degrees of maximum sub-array in different 

regions of the matrix as formulated in Equation (5.1). This weight factor in most cases is the mean 

value of all elements in matrix M, or can be determined by the user. This process is used to 

normalise the matrix so it has positive and negative values. In Equation (5.1), where M’ is the matrix 

after normalisation, M is the original matrix and w is an anchor value.   

 

 M’ = M – w   …………………..…………. (5.1) 

 

           The number of macro-invertebrates were analysed based on the two environmental 

parameters under investigation: substrate index and dissolved oxygen percentage with temperature. 

First we investigated the relationship between substrate index and temperature and its influence on 

the macro-invertebrate habitat preference in streams. We started our procedure by normalising the 

original matrix (M) through subtracting the anchor value (w = 28) using Equation (5.1); the matrix 

elements are normalised numbers of macro-invertebrates. The normalised data are stored in Matrix 

(1) in Figure 5.2. Algorithms (9) and (10) were run on Matrix (1). The first three peaks from the data 

showed the same regions, suggesting that maximising over all convex regions returns a value that is 

at least as large as that returned by maximising over all rectangular regions.  
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  Temperature °C 

  V. Low Low Med High V. High Ex.High 

Su
b

strate
 In

d
e

x
 

3 -- < 3.5  -28 3 10 -11 35 -7 

3.5 -- < 4 -23 -28 -19 -17 -28 -21 

4 -- < 4.5 -25 -28 -7 -28 -25 -21 

4.5 -- < 5 -28 -19 -11 -28 -28 -28 

5 -- < 5.5 0 -4 -13 -28 -28 -28 

5.5 -- < 6 -28 -28 54 -28 -22 -28 

6 -- < 6.5  -28 -15 -16 -20 -28 -28 

6.5 -- < 7 -28 -28 -15 -11 -28 -28 

7 -- < 7.5 -28 -28 -28 -16 -22 -28 

7.5 -- < 8 -5 -28 39 78 -5 -28 

Figure (5.2): Matrix (1) includes the normalised data collated from the Mambilla 
Plateau (Nigeria). In the matrix are three variables: substrate index, temperature, and 
numbers of macro-invertebrates.  

 

              The findings of this study suggest that macro-invertebrates have a preference for large 

substrate size. Three major peak areas were captured by the two Algorithms (9) and (10). These 

peaks were based on the interactions between temperature, substrate index and macro-

invertebrates (Figure 5.2). The first peak was the medium to high temperature range in habitats with 

large substrate size (e.g. boulders) which supported the highest density of macro-invertebrates; this 

region had the first maximum convex sum (S1 = 117). The second peak was the medium temperature 

in habitats with moderate substrate type (e.g. cobbles) which was the next favourable; this region 

had the second maximum convex sum (S2 = 54). The third peak was at a very high temperature and 

low substrate index (e.g. mud and sand) where the lowest macro-invertebrate density was recorded; 

this region had the third maximum convex sum (S3 = 37). 

               

The rectangular shape Algorithm (9) and the convex shape Algorithm (10) return the 
same result for K = 1, S1 = 117.  

Algorithm (9) and the Algorithm (10) return the 
same result for K = 3, S3 = 37.   

Algorithm (9) and Algorithm (10) return the same 
results for K = 2, S2 = 54.   
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Results from this research also showed the interaction of macro-invertebrates with 

temperature and dissolved oxygen percentage analysed using the K-DMCS algorithm – Matrix (2) in 

Figure 5.3. Matrix (2) represents the interactions between temperature, dissolved oxygen 

percentage and macro-invertebrates. The anchor value (w = 7) is shown in Figures 5.3 and 5.4. In 

these figures, the first peak region (S1 = 364) is captured by Algorithm (10). We identified three 

important informative areas: (a) at medium and high temperature ranges habitats having DO% 

between 46 – <49 to 76 or more recorded the highest macro-invertebrate richness; (b) high 

temperature to extremely high temperature ranges in habitats with DO% 61 – <64 is next in macro-

invertebrate richness; and (c) at very low temperatures in habitats having DO% 67 – < 70 the lowest 

macro-invertebrate richness was recorded. The convex shape successfully identifies these areas. 

 

                Others have had similar results in different geographic contexts. For example, Quinn et al. 

[77], who studied the magnitude of effects of substrate particle size on benthic invertebrates in 88 

New Zealand Rivers, found that the distribution of common macro-invertebrates in the Mohaka 

River indicated significant substrate preference, where taxonomic richness and total densities of 

macro-invertebrates were least in patches of sand and small gravel. Jowett and Richardson [88] 

investigated microhabitat preferences of benthic invertebrates in Waingawa River, New Zealand. 

Their study reported that mayflies, stoneflies, cased caddisflies, and Diptera show a preference for a 

substrate index of more than 6 (boulder/cobbles) and beetles’ preference for a substrate index of 

about 5.6 (gravel/cobble) habitat, while the operational taxonomic unites (OTUs) spread to occupy 

the full range of particulate substrate. The pollution sensitive macro-invertebrates (Mayflies larvae, 

stoneflies larvae and caddisflies larvae) were mostly associated with habitats having big substrates. 
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  Temperature °C 

  V. Low Low Med High V. High Ex.High 

D
isso

lved
 O

xyge
n

 %
 

              < 28  -7 -7 -7 5 -7 1 

28  – < 31 -7 -7 -7 4 3 -7 

31 – <  34 -7 4 -7 -7 -1 -7 

34 – <  37 -7 -7 -7 -7 -1 -7 

37 – < 40 -7 -7 -7 -7 -4 0 

40 – <  43 -7 -4 15 -7 -7 -7 

43 – <  46  -7 -7 -7 -7 -7 -7 

46 – <  49 -7 -7 -7 3 -7 -7 

49 – <  52 -7 -7 -7 15 -7 -7 

52 – <  55 -7 -7 12 -7 14 -2 

55 – <  58 -2 -1 30 -7 -7 0 

58 – < 61 -7 -7 17 3 -7 -7 

61 – < 64 -7 -7 24 -7 34 6 

64 – < 67 -7 4 15 -7 -7 -7 

67 – < 70 16 15 7 15 -7 -7 

70 – < 73 -7 17 42 10 10 -7 

73 – < 76 1 13 22 39 -7 -7 

76 or more  -7 -7 27 6 -7 -7 

 
Figure (5.3): Matrix (2) includes the normalised data collated from the Mambilla Plateau (Nigeria) 
taking into account three variables: DO%, temperature, and number of macro-invertebrates. It also 
shows the first maximum sum by running the Algorithms (9) and (10). The convex shape is more 
flexible in covering various data distributions and manifests a greater maximum sum in comparison 
to the rectangular shape, which not only returns a smaller maximum sum, but also contains less 
useful data (noise). 

 

 

Maximum sum using the rectangular 
shape Algorithm (9) for K =1, S1 = 277.  

Maximum sum using the convex shape Algorithm 
(10): for K= 1, S1 = 364.  
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The choice of the convex shape supported a more efficient way of capturing all datasets at 

once; this is outlined in Matrix (2) of Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

  Temperature °C 
  V. Low Low Med High V. High Ex. High 

D
isso

lved
 O

xyge
n

 %
 

 < 28  -7 -7 -7 5 -7 1 

28 – < 31 -7 -7 -7 4 3 -7 

31 – < 34 -7 4 -7 -7 -1 -7 

34 – < 37 -7 -7 -7 -7 -1 -7 

37 – < 40 -7 -7 -7 -7 -4 0 

40 – < 43 -7 -4 15 -7 -7 -7 

43 – <  46  -7 -7 -7 -7 -7 -7 

46 – <  49 -7 -7 -7 3 -7 -7 

49 – <  52 -7 -7 -7 15 -7 -7 

52 – <  55 -7 -7 12 -7 14 -2 

55 – <  58 -2 -1 30 -7 -7 0 

58 – < 61 -7 -7 17 3 -8 -7 

61 – < 64 -7 -7 24 -7 34 6 

64 – < 67 -7 4 15 -7 -7 -7 

67 – < 70 16 15 7 15 -7 -7 

70 – < 73 -7 17 42 10 10 -7 

73 – < 76 1 13 22 39 -7 -7 

 

Figure (5.4): A comparison between the maximum sum outcomes of the rectangular shape 
and convex shape algorithms. Algorithm (10), the convex shape, achieves the maximum 
sum S4 = 12 at K = 4.  Algorithm (9), the rectangular shape, achieves a maximum sum S5 = 9 
at K = 5, and a maximum sum S8 = 3 at K = 8. The convex shape is more flexible than the 
rectangular shape in covering data distribution.  

 

 

 

 

 

 

 

The rectangular shape Algorithm (9) 
finds this region at K = 5, S5 = 9.  
 

The convex shape Algorithm (10) finds this 
region at K = 4, S4 = 12. 
 
 
  
 

The rectangular shape Algorithm (9) finds 
this region at K = 8, S8 = 3.  
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5.4 Chapter summary 

 
          Scientific investigations in this chapter were achieved by establishing collaboration between 

the Algorithm Engineering and Formal Methods Research Group (AEFMRG) and the Freshwater 

Ecology Research Group (FERG), University of Canterbury (New Zealand). The collated data in this 

study were gathered by one of the originators of this research, who is a member of FERG, University 

of Canterbury. The collaboration investigated the effects of land use changes on benthic stream 

communities in highland tropical streams on Mambilla Plateau in North-East Nigeria using the newly 

developed K-DMCS algorithm. In previous research the K-DMSA algorithm was used in several 

applications. It has been natural for these studies to focus on using the rectangular shape in the MSA 

frameworks, because of the lack of studies exploring alternative shapes for MSP. The MSP has taken 

a new turn by using the concept of maximum convex sums. The convex shape has several useful 

attributes that increase the utility of MSP in real-life applications. In this chapter, we demonstrated 

that although there is the same time complexity for both algorithms the maximum sums are 

improved when using the convex shape in preference to the rectangular shape in the MSP context. 

This research applied the K-DMCS algorithm to an ecology setting, where it demonstrated improved 

results compared to outcomes obtained from applying the rectangular shape.  

 

         The K-DMCS algorithm successfully detected various temperatures between different 

categories of the substrate index or dissolved oxygen percentage, and the ways in which these 

variables affected the number of macro-invertebrates showed a preference for a large substrate 

size. The pollution sensitive macro-invertebrates (mayflies larvae, stoneflies larvae and caddisflies 

larvae) were most closely associated with habitats having a large substrate index. An experimental 

investigation using the K-DMCS algorithm by changing the weight parameter successfully returns 

specific and detailed results by maximising the sum to find the peaks of the data. Overall, this study 

provides a new approach that potentially can be applied to other MSP applications.  
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Chapter Six     
 

[Concluding remarks and future work ] 
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6.1 Concluding remarks and future work  

Since 1977 MSA research has focused on using the rectangular shape for computing the 

maximum sub-arrays [1-41]. This approach, whilst useful in some contexts can be further enhanced 

for MSP by using a different shape. Using the convex shape in the MSP context offers the flexibility 

to locate regions that have the maximum sums. There is a lack of studies in exploring and applying a 

new shape in the MSP context; studies have rarely explored this frontier for examining a new shape 

to find the maximum sums with best possible time complexity. This research creates a different 

perspective for MSP and introduces a new shape for it. We have deviated from what has been the 

previous norm for exploring and investigating new methods to improve MSP outcomes and its 

efficacy for potential applications. Our approach to MCS provides a firm foundation and a new 

research path for developing further versatile algorithms for problems associated with MSP. 

 

This chapter highlights the main contributions of this thesis to the MSP:  

 

 Investigation and application of a convex shape in the MSP context and creation of a new 

MCS framework. We developed an independent MCS algorithmic framework to find 

regions that maximise the sum, running within the state-of-the-art time complexity of MSA 

algorithms. At the start, to explore the convex shape in the MSP context, T. Fukuda’s 

algorithm was simplified to find the maximum convex sums. This simplification created an 

algorithm that uses three cases compared to the seven required for T. Fukuda’s algorithm, 

and both yielded the same results. The bidirectional approach was applied to achieve this 

goal. The simplified algorithm, using the convex shape, returned a sum at least as large as 

that returned by the rectangular shape algorithm. This algorithm was then evaluated to 

create the groundwork for developing advanced MCS algorithms (Chapter 3).  

 

  Integration of pre-processing and post-processing techniques to increase the effectiveness 

of the newly developed MCS algorithms and their utility in real-life applications. We used 

the prefix sum method to enhance the algorithms’ performance by eliminating costly 

repetitions. We also devised the algorithms to use the backtracking technique to back 

trace and precisely determine the shape boundaries. This creative method provided 

adequate grounds for the generalisation of the newly developed MCS algorithms to cover 

cases involving computation of the K maximum sums (Chapter 3).  

 



 

81 | C h a p t e r  ( 6 )  
 

 Development of new algorithms using the MCS framework and the generalisation of those 

for the K-Maximum Convex Sum (K-MCS), which finds the K maximum convex regions in an 

input two-dimensional array. We developed two K-MCS algorithms to cover the K-Disjoint 

Maximum Convex Sum (K-DMCS) and the K-Overlapping Maximum Convex Sum (K-OMCS) – 

both algorithms running in O(Kn3) time (Chapters 3 and 4).  

 
 

 Conducted scientifically designed experiments using simulated data to evaluate outcomes of 

the newly devised MCS algorithms in comparison with their MSA counterpart. We 

implemented the algorithms on the simulated data to make the comparisons and carry out 

statistical analysis. These revealed the relevance and vitality of exploring the diversion from 

using the rectangular shape in the MSP approach and the introduction of the convex shape 

in that context, because the convex shape algorithm returns significantly larger maximum 

sums (Chapters 3 and 4). 

 

 
 Application of the newly defined MCS problem to a real-life setting. We established 

collaboration with the ecologists from the University of Canterbury. We implemented the 

theoretical framework and algorithms using data extracted from an ecological experiment. 

We used the K-DMCS algorithm to find the K-maximum regions that represent relationships 

and interactions in the data. We investigated the effects of changes in land use on benthic 

stream communities in highland tropical streams of Nigeria. We compared the results to 

those obtained by using the traditional method (rectangular shape in the K-DMSA). Using 

the K-DMCS algorithm we successfully detected biologically significant relationships 

between the study variables, as well as demonstrating the applicability of our approach to 

real-life contexts (Chapter 5). 

   

        To conclude, this research provides the theoretical and practical framework that makes a 

significant scientific contribution to addressing some of the research gaps in MSP problem and the 

new research path, the MCS problem. The MCS algorithmic model departs from using the 

rectangular shape as in MSP, and retains a time complexity that is within the best known time 

complexities of the MSA algorithms. The study provides a strong foundation for further 

investigations in this new area of research. Future in-depth studies on the Maximum Convex Sum 

(MCS) problem can advance the algorithms developed in this thesis and their time complexity.  
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Future studies will include research to improve the time complexity of the simplified convex 

shape algorithm with the aim of achieving subcubic time. Our research has demonstrated computing 

the first maximum convex sum running in O(n3) time. Further research can investigate improving the 

time complexity of our original K-OMCS algorithm, from O(Kn3) to a subcubic time by reducing the 

time complexity for the heavily overlapped regions. Such a future study could impose the condition 

that the subsequent maximum sums within the matrix do not overlap by more than 50%. This may 

result in more efficient algorithms for real-life applications. We have already commenced 

preliminary investigations into this with the goal of improving the computational time of the 

algorithms developed in this thesis [38]. The possibility of improving the time complexity for the K-

OMCS from O(Kn3) to O(n3+Kn2) is demonstrated in this exploratory paper [38]. This algorithm is 

based on the conjecture that identical shapes are reported at most n times. That is, if there are n 

identical shapes, the duplication check process requires additional computation time. Improving the 

time complexity needs rigorous further investigations, specifically into the process of checking the 

identical shapes.  
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Appendix (A): Real-life data collated by the Freshwater Ecology Research Group (FERG) and 

processed by the Algorithm Engineering and Formal Methods Research Group (AEFMRG) to study 

the effects of land use changes on benthic stream communities in highland tropical streams on 

Mambilla Plateau north-east Nigeria using the newly developed K-DMCS algorithm. 

 
# 

Site code Site name Land-use 

Subtract 
index temp.º C %DO 

% 
forest 

% 
pasture Taxa 

1. 1 AG1 Canselor 2 Eucal 5.8 18.1 61.8 10 90 24 

2.  AG10 Bapa Zubairu 1 Tea 7.9 20.1 61.8 5 95 8 

3.  AG11 Mohamadu 1 Tea 3 23.5 63.3 2 98 13 

4.  AG12 Godfree 1 Tea 3 21.2 70.6 20 80 17 

5.  AG13 Mal. Ali Banana 7.3 21.7 31.7 25 75 6 

6.  AG14 Head Master Banana 3.4 21.6 29.5 15 85 10 

7.  AG16 Alh. Yusuf 1 Maiz 4 17.6 71 10 90 21 

8.  AG17 Alh. Lawan Grazing 3 15.8 64.9 10 90 11 

9.  AG2 Canselor 3 Grass 5.6 18.8 54.4 10 90 19 

10.  AG21 Alh. Yusuf 3 Grass 4.5 17.1 41.1 5 95 17 

11.  AG22 Alh. Yusuf 2 Eucal 3 23.9 26.1 5 95 8 

12.  AG23 Alh. Bayero 1 Grazing 5 14.2 74.5 3 97 8 

13.  AG24 Alh. Bayero 2 Grazing 3 18.3 66.4 3 97 12 

14.  AG25 Misa 1 Maiz 3.2 20 47.8 2 98 10 

15.  AG26 Misa 2 Maiz 3.3 16.1 69.9 2 98 9 

16.  AG27 Misa 3 Maiz 3 21.2 54.6 0 100 21 

17.  AG28 Jacob 1 Cabage 3 20.6 50 0 100 7 

18.  AG29 Jacob 2 Cabage 3 23 54.4 0 100 5 

19.  AG3 Canselor 4 Grass 6 16.9 68.7 20 80 13 

20.  AG30 Ruqaya 1 Cabage 3 17.8 68.2 0 100 14 

21.  AG31 Ruqaya 2 Cabage 3 22.4 61.3 0 100 10 

22.  AG32 Habiba K Cabage 3.8 23.6 39.3 0 100 7 

23.  AG33 Yelwa Banana 4.3 21.1 38.8 0 100 3 

24.  AG39 Alh. Kato 2 Grass 3.8 14.4 57.8 0 100 5 

25.  AG4 Alh. Dambi 1 Grass 3 15.5 31.4 20 80 11 

26.  AG5 Alh. Dambi 2 Eucal 4 15.9 40.7 5 95 3 

27.  AG6 Alh. Isa 1 Banana 4.5 15.2 55.7 5 95 6 

28.  AG7 Fragment. C Grass 6.2 18.5 58.1 10 90 12 

29.  AG8 Bobbo 1 Tea 3.8 17.3 74.2 10 90 9 

30.  AG9 Bapa Saedu 1 Tea 3.8 20.2 30.9 20 80 11 

31.  MG34 Mustapha 1 Mining 5 15.5 70.1 0 100 24 

32.  MG35 Counselor 1 Mining 5 14.7 73.4 0 100 20 

33.  MG36 Mustapha 2 Mining 5 17.3 66.3 0 100 10 

34.  MG37 Alh. Umaru Mining 5.6 17.1 75.6 0 100 20 

35.  MG38 Jauro Saedu Mining 5.8 18.5 57.6 0 100 19 

36.  NF1 Fragment A Maiz 7 18.5 77.1 100 0 13 

37.  NF10 J.S.H 4 C/forest 3.2 17.2 58.7 100 0 12 

38.  NF15 Luga Ginnaji 2 M/forest 6.4 20.8 69.2 100 0 8 

39.  NF16 Luga ginnaji 3 M/forest 7.8 20.3 73.7 100 0 27 

40.  NF17 Luga Ginnaji 1 M/forest 7.8 20.9 79 100 0 13 

41.  NF18 Luga Ginnaji 8 M/forest 7.7 21.7 61.7 98 2 17 

42.  NF19 Luga Ginnaji 9 M/forest 7.8 20.5 60.4 98 2 10 

43.  NF2 Fragment B1 Grazing 5 18.78 40.5 100 0 5 

44.  NF20 Luga Ginnaji 10 M/forest 7.6 22 61.7 95 5 6 

45.  NF21 Luga Ginnaji 6 M/forest 6.7 20 70.1 95 5 17 

46.  NF22 Luga Ginnaji 7 M/forest 7.9 20.2 73.5 95 5 19 

47.  NF23 Luga Ginnaji 5 M/forest 7.5 20.4 50.6 95 5 15 

48.  NF24 Luga Ginnaji 4 M/forest 7.7 19.4 67.6 96 4 14 

49.  NF3 Fragment B2 Banana 5.5 22.7 35.4 100 0 6 

50.  NF4 Fragment D Eucal 7.3 19.1 15.1 100 0 12 

51.  NF5 Alh. Isa 2 Eucal 4.4 24.3 55.5 100 0 7 

52.  NF6 Augustine trans C/forest 7.9 17.3 56 100 0 18 

53.  NF7 J.S.H 1 C/forest 7.6 17.3 76.6 100 0 21 

54.  NF8 J.S.H 2 C/forest 7.6 17.8 70.9 100 0 28 

55.  NF9 J.S.H 3 C/forest 7.7 13 67.9 100 0 23 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 


