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Abstract: To be clinically relevant, mathematical models have to be patient-specific, meaning
that their parameters have to be identified from patient data. To achieve real time monitoring, it
is important to select the best parameter identification method, in terms of speed, efficiency and
reliability. This work presents a comparison of seven parameter identification methods applied
to a lumped-parameter cardiovascular system model. The seven methods are tested using in
silico and experimental reference data. To do so, precise formulae for initial parameter values
first had to be developed. The test results indicate that the trust-region reflective method seems
to be the best method for the present model. This method (and the proportional method) are
able to perform parameter identification in two to three minutes, and will thus benefit cardiac
and vascular monitoring applications.
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1. INTRODUCTION

Mathematical models of the cardiovascular system (CVS)
can be used with clinical data to monitor cardiac and
circulatory state. To be clinically relevant, these models
have to be made patient-specific, which means that their
parameters have to be estimated so that simulations
represent a patient’s individual state.

There exists two main approaches to model the CVS. The
first deals with complex three-dimensional finite element
models, involving millions of degrees of freedom. These
models can be used to gain understanding on local parts
of the CVS. The second modeling approach deals with
lumped-parameter models. These models represent whole
sections of the CVS as single elements (chambers or
resistances, for example) and therefore involve lumped
parameters reflecting the global state of a patient.

Optimising parameters of a pmodel requires a large
amount of model simulations. Because of the time required
to perform a single simulation of a finite-element CVS
model, these models cannot currently be used to perform
cardiac and circulatory monitoring. Lumped-parameter
models, by their simpler nature, can be simulated much
faster, which means that parameter identification can of-
ten be performed in real time.

To achieve real time monitoring using lumped-parameter
CVS models, it is important to select the best parameter
identification method, in terms of speed, efficiency and
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reliability. This work focuses on a particular lumped-
parameter model and investigates seven usual parameter
identification methods.

2. METHODS

2.1 CVS Model
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Fig. 1. Schematic representation of the CVS model.

The lumped-parameter CVS model used is presented in
Fig. 1. It consists of three elastic chambers representing
the left ventricle (lv), the aorta (ao) and one vena cava
(vc). The aorta and the vena cava are described by

Pao(t) = Eao VS,ao(t) (1)

Pvc(t) = Evc VS,vc(t), (2)

where P is pressure, E is elastance and VS is stressed
volume. (Stressed volume is equal to the difference between



actual volume and a constant volume offset, called the
unstressed volume.)

The left ventricle is represented using the description of
Suga et al. (1973):

Plv(t) = Elv e(t) VS,lv(t) (3)

where Elv is the maximum (end-systolic) elastance, and
e(t) is the driver function, which is T -periodic (T being
the cardiac period) and ranges from 0 (end-diastole) to 1
(end-systole).

The three model chambers are linked by vessel resistances
representing the systemic circulation (Rc), the aortic valve
(Ro) and the whole right circulation, from the tricuspid
to the mitral valves (Ri). Flow Qc through the systemic
circulation is described by Ohm’s law:

Qc(t) =
Pao(t)− Pvc(t)

Rc
. (4)

The model assumes that (i) there is flow through the valves
only if the pressure gradient is positive and (ii) that the
flow through an open valve can also be described by Ohm’s
law. Hence,

Qi(t) =


Pvc(t)− Plv(t)

Ri
if Pvc(t) > Plv(t)

0 otherwise

(5)

Qo(t) =


Plv(t)− Pao(t)

Ro
if Plv(t) > Pao(t)

0 otherwise.

(6)

Finally, the continuity equation gives the rate at which the
volume of the chambers change:

V̇S,lv(t) = Qi(t)−Qo(t), (7)

V̇S,ao(t) = Qo(t)−Qc(t), (8)

V̇S,vc(t) = Qc(t)−Qi(t). (9)

Summing the previous equations gives:

V̇S,lv(t) + V̇S,ao(t) + V̇S,vc(t) = 0. (10)

Consequently, the total stressed blood volume contained
in the system is a constant model parameter:

VS,lv(t) + VS,ao(t) + VS,vc(t) = SBV. (11)

Overall, the model counts seven parameters (three elas-
tances Elv, Eao and Evc, three resistances Ri, Ro and Rc

and SBV) and one unknown driver function e(t).

2.2 Available Data

The following data was assumed to be available:

• stroke volume (SV),
• arterial pulse pressure (PPao),
• venous pulse pressure (PPvc),
• mean aortic pressure (MAP),
• mean venous pressure (MVP),
• mean left ventricular volume (MLVV),
• peak first derivative of aortic pressure (dPao/dtmax),

• cardiac period (T ),
• driver function (e(t)),
• onset (tBS) and end (tES) of cardiac systole.

These assumptions are discussed in Section 4.4.

2.3 Initial Parameter Values

Initial parameter values were obtained using the following
approximations, derived in Appendix A:

Elv ≈
MAP + 0.5 PPao

MLVV − 0.5 SV
(12)

Eao ≈
PPao

SV
(13)

Evc ≈
2 PPvc

SV
(14)

Ri ≈
MVP T

2 SV
(15)

Ro ≈

∫ tES

tBS

[
e(t) Ṽh(t) Elv −MAP

]
dt

SV
(16)

with:

Ṽh(t) ≈ MLVV − 0.5 SV
t− tBS

tES − tBS
(17)

Rc =
(MAP−MVP) T

SV
(18)

SBV ≈ MLVV +
MAP

Eao
+

MVP

Evc
. (19)

As can be seen from the equality sign in Equation 18, no
approximation has been used to obtain the value of Rc,
meaning that the value of this parameter can be exactly
retrieved from the selected model outputs. This parameter
was thus not included in the parameter identification
procedure. The remaining parameter vector was

p = (Elv Eao Evc Ri Ro SBV). (20)

2.4 Parameter Identification Methods

Seven parameter identification methods were tested:

• the three gradient-based methods implemented in
the fmincon function of Matlab (2014b, MathWorks,
Natick, MA): active set, sequential quadratic pro-
gramming (SQP) and interior point,

• the trust-region reflective (TRR) method imple-
mented in the lsqnonlin function of Matlab,

• two derivative-free methods: the nonlinear simplex
method of Nelder and Mead (1965) and the direct
search method with random search directions and
random polling (Conn et al. (2009)),

• the proportional method developed by Hann et al.
(2010) for identification of lumped-parameter CVS
models.

Let y be a vector containing the reference measurements

y =

(
PPao PPvc SV MAP MVP MLVV

dPao

dt

∣∣∣∣
max

)
(21)



and ŷ(p), a vector containing the corresponding simulated
values. The relative residual vector r between simulated
and reference values was

ri = 1− ŷi(p)

yi
, for i = 1 to 7. (22)

The goal of the parameter identification process was, by
varying p, to minimise the 1-norm of this vector

‖r‖1 = |r1|+ |r2|+ |r3|+ |r4|+ |r5|+ |r6|+ |r7|. (23)

Matlab was used to solve model equations and perform
the parameter identification procedures. It was run on a
standard laptop computer.

2.5 Test 1: In Silico Reference Data

First, zero-noise, in silico reference data was generated
using the four parameter sets displayed in Table 1. Pa-
rameter sets A and B produce simulations representing
the hemodynamics of a patient with high (A) or low
(B) cardiac contractility Elv. Parameter set C produces
simulations representing the effects of dobutamine (high
contractility Elv and low cardiac period T ). Parameter set
D represents a case with low venous elastance Evc.

Table 1. Reference parameter sets.

Parameter Units A B C D

T s 0.8 0.8 0.5 1.1
Elv mmHg/ml 4.7 1.4 4 2.6
Eao mmHg/ml 1.2 1 3 1.4
Evc mmHg/ml 0.1 0.2 0.2 0.008
Ri mmHg s/ml 0.04 0.05 0.04 0.04
Ro mmHg s/ml 0.2 0.05 0.01 0.02
Rc mmHg s/ml 1.5 1.1 2.7 3.7
SBV ml 400 250 140 600

Let pref be a set of reference parameters and p[n], the
parameter vector obtained at the nth iteration of the
parameter identification process. The relative error vector
e between reference and identified parameters was defined:

ej [n] = 1− pj [n]

prefj

, for j = 1 to 6. (24)

The total relative error between reference and identified
parameters was defined as

‖e‖1 = |e1|+ |e2|+ |e3|+ |e4|+ |e5|+ |e6|. (25)

The parameter identification process was deemed success-
ful if it recovered all of the 6 parameters with a maximum
relative error below 5 %, i.e. |ej | < 0.05 for all j.

2.6 Test 2: Experimental Reference Data

As a second test, experimental animal data was used for
parameter identification. This data came from measure-
ments on three anaesthetised pigs, performed with the
approval of the Ethics Committee of the Medical Faculty
of the University of Liège. The pigs were mechanically ven-
tilated at a positive end-expiratory pressure of 5 cmH2O.
Catheters (Transonic, NY) provided continuous recording
of left ventricular pressure and volume and aortic pressure.
SV, PPao, MAP, MLVV, dPao/dtmax, T , e(t), tBS and tES

were inferred from these measurements. A PiCCO monitor

(Pulsion AG, Germany) provided recording of MVP and
PPvc. Datasets E, F and G correspond to the basal state
of pigs 1, 2 and 3, while dataset H was recorded on pig 3
after dobutamine infusion.

The quality of the parameter estimation was assessed using
only the vector of residuals r, since there is no reference
parameter values in this case.

3. RESULTS

3.1 In Silico Reference Data

Ability to Retrieve the Reference Parameters. Table 2
summarises the outcomes of the parameter identification
procedures carried out using the seven parameter identifi-
cation methods on the four in silico reference datasets. No
parameter identification method was able to retrieve the
reference parameter set C. For this dataset, the propor-
tional method performed the best and reached a total error
on the parameters of 38 %. This error was almost only
concentrated on the valve parameter Ro (35 %), meaning
that the other five parameters were correctly retrieved (see
Equation 25). Despite Ro not being correctly retrieved, the
corresponding sum of residuals was 5 %, meaning that the
valve parameter Ro is practically difficult to identify.

Table 2. Result of the 28 parameter identifica-
tion procedures carried out on in silico refer-
ence data. The letters ’Y’ and ’N’ indicate if
the parameter identification process was able

to retrieve the reference parameter set.

|ej | < 0.05 ∀j Minimum ‖r‖1
A B C D A B C D

Proportional N Y N N 0.08 0.04 0.05 0.82
TRR Y Y N Y 0.00 0.00 0.40 0.00
Interior point N Y N N 0.08 0.00 0.14 0.10
Active set Y Y N N 0.00 0.00 1.59 0.12
SQP Y Y N N 0.00 0.00 0.57 0.22
Simplex N N N N 0.32 0.09 0.57 0.39
Direct search N Y N N 0.80 0.05 0.32 1.24

Convergence Speed and Number of Function Evaluations.
Figure 2 displays the evolution of the total relative

error between reference and identified parameter values
‖e[n]‖1 during the parameter identification process carried
using the reference parameter set A. As can be seen
from this figure, three methods recovered the reference
parameter set: TRR, active set and SQP. The proportional
and interior point methods recovered all parameters with
an error lower than 5 %, except the resistance of the
right circulation Ri. The simplex method only retrieved
parameters Ev and SBV, and the direct search method
failed to retrieve any.

Table 3 displays the time and number of function evalua-
tions taken by the seven parameter identification methods
to solve the four parameter identification problems on in
silico reference data. According to these results, the TRR
and proportional methods were the fastest.

3.2 Experimental Reference Data

Final Residuals Table 4 displays the final ‖r‖1 value
for the seven parameter identification methods tested
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Fig. 2. Total relative error between reference and identi-
fied parameters for the seven parameter identification
methods.

Table 3. Average (± standard deviation) of the
time and number of function evaluations taken
by the seven parameter identification methods
to determine parameters for the four in silico

reference datasets.

Time (s) Evaluations

Proportional 252± 107 97± 28
TRR 192± 59 63± 15
Interior point 1628± 535 652± 84
Active set 1041± 318 385± 123
SQP 995± 445 400± 177
Simplex 1145± 829 421± 171
Direct search 794± 183 374± 128

on the four experimental datasets. Overall, the gradient-
based (active set, SQP, interior point and TRR) methods
were able to find the lowest residuals when applied to
experimental data. The proportional method performed
somewhat worse than the gradient-based methods and the
two derivative-free methods were the worst in finding the
lowest residuals.

Table 4. Minimum norm of the residual vector
for the four parameter identification problems

using experimental data.

Minimum ‖r‖1 E F G H

Proportional 0.04 0.29 2.05 0.03
TRR 0.02 0.23 1.65 0.00
Interior point 0.14 0.65 1.48 0.00
Active set 0.02 0.19 1.44 0.00
SQP 0.02 0.19 1.45 0.00
Simplex 0.42 0.64 2.51 0.00
Direct search 0.69 1.44 2.67 0.75

Convergence Speed and Number of Function Evaluations
Table 5 displays the time and number of function evalu-
ations taken by the seven parameter identification meth-
ods to solve the four parameter identification problems
on experimental reference data. As previously, the two
fastest methods are the proportional and TRR, and the
two slowest methods are the simplex and interior point.

4. DISCUSSION

Seven methods were investigated in this work. These meth-
ods have been chosen because they are frequently applied
to CVS models and/or because they are part of the widely

Table 5. Average (± standard deviation) of
the time and number of function evaluations
taken by the seven parameter identification
methods to determine parameters for the four

experimental datasets.

Time (s) Evaluations

Proportional 167± 52 82± 19
TRR 183± 54 79± 21
Interior point 2127± 1373 1101± 736
Active set 860± 198 424± 105
SQP 1080± 171 521± 49
Simplex 2446± 1124 874± 345
Direct search 1172± 840 314± 29

used software Matlab. The seven methods investigated
encompass the two main classes of identification methods,
namely gradient-based and derivative-free methods. Five
of these methods work on the norm of the residual vector,
while two work on the residual vector as a whole.

The proportional method of Hann et al. (2010) is not
always able to retrieve the parameters used to generate in
silico reference data. It sometimes stops without having
reached low residuals. However, it is one of the two fastest
methods (with the TRR method), which is related to the
a priori information required by this algorithm.

The TRR method was the most effective when applied to
in silico reference data. It also performed quite well on
experimental data. As mentioned previously, it is one of
the two fastest methods (with the proportional method).
Interestingly, these fastest methods are the two methods
working on the error vector rather than on its norm.
The good performance of the TRR method indicates that
the objective function is smooth, since the TRR method
approximates it with a quadratic function.

The interior point method reached average performance,
both when retrieving reference parameter values and when
minimizing the residuals between simulations and exper-
imental reference data. This average performance is not
compensated by speed, since this method is one of the
two slowest (with the simplex method). The interior point
method is known to perform worse than other gradient-
based methods.

The active set and SQP methods, based on similar prin-
ciples, achieved very similar results. They retrieved the
reference parameters in half the cases. When applied to
experimental data, they were the most efficient, since they
achieved the lowest residuals. These methods have an
average speed, taking approximately 15 minutes to run.

The simplex method did not retrieve any of the reference
parameter sets and stopped with high residuals. It is
also very time-consuming, taking 40 minutes in average
when applied to experimental data. These drawbacks are
inherent to the fact that this method is derivative-free.

The other derivative-free method, the direct search me-
thod, was not reliable with in silico reference data, and
reached the highest residuals when applied to experimental
data. Its speed was average.



4.1 Comment on Structural Identifiability

A model is structurally identifiable if and only if the
residuals between reference and simulated values vanish
for one and only one value of the parameters (Walter and
Pronzato (1997)). This behaviour is present in Table 2,
since the residuals ‖r‖1 are close to zero if and only
if the correct parameters are retrieved. This observation
tends to indicate that the model is structurally identifiable.
However, an exhaustive demonstration using this approach
would require a test of an infinite number of parameter
combinations.

4.2 Limitations

The results discussed in this study only apply to the
CVS model presented in Figure 1. If a different model is
investigated, the analysis should be repeated. To do so, the
methodology can easily be transposed to another model.

The very simple CVS model used in this study represents
an approximation of the reality. Such simplifications are
necessary to ensure identifiability of all the model param-
eters. The mismatch between the model and the reality has
only a small effect when using the model for monitoring
cardiac and vascular state. However, predicting the effects
of treatment will potentially cause larger errors because of
unmodelled dynamics (for instance, nervous reflexes).

4.3 Preciseness of the Initial Values

To evaluate the quality of Equations 12 to 19 used to
compute the initial parameter values, the initial total
relative error ‖e[1]‖1 between reference and identified
parameters was assessed. Its value ranges from 133 to
1576 % (for parameter set C). Interestingly, the largest
errors were again related to the valve parameters. If these
errors are not considered, the total initial error on the four
remaining parameters (Elv, Eao, Evc and SBV) ranges
from 35 to 136 %, indicating the good preciseness of
Equations 12, 13, 14 and 19.

4.4 Availability of the Experimental Data

First, SV can clinically be obtained using the thermodilu-
tion or echocardiography techniques. Pironet et al. (2014)
recently proved it to be a necessary measurement for iden-
tification of lumped-parameter CVS models. This mea-
surement thus had to be included in the available data.

Second, MLVV can be approximated as the mean of
left ventricular end-diastolic (LVEDV) and end-systolic
(LVESV) volumes:

MLVV ≈ 0.5 LVEDV + 0.5 LVESV.
= LVEDV − 0.5 SV.

(26)

Pironet et al. (2015) showed that LVEDV could be de-
rived from the measurement of global end-diastolic vol-
ume provided by cardiovascular monitoring devices using
thermodilution procedures. MLVV is intuitively needed for
practical identification of the heart elastance Elv. Oth-
erwise, there is no way of knowing the location of the
pressure-volume loop on the volume axis, hence making
Elv undetermined.

Third, systemic arterial pressure can be obtained using an
arterial line. This measurement allows the computation
of PPao, MAP, dPao/dtmax, T , tBS and tES , which are
needed for parameter identification.

Fourth, central venous pressure is provided by a central
venous line. Its mean (MVP) and amplitude (PPvc) can
then easily be obtained.

Finally, practical determination of the driver function re-
quires simultaneous measurements of left and right ven-
tricular pressures and volumes at different afterload levels.
These measurements are not generally made in a clinical
setting. However, Senzaki et al. (1996) found that the
driver function was relatively similar for any human heart.
This makes a priori generic driver functions a sensible
assumption for any individual.

5. CONCLUSION

This work presented the comparison of seven parameter
identification methods applied to a lumped-parameter
CVS model. The seven methods were tested using in
silico and experimental reference data and assessed on
their speed and ability to decrease the residuals between
simulations and measurements.

The TRR method seems to be the best method to rec-
ommend for the present model. Other methods that per-
formed well are the SQP and active set, two other gradient-
based methods, and the proportional method, a method
that was specifically designed for the identification of
lumped-parameter CVS models.

In order to test these parameter identification methods,
initial parameter values had to be provided. Precise for-
mulae were developed to achieve this goal, thereby pro-
viding the ability to speed up the parameter identification
process.

Overall, this work confirmed that parameter identification
in lumped-parameter CVS models can be performed in
two to three minutes. Such models offer a large interest
for cardiac and vascular monitoring applications.
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Appendix A. DERIVATION OF THE INITIAL
PARAMETER VALUES

A.1 Left Ventricular End-Systolic Elastance Elv

At end-systole (t = tES), Equation 3 reads

Plv(tES) = Elv VS,lv(tES)⇔ Elv =
Plv(tES)

VS,lv(tES)
(A.1)

Assuming end-systolic cardiac pressure to be equal to
systolic arterial pressure gives

Elv ≈
MAP + 0.5 PPao

VS,lv(tES)
. (A.2)

Knowing that end-systolic cardiac volume VS,lv(tES) is
equal to minimum cardiac volume yields Equation 12.

A.2 Arterial Elastance Eao

By definition, elastance is the change in pressure caused
by a change in volume. Assuming that all SV contributes
to the increase in aortic pressure during systole yields
Equation 13. This assumption underestimates Eao since
some fraction of the SV actually flows through the arteries
without causing an increase in pressure.

A.3 Venous Elastance Evc

Equation 9 during systole (Qi = 0) reads

V̇S,vc(t) = Qc(t). (A.3)

Flow through the capillaries is assumed to be constant and
equal to its mean value i.e. cardiac output, equal to SV/T

V̇S,vc(t) ≈
SV

T
. (A.4)

Integrating this equation from beginning (tBS) to end
(tES) of systole gives

VS,vc(tES)− VS,vc(tBS) ≈ SV

T
(tES − tBS). (A.5)

Multiplying both sides by Evc and using Equation 2 gives

Pvc(tES)− Pvc(tBS) ≈ Evc
SV

T
(tES − tBS). (A.6)

Finally, assuming Pvc(tES)− Pvc(tBS) = PPvc and tES −
tBS = T/2, one obtains Equation 14.

A.4 Resistance of the Right Circulation Ri

The combination of Equations 5 and 7 during diastole
(Qo = 0) gives

V̇S,lv(t) =
Pvc(t)− Plv(t)

Ri
. (A.7)

Assuming Pvc(t) ≈ MVP and Plv(t) ≈ 0 gives

V̇S,lv(t) ≈ MVP

Ri
. (A.8)

Integrating this equation from beginning (tBD) to end
(tED) of diastole gives

VS,lv(tED)− VS,lv(tBD) ≈ MVP

Ri
(tED − tBD). (A.9)

Finally, knowing that VS,lv(tED) − VS,lv(tBD) = SV by
definition of SV and assuming tED − tBD = T/2, one
obtains Equation 15.

A.5 Output Valve Resistance Ro

Assuming that cardiac stressed volume VS,lv(t) ranges
from MLVV + 0.5 SV to MLVV − 0.5 SV during systole
allows to build a linear approximation of VS,lv(t) as

ṼS,lv(t) ≈ MLVV − 0.5 SV
t− tBS

tES − tBS
. (A.10)

Using this approximation and Equation 3 gives

Plv(t) ≈ Elv e(t) ṼS,lv(t). (A.11)

Equation 6 during systole reads

Qo(t) =
Plv(t)− Pao(t)

Ro
. (A.12)

Using the approximation for Plv(t) and assuming that
Pao(t) = MAP, one gets:

Qo(t) =
Elv e(t) ṼS,lv(t)−MAP

Ro
. (A.13)

Finally, integrating this equation during systole (from tBS

to tBD) gives Equation 16, knowing that the integral of
Qo is equal to SV.

A.6 Capillary Resistance Rc

The integral of Equation 4 over one cardiac cycle directly
yields Equation 18.

A.7 Total Stressed Blood Volume SBV

Equation 11 is averaged on one cardiac cycle, giving

V̄S,lv + V̄S,ao + V̄S,vc = SBV. (A.14)

Then, Equations 1 and 2 are also averaged, yielding

V̄S,lv +
P̄ao

Eao
+

P̄vc

Evc
= SBV. (A.15)

Substituting MLVV for V̄S,lv, MAP for P̄ao and MVP for
P̄vc results in Equation 19.


