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Abstract

The reconstruction of a binary image from undersampled Fourier amplitude data is considered. Binary,
connectivity, and compactness constraints are discussed and shown to be sufficient to enforce a unique
solution. An iterative projection algorithm is described for a realistic crystallographic application.
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1 Introduction

Phase retrieval is concerned with reconstructing
an image from measurements of the amplitude,
but not the phase, of its Fourier transform [1].
A common application is reconstruction of an ob-
ject from incoherent measurements of its diffracted
wavefield. Applications include astronomy, radar,
and microwave, electron, and x-ray imaging. If the
Fourier amplitude data are fully sampled, an image
space support can be imposed, and the image can
be reconstructed. However, if that is not possible
then other a priori information must be incorpo-
rated in order to reconstruct the image. Combining
the a priori information with the data is a diffi-
cult problem, but a class of algorithms known as
Iterative Projection Algorithms (IPAs) have been
shown to be effective in many cases [2, 3]. These
algorithms use projection operators that involve
making the minimum change to an estimate of
the image to satisfy a constraint. The algorithms
involve iteratively combining projections in various
ways using the measured Fourier amplitude con-
straint and additional image constraints. If the
algorithm converges such that the image estimate
satisfies all the constraints, then a suitable solution
has been found.

We are consider here the image reconstruction prob-
lem in protein x-ray crystallography, in which it
is required to reconstruct the electron density of
a large molecule from measurements of the ampli-
tudes of x-rays diffracted by a crystalline (periodic)
specimen [1, 4]. The diffraction pattern is directly
related to the Fourier transform of the electron
density of the molecule, and the 2D diffraction
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patterns from various rotations of the crystal can
be combined to form the 3D Fourier transform of
the molecule. One period of the crystal called the
unit cell. The crystalline nature of the specimen
leads to constructive interference of the diffraction
pattern at spatial frequencies which are multiples
of the reciprocal of the unit cell dimensions, and
destructive interference everwhere else. The con-
structive interference improves the signal to noise
ratio, but the destructive interference makes it im-
possible to sample the Fourier data at greater than
the Nyquist rate. This severely limits the appli-
cation of the usual phase retrieval IPAs that de-
pend critically on oversampled diffraction ampli-
tudes and the corresponding image domain sup-
port constraint. Since the Fourier domain samples
are at the Nyquist rate, but only the amplitude
data (but not the phase) is available, additional
information is needed to reconstruct the image.

In protein crystallography additional information
is usually obtained by collecting additional experi-
mental data that are used to calculate initial phase
estimates [1, 4]. Protein molecules are compact
structures and it is often useful as a preliminary
step to determine the boundary, or molecular en-
velope, of the protein molecule. Here we address
the problem of determining the molecular envelope
from crystal x-ray diffraction amplitudes. We have
recently reported on characteristics and algorithms
for this problem and conducted 2D simulations [5,
6]. Here we review these results and then consider
some practical considerations related to scaling of
the data and present some 3D results.

The protein molecules in a crystal are surrounded
by solvent. If diffraction measurements are made
from crystals with at least three solvents with dif-
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ferent electron densities, then the amplitudes that
would be diffracted by the molecular envelope (a
function equal to unity in the protein region and
zero elsewhere) can be calculated. This is called
the solvent contrast method [7]. We assume that
such an experiment has been conducted and the
data processed to provide the Fourier amplitudes
of the molecular envelope. The problem is to recon-
struct the molecular envelope using these derived
diffraction amplitudes.

The constraints used in this problem are described
in Section 2 and uniqueness of the solution is dis-
cussed in Section 3. Reconstruction methods fol-
low in Section 4, and simulation results are pre-
sented in Section 5 with concluding remarks made
in Section 6.

2 Constraints

Four basic constraints are used: (1) The Fourier
amplitude (data) constraint, (2) the binary con-
straint and (3) a connectivity constraint.

2.1 Fourier Amplitude Constraint

The Fourier amplitude constraint represents satis-
faction of the Fourier amplitude data. The image
is defined on a grid of N pixels in image space. The
Fourier amplitude data are the DFT of the image
and exist on an N -point grid in Fourier space.
The image and its Fourier transform are repre-
sented as a point in the N -dimensional Euclid-
ean space RN . The x-ray amplitudes cannot be
measured at low resolution close to the origin of
Fourier space. Diffraction data are also measured
out to a maximum isotropic resolution. Therefore,
the Fourier amplitude constraint applies within a
circular (spherical) shell, and we denote the set of
measured data points by Q. The number of data
is m = |Q|, but as a result of Hermitian symmetry,
the number of independent data is m/2. For typ-
ical macromolecular envelope data, the measured
resolutions are between about 40Å to 7Å, and we
will use these values in the simulations. Most of
the information on a connected binary image is
contained in the low resolution data, so loss of
low resolution data is more harmful than is loss
of the higher resolution data when reconstructing
molecular envelopes.

Take z to be the binary envelope function equal to
1 inside the protein and 0 elsewhere, and Z = F [z]
to be the DFT of z. The measured Fourier ampli-
tude data M correspond to the DFT of a general
two-valued function. The two-valued function can
be transformed to a binary function with a scale
factor s and an offset d.

The appropriately processed data M are then re-
lated to the envelope function z by

z = sF−1[Meiφ(Z)] + d, (1)

where F−1[·] denotes the inverse Fourier transform,
φ(Z) denotes the phase of Z, and i =

√−1.

The data Mj are therefore related to |Z| by

|Zj | =

{
sMj if j �= 0
sMj + d if j = 0,

(2)

where j = 0 denotes the zero spatial frequency
term. Since the origin term cannot be measured
the unknown offset d is of no significance.

The Fourier amplitude constraint set, denoted A,
is therefore defined by

A = {x : |Xj | = |Zj | = sMj , j ∈ Q}, (3)

where |Xj | are the amplitudes of the Fourier trans-
form of x.

2.2 Binary and fill fraction constraint

The image (molecular envelope) is a binary func-
tion, and the binary constraint set B is defined by

B = {x : xj ∈ (0, 1) , j = 1, 2, ..., N}. (4)

The fraction of the unit cell filled by the molecule
can be easily estimated experimentally. We there-
fore consider an additional constraint on a binary
image that we call the fill fraction constraint, that
restricts the number of 1-pixels in the image to a
fixed fraction f of the total number of pixels. This
constraint set F is therefore defined by

F =

⎧⎨
⎩x ∈ B :

N∑
j=1

xj = fN

⎫⎬
⎭ . (5)

Since the zero frequency term is not measured in
Q, there will not be any inconsistency between the
amplitude data constraint at j = 0 and the fill
fraction constraint.

The binary constraint consists of the corners of a
hypercube in RN . The fill fraction constraint is an
(N −1)-dimensional hyperplane that is orthogonal
to the (1,1,..,1) axis. Fig. 1 shows the binary and
fill fraction constraint for a 3 pixel image.

2.3 Connectivity constraint

Protein molecules are connected since they are held
together by chemical bonds and non-bonding inter-
actions. We can therefore apply a “connectivity
constraint” to the image [6], which aims to en-
sure that there are neither disconnected objects
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Figure 1: Binary and fill fraction constraints for N = 3.

The binary constraints includes the points marked

by the four symbols. The binary and fill fraction

constraints are the points marked by the symbols

©(fN = 0), �(fN = 1), �(fN = 2) and �(fN = 3).

nor “holes” in the envelope. We call these the con-
nected and simply connected constraints respec-
tively. We define an object to be a set of 1-pixels
in which every 1-pixel is connected to every other
1-pixel in the set through a path of pixel neigh-
bourhoods.

The connectivity constraint is expected to help com-
pensate for the loss of the low resolution Fourier
amplitude data, since an incorrect low resolution
magnitude is likely to lead to disconnected images.

2.4 Symmetry

Crystals usually have a known symmetry in which
the electron density at each point in a crystal is
equal to that at a set of symmetry related points.
This is referred to as crystallographic or space group
symmetry. Crystallographic symmetry translates
to restrictions on, and relationships between, the
amplitude and phases of the complex Fourier am-
plitudes. The presence of crystallographic symme-
try does not provide any additional information in
the Fourier amplitudes.

The combined binary and connectivity image space
constraint set is denoted I.

3 Uniqueness

In any image reconstruction problem, it is impor-
tant to consider whether the data and constraints
are sufficient to uniquely define the image. We
have shown previously that a binary image is ex-
pected to be uniquely defined by the undersampled
Fourier amplitude data described above [6]. Loss
of the low resolution data is expected to be trouble-
some, but the connectivity constraint is expected
to ease this problem.

The Fourier amplitude and binary connectivity con-
straints alone still leave some unresolved ambigu-
ities [6]. Most of these are of little significance
except the ambiguity between the image f(m, n)
and its negative −f(m, n). Let the negative of the
binary image of x be denoted y, i.e.

y = 1 − x. (6)

As a result of the periodic boundary conditions,
if x is simply connected y will be connected and
vice versa. Furthermore, it is easily seen that the
amplitude data for y, |Yj |, are

|Yj | =

{|Xj | if j �= 0(
1−f

f

)
|X0| if j = 0,

(7)

where f is the fill fraction of x. Note also that
f(y) = 1 − f(x) where f(x) denotes the fill frac-
tion of image x. Therefore, since |X0| is not mea-
sured, the only constraint which can differentiate
an image from its negative is the fill fraction f .
Therefore, referring to Eq. 7, if f = 0.5, we cannot
differentiate an image from its negative. Difficul-
ties are therefore expected if f is close to 0.5.

An additional consideration is that for fill fractions
close to 0.5 the total number of binary images,
equal to NCfN , is a maximum for f = 0.5. The
size of the constraint set that a reconstruction al-
gorithm has to explore is therefore a maximum for
f = 0.5.

4 Reconstruction algorithm

Once established that a unique solution exists, it
only remains to find the solution. IPAs have proven
to be useful for solving phase retrieval problems,
and so are used here. An IPA is an algorithm
that aims to find the intersection between two con-
straint sets by mean of operations called projec-
tions. The projection of a point x ∈ RN onto a set
A ⊂ RN , denoted PAx, is the point in A that is
closest (in terms of Euclidean distance) to x, i.e.

PAx = argmin
x′∈A

‖x′ − x‖. (8)

The simplest, and most intuitively obvious IPA,
often referred to as the Error Reduction (ER) al-
gorithm, is defined by the iteration

xn+1 = PIPAxn. (9)

If both constraint sets are convex, the ER algo-
rithm converges to a solution in the intersection.
However, if one of the constraints is not convex, as
is often the case, the ER algorithm can stagnate at
a non-intersection.
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A number of different projection algorithms have
been developed that can, with varying degrees of
success, avoid stagnation [3]. Here we use the Dif-
ference Map (DM) algorithm which is defined by
the iteration [2]

xn+1 = xn + β[PA((1 + 1/β)PIxn + (1/β)xn)
−PI((1 − 1/β)PAxn − (1/β)xn)], (10)

where β �= 0 is a parameter usually set such that
0.7 ≤ |β| ≤ 1. The DM algorithm has the desir-
able property that it does not stagnate at a near-
intersection, but moves towards, and then away
from, a point closest to both constraint sets, and
continues to explore the parameter space. It is
therefore quite effective at avoiding stagnation. The
iterates x do not necessarily fall in the solution
space, so that a projection, usually onto the more
restrictive set, must be made to obtain the final
solution. The Fourier and image space projections
are described below.

4.1 Fourier amplitude projection

The Fourier amplitude projection PA is

PAx = F−1[P̃AF [x]], (11)

where P̃A is the corresponding projection in Fourier
space, i.e.

P̃AXj =

{
sMjexp(iφ(Xj)) if j ∈ Q

Xj if /∈ Q.
(12)

Due to the loss of low (and high) resolution ampli-
tudes, it is not possible to calculate the scale factor
s directly. The scale factor was therefore estimated
by placing an ellipsoid in each of the asymmetric
units (symmetry related regions in the unit cell)
as a rough model of the molecule, with the size of
the ellipsoids chosen to ensure that the overall fill
fraction is correct. Then the estimate ŝ of s is then
given by

ŝ =

√∑
j∈Q′ |Wj |2∑
j∈Q′ |Mj |2 , (13)

where Q′ is the set of structure factors within a
spherical shell in Fourier space, and Wj are the
Fourier magnitudes of the ellipsoid model. Fig-
ure. 2 shows a plot of the square root of total
energy in Q′ (

√∑
j∈Q′ |Xj|2) as a function of the

low resolution limit of Q′ with the maximum res-
olution set at 7Å for an actual molecular envelope
(see Section 5) and the ellipsoid model. This plot
indicates that the ellipsoid model is a reasonable
model of the envelope in terms of the summed
Fourier intensities, for minimum resolutions less
that 25Å. We therefore used for Q′ a spherical
shell between 25Å and 7Å resolution.
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Figure 2: Square root of the energy in Q′ as a function

of the lowest resolution.

4.2 Image space projection

We combine the binary and fill fraction constraints
and the projection onto the intersection of these
two sets, denoted PBF , is given by

PBF xj =

{
0 xj /∈ S(f)
1 xj ∈ S(f),

(14)

where S(f) is the set of the fN largest values of
x.

A rigorous projection onto the set of connected im-
ages would result in a tenuous as opposed to a com-
pact image [6]. A suitable approximate projection
is to retain objects larger than a threshold size, de-
noted l, and remove the remaining objects [6]. This
projection encourages connectivity and compact-
ness. The connectivity projection, denoted PC , is
then defined by [6]

PCxj =

{
1 if j ∈ L(l)
0 if j /∈ L(l),

(15)

where L(l) denotes the set of pixels that belong
to objects with more than l pixels. Defining the
threshold by l = αCfN , with the constant αC �
0.1, was found to be effective. Since the image is
compact and connected, the maximally restrictive
4-pixel (2D) or 6-pixel (3D) neighbourhood is used.
Because the other constraints cannot distinguish
between circularly shifted versions of each image,
the neighbourhoods also wrap around the edges of
the unit cell for consistency.

The simply connected projection, denoted PSC , is
implemented as

PSCx = 1 − PC(1 − x), (16)

where we set l = αSC(1 − f)N , and here we have
used αSC = αC .
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In principle, the required crystallographic symme-
try, if applied initially, will be exactly retained
as the iterations proceed. However, in practice
this may drift due to rounding errors. Therefore,
the correct crystallographic symmetry is retained
by applying the appropriate relationships to the
Fourier amplitudes and phases at each iteration.

The full image space projection, denoted PI , is
then given by

PIx = PSCPCPBF x. (17)

This projection tends to be enforce connectivity
and compactness, and as the algorithm proceeds,
the image eventually becomes a single object.

If f is exactly equal to 0.5, there will be a unique-
ness problem as described above, and the algo-
rithm can converge to the negative of the solution.
Nevertheless there is still convergence, and it will
generally be evident that the negative of the enve-
lope has been obtained. However, if f is close to
but not equal to 0.5, the iterates can be held in
the bowl of attraction created by the constraints,
but be unable to converge due to the fill fraction
constraint, thus slowing convergence. This effect
was found to be significant in some cases and was
overcome by a modification to the algorithm as
follows. Every p iterations the image is inverted
and the algorithm continued for q iterations us-
ing both images, after which the image with the
smallest Fourier amplitude error is selected and
the algorithm continued. The values p = 300 and
q = 50 iterations were found to be suitable.

5 Results

The DM algorithm was implemented using the pro-
jections PA and PI as described above. The al-
gorithm was tested by simulation on a molecular
envelope derived from a solved protein structure
taken from the Protein Data Bank (PDB). The
protein used was the Alkaline protease from P.
aeruginosa [8]. The crystal lattice is orthogonal
(orthorhombic) with unit cell dimensions 77.2 ×
176.7 × 51.1Å. There are four molecules in each
unit cell related by crystallographic symmetry (sp-
ace group P212121). The molecular envelope was
derived using standard methods [9] with an aver-
aging radius of 8Å. The fill fraction is f � 0.35.
The envelope was represented on an 18 × 40 × 12
sampling grid which gives a grid spacing of 4.3Å
and approximately 9×103 degrees of freedom. The
scale factor was set at 0.01, and when estimated as
described gave a value of about 0.0095, depending
on the noise. The envelope within the unit cell is
shown in Fig. 3(a) where the four molecules are
represented by different grey levels for clarity. The
elliptic model used to calculate the scale factor is

shown in Fig. 3(b). The Fourier magnitudes were
calculated by the DFT, the scale factor estimated
and applied, 2% Gaussian noise added, and the
magnitude data retained within a resolution shell
between 40 and 7Å. The algorithm was started
with a random binary image with the correct fill
fraction.

(a) Original envelope

(b) Elliptic model

(c) Reconstructed envelope

Figure 3: Initial, actual, and reconstructed protein

envelopes.

The DM algorithm with β = 0.9 was run for 5 ×
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105 iterations. The normalized rms error between
the measured Mj and reconstructed |Xj |/s Fourier
magnitudes was calculated at each iteration to mon-
itor convergence. The DM algorithm tended to
wander around the solution space before converg-
ing quickly to the solution, and then moving away
again, since there was no true intersection due to
the noise. The solution with the smallest rms error
was used to calculate the solution by applying the
constraint PI . The Fourier space and image space
normalized errors were approximately 13%. The
reconstructed envelope is shown in Fig. 3(c) and
is seen to be a quite faithful representation of the
true envelope.

6 Conclusions

Reconstruction of a compact binary image from
limited Fourier amplitude data is expected to have
a unique solution. An iterative projection algo-
rithm is developed to reconstruct the molecular
envelope of a protein from undersampled Fourier
amplitude data of the envelope. The amplitude
data in the Fourier domain are used as a constraint,
and the binary, fill fraction, and connectivity con-
straints are combined to form an appropriate im-
age domain projection operator. The algorithm is
shown to be effective for synthetic data using a real
protein envelope and a realistic noise level.
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