
ar
X

iv
:1

70
9.

05
73

4v
1 

 [
m

at
h.

N
T

] 
 1

8 
Se

p 
20

17

MAPS BETWEEN CURVES AND ARITHMETIC OBSTRUCTIONS

ANDREW V. SUTHERLAND AND JOSÉ FELIPE VOLOCH

Abstract. Let X and Y be curves over a finite field. In this article we explore methods
to determine whether there is a rational map from Y to X by considering L-functions of
certain covers of X and Y and propose a specific family of covers to address the special case
of determining when X and Y are isomorphic. We also discuss an application to factoring
polynomials over finite fields.

1. Introduction

Given two algebraic curves X, Y of genus at least two over a finite field we would like to
decide if there is a rational map from Y to X . Hess and Möhlmann [5, 10] have given an
algorithm to decide if such a map exists by performing an optimised search for the map up to
a known bound; if the search is unsuccessful then no such map exists. This procedure works
well when the map exists, but it may be very time consuming when it does not. The purpose
of this paper is to provide a way of deciding when there is no such map without performing
an exhaustive search. We concentrate on the case of isomorphisms but briefly touch on the
general case. Our methods can also provide a short certificate of the non-existence of a
rational map, a feature not available with existing algorithms.

A result of Poonen [11] extending an idea of Kayal shows that, given a one-parameter
family of curves over a finite field with distinct L-polynomials for distinct values of the
parameter and a suitable bound on the genus, one can construct a deterministic polynomial
time algorithm for factoring polynomials over that field. Our investigations suggest some
candidate families of such curves, but unfortunately we cannot prove that they work.

2. The fundamental group

Let X/K be a smooth geometrically connected variety over a field K. Let GK be the
absolute Galois group of K and X̄ the base-change of X to an algebraic closure of K. We
denote by π1(.) the algebraic fundamental group functor on (geometrically pointed) schemes
and we omit base-points from the notation. We have the fundamental exact sequence

(2.1) 1 → π1(X̄) → π1(X) → GK → 1.

The map pX : π1(X) → GK from the above sequence is obtained by functoriality from the
structural morphism X → SpecK. Grothendieck’s anabelian program is to specify a class
of varieties, termed anabelian, for which the varieties and morphisms between them can
be recovered from the corresponding fundamental groups together with the corresponding
maps pX when the ground field is finitely generated over Q. There has been some work done
over finite fields as well, although the anabelian program will not work in the same way (the
analogue of the section conjecture is false, for example).

For the rest of the paper we restrict to the case where K is a finite field. As usual, Fq is
the field of q elements and we denote by p its characteristic. Here is a positive result.
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Theorem 2.1. (Mochizuki–Tamagawa) Let X, Y be smooth projective curves of genus at
least two over a finite field Fq. If there is an isomorphism from π1(X) to π1(Y ) inducing the
identity on GFq

via pX , pY , then X is isomorphic to Y .

The fundamental group is a mysterious object. What kind of information can we extract
from it? First of all, if JX denotes the Jacobian of a curve X we have the fundamental exact
sequence (2.1) for JX also, and π1(J̄X) is the abelianisation of π1(X̄); thus the prime-to-p
part of π1(J̄X) is the product of the Tate modules of JX . The fundamental exact sequence
describes the Galois action on the Tate module, so its description is equivalent to the L-
function of X , which we can compute by counting points on X (over suitable extensions
of Fq). But by the very nature of the fundamental group, we can count points on covers as
well. Since knowing JX alone up to isogeny is not enough to recover X , we need to pass to
covers. According to J. Stix (personal communication) the proof of Theorem 2.1 requires
only solvable covers. The most natural covers come from the Hilbert class field tower. Let
Fr : JX → JX denote the Fq-Frobenius map. Define H(X) := (I − Fr)∗(X) ⊂ JX ; it is an
unramified abelian cover of X with Galois group JX(Fq), well defined up to a twist that
corresponds to a choice of divisor of degree one embedding X into JX . Define H0(X) := X ,
H1(X) := H(X) and successively define Hn+1(X) := Hn(H(X)) for integers n ≥ 1. These
covers can be computed from π1(X) but are perhaps more computationally accessible.

Conjecture 2.2. Let X, Y be smooth projective curves of genus at least two over a finite
field Fq. If, for each n, there are choices of twists such that the L-function of Hn(X) is equal
to the L-function of Hn(Y ) for all n ≥ 0, then X is isomorphic to Y .

There are exactly 8 curves for which H(X) = X , equivalently, curves whose function fields
have class number one [14,8]. We have verified that Conjecture 2.2 holds when X and Y are
among this list of 8 curves, and it therefore holds if either H(X) = X or H(Y ) = Y . We
may thus assume henceforth that X and Y have non-trivial Hilbert class field towers.

The basis for our heuristic is the following consequence of the usual calculation leading to
the birthday paradox. If M and I are finite sets with cardinalities M and I respectively,
then for I � M2 the probability that a random map M → I is non-injective is bounded
above zero, but for I asymptotically larger than M2 this probability decays rapidly to zero.
Explicitly, this probability is

∏M−1
j=0 (1− j/I) ∼ e−M(M−1)/2I .

We first apply this to the set M of isomorphism classes of curves of some fixed genus
g > 1 over a finite field Fq and the set I of isogeny classes of abelian varieties of dimension g
over a finite field Fq. For fixed g and large q we have M ∼ q3g−3 and I ∼ qg(g+1)/4, hence
it is reasonable to expect that there will be distinct curves with isogenous Jacobians when
6g− 6 ≤ g(g+1)/4, that is, g ≤ 22 (see [6] and [13] where this kind of question is discussed
in more detail). For larger genus one expects this to be very rare, but we note a result
of Mestre [9] that allows one to construct, for every g > 1, pairs of genus g curves with
isogenous Jacobians (over sufficiently large finite fields).

Provided H(X) 6= X (as we now assume), passing fromX toH(X) increases the genus and
thus makes it more likely that we can use isogeny invariants to distinguish non-isomorphic
curves. For large q and g, the genus of H(X) is much larger than the genus g of X ; indeed,
it is on the the order of gqg. However, the Jacobian of H(X) is not an arbitrary abelian
variety of this dimension; it decomposes up to isogeny as a product of abelian varieties of
smaller dimension. The precise shape of the decomposition depends on the group structure

2



of J(Fq), but given its huge dimension, barring any additional constraints, its isogeny class
falls into a very small set of possibilities. Thus on probabilistic grounds it is still likely that
the map X 7→ L(H(X), T ) is injective when g and q are large. This makes it plausible that,
up to a finite set of exceptions, Conjecture 2.2 holds even when we restrict to n ≤ 1. The
set of exceptions is non-empty as the examples in the next section show.

In addition to H(X), we can also consider the cover of X obtained by pulling back via
multiplication by 2 on the Jacobian (assuming the characteristic is not 2). This gives a cover
X(2) of X of degree 22g. In general, this cover is not a subcover of the Hn(X) considered
above. Its Jacobian JX(2) is not a random abelian variety of its dimension, since it decomposes
(after base change to the algebraic closure of the ground field) up to isogeny into a product
of the Jacobian JX of X and 22g − 1 abelian varieties of dimension g− 1 (the Prym varieties
of X). If we assume that the isogeny classes of these factors are random, we are picking
them out of a set of size ∼ q(2

2g
−1)g(g−1)/4 which is much smaller than if we regarded J (2)

as random, but still very large. On the other hand we should note that the construction of
Mestre [9] mentioned above produces curves that not only have isogenous Jacobians, but a
few of their Prym varieties will also be isogenous.

Question 2.3. Are there non-isomorphic curves X, Y over Fq of genus at least two and
p 6= 2 with JX(2), JY (2) isogenous?

For maps between curves of different genera, it is less clear what to expect. In particular,
we do not have a result generalizing Theorem 2.1. But one can consider the following:

Question 2.4. Let X, Y be smooth projective curves of genus at least two over a finite field k,
with H(X) 6= X and H(Y ) 6= Y . Suppose the L-function of Hn(X) divides the L-function
of Hn(Y ) for all n ≥ 0. Does this imply the existence of a dominant map Y → X?

As shown by an example of Brendan Creutz, the answer to Question 2.4 is no if we allow
H(X) = X . A generalization of his idea (which is the case n = 0) is as follows. Start
with X such that X(Fq) = ∅. Consider the Jacobian J of Hn(X) and by slicing with
suitable hypersurfaces, construct a smooth curve D ⊂ J with 0 ∈ D, hence in particular
D(Fq) 6= ∅. This D cannot map to X (as X(k) = ∅) but L(Hn(X), t)|L(D, t)|L(Hn(D), t)
by construction. So the n in Question 2.4 cannot be uniformly bounded.

3. Certifying non-isomorphism

If two curves can be distinguished by the L-polynomials of low degree covers then a
succinct certificate can be given in the form of a prime ℓ for which the corresponding two
L-polynomials are distinct modulo ℓ, together with the calculation of these polynomials; note
that we can assume ℓ = O(g log q), since otherwise the L-polynomials must coincide. For
fixed g the Schoof-Pila algorithm can be used to determine ℓ and compute the L-polynomials
modulo ℓ with a running time that is polynomial in log q, but exponential in g. When g is
large relative to log p, where p is the characteristic of Fq, one is better off using algorithms
based on p-adic cohomology to compute the L-polynomials over Z and then reduce modulo a
suitable prime ℓ. The complexity of the p-adic approach is polynomial in g but exponential
in log p. The most general algorithm of this type is due to Tuitman [15], and is applicable
to all curves that admit a suitable lift to characteristic zero; its complexity is quasi-linear
in p and polynomial in g. When q = p is prime one can instead apply Harvey’s result for
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arithmetic schemes [2], which improves the dependence on p to O(p1/2+o(1)). At present there
is no algorithm known with a running time that is polynomial in both g and log q, thus in
general, it may be costly to verify this certificate. But typically the degrees of the covers and
the value of ℓ will be quite small (much smaller than g log q), in which case computing the
L-polynomials modulo ℓ (or even just enough terms to distinguish them) may be feasible.

4. Examples

The simplest case to consider in Conjecture 2.2 is when g = 2 and q = 2; in this case there
are 20 isomorphism classes of curves, all of which have distinct L-functions, so one could
take n = 0 in Conjecture 2.2. The next simplest case is g = 2 and q = 3; now there are 69
isomorphism classes of curves, but only 50 isogeny classes of Jacobians. Of the 50 isogeny
classes of Jacobians, 31 contain a unique Jacobian, while 19 contain a pair of Jacobians of
non-isomorphic curves. Among these 19 all but 4 pairs are distinguished by considering the
L-functions of H1(X). These 4 pairs are considered in the first 3 examples below, each of
which demonstrates that Conjecture 2.2 does not hold if we restrict to n ≤ 1.

Example 4.1. The genus two curves:

C1 : y
2 = 2x6 + 2x4 + 2x3 + 2, C2 : y

2 = 2x6 + 2x5 + x4 + x2 + 2x+ 2

over F3 are non-isomorphic, but they have isogenous Jacobians J1, J2 with L-polynomial:

9T 4 − 6T 3 + 3T 2 − 2T + 1.

The corresponding Hilbert class fields have degree #J1(F3) = #J2(F3) = 5, and the
Riemann-Hurwitz theorem implies that the curves H1(C1), H1(C2) both have genus 6.
The function fields of H1(C1) and H1(C2) both have exactly the same number of degree
1, 2, 3, 4, 5, 6 places (the counts are 5, 0, 10, 15, 60, 140, respectively), which implies that their
L-polynomials coincide. The computation of H2(Ci) seems out of reach so we cannot verify
whether these distinguish the two curves. Instead we look at 2-power covers in the setting
of Question 2.3.

The polynomial f1(x) in the equation y2 = f1(x) for C1 is irreducible over F3, while the
polynomial f2(x) in the equation y2 = f2(x) for C2 splits into irreducible cubic factors; this
implies that the Jacobian J2 has full 2-torsion over F27, while J1 does not. This is already
enough to show that the two Jacobians J1 and J2 (and therefore the curves C1 and C2) are
non-isomorphic, but this does not immediately fit our approach of computing L-polynomials.

However, by taking double covers over F27 and looking at the corresponding elliptic curves,
(see Example 4.5 below for a similar calculation), we get elliptic curves with 2-torsion for
the second genus 2 curve but not for the first, so the isomorphism classes of C1 and C2 are
distinguished by the L-functions of these double covers.

Example 4.2. The genus two curves:

C1 : y
2 = x5 + x4 + 2x+ 1, C2 : y

2 = x5 + x3 + x2 + 2x+ 2

over F3 both have L-polynomial L(T ) = 9T 4−3T 3+T 2−T+1, and the curves H1(C1),H1(C2)
of genus 8 also have equal L-polynomials.

This example is particularly interesting, in that the corresponding Jacobians J1 and J2

appear to be isomorphic; their respective groups of F3n-rational points are isomorphic for n =
1, . . . , 5. As in the previous example, verifying Conjecture 2.2 seems to be computationally
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out of reach, but we can distinguish them by taking double covers. We need to work over
F35 and each curve has 15 étale double covers lying in 3 orbits of 5 curves under Frobenius.
The Jacobians of the double covers have an additional elliptic curve factor and we get, as
trace of Frobenius for these factors, the values (up to sign) of: 28, 28, 8 for the first curve
and 28, 20, 8 for the second. The appearance of the 20 shows these elliptic curve factors are
not isogenous, so the curves are not isomorphic.

A similar example is the pair of curves C1 : y
2 = 2x6+x4+x3+1 and C2 : y

2 = x6+x4+x3+2
over F3, with L-polynomial L(T ) = 9T 4 − 3T 3 + 3T 2 − T + 1. Traces of Frobenius for the
elliptic curve factors are 4, 16, 28 for first curve and 4, 4, 16 for the second.

Example 4.3. The fourth and final example for g = 2 and q = 3 is the pair of curves

C1 : y
2 = x5 − 1, C2 : y

2 = x5 + 1,

which are non-isomorphic quadratic twists. Their Jacobians are both supersingular with
L-polynomial 9T 4+1, and the genus 11 curves H1(C1), H1(C2) have the same L-polynomial.

The curves C1 and C2 both have 4 points over F3 and admit a unique (up to twist)
unramified double cover. We pin down the double cover by insisting that it have 6 points
over F3 (the other twist has 2 points). Then we look at an unramified triple cover of the
double cover, of which there are three, all twists of each other. Finally, we see how the 6
points split on these covers and use this information to distinguish the curves.

We have double covers X1 : w
2 = x4 + x3 + x2 + x+ 1 and X2 : w

2 = x4 − x3 + x2 − x+ 1
of C1 and C2 respectively.

Triple covers of X1 are given by Y1,a : z
3 − z = (x+ 1)w + a, for a = 0, 1, 2.

Triple covers of X2 are given by Y2,a : z
3 − z = (x− 1)w + a, for a = 0, 1, 2.

The distinguishing feature is that while all the Y1,a have F3-points (12, 3, 3, respectively),
Y2,0 is pointless (the curves Y2,1 and Y2,2 both have 9 F3-points). This implies that the
L-polynomials of H2(C1), H2(C2) differ and confirms Conjecture 2.2 in this case.

Example 4.4. We did an exhaustive search over F2 and found that there is exactly one pair
of non-isomorphic smooth plane quartics C1, C2 over F2 with the the same L-polynomial for
which H1(C1), H1(C2) also have the same L-polynomial:

C1 : x
3z + xyz2 + y4 + y2z2 + yz3, C2 : x

3z + xy2z + y4 + y2z2 + yz3.

Both curves have L-polynomial 8T 6 − 4T 5 + 2T 3 − T + 1, with 6 rational points on their
Jacobians, and the Hilbert class curves H1(C1), H1(C2) have genus 13.

The curves C1, C2 both have a unique (up to twist) quadratic unramified cover, say D1, D2

of genus 5. By the Deuring-Shafarevich formula, D1, D2 themselves have a unique (up to
twist) quadratic unramified cover, and they have distinct L-polynomials, even up to quartic
twists, which is enough to show C1, C2 are non-isomorphic and distinguished by the L-
polynomials of H2(C1),H2(C2), confirming Conjecture 2.2 for this example.

Example 4.5. Another example is the pair of genus two curves

C1 : y
2 = x6 + 3x2 + 4, C2 : y

2 = x6 + 5x4 + 5x2 + 1

over F7, which have the same L-function. To show that they are not isomorphic one can
look at the respective double covers and show, by counting points, that there cannot be a
matching between the double covers of the two curves. Specifically, both curves have three
unramified double covers defined over F7. The Jacobian of these covers split as the product
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of the Jacobian of the original curve with an additional elliptic curve. For the first curve, all
three of these elliptic curves have trace of Frobenius −4. For the second curve, the elliptic
curve obtained from the cover z2 = x2 + 1 has trace of Frobenius 0.

5. Factoring polynomials over finite fields

As mentioned in the introduction, the existence of a one-parameter family Xt of curves
of genus g over Fp(t) with g bounded (or growing very slowly with p) such that the L-
polynomials L(Xt, T ) are all distinct (or the number of collisions is bounded independent
of p) for varying t ∈ Fp (excluding the t of bad reduction, those for which Xt is singular)
leads to a deterministic polynomial-time algorithm for factoring polynomials in Fp[t]. There
are well-known randomized algorithms to solve this problem whose expected running times
are polynomially-bounded that are quite fast in practice, so this question is primarily of
theoretical interest. But even for polynomials of degree two, no deterministic polynomial-
time algorithm is known, unless one assumes the Generalized Riemann Hypothesis (GRH),
and for general polynomials the question remains open even under GRH.

Using the same heuristic as in section 2.1, there are p choices of a and pg(g+1)/4 possible
values for the L-polynomial so one would expect this to hold for “most” families as soon as
g > 2, since p2 < pg(g+1)/4. Buium [1] has shown that most families (in a differential algebraic
sense) in characteristic zero have finitely many isogeny correspondences, however, even if this
result extends to characteristic p, it does not rule out sporadic isogenies. Conjecture 2.2 does
not give the result either, as the genus of the resulting covers grows too quickly.

We first considered the family y2 = x7+(t− 1)x3 + tx2 +(t+1)x+1 of curves of genus 3.
One expects the number of isogeny classes of 3-dimensional abelian varieties over Fp to be
about p3. So under our probabilistic heuristic, a one parameter family of curves (with about p
elements) has a probability of about 1/(2p) of containing no isogenous Jacobians. Using the
algorithms in [3,4,7] we have verified that for all primes p ≤ 10000 the L-polynomials in this
family are distinct for all t of good reduction (for each p, at most 9 values of t ∈ Fp yield
singular curves). Now

∑

1/(2p) = O(log log p) diverges (albeit slowly), so one might expect
a collision of L-polynomials to occur in this family for some p > 105 (but one would expect
the number of collisions for each p to be bounded by a constant).

To obtain a more compelling example, we instead consider the genus 4 hyperelliptic family:

Xt : y
2 = x9 + (t− 1)x3 + tx2 + (t+ 1)x+ 1.

Now the number of isogeny classes is on the order of p5, and our heuristic model predicts
a probability of roughly 1/(2p4) that two L-polynomials L(Xt, T ) in our family coincide for
some pair of t ∈ Fp. The sum

∑

1/(2p3) now converges. We have verified that for primes
p ≤ 217 the L-polynomials arising in this family are distinct for all t of good reduction (now at
most 11 values of t ∈ Fp yield singular Xt), and it seems quite likely that the L-polynomials
L(Xt, T ) arising in the family are distinct for all primes p. Indeed, if π(t) = t/ log(t) + ε(t)
denotes the prime counting function, we can bound the tail of our sum

∑

1/(2p3) using

∑

p>217

1

2p3
=

∫

∞

217

dπ(t)

2t3
=

∫

∞

217

dt

2t3 log t
+

ε(t)

2t3

∣

∣

∣

∞

217
+

∫

∞

217

3ε(t)dt

2t4
,
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and applying the bound ε(t) ≤ (3t)/(2 log(t)2) (valid for t ≥ 59) from [12] yields

∑

p>218

1

2p3
< 1.187× 10−12 + 4.36× 10−13 + 3.15× 10−13 < 2× 10−12.

Thus under our heuristic model, the probability that the L-polynomials L(Xt, T ) at good
values of t are not all distinct for every prime p is less than 2× 10−12.

These two families were chosen essentially at random by writing a plausible family with
no specializations having the same L-polynomial for small primes. We note that the similar
looking families y2 = x7 + (t − 1)x3 + (t + 1)x + 1, y2 = x9 + (t − 1)x3 + (t + 1)x + 1 have
specializations with the same L-polynomial for some small primes.
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