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1. INTRODUCTION 

 

Critically ill patients often experience stress-induced hyperglycaemia and high insulin 

resistance, even with no prior diabetes [1-4].  The increased counter-regulatory 

hormone and cytokine response stimulates endogenous glucose production and 

increases effective insulin resistance.  Absolute and relative insulin deficiency, and 

drug and steroid use are further causes.  Studies also indicate that high glucose 

content nutritional support regimes result in excess glucose [5-7].  More recently, 

reductions in enteral nutrition [8], and the use of dextrose as a diluent in intravenous 

medication [9], resulted in reductions in glycaemia, and the alleviation of the counter-

regulatory response [3, 4, 10, 11]. 

  

Although hyperglycaemia can be a marker of severity of illness, it also worsens 

outcomes, leading to an increased risk of further complications such as severe 

infection [12], myocardial infarction [1], and critical illnesses such as polyneuropathy 

and multiple-organ failure [2].  There is also evidence of significant reductions in 

need for dialysis, bacteremia and number of blood transfusions with aggressive blood 

glucose control [13].  van den Berghe [2, 14] showed that tight glucose control to less 

than 6.1mmol/L reduced cardiac ICU patient mortality by up to 45% while Krinsley 

[15, 16] showed a 17-29% total reduction in mortality over a wider ICU population 

with a higher glucose limit of 7.75mmol/L. 

 

Short-term, adaptive model-based protocols for insulin-mediated glucose control have 

been developed utilising integral-based identification of time-varying patient specific 

parameters [17, 18].  These insulin-based protocols are suited for clinical use, but 



have limitations.  More specifically, high effective insulin resistance due to stress of 

condition and increased counter-regulatory dynamics can result in hyperglycaemia 

regardless of hyperinsulinaemia [17, 18].  Metabolic clearance rate is not stimulated 

with hyperinsulinaemia under conditions of stress, as endogenous glucose production 

is, which compounds hyperglycaemia [19, 20].  Insulin effect can also saturate at the 

supraphysiological insulin concentrations that exist under aggressive insulin therapy 

[18, 21-25], limiting the achievable glycaemic reduction using insulin alone if 

effective insulin resistance is high.  

 

As a result, exogenous nutritional inputs must be reduced to effect a reduction in 

hyperglycaemia.  In critical care, research by Patino et al. [5] with lower glucose 

nutrition alone has seen significant reductions in average blood glucose levels.  

Additionally, Patino et al. found poorer clinical outcome of hyperdynamic 

cardiorespiratory repercussion, high CO2 production, and hepatic steatosis with high 

caloric loads, and no suppression of excessive endogenous glucose production with 

hypercaloric TPN.  Hence, reduced glucose nutrition combined with insulin 

administration can act to control both sides (input and removal) of the glucose 

balance. 

 

This paper develops and presents a pilot study of a long-term controller for safe 

regulation of glycaemia under elevated insulin resistance and glucose intolerance in 

critically ill patients by modulating enteral nutrition inputs in addition to conventional 

basal-bolus intravenous insulin therapy.  Clinical proof-of-concept pilot trials of the 

algorithm are performed which show the algorithm adaptability to time-varying intra- 

as well as inter-patient variability in condition while requiring relatively infrequent 



glucose measurement.  This research is a step towards randomized, comparative 

cohort studies of clinical outcomes using the developed protocol.  

 

Previous blood glucose control research includes controlled experiments in insulin 

infusion by Hovorka et al. [26], Chee et al.  [27], and Chase et al. [18, 28].  Adaptive 

bolus-based control using insulin-alone by Chase et al. [18], is the basis of this work.  

The primary difference in this research is the improvement in control under elevated 

insulin resistance by modulation of nutritional support in addition to insulin input.  

 

2. METHODS 

 

2.1 System model 

 

Tight blood glucose control requires a patient-specific glucose-insulin regulatory 

system model that captures the fundamental dynamics.  Chase et al. [17, 18] used an 

extended system model that captured rate of insulin utilisation, insulin losses and 

saturation dynamics, and is also used in this study: 
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The symbols G(t) [mmol/L] and I [mU/L] denote the plasma glucose above an 

equilibrium level, GE [mmol/L], and the plasma insulin resulting from exogenous 



insulin input, respectively.  The insulin concentration at the interstitial sites is 

represented by Q [mU/L], with k [1/min] accounting for the effective life of insulin in 

the compartment.  I [mU/L] is the plasma insulin concentration with n [1/min], the 

first order decay rate from plasma.  Patient endogenous glucose clearance and insulin 

sensitivity are pG [1/min] and SI [L/(mU.min)], respectively.  The parameter V [L] is 

the insulin distribution volume.  Total plasma glucose input is expressed as P(t) 

[mmol/(L.min)], and insulin input, uex(t) [mU/min].  Michaelis-Menten functions are 

used to model saturation, with parameter αI [L/mU] for plasma insulin disappearance, 

and αG [L/mU] for insulin-dependent glucose clearance or insulin effect [17, 18].   

 

For this study, k, n, αG, αI and V were initially set to generic population values [18, 

29].  During the clinical trials, k, αG and V were tuned to match patient dynamics 

while the glucose distribution volume was taken as 0.19L/kg of the patient total body 

mass [30-32].  The parameters n and αI were set to 0.16min-1 and 0.0017L/mU [18], 

which is consistent across many studies e.g. [33-36].  The parameter αG = 1/65L/mU 

is an initial conservative choice for likelier underestimation of saturation [18, 21, 37] 

while k was set to 0.0198min-1 for an effective insulin half-life of 35min in the 

interstitial sites [18].   

 

In Equation (1), GE represents the patient-specific equilibrium state under constant 

feed, insulin infusion, insulin sensitivity and glucose clearance.  Due to ongoing 

exogenous insulin infusion and variable nutritional inputs, an instantaneous 

equilibrium blood glucose level can be difficult to determine [17].  Hence, the current 

glucose value is used to update GE every two hours after a feed rate modulation. 

 



Equation (3) does not include endogenous insulin or glucose production.  Critically ill 

patients are also often hyperinsulinaemic.  Although endogenous insulin production 

rate is fairly consistent across the non-critically ill population [35, 38-40], its value 

can be highly variable and difficult to obtain quickly in critical care.  However, 

endogenous insulin production is suppressed with significant exogenous insulin 

administration [32, 35, 41].  In addition, endogenous glucose production is known to 

be unsuppressed by insulin or glycaemia under conditions of stress [19, 20].  Hence, 

in this study, an unknown glucose supply is assumed and its effect is lumped in the 

time-varying parameter, pG while endogenous insulin production is assumed to be 

suppressed to a steady constant value under significant exogenous insulin input.  Any 

deviation from these assumptions will result in a scaling in the values of SI, if pG is 

held constant, and the effect on control should be minimal. 

 

2.2 Variable enteral nutrition model 

 

Chase et al. [18] modelled the constant enteral feed rate in their trials, P(t), as a 

constant value.  In this study, stepwise enteral mixed meal glucose fluxes are 

employed for control and modelled using exponential functions. 
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where kpr and kpd (1/min) are the effective half lives of glucose transport from gut to 

plasma for both increasing (kpr) and decreasing (kpd) feed rates respectively, and iP  

and 1+iP are the steps in enteral glucose feed rates.  

  

Many studies have investigated glucose kinetics under non-steady conditions using 

tracers.  Postprandial glucose kinetics are characterised by suppression of hepatic 

glucose output in both an oral glucose load (OGL) and continuous feeding approach 

[30, 42, 43].  Glucose disposal rate is largely unaffected [30, 42, 44].  Time periods 

for glucose absorption range from 120 to 240min [43-46] for an OGL with a peak in 

total glucose at ~40mins [43].  Slower absorption was evidenced in a mixed meal 

formulation [47], and [30] showed that mixed-meal postprandial GRa increased 

progressively until near steady-state between 230 and 270 minutes.   

 

Oral glucose undergoes rapid intestinal absorption and a high percentage passes 

through the liver to appear systemically, sustaining a low first-pass splanchnic uptake 

[43].  Whether such dynamics are applicable to non-steady-state enteral glucose 

infusions where variations in glucose load are much smaller is unknown, although 

[43] showed no discernible difference in systemic oral glucose appearances with a 

half-sized oral glucose load.  Any incretin effect present is likely to be minimal as 

enteral feeds are administered long-term and are held in steady state for at least 2 h 

before the commencement of the trial.               

 

Model-based methods of calculating glucose fluxes [43, 48, 49] using tracer 

concentrations are limiting and unsuitable for real-time clinical application.  Hence, 

different exponential rates for total GRa rise (kpr) and decay (kpd) can be used to 



model transient hepatic glucose output and first-pass splanchnic uptake in non-steady 

feeding.  Impaired uptake of glucose in diabetes and stress-induced hyperglycaemia 

[30, 42, 50-53] imply a slow decay rate in total GRa following nutritional feed 

reduction.  Conversely, rapid intestinal absorption implies a rapid rise rate in total 

GRa [43].  Therefore, the values of kpr and kpd are set to 0.0347min-1 and 0.0068min-1 

from data in the literature, corresponding to half-lives of 20 and 100mins.  Figure 1 

shows the modelled total nutritional input, P(t), following enteral feed rate variations 

using kpr = 0.0347min-1 and kpd = 0.0068min-1.  Note that this model is only designed 

to capture the first order dynamics of glucose appearance as a function of enteral feed.  

Hence Equations (4)-(5) effectively assumes a linear 2-compartment model.  

 

While the digestion process prior to absorption is highly variable, such variability is 

minimised by several means.  Firstly, the mixed meal formulation is standardised.  

Also, an exclusion criterion of abnormal gastric emptying rates as determined from 

residual gastric aspirates (Section 3.1 Patient Cohort) is placed on prospective patients 

for the study.  Lastly, enteral feed fluxes are calculated based on the rapidly absorbed 

glucose caloric content, not protein- and fat-derived calories.  These steps reinforce 

the presumption that only the glucose is absorbed in the first-pass into plasma even 

though the protein and fat content contribute to the gluconeogenic input into plasma at 

some later time.  Note also that the 2-compartment model mimics many standard 

mixed meal models used [54] in analysing diabetic responses.    

 

 

 

 



2.3 Parameter fitting and prediction 

 

Prior to resolving a bolus size and feed rate to achieve a target, SI must be fitted.  The 

parameter fitting is described in [17, 18].  The main difference is the assumption of pG 

= 0.01, a value found in [17] to be relatively constant and insensitive across a diverse 

ICU patient cohort.  The fitted insulin sensitivity, SI, is used to predict the blood 

glucose response in the following hour.  The insulin sensitivity in the following hour 

( 1)(iI +S ) is estimated as a function of previously fitted insulin sensitivity values.  

 

                       (6) 

where the terms jIS are defined in Figure 2, and i=1, 2, … is the number of prior 

hours of fitted insulin sensitivity values available.  The average value (i=1) is 

obtained using the first two values, 0I iS and 1IiS  fitted from 0 to 60 minutes after the 

first hour of the trial.  In subsequent hours, a weighted average of prior fitted values is 

used to minimise the effect of outliers and/or erroneous glucose measurements on the 

fitted insulin sensitivity, while emphasising the most current values. 

 

The required combination of bolus size, insulin infusion rate and/or nutritional feed 

rate to achieve the target glucose level is determined iteratively using the estimated SI 
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value, 1)(iI +S , and Equations (1)-(3).  Delta functions are used to model insulin boluses, 

uex(t), when solving Equations (1)-(3) with the duration of a bolus set to 1 minute.  

Similarly, Equation (4) is used to determine P(t) based on the step changes in 

nutritional input rate.   

 

3. CLINICAL TRIAL METHODOLOGY 

 

3.1 Patient cohort 

 

All patients were fed enterally only with the mixed-meal formulation RESOURCE™ 

Diabetic (Novartis Medical Nutrition, USA) at a rate not exceeding 700kcal of 

glucose per day (1944kcal/day total calories) and given infusions of regular human 

insulin Actrapid™ (Novo Nordisk Pharmaceuticals Ltd., NZ).  Ethical approval was 

obtained from the Canterbury Ethics Committee.   

 

Selected patients had the following inclusion/exclusion criteria.  Inclusion criteria: in 

situ naso-gastric or other enteral feeding tube (e.g. gastrostomy or naso-jejunal tube); 

tolerant of the maximal desired feeding rate as determined by the treating clinician; 

in-patient in intensive care with, or recovering from, a critical illness; random glucose 

level >8mmol/L; age >16 years; and an in situ arterial or venous cannula.  Exclusion 

criteria: delayed gastric emptying (high residual 3-hourly gastric aspirates (>200ml); 

moribund or not expected to survive >72 hours; patients receiving neuromuscular 

blockade (which could theoretically mask agitation or seizures in the event of 

hypoglycaemia); and morbid obesity (BMI>35kgm-2).  Note that concurrent 

vasodilator and vasopressor use, and steroid or drug therapy are not exclusion criteria 



for this study as the algorithm developed is intended for broad use across the critical 

care population.  Such conditions modify the insulin sensitivity parameter value as 

insulin resistance is either elevated or suppressed by the conditions stated and must be 

adapted to by the algorithm for effective control of hyperglycaemia. 

 

All patients were supine or semi-supine during the trial.  Insulin was administered via 

an intravenous cannula using a Graseby 3500 syringe pump (Graseby Medical 

Limited, Colonial Way, Watford, Herts, WD24 4LG, UK).  Enteral feed rate was 

maintained and controlled using a Ross Products Patrol Enteral Pump (Abbott 

Laboratories, Abbott Park, Illinois, U.S.A.).     

 

The proof of concept clinical trial patient cohort (n = 7) was selected from the 

Christchurch ICU intensive care population.  This subset represents a heterogeneous 

cross-section of ICU population, in APACHE and SAP score, age, sex and mortality 

(see Table 1).  The high proportion of septic patients stems from their severity of 

condition and hence, likelihood of hyperglycaemia.  APACHE and SAP scores are 

calculated from the time at which patient condition is at its worst during the first 24 

hours of ICU stay.  The mean age is 65.4 ± 8.1 years (mean ± SD), and five out of 

seven patients are male.  These statistics are comparable over this small cohort to 

other ICUs [2, 55] and an earlier Christchurch ICU study [29].  The ICU survival was 

obtained subsequently from patient records.   

 

 

 

 



3.2 Clinical trial procedure 

 

The proof-of-concept clinical trials span 10h, from 0900h to 1900h.  The pre-trial 

period begins at 0600h, at which time the insulin infusion and feed rate are kept 

constant.  The pre-trial period is necessary to obtain an estimate of the patients’ 

onboard insulin level and equilibrium blood glucose, GE.  At 0900h, the clinical trial 

begins and the feed rate is decreased by 30-40% depending on current glucose level 

and feed rate.  Blood glucose is measured at 15min intervals until 1000h.  Paired 

capillary blood samples are taken via finger-prick using lancets and analysed using a 

bedside Glucocard™ Test Strip II glucose testing kit (Arkray Inc., Kyoto, Japan).  In 

some cases, arterial blood samples were used when finger pricking was unavailable.    

     

At the end of the first hour, SI is fitted to the first hour of data.  Using Equation (6), SI 

is predicted for the next hour.  A target is set for a 10-15% reduction in current 

glucose level to a minimum of 5mmol/L.  A combination of insulin bolus size, insulin 

infusion rate, and enteral feed rate is then resolved to achieve the target at the end of 

the next hour.  Blood glucose is monitored every 30mins, and SI is re-evaluated every 

hour using the prior hours’ data.  Following each re-evaluation, the controller 

determines the required combination of control inputs to achieve the new target 

depending on insulin resistance and estimated insulin saturation level [18].   

 

Hence, the overall approach is target-driven and incorporates real-time optimisation 

of insulin sensitivity for adaptive control.  The overall clinical trial procedure is 

outlined in Figure 3.  A limit of 6U is placed on the total insulin prescribed per hour.  

In addition, a 30mU/L cap was placed on the estimated ineffective insulin, defined by 



the model as the estimated interstitial insulin, Q  minus the effective, or saturated 

insulin, Q  where 
Q

QQ
Gα+

=
1

 [18].  Feed rate was limited to between 280kcal/day 

of glucose (778kcal/day total calories) and the newly imposed standard of 

700kcal/day of glucose (1944kcal/day total calories) for this ICU.  Using the 

RESOURCE™ Diabetic feed formulation, at the 280kcal/day of glucose minimum, 

the total caloric intake of 778kcal/day given a 36% carbohydrate-based caloric 

distribution [56] exceeds the caloric intake level found to avoid an increased risk of 

bloodstream infections [57]. 

 

4. CLINICAL TRIAL RESULTS AND DISCUSSION 

 

This section presents the results of the proof-of-concept clinical trial tests of the 

variable feed and insulin control protocol developed. 

 

4.1 Trial 1 

 
Patient 1 was a 56-year-old male, Type II diabetic with tetraplegia admitted into 

intensive care with pneumonia and sepsis.  It was his second visit to the ICU and 22nd 

day of stay.  His equilibrium blood glucose level was 12.1mmol/L at the start and 

11.2mmol/L three hours prior.  The assumed values of k, kpd and kpr resulted in a 

smooth fitted SI without further adaptation.  The trial progression and modelled 

patient dynamics are shown in Figure 4 and Table 2.   

 

The insulin distribution volume, V = 12L, was found to match patient dynamics, and 

the glucose distribution volume for calculating P(t) was adequately assumed as 



0.19L/kg body mass (~15L).  The insulin sensitivity remained reasonably constant 

throughout the first 360mins of the trial, which resulted in hourly-target acquisition 

with less than 1mmol/L absolute error.   

 

Referring to Figure 11, the infusion was varied from 3.0-1.0U/hr and supplemented 

with three 3.0U boluses.  The feed rate was reduced from 700-280kcal/day of glucose 

(1944-778kcal/day total calories) in the first two hours, which was then maintained 

until trial completion.  After 360mins, the insulin sensitivity began to rise steadily, 

which affected the accuracy of target acquisition.  The last four targets were 

consistently overestimated, although by not more than 1.0mmol/L, which was the 

result of the gradual increase in insulin sensitivity.  Note also that the large percentage 

error is partly due to the much lower than average glucose values.   

 

The gradual increase in identified insulin sensitivity coincided with improved 

conscious level that may have reflected improved glucose metabolism and increased 

hepatic glucose uptake, resulting in increased effective insulin sensitivity as seen by 

the controller.  The reduction in blood glucose achieved was 70.2% from the initial 

hyperglycaemic 12.1mmol/L.   

 

4.2 Trial 2 

 

Patient 2 was a 64-year-old male, admitted into intensive care post-operatively 

following cardiac surgery.  He has sepsis and acute renal failure.  At the time of the 

trial, it was his 6th day of stay.  The trial progression and control inputs are shown in 

Figure 5 and 11, and Table 2.   



 

As shown in Figure 11, the feed rate was reduced from the 700-420kcal/day of 

glucose (1944-1167kcal/day total calories) in the first hour, but was increased back to 

670kcal/day of glucose (1861kcal/day total calories) at 120mins to counter the rate of 

decrease in glucose level.  Subsequent feed rate reductions were prescribed at 

180mins to 520kcal/day of glucose (1444kcal/day total calories) and at 240mins to the 

280kcal/day of glucose minimum (778kcal/day total calories), which was held until 

trial completion due to the highly insulin resistant nature of the patient, in that period.   

 
 

 
Trial 2 highlights some of the difficulties in ICU glycaemic control.  From 0 to 

120mins, a steady and significant reduction in glucose level was observed stemming 

from the initial feed rate reduction at 0mins.  At 150mins, the glucose measurement 

was on course for the 180min target of 5mmol/L.  However, at 180mins the 

measurement was 8.5mmol/L, which is most likely due to a sudden hyperadrenergic 

event the patient suffered around that time.  The patient suffered a hyperdynamic 

cardiovascular reaction i.e. atrial fibrillation.  This episode highlights how the stress 

of condition (manifested here in high cardiac output) in the critically ill promotes the 

counter-regulatory response and sudden changes in glucose level.  From that point, 

the patients’ insulin requirement changed with increased effective insulin resistance, 

requiring much larger insulin boluses after 180mins.  Hence, the controller was able 

to adapt to this significant change in condition and metabolic status that is not atypical 

in critical care. 

 

Although three targets were missed, the model simulation was tracking the blood 

glucose measurements accurately within the next hour and the target at 300mins was 



achieved with 5.1% error.  Target acquisition was accurately maintained for the 

remainder of the trial as the insulin sensitivity remained reasonably constant, albeit 

relatively low, resulting in a less than 1mmol/L absolute target error.  Due to the low 

fitted insulin sensitivity, large feed rate reductions and insulin boluses were required 

to achieve good control compared to the initial 60-120mins. 

   

The total reduction in blood glucose achieved was 25.3% from the initial moderately 

hyperglycaemic 8.7mmol/L to a final value of 6.5mmol/L.  The glucose level was 

irreducible into the 4-6mmol/L target band despite maximising the feed reduction and 

insulin inputs, emphasising the high insulin resistance encountered through much of 

the trial period.  However, this trial does demonstrate the control algorithms ability to 

maintain a controlled reduction in glucose level and adapt quickly to rapidly changing 

patient condition.   

 

Table 2 shows the target errors.  The mean error in target acquisition was 15.1% 

(range, [0.0, 54.1] %).  Disregarding the large target error at 180mins as patient 

condition changed suddenly, the average error was 10.2%, which is near the 7-10% 

Glucocard™ measurement errors involved.  The average absolute error of 

0.68mmol/L, or 0.92mmol/L including the error at 180mins, shows the relatively 

minor absolute blood glucose errors involved in maintaining tight control.  

 

4.3 Trial 3 

 

Patient 3 was a 60-year old male, admitted to the ICU seven days before the trial.  He 

was admitted post-operatively following cardiac surgery with ARDS and multiple 



organ failure, requiring some dialysis.  The equilibrium glucose level at the start of 

the trial was 8.7mmol/L and 9.1mmol/L one hour beforehand.  All parameters were 

standard values except k, which was changed by the controller to 0.0277min-1 

corresponding to a t1/2 = 25mins.  This change reduces modelled losses (n-k) thus 

matching the patients’ renal failure condition where the kidneys do not remove as 

much insulin.  The trial progression and control inputs administered are shown in 

Figure 6 and 11, and Table 2.   

 

The control algorithm prescribed a feed rate cut from 545-318kcal/day of glucose 

(1514-883kcal/day total calories) in the first 120mins but eventually increased the 

feed rate back to 545kcal/day of glucose (1514kcal/day total calories) at 240mins 

(range, [273, 545] kcal/day of glucose, [758, 1514] kcal/day total calories).  Effective 

fitted insulin sensitivity was sufficiently high that insulin therapy was adequate for the 

desired glucose reduction and large feed rate reductions were unnecessary.  Insulin 

boluses administered ranged from 1.5-4.0U.  Insulin infusion was reduced from 2-

1U/hr at 360mins and maintained until trial completion.  The reduction in blood 

glucose achieved was 35.8% from the initial value of 8.7mmol/L to the final value of 

5.6mmol/L.  The mean error of target acquisition is 7.2% (range: 0.7-21.9%) and the 

maximum absolute error recorded was 0.86mmol/L.    

 

Patient 3 exhibited higher effective insulin sensitivity than both Patient 1 and 2, which 

is confirmed by the smaller sized and lower frequency of insulin boluses administered 

in the trial, as well as the feed rate modulation required for the desired glucose level 

reduction.  Equally importantly, this trial demonstrated the controllers’ ability to 

capture the renal failure condition and reduced insulin losses.  It also was able to 



determine that insulin alone would achieve tight control, thus not interrupting 

nutritional input. 

 

4.4 Trial 4 

 

Patient 4 was a 75-year old non-diabetic female with renal and multiple organ failure 

from sepsis, and required some dialysis.  She had spent 23 days in ICU.  The 

equilibrium glucose level at the start of the trial period was a normal 4.8mmol/L, 

although she had mild hyperglycaemia with a blood glucose level of 7.2mmol/L two 

hours earlier.  With normal initial blood glucose, the controller would be trialled in 

maintaining tight control throughout the 10-hour trial period, which would not be 

possible if the initial blood glucose level was hyperglycaemic.  The results are shown 

in Figure 7 and 11, and Table 2. 

 

The resulting fitted insulin sensitivity was smooth with only minor discontinuities 

between each fit.  The insulin infusion was reduced from 2.0-1.0U/hr at 360mins into 

the trial.  One insulin bolus was administered at 480mins, 1.0U in size.  The feed rate 

was reduced from the initial 455kcal/day of glucose (1264kcal/day total calories) and 

modulated (range, [364, 636] kcal/day of glucose, [1011, 1767] kcal/day total 

calories), with the same final as initial feed rate. 

 

For the first 5 hours, the glucose level was maintained in the desired 4-6mmol/L band.  

However, a sudden shift in patient condition occurred at 300mins.  Note that up until 

that point, no insulin boluses had been administered, the insulin infusion was a 

constant 2U/hr since the start of the trial, and only small feed rate changes had been 



performed.  A drop in glucose level occurred to 3.4mmol/L (a target error of 33% or 

1.7mmol/L).  An increase in feed rate to 636kcal/day and a reduction in the insulin 

infusion to 1U/hr were then prescribed by the control algorithm.  The drop in glucose 

level was halted at 360mins and glucose level remained within the 4-6mmol/L desired 

band until the trial end.  The cause of the sudden increase in insulin sensitivity at 

300mins is unclear, but may be related to reduced insulin clearance by the kidneys.  

However, as in Trial 2, the model adapted within 1 hour, with the final two 

measurements having a mean error of 6.8% (0.3mmol/L absolute).      

 

The reduction in blood glucose achieved was 30.1% from the initial mild 

hyperglycaemia of 6.8mmol/L to a final value of 4.75mmol/L.  With significantly 

higher insulin sensitivity compared to Patient 2, the glucose level was controlled in 

the 4-6mmol/L target band, largely with insulin, resorting to a feed rate increase only 

when fitted insulin sensitivity increased significantly.      

 

The mean target error was 9.9% (range, [0.2, 33.0] %) with a maximum absolute error 

of 1.65mmol/L.  Neglecting the few errors arising from the rapid increase in insulin 

sensitivity, the mean error reduces to 5.0%.  The fitted insulin sensitivity distribution 

remained relatively constant, which contributed to the high rate of successful target 

acquisition.  Overall, the errors were very low and all targets were met.       

 

4.5 Trial 5 

 

Patient 5 was a 73-year old, insulin dependent Type II diabetic male admitted into 

ICU with aspiration pneumonia secondary to mediastinal sepsis and an 



oesophagectomy.  The patient had spent 29 days in ICU, and the equilibrium glucose 

level at the start of the trial period was 6.8mmol/L, although he had significantly 

elevated blood glucose levels (9-10mmol/L) earlier.  With near normal initial blood 

glucose, the controller would again be trialled in maintaining tight control throughout 

the 10-hour trial period.  The results are shown in Figure 8 and 11, and Table 2. 

 

The resulting fitted insulin sensitivity was very smooth with only minor 

discontinuities between each fit.  The insulin infusion was kept constant throughout 

the trial at the initial value of 1.5U/hr, except for a one hour period, and supplemented 

with six boluses of 0.5-1.5U.  The feed rate was reduced from 550-365kcal/day of 

glucose (1528-1014kcal/day total calories) for the first four hours and increased back 

to 464kcal/day of glucose (1289kcal/day total calories) by the end of the trial.  For the 

first 5 hours, the blood glucose was reduced and then held at 5mmol/L.   

 

The rise in blood glucose between 300mins and 480mins was caused by a 

miscommunication.  The control input at 300mins as determined by the controller was 

to maintain the insulin infusion at 1.5U/hr and administer a 0.6U insulin bolus, but 

was misconstrued by the attending nurse as reduce the insulin infusion to 0.6U/hr 

only.  The resultant increase in blood glucose was halted at 420mins into the trial 

when the controller was given the correct values.  Even so, the controller predicted the 

rise in glucose accurately when the data was updated.   

 

The reduction in blood glucose achieved was 30.1% from the initial mild 

hyperglycaemia of 6.8mmol/L to a final value of 4.75mmol/L.  The mean target error 

was 2.3% (range: 0-5%) and a maximum absolute error of 0.25mmol/L was recorded.  



The insulin sensitivity distribution for the whole trial remained relatively constant, 

which contributed to the high rate of successful target acquisition.  Overall, the errors 

were very low and all targets were met.      

 

4.6 Trial 6 

 
 
Patient 6 was a 57-year old male admitted into the ICU with pneumococcal 

meningitis.  He also suffered a stroke, arising from his inflammatory condition.  He 

had spent 6 days in ICU.  His equilibrium glucose level at the start of the trial period 

was 7.5mmol/L, and 7.0mmol/L at the start of the 3-hour pre-trial period.  The results 

are shown in Figure 9 and 11, and Table 2. 

 

The resulting fitted insulin sensitivity was very smooth with only minor 

discontinuities between each fit.  At 120mins, the enteral feed was disconnected in 

anticipation of the patient being transferred for an immediate MRI scan as requested 

by the attending physician.  The insulin infusion was unchanged at the initial 2U/hr.  

At 180mins, the trial was interrupted and the insulin infusion was disconnected.  At 

318mins, the patient was returned and the insulin infusion and enteral feed restarted at 

a rate of 0.5U/hr and 280kcal/day, respectively.  These values were maintained until 

the end of the trial. 

 

One unpaired glucose measurement was obtained at 270mins while the patient was 

undergoing the MRI scan.  From the model simulation, it is likely that this 

measurement was inaccurate given that the target at 300mins was within the model 

simulation.  Before the scan, two insulin boluses of 1.1 and 2.0U with a constant 



2U/hr infusion achieved a reduction in glucose level to 5.7mmol/L with the initial 

827-545kcal/day of glucose (2297-1514kcal/day total calories) feed rate cut at 0mins.  

After the scan, the patient became noticeably more insulin resistant, as shown by the 

insulin sensitivity plot.  The feed rate was reduced to its minimum level of 

280kcal/day of glucose (778kcal/day total calories) and bolus size was increased up to 

5.5U.  In the last five hours of the trial, the average insulin administered was 5.0U/hr 

compared to 1.8U/hr in the first five hours.    

 

The reduction in blood glucose achieved was 30.7% from the initial mild 

hyperglycaemia of 7.5mmol/L to a final value of 5.2mmol/L.  With moderate insulin 

sensitivity, the glucose level was reduced and maintained in the 4-6mmol/L target 

band with a combination of insulin and feed rate reduction.     

 

The mean target error was 7.6% (range, [1.3, 15.0] %) with a maximum absolute error 

of 0.75mmol/L.  The reduction in insulin sensitivity observed after the MRI scan may 

have resulted from transient increases in carbon dioxide when the patient was 

ventilated using a basic transport ventilator.  However, the insulin sensitivity 

distribution for the whole trial remained relatively constant, which contributed to the 

high rate of successful target acquisition.     

 

4.7 Trial 7 

 
 
Patient 7 was a 73-year old female admitted into the ICU with an incarcerated hernia, 

acute renal failure and metabolic acidosis.  The patient had spent 3 days in ICU, and 

the equilibrium glucose level at the start of the trial period was 9.9mmol/L, and 



10.3mmol/L at the start of the pre-trial period.  The results are shown in Figure 10 and 

11, and Table 2. 

 

The resulting fitted insulin sensitivity was very smooth with only minor 

discontinuities between each fit.  Initially, the effective insulin sensitivity was low, 

but at 240mins it began to gradually increase, reducing the average total insulin 

required per hour.  The enteral feed rate was reduced from the initial 545kcal/day of 

to 318kcal/day of glucose at 0mins (1514-883kcal/day total calories) and was 

maintained until the end of the trial. 

 

As a result of the increase in fitted insulin sensitivity, at 420mins the 5mmol/L target 

glucose level was overestimated by 0.95mmol/L (4.05mmol/L measured), resulting in 

the insulin infusion being reduced to 0.5U/hr from the initial constant 3.0U/hr.  The 

feed rate was kept at 318kcal/day.  A 3.0U bolus was then administered at 480mins 

and the patients’ blood glucose was kept in the 4-6mmol/L band until the end of the 

trial.   

 

The mean target error was 7.5% (range, [1.0, 19.0] %) and a maximum absolute error 

of 0.95mmol/L was recorded.  The reduction in blood glucose achieved was 49.0% 

from the initial 9.9mmol/L to a final value of 5.1mmol/L.  With moderate insulin 

sensitivity, the glucose level was reduced and maintained in the 4-6mmol/L target 

band with a combination of insulin and feed rate reduction.   

 

 

 



4.8 Control method and target acquisition error analysis 

 

The overall mean target error for all trials was 8.9% (0.51mmol/L), with an absolute 

range of [0, 2.9] mmol/L.  The Glucocard™ Test Strip II bedside glucose monitoring 

sensor is capable of obtaining 50% and 98% of measurements within ±5% and ±20% 

error respectively, over typical glucose ranges [58].  Across the 7 clinical trials, 43% 

of the targets were achieved within ±5% with a mean target error of 2.3% 

(0.15mmol/L).  Mean target error for errors >5% was 13.8% (0.79mmol/L).  Out of 

the 63 targets, only six had errors larger than 20%, so that 91% of all measurements 

were within ±20% of targets.  However, all of these errors can be explained by 

significant, rapid changes in patient condition, rather than pure measurement errors.  

The target errors obtained are thus consistent with, and explainable, by published 

measurement errors from literature.   

 

Figure 12 presents a bootstrapped linear regression model, as applied to the achieved 

and target glucose values.  The estimated standard error of the regression model, s, is 

the test statistic shown in Equation (7).   

 

2

)( 2

1

−

−
=
∑
=

n

yy
s

n

i
ii
)

          (7) 

 

where n = 63 and is the bootstrap sample size (9 targets for each of the 7 trials), iy  is 

the achieved glucose value recorded for the ith target glucose value, ix , and iy)  is the 

value of the least squares linear regression curve at the target glucose value, ix .   

 



The number of bootstrap samples was 4000.  Figure 12 also shows the 95% 

confidence limits for the prediction of the achieved glucose values for a given target 

value.  The few glucose data points achieved with high accuracy at glucose 

concentrations >7mmol/L resulted in a very small effective variation in the bootstrap 

estimate.  Conversely, the number of outliers from rapid changes in patient condition 

from the greater number of data points around normal glucose levels resulted in a 

larger variation in the bootstrap estimate.  This result explains the confidence bands, 

which are nearly of equal width across the glucose range shown.   

 

Note that this analysis is necessarily conservative, as outliers from rapid changes in 

patient condition were included.  The non-parametric bootstrap confidence intervals 

point to a slight bias towards overshooting the target glucose concentration, which 

may be deemed safer in a clinical environment.  However, this result cannot be 

confirmed with the current sample size (n = 63).  A white residual plot based on the 

linear regression curve showed no systematic error in the model and methods as 

shown in Figure 13.  A correlation coefficient, R, between 0.7820 and 0.9216 can be 

stated with 95% confidence.  A larger data point sample size from ongoing trials will 

confirm whether current target errors are within reported sensor parameters or partly 

due to other systematic problems.    

 

Finally, it is also important to note the affect of patient cohort, and in particular level 

of illness as measured by APACHE II score, on the results.  Overall, the clinical 

results showed tight control to less than 6.1mmol/L for a cohort with median 

APACHE II score of 23 (range, [17, 31]).  In comparison, van den Berghe et al [2] 

achieved similarly tight control with median APACHE II score of 9 (inter-quartile 



range, [7, 13]), which represents a much lower level of illness.  For a more 

comparable ICU population, Krinsley [13, 14] showed tight control to a higher 

7.75mmol/L for a cohort with median APACHE II of 16 (inter-quartile range, [10, 

23]).  However, both these studies used insulin alone to control glucose levels.  

Hence, the significantly added control obtained by modulating nutrition, as well as 

insulin, to control glycaemic levels is seen in the ability to achieve tight control to a 

level similar to [2] for a more critically ill ICU cohort. 

 

5. CONCLUSIONS 

 

The clinical pilot trials conducted during this study demonstrated the potential of a 

control algorithm modulating both insulin and nutritional feed rate to accurately 

reduce and tightly regulate glucose levels despite significant inter-patient variability 

and time-varying physiological condition.  A simple, two-compartment model for the 

enteral feed rate was presented and used to simply model variations in nutritional 

input. 

 

The efficacy of the adaptive control algorithm and system model presented in 

achieving targeted control of hyperglycaemia in critically ill patients was validated in 

seven clinical, proof-of-concept pilot trials.  The results showed both accurate 

regulated stepwise glycaemic reduction and tight glycaemic maintenance with a mean 

target error of 8.9%.  All target errors above 20% were attributable to periods where 

the controller was adapting to sudden changes in patient physiology, rather than 

systematic deficiencies in the model or protocol while all target errors were consistent 

with and explainable by the published sensor error distributions.  Notably, the average 



absolute error was 0.51mmol/L, a small value compared to the 4-6mmol/L desired, 

especially in a clinical environment where target error of 15-20% is not considered 

clinically significant. 

 

A larger patient cohort needs to be tested with the current model and control 

algorithm to further analyse its effectiveness and improve its performance.  Trials 

spanning longer periods of time are also in development to verify the long-term 

performance of the control algorithm and protocol developed, and to further test the 

adaptability of the controller.  Clinically, these results have the potential to reduce 

ICU mortality and the risk of severe long-term complications with relatively limited 

clinical effort.  
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FIGURES 

 

Figure 1: Stepwise enteral nutritional variation and modelled total plasma nutritional input, P(t) 
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Figure 2: Example of fitted insulin sensitivity value definitions, right most values are most recent, 
going back 4 hours.  Values are calculated using Equation (6) 
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Figure 3: 10-hour clinical trial procedure 
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Figure 4: Patient 1 trial progression 
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Figure 5: Patient 2 trial progression.  A sudden change in patient condition occurred at 60-
120mins, resulting in heightened insulin resistance. 
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Figure 6: Patient 3 trial progression 
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Figure 7: Patient 4 trial progression 
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Figure 8: Patient 5 trial progression 
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Figure 9: Patient 6 trial progression.  Insulin resistance clearly increases at ~320mins after MRI 
scan compared to 0-300mins.   
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Figure 10: Patient 7 trial progression 
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Figure 11: Clinical trial control input summary where maximum insulin input is 6U/hr and 
minimum feed rate is 31ml/hr of RESOURCE™ Diabetic equivalent to 280kcal/day of glucose 
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Figure 12: Achieved glucose level vs. target glucose level with 95% bootstrap confidence limits on 
estimation of achieved glucose level 
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Figure 13: Plot of the residuals of the least squares linear model when applied to the achieved 

glucose level 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLES 

Table 1:  Patient cohort data 
 
Patient 
number

Medical 
subgroup

APACHE 
II

APACHE II 
ROD (%)

APACHE 
III

SAPS 
II

SAPS II 
ROD (%) Age Sex Mortality Diabetes

1 Sepsis 17 14.3 40 15 2 56 M N Type 2

2 Sepsis 24 49.7 59 35 16.7 64 M N

3 Pulmonary 31 73.3 85 45 34.8 60 M N

4 Sepsis 26 59.7 91 62 71.9 75 F N

5 Sepsis 21 33.2 58 34 15.3 73 M N Type 2

6 Other medical 17 14.3 44 44 32.6 57 M N

7 General surgical 23 62.3 84 57 61.9 73 F N Type 2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2: Clinical trial results summary 

Patient 1 1 2 3 4 5 6 7 8 9 10 Average
0 0 0 3 0 3 0 3 0 0 0.9
3 3 3 3 1 3 3 3 3 3 2.8
3 3 3 6 1 6 3 6 3 3 3.7

56 42 28 28 28 28 28 28 28 28 32.2
12.2 10.2 8.0 6.8 6.6 7.1 5.3 5.0 4.5

(mmol/L) 1.2 0.3 0.2 -1.0 -1.1 0.9 1.0 0.8 0.9 0.8
(%) 9.8 2.5 2.4 -14.9 -16.1 12.7 18.4 16.0 20.5 12.6

Patient 2
0 0 3 6 6 5.2 6 0 6 6 3.8
3 0 0 0 0 0 0 0 0 0 0.3
3 0 3 6 6 5.2 6 0 6 6 4.1

42 67 67 52 28 28 28 28 28 28 39.6
7.2 5.3 7.0 7.1 6.0 6.1 6.0 6.5 6.2

(mmol/L) 1.3 -2.9 -1.4 0.4 -0.7 0.0 -0.9 -0.5 -0.3 0.9
(%) 18.3 -54.1 -20.5 5.1 -11.7 0.0 -15.0 -7.1 -4.0 15.1

Patient 3
0 2.5 0 4 0 4 1.5 0 4 0 1.6
3 3 3 2 2 2 2 2 2 2 2.3
3 5.5 3 6 2 6 3.5 2 6 2 3.9

35 35 55 45 60 40 40 40 30 40 42.0
5.7 6.4 5.4 6.5 5.0 5.0 5.4 3.9 5.0

(mmol/L) 0.0 -0.1 0.5 0.4 -0.4 0.1 -0.3 -0.9 -0.6 0.3
(%) -0.7 -1.4 9.4 6.0 -7.1 2.0 -5.4 -21.8 -11.0 7.2

Patient 4
0 0 0 0 0 0 0 0 1 0 0.1

2 2 2 2 2 2 1 1 1 1 1.6

2 2 2 2 2 2 1 1 2 1 1.7

35 50 35 35 40 40 61 61 44 44 44.5

5.7 5.0 5.0 5.0 5.0 5.6 6.7 4.2 5.0

(mmol/L) 0.0 -0.4 0.1 0.4 1.7 0.2 1.5 -0.4 -0.2 0.5

(%) 0.2 -8.0 2.0 7.0 33.0 4.1 22.0 -9.6 -4.0 10.0

Patient 5

0 1.5 1 0 1 0 1 1.5 0 0.5 0.7

1.5 1.5 1.5 1.5 0.6 1.5 1.5 1.5 1.5 1.5 1.4

1.5 3 2.5 1.5 1.6 1.5 2.5 3 1.5 2 2.1

35 35 35 35 49 49 49 35 49 49 42.0

5.7 5.0 5.0 5.0 5.5 5.9 5.0 5.0 5.0

(mmol/L) 0.0 0.1 -0.1 0.0 -0.2 0.3 0.1 0.2 0.3 0.1

(%) -0.2 1.0 -1.0 0.0 -3.5 4.7 2.8 3.0 5.0 2.4

Patient 6
0 1.1 2 0 0 3 5.5 5.5 5.5 3 2.6

2 2 2 0 0 0.5 0.5 0.5 0.5 0.5 0.9

2 3.1 4 0 0 3.5 6 6 6 3.5 3.4

60 60 0 0 0 35 31 31 31 31 27.9

6.1 5.2 5.7 6.1 5.7 5.4 5.0 5.4 5.0

(mmol/L) -0.4 -0.5 0.1 -0.7 -0.7 -0.4 -0.8 0.1 -0.2 0.4

(%) -6.2 -9.6 2.3 -10.8 -11.5 -7.5 -15.0 1.3 -4.0 7.6
Patient 7

0 3 0.5 3 3 3 1 0 3 0 1.7

3 3 3 3 3 3 3 0.5 0.5 0.5 2.3

3 6 3.5 6 6 6 4 0.5 3.5 0.5 3.9

32 32 32 32 32 32 32 32 32 32 32.0

8.2 6.9 5.9 5.8 5.0 5.0 5.0 5.0 5.0

(mmol/L) 0.3 -0.3 -0.5 0.5 0.2 1.0 0.3 0.7 -0.1 0.4

(%) 3.2 -4.5 -7.6 9.3 3.0 19.0 6.0 14.0 -1.0 7.5

Hour

Insulin bolus (U)

Insulin infusion (U)

Total insulin (U)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Target error

Insulin bolus (U)

Insulin infusion (U)

Total insulin (U)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Target error

Insulin bolus (U)
Insulin infusion (U)
Total insulin (U)
Feed rate (% of 1000kcal/day)
Target glucose value (mmol/L)

Target error

Insulin bolus (U)

Insulin infusion (U)

Total insulin (U)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Target error

Insulin bolus (U)

Insulin infusion (U)

Total insulin (U)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Target error

Insulin bolus (U)

Insulin infusion (U)

Total insulin (U)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Feed rate (% of 1000kcal/day)

Target glucose value (mmol/L)

Target error

Target error
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Total insulin (U)
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