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ABSTRACT 
Understanding the injection-seismicity relationship in geothermal reservoirs can provide insight into reservoir connectedness. One 
challenge is that, in real fields, fault and reservoir complexity make it difficult to apply simple analytical models to understand the 
data. Here, we use a machine learning technique called time-series feature engineering to study relationships between aspects of fluid 
injection and microearthquakes in Rotokawa geothermal field, New Zealand. We took four years of injection data between 2012 and 
2016 and sliced it into smaller sub-windows. For each window, the average seismicity in a look-back period was computed, and then 
binary label of 1 was assigned if it exceeded a threshold. Automatic time series feature extraction from the raw and transformed 
injection data in each window was performed using Python package tsfresh. Significant features of the data were identified on the 
basis of distribution discrepancy between the two labels. The results show that the injection rate at some wells is a predictor of long-
term (fortnightly) earthquake rates. At other wells, there is a poor correlation between injection rate and seismicity. We have been 
unable to find any link between rapid changes in injection rate and seismicity spikes, as suggested by some theoretical models. 

1. INTRODUCTION 
Microseismicity is a common phenomenon resulting from hydrothermal fluid circulation in geothermal operations (Giardini, 2009; 
Hopp et al., 2020; Majer et al., 2012). These small earthquakes are generally only detectable by sensitive networks, although 
occasionally felt events can occur. The locations, rates and magnitude frequency statistics of the microearthquakes carry information 
about pressure changes (Dempsey & Suckale, 2016) in a geothermal system and, by extension, its relative connectedness. However, 
this information is often underutilized, as it is difficult to interpret.  

Numerous studies have investigated the mechanisms of induced seismicity and explored links with fluid injection. It is widely 
understood that injected fluids increase pore pressure and decrease the effective stress on critically stressed faults (Healy et al., 1968; 
King Hubbert & Rubey, 1959) and this can promote fault slip that is detectable as earthquakes. If well-located, the seismicity can 
reveal faults that may operate as fluid conduits or baffles in the system.  

Segall and Lu (2015) used analytical and numerical models to explain the reasons for possible post-injection seismicity, and 
highlighted that a poroelastic surge may be the main reason for seismic events shortly after well shut-in. This was supported by the 
findings of Deng et al. (2020) who modelled wastewater disposal at multiple wells near the town of Cushing, Oklahoma and showed 
that poroelastic stress changes can affect the regimes on a preexisting fault where shear slip is promoted or inhibited. In contrast, 
Turuntaev (2018) used a rate-state model to estimate earthquake rates at the Basel geothermal project in Switzerland and showed 
only a small increase after shut-in. Dempsey and Riffault (2019) developed analytical and numerical models of seismicity rate changes 
when injection rates are reduced and found a decline, occasional quiescence, and eventual recovery of the seismicity rate to a new 
equilibrium after a rate reduction.  

These studies suggest the relation between injection and seismicity is complex and that the underlying physics are hard to capture 
fully in current forecasting models. Notably, the prediction accuracy of these analytical models is strongly dependent on the input 
parameters (Eaton & Igonin, 2018), and numerical simulations might have problems with calibration when proper parameters are 
difficult to select. 

Despite recent progress in understanding the mechanisms of induced seismicity, there remain several important questions that need 
to be resolved. Although the operational parameters of fluid injection rate, wellhead pressure, total injection volume, well injection 
location, geological, and geomechanical characteristics are considered important factors affecting induced seismicity rates (He et al., 
2020; Hofmann et al., 2018), precise relationships are usually obscured by large and disorderly data. This is not necessarily a 
shortcoming of monitoring systems, but rather inherent randomness in the locations of earthquake generating fractures and their 
relative stress criticality that predisposes them to failure. All this makes it hard to extract useful information by conventional analytical 
or numerical methods (He et al., 2020).  

Machine learning methods have proven to be a helpful tool for geoscientists in recent years due to their ability to identify obscured 
patterns in data (Holtzman et al., 2018; Wozniakowska & Eaton, 2020). This includes identification and forecasting of earthquakes 
(Corbi et al., 2019; DeVries et al., 2018; Limbeck et al., 2021; Lubbers et al., 2018; Wang et al., 2020; Zhang et al., 2020), 
classification of remote sensing images (Bialas et al., 2016; Frank et al., 2017), identification of changes in faulting processes 
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(Holtzman et al., 2018), and factors controlling induced seismicity (Mehrabifard & Eberhardt, 2021; Wozniakowska & Eaton, 2020). 
However, studies that correlate microseismicity with injection well data using ML-based methods are rarely reported.  

Rotokawa geothermal field is located in the central Taupo Volcanic Zone (TVZ) of New Zealand, a region of active rifting with 
associated volcanism, seismicity and widespread hydrothermal circulation. Natural seismicity in the TVZ usually occurs above depths 
of 6-8 km, which defines the depth of the brittle crust (Bryan et al., 2010). Much of the seismicity occurs in the Taupo Fault Belt, a 
central region of high-density faulting, however swarm activity is noted elsewhere, often associated with calderas (Bannister et al., 
2016; Illsley-Kemp et al., 2021; Webb et al., 2012).Within geothermal fields of the TVZ, natural and anthropogenic seismicity 
associated with reservoir operations has been well documented (Sherburn et al., 2015; Clarke et al., 2009; Hopp et al., 2019; 
Sepulveda et al., 2016; Sherburn et al., 2013). 

The Rotokawa geothermal field has sustained geothermal energy production for more than 20 years (McNamara et al., 2016). Previous 
studies of microseismicity (Hopp et al., 2020; Sherburn et al., 2013) describe localization in a region south of the Waikato River and 
near to some injection wells. In 2010, a factor of four increase in reinjection and corresponding 3.7x increase in microseismicity, 
suggested a close relationship (Sherburn et al., 2013). More recently, Hopp et al.(2020) studied the rate and location of seismicity 
between 2012 and 2016 in the context of injection strategy and found the rate to be insensitive to major changes in well injectivity 
and change of the dominant injector.  

Here, we use a machine learning technique to further study relationships between fluid injection and microearthquakes in the 
Rotokawa geothermal field. We used injection rate data from three wells at Rotokawa between 2012 and 2016, and the catalog of 
microearthquakes from Hopp et al.(2020). We applied systematic time series feature engineering to investigate the relationships 
between long-term and short-term injection rates, and long-term and short-term seismicity rates. We also investigated the sensitivity 
of seismicity rate to the individual injection wells, and the relative importance of different kinds of injection well data (injection rate, 
wellhead pressure, hydraulic energy). Finally, based on the hypothesis of Segall & Lu, (2015), we tested the link between rapid 
change in injection rate and seismicity rate spikes, and found no evidence for this phenomenon. 

2. METHODOLOGY 
The time series feature engineering techniques used in this paper were initially developed for anomaly detection in industrial steel 
casting (Christ et al., 2016). Later, Rouet-Leduc et al. (2018) and Dempsey et al., (2020) introduced the technique to study links 
between seismic tremor signals and slip on subduction zones, and automatic recognition of volcanic eruption at Whakaari, New 
Zealand, respectively. Here, we are exploring whether they may be useful in a geothermal setting. The Python package tsfresh was 
deployed to implement the automatic time series feature extraction and selection on the basis of the FRESH algorithm (Christ et al., 
2016). The result is over 700 extracted features from raw data (e.g., injection rate), which can then be evaluated for statistical 
significance against a label quantity of interest (e.g., seismicity rate). 

2.1 Data Compilation and Preparation 
The raw earthquake data for Rotokawa geothermal field were obtained from Hopp et al., (2020) shared at DOI 
https://doi.org/10.17605/OSF.IO/C2M6U. The catalog data were filtered to retain events shallower than 6 km, near the injection area 
of Rotokawa, and above an estimated magnitude of completeness of 0.5. The hourly injection data (rate and wellhead pressure) for 
selected wells (well #1, #2, #3), from 2012 to 2016, were first processed using data interpolation to fill any gaps. The total injection 
rate was calculated as a sum of these three wells.  

2.2 Time series feature engineering method 
2.2.1 Seismicity label vector calculation 
The label vector is a binary classification metric used to denote whether the future earthquake rate, 𝜆𝜆, is high (1) or low (0). It is 
obtained by the following steps: (a) build a continuous estimate of the earthquake rate averaged over some time period Δ𝑡𝑡𝑖𝑖, which 
provides for different levels of smoothing, 𝜆𝜆(𝑡𝑡,Δ𝑡𝑡𝑖𝑖) = 𝐸𝐸𝐸𝐸𝑠𝑠Δ𝑡𝑡𝑖𝑖/Δ𝑡𝑡𝑖𝑖. The term 𝐸𝐸𝐸𝐸𝑠𝑠Δ𝑡𝑡𝑖𝑖 is the number of events in the time period [𝑡𝑡 −
Δ𝑡𝑡𝑖𝑖 , 𝑡𝑡], with larger Δ𝑡𝑡𝑖𝑖 representing a longer-term earthquake rate, and smaller Δ𝑡𝑡𝑖𝑖 representing a shorter-term earthquake rate. By 
varying Δ𝑡𝑡𝑖𝑖 we can investigate injection features that affect both short and long-term seismicity rates; (b) After computing the average 
earthquake rate 𝜆𝜆, an initial binary classification is computed by comparison against a threshold earthquake rate 𝜆𝜆𝑡𝑡ℎ. If 𝜆𝜆 > 𝜆𝜆𝑡𝑡ℎ, a 
value 𝑌𝑌01 = 1 is assigned, otherwise, 𝑌𝑌01 = 0. The vector 𝑌𝑌01 classifies the instantaneous seismicity as high or low relative to an 
arbitrary threshold. (c) In this study, we are interested in whether seismicity is high or low related to prior aspects of the injection. 
Therefore, we defined a look back time gap 𝛥𝛥𝑡𝑡𝑗𝑗 that defines the periods preceding elevated seismicity, as defined by 𝑌𝑌01. We calculate 
the label vector 𝑌𝑌𝛥𝛥𝑡𝑡𝑗𝑗 for each time gap of 𝛥𝛥𝑡𝑡𝑗𝑗, which is expressed as 𝑌𝑌Δ𝑡𝑡𝑗𝑗 = [𝑌𝑌01�𝑡𝑡𝑖𝑖 − Δ𝑡𝑡𝑗𝑗� == 1]. Thus, the label vector 𝑌𝑌Δ𝑡𝑡𝑗𝑗 classifies 
whether future seismicity (looking forward a distance Δ𝑡𝑡𝑗𝑗) will be elevated. This vector helps us identify the time periods preceding 
earthquake rates of interest, and focuses the search for injection relationships in these periods. Figs.1 and 2 show the seismicity rate 
λ and label vector 𝑌𝑌Δ𝑡𝑡𝑗𝑗 when Δ𝑡𝑡𝑖𝑖=1 week, Δ𝑡𝑡𝑗𝑗=2 weeks, and 𝜆𝜆𝑡𝑡ℎ=70 events per week, which is an arbitrary threshold for illustration 
purposes. 

 

https://doi.org/10.17605/OSF.IO/C2M6U
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Figure 1: Seismicity rate change over time 

 

 

Figure 2: Label vector when seismicity rate threshold 𝝀𝝀𝒕𝒕𝒕𝒕 = 𝟕𝟕𝟕𝟕 events per week. 

2.2.2 Feature matrix extraction and statistical tests 
For each of Well #1, Well #2 and Well #3, automatic time series feature extraction was performed for injection rate (Q), well head 
pressure (WHP), hydraulic energy (defined as 𝑄𝑄 × 𝑊𝑊𝑊𝑊𝑊𝑊 ), and corresponding time derivatives ( 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑  and 
𝑑𝑑(𝑄𝑄 × 𝑊𝑊𝑊𝑊𝑊𝑊)/𝑑𝑑𝑑𝑑). Feature extraction was also performed for 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑑𝑑𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑑𝑑𝑑𝑑. Each of these raw and transformed data streams 
was subdivided into overlapping time windows of length Δ𝑡𝑡𝑤𝑤 = 2 days and with overlapping factor of 0.75. The Python package 
tsfresh was used to calculate 759 different times series features for each time window. Examples of time series features include 
distributional parameters (mean, median, std. dev. of windowed data), measures of autocorrelation (FFT and lag coefficients), 
information (energy, entropy), and parameters of linear and non-linear regressors. For example, for a window containing 𝑛𝑛 samples, 
the feature quantile (n, q) is calculated as the value of 𝑛𝑛 greater than 𝑞𝑞% of the ordered values from 𝑛𝑛 in each time window.  

Statistical tests are used to determine which of the many possible features are relevant to the seismicity periods of interest. For each 
feature, tsfresh evaluates its significance by computing a Mann-Whitney U test that assesses whether the distribution of feature values 
corresponding to label 𝑌𝑌Δ𝑡𝑡𝑗𝑗 = 0 and the distribution corresponding to label 𝑌𝑌Δ𝑡𝑡𝑗𝑗 = 1 have different medians. Each test yields a p-
value, and this allows us to sort features from smallest (most likely to be significant) to largest (least likely).  

Several steps were taken to control for spurious associations in the 𝑝𝑝-value tests. First, to ensure a balanced testing set, we performed 
random undersampling of the windows so that the number of 1 and 0 labels in 𝑌𝑌Δ𝑡𝑡𝑗𝑗 was equal. As this procedure could generate 
multiple possible 𝑝𝑝-values depending on the inherent randomness of the undersampling, we performed it 100 times and took the 
median 𝑝𝑝 -value. Second, when comparing across different values of 𝜆𝜆𝑡𝑡ℎ  or for different wells, we cannot guarantee that the 
undersampled feature sets, although balanced, were of a similar size. Therefore, the undersampled features were further downsampled 
so that they are all contained same numbers of values, corresponding to the minimum size among all undersampled feature sets for 
all values of 𝜆𝜆𝑡𝑡ℎ and different wells.  

3. RESULTS AND DISCUSSION 
There are several ways to qualitatively illustrate and rank the significance of the relationships between injection rate and seismicity. 
Most directly, we can study how 𝑝𝑝-value varies as a function of parameters controlling the injection rate (averaging scale) or the label 
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vector (averaging scale and threshold). For individual features with particularly low 𝑝𝑝-values, we can examine their corresponding 
label-1 and label-0 distributions to understand the degree of overlap. Finally, to obtain a bulk measure of significance for individual 
data streams, e.g. injection rate into Well #3, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 for Well #1, we calculate the sum of the logarithm of all 𝑝𝑝-values. This 
measure aggregates all features together, and is only useful for comparing relative associations.  

We first assessed, at a coarse-scale, associations between injection and seismicity rates when those quantities are calculated for 
different time-scales. For example, we checked whether the daily or fortnightly seismicity rate had a stronger link with injection. This 
is described in Section 3.1. In Section 3.2, we explore the distributions of feature values for total and individual well injection rates. 
In Section 3.3, we analyze injection rates for the different wells to investigate which of these has a closer association with 
microseismicity. Finally, in the Section 3.4, we rank the relative importance of different well data (injection rate, wellhead pressure, 
hydraulic energy) in controlling the level of microseismicity. As the relationship between injection rate reduction and induced 
seismicity remains largely enigmatic, we also explored the evidence of throttling – rapid changes in injection – as a trigger of 
microseismicity, by comparing bulk associations with 𝑄𝑄 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 with the short-term seismicity rate. 

3.1 Seismicity associations with total and individual well injection rates across different time scales 
In this section, we test for an association between long-term (Δ𝑡𝑡𝑖𝑖=20 days) or short-term (Δ𝑡𝑡𝑖𝑖=2 days) seismicity rate with the total 
injection rate, as well as rates into Well #2 and Well #3 wells individually. Injection rate was calculated as the average over different 
periods of length Δ𝑡𝑡𝑞𝑞 which ranged between 2 and 20 days. The seismicity rate was calculated for an averaging period Δ𝑡𝑡𝑖𝑖 between 
2 and 20 days where for each time-scale a threshold, 𝜆𝜆𝑡𝑡ℎ, was used at the 50th percentile. Figure 3 plots log10 𝑝𝑝-value under different 
combinations of Δ𝑡𝑡𝑖𝑖, Δ𝑡𝑡𝑞𝑞, and 𝜆𝜆𝑡𝑡ℎ, taking imbalance and size effects into account by under-sampling and down-sampling. 

Focusing on total injection rate, Fig.3 (a) shows an elevated association (smaller 𝑝𝑝 value) between long-term seismicity and the long-
term total injection rate. Separating individual well contributions shows much stronger associations for both Well #2 and Well #3. 
This association is between long-term seismicity, and the injection rates averaged over all time scales. The reduced association with 
microseismicity measured over periods of only a few days can be explained by relative dominance of aleatoric variability. Short-term 
earthquake rates, by construction, have fewer events from which to infer an underlying seismicity rate. This results in a large degree 
of variability in the day-to-day seismicity rate and this in turn obscures any relationships with the injection. In comparison, by 
averaging over several weeks, we smooth out short-term stochasticity, and an association with the injection rate becomes apparent.  

 

Figure 3: 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 𝒑𝒑-values of Mann-Whitney-U test for seismicity and injection rates averaged under different 𝚫𝚫𝒕𝒕𝒊𝒊 and 𝚫𝚫𝒕𝒕𝒒𝒒 
taking  𝛌𝛌𝐭𝐭𝐭𝐭 at the 50th percentile. 

3.2 Time series feature analysis of total and individual well injection rates 
On the basis of Section 3.1, we decided to investigate the long-term seismicity rate (Δ𝑡𝑡𝑖𝑖 = 20 days) and how it depends on different 
aspects of the short-term injection rate (Δ𝑡𝑡𝑤𝑤 = 2 days). Fig. 4 plots distributions of the median injection rate for all time windows. 
We plot the distributions corresponding to label vectors 1 and 0 separately to emphasize how different injection styles are followed 
later by different levels of microseismicity. Note that the distributions in Fig. 4 have been scaled to emphasize the relative position 
of their centre and spread. 

Fig.4 (a) exhibits the weak association between total injection rate and seismicity as a lack of clear separation between distributions 
for label vectors 1 and 0. In contrast, Fig.4 (b) shows that higher injection rates precede higher rates of microseismicity for injection 
into the Well #2. Finally, Fig.4 (c) shows a negative association for the Well #3 between higher injection rate and high rates of 
microseismicity.  
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These trends reflect a shift in field operation when a portion of reinjection was switched from Well #3 to Well #2 due to an injectivity 
decline in Well #3 (Hopp et al., 2020). At the same time, there was an increase in the seismicity rate, which accounts for the positive 
and negative associations with Well #2 and Well #3, respectively. This indicates that, relationships between injection rate and 
seismicity are potentially sensitive to reservoir operations. The relationships are complex and forecasting seismic response to future 
injection will be neither easy nor completely accurate. 

 

Figure 4: Median injection distributions for (left) total injection rate, as well as (middle) Well #2 and (right) Well #3. 

3.3 Time series feature analysis of injection rate of selected Rotokawa wells 
Sections 3.1 and 3.2 investigated the effect of total injection rate, and the injection rates for Well #2 and Well #3 separately. We can 
use feature analysis and significance metrics to decompose this further and attribute relative effects to the three individual wells. 
Figure 5 plots the summed log 𝑝𝑝-values for seismicity across different time-scales and using features computed only using data from 
each of the three wells. Larger associations between injection and seismicity plot as larger negative numbers. 

The vertical separation between the curves indicate that injection into Well #3 has a much larger association with microseismicity 
than the other two wells when a 50th percentile threshold is used to separate high and low rates. As previously indicated, this is a 
negative association attributed to the shift of injection to Well #2. For 𝜆𝜆𝑡𝑡ℎ = 80th percentile, Well #3 has the stronger association with 
microseismicity, particularly for Δ𝑡𝑡𝑖𝑖 larger than 6 days (i.e., seismicity rates averaged over about a week or longer). In contrast, there 
are no clear associations between Well #1 injection and seismicity. As also described in Section 3.1, there is a reduced association 
for short-term seismicity rates, and this is likely due to inherent randomness when inferring rates from small event counts. 

 

Figure 5: Sum of 𝒍𝒍𝒍𝒍𝒈𝒈𝟏𝟏𝟏𝟏 𝒑𝒑-values for all features under different 𝚫𝚫𝒕𝒕𝒊𝒊 for different wells 



 
Proceedings 43rd New Zealand Geothermal Workshop 

23-25 November 2021 
Wellington, New Zealand 

ISSN 2703-4275 

3.4 Features comparison for different data types 
Having identified Well #3 as one well of interest, in this section, we compare the relative importance of the different data streams 
derived from this well. Following the approach of Section 3.3, we compute the sum of log 𝑝𝑝-values for the different data types and 
compare their values across different earthquake averaging rates.  

3.4.1 Comparison of features of Q and 𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅 at short-time seismicity rates 
Segall and Lu (2015) proposed that rapid cycling of injection rates can induce transient poroelastic stresses in reservoirs that enhance 
earthquake triggering. The seismicity transient is proposed to be short-lived, occurring shortly after the injection rate change. We test 
this hypothesis by looking for overall association between short-term seismicity rate (focusing on averages between 2 and 8 days) 
and the derivative of injection rate, which will have large values for rapid throttling.  

Fig.6 (a) shows that the sum of log 𝑝𝑝-values for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 are much larger than Q, indicating no elevated association with injection rate 
changes. Indeed, this data type appears to be a poorer predictor than 𝑄𝑄 on its own. In summary, we find no clear evidence that well 
shut-in or restarts produces statistically elevated earthquake rates. 

We acknowledge that absence of evidence is not evidence of absence. It may be that the data we have used are not sensitive enough 
to detect a poroelastic transient, particularly given that we had earlier indicated that short-term earthquake rates are contaminated by 
stochasticity. The corollary is that poroelastic transients, if present, are too small to be of concern. It may also be the case that 
Rotokawa is not as poroelastically sensitive as other reservoirs where this mechanism may prevail. 

3.4.2 Feature analysis of Q, WHP and WHP×Q for long-term earthquake rate 
Wellhead pressure can be a good predictor of microseismicity rates, being directly linked with the stability conditions on faults that 
promote earthquake triggering. We computed summed log 𝑝𝑝-values for 𝑊𝑊𝑊𝑊𝑊𝑊 and hydraulic energy (product of pressure and injection 
rate) for Well #3 and compared these to 𝑄𝑄 across similar seismicity rates in Sections 3.1 to 3.3. As shown in Fig.6 (b), we found some 
improved association with WHP and hydraulic energy, but they were not as large as with injection rate alone. Further work is required 
to make full use of wellhead pressure data, particularly as it does not necessarily correlate with downhole pressure conditions if the 
well is not in a liquid condition. 

  

(a) (b) 

Figure 6: Sum of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 𝒑𝒑-values comparison of all features under different rata type of Well #3, (a). under different short-term 
𝚫𝚫𝒕𝒕𝒊𝒊 for 𝑸𝑸 and 𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅, (b). under different long-term 𝚫𝚫𝒕𝒕𝒊𝒊 for 𝑸𝑸, 𝑾𝑾𝑾𝑾𝑾𝑾 and 𝑸𝑸 × 𝑾𝑾𝑾𝑾𝑾𝑾. 

4. CONCLUSION 
We have undertaken a machine-learning study of injection and microseismicity data in the Rotokawa geothermal field. Our goal was 
to infer associations and patterns between the complex injection schedule involving multiple wells and the time-varying seismicity. 
Our main conclusions are summarized as: 

1. There is an observed correlation between long-term total injection and long-term averaged microseismicity rates in the 
field. The short-term earthquake rate is likely dominated by randomness. 

2. In general, larger injection rates into Well #2 are associated with elevated microseismicity. However, it is not clear 
whether this is a reliable relationship or an incidental association between microseismicity and reservoir operations. 

3. Negative and positive associations of Well #3 and Well #2 with microseismicity could reflect underlying connectivity of 
these wells to seismogenic structures in the reservoir.  

4. We find no evidence that rapid injection rate changes trigger elevated seismicity. Further, injection rate data appears to be 
the most informative parameter for microseismicity. 
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Future applications of this work include taking a higher-resolution analysis of individual sectors within the field, and focusing on 
subsections of the injection schedule. The analysis could be improved by further filtering of the data to exclude earthquakes that 
might be associated with the production area. Finally, we still need to test whether there are sufficient associations in the data to 
develop classification models with predictive capability. In the first instance, these could be useful to define injection rates and 
schedules that limit microseismicity to desired levels. Such applications could be useful in other geothermal fields where induced 
seismicity has been of a nuisance magnitude. Most seismicity at Rotokawa is smaller than magnitude 2 and these small events are 
unlikely to be felt outside the immediate vicinity. 
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