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UNSTEADY WAVES ON AN OPEN TWO LAYER FLUID 

P.W. Sharp 

The evolution of small amplitude waves on an open two layer 

fluid is investigated, with application to the interaction of 

surface and internal waves in the ocean. The spatially periodic 

surface and interface displacements are represented as Fourier 

series with time dependent coefficients, for which evolution 

equations with all significant quadratic interactions included, 

are derived. Solutions to these equations are found analytically 

for a small number of harmonics, and numerically for a larger 

number of harmonics. Two numerical solutions are given to illus-

trate the evolution properties. 

INTRODUCTION 

The classical theory of gravity wave propagation based on a 

linearised form of the equation of motion has wave solutions which 

propagate independently of one another, with no energy transfer 

between waves. When the nonlinear interactions are included 

Phillips [8] has shown that if the interactions occur over a suffic-

iently long time, and if a resonance condition (to be stated later) 

is satisfied, then there will be a significant transfer of energy 

between the waves~ Phillips found for gravity waves on a deep 

single layer fluid that the interaction rate was of O(E 2
) where 

E << 1 is a measure of the wave amplitude. Thus for a complete 

description of the evolution of the wave field over a time interval 

-2 
of O(E ) the linear theory must be extended to include the non-

linear terms. Following Phillips, Bretherton [ 3] introduced the 
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idea of near resonance where the resonance condition is satisfied 

to O (E) • 

When the fluid, because of the presence of a thermocline or 

a layer of freshwater upon saltwater must be regarded as a two 

layer fluid the wave evolution is more complicated. It has long 

been known (see for example Lamb [ 7]) that two types of wave modes 

are possible. One is a fast surface mode and the other is a slow 

interface mode. Ball [ l] has shown that when both types of modes 

are present with the interface waves long compared with the surface 

waves, a situation Phillips [9] argues is important, resonance is 

possible between two surface waves and one interface wave. The 

resonance condition is then 

0 R, » k (1.1) 

where wk+i' WR, are the frequencies of the two surface modes with 

wavenumbers k + i, i, and wk is the frequency of the interface mode 

with wavenumber k. 

The perturbation scheme used by Phillips [8] shows that this 

type of interaction occurs at an O(E) rate. Thus for gravity waves 

on deep water with both surface-surface and surface-interface wave 

interactions present the latter interaction dominates the wave field 

-1 
evolution up to a time of O(E ) • 

The evolution of gravity waves on a two layer fluid has been 

studied theoretically by several authors. Ball [ l] for shallow 

water, and Hashizume and Ikeda [6] for arbitrary depths have found 

analytic solutions for two surface waves and one interface wave 

satisfying equation (1.1). Watson et al [12] considered the 

interaction between linear surface and interface wave fields, while 

Rizk and Ko [ 10] studied the interaction between surface Stokes 
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waves and large scale internal waves. 

The approach used here has both the interface and surface 

displacement as unknown functions, resolved into as many wave modes 

as are required (to be defined more precisely in section 5). To 

simplify the algebra we have taken the wave propagation to be uni­

directional and the lower layer to be of depth far greater than 

any wavelengths present. A limit is placed on the wave slopes 

to exclude large amplitude waves. 

The waves are represented as spatially periodic Fourier 

series with coefficients which vary slowly with time (see Bretherton [3] 

for a precise definition of slowly varying in time). Evolution 

equations with all the significant quadratic interactions included 

are derived for the rates of change of the Fourier coefficients. 

The cubic and higher order interactions are omitted because as 

stated above they occur on a longer time scale than the quadratic 

interactions. 

Several analytic results are given but in general numerical 

methods must be used to solve the evolution equations. Two 

contrasting numerical solutions are given and these are used to 

illustrate general properties of all the solutions found, as well 

as properties that are unique to different sets of solutions. 

2. GOVERNING EQUATIONS 

The two layer fluid consists of an upper layer of density 

P2, mean depth hand a lower layer of density Pi and infinite 

depth with the difference p1 - p2 being small compared with P1 

and P2. The fundamental wavelength is 2TIL and a1, a2 are a 

measure of the amplitude of the interface and surface waves 

respectively. The horizontal coordinate x and the vertical 
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coordinate y (positive upwards) are both in units of h with the 

origin on the mean interfacial level. The interface and surface 

displacements are n1 and n 2 respectively, both in units of a1 and 

the corresponding velocity potentials are ¢1 and ¢2 in units of 
1, 

(gh),2a 1, where g is gravity. 
k: 

The time t is in units of (h/g) 2 

and the principal parameter is E = a1/h << 1. The other parameters 

areµ= h/L, E' = a2/h <<land p = P1/P2. 

The governing equations for this inviscid, incompressible 

and irrotational flow then become 

¢2XX + ¢2yy 0 0 < y < l 

¢1XX + ¢1yy = 0 00 < y < 0 

¢ly + 0 y + - 00 

¢1y nit = E(nl¢1X)X + 0(E 2) on y 0 

¢2y nit E(nl¢2X)X + 0(E 2) on y 0 

P¢1t - ¢2t + (p- l)n1 sn1¢2yt - spn1¢1yt 

+ls(¢ 2+¢ 2) __ 
2
1Ep(¢ 2+¢ 2) +O(E2) 

2 2X 2y lX ly 

on y = 0 

~ - n2t = E(n ~ ) + 0(E 2) on y = l '+'zy 2'+'2x x 

¢2t + n2 = - sn2¢2yt - IE (¢2./ + ¢2.y z) + o (E2) 

on y = l. 

Spatially periodic solutions of the form 

00 

n 1 = ~ l A 1k(t)expi(kµx-wkt) 
k=l 

00 

+ * 

~ l A
2
k (t) expi (kµx - wk t) + * 

k=l 

¢' 
1 

00 

, 

l \ l (B 2k(t)coshkµy+ c 2k(t)sinhkµy) x 
2 

k=l 
expi (kµx - wk t) + * 

(2 .1 (i)) 

(2.l(ii)) 

(2.l(iii)) 

(2.l(iv)) 

(2 .1 (v)) 

(2 .1 (vi)) 

(2 .1 (vii)) 

(2.l(viii)) 

(2. 2 (1)) 

(2.2(ii)) 

(2.2(iii)) 

(2.2(iv)) 
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are sought where* denotes the complex conjugate, k is the wavenumber 

-1 
in units of L and wk is the frequency in units of 

The linear solutions to equations 2.1 are found 

in the above Fourier series and neglecting the right 

This gives 

A
1
k = (1-Tkkµ/w/)coshkµA

2
k = (ikµ/wk)B

1
k 

= (ikµ/Wk)C
2
k 

!,,: 
(g/h) 2 

by substituting 

hand sides. 

(ikµ/wk) (wk 2 /kµ - Tk) I ( 1 - Tkwk 
2 
/kµ) B 

2
k (2. 3) 

and the dispersion relation 

where Tk = Tanh kµ 

The two roots of this equation are 

WAk 2 /kµ l 

and WBk 2 /kµ = (p - 1) Tk/ (p + Tk). 

The larger root wAk is the frequency of a free surface wave 

mode and is the same as for waves on deep water, indicating that 

these modes propagate independently of the properties of the inter-

face. The smaller root WBk is the frequency of a free interface 

wave mode and depends on the reduced gravity (p - 1). 

The evolution equations for A
1
k and A

2
k are now derived by 

evaluating the nonlinear terms in equations 2.1 and eliminating 

B
1
k, B

2
k and C

2
k to give two second order ordinary differential 

equations involving A
1
k and A

2
k. One of these equations can be 

integrated twice and the other once to give the equations which 

form the basis of our paper. The details of this method of 

elimination and subsequent integrations are given in Bryant [5] 

Only the important points will be presented here. 



The method of eliminating B
1
k, B

2
k and c

2
k depends on whether 

they occur in the linear or nonlinear terms. If they occur in 

the linear terms they must be found by simultaneous solution. 

If they occur in the nonlinear terms then it is possible to 

substitute for them in terms of A
1
k and A

2
k from equations 2.3. 

With Enon-zero the values of B1k, B
2
k and c

2
k differ from those 

in equations 2.3 by O(E). This difference, when included in the 

nonlinear terms, becomes of O(s 2
) and hence is neglected. 

The resulting differential equations, after the integrations, 

become 

k-1 
ls I 
2 

i=l 

00 

- E l 
i=l 

R A A Dk , - ,Q, 1 ,Q, 1 k - ,Q, 

(W,Q, + wk_,Q,) 2 - (WAkWBk/wk) 2 

R A *A 
Dk,,Q, 1,Q, lk+,Q, 

6 

k 1,2 I••• (2. 4 (i)) 

and 

D{A
2
k + (p - 1) (1 - Tkk]..l/Wk 2 ) cosh k]J A

1
k} 

1 . k~l ~k,-,Q,A1,Q,A1k-,Q, 
2l E ,Q,,::1 (W,Q, + wk-,Q, + Wk) exp-i (W,Q, + wk-,Q, - Wk) t 

k = 1,2, ... 

where D = d/dt and the frequencies are extended to k < 0 by 

( 2. 4 (ii) ) 

The coefficients RDk,,Q, and REk,,Q, are given 

in the appendix. 

On comparing the left hand sides of equations 2.4(i) with the 



first equality in equations 2.3 we see that the right hand sides of 

equations 2.4(i) give the quadratic corrections to the linear 

solutions. The right hand sides of equations 2.4(i) contain 

-1 
factors of the form (WR,+ wk-i - wAk.wBk/wk) and 

-1 
(wk+.Q, - WR, - WAk.WBk/wk) . It will be shown in the next section 

that these are of 0(1) and hence the integration used above is 

valid. Finally while it is possible at this stage to obtain an 

expression for dA
1
k/dt from equation 2.4(i) and substitute into 

equation 2.4(ii) to obtain a differential equation for A
2
k, this 

is not done until the next section after the final form of the non-

linear terms is given. 

3. EVOLUTION EQUATIONS 

The final form of the nonlinear terms in equations 2.4(i) 

and 2.4(ii) depends on which quadratic interactions are included. 

The possible interactions are outlined below and reasons given 

for including or excluding them. 

A. Two interface wave modes interacting to modify a third inter-

face wave. Equation 1.1 requires 

In general this is impossible to satisfy but for long inter-

face waves the left hand side of the above condition is of 0(µ 2
). 

7 

The near resonance condition will then be satisfied when s/µ 2 = 0(1). 

Because (wBk+.Q, -w8 .Q, -wAk.) is of 0(1) equation 2.4(i) is valid. 

Therefore this interaction is included in order to consider long 

interface waves such that s/µ 2 = 0(1). 

B. Two surface wave modes interacting to modify an interface 

wave mode. Equation 1.1 requires 
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[ J

l 
(p-l)T k]J ~ 

( (k + ,Q,)µ)~ - (,Q,µ)~ - k 
p + Tk 

0 k+,Q,,,Q,»k. 

This can be satisfied by taking 

µ 
2
~ Zn{ (p - 1) (1 + f3) /[ (p - 1) - (p + 1) f3]} 

where f3 !)~ + k • 

Because (WAk+,Q, - WA,Q, - wAk) is of O ( 1) , equation 2. 4 (i) is 

valid and this interaction is included. 

c. An interface wave mode and a surface wave mode interacting 

to modify a surface wave mode. This is similar to case B above 

and is included. 

Two surface wave modes may interact to modify a third surface 

wave mode. Equation 1.1 would require wAk+,Q, - wA,Q, - wAk to be zero. 

As stated above this is of 0(1) and hence the interaction is 

excluded. 

Finally an interface wave mode and a surface wave mode may 

interact to modify an interface wave mode or two interface wave 

modes may interact to modify a surface wave mode. These inter-

actions are excluded as the smallness of the interface wavenumbers 

compared with the surface wavenumbers makes it impossible to 

satisfy the resonance or near resonance condition. 

Benney [2] has shown that for short surface waves and long 

interface waves, the resonance condition (1.1) with E = 0 is 

equivalent to requiring the group speed of the surface waves to 

equal the phase speed of the interface waves, with the centre of 

the surface waveband at k. When Eis non-zero this interpretation 

is not strictly true. However we will be considering solutions 

with E << 1 and thus the centre of the waveband will be in a small 

neighbourhood of k. In this sense a frame of reference moving with 
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the speed dwAk/dkµ in the positive x direction represents the 'best' 

frame in which to investigate the nonlinear interaction. 

and 

Therefore solutions of the form 

n = 
2 

1 n l a 1k (t) expi (kµ (x - ct)) + * 
2 k=l 

i;(x,t)expi(Kµx-wAKt) + * 

are sought,where !; (x ,t) 
1 

u2 

2 k~Z
2 

a 2k (t) expi ( (k - K) µ (x - ct)) 

(3 .1 (i)) 

( 3 .1 (ii)) 

and c = dwAK/dkµ. The a
1
k's and a 2k's are complex and i;(x,t) is 

the envelope function. If the a 1k's and a 2k's are real and constant 

then the expression for n2 is that of a wave group of central wave-

number Kand central frequency wAK propagating in the positive x 

direction with a group speed c. The expression for n1 is then that 

of a wave moving in phase with the surface envelope with phase 

speed c. 

As stated in section 1 the long interface wave modes are 

physically important. Therefore in equation (1.1) we take k 1 

and chooseµ for a given K such that 

Expressing the complex amplitudes A1k and A2k from equations 

2.2(i) and 2.2(ii) in terms of a
1
k and a

2
k leads to the following 

evolution equations for a 1k and a
2
k 

da 1k i (w
8

k - kµc) 
-- + a1k dt E: 

+ 

+ 

k-1 
1 . \ 
-i l R a a 
2 9-=l Ak, -9, 1,Q, 1k-,Q, 

n-k 
i l R a *a 

9-=l 
Ak,,Q, 19, 19-+k 

u2-k 
i l R a *a 

9-=Z2 
Bk ,,Q, 29, 2k+,Q, 
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+ 0 (E:) (3.2(i) 

da k i (WAk - (k - K) µc - WAK) 
~-2- +~~~~~~~~~~~a 

dT E: 2k 

min (n,k - Z2) 
= i l 

.Q.=l 
R a a Ck,-.Q, 1.Q, 2k-.Q, 

min(n,u2 - k) 
+ i l R a *a 

.Q.=l Ck,.Q, 1.Q, 2k+.Q, 

+ 0 (E:) Z2 ~ k ~ u2 

where the interaction coefficients RA,~, RC are given in the 

appendix and T = st. 

4. ANALYTICAL RESULTS 

n Defining s to be the set of equations 3.2(i) and 3.2(ii) 
Z2, U2 

withµ chosen such that equation (1.1) is satisfied for some 

k E [Z2, u2] the following analytical solutions are known. 

Fors~ 1 , Hashizume and Ikeda [6] have given a full set 
1.,2,1.,2+1 

of solutions. Expressing their solutions in our notation with 

the initial conditions a 11 = O, a
2
z

2 
= a

2
z

3 
= A (A real, 

Z3 = Z2 + 1) we obtain 

la 11 (T) I = S~A\cn(WT-T) I (4.l(i)) 

la 1 (T) I 21.,2 
k 

= A ( l + a) 2dn (WT - T) (4.l(ii)) 

I a 1 (T) I 2 1., 3 = A I sn (WT - T) I (4.l(iii)) 

R la l2+R la 12= 
B1,Z2 2Z3 CZ3,-l 11 

R A2 

Bl, Z2 
(4.l(iv)) 

R la 12-R la 12 
s1,Z2 2Z2 cZ2,1 11 

R A2 
Bl, Z2 

(4.1 (v)) 

a 11 *a 1 *a 1 + a 11 a 1 a 1 * = 0 
21.,2 2t.,3 21.,2 2t.,3 

(4. l(vi)) 

where en, dn, snare the Jacobi elliptic functions 

k 
(A2

Rc1 R 1 (l+a)) 2 

1.,3,-1 Bl,1.,2 w = 

f
1T/2 

r a 
o / 1 - l+a 

dcp 
and T 
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with R , R and R all greater than zero. 
B1,Z2 cZ2,1 cl3,-1 

The essential features of this solution are the strict 

periodicity, the inverse dependence of the period on the initial 

amplitude, and the maximum value of the interface wave mode being 

BA where B < l in general. 

When either the number of surface or interface wave modes 

was increased it was not possible to solve analytically the corres-

ponding system of evolution equations. 
1 

However for s 1 the 
1.,2 ,u2 

following two independent complete integrals were found. 

and 

u2 

la11l 2 
+ I 

i=l2 
iim 

a. I a . 12 
]. 2]. 

l2 < m < u2 

where a., $. are functions of the interaction coefficients and 
]. ]. 

C1 , C2 are constants determined by the initial conditions. The 

explicit form of a., 6. is not given because other complete integrals 
]. ]. 

2 
were used in subsequent calculations. Similarly for s 1 1 one 

&2 I &2+2 

complete integral of the above form involving all five wave modes 

was found. From these analytical results it can be seen that 

numerical methods are required to solve the evolution equations 

when an arbitrary number of wave modes are present. This method 

is outlined in section 5. 

However because of their nearness to resonance the evolution 

of the wave modes a 11 , a 1 and a 1 as given in equation 4.1 
- 2&2 2&3 

dominates these numerical solutions. A way of measuring the 

degree of dominance is given in section 5. 



5. NUMERICAL METHODS 

The numerical method used to solve the evolution equations 

is the integrator of Shampine and Gordon [ 11]. Brie fly, their 

integrator is a variable order, variable stepsize, linear multi-

step method using an Adams-Bash£orth predictor and an Adams-

Moulton corrector. The integrator endeavours to keep the local 

error at each step below a value set by the user and at the same 

time using as large a stepsize as possible. 

This is achieved by varying the order and stepsize. An 

estimate of the global error at the end of the integration can 

be found by resolving the equations with a more severe local 

error tolerance and noting the change in the solution. This 

method of estimating the global error is explained more fully 

in [ 11] . 

For a particular p and K, µ was found such that 

Then for a given set of p, K, µ and E , 

sn was solved numerically for a small number of wave modes. 
Z2, U2 

The number of modes was increased until the last mode added 

-2 
altered the previous solution by less than 10 This last 

mode was then excluded and the previous solution taken as the 

final solution. The initial conditions were 

a 
1k 

0 k 1, ... n 

a 
2k 

0 k Z2, ... K - 1, K + 2, ... u2 

a 
2K 

a = A 
2K+l 

where A was chosen so that the time average of i la I 
k odd lk 

was 

approximately 1 to be consistent with the definition of a 1 

The parameter E: was chosen so that the initial slope of a was 
2K 

approximately 0.1. 

12 I 
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The complete integrals 4.l(iv) and 4.l(v) were combined to 

give 

la2z3l
2 

+ la2i2l
2 

+ [ (RCl3,-l - Rcz2,1)/RB1,Z2] la1/I 

2A2 (5. 2) 

For each numerical solution the time average of the left hand 

side of equation (5.2) was expressed as a fraction of 2A2 . This 

fraction was used as a measure of the dominance of the wave modes 

a 11 , a 2z2 and a 2z 3 over the remaining modes. Because 

Rcz
31

_
1 
~ Rcz

2
,

1 
equation (5.2) gives (see for example Phillips [9]) 

an estimate of the energy of a 7 and a 7 , a result that is used 
2&2 2t-3 

later. 

All the numerical solutions were found on a Prime 750 using. 

double precision arithmetic with fourteen significant figures. 

6. NUMERICAL EXAMPLES 

In this section two numerical solutions are given for two 

values ofµ. These two solutions are used to illustrate the 

general properties of all solutions found and also properties that 

apply only to subsets of our solutions with each subset charac-

terized by a unique value ofµ. 

The first example hasp= 1·05, s = ·015, A= .sand K = 22 

givingµ · 319. Eight interface modes and twenty-five surface 

modes with wavenurnbers eleven to thirty-five were required to 

describe the solution fully as outlined in section 5. The inter-

face displacement and surface envelope are given in figures l(a) 

and l(b) for two different time intervals. 



The first general principle as seen from the figures is that 

although the evolution is oscillatory it is not strictly periodic. 

The integration was continued until T = 400 for this example and 

at the end of the integration the solution had not become steady 

or periodic. However because of the oscillatory evolution it 

was found possible to refer to a period of oscillation. This 

was taken to be that of ja
11 

I and was 18 with the maximum arnpli-

1 
tude of ja 11 I being l·l. The corresponding results for s 

22,23 

were 7·5 and ,52, with the fractional value of equation (5.2) 

being · 23. 

Using the result from the linear wave theory that the energy 

of a wave is proportional to the square of its amplitude we have 

the following conclusion. 
1 

The extra modes (compared withs ) 
22,23 

did not increase the rate of change of ja 11 j but they enabled four 

times the amount of energy to be transferred to a
11 

with a corres-

ponding decrease in the average energy of a and a 
2,22 2,23 

This 

increase in interface energy and decrease in surface energy corn-

pared with the three wave mode solution was found to occur in all 

our solutions with the effect, in general, being gre·ater, the 

smaller JJ was. 

The next result to be taken from figures l(a) and l(b) is 

that the wave system, the centre of which is conveniently defined 

by the trough of the interface displacement, moves at a near 

constant velocity 6c relative to the frame of reference moving 

with speed dwAK/dk]J. An estimate of 6C can be made in the 

following way. 

Assuming that the properties of the interface are dominated 

by the lowest interface mode (a 11 ) and that locally in time about 

t = to the magnitude of a 11 does not change, a 11 (t) can be written 

14 
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as 

(t) _ (t ) -iL:ic (t - to) ]J 
a11 -a11 oe 

for a small interval in time about t = to. Substituting into 

the evolution equations (3.2(i)) for this form of a 11 gives 

i::,.c ={-s1::R a *a 
Al, .Q, 1 R, 1 R,+ 1 

The time average of this expression was found to obtain 

!::,.c, which for this example was 0·009 while the value of /::,.C 

from figures l(a), l(b) was 0·010. 

The final result taken from the figures was that peaks in 

the envelope occurred above the region of convergence of the 

interface displacement and that the troughs of the interface 

displacement were narrower than the crests. 

The second example considered was with p 1·05, E: ·006, 

A l·O, K = 11 and ]J = 1·35. 

Two interface modes and ten surface modes with wavenumbers 

seven to sixteen were required to describe the motion. This 

reduction in the number of modes compared with the first example 

follows from the larger value of ]J giving a weaker interaction 

between modes on the two layers. The surface envelope and 

interface displacement are given in figures 2(a) and 2(b) for 

two time intervals. 

Referring to the figures the wave evolution as before was 

oscillatory and not strictly periodic. The graphs have a simpler 

structure than in the first example, a property that follows from 

the smaller number of modes present. The period la 11 I was 



4·6 with a maximum amplitude of 1·35 and the fractional value of 

equation (5.2) was 0·60. For s
1 

the period of !a 11 ! was 
1 l , l 2 

3·5 and maximum amplitude 0·86. Therefore as in the first 

example we have an increase in the amount of energy transferred 

to a 11 compared with the three wave mode solution. However 

because the value ofµ was larger the interaction between waves 

on the two layers was weaker giving a smaller increase in energy. 

Using the method given in the first example, 6C was found to 

be 0·0019 which agrees to the accuracy quoted with that obtained 

from figures 2(a) and 2(b). This improved agreement compared 

with the first example follows from the fact that there are only 

two interface modes with the time average amplitude of a
12 

being 

0·02. Thus the assumption that the lowest interface mode domin-

ates the interface is very realistic in this example. 

7. DISCUSSION 

The method used here of having both the interface and surface 

displacements as unknown functions and allowing an arbitrary 

nlunber of wave modes has enabled us to solve the unsteady wave 

problem (for small amplitude waves) on an open two layer fluid in 

greater generality than in the past. 

We have found that although the analytical solutions with 

three wave modes present are periodic, the solutions when an 

arbitrary number of wave modes are present, are far from being 

periodic. We have also found no evidence that solutions tend 

asymptotically towards a strictly periodic solution. The 

addition of wave modes to complete the description of the motion 

allowed considerably more energy to be transferred to the inter-

face and increased the period of evolution compared with the three 

16 I 
I: 



wave mode solution. It was found in general that these effects 

increased as did the number of wave modes asµ decreased. 

The results on the periodicity contrast with the work of 

Bryant [4] for the one layer case. Bryant found that the analy­

tical solutions with three wave modes present were periodic, and 

increasing the number of wave modes made the solutions only 

slightly non-periodic. 

If the lower layer was assumed to be of finite and not in­

finite depth the analysis would be longer but we would expect 

similar results to those found here. However ifµ was small, 

additional resonances would be possible and the evolution more 

complicated. 

Finally, to illustrate the time scale and the strength of 

the nonlinear interactions considered in this paper the results 

from the first example in section 6 are expressed as dimensioned 

quantities. Initially, two surface waves with wavelengths 45m 

and 47m respectively and each of 0·6m amplitude generate an inter-

face wave with wavelength 905m and amplitude 0·93m. This takes 

1380 seconds corresponding to 250 surface wave periods or 6 inter­

face wave periods. 
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gives 

APPENDIX 

Defining Fk = wk 2 cosh kµ - kµsinh kµ 

R 
Ek,.Q. 

Gk wk 2 
sinh kµ - kµcosh kµ 

+ µkF k (W - W ) [ (k+.Q.) µ 

2wk 2 k+.Q. .Q. wk+.Q. 

+ t Gk (WkH - Wt) [ wk+t :::~ + wt ::J 

+ f w; ::::: 

2 

[w/ [ w/ - wtwk+t + wk+/ - µ:~t~I J 

- (W - W ) µk ( (k+.Q.) µ + W.Q,~J J 
k+.Q. _Q, Wk+.Q. h 

( ( p - 1) F k 
2 

+ wk 
4

) with wk WBk, W ,Q, = WBR. 

Wk+,Q, = WBk+.Q. .. 

19 



20 

R 
· Bk, t 

with 

Although the expressions for RDk,t and ~k,i simplify when the 

explicit forms of the frequencies wk, wt and wk+t are substituted 

the above form was retained to increase the efficiency of the 

program coding for the computer. 



CAPTIONS FOR FIGURES 

FIGURE l(a) 

One wavelength of the surface envelope (upper graph) and 

interface displacement for T = 0 - 9 with p = 1·05, € = 0·015, 

µ = •319 and k = 22. The vertical magnification is 25. 

FIGURE l(b) 

One wavelength of the surface envelope (upper graph) and 

interface displacement for T = 30 - 39 with p = 1·05, s = 0·015, 

µ = ·319 and k = 22. The vertical magnification is 25. 

FIGURE 2 (a) 

One wavelength of the surface envelope (upper graph) and 

interface displacement for T = 0 - 6 with p = l · 05, € = · 006, 

µ = 1•35 and k = 11. The vertical magnification is 25. 

FIGURE 2 (b) 

One wavelength of the surface envelope (upper graph) and 

interface displacement for T = 25 - 31 with p = 1 · 05, € = · 006, 

µ = 1·35 and k = 11. The vertical magnification is 25. 
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Fig.l(b) 
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