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and Michael Stiassnie 

Department of Civil Engineering, Technion-Israel Institute of Technology, Haifa, Israel. 

Multiple forms for standing waves in deep water periodic in both space and time are 

obtained analytically as solutions of Zakharov's equation and its modification, and investigated 

computationally as irrotational two-dimensional solutions of the full nonlinear boundary value 

problem. The different forms are based on weak nonlinear interactions between the fundamental 

harmonic and the resonating harmonics of two, three, ... times the frequency and four, nine, ... 

respectively times the wavenumber. The new forms of standing waves have amplitudes with 

local maxima at the resonating harmonics, unlike the classical (Stokes) standing wave which is 

dominated by the fundamental harmonic. The stability of the new standing waves is investigated 

for small to moderate wave energies by numerical computation of their evolution, starting from 

the standing wave solution whose only initial disturbance is the numerical error. The instability 

of the Stokes standing wave to sideband disturbances is demonstrated first, by showing the 

evolution into cyclic recurrence that occurs when a set of nine equal Stokes standing waves is 

perturbed by a standing wave of a length equal to the total length of the nine waves. The cyclic 

recurrence is similar to that observed in the well known linear instability and sideband modulation 

of Stokes progressive waves, and is also similar to that resulting from the evolution of the new 

standing waves in which the first and ninth harmonics are dominant. The new standing waves 

are only marginally unstable at small to moderate wave energies, with harmonics which remain 

near their initial amplitudes and phases for typically 100-1000 wave periods before evolving 

into slowly modulated oscillations or diverging. 

1. Introduction

Standing waves may be generated at the free surface of deep water contained between 

two parallel vertical walls. The most important feature is that their spectrum with respect to the 

coordinate perpendicular to the walls is discrete, with wave numbers which are integral multiples 

of 1r / £, where f is the distance between the walls. If they are also periodic in time we describe 

them as pure standing waves, in contrast to standing waves which are evolving in time. 
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Although Stokes investigated nonlinear progressive waves in the middle of last century, it 

appears that it was not until Rayleigh (1915) presented the third order theory that investigations 

of nonlinear standing waves at the free surface of deep water have been reported. Penney & 

Price (1952) extended Rayleigh's method to the fifth order and applied it to a postulate that the 

stable standing wave of greatest height has a crest of right-angled nodal form. Taylor (1953) 

tested the results of Penney & Price experimentally, showing reasonable agreement with their 

conclusions although he disagreed with parts of their arguments. Saffman & Yuen (1979) used 

a numerical scheme which calculates the evolving position of the free surface to obtain wave 

profiles consistent with those predicted by Penney & Price and observed by Taylor. It is noted 

that the standing waves observed by Taylor and calculated by Saffman & Yuen are not pure 

standing waves. The different forms of standing waves described in the present investigation are 

pure standing waves, although in addition we do calculate time evolution properties of them. 

Schwarz & Whitney (1981) and Rottman(1982) developed high order expansions which 

were summed with the assistance of Pade approximants, with the aim in both investigations 

of understanding the approach to the wave of greatest height. The present investigation is 

restricted to standing waves of small to moderate heights. Mercer & Roberts (1992) also studied 

steep standing waves using a distribution of vortices on the water surface, in a semi-Lagrangian 

approach. All of the above authors restricted themselves to pure standing waves with a Stokes 

ordering of harmonic amplitudes. Rottman (1982), however, indicated the possibility of different 

solutions with a different ordering of harmonic amplitudes, but did not pursue it in detail. 

Glozman et al (1993) and Agnon et al (1992) derived and used a recursive high order 

Hamiltonian formulation of the water wave problem to study standing waves. Glozman et 

al focussed their computation on the interaction of the fundamental harmonic with the fourth 

harmonic in pure standing waves. They found, in addition to the Stokes type of wave, four new 

waves in which the fourth harmonic is comparable to the fundamental harmonic. Agnon et al

investigated all five waves (which they denoted S, A, B, C and D) using 12 to 20 harmonics, and 

found that all exist to high order. In the present investigation, we study the existence, stability, 

and long time behaviour of these and other new standing waves. 

Okamura (1984) used Zakharov's equation, which is correct to the third order, to make 

calculations of the linear stability of pure standing waves with the Stokes ordering of harmonic 

amplitudes. The regions of instability of these waves to two- and three-dimensional standing 

wave disturbances were found. Although the mathematical description is consistent and the 

calculations at the lower wave steepnesses appear to be correct, there is a degree of abstraction 

in allowing the standing wave disturbances to have a continuous spectrum, unrelated to the 

discrete spectrum of the standing waves themselves. Also, the third order theory is not valid 

at the higher wave steepnesses considered. Stiassnie and Shemer (1984) modified Zakharov's 
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equation in extending it to the fourth order. We use their improved formulation to find the 
regions of linear instability applicable to the different standing waves considered below. 
2. Theory

2.1 Background 
The equations governing the irrotational motion of waves on the free surface of deep water 

are 
'12</J = 0, z � r,(x, t),

'T/t + \Jcp.\JfJ - {pz = 0 } {pt+ �(\Jcp)2 
+ gz = 0 ' Z = 'TJ(X, t), 

IV </JI --+ 0, z --+ -oo, 

(2. la) 

(2. lb) 

(2.lc) 

where cp(x, z, t) is the velocity potential, r,(x, t) is the displacement of the free surface and g

the gravitational acceleration. The horizontal coordinates are x = (x, y), the vertical coordinate 
z is pointing upwards, and t is time. 

When initial conditions are given in terms of fJ(X, 0), </J(x, r,(x, 0), 0), the problem can be 
transformed into an evolution equation in the Fourier plane 

i �� = l3(k, t) + l4(k, t) + l5(k, t) + ... (2.2) 
The new dependent variable B(k, t) is a free component of the wave field (as distinct from the 
bound components defined below), and /3, l4, Is, ... are integral operators representing quartet, 
quintet, sextet, ... , nonlinear interactions respectively. 

The leading term /3 on the right side of (2.2) was first derived by Zakharov (1968), the 
higher order term /4 by Stiassnie & Shemer (1984), with 

l3 = j j j TJ�i,2,3BiB2B38(k + k1 - k2 - k3)ei(w+wi-w2-w:i)tdk1dk2dk3, (2.3a) 
-oo

-oo
(2.3b) 

+Uf{,2,3,4BiB2B3B48(k + k1 + k2 - k3 - k4)ei(w+wi+w2-w:i-w4)t }dk1dk2dk3dk4,
where a compact notation is used in which the arguments ki are replaced by the subscript i

and the subscript zero is assigned to k. The frequency w is related to k through the linear 
dispersion relation w(k) = (glkl)1/2• The kernels TJ;i,2,3, uJ;i,2,3,4, ... , as well as other kernels
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to appear subsequently, are given in Stiassnie & Shemer (1984). The asterisk denotes the
complex conjugate. The component B(k, t) is related to the Fourier transform (denoted by A)
of 77(x, t) and of the velocity potential at the free surface, </J8(x, t) = </J(x, 77(x, t), t), through
b(k, t) where

and

( ) 
1/2 

ry(k, t) = � [b(k, t) + b*(-k, t)],

J8(k, t) = -i (fw) 112
[b(k, t) - b*(-k, t)],

b(k, t) = [B + B, + B11 + B,,, + ... ] e-iw(k)t.

(2.4a)

(2.4b)

(2.4c)
The quantities B1 , B11 , ... , are the bound components of the wave field, which are given in
terms of B by equations such as

-oo

(2.5)

We consider two dimensional standing waves (independent of y) in the present investigation,
in a deep tank with walls at x = O, £. The end conditions are

<Px(O) = <Px(f) = O, (2.6)

and B(k, t) has the discrete structure

B(k, t) = L Bm(t)[8(k - mki) + 8(k + mki)], (2.7)
m=l

where k = 1r / £ and i is the unit vector in the x-direction. The upper bound M is set to ensure
that the sum stays within the gravity wave regime.

2.2 Linear and weakly nonlinear theory 

The general solution of the linearized two dimensional version of (2.1) or (2.2) with the
end conditions (2.6) is

'T/ = L amcos(mkx)cos [(mgk)112t +rm],
m=l

(2.8a)
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M 

<P = L -(�
k
) 112 

amemkz cos (mkx) sin [(mgk) 112t +Tm]. (2.8b) 
m=l 

Each of the terms in (2.8a) is afree component, with amplitude am and phase Tm , The steepness 
mkam of each free component is of order€� 1 to justify the use of weakly nonlinear theory. 

The general series (2.8a,b) consist of standing waves with a common wavelength 2£ and a 
range of periods. We focus here on standing waves for which the motion is strictly periodic 
in time with a period T where T = 2(1rf/g) 112, which we call pure standing waves. They are 
obtained when am = 0 for all m except when m = n2, n = 1, 2, ... , and are given by 

'r/ = L an2 cos (n2kx) cos [n(gk) 112t + Tn2], 
n=l 

� 1 (g) 1/2 2k 2 [ 
1/2 ] 

<P = 6-n k 
an2en z cos (n kx) sin n(gk) t + Tn2 . 

n=l 

(2.9a) 

(2.9b) 

A large variety of standing waves of this type is possible because of the large range of possible 
values for an2 and Tn2· 

Weakly nonlinear interactions produce standing wave solutions containing the series (2.8a,b) 
(or (2.9a,b)) except that am and Tm are functions of the slow times tp = €Pt, p = 2, 3, ... . The 
weakly nonlinear solutions also include the bound components composed from double, triple, 
... products of the free components. For weakly nonlinear pure standing waves to exist with 
a strict periodicity like their linear counterpart (2.9a,b), it is necessary that an2 is independent 
of time and that T n2 has a specific time dependence. This constraint imposes selection criteria 
for an2 from the third order theory and for T n2 from the fifth order theory, which are derived 
in §§ 2.3 and 2.4 respectively. 

The above weakly nonlinear standing waves also have slowly varying forms in which an2 
and Tn2 are functions of the slow times, tp = €Pt, p = 2, 3, ... . Side-band instability which 
brings in the components am for m = n2 ± 1, n = 2, 3, ... produces slowly varying standing 
waves of this type. This phenomenon is discussed in §2.5. 

2.3 Third order (Zakharov's) theory 

We consider weakly nonlinear pure standing waves containing three free components for 
which 

B(k,t) = LBn2[o(k-n2ki) +o(k+n2ki)] (2.lOa) 
n=l 

where 

(2.lOb) 
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and An2, n, </Jn2 are all real constants with An2 > 0. The period of this standing wave is 

T - 21r (2.11)-
(gk)112 + n. 

We set <Pl = 0, without loss of generality. 
Substitution of (2.10) into (2.2) with I

p 
= O, p > 3 (Zakharov's equation) yields 

OA1 = [(T1111 + 2T1111)Ay + 2(T1414 + T1414)Al + 2(Trnrn + T1010)A�]A1 

20A4 = [2(T4141 + T4141)At + (T4444 + 2T4444)Ai + 2(T4040 + T404o)Afi] A4 
+2T4401A1A4Aoe-i(29'4-'i'o),

30Ao = [2(Torn1 + J'.q101)At + 2(T,q404 + Tg4.g4)Ai + (Toooo + 2Toooo)A§]Ao 
+2To144A1Alei(2q',4-,po).

The subscript notation is best explained by the example 

7'.qJ44 = T(9ki, -ki, 4ki, 4ki). 

(2.12a) 

(2.12b) 

(2.12c) 

Most of the coefficients in the above system (2.12) are either zero or cancel each other, leaving 
the substantial simplification 

(2.13a) 

(2.13b) 

(2.13c) 

The standing Stokes wave is a solution of (2.13) if A4 = Ao = 0, when the well known 
result is obtained 

This derivation uses the relation 

from Stiassnie & Shemer (1984). 

a2 = 2 (mk) 1/2 A;
m 

g 7r2 

The system (2.13) admits four additional nontrivial solutions. 

(i) For Ao = 0, elimination of n between (2.13a) and (2.13b) gives 

with n the same as in (2.14). 
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(ii) For A4 = 0, elimination of n between (2.13a) and (2.13c) gives

with n the same as in (2.14 ).

( )2 
Ao 1 an 1
A1 =243' a1=9 (2.16)

(iii)Equations (2.14), (2.15), and (2.16) remain valid for the more general case in which all three
waves coexist. This result is easily generalized for N > 3.

(iv) Another solution is possible for A1 = 0. Elimination between (2.13b) and (2.13c) for this
case yields

8k3 
1/2 2

n = --2 Ai= -2(gk) (ka4 ) , 7r (2.17a)

(2.17b)

Zakharov's equation, containing the lowest significant order of nonlinearity, enables specific
values to be obtained for the wave amplitudes an2· It does not provide any information about the
phases ¢n2, For this, it is necessary to go to higher nonlinearities using the modified Zakharov
equation and its extensions.
2.4 Higher order nonlinearity 

Substitution of (2.10) into (2.2) with Ip= 0, p > 4 (modified Zakharov's equation) yields
_ 3 (2) -it/,4 (3) (3) it/,4 3 k3 

[ ( ) ] f2A1 - -47r2A1 + U14Hie + U111I4 + U1114I e A1A4,

729k3 

3nAo = - 41r2 A3.

(2.18a)

(2.18b)

(2.18c)
Note that at this order of nonlinearity and for the three chosen components A1, A4, Ao, there is
no additional coupling between the component Ao and the other two. The new coupling between
A1 and A4 could in principle prcxluce information about the phase </>4 and produce a correction
to (2.15). However, the numerical values for U��in, uiii

il
' u�fir4, u�fi

4r are extremely small
(within the round-off error of our computation), so that the contribution of the new terms to the
right side of (2.18) is negligible, if not zero.

The sextet nonlinear interaction term, Io, in (2.2) has a similar structure to that of l3 and J4
in (2.3a,b), with unknown real kernels which we denote by Qo,1,2,3,4,5· This order modifies the
structure of the system (2.18). An important part of the modification arises from the term

(2.19)
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on the right side of (2.18b). A necessary condition for a pure standing wave is therefore 

2(/)4 = m1r, m = 0, ±1, ±2, ... , (2.20) 

which yields four different solutions having <p4 = O, J, 1r, ¥, which we denote by standing

waves SA, SB, SC, SD respectively. (The letter S indicates that the amplitude a1 has a value 

comparable with that for the Stokes standing waves, and the second letter follows the notation 

of Agnon et al for the value of <p4.) 

These different types of standing waves were first described by Agnon et al (1992). For 

A4 = O, Ai, Ao =f:. 0 only the two types of standing waves for which <pg = 0, 1r are found 

to occur, and are denoted by standing waves SNA, SNC respectively. (The letter N indicates 

that the amplitude a4 is almost null.) We use numerical solutions of the full nonlinear wave 

problem in order to calculate these and other new forms of nonlinear standing waves and to 

investigate their stability. 

2.5 Linear stability 

The linear stability of the new waves to small disturbances at adjoining wavenumbers is 

studied next. Two cases are considered. 

(i) Class I instability of the wave having components A1 and Ao with disturbances at kB = Bk

and k10 = lOk. This instability has the time scale t2 = e2t. The governing equations are

, dB8 _ rr, B* B2 -i(2wo-WH-W1o)t
i --;ft - .L 8 10 !JO 10 g e , (2.2la) 

(2.21b) 

where Bo is given by (2.lOb) with (2.14a,b) and (2.16). Following Stiassnie & Shemer 

(1984) or Okamura (1984), the range of steepness for instability, which is found to be 

independent of <pg and thus the same for the standing waves SNA and SNC, is given by 

0.0812 < ka1 < 0.3239. (2.21c) 

(ii) Class I combined with Class II instability of the wave having components A1 and A4

with disturbances at k3 = 3k and k5 = 5k. This instability has the time scale t3 = e3t

approximately. The governing equations are

i dB3 
= 

T.
1544

B* B2e-i(2w4-w:i-w.-,)t+ (u<�2 + u<�) _ + u<�) -)B* B4B2e-i(2w1 +w4-w:i-w;;)t 
dt • ' 5 4 35411 35141 35114 5 1 '

(2.22a) 
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i dB5 = T5344B* B2e-i(2w4-Wa-w;;)t+ (u(�) __ + u(�l _ + u(�L ) B* B4B2e-i(2w1+w4-wa-w;,)t 
dt • 3 4 53411 53141 53114 3 1 ' 

(2.22b) 
where B1 and B4 are given by (2.lOb) and (2.14a,b), (2.15). The range of steepness for 
instability depends on <P4· The standing wave SA is found to be unstable for 

0.2031 < ka1 < 0.3354, (2.22c) 

the standing wave SC for 

0.1844 < ka1, (2.22d) 

and the standing waves SB and SD are always unstable. 

Both systems (2.21) and (2.22) represent cases of near-resonant interaction. 

3. Computation

3.1 Governing equations 

The dimensional quantities of the previous section are all made nondimensional for the 
purpose of computation. Lengths are made nondimensional with respect to ffrr, where f is the 
distance between the vertical walls, so that the standing wave motion talces place between the 
vertical planes x = 0 and x = 1r. Times are made non-dimensional with respect to the inverse 
of the lowest linear frequency (1rg/£) 112• The displacement of the water surface is written 
z = ry(x, t) and the water motion is assumed to be irrotational with the non-dimensional velocity 
potential </J(x, z, t). This satisfies Laplace's equation 

<Pxx + <Pzz = 0, Z :::;; 'f/, (3.la) 

with <Px = 0 on x = 0 and x = 1r, and <Pz -t Oas z -t -oo. The nonlinear boundary conditions 
on the water surface are the kinematic condition 

and the dynamic condition 

'r/t - <Pz + 'r/x<Px = 0 on z = TJ, 

1 ( 2 2)'Pt+ 1J + 2 'Px + 'Pz = 0 on z = 17. 

(3.lb) 

(3.lc) 

One of the simplest nonlinear solutions is that for two-dimensional pure standing waves.

Their Fourier series expansions (before truncation) are 

L cos mx ( amn cos nwt + bmn sin nwt), m + n even, (3.2a) 
m=l n=mmod2 
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and 

00 

L cos mx emz ( Cmn cos nwt + dmn sin nwt), m + n even, (3.2b) 
m=l n=mmod2 

where the coefficients amn, bmn, Cmn , dmn are constants, and w ("' 1) is the nonlinear frequency 

of the fundamental hannonic. The constraint that m+n is even is a consequence of the invariance 

of r, and </> when x and wt are both changed by 7r.

A number of measures of the nondimensional standing wave amplitude have been used 

previously. Solutions of Zakharov's equation have often used the steepness of the fundamental 

hannonic, a11, while Schwartz and Whitney (1981) use half of the nondimensional wave height 

at t = 0, which in the present notation is 

00 00 

esw = I: I: amn, m, n odd.
m=ln=l 

(3.3) 

In order to reflect the fact that the present standing waves can have hannonics with local 

amplitude maxima at other than the fundamental hannonic, with phases different from that 

of the fundamental hannonic, the nondimensional root mean energy is chosen as the measure 

of wave amplitude. It is 

( 1r 
) 1/2 

• = ! / (¢,(x,�,t): 
+ �·)dx (3.4) 

(West (1981), pp32-4), which is independent oft because of the conservation of energy. Note 

that e ,...., a11 in the linear limit of a standing wave at the fundamental hannonic (with phase 

zero) only. 

3.2 Pure standing wave solutions (fixed point method) 

When the Fourier series (3.2a,b) are substituted into (3.lb,c), denoted by F = 0, G = 0 

respectively, the resulting equations may be rewritten 

00 00 

F=L L cosMx(AMNCosNwt+BMNsinNwt)=O, M+Neven, (3.Sa)
M=l N=Mmod2 

and 

00 

G=L 
00 

L cosMx (CMNCosNwt + DMNSinNwt) = 0, M + N even, (3.Sb)
M=l N=Mmod2 

where the coefficients AM N, BM N, CM N, D MN are functions of the coefficients amn, bmn, Cmn ,

dmn and the frequency w .  The function dependence could be found, but this is unnecessary for 

the calculation of numerical solutions. The Fourier series (3.2a,b) are also substituted into the 
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normalising equation (3.4) rewritten to the left side, which is then denoted by H = 0, and is 

a function of amn, bmn, Cmn, dmn and w also. This description assumes the usual calculation in 

which the root mean energy € is given and the quantities amn, bmn, Cmn, dmn and w have to be 

found for a particular family of standing wave solutions. It talces only a simple re-ordering of 

the method if, instead, one of the latter quantities is given and € is included among the quantities 

that have to be found. 

Particular numerical values for the coefficients amn, bmn, Cmn, dmn and w are inserted into 

truncated versions of the Fourier series (3.2a,b), the series are substituted into (3.lb,c), (3.4) over 

an array of points in x and t, and numerical values of the coefficients AM N, BM N, CM N, D MN 

are calculated from truncated versions of (3.5a,b) by the fast Fourier transform method. The 

partial derivatives of AMN,BMN,CMN,DMN with respect to amn,bmn,Cmn,dmn and ware 

calculated numerically by the same method, and the Jacobian is formed from these derivatives 

and from the partial derivatives of H. The numerical values of amn, bmn, Cmn, dmn and w are 

improved then by Newton's method until AMN,BMN,CMN,DMN,H are as close to zero as 

is required (typically 10-5). At the same time, the number of terms included in the truncated

series may be increased until the residuals in (3.5a,b) from terms not included are also as close 

to zero as is required. 

The calculations are started when € is sufficiently small that the coefficients 

amn, bmn, Cmn, dmn may be given by linear values with w = 1 as an initial approximation. 

Each solution for the coefficients is then used as an initial approximation to the next solution as 

€ is increased. The method of solution described above has evolved from one developed origi­

nally for three-dimensional permanent waves on deep water (Bryant, 1985). The generalization 

of the method to calculations of the nonlinear time evolution is described next. 

3.3 Non-periodic standing waves (time evolution method) 

The displacement, TJ(x, t), and velocity potential, </J(x, z, t), are expanded now in Fourier 

series in x, with Fourier coefficients dependent on t, to yield (before truncation) 

and 

00 

TJ = L am(t)cosmx,
m=l 

(3.6a) 

<p = L bm(t) emz cosmx. (3.6b) 
m=l 

When the Fourier series (3.6a,b) are substituted into (3.lb,c), these equations may be rewritten, 

following (3.5a,b), in the form 

00 

F = L AM(t) cosMx = 0,

M=l 

11 
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and 
00 

G = L BM(t) cosMx = 0,

M=l 

(3.7b) 

where the coefficients AM ( t), BM ( t) are functionals of a M ( t), b M ( t). Each of the coefficients, 
AM( t), BM( t), when equated to zero, is an implicitly-defined, first order, nonlinear, ordinary 
differential equation for the corresponding Fourier coefficient of (3.6a,b) in terms of all Fourier 
coefficients of (3.6a,b). It is extracted numerically from (3.7a,b) by the fast Fourier transform 
method. The set of differential equations obtained by equating all coefficients AM(t), BM(t) to 
zero is solved numerically using an integrator devised for initial value problems in stiff systems of 
implicit, ordinary differential equations (NAG subroutine D02NGF), with a local error tolerance 
of 10- 11• The differential equations are implicit because the exponential multipliers in (3.6b) 
are evaluated on the surface given by (3.6a). 

The root mean energy (3.4) is calculated regularly as a check on the computation. In a 
number of the examples, the nonlinear interactions between the harmonics cause a slow transfer 
of energy to the higher harmonics. This results in a buildup of energy in the truncation harmonics, 
causing the total energy to increase and the calculations to fail. It is only a partial remedy to 
include more harmonics because it may only postpone the failure, and it may introduce rounding 
errors from the exponential multipliers in (3.6b) at large wave numbers. 

The Fourier amplitudes calculated in (3.6a,b) evolve in fast time. These Fourier expansions 
are interpreted more easily if the fast time variation is removed by Fourier decomposition over 
each fundamental period 21r / w, to yield (before truncation) 

and 

00 00 

T/ = L Lamn(t) cosmx cos (nwt + Omn(t)), 
m=l n=O 

00 00 

</> = L L Cmn (t) cos mx emz cos (nwt + 'Ymn(t)), 
m=l n=O 

(3.8a) 

(3.8b) 

where the amplitudes and phases are now functions of slow time. (It should be noted that the 
amplitudes amn , Cmn defined in (3.8a,b) differ from those defined in (3.2a,b) unless the phases 
are all zero.) 

The nonlinear time evolution calculations are used to investigate the stability of pure standing 
wave solutions because they do not make the constant amplitude and phase assumptions implicit 
in linear stability analyses. The time evolution calculations are based on a numerical method 
independent of that used for the fixed point calculations, so that consistency between the 
properties obtained from the two sets of calculations increases confidence in both. 
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4. Standing wave examples

4.1 Standing waves with Stokes ordering 

The pure standing waves calculated originally by Rayleigh (1915), and improved to high 

order by Schwarz & Whitney (1981), have an ordering of harmonic amplitudes similar to that 

of the Stokes progressive waves, and are named below as Stokes standing waves (denoted by 

S). The amplitudes decrease monotonically, in general, as their wave number m and frequency 

nw increase. 

The fixed point computational method (§3.2) converges rapidly to the Stokes standing wave 

solutions with high numerical precision (error< 10-10), up to€= 0.2. Solutions at larger values

of f are not included here because of the convergence difficulties associated with the exponential 

multipliers in (3.2b) at high wave numbers. By choosing the time origin so that the phase of 

the fundamental harmonic 011 is zero, all the Fourier sine coefficients in (3.2a,b) are also zero. 

The frequency w, expanded as a polynomial in the fundamental amplitude au over the range 

0 < e < 0.2 (using the NAG subroutine E02ADF), is found to be 

w = 1.000000 - 0.1250ar1 - 0.04a11 + ... (4.la) 

correct to 6 decimal places. The leading terms are consistent with (2.11) and (2.14a), and 

the corresponding expansion for 1/w2 in terms of esw (defined in (3.3)) agrees with Schwarz 

& Whitney, equation (3.2), to 6 decimal places. For the purpose of comparison with later 

expansions, the amplitude a42 is given by 

a42 = 0.19a11 - O.la�1 + ... , (4.lb) 

correct to 6 decimal places. 

Although the Stokes standing waves are generally regarded as being stable at small to 

moderate amplitudes, they are unstable to subharmonic disturbances such as those described 

in (2.21a,b,c). The instability range (2.21c) suggests that if a set of 9 Stokes standing waves 

is generated between the vertical walls, with f = 0.1 for each wave, the set is unstable to

sideband disturbances at wave numbers 8 and 10. Initial conditions were chosen to consist of 

these 9 standing waves perturbed by a disturbance of amplitude 0.01 at wave number 1, and 

their time evolution was calculated to confirm the initial linear instability and to find the form 

of the evolving standing wave motion. 
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Figure 1. The sideband modulation of a set of 9 Stokes standing waves, where e = 0.1 

for each. The cyclic recurrence in slow time results from the instability of the Stokes standing 

waves to a subharmonic disturbance. The fundamental amplitude a93 of each of the original 

standing waves is at the top, then in order the two sideband amplitudes a83 and a10 3 are almost 

superposed, followed in order by the sideband amplitudes a113 and a73. 
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The expansions (3.6a,b) are modified to 45 
� 

mx 
1]

= L.i am(t) cos g'
m=l 

45 <p = L bm(t) emz/9 cos �x' 
m=l 

(4.2a) 

(4.2b) 
because the standing wave motion talces place between x = 0 and x = 91r. The fast time variation of the coefficients is removed by Fourier expansion over the corresponding period 61r /w, as in (3.8a,b), to yield 

and 
45 9 ( t ) 17 = �l 

?; amn(t) cos m; cos n; + Omn(t) , (4.2c) 
45 9 ef> = f,_ ?; Cmn ( t) COS ":i" e mz /O COS ( ";

1 
+-l'mn ( t)) , ( 4.2d)

where the amplitudes and phases are now functions of slow time. (The chosen upper limits for the series are a balance between the needs for sufficient numerical precision and sufficient computational speed.) 
The slow time evolution of the Stokes standing waves is illustrated in figure 1, which shows the fundamental amplitude a93 of each of the original standing waves at the top, then in order the two sideband amplitudes aim and a 10 3 almost superposed, followed in order by the sideband amplitudes an 3 and a73. The standing wave system is exhibiting cyclic recurrence, of similarform to that found for Stokes progressive waves (Lake et al (1977)). The system retains its initial Fourier amplitudes for about 100 wave periods while the linear instability gathers strength, then the amplitudes undergo the slow nonlinear modulation described usually as cyclic recurrence. Neither the period nor the amplitude of the nonlinear modulation cycles is constant. Each modulation cycle consists of about 150 wave periods in which the amplitudes remain close to their initial values and about 300 wave periods in which the wave amplitudes change more rapidly. The root mean energy (3.4) decreases by about 1 % over the 2000 wave periods in the figure due to the energy losses at the truncation of the series ( 4.2). 
In order to understand the nonlinear interactions better, the Fourier coefficients am ( t) in 

( 4.2a), calculated in fast time over the complete modulation cycle of length 494 wave periods from period 274 to period 768, are decomposed into Fourier series of period equal to the 494 
wave periods. (This Fourier decomposition, being over the large number 494 x 64 of points, is 
almost equivalent to regarding the frequencies as forming a continuum.) Most of the energy at wave number m = 9 is found to be in a dominant waveband centred on frequency n = 3, as is expected from the initial conditions. However, the energy at the sideband wave number m = 8 is 
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found to be mostly in a dominant waveband centred near the linear frequency w(8) = Jg, rather 

than near the frequencies n = 2 and n = 4 expected from (3.2a,b). The reason for the occurrence 

of the linear frequency is that the dominant sideband wave component is a free component, as 
defined in (2.2), not a bound component such as those in (3.2a,b). Bound components are 
found at this wave number, such as that at the frequency 2w(9) - w(8) = 6 - vrs. but they 
have much less energy than the free component. Most of the energy at the other sideband 
wave numbers m = 7, 10, 11 is also found in the free components with wavebands centred near 
w(m) = rm, m = 7, 10, 11 respectively. 

4.2 Standing waves with resonating first and four th harmonics 

The weakly nonlinear theory predicts that pure standing waves exist for which the first and 
fourth harmonics interact resonantly with the amplitude ratio (2.15) 

a42 1-=-
a11 4 

in the present notation (3.8a,b). The phase a42 relative to the phase au (2.20) may be 
0, 1r /2, 1r, 31r /2, denoted by standing waves SA, SB, SC, SD respectively. The letter S indicates 
that, like the Stokes standing wave, the amplitude a11 is dominant, and the second letter denotes 
the phase a42 relative to an. Standing waves of types SA and SC are described first. 

The fixed point computational method (§3.2) converges rapidly to these standing wave 
solutions with high numerical precision (error< 10-10), up toe= 0.2. Like the Stokes standing
waves, the time origin may be chosen so that all the Fourier sine coefficients in (3.2a,b) are 

zero. In order to check the predictions of the weakly nonlinear theory, the frequency w and 
resonant amplitude a42 are expanded as polynomials in the fundamental amplitude a11 over the 
range O < e < 0.05. They are found to be 

w = 1.000000- 0.1250at1 - 0.08a11 + ... (4.3a) 

correct to 6 decimal places, and 

a42 = 0.25000au - 0.875af 1 =i= O.Ola11 - 0.9at1 + ... (4.3b) 

correct to 6 decimal places, where the upper sign refers to the SA wave and the lower sign 
to the SC wave. The phase a42 ( relative to a11) is zero for the SA waves and 1r for the SC 

waves. The expansions confirm (2.14a) and (2.15), and (4.3b) has important differences from 

the corresponding expansion (4.lb) for Stokes standing waves. Equation (4.lb) begins with the 
fourth power, consistent with the Stokes ordering, while (4.3b) has linear and cubic leading 
terms due to the resonant interaction between the first and fourth harmonics. Apart from the 
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maximum at a42, the remaining hannonic amplitudes for the SA and SC waves lie close to a 

Stokes ordering. 

The stability of the standing waves for root mean energies in the range O < € < 0.2 is 

determined by calculating their long time evolution (§3.3) for up to 10000 wave periods. At 

€ = 0.05, the hannonic amplitudes of both the SA and SC waves stay almost constant over the 

10000 wave periods, but the phase a42 of the dominant fourth component relative to the phase 

a11 of the dominant first component drifts monotonically by more than 1r over the same long 

time. This property is probably associated with the fact that the amplitudes are determined at 

the third order (2.15), but the phases are determined at the fifth order (2.19). 

An unexpected long time behaviour occurs when the root mean energy is increased to € = 0 .1. 

The linear stability analysis for this case (2.22a,b,c) indicates that the standing waves SA and SC 

at this energy are stable. However, the time evolution of wave SA illustrated in figure 2, starting 

from the fixed point standing wave solution with the only disturbance being the initial numerical 

error, shows that wave SA is unstable. It shows also that the amplitudes of its dominant 

hannonics evolve into slow modulated nonlinear oscillations. Further, when the fast time 

variation of the sideband amplitudes in (3.6a,b) is decomposed with respect to one modulation 

period equal to 3160 wave periods (effectively a Fourier decomposition into a continuum of 

frequencies), it is found that the energy in the sideband wave components occurs dominantly in 

wavebands centred near the bound components with amplitudes a31, a33, a51, a53, consistent 

with (3.2a,b). Unlike the sideband modulation in §4.1 or in the system (2.22), the energy in the 

free components of the sidebands does not rise above the background level here. This means that 

the sideband wave components play only a passive role in the nonlinear modulation illustrated in 

figure 2, with the primary nonlinear interaction being that between the dominant resonating free 

components with amplitudes au and a42. We do not have a theoretical model yet to describe 

the instability leading to this nonlinear modulation. 

Another property shown by figure 2 is that the standing wave SA is only marginally unstable. 

The time evolution illustrated in this figure is started from the fixed point standing wave solution, 

with the only disturbance being the initial numerical error. It can be seen that the standing wave 

amplitudes remain near their initial values for about 1000 wave periods before evolving into 

the nonlinear modulated oscillations. Although not shown in the figure, the phases also remain 

constant over the same 1000 wave periods. The root mean energy e decreases by only 0.1 % 

over the 10000 wave periods illustrated in figure 2. 
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Figure 2. The time evolution of the resonant amplitudes au and a42, starting from the 

standing wave SA with € = 0.1. 
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When the root mean energy e is increased further, the nonlinear modulation retains the same 

form as in figure 2 except that the modulation period decreases. Fore> 0.16 approximately, the 

nonlinear energy transfer to the higher harmonics causes the time evolution calculations to fail 

before the nonlinear modulation is established. The SC standing waves follow the same long time 

evolution except that the modulation periods are longer. The modulation period for the standing 

wave SC when e = 0.1 is 4200 wave periods, compared with the 3160 wave periods of figure 2. 

It is not possible to calculate the harmonics of the SB and SD standing waves to the same 

high numerical precision, using the fixed point method (§3.2), as it is for the SA and SC waves. 

When the numerical precision is set so that the error < 10-5, the fixed point method remains in

the neighbourhood of a solution instead of converging to it. This appears to be a consequence of 

the weak dependence of the harmonics on their phases compared with the dependence on their 

amplitudes. The phases are fixed at zero or 1r for the SA and SC waves, but a similar constraint 

is not applicable to the SB and SD waves. There is not sufficient numerical precision to obtain 

meaningful polynomial expansions for the frequency w and the amplitude a42 of the SB and 

SD waves in tenns of the fundamental amplitude a11, However, the precision is sufficient to 

observe that the frequency for the SB and SD waves is found to follow the same curve, within 

a difference less than 10-4, as that for the SA and SC waves over the range O < e < 0.2. Also,

the amplitude ratio a42/a11 for the SB and SD waves lies close to that for the SA and SC waves 

over the range O < e < 0.05 (4.3b), but progressively departs from it at larger e. 

When the long time evolution of the SB and SD waves is calculated at e = 0.05, their 

harmonic amplitudes stays almost constant over the 10000 wave periods of the calculation, 

but like the SA and SC waves at the same value of e, the phase a42 of the dominant fourth 

component relative to the phase a11 of the dominant first component drifts from its initial value 

over the same long time. The SB and SD waves do not evolve into a nonlinear modulation 

of the harmonics at higher values of e like the SA and SC waves, as illustrated in figure 2. 

Instead, for e = 0.1, the harmonics remain constant in amplitude and phase for about 3000 

wave periods, then the calculation progressively fails because the nonlinear transfer of energy to

the higher harmonics causes energy accumulation at the truncation harmonics. The harmonics 

remain constant for about 200 wave periods ate= 0.15, and only for about 30 wave periods at 

e = 0.2, before failure of the calculations. The time intervals over which the wave amplitudes 

remain close to their initial values are of comparable length to those found for the SA and SC 

waves, indicating that all four types of standing waves are of comparable stability. 

4.3 Standing waves with resonating first and ninth harmonics 

The weakly nonlinear theory predicts that pure standing waves exist for which the first and 

19 



ninth hannonics interact resonantly with the amplitude ratio (2.16) 

ag3 1 
a11 =

9 

in the present notation (3.8a,b). The only pure standing waves of this type that have been 
predicted theoretically and found computationally have the values 0, 1r for the phase aoa relative 
to the phase au, These two are denoted by standing waves SNA, SNC respectively. The letter 
S indicates that, as with the Stokes standing waves, the amplitude a 11 is dominant, the letter N 
indicates that the amplitude a42 is almost null, and the third letter indicates that the phase aoa 
relative to 011 is zero or 1r for the two solutions respectively. 

The fixed point computational method (§3.2) converges rapidly to the SNA and SNC standing 
wave solutions with high numerical precision (error< 10-10), up to e = 0.2. Like the Stokes
standing waves, the time origin may be chosen so that all the Fourier sine coefficients in (3.2a,b) 
for the SNA and the SNC waves are zero. The frequency w, expanded as a polynomial in the 
fundamental amplitude au over the range O < e < 0.05, is found to be 

w = 1.000000 - 0.1250at1 - 0.04af1 + ... ,
(4.4a) 

correct to 6 decimal places, for both the SNA and SNC standing waves. The amplitude ag3 
is given by 

aoa = O.lllllau - 1.230at1 ± O.OOlaf1 + ... , (4.4b) 

correct to 6 decimal places, where the upper sign refers to the SNA waves and the lower sign 
to SNC waves. The phase aoa ( relative to au) is zero for the SNA waves and 1r for the SNC 
waves. This expansion confirms (2.16) and has a similar form to (4.3b), with the linear and 
cubic leading terms arising from the resonant interaction between the first and ninth hannonics. 
Apart from the maximum near aoa, the remaining hannonic amplitudes for the SNA and SNC 

waves lie close to a Stokes ordering. 

The stability of the SNA and SNC standing waves for root mean energies in the range 
0 < e < 0.2 is determined by calculating their long time evolution (§3.3) for up to 10000 wave 
periods. At € = 0.05, the harmonic amplitudes of both the SNA and SNC waves stay almost 

constant over the 10000 wave periods, but the phase 093 of the dominant ninth component 

relative to the phase 011 of the dominant first component drifts monotonically by more than 1r

over the same long time. Their long time behaviour at this value of e is almost identical with 
that of the SA and SC waves. 
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Unlike the SA and SC waves, a more predictable long time behaviour occurs when the 

root mean energy is increased to € = 0.1. The linear stability analysis (2.2la,b,c) indicates 

that the standing waves SNA and SNC at this energy are unstable. The time evolution of the 

SNA wave at € = 0.1 is illustrated in figure 3 starting from the fixed point standing wave 

solution, with the only disturbance being the initial numerical error. It can be seen that the 

standing wave amplitudes remain near their initial values for about 250 wave periods before 

evolving into nonlinear modulated oscillations. This initial behaviour is consistent with the 

instability predicted by (2.21c). When the fast time variation of the amplitudes in (3.6a,b) is 

decomposed with respect to one modulation period equal to 301 wave periods (effectively a 

Fourier decomposition into a continuum of frequencies), it is found that the energy in the wave 

components during the modulated oscillations occurs dominantly in wavebands centred near the 

free components with frequencies w(m) = vm, m = 8, 9, 10. The bound components of the 

sidebands which were dominant in the nonlinear modulated oscillations evolving from the SA and 

SC waves (§4.2) have energies which are not much greater than the background level here. There 

are also bound components with small energies generated by the free components, such as those 

at wave number 9 with frequencies near y8 ± 1, v'fo ± 1. The fundamental wave component 

with amplitude an plays a passive role in the nonlinear modulated oscillations evolving from 

the SNA and SNC waves, and remains almost constant over the long time illustrated in figure 

3. This property is in contrast to the nonlinear modulated oscillations evolving from the SA

and SC waves, where it can be seen in figure 2 that the long time evolution of the amplitudes

a 11 and a42 is oscillatory and opposite in phase so that the total energy is conserved. The total 

energy in figure 3 decreases by less than 0.1 % over the 10000 wave periods illustrated. It is 

noted that the nonlinear modulated oscillations evolving from the SNA and SNC waves have a 

similar structure to those evolving from the sideband instability of the set of 9 Stokes standing 

waves with the same value of € (§4.1, figure 1). 

When the root mean energy€ is increased further, the nonlinear modulation retains the same 

form as in figure 3 except that the modulation period decreases. The SNC standing waves follow 

the same long time evolution as the SNA waves, with comparable modulation periods. 

4.4 Standing waves with resonating first, fourth and ninth harmonics 

It was shown in §2.3 that the third order theory not only admits pure standing wave solutions 

in which resonant interactions occur between the two harmonics with amplitudes an, a42 or 

with amplitudes an, a93, but also those in which resonant interactions occur between all three 

harmonics with amplitudes a11, a42, a93. The theory indicates that these standing waves have 

the same frequency relation (2.14a) and the same amplitude ratios (2.15), (2.16) as the other 

two waves. 
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A number of different standing wave solutions of this type have been found by the fixed point 

method (§3.2) and their properties investigated by the time evolution method (§3.3). If the known 

phase relations from the two previous sections are combined, there are in principle 8 different 

solutions of this type. The phase 042 relative to the phase au (2.20) may be 0, 7r /2, 71", 371" /2, 
and the phase a93 relative to the phase au may be O, 1r. The solutions are denoted SAA, 
SAC, SCA, SCC, SBA, SBC, SDA, SDC, with an obvious notation that combines the previous 
notations. The first 4 solutions, in which all phase differences are 0, 7r, have Fourier expansions 

(3.2a,b) with no sine terms. The only solution of the last 4 which has been found with confidence 
is the wave SBC, and its properties are similar to those of the first 4 waves. 

The properties of the wave SAC are described now, as a representative of the above 
5 standing waves. The fixed point computational method (§3.2) converges rapidly to the 

SAC standing wave solutions with high numerical precision (error< 10-10). The polynomial

expansions for the frequency and the resonant amplitudes of the wave SAC over the range 

O < € < 0.05 are 

w = 1.000000 - 0.1250ar1 - 0.09af1 + 
... ,

(4.5a) 

a42 = 0.25000a11 - 0.786af1 + 0.07af1 + 
... ,

(4.5b) 

a93 = O.llllla11 - l.107af1 - 0.07af1 + ... ,
(4.5c) 

all correct to 6 decimal places. The phase a93 ( relative to an) is 7r for the SAC waves. The two 

leading terms of the expansion for w agree with (2.14a), and the leading terms of the expansions 

for a42 and a93 agree with (2.15) and (2.16) respectively. 

The stability of the SAC standing wave for root mean energies in the range O < € < 0.2 is 

determined by calculating their long time evolution (§3.3). At € = 0.05, the harmonic amplitudes 

stay almost constant over the l dOOO wave periods of the calculation, but the phases 042, 093 of 

the dominant components relative to the phase au of the first component drift over the same long 

time. The long time evolution when the root mean energy is increased to€= 0.1 is illustrated in 

figure 4, starting from the fixed point standing wave solution with the only disturbance being the 

initial numerical error. It can be seen that the standing wave amplitudes remain near their initial 

values for about 400 wave periods before evolving into nonlinear modulated oscillations. Their 

subsequent evolution consists of the slow change observed in figure 2 for the amplitudes au and 

a42, superposed on the the faster modulation observed in figure 3 as the amplitude a93 interacts 

independently with the free components in its sidebands. The root mean energy € changes by 

less than 0.1 % over the first 3500 wave periods illustrated, and then by about 0.3% over the last 

1500 wave periods associated with the change in appearance of the modulation. 
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Figure 4. The time evolution of the resonant amplitudes a11, a42 and aoa, starting from the 

standing wave SAC with € = 0.1. 
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When the root mean energy is increased to € = 0.15, the SAC standing wave amplitudes 

remains near their initial values for about 100 wave periods. They then begin nonlinear modulated 

oscillations similar to those in figure 4 except that the modulation periods are smaller. These 

terminate after a further 250 wave periods when the nonlinear energy transfer to the higher 

harmonics causes the time evolution calculations to fail. 

4.5 Standing waves with resonating fourth and ninth harmonics 

The third order theory in §2.3 not only admits pure standing wave solutions in which resonant 

interactions occur between the two harmonics with amplitudes a11, a42 or with amplitudes 

a11, a93, but also those in which resonant interactions occur between the two harmonics with 

amplitudes a42, a93 while the fundamental amplitude a11 remains much smaller. The theory 

(2.17b) indicates that these standing waves have an amplitude ratio 

a93 4 
a42 

= 
g·

The standing wave solutions of this type have been found by the fixed point method (§3.2) 

and their properties investigated by the time evolution method (§3.3). The argument based on 

phases advanced in the previous section indicates that there are in principle 8 different solutions 

of this type. The only 2 solutions of this type that have been found with any confidence are 

denoted by NAC and NCC, where N indicates that the amplitude a11 is almost null, the second 

letter indicates that the phase a42 relative to an is zero or 1r in the two solutions, and the third 

letter indicates that the phase a93 relative to a11 is 1r for both solutions. Although a11 � a42 for 

small€(< 0.05), au increases as € increases, becoming comparable with a42 at about € = 0.1. 

The properties of the wave NAC are described now, as a representative of both standing 

waves of this type. The fixed point computational method (§3.2) converges rapidly to the 

NAC standing wave solutions with high numerical precision (error< 10-10). The polynomial

expansions with respect to a42 for the frequency and for ao3 over the range O < € < 0.05 are 

w = 1.00000 - 2.072a�2 + 5.90a�2 + ... (4.6a) 

a93 = 0.4445a42 - 0.053ai2 + ... , (4.6b) 

correct to 5 decimal places. The phase a93 ( relative to au) is 1r for the NAC waves. 
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Figure 5. The time evolution of the amplitudes a42 at the top of the figure, a93 next, and 

au (which is so close to zero that it is barely visible at the bottom of the figure), starting from 

the standing wave NAC with € = 0.05. 
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Better agreement with the weakly nonlinear theory is found with the corresponding relations 

at E = 0.001, which are 

w = 1.00000 - 2.0000a�2, (4.6c) 

aos = -0.44446a42. (4.6d) 

Equation ( 4.6c) agrees with (2.17 a) and ( 4.6d) agrees with (2.17b ). 

The stability of the NAC standing wave for root mean energies in the range O < E < 0.1 is 

determined by calculating their long time evolution (§3.3). Because the amplitude au is much 

smaller than previously, it is necessary to choose the root mean energy E to be smaller than in 

the previous examples so that the other resonant amplitudes have values comparable with those 

chosen previously. For this reason, the value chosen for the long time evolution illustrated in 

figure 5 is only E = 0.05. It can be seen that the standing wave amplitudes remain near their 

initial values for about 100 wave periods before evolving into nonlinear modulated oscillations. 

Their subsequent evolution is similar to that illustrated in figure 3. The amplitudes au and a42 

are almost passive, while the amplitude aos interacts independently with the free components 

in its sidebands. The root mean energy E changes by about 0.8% over the 400 wave periods 

illustrated, but remains constant over the initial 100 wave periods while the standing wave stays 

near its initial amplitudes. 

When the root mean energy is increased to E = 0.1, the NAC standing wave amplitudes 

remain near their initial values for about 20 wave periods before the nonlinear energy transfer 

to the higher harmonics causes the time evolution calculations to fail. 

5. Summary and Discussion

The Stokes standing wave S was the only known pure standing wave until Agnon et al

(1992) found four new waves, denoted by us SA, SB, SC, and SD. In the present paper we have 

studied these four new waves, and presented nine additional different forms of pure standing 

waves, namely SNA, SNC; SAA, SAC, SCA, SCC, SBC; NAC, NCC. This is not expected to 

be a complete list, and we discuss the rather peculiar combination SAAA . . . below. 

The agreement between our two approaches: (i) weakly nonlinear theory, and (ii) fully 

nonlinear computation, ensures that these solutions are genuine. We have shown that the solutions 

are not less stable than the original Stokes standing waves, and thus deserve attention in future 

investigations and applications. For example, the Fourier amplitudes of the standing wave SA 

in figure 2 remain close to their initial values for over 1000 wave periods before they evolve 

into a slow modulation. The sideband modulation is of special interest because it exhibits the 
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same form of cyclic recurrence as the Stokes progressive waves. The question of the conditions
for the generation of the new standing waves in a more realistic forced and damped system is
an important objective for a future study.

The presence of significant higher harmonics in the new standing waves becomes of greater
importance for the water surface slope and acceleration. This is demonstrated with an exaggerated
extension (ignoring surface tension and viscosity) to a possible wave SAAA . . . . The free
surface of this 'wave' is

T/ = a1 f :
2 

cos ( n2kx) cos [n(gk )112t],
n=l 

(5.1) 

obtained as a generalization of combining (2.9a) with (2.15), (2.16). The energy of this 'wave'
is approximately

(5.2)

which is only about 8% greater than the energy of the fundamental harmonic given in parentheses.
However, the vertical acceleration of the free surface (- 82

ry/8t2) diverges almost everywhere.
The geometry of T/ at any given time is rather complicated. At t = 0, it takes the form of
Riemann's continuous but nondifferentiable function (Mandelbrot (1982))

(5.3) 

which can be shown to be a multifractal function with a dimension � 1.15.
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