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Abstract: 

Extremely premature neonates often experience hyperglycaemia, which has been linked to 

increased mortality and worsened outcomes. Insulin therapy can assist in controlling blood glucose 

levels and promoting needed growth. This study presents the development of a model-based 

stochastic targeted controller designed to adapt insulin infusion rates to match the unique and 

changing metabolic state and control parameters of the neonate. Long-term usage of targeted BG 

control requires successfully forecasting variations in neonatal metabolic state, accounting for 

differences in clinical practices between units, and demonstrating robustness to errors that can occur 

in everyday clinical usage. Simulation studies were used to evaluate controller ability to target 

several common BG ranges and evaluate controller sensitivity to missed BG measurements and 

delays in control interventions on a virtual patient cohort of 25 infants developed from retrospective 

data. Initial clinical pilot trials indicated model performance matched expected performance from 

simulations. Stochastic targeted glucose control developed using validated patient-specific virtual 

trials can yield effective protocols for this cohort. Long-term trials show fundamental success, 

however clinical interface design appears as a critical factor to ensuring good compliance and thus 

good control. 
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1. INTRODUCTION 
 
Metabolic homeostasis in the extremely premature infant is often compromised by immaturity of 

control systems. Up to 32%-80% of low birth weight infants experience hyperglycaemia with 

glucose levels exceeding thresholds of 6.9 to 13.9 mmol/L during the neonatal period [1-5]. The 

risk of hyperglycaemia is at least 18 times greater in infants with birth-weight less and 1,000 grams 

compared to infants weighing greater than 2,000 grams [6]. Hyperglycaemia has been linked to 

worsened outcomes. Associated morbidities include osmotic diuresis, electrolyte imbalance, 

intraventricular haemorrhage, sepsis, and increased ventilator dependence, retinopathy of 

prematurity, hospital length of stay and mortality [2-5, 7-9]. High rates of proteolysis are also 

common in low birth weight infants, reducing muscle mass and inhibiting growth [10]. 

 

The known mechanisms responsible for hyperglycaemia specific to extremely premature infants are 

related to their reduced ability to produce insulin [11]; defective beta-cell processing of pro-insulin 

(which is 10-16 times less active than insulin) to insulin [12]; an inability to suppress hepatic 

glucose production in response to glucose infusion [13]; and, finally, a decreased uptake of glucose 

secondary to a limited mass of insulin-sensitivity tissues (e.g.: muscle and adipose tissue) [14]. In 

addition to these factors, it has been shown that preterm infants can mount a hormonal response to 

stress similar to older critically ill patients [15].  Inhibiting the physiological response to reduce 

increased glycaemic levels are factors such as increased insulin resistance, absolute or relative 

insulin deficiency, and drug therapy [16-19]. 

 

Blood glucose control for the neonate poses several challenges that differ from the adult critical 

care case. Blood volumes in preterm infants are relatively small [6]. Thus, the number of blood 

glucose measurements must be optimised to a minimum useful number to conserve volume and 

restrict opening incubator doors, which may affect the neonate’s hydration status [20]. Endogenous 
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energy substrates are very low in preterm infants at birth [21]. Thus, these infants must be 

constantly fed to provide enough energy for basal requirements in addition to growth. In contrast, 

adults can tolerate periods of reduced caloric intake. Less saturation of the insulin-stimulated 

glucose uptake pathway has also been reported in neonates [22], unlike the saturation in adults [23]. 

Finally, also unlike the adult case, growth is a major goal of neonatal care. Thus, the anabolic 

effects of insulin are of relatively higher importance that in adults [10]. 

 

A small number of prospective trials have used insulin infusions to treat hyperglycaemia and/or 

promote growth [16, 24-32]. All reported insulin infusion trials have used either protocols that fixed 

insulin dosing to weight or other factors [25], or clinician judgment to determine insulin infusion 

rates. Positive outcomes of insulin infusion have been reduced proteolysis [10, 33, 34], improved 

glucose tolerance, improved caloric intake and weight gain [16, 24, 26-29, 31]. Negative reports of 

hyperinsulinaemia include hypoglycaemia and possible metabolic acidosis due to excessive 

carbohydrate oxidation [34, 35]. 

 

Persistent low blood glucose concentrations can reduce cerebral development and lead to long-term 

neurological deficiencies [36]. The upper limit for clinically desirable blood glucose concentration 

is also subject to debate [11]. Thus, glucose management goals vary widely between insulin therapy 

studies [30, 35] and it is likely the desired target range for glucose may change in the future. 

Similarly, Alsweiler et al [37] demonstrated a wide range of responses from different clinical units 

when questioned on glycaemic control targets. Hence, a control system needs to handle different 

glucose targets to comply with local practices. 
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It is well known that neonatal response to insulin and glucose infusions exhibits great heterogeneity 

[11, 24], which would render fixed protocols ineffective because they do not adopt well to different 

patients or the evolution of metabolic response over time within an individual patient. Model-based 

blood glucose control may provide more optimized care by adapting in real-time to identified 

parameters representing the current metabolic state of the infant, and using this information to drive 

insulin dosing. This metabolic information can be combined with a controller utilising model 

predictions to achieve targeted blood glucose control. This approach has been validated in adult 

critical care studies [38]. However, sudden changes in patient condition independent of metabolic 

state indicate limits on model-based controller actions are required to maximise safety and control 

performance [39]. Insulin sensitivity changes can be captured and characterised using stochastic 

models of insulin sensitivity variability [40-42], specifically to quantify the level of hypoglycaemia 

risk and adjust control actions accordingly. This approach creates a targeted, model-based control 

system that uses stochastic forecasting to guarantee the risk of hypoglycaemia for any intervention. 

 

Virtual trials offer the opportunity to explore control strategies in simulation to achieve the goals of 

maximising time within a desired glycaemic control band, which may vary between clinical units, 

whilst minimizing the number of hypoglycaemic episodes [38, 39]. Long-term clinical usage also 

requires robustness to missed BG measurements, control interventions, and delays in adjusting 

insulin dosing. The model-based controller used in this study tracks insulin sensitivity in real-time 

by fitting to available clinical data, and these errors may thus cause insulin dosing to be driven by 

an estimate of insulin sensitivity based on artificial effects rather than physiology. The effect of 

these errors can be evaluated in a clinically validated simulation environment to assess performance 

prior to clinical implementation. Short-term clinical trials are used to confirm model prediction 

accuracy and control efficacy. Pilot long-term clinical trials are presented to assess the agreement 

between simulation results and real-world outcomes, as well as to highlight some of the difficulties 
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experienced in transitioning from the fully-compliant simulation environment to real-world clinical 

usage. 
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2. METHODS 

2.1 System model 

The model is based on a clinically validated adult critical care glycaemic model, adapted to account 

for the main physiological differences in neonates.  
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Where G(t) [mmol/L] is the total plasma glucose and I(t) [mU/L] is the plasma insulin, exogenous 

insulin input is represented by uex(t) [mU/min] and basal endogenous insulin secretion IB 

[mU/L/min], with kI representing the suppression of basal insulin secretion in the presence of 

exogenous insulin. The effect of previously infused insulin being utilised over time is represented 

by Q(t) [mU/L], with k [min-1] accounting for the effective life of insulin in the system. Body 

weight and brain weight are denoted by mbody [kg] and mbrain [kg] respectively. Patient endogenous 

glucose clearance and insulin sensitivity are pG [min-1] and SI [L/(mU.min)], respectively. The 

parameter VI,frac [L/kg] is the insulin distribution volume per kilogram body weight and n [min-1] is 

the constant first order decay rate for insulin from plasma. Total plasma glucose input is denoted 

P(t) [mmol/min], endogenous glucose production is denoted by PEND [mmol/kg/min] and VG,frac 

[L/kg] represents the glucose distribution volume per kilogram of body weight. CNS [mmol/kg/min] 

represents non-insulin mediated glucose uptake by the central nervous system, as well as the liver, 

kidneys and red blood cells. Michaelis-Menten functions are used to model saturation, with αI 

[L/mU] used for the saturation of plasma insulin disappearance, and αG [L/mU] for the saturation of 

insulin-dependent glucose clearance.  
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The insulin sensitivity parameter, SI, drives the dynamics of the blood glucose model and is 

assumed patient-specific and independent of exogenous insulin and nutrition administration [38, 

43]. Hourly insulin sensitivity is determined by fitting the model to retrospective data using 

integral-based fitting [44]. Once a patient-specific profile of time-varying insulin sensitivity is 

generated, it can be used to predict blood glucose concentration based on different insulin and 

nutrition control schemes. Such analyses are effectively in-silico or virtual trials [38, 43]. Overall 

median model BG forecast performance for 1, 2, 3 and 4-hour prediction windows are 5.2%, 9.4%, 

11.9% and 13.6% respectively on retrospective data from 25 patients representing 3,567 hours of 

patient data [45]. The overall virtual trial development approach has been validated in the outcome 

of large scale trials [46]. 

 

2.2 Stochastic model 

A two-dimensional kernel density estimation method is used to construct the stochastic model that 

describes the hour-to-hour variations in insulin sensitivity. The kernel density method combines 

probability distribution functions for each point of data representing change in insulin sensitivity 

from hour n to hour n+1 to generate an overall density function for the data set. This produces a 

smooth, physiologically likely, continuous function across the parameter range [40-42]. The goal of 

this statistical model is to quantify the range of insulin sensitivity one hour ahead in time (SI,n+1) 

based on available data (SI,n, SI,n-1, SI,n-2, …, SI,0) to guide real-time clinical control. The stochastic 

model forecasts quantify the upper and lower bound of likely future insulin sensitivity. These 

bounds are simulated using Equations (1)-(3) to generate upper and lower bounds for any future BG 

concentration and insulin intervention. Hence, these bounds are used by the controller to quantify 

the risk a selected insulin infusion rate will cause a hypoglycaemic measurement. If a 

hypoglycaemic event is forecasted the insulin rate may be reduced to eliminate the risk. Further 

details on stochastic model development and implementation in BG control are available in [40-42]. 
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Patient 

Identification: 
Fit insulin sensitivity. 
Forecast future insulin 
sensitivity. 

Control: 
Iterate possible insulin rates, 
solve model for each iteration, 
find closest match to target BG. 
Adjust insulin rate based on 
stochastic forecast if available. 

Controller 
recommendation 

Measurement: 
• Blood glucose (G(t)) 
Infusion data: 
• Insulin (u(t)) 
• Nutrition (P(t)) 

 

Figure 1: Controller implementation schematic 

 

2.2 Controller development 

The clinical implementation procedure for the controller is shown in Figure 1. The blood glucose 

history, together with insulin and nutrition history, is used to fit the patient’s insulin sensitivity 

profile in real-time. This profile is then used by the controller to solve Equations (1)-(3) to predict 

blood glucose concentration based on insulin and nutrition rates. Thus, the controller adapts to the 

current metabolic state of the neonate in real-time. This control-scheme represents a semi-closed 

loop approach in that clinical staff oversee data entry into the control system and approve all insulin 

recommendations. 

 

Sensitivity of the control scheme to BG measurement and control intervention frequency and BG 

sensor errors are explored in [39]. In this article, the following clinical considerations are explored: 

• Clinical BG target range. The model-based controller was trialled in simulation with 

targets of 4 mmol/L, 5 mmol/L, 6 mmol/L, 7 mmol/L and 8 mmol/L, which represents a 

range of target glucose concentrations likely to be encountered in neonatal critical care [37]. 
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The lower acceptable BG forecast bound for an insulin intervention was set to 3 mmol/L for 

the 4 mmol/L target, 3.5 mmol/L for the 5 mmol/L target and 4 mmol/L for all other targets. 

• Clinical intervention delays. Due to the spontaneous nature of emergency child-birth, 

doctors are often away from the unit assisting with a delivery. Additionally, nursing staff 

may be unavailable due to clinical instability with either the patient receiving insulin or 

another patient within the unit that requires immediate attention. Thus, substantial delays 

can exist between the time of BG measurement and eventual approval and adjustment of 

insulin infusion rate by clinical staff. The effect of these delays are modelled by 

incorporating a lag between the time of BG measurement and the time of insulin infusion 

change. Delays of an added 10, 20, 30 and 40 minutes based on experience were assessed. 

• Missed BG measurement. A missed BG measurement and control intervention cycle may 

occur for reasons related to clinical workload, similar to the case of a delayed intervention. 

Control simulations were performed with a random missed BG measurement chance of 1/3, 

1/4, 1/5 and 1/6 from a base measurement frequency of 2-hourly. These proportions of 

missed BG measurements (17% - 33% of measurements) are likely to be much higher than 

typical clinical practice, and thus represent a worst-case scenario test.  

 

All simulations were performed with an assumed 7% normally distributed BG sensor error and 2-

hourly BG measurement and intervention schedules. The retrospective clinically specified dextrose 

administration profile was used in all simulations to replicate the initial clinical use of this control 

system to only modulate the insulin side of the glucose-insulin balance. 
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Figure 2: Retrospective patient profile with simulated controllers targeting 4 mmol/L, 5 mmol/L 
and 6 mmol/L. The top panel shows the simulated BG response generated using each controller. 
The bottom panel shows the identified insulin sensitivity profile for this virtual patient. 
 

2.3 Patient cohort 

Retrospective data for 25 episodes of insulin usage over 21 patients from the Christchurch 

Women’s Neonatal Intensive Care Unit was used in the study. Ethics approval for the clinical trials 

and publication of data was obtained from the Upper South Regional Ethics Committee. Median 

gestational age at birth was 26.6 weeks, and median birth weight was 0.845 kg. Inclusion criteria 

were a period of treatment with insulin and at least six blood glucose measurements per day. 

Hourly-varying insulin sensitivity was fitted to each of the 25 patient profiles to generate a cohort of 

25 ‘virtual patients’ used for simulation. Further clinical details on the patient cohort and insulin 

sensitivity fitting procedure are available in [39, 45]. 
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Two short-term pilot clinical trails (24 hours length each) are presented. These trials were 

conducted to assess model accuracy and control efficacy and were run by additional specialists to 

avoid increasing the technical burden on clinical staff. The two short-term trial patients were born at 

27.3 and 27.0 weeks gestational age and weighted 770 grams and 900 grams at birth respectively. 

Additionally, two long-term (greater than 24 hours in length) pilot clinical trials of the model-based 

controller, demonstrating typical clinical usage, are also presented. The two long-term subjects 

(LT5 and LT4) were born at 25.0 weeks and 27.0 weeks gestational age respectively, with birth 

weight 0.530 kg and 0.870 kg. The trials were conducted at age 22 days and 6 days respectively. 

 

3. RESULTS 

Virtual trial simulations 

Figure 2 presents an example simulated trial employing controllers that target 4 mmol/L, 5 mmol/L 

and 6 mmol/L for a sample virtual patient. Each controller achieves BG control centred on the 

target band, and deviations from target are experienced during periods of low insulin sensitivity, 

such as shown in the period of 3,000 to 4,000 minutes in Figure 2, and during relatively rapid 

changes in glycaemic response to insulin as captured in the period of 5,500 to 6,500 minutes. The 

inset plots of Figure 2 show the shaded stochastic forecast bounds for glucose concentration for 

each controller. In the case of the 4 mmol/L target controller the stochastic forecast lower bound (5th 

percentile) was uniformly at the set value of 3 mmol/L ensuring a guaranteed risk of no greater than 

5% of exceeding this level. Thus, the requirement to maintain a low risk of a hypoglycaemic 

episode drove the insulin rates determined by the controller. 

 

A comparison of BG control performance for the whole virtual patient cohort for different 

controller targets is presented in Table 1, and the cumulative distribution functions for BG 
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concentration presented in Figure 3. The controller achieved a median BG within 1-5% of target for 

all cases assessed. The stochastic model lower bound was lowered to 3 mmol/L and 3.5 mmol/L for 

the 4 mmol/L and 5 mmol/L targets respectively. The proportion of simulated BG measurements 

below the 3 mmol/L limits for the 4 mmol/L target controller was 4.7%, and 3.3% of simulated BG 

measurements were below 3.5 mmol/L for the 5 mmol/L target controller. The remaining BG target 

controllers used 4 mmol/L as the lower bound for stochastic forecasts. The proportion of BG less 

than 4 mmol/L decreases for increasing BG target concentration as more insulin interventions 

forecasts have a lower bound above the 4 mmol/L cut-off, and thus the insulin infusion rate is not 

influenced by the use of the stochastic model for hypoglycaemia protection. In all cases, the 

percentage below the threshold is less than the guaranteed maximum risk of 5%. 
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Figure 3: Empirical CDFs of model-based controller results incorporating BG targets of 4 – 8 
mmol/L. The median value at 0.5 on the y-axis for each target is within 1-5% in each case (see 
Table 1). 
 



 
 

14 
 

 

The results for incorporating delays in BG measurement and clinical intervention are presented in 

Table 2 and Figure 4. These results confirm the model-based controller is robust to delays in insulin 

infusion rate changes, tending towards marginally higher proportion of hyperglycaemic 

measurements with longer delays. The stochastic model is thus a source of protection against 

significant increases in low BG measurements. Thus, the lower limits of the distributions presented 

in Figure 4 are essentially identical.  
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Figure 4: Empirical CDFs of model-based controller results incorporating delays between BG measurement and change 
of insulin infusion rate of 10 – 40 minutes. The inset image highlights a region of the CDFs. 

 

A comparison of BG control performance for simulations of missed BG measurement/control 

intervention cycles is presented in Table 3 and Figure 5. The missed BG measurements extend the 

average measurement frequency from the base value of 2 hours to 2.3 – 2.6 hours. A general 

decrease in BG control quality is evident with increased IQR for increasing frequency of missed BG 
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measurements, together with less measurements in the 4 – 7 mmol/L range and a greater proportion 

of measurements in the hypoglycaemic BG range (< 2.6 mmol/L). 

 

Pilot clinical trials 

Table 4 and Figures 6 and 7 present short-term clinical trials of 24 hours each and long-term clinical 

trials covering 175.4 hours of stochastic targeted model-based BG control. The short-term trials 

achieved median BG concentrations of 5.7 mmol/L and 6.5 mmol/L, noting that the first 4-6 hours 

in each case was devoted to reducing BG from hyperglycaemic levels. BG prediction accuracy in 

response to an intervention was 8.5% - 8.6% for a median measurement period of 2.0 hours. The 

stochastic model forecasts captured 31 - 50% of BG values within the IQR and 83 - 85% within the 

5% - 95% confidence interval. 

 

The long-term trials were conducted by clinical staff using the model-based control software. BG 

prediction accuracy in response to an intervention for LT5 was 14.4% for a median BG 

measurement period of 3.3 hours. Median BG concentration was 6.0 mmol/L, with 68.3% of 

measurements within the 4 – 7 mmol/L band. The stochastic model forecast coverage captured 28% 

of BG within the inter-quartile range (IQR), and 64% within the 5%-95% bounds.  
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Figure 5: Empirical CDFs of model-based controller results for simulated missed BG measurements. The inset image 
highlights a portion of the CDF curves for clarity. 

 

Clinical implementation errors were experienced during long-term trial LT4. Overall, 18% and 27% 

of BG forecasts were within the IQR and 5%-95% probability bounds. Only 14.3% of 

measurements were within the 4 – 7 mmol/L range. Figure 7 shows the effect of a BG measurement 

that was not entered into the control software. At 566 minutes into the trial a BG measurement of 

3.5 mmol/L was measured but not entered. This missing measurement caused the following 

sequence of events: 

a) BG measurement of 3.5 mmol/L at 566 minutes caused insulin to be shut off. None of this 

data was entered into the computer. 

b) Measurement of BG at 781 minutes was 10.3 mmol/L and entered into computer. 

c) The controller believed that: 

i) Insulin was still running over the period of (a) to (b)  

ii) The BG measurement of 3.5 mmol/L never occurred, and  

iii) BG had risen steadily over the last several hours despite constant insulin infusions.  

d) Hence, an artificially low insulin sensitivity profile, shown as the dashed line on the bottom 

panel of Figure 7, was fitted based on available data. 

e) An increased insulin rate of 0.48 mL/hr was thus recommended by controller, whereas if all 

data was present an insulin rate of 0.12 mL/hr would have been selected. This may have 

contributed to the low BG measurement at 896 minutes. 
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A filter to block air bubbles from reaching the patient was present in the insulin line for this patient. 

Clinical protocol is to avoid filters in lines delivering insulin as this can impede insulin delivery. 

The filter was removed at approximately 2,500 minutes, which corresponded with a rapid rise in 

insulin sensitivity and subsequently much lower insulin infusion requirements for this patient. 
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Figure 6: Long-term glycaemic control for patient LT5. The top panel shows measured BG 
concentration and the shaded areas represent the forecasted 5%-95% range generated during real-
time control. The second panel displays the insulin infusion rate, and the third panel shows 
parenteral dextrose infusion (solid line) and breast milk feedings (bars). The bottom panel shows 
model-fitted insulin sensitivity. 
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4. DISCUSSION 
 
 

Real-time model-based glucose control can offer advantages over fixed protocols by accounting for 

inter-patient responses to insulin infusions and track metabolic response over time. The use of 

retrospective data to generate virtual patients allows investigations and refinements of control 

strategies in simulation before initial pilot trials. Initial short-term trials up to 24 hours where the 

controller was run by extra specialists were very successful and similar to expected results from 

virtual trials, as shown in Table 4 and [39]. 

 

However, translating long-term (greater than 24 hours) glycaemic control from simulation and 

shorter trials to the clinical world and direct clinical use requires accounting for clinical and system 

errors. In addition, the approach to design and test control in simulation before implementation is a 

novel approach towards glycaemic control in neonatal care. In particular, the extreme fragility and 

low blood volumes of these patients means many standard metabolic tests, such as IVGTTs and 

tracer studies are both technically and ethically difficult. 

 

Figure 3 shows the different distributions of simulated BG measurements have largely the same 

shape, but are shifted for different targets. Model-based control can be set to target a specific 

glucose concentration relatively easily. This ease and directness in setting a target is in contrast with 

fixed sliding scale or similar control approaches that must be completely re-calibrated for each 

target and patient. A possible modification to a fixed protocol to target a different glycaemic level 

may be to uniformly increase insulin infusion rates. However, this may increase the risk of 

hypoglycaemic for more insulin-sensitivity patients, and can lead to a negative study result, whereas 

the inability of the underlying protocol to adequately address inter-patient differences may be an 

underlying cause.  
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Blood glucose control targets in model-based control are customisable to within a reasonable range. 

Very low targets run higher risks of hypoglycaemic measurements and are negated by the use of 

stochastic model forecasting in the control algorithm. Very high targets cannot be achieved without 

increasing dextrose infusions. Clinicians may also select a BG target based on emerging research in 

this field, or on a per-patient basis. This target setting feature may be useful in research settings to 

elucidate the specific effects of glucose control to a range of targets on neonatal outcome. 

Additionally, specific nutrition goals may be set per-patient with the controller adjusting insulin to 

maintain overall metabolic balance. 

 

The missed BG measurements and clinical interventions delays simulated in this study represent a 

sample of the possible clinical consequences that may be captured. The probability of a missed 

measurement was assumed uniformly distributed in this study, where in reality the chance of 

successive BG measurements being missed is likely lower. Thus, the results presented in Table 3 

reflect a more rigorous stress-test of protocol robustness. More realistic probabilities of missed 

measurements could be captured by more detailed models, and allow the control designer a choice 

between testing “robustness” and “reality” for a proposed control system. 

 

Insulin sensitivity in this model represents the net whole-body response to glucose and insulin 

inputs. Its variation may be due to physiological factors such as medications, stress and/or clinical 

condition. However, importantly, the apparent insulin sensitivity may also be influenced by 

technical concerns, such as filters in the insulin line which can restrict insulin delivered to the 

patient. Incomplete data may also have an effect, as demonstrated in Figure 7. Fully closed-loop 

control may mitigate some of the errors assessed in this study, but can also introduce new sources of 
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system failure such as sensor failure, calibration drift and communication failures between the 

sensor, control system and/or pump. Thus, the use of simulation tools to assess the magnitude of 

consequences before clinical implementation is applicable to either control strategy. 

 

In this study, compartment models were used for control as opposed to “black-box” purely data-

driven modelling techniques [47]. The use of a physiologically-based model may afford a clinical 

view into specific mechanisms of metabolic disturbances in this population. Disturbances in model-

fitted insulin sensitivity may be linked to clinical condition and, in one adult ICU study, the 

evolution of sepsis [48]. Given the relatively recent advancements in neonatal intensive care that 

allow more extremely premature infants to survive, much is still unknown about the ontogeny of 

neonatal metabolic control systems and such model-based analysis may shed added light. 

 

The controller attempts to lower BG concentration through steady reductions in BG level, rather 

than trying to reach the target range as quickly as possible [39]. Limits on insulin infusion rate 

changes for the controller were explored and showed that gradual changes in insulin infusion rate 

provided an optimal trade-off between the amount of BG measurements and risk of hypoglycaemic 

episodes [39]. Thus, it is likely some measure of robustness of the controller can be attributed to 

reduced accumulated errors, as the change in insulin infusion rate between successive interventions 

is generally small. 

 

Stochastic model forecast bounds are used by the controller to limit the risk of hypoglycaemia or 

excursions below any threshold. Data on insulin sensitivity variation for a whole cohort is used to 

generate the stochastic model used in this study. Thus, the model forecast bounds would be 

expected to adequately cover BG predictions over the whole cohort. However, they may equally 
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well be over or under- conservative for any particular patient, as demonstrated in Table 4 by the 

differences in stochastic model performance for patients LT1 and LT4.  

 

Figure 2 shows the stochastic bounds for a virtual trial at three different BG targets. For lower BG 

targets, the lower bound of forecasted BG concentration is used more often as the criteria for the 

selection of insulin rates. Thus, there is interplay between the target glucose concentration and risk 

of hypoglycaemia, which can be both quantified and evaluated in simulation using retrospective 

data. 

 

Further improvements to the model and controller could incorporate daily nutritional and volume 

goals that can be set by clinicians with model-based targeted control taking care of glycaemia – thus 

relieving clinical staff from estimation and ad-hoc decision making. The ideal content and 

composition of nutritional regimes for preterm infants is still under debate. The proportions of 

dextrose, protein and lipids given in the NICU may be different to what an infant receives in-utero. 

Whilst the relevant major organs express many of the biological mechanisms responsible for 

glucose regulation from a relatively early age, the foetus depends upon the mother to control energy 

supply. Thus, the controller is essentially attempting to replicate some of the mother’s functions, as 

well as account for the synchronised processes that regulate foetal growth that are perturbed by 

premature birth and life outside the womb. 
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Figure 7: Long-term glycaemic control for patient LT4. The top panel shows measured BG concentration and the 
shaded areas represent the forecasted 5%-95% range generated during real-time control. The second panel displays the 
insulin infusion rate, and the third panel shows parenteral dextrose infusion (solid line) and breast milk feedings (bars). 
The bottom panel shows insulin sensitivity as fitted post-trial. The dashed lines for blood glucose and insulin sensitivity 
show the effect of missing data entry for the BG measurement at 566 minutes (circled). This missing measurement 
caused the observed insulin sensitivity to be lower than the correct fitted value, thus the controller chose a higher insulin 
rate contributing to a low BG measurement at 781 minutes. The rapid rise in insulin sensitivity beginning at 
approximately 2,500 minutes corresponds with the removal of a filter from the insulin line. 
 

5. CONCLUSIONS 

A model of the neonatal glucose regulatory system is used to design controllers for long-term 

clinical usage in neonatal care. Simulated trials revealed the sensitivity of control performance to 

missed BG measurements and delays in implementing interventions. Control schemes targeting a 

range of BG concentrations indicated an ability to customise control for a particular neonatal unit’s 

practices. Pilot long-term trials highlighted the difficulties sometimes encountered in translating a 

control system from simulations and highly controlled pilot trials to real-world everyday clinical 

usage. In particular, the fidelity of translating both BG measurements and resulting insulin 

interventions to the model-based controller can present a significant challenge that must be 

addressed by appropriate system software design. 

Missed BG 
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Table 1:  Glucose control performance for different BG targets for the model-based controller. 

Target BG 
BG (mmol/L) % of measurements within range 

Median IQR 4 – 7 mmol/L < 4 mmol/L < 2.6 mmol/L 

4 mmol/L 4.2 [3.7 – 5.0] 54.4 37.8 2.0 

5 mmol/L 5.1 [4.6 – 5.9] 79.7 8.3 0.6 

6 mmol/L 6.0 [5.4 – 6.8] 75.6 3.2 0.3 

7 mmol/L 7.0 [6.2 – 7.8] 48.4 1.5 0.3 

8 mmol/L 7.9 [7.0 – 8.7] 23.7 1.5 0.3 

 

Table 2: Glucose control performance for delays between BG measurement and insulin infusion rate change. 
 

Delay 
BG (mmol/L) % of measurements within range 

Median IQR 4 – 7 mmol/L < 4 mmol/L < 2.6 mmol/L 

None 6.0 [5.4 – 6.8] 75.6 3.2 0.3 

10 min 6.1 [5.5 – 6.9] 74.0 2.9 0.4 

20 min 6.1 [5.5 – 6.9] 73.7 2.7 0.3 

30 min 6.2 [5.5 – 7.0] 73.0 2.4 0.3 

40 min 6.2 [5.5 – 7.1] 71.0 2.7 0.5 
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Table 3: Glucose control performance and frequency of measurement versus change of a missed BG measurement. 
 

Chance of 
missed 

measurement 

BG (mmol/L) % of measurements within range 

Median IQR 4 – 7 mmol/L < 4 mmol/L < 2.6 mmol/L 

1/3 6.3 [5.5 – 7.5] 62.1 4.8 0.7 

1/4 6.2 [5.5 – 7.4] 66.1 3.7 0.8 

1/5 6.2 [5.5 – 7.2] 69.2 3.9 0.6 

1/6 6.2 [5.5 – 7.3] 67.4 3.6 0.6 

None 6.0 [5.4 – 6.8] 75.6 3.2 0.3 

 
 
Table 4: Glycaemic control summary for pilot trials. Patients STB and STF were short-term pilot trials and patients 
LT5 and LT4 were long-term pilot trials. 
 

 
Short-term trials Long-term trials 

STB STF LT5 LT4 
Birth weight 770 grams 900 grams 530 grams 870 grams 
Birth gestational age 27.3 weeks 27.0 weeks 25.0 weeks 27.0 weeks 
Age at start of trial 9 days 2 days 22 days 6 days 
Total hours of control 24 hours 24 hours 141.3 hours 34.1 hours 
BG median [IQR] 5.7 [5.4 – 7.2] 6.5 [4.7 – 8.2] 6.0 [5.0 - 7.6] 7.6 [6.3 - 9.5] 
% within 4-7 mmol/L range 55.6% 46.7% 68.3% 14.3% 
Median hours between BG 
[IQR] 

1.8 
[1.1 – 2.4] 

2.0 
[1.5 – 2.0] 

3.3 
[2.5 - 4.4] 

2.4 
[1.9 - 3.3] 

Median BG forecast error 
[IQR] 

8.6% 
[3.4% - 11.7%] 

8.5% 
[4.9% - 27.1%] 

14.4% 
[4.2% - 25.6%] 

27.4% 
[20.1% - 34.2%] 

% forecasts within IQR 
predictions 31% 50% 28% 18% 

% forecasts within 5%-95% 
predictions 85% 83% 64% 27% 

 
 

 


