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Outline of talk
What is dark energy?:

Dark energy is a misidentification of gradients in
quasilocal dilatational kinetic energy

(in presence of density and spatial curvature gradients
on scales <∼ 100h−1Mpc – statistical homogeneity scale
(SHS) – which also alter average cosmic expansion).

Overview of ideas/principles/results/tests of Timescape
Cosmology

Merging Shape Dynamics and Timescape
2 + (1 + 1) formulation required
Light propagation in a statistical geometry
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Averaging and backreaction

Fitting problem (Ellis 1984):
On what scale are Einstein’s field equations valid?

Gµν =
8πG

c4
Tµν

In general 〈Gµ
ν(gαβ)〉 6= Gµ

ν(〈gαβ〉)
Inhomogeneity in expansion (on <∼ 100h−1Mpc scales)
may make average non–Friedmann as structure grows

Weak backreaction: Perturb about a given background

Strong backreaction: fully nonlinear
Spacetime averages (R. Zalaletdinov 1992, 1993);
Spatial averages on hypersurfaces based on a 1 + 3
foliation (T. Buchert 2000, 2001).
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Buchert equations
For irrotational dust cosmologies, with energy density,
ρ(t,x), expansion scalar, ϑ(t,x), and shear scalar, σ(t,x),
where σ2 = 1

2
σµνσ

µν , defining 3 ˙̄a/ā ≡ 〈ϑ〉, we find average
cosmic evolution described by exact Buchert equations

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2
〈R〉 − 1

2
Q(1)

3
¨̄a

ā
= −4πG〈ρ〉 + Q(2)

∂t〈ρ〉 + 3
˙̄a

ā
〈ρ〉 = 0(3)

∂t

(

ā6Q
)

+ ā4∂t

(

ā2〈R〉
)

= 0(4)

Q ≡ 2

3

(

〈ϑ2〉 − 〈ϑ〉2
)

− 2〈σ2〉
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Backreaction in Buchert averaging
Kinematic backreaction term can also be written

Q = 2
3
〈(δϑ)2〉 − 2〈σ2〉

i.e., combines variance of expansion, and shear.

Eq. (6) is required to ensure (3) is an integral of (4).

Buchert equations look deceptively like Friedmann
equations, but deal with statistical quantities

The extent to which the back–reaction, Q, can lead to
apparent cosmic acceleration or not has been the
subject of much debate (e.g., Ishibashi & Wald 2006):

How do statistical quantities relate to observables?
What about the time slicing?
How big is Q given reasonable initial conditions?
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Back to first principles. . .
Local Inertial Frame

S.E.P.

Γ
local

Einstein geometry

Need to address Mach’s principle: “Local inertial frames
are determined through the distributions of energy and
momentum in the universe by some weighted average
of the apparent motions”

Need to separate non-propagating d.o.f., in particular
regional density, from propagating modes: shape d.o.f.

Need to specify relevant asymptotic scale of “fixed
stars” for local/regional mass definitions
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Statistical geometry. . .
Local Inertial Frame

Cosmological Inertial Region

S.E.P.

Γ

Γ

C.E.P.

cos

local

Cosmological geometry

Shape Dynamics Workshop, 3 April 2016 – p. 7/42



Cosmic web: typical structures

Galaxy clusters, 2 – 10 h−1Mpc, form filaments and
sheets or “walls” that thread and surround voids

Universe is void dominated (60–80%) by volume, with
distribution peaked at a particular scale (40% of total
volume):

Survey Void diameter Density contrast
PSCz (29.8 ± 3.5)h−1Mpc δρ = −0.92 ± 0.03

UZC (29.2 ± 2.7)h−1Mpc δρ = −0.96 ± 0.01

2dF NGP (29.8 ± 5.3)h−1Mpc δρ = −0.94 ± 0.02

2dF SGP (31.2 ± 5.3)h−1Mpc δρ = −0.94 ± 0.02

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated
Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole
(NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More
recent results of Pan et al. (2011) using SDSS Data Release 7 similar.
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What is a cosmological particle (dust)?
In FLRW one takes observers “comoving with the dust”

Traditionally galaxies were regarded as dust. However,
Neither galaxies nor galaxy clusters are
homogeneously distributed today
Dust particles should have (on average) invariant
masses over the timescale of the problem

Must coarse-grain over expanding fluid elements larger
than the largest typical structures [voids of diameter
30h−1Mpc with δρ ∼ −0.95 are >∼ 40% of z = 0 universe]

gstellar

µν → ggalaxy

µν → gcluster

µν → gwall

µν
...

gvoid

µν











→ guniverse

µν
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Within a coarse-grained cell

Need to consider relative position of observers over
scales of tens of Mpc over which δρ/ρ∼−1.

GR is a local theory: gradients in spatial curvature and
gravitational energy can lead to calibration differences
between our rulers & clocks and volume average ones
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Dilemma of gravitational energy. . .
In GR spacetime carries energy & angular momentum

Gµν =
8πG

c4
Tµν

On account of the strong equivalence principle, Tµν

contains localizable energy–momentum only

Kinetic energy and energy associated with spatial
curvature are in Gµν: variations are “quasilocal”!

Newtonian version, T − U = −V , of Friedmann equation

ȧ2

a2
+

kc2

a2
=

8πGρ

3

where T = 1

2
mȧ2x2, U = −1

2
kmc2x2, V = −4

3
πGρa2x2m;

r = a(t)x.
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What expands? Can’t tell locally!
t

Homogeneous isotropic volume expansion is locally
indistinguishable from equivalent motion in static
Minkowski space; on local scales

z ≃ v

c
≃ H0ℓr

c
, H0 =

ȧ

a

∣

∣

∣

∣

t
0

whether z + 1 = a
0
/a or z + 1 =

√

(c + v)/(c − v).
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Thought experiment: Semi-tethered lattice

Extend to decelerating motion over long time intervals
by Minkowski space analogue (semi-tethered lattice -
indefinitely long tethers with one end fixed, one free end
on spool, apply brakes syncronously at each site)

Brakes convert kinetic energy of expansion to heat and
so to other forms

Brake impulse can be arbitrary pre-determined function
of local proper time; but provided it is synchronous
deceleration remains homogeneous and isotropic: no
net force on any lattice observer.

Deceleration preserves inertia, by symmetry
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Thought experiments

PRD 78, 084032
(2008)

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

Thought experiment
equivalent situations:

GR: regions of different density have different volume
deceleration (for same initial conditions)

Those in denser expanding region age less
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Cosmological Equivalence Principle

In cosmological averages it is always possible to
choose a suitably defined spacetime region, the
cosmological inertial region, on whose boundary
average motions (timelike and null) can be described by
geodesics in a geometry which is Minkowski up to
some time-dependent conformal transformation,

ds2

CIR
= a2(η)

[

−dη2 + dr2 + r2dΩ2
]

,

Defines Cosmological Inertial Region (CIR) in which
regionally isotropic volume expansion is equivalent to a
velocity in special relativity

Such velocities integrated on a bounding 2-sphere
define “kinetic energy of expansion”: globally it has
gradients
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Finite infinity

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Define finite infinity, “fi ” as boundary to connected
region within which average expansion vanishes 〈ϑ〉 = 0
and expansion is positive outside.

Shape of fi boundary irrelevant (minimal surface
generally): could typically contain a galaxy cluster.
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Why is ΛCDM so successful?
The early Universe was extremely close to
homogeneous and isotropic

Finite infinity geometry (2 – 15h−1Mpc) is close to
spatially flat (Einstein–de Sitter at late times) – N–body
simulations successful for bound structure

At late epochs there is a simplifying principle –
Cosmological Equivalence Principle

Hubble parameter (first derivative of statistical metric;
i.e., connection) is to some extent a “gauge choice”

Affects ‘local’/global H0 issue
Has contributed to fights (e.g., Sandage vs de
Vaucouleurs) H0 depends on measurement scale

Even on small scales there is a notion of uniform Hubble
flow at expense of calibration of rulers AND CLOCKS
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Timescape phenomenology

ds2 = −(1 + 2Φ)c2dt2 + a2(1 − 2Ψ)gijdxidxj

Global statistical metric not a solution of Einstein
equations

Relative regional volume deceleration integrates to a
substantial difference in clock calibration of bound
system observers relative to volume average over age
of universe

All actual observers in overdensities have a
mass-biased view of the Universe

Retain Copernican principle but recognize differences
between bare (statistical or volume–average) and
dressed (regional or finite–infinity) parameters
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Model details
Split spatial volume V = Viā

3 as disjoint union of
negatively curved void fraction with scale factor av and
spatially flat “wall” fraction with scale factor aw.

ā3 = fwiaw
3 + fviav

3 ≡ ā3(fw + fv)

fw ≡ fwiaw
3/ā3, fv ≡ fviav

3/ā3

fvi = 1 − fwi is the fraction of present epoch horizon
volume which was in uncompensated underdense
perturbations at last scattering.

H̄(t) =
˙̄a

ā
= fwHw + fvHv; Hw ≡ 1

aw

daw

dt
, Hv ≡

1

av

dav

dt

Here t is the Buchert time parameter, considered as a
collective coordinate of dust cell coarse-grained at SHS.
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Phenomenological lapse functions
According to Buchert average variance of ϑ will include
internal variance of Hw relative to Hv.
Note hr ≡ Hw/Hv < 1.

Buchert time, t, is measured at the volume average
position: locations where the local Ricci curvature
scalar is the same as horizon volume average

In timescape model, rates of wall and void centre
observers who measure an isotropic CMB are fixed by
the uniform quasilocal Hubble flow condition, i.e.,

1

ā

dā

dt
=

1

aw

daw

dτw

=
1

av

dav

dτv

; or H̄(t) = γ̄wHw = γ̄vHv

where γ̄v = dt
dτv

, γ̄w = dt
dτw

= 1 + (1 − hr)fv/hr, are
phenomenological lapse functions (NOT ADM lapse).
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Past light cone average

Interpret solution of Buchert equations by radial null
cone average

ds2 = −dt2 + ā2(t) dη̄2 + A(η̄, t) dΩ2,

where
∫ η̄

H

0
dη̄ A(η̄, t) = ā2(t)Vi(η̄H)/(4π).

LTB metric but NOT an LTB solution
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Physical interpretation
Conformally match radial null geodesics of spherical
Buchert geometry to those of finite infinity geometry
with uniform local Hubble flow condition
dt = ā dη̄ and dτw = awdηw. But dt = γ̄dτw and
aw= fwi

−1/3 (1 − fv) ā. Hence on radial null geodesics

dηw =
fwi

1/3dη̄

γ̄ (1 − fv)
1/3

Define ηw by integral of above on radial null-geodesics.

Extend spatially flat wall geometry to dressed geometry

ds2 = −dτ2
w + a2(τw)

[

dη̄2 + r2
w(η̄, τw) dΩ2

]

where rw ≡ γ̄ (1 − fv)
1/3 fwi

−1/3ηw(η̄, τw), a = ā/γ̄.
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Dressed cosmological parameters
N.B. The extension is NOT an isometry

N.B. ds2

F
I

= −dτ2
w + aw

2(τw)
[

dη2
w + η2

wdΩ2
]

→ ds2 = −dτ2
w + a2

[

dη̄2 + r2
w(η̄, τw) dΩ2

]

Extended metric is an effective “spherical Buchert
geometry” adapted to wall rulers and clocks.

Since dη̄ = dt/ā = γ̄ dτw/ā = dτw/a, this leads to dressed
parameters which do not sum to 1, e.g.,

ΩM = γ̄3Ω̄M .

Dressed average Hubble parameter

H =
1

a

da

dτw

=
1

ā

dā

dτw

− 1

γ̄

dγ̄

dτw
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Bare cosmological parameters

100 101 102 103 104 105

z + 1

0.0

0.2

0.4

0.6

0.8

Ω̄
Ω̄M

Ω̄R

Ω̄K

Ω̄Q

100 101 102 103 104 105
z̄ + 1

J.A.G. Duley, M.A. Nazer & DLW, CQG 30 (2013) 175006:
full numerical solution with matter, radiation
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Apparent cosmic acceleration

Volume average observer sees no apparent cosmic
acceleration

q̄ =
2 (1 − fv)

2

(2 + fv)2
.

As t → ∞, fv → 1 and q̄ → 0+.

A wall observer registers apparent cosmic acceleration

q =
− (1 − fv) (8fv

3 + 39fv
2 − 12fv − 8)

(

4 + fv + 4fv
2
)2

,

Effective deceleration parameter starts at q∼ 1

2
, for

small fv; changes sign when fv = 0.5867 . . ., and
approaches q → 0− at late times.
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Cosmic coincidence problem solved
Spatial curvature gradients largely responsible for
gravitational energy gradient giving clock rate variance.

Apparent acceleration starts when voids start to
dominate
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Relative deceleration scale

(i)
0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2 0.25

−10
10   m/s2

z

α

(ii)

α

z

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 2 4 6 8

/(Hc)

/(Hc)α

By cosmological equivalence principle the instantaneous relative deceleration of backgrounds

gives an instantaneous 4-acceleration of magnitude α = H
0
cγ̄ ˙̄γ/(

p

γ̄2
− 1) beyond

which weak field cosmological general relativity will be changed from Newtonian expectations:
(i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

Relative volume deceleration of expanding regions of
different local density/curvature, leads cumulatively to
canonical clocks differing by dt = γ̄w dτw (→∼ 35%)
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Dressed “comoving distance”D(z)

0

0

0.5
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z
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H D/c
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1

1

0
H D/c

0

0.5

1
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2
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200 400 600 800 1000
z

(i)

(ii)

(iii)

TS model, with fv0 = 0.695, (black) compared to 3 spatially

flat ΛCDM models (blue): (i) ΩM0
= 0.3175 (best-fit ΛCDM

model to Planck); (ii) ΩM0
= 0.35; (iii) ΩM0

= 0.388.
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Clarkson Bassett Lu testΩk(z)

For Friedmann equation a statistic constant for all z

Ωk0
= Ωk(z) =

[c−1H(z)D′(z)]2 − 1

[c−1H
0
D(z)]2

Left panel: CBL statistic from Sapone, Majerotto and Nesseris, PRD 90, 023012 (2015) Fig 8,

using existing data from SneIa (Union2) and passively evolving galaxies for H(z).

Right panel: TS prediction, with fv0 = 0.695+0.041
−0.051 .
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Clarkson Bassett Lu test withEuclid

Projected uncertainties for ΛCDM model with Euclid +
1000 SneIa, Sapone et al, arXiv:1402.2236v2 Fig 10

Timescape prediction (green), compared to
non-Copernican Gpc void model (blue), and tardis
cosmology, Lavinto et al arXiv:1308.6731 (brown).

Timescape prediction becomes greater than
uncertainties for z <∼ 1.5. (Falsfiable.)
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Supernovae systematics
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CMB: sound horizon + baryon drag

0.55 0.60 0.65 0.70
h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ω
M

0

Parameters within the (Ω
M0

,H
0

) plane which fit the angular scale of the sound horizon θ∗ = 0.0104139

(blue), and its comoving scale at the baryon drag epoch as compared to Planck value 98.88 h−1Mpc (red) to

within 2%, 4% and 6%, with photon-baryon ratio η
Bγ

= 4.6–5.6 × 10−10 within 2σ of all observed light

element abundances (including lithium-7). J.A.G. Duley, M.A. Nazer + DLW, Class. Qu. Grav. 30 (2013) 175006
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Planck constraintsDA + rdrag

Dressed Hubble constant H
0

= 61.7 ± 3.0 km/s/Mpc

Bare Hubble constant Hw0 = H̄0 = 50.1 ± 1.7 km/s/Mpc

Local max Hubble constant Hv0 = 75.2+2.0
−2.6 km/s/Mpc

Present void fraction fv0 = 0.695+0.041
−0.051

Bare matter density parameter Ω̄M0
= 0.167+0.036

−0.037

Dressed matter density parameter ΩM0
= 0.41+0.06

−0.05

Dressed baryon density parameter ΩB0
= 0.074+0.013

−0.011

Nonbaryonic/baryonic matter ratio Ω
C0

/ΩB0
= 4.6+2.5

−2.1

Age of universe (galaxy/wall) τw0 = 14.2 ± 0.5 Gyr

Age of universe (volume-average) t
0

= 17.5 ± 0.6 Gyr

Apparent acceleration onset zacc = 0.46+0.26
−0.25
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CMB acoustic peaks, full Planck fit
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MCMC coding by M.A. Nazer, adapting CLASS
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M.A. Nazer + DLW, arXiv:1410.3470
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CMB acoustic peaks: arXiv:1410.3470
Likelihood − lnL = 3925.16, 3897.90 and 3896.47 for
A(H̄dec), W(k = 0) and W(k 6= 0) methods respectively
on 50 ≤ ℓ ≤ 2500, c.f., ΛCDM: 3895.5 using MINUIT or
3896.9 using CosmoMC.

H
0

= 61.0 km/s/Mpc (±1.3% stat) (±8% sys);
fv0 = 0.627 (±2.33% stat) (±13% sys).

Previous DA + rdrag constraints give concordance for
baryon–to–photon ratio 1010ηBγ = 5.1 ± 0.5 with no

primordial 7Li anomaly, Ω
C0

/ΩB0
possibly 30% lower.

Full fit – driven by 2nd/3rd peak heights, Ω
C0

/ΩB0
, ratio

– gives 1010ηBγ = 6.08 (±1.5% stat) (±8.5% sys).

With bestfit values, primordial 7Li anomalous and BOSS
z = 2.34 result in tension at level similar to ΛCDM
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All roads lead to 2 dimensions
Dimensional reduction to 2 dimensions in QG defines
initial conditions

Relational structure: When all relations lightlike
spacetime melts

Idea: effective CMC slice of statistical geometry, and
emergent small scale spacetime geometry is a 3+1
view on initial conditions
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Evolution – Change→ 2 + 2 formalism

N. Uzun + DLW, Class. Quan. Grav. 32 (2015) 165011
Nezihe Uzun, arXiv:1602.07861
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Quasilocal energy

EBY = − 1

8π

∫

S

√
σ (k − k0)

EK = − 1
16π

∫

S

√
σ

(

k2
−l2−k2

0

k0

)

EE = − 1

8π

∫

S

√
σ
√

k2 − l2 − Eref

EKLY =

− 1
8π

∫

S

√
σ

(√
k2 − l2 − k0

)

k2 − l2

↓
Mean extrinsic curvature

↓
Quasilocal Energy!
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Raychaudhuri eqn for worldsheetT
Extrinsic geometry: how worldlines/worldsheets expand

Θ2 f
(

k2 − l2
)

Minimize f
(

k2 − l2
)

→ Equilibrium (arXiv:1506.05801)
General case → Energy exchange (arXiv:1602.07861,
Nezihe Uzun)

Shape Dynamics Workshop, 3 April 2016 – p. 40/42



Marrying with shape dynamics
Kijowski modifies the ADM symplectic 2-form with a
boundary term invariant w.r.t. gauge transformations
that do not move 2-D boundary

ω =
−1

16π

∫

V

δgij ∧ δP ij +
1

8π

∫

δV
δλ ∧ δα

λ ≡
√

det gA,B, A,B = 2, 3 volume density on S;

sinh α = g01/
√

g00g11 gives tilt between 3-D spacelike
hypersurface and 2 + 1 worldtube of S
Using EK−L−Y as boundary charge

H =
1

16π

∫

V

√
g

(

NH + NkHk

)

− 1

8π

∫

∂V

√
σ

(

√

k2 − l2 − k0

)

Need 2 + 1 + 1 version of Shape Dynamics
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Conclusion and Challenges

Einstein: “In a consistent theory of relativity there can be no
inertia relatively to ‘space’, but only an inertia of masses
relatively to one another.”

I propose the CEP as a step towards realizing Mach’s
principle in general relativity, as a limiting principle
which outlaws Gödel’s universe and other craziness

Spacetime does not exist separately from matter but is
a causal relational structure between things

The Universe started 2-dimensional when all particles
were massless and all relationships lightlike

3-dimensional spatial conformal invariance of a
statistical geometry under quasilocal dimensions should
emerge, as well as Einstein geometries
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