
Computer Controlled Multi-Axis Robot

By

Jeffery L C Yang

A thesis submitted in

Partial fulfilment of the requirements for

The Degree of Masters of Engineering

In the

Department of Mechanical Engineering

University of Canterbury

Christchurch, New Zealand

August 2000

To the roving memories of My (jratuf !fathe" .9lJi (jong

ABSTRACT

The Real-Time Linux operating system was evaluated for implementing real-time digital

controllers. Real-Time Linux is flexible and easy to program compared to ordinary digital

controllers such as Digital Signal Processor (DSP) and micro-controller. Real-Time

Linux was successfully used to control a single-axis hydraulic test rig and a Unimate

2000B six-axis hydraulic robot. Real-Time Linux proved capable of running a six-axis

digital controller using floating-point calculations. On a 486-66 MHz Personal Computer

(PC), a controller sampling time of 1 ms required less than half the available computation

time.

The direct and inverse robot kinematics was based on the Denavit-Hartenberg parameters

and a straightforward PID six-axis controller proved capable of basic path control. While

more sophisticated robot controllers and dynamic compensation would require additional

computation power, experiments have shown that they can still be run on the Real-Time

Linux system.

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor Dr. Reg Dunlop for suggesting the use of

Real-Time Linux for digital control. I am extremely grateful to Andy Cree, for his

invaluable technical assistance and insight into hardware and software.

Many thanks to Ra Cleave for his help and advice on the Linux operating system and to

Dr. Andrew Lintott for pointing out my problem on the kinematics of the Unimate

2000B. Thank you to Dr. Ian Huntsman who installed the first Real-time Linux kernel on

my machine and to David Haywood for his insights into the C programming language.

To my brother Terence and flatmate Carolyn, thank you for your support in every way

and for being the stable part of my life for the pass two years. Thank you to Tony for

being there and overall, being such a great friend.

Finally, My utmost admiration to the Real-Time Linux and Linux community. Thank you

for your hard work into creating such a brilliant FREE computing environment.

TABLE OF CONTENT

CHAPTER 1- INTRODUCTION ... 1

1.1 BRIEF DESCRIPTION OF PROJECT .. 1

1.2 WHY USE REAL-TIME LINUX? ... 2

1.3 UNIVERSAL PULSE PROCESSOR CARD ... 3

1.3.1 Pulse Width Modulation .. 4

1.3.2 Quadrature Encoder ... 5

CHAPTER 2- REAL TIME LINUX .. 7

2.1 INTRODUCTION .. 7

2.2 COMMUNICATION BETWEEN LINUX AND RTL .. 9

2.3 INTERRUPT LATENCY FOR FLOATING POINT PROCESSING 11

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG ... 13

3.1 INTRODUCTION .. 13

3.2 HARDWARE OF THE SINGLE-AXIS TEST RIG .. 14

3.2.1 Hydraulic Actuator .. 14

3.2.2 Spool Valve .. 14

3.2.3 Position Transducer ... 14

3.2.4 Load ... 15

3.2.5 Hydraulic Pump ... 15

3.3 PERFORMANCE SINGLE AXIS TEST RIG ... 15

3.4 SOFTWARE DESIGN ... 17

3.4.1 Software Design in RTL .. 17

3.4.2 Compiling the Software ... 22

3.4.3 Header Files ... 22

3.5 USING THE SOFTWARE ... 22

3.6 CONTROLLER PERFORMANCE ... 24

3.6.1 Implementation of a PID controller on RTL ... 24

3.6.2 Implementation of an Observer Based controller on RTL 25

CHAPTER 4- MANIPULATOR KINEMATICS .. 27

4.1 INTRODUCTION .. 27

4.2 DENA VIT -HARTENBERG (D-H) NOTATION .. 28

4.3 X-Y-Z Fixed Angles ... 30

4.4 KINEMATICS OF UNIMATE MODEL 2000B ... 31

4.5 INVERSE KINEMATICS .. 35

4.5.1 Solving the Inverse Kinematics equation .. 36

4.5.2 Multiple Solutions to Inverse Kinematics ... 37

4.6 MANIPULATOR HARDWARE ... 38

4.6.1 Manipulator Hydraulics ... 38

4.6.2 Manipulator Safety Measures .. 39

4.6.3 The Circuit Board .. 39

4.6.4 The Absolute Grayscale Encoders ... 40

CHAPTER 5- MANIPULATOR CONTROL .. 43

5.1 SOFTWARE DESIGN ... 43

5.1.1 Software Design in R TL .. 46

5.1.2 Compiling the Software ... 52

5.1.3 Header Files ... 52

5.2 USING THE SOFTWARE ... 52

5.3 GRAYSCALE CONVERSION .. 54

5.4 CONTROLLER DESIGN .. 55

5.4.1 Controller Structure : .. 55

5.4.2 Control Responses ... 56

CHAPTER 6- DISCUSSION and RECOMMENDATON .. 59

6.1 SOFTWARE IMPROVEMENTS .. 59

6.1.1 Real-Time Linux versus Real-Time Application Interface 59

6.1.2 Extensions to RTL for control applications ... 60

6.1.3 Graphical User Interface (GUI) ... 61

6.2 HARDWARE PROBLEMS ... 62

6.3 CONTROLLER IMPLEMENTATION ... 63

6.4 PATH GENERATION ... 63

CHAPTER 7- CONCLUSION ... 65

REFERENCES ... 67

APPENDIX A- INVERSE KINEMATICS ofUNIMATE 2000B 69

II

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCy 73

APPENDIX C- CONTROL SOFTW ARE FOR SINGLE-AXIS HYDRAULIC TEST

RIG .. 81

APPENDIXD- CONTROL SOFTWARE FOR UNIMATE 2000B 105

APPENDIX E- MATLAB FILES FOR KINEMATICS AND INVERSE KINEMATICS

.. 135

LIST OF TABLES

Table 2.1 Floating point interrupt latency .. 12

Table 4.1 Link: Parameter for Unimate Model2000B .. 33

Table 4.2 Link: Parameter for A~ .. 34

Table 5.1 Decimal, Binary and Grayscale conversion .. 54

LIST OF FIGURES

Figure 1.1 Communication between RTL and UPP card ... 2·

Figure 1.2 Pulse Width Modulation .. 4

Figure 1.3 Signal from Quadrature Encoder. .. 5

Figure 2.2 Communication between RTL and Linux using shared memory 10

Figure 2.1 Communication between RTL and Linux using FIFOs 10

Figure 3.1 Single axis hydraulic test rig ... 13

Figure 3.2 Response of the asymmetric hydraulic cylinder to the PWM signal from the
UPP ... 16

Figure 3.3 Communication between RTL and Linux for the hydraulic test rig 17

Figure 3.4 Options in User Interface .. 18

Figure 3.5 Controller modes ... 19

III

Figure 3.6 Interrupt Handler ... 21

Figure 3.7 Step response from 200mm to 600mm .. 25

Figure 3.8 Close up of Figure 3.7 ... 25

Figure 3.9 Step response from 600mm to 200mm .. 25

Figure 3.10 Close up of Figure 3.9 ... 25

Figure 3.11 Step response from 200mm to 600mm .. 26

Figure 3.12 Close up of Figure 9 .. 26

Figure 3.13 Step response from 600mm to 200mm .. 26

Figure 3.14 Close up of Figure 11. ... 26

Figure 4.1 Unimate 2000B .. 27

Figure 4.2 Denavit-Hartenberg notation ... 28

Figure 4.3 X-Y-Z fixed angles .. 30

Figure 4.4 X-Y-Z fixed angles .. 32

Figure 4.5 Reference frame on eachjoint.. ... 33

Figure 4.6 Transformation from frame 1 to frame 2 ;., .. 34

Figure 5.1 Communication between RT, option and visual. .. 44

Figure 5.2 Choices of different movements in "option" ... 45

Figure 5.3 Different modes for "RT" operation ... 48

Figure 5.4 Interrupt Handler of "RT" ... 51

Figure 5.5 Step response for the arm ofUnimate 2000B ... 57

Figure 5.6 Step response for the wrist ofUnimate 2000B .. 58

Figure 6.1 Erroneous readings at an interrupt time of lms per axis 62

IV

NOMENCLATURE

Symbol

a

~

y

L!, LB

L2, Ly

A/D

C

C++

DC

D-H

DSP

fifo

fpu

GNU

GUI

HAL

I/O

Matlab

Meaning

Rotation around the z axis

Rotation around the y axis

Rotation around the x axis

Length of wrist bend

Length of swivel

Analogue to Digital

A high level programming language

Object orientated C

Direct Current

Denavit-Hartenberg

Digital Signal Processor

First in first out

Floating point unit

GNU is Not Unix

Graphical User Interface

Hardware Abstraction Layer

Input! Output

Matrix Laboratory (A mathematical software that has both

numerical and analytical analysis.)

P.LD. Proportional Integral Derivative

PC Personal Computer

PWM Pulse Width Modulation

RAM Random Access Memory

RTAI Real-Time Application Interface

rtf Real-time fifo (no different from a fifo)

RTiC-Lab Real-Time Control Laboratory

Units

degrees/ rads

degrees/ rads

degrees/ rads

nun

nun

v

RTL

RTLT

Simulink

UI

UPP

VI

Real-Time Linux

Real-Time Linux Target

A simulation toolbox in Matlab.

User Interface

Universal Pulse Processor

CHAPTER 1- INTRODUCTION

CHAPTER 1- INTRODUCTION

1.1 BRIEF DESCRIPTION OF PROJECT

The objective of this project was to assess the suitability of Real-Time Linux (RTL) for

robotics and machine control. First RTL was used to run controllers of varying

sophistication for a single-axis hydraulic test rig and later it was used on a six-axis

hydraulic manipulator (robot). The reason for using RTL on the single-axis hydraulic test

rig was to become familiar with RTL before using it on a more complex manipulator.

Details of the single-axis hydraulic test rig are discussed in chapter 3 while the·

manipulator work is discussed in chapters 4&5.

RTL was utilised for its fast response capability. When run on a 486-66 PC, it is capable

of responding to an interrupt within a maximum of 55~s. This allows RTL to control

machines very well since the control algorithms need to be serviced in a fast and timely

manner. Details ofRTL are discussed in chapter 2.

Both proj ects utilised a Universal Pulse Processor (UPP) card for interrupt generation,

position signal detection for and generating PWM waves. RTL is used to control the UPP

card. The positions of the machines' read by the UPP card and then passed back to RTL

so that position error and the size of the control signal can be calculated. This control

CHAPTER 1- INTRODUCTION

signal size determines the duty cycle ofPWM wave generated by the UPP card to control

the machines.

UPPcard Sends Interrupts .. RTL ..
.. Generates interrupts .. Decides which encoder to read,

.. Generates PWM waves Sends position readings which PWM to calculate ...
• Reads positions of

II Calculates size of PWM wave

encoders Sends size of PWM waves Records the positions of the
...

encoders ...
.. Records size of the PWM

Informs which PWM wave to set

and which encoder to read signals.

Figure 1.1 Communication between RTL and UPP card

In this thesis, the word "robot" will sometimes be used for "manipulator" and vice versa.

Also, the word "ram" may sometimes be used to describe a hydraulic "actuator" or vice

versa.

1.2 WHY USE REAL-TIME LINUX?

Traditionally, DSP (Digital Signal Processors) systems have been used for sophisticated

controller implementation. DSP RAM is extremely limited due to the high cost of high

speed RAM. Consequently, logging of variables during an extensive control run is

certainly not possible. For example, most DSP systems have memory sizes of at most 32

to 64kB. The control and monitoring of a six-axis robot at 1 kHz sampling rate for 12

seconds with the requirement to monitor both position (float) and control signal (float)

takes up 96kB. 486 machines running RTL can have a shared memory of up to 1MB with

Pentiums going up to 4MB of shared memory.

The design cycle of a DSP based embedded hardware system also limits controller

growth. First, the embedded system design company selects the chip from the existing

2

CHAPTER 1- INTRODUCTION

ones in the market. Second, it designs and manufactures a board and a set of software

routines to go along with it. Third, the vendor promotes and markets the embedded

system. By the time the DSP is available on the market, the chip that was originally used

in the embedded system has been superseded as newer and faster chips are already in the

market. Vendors of DSP embedded systems rarely make provision to interface older

boards with newer ones and the I/O features might also be different from its predecessor.

RTL is easy to program, as there is no need to understand the architecture of the x86

chip. All that is needed is a good grasp of the C programming language, the software

architecture of RTL, and communication between RTL and Linux. PCs always have the

same I/O features no matter what generation of processor is used.

Furthermore, DSPs are capable of very high sampling rates. In the case of most

mechanical control systems, a sampling rate of only 1kHz is considered very high speed,

and RTL is more than capable of handling this.

1.3 UNIVERSAL PULSE PROCESSOR CARD

A general purpose UPP circuit can be used to control hydraulic positioning systems and

DC motor drives. A printed circuit board developed for use in an IBM-PC contains two

UPP chips [4]. It is capable of controlling eight positioning systems each of which

provides two quadrature position signals plus an absolute zero position signal, and is

driven by a PWM signal. When two zero signals are shared, then ten servo systems can

be controlled.

The capability of the UPP card in controlling eight positioning systems would allow it to

control the six-axis hydraulic manipulator. The board was originally developed to record

speeds of 16 anemometers, but it was designed to be useful in other areas such as servo

control, and precision temperature measurements.

3

CHAPTER 1- INTRODUCTION

Technician A. G. Cree wrote the driver files for the UPP card. These commands

(functions) are collections of assembly codes for the UPP card. They make it easy for

control programmers to set up encoders, PWM waves and interrupts.

1.3.1 Pulse Width Modulation

PWM was used to control the valves of the hydraulic rams in both the single axis

hydraulic test rig and the manipulator.

VDcl2

o

Figure 1.2 Pulse Width Modulation

Figure 1.2 shows how PWM is used to vary the size of a signal (broken line). A constant

DC voltage amplifier is supplied a constant voltage VDC as well as PWM signal from the

UPP card. The output voltage from the amplifier controls the size of the valve opening in

the actuator. The UPP card controls the magnitude of this voltage to the valves by

changing the duty cycle of the PWM wave. The PWM wave has a fixed period, however,

the wave might not be symmetric. The magnitude of the voltage is varied by the degree

of symmetry of the wave. As to say:

v

Therefore, if 1;4 of the voltage of V DC is needed, Timeon will occupy 1;4 of the period and

Timeoff occupies % of the period. The voltage therefore can be varied to be anywhere in

between 0-V DC but there would still be discrete intervals in the signaL The smallest

discrete interval is fixed by the smallest time difference the PWM wave can be switched

by the UPP card (3.25 Ils). The PWM wave was set at periods of 100 times the smallest

4

CHAPTER 1- INTRODUCTION

time difference, which therefore is 325 /ls. Therefore the discrete interval of the resultant

signal is 1 % of V DC.

The use of PWM eliminates the need for a DI A (Digital to Analogue) converter. Since the

pulse processor is already used for interrupt generation, it might as well be used for

generating PWM waves. The advantage of PWM waves over smooth DC current is that

the oscillations in the PWM wave sets up a fluctuating flow through the hydraulic valves.

This fluctuating flow makes it easier to dislodge any obstructions in the flow caused by

impurities in the hydraulic fluid.

1.3.2 Quadrature Encoder

The UPP card recognises quadrature encoders. Quadrature encoders have only two

changing bits. This allows changes in position and direction to be identified.

I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
! I I I I I
I I I I I I

I I
I I I I I

I
I
I
I
I
I

Position I
I I I > I I I

0 0 I 1 0 0 I 1 I 1 0 0 I I I
I I I

0 0 0 0 0

Figure 1.3 Signal from Quadrature Encoder

Figure 1.3 clearly shows how the quadrature encoder allows for direction recognition. At

any position of the encoder, changing it by one single interval changes only one bit of the

encoder. However, moving forward changes a different bit to moving backward.

Therefore, the direction in which the encoder is moving is recognised by which of the

two bits changes. When the pattern in Figure 1.3 is made to wrap around so that its end

joins on to the start, it becomes an encoder that can wound around forever.

5

CHAPTER 1- INTRODUCTION

The single-axis hydraulic test rig utilises such an encoder. Since a quadrature encoder has

only two changing bits, the absolute position cannot be found from it if there is no initial

value to start from. Therefore, for any movement, it has to be given the value of the

starting position so that subsequent positions can be measured from that. The manipulator

uses an absolute grayscale encoder (see chapter 5 for details) so the positions are read as

binary bits.

6

CHAPTER 2- REAL TIME LINUX

CHAPTER 2- REAL TIME LINUX

2.1 INTRODUCTION

The use of commodity priced pes for control is attractive from a cost viewpoint, but has

been problematic when win~.ow based operating systems are used for digital control. The

essential problem is that "real-time" for most commodity operating systems means that

the system responds to an operator input with only a small delay. The commonly

available software disables the interrupts for periods of several milliseconds resulting in

"soft" real-time operation. This is unsatisfactory for "hard" real-time systems where

responses (or latency) of around 10. fls or less are required in order to carry out control

functions in a timely manner. The real-time operating system Real Time Linux (RTL)

developed at the New Mexico Institute of Technology was evaluated for instrumentation

and machine control as it is designed to handle hard real-time processing of digital

signals [17], [18].

The Posix-like Linux operating system coexists with a small real-time kernel to form

RTL. The object is to use the sophisticated services and highly optimised average case

behaviour of a standard time-shared Linux based computer system while still permitting

real-time functions to operate in predictable low-latency environment. A standard

operating system that offers a rich set of services was modified to act as a base kernel in a

system where control is shared with a real-time kernel. The modification consists of

7

CHAPTER 2- REAL TIME LINUX

emulation code that intercepts commands to enable and disable interrupts. The emulation

supports the synchronisation requirements of the base kernel while preventing the base

kernel from delaying hardware interrupts. Interrupts that are handled by the base kernel

are passed through to the emulation software after any needed real-time processing

completes.

If the base kernel has requested that interrupts be disabled, the emulation software simply

marks the interrupts as pending. When the base kernel requests that interrupts be enabled,

the emulation software causes control to switch to the base kernel handler for the highest

priority pending interrupt. Thus a very small modification of the base kernel allows it to

execute without imposing a latency penalty on the real-time code. The resulting system

can be viewed as a dual kernel operating system with the real-time kernel as the higher

priority task.

The current implementation uses the x86 architecture version of the Linux PO SIX-like

operating system as the base kernel. In this system the real-time executives schedules and

runs real-time tasks at a relatively high level of time precision and with low latency and

overhead. The Linux kernel supports network services, GUI, development tools and a

standard programming environment. One of the most compelling advantages of this

method is that it requires very little modification to a reasonably designed base operating

system. For Linux version upgrades are limited to the low level interrupt ''wrappers'' and

the routines to disable and enable interrupts. As a result, advantage is taken of the rapid

development of Linux and Linux tools. On the other hand, the system has been designed

to allow real-time programmers to make nearly full use of the available hardware and

processing power, without paying the price normally associated with more sophisticated

operating systems.

An ISA bus card containing 2 Universal Pulse Processor (UPP) integrated circuits [4] has

been developed to interface control plant to PCs. The UPP can be configured to accept

quadrature position signals and to generate pulse width modulated (PWM) signals that set

the actuator force/acceleration (or velocity). RTL sets up the digital controller sample

8

CHAPTER 2- REAL TIME LINUX

time by programming an interrupt to be generated by the UPP card. This interrupt

generates hardware calls to the interrupt controller in RTL, and this in tum calls the

interrupt function that reads the control system position feedback before calculating the

value of the PWM pulse to be generated by the UPP card. On completion, control is

returned to the program that was interrupted.

2.2 COMMUNICATION BETWEEN LINUX AND RTL

RTL is used to handle the real-time digital signal processing and Linux is used to

communicate with RTL. In the case of machine control, Linux is used to generate the

machine path requirements and RTL calculates the PWM pulse values required for the

machine actuators. The actual path is measured in the RTL program and sent to Linux.

There are two ways in which communication between RTL and Linux can be set up. One

is using FIFOs (first in first out) buffers and the other is using shared memory. FIFOs are

point-to-point queues of serial data analogous to Unix character devices or pipes. FIFOs

have the following characteristics:

• FIFOs queue data, therefore no protocol is required to prevent data overwrites.

" Boundaries between successive data writes are not maintained. Applications must

detect boundaries between data, particularly if the data is of varying size. For

instance, a c++ program containing rtCg'et(4, &data, sizeof(data)) tells the

application in RTL to read the data variable of length size.

" FIFOs support blocking for synchronization. Processes need not poll for data.

• FIFOs are a point-to-point communication channel or pipe. FIFOs do not support

the model of one writer and several readers.

The maximum number ofFIFOs is declared in rt fifo new.c as:

#defme RTF NO 64

and these appear as devices /dev/rtfD-63 in the file system. This limit can be changed and

the rt_fifo_new.o recompiled. The number of FIFOs is only limited by practical memory

limits.

9

CHAPTER 2- REAL TIME LINUX

Shared memory is a portion of the PC's RAM that is shared by both RTL and Linux. This

memory has to be allocated by a /etc/lilo.conf file in the Linux boot file. Shared memory

is very similar to the common data block structure in FORTRAN and it has the following

characteristics:

• Shared memory does not queue data written to it. Applications requiring

handshaking must define a protocol to assure data is not overwritten - usually by

using a semaphore flag.

• Because data is not queued, individual items in data structures that are several

megabytes in size can be quickly updated.

• Shared memory has no point-to-point restriction. Shared memory can be written

to or read from by any number of Linux or RTL processes.

• The number of independent shared memory blocks is only limited by the size of

the physical memory.

4& Blocking for synchronization is not directly supported. To determine if data is

new, the data must contain a count that can be compared against previous reads.

• Mutual exclusion of Linux and RTL processes is not guaranteed. However,

interrupted reads and writes can be detected.

Shared memory is a good choice for communication when control applications execute

periodically on the expiration of an interval timer, and where data queuing is the

exception rather than the rule.

10

RTL ... Linux
:::
"..

FIFOs

::::
.....

Figure 2.1 Communication between
RTL and Linux using FIFOs.

Shared
memory

Linux

Figure 2.2 Communication between
R TL and Linux using shared
memory.

CHAPTER 2" REAL TIME LINUX

2.3 INTERR1JPT LATENCY FOR FLOATING POINT PROCESSING

There are some limitations with RTL version 1.0 interrupt handling, especially when

floating-point numbers are used for the digital controller calculations. When doing

floating-point calculations in RTL on a 486-66 processor, the time taken to respond to an

interrupt (the latency) and to read a UPP timer averages 12.5 /ls with a maximum of 55

/ls and a minimum of 7.5 /ls. Therefore, interrupts must be at least 60 /ls apart for such a

processor doing floating point calculations. If lengthy calculations are required within the

interrupt function, then the interrupt period must be increased so that interrupts over-runs

do not occur. The latency times are reduced on Pentium processors, but a small amount

of extra latency time dither is introduced by processor cache flushing.

The UPP card used for the interrupt latency test executes with a clock cycle of 3.25 ~s

(the exact cycle time depends on the number of functions active in the UPP), hence the

interrupt occurs at multiples of 3.25 /ls. The interrupt interval was set to 1000 clock

cycles (3.25 ms), and each time the interrupt is generated, a function in RTL is called.

This function starts by saving the FPU (Floating-Point Unit) registers and clearing the

task switch flag in the CRO register so that the processor ignores the exceptions that are

generated when the FPU is used later. The current time from a UPP counter (that went to

zero and generated the interrupt) is then read. The value read is proportional to the time

that has lapsed since the interrupt occurred so this is proportional to the latency (note that

the time taken to save the FPU registers is included in these latency measurements). At

the end of the interrupt handling function, the floating-point registers are restored to the

FPU and the flag in CRO register switched back on for normal Linux operation. The

interrupt function running under RTL has the following form:

int SaveFpuRegs[28J;
registers
int Flags;
void IntFunc(void)
{
long linuxCRO;

rtl_ no _interrupts(Flags);
_asm __ volatile_("movl %%crO,%%eax":"=a"(linuxCRO)::"ax");
_asm __ volatile_("cltslf);
_asm __ volatile_("fsave %0" : "=m" (SaveFpuRegs));

II allocate memory for the FPU

IIInterrupt function

II disable interrupts
II inline assembly coding
I I clear task switch flag
II save floating point regs

11

CHAPTER 2- REAL TIME LINUX

IntTime=UPPReadData(card, 18);
if (Running)
{

rttput(1, &IntTime, sizeof(IntTime»;

I I get clock value
I I when the test is running

II puts clock value into FIFO 1 to send to
Linux

}
IntCount++;
UPPIntStatClear(card, 1); I I clear interrupt flag

_asm __ volatile_("frstor %0" : "=m" (SaveFpuRegs»;
regs

I I restore floating point

}

_asm __ volatile_("movl %%eax,%%crO"::"a"(linuxCRO):"ax");
rtl Jestore _ interrupts(Flags);

I I restore crO
I I restore interrupt enable

Note the inline assembly code required to manipulate eRO. The UPP interrupt service has

been programmed to save and restore the FPU each time there is an interrupt so that

floating-point calculations done within the interrupt runtime do not overwrite the FPU

calculations being carried out under Linux when the interrupt occurs.

Latency (~)

0-5

5-10

10-15

15-20

20-25

25-30

30-35

35-40

40-45

45-50

50-55

55-60

60-65

65-70

70-75

75-80

Total

Maximum

Minimum

Average

Number of Interrupts

0

0

93148

6721

227

66

61

59

5

0

3

0

0

0

0

0

100290

54~

11.5~

13.97~

The test program written to test interrupt latency is

in Appendix B.

Table 2.1 is a typical interrupt latency check

performed on an IBM 486-66 MHz. This particular

run was done while the machine was networking

with another Linux box. Notice that most of the

latencies occur between 10-20).ts.

Table 2.1 Floating point interrupt latency

12

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

3.1 INTRODUCTION

Figure 3.1 Single axis hydraulic test rig

Control of a single axis hydraulic test

rig has been successfully implemented

on a PC running under DOS [3].

However while a DOS based computer

can handle interrupts in a timely

manner, it lacks the ease of using a

window based multitasking operating

system for control system development

and system response data display. It

also lacks memory space for data

storage. These missing features are

available under RTL, and several

different control algorithms (controller

designs) for this test rig have been

tested experimentally with the data

being displayed at the same time. The

results of experimental performance

13

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

evaluation have been obtained by observing the time responses for various test inputs

(steps, ramps, and sine waves) and some step response results are presented here.

3.2 HARDWARE OF THE SINGLE-AXIS TEST RIG

3.2.1 Hydraulic Actuator

The hydraulic actuator is a single ended, double acting actuator controlled by a spool

valve. The cylinder is mounted in a vertical position with an adjustable mass of 50 to

300kg suspended below which is connected to the rod of the actuator.

The cylinder has a stroke of 1.2 meters with the actuation speeds of up to 0.8 mls

possible. The internal diameter of the cylinder is 50.8rnm (2") in which the piston and rod

move while the rod has an outer diameter of 44.45rnm (1.75"). Having the rod on only

one side of the piston reduces the area of the piston that the fluid pressure can exert on

the opposite side. Hence the force that can be exerted on the opposite side is less that that

of the fully exposed side of the piston. With the exposed area at the top being 2.027xlO-3

m2 and the area on the rod side being 0.887xl0-3 m2
, the area ratio is 2.285. Since the rod

extends out from the bottom of the cylinder, the force available to move the piston

upwards is 2.285 times less than the force available to. move it down. For more

infonnation on this system, see [13].

3.2.2 Spool Valve

Control of the cylinder is via an electro-servo spool valve in which the PWM signal is

from a UPP card within a PC.

3.2.3 Position Transducer

The position transducer for the test rig uses a incremental quadrature encoder. For details

about quadrature encoders, refer to section I The resolution for the encoder is set to

0.1 mm. The encoder is encased in plastic tubing to prevent contamination by dust or

moisture.

14

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

3.2.4 Load

The load is housed in a pexiglass cabinet and is constrained to move in the vertical

direction by a pair of guide rods. The purpose of the rods is to prevent the load from

twisting and damaging the test rig. The weights have specially designed oil-impregnated

bearings where they touch the guide rods, as it is crucial to minimise friction in the

system for accurate control of the rig. The weight can be adjusted in steps of 17kg and

they are accessed through a door with a mechanical override, which prevents operation of

the actuator when the door is open.

3.2.5 Hydraulic Pump

At the base of the test rig is a large electric powered hydraulic swash pump that generates

a constant pressure that can be set between 14 and 20Mpa. The pump feeds hydraulic oil

under pressure into an accumulator attached to the cylinder. This accumulator is a

pressure reservoir that allows the actuator to operate beyond the flow capacity of the

pump for short periods of time.

3.3 PERFORMANCE SINGLE AXIS TEST RIG

Several years ago, a single axis hydraulic test rig was designed for control research. This

test rig is controlled using PWM with a period of 325 i-ls. The interfacing of the Moog

electro-hydraulic servo valve system to the UPP system is described in [4]. The test rig

has the following characteristic velocity response when operating at 13.3 MPa with a load

of300 kg:

15

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

Velocity - vs - PWM
0.8,----..,----,------,----,----,-----,-----.----,-----..,--_

.!!!.
E
:>.

0.6

0.4

0.2

o

1)-0.2
o
Qi
>

-0.4

-0.6

-0.8

-1

-80 -60 -40 -20 o 20 40 60 80 100
% PWMratio

Figure 3.2 Response of the asymmetric hydraulic cylinder to the PWM signal
from the UPP.

The velocity on the graph shows the steady state velocity as a function of the PWM ratio.

The equations for the positive and negative velocities are respectively:

V+ = 0.64*PWM - 0.0056 (3.1)

Y = 1.l9*PWM + 0.0056 (3.2)

The constant offset of 0.0056 is a function of the electro-hydraulic servo valve spool

overlap, and the ratio of the positive and negative gains is 0.64/1.19 = 0.538. The single

ended hydraulic cylinder has a 50.8mm (2") bore and a 44.45mm (1.75") rod, the

pressure needed to support the 300 kg load is 3.3 Mpa. Since the supply pressure is 13.3

Mpa, the effect of the load is quite significant. The different areas on each side of the

hydraulic piston also have an effect, and the total effect is clearly shown in Figure. 3.2.

16

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

The control of the hydraulic rig is non-linear and the basic asymmetry inherent in the

velocity measurements (Figure 3.2) has been included by the values of the PWM signal

to be output. It is then possible to design a digital controller on a linear basis [5].

3.4 SOFTWARE DESIGN

The software implementation was in two parts. The controller was implemented in RTL

where real-time processes are executed, while the Vser Interface (VI) was implemented

j~--------------l , , , ,
: RTL : , , , ,
I

, ,

PDcontrol

L _____________ _

.... : , , , , ,

.... i , ,

.... : , , ,

!

LlNUX
rtt1 ,

, ,
rtf3 , ,

, ,
rtf4

, option I

, ,
rtf2

I

'. : ...

Figure 3.3 Communication between RTL
and Linux for the hydraulic test rig

in Linux for sending information to the

controller from the user. To control the

hydraulic test ng, data communication

between RTL and Linux has so far been done

via 4 FIFOs. As shown in Figure 3.3, 3 FIFOs

send information from Linux to RTL and 1

sends data from RTL to Linux.

FIFO rtfl sends commands from Linux to R TL to start and stop interrupts. FIFO rtf4

sends the coefficients to the R TL controller and FIFO rtf3 sends the position commands

for the RTL controller to track. FIFO rtf2 sends the actual position and controller output

measured by RTL back to Linux. Linux then plots and saves the results in a file. RTL is

set up to immediately read any data written by Linux into rtfl. This allows immediate

control of the interrupts. The desired tracking positions are queued up in rtf "3" before

the interrupt is started in RTL. Once the interrupt has been started, RTL reads one

tracking position from rtf "3" at the start of each interrupt.

3.4.1 Software Design in RTL

The controller is started and halted according to "msg.command" send to the controller

through rtf 1 from Vser Interface (VI). There are four possible modes that the controller

may function in, these are: START_TASK, SLOW, INITIALISED, STOP_TASK as

shown in Figure 3.5. Figure 3.4 shows the different movements that the rig can perform.

17

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

I
Open rtf 1,2,3,4

I

I Choose modes I
I

Function: Manual
1 (Generates PWM
~ signals from keyboard

to send to R TL.)

Function: Initialise
2 (Moves weights to
~ bottom and resets

encoder reading to 0.)

Function: StepInput Function: Finish Function: SaveData
3 (Generates a step path and (Sets RTL in STOP TASK mode (Saves position and

r--------- then sets R TL in the ~ when steady state is achieved or ~ PWM data of the ~
START_TASK mode.) when SampleNumber is exceeded.) movement to a file.)

Function: MultiStep Function: Finish Function: SaveData
4 (Generates a multiple step (Sets RTL in STOP_TASK mode (Saves position and
~ path and then sets RTL in the ~ when steady state is achieved or ~ PWM data of the ~

START_TASK mode.) when SampleNumber is exceeded.) movement to a file.)

Function: RampInput Function: Finish Function: SaveData
5 (Generates a ramp path and (Sets RTL in STOP TASK mode (Saves position and
~ then sets R TL in the ~ when steady state is achieved or ~ PWM data of the ~

START_TASK mode.) when SampleNumber is exceeded.) movement to a file.)

Function: Sinewave Function: Finish Function: SaveData
6 (Generates a sinusoidal path (Sets RTL in STOP_TASK mode (Saves position and

r--------- and then sets RTL in the ~ when steady state is achieved or ~ PWM data of the ~
START_TASK mode.) when SampleNumber is exceeded.) movement to a file.)

Function: FollowPath Function: Finish Function: SaveData
7 (Sets RTL in STOP_TASK mode (Saves position and
~ (Reads an existing path from ~ when steady state is achieved or ~ PWM data of the ~

a file and sets RTL in the
START TASK mode.) when SampleNumber is exceeded.) movement to a file.)

Function: SetPulse Function: Finish Function: SaveData
8 (Generates a PWM signal (Sets RTL in STOP_TASK mode (Saves position and

r--------- path for rig to follow and sets ~ when steady state is achieved or ~ PWM data of the ~
RTL in MANUAL mode.) when SampleNumber is exceeded.) movement to a file.)

9

Exit program
I

Figure 3.4 Options in User Interface

18

Wait for fifo"O" to msg.command= START_TASK .. Get data (control .. Start Interrupt
be witten into for ... coefficients and PWM ... funtion
msg.command signal) from fifo "4"

.oil~

msg.command= SLOW
110.

Get data (control -----. Start Interrupt
... coefficients and PWM funtion

signal) from fifo "4"

msg.command= INITIALISED ... Reset encoder to 0 ...

msg.command= STOP_TASK ~ Stop Interrupt -----. SetPWM -----. Set -----. Clear up ... function Signal to 0 to SampleNumber fifo"3"
f----

close valve to 0

,

Figure 3.5 Controller modes

19

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

The START_TASK mode firstly reads "data" (control coefficient) from rtf4, it then starts

the Interrupt function that is called periodically (i.e. every lms). The SLOW mode is

basically the same as START_TASK except that it only performs part of the operation

START_TASK performs in the Interrupt function (Figure 3.6). The SLOW mode is used

for manual control of the rig where position error need not be calculated therefore it skips

the calculation ofthe difference equation.

The INITIALISED mode is used to initialise the encoder to 0 when the rig is positioned

at the bottom. The STOP_TASK stops the Interrupt function, it then sets the PWM signal

to 0 to close the hydraulic valve and resets the "SampleNumber" to 0 and finally, it clears

up rtf "3" by reading every integer out of it. The STOP_TASK mode is implemented

when the movement of the rig has reached a steady state or when the "SampleNumber"

exceeds a predefmed number "NumSample".

The Interrupt function is only implemented in the START_TASK mode or the SLOW

mode. At each interrupt for the START_TASK mode, an integer (desired position) is

read from rtf 3. Rtf 3 has been queued up with thousands of points making a path, which

the rig has to track. This desired position is then compared to the position of the encoder

in the difference equation to calculate a PWM signal to send to the hydraulic valve. When

in the SLOW mode, the interrupt function skips the PWM signal calculation and proceeds

straight to sending a defined signal send from UI to the hydraulic valve.

20

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

Wait for intenupt

to happens

Switch:

msg.comand

Read an integer from

fifo"3" to acquire

desired position to

move to

Read position of the

encoder

Calculate difference

equation (PID

controller)

Function: ErrorCalc

Figure 3.6 Interrupt Handler

-------------,
I
I
I
I

Send PWM signal :

to valve

Read position of

the encoder

Write encoder
position to fifo "2"

21

CHAPTER 3- SJNGLE AXIS HYDRAULIC TEST RIG

3.4.2 Compiling the Software

All the software needed to control the test rig is specified in the "makefile" (See

Appendix C). When "make" is typed at the prompt in the directory where the "makefile"

is kept, all the files in the "makefile" is compiled using the GNU C compiler.

In the case of the test rig, "option.c", "function.c" are compiled into "option" and

"function.o" respectively. The real-time software "PDcontrol.c" is compiled into

"PDcontrol.o". Notice that compiling "PDcontrol.c" uses many real-time flags that

"option.c" and "function.c" do not require. "PDcontroLo" functions in RTL however

"option" and "function.o" functions in Linux. Also, notice that "option.c" is compiled

with "function.o" linked to it because "option" accesses functions from "function.o".

3.4.3 Header Files

"MyFifo.h" is a header file included in both "option.c" and "PDcontrol.c" as it initialises

variables that both these programs use. This ensures that these variables are of identical

size (float, int, char etc) since information is transferred between these two programs via

fifos.

"getkey.h" is a header file that contains a function "getkey(int [3]) that allows "option" to

read keys from the keyboard directly without having to hit the "Enter" key. This function

uses the termios interface to change the terminal settings [10].

The header files PWM.H and Upp.h are both included in "PDcontrol.c" for accessing

commands to control the UPP card.

3.5 USING THE SOFTWARE

In R TL, there are 5 modules that need to be inserted. One of the modules is

"PDcontrol.o" and the rest are "PWM.o", ''UPP.o'', "rt-IJrio_sched.o" and

"rt-IJrio_fifo.o". "PWM.o" and "UPP.o" are modules from which "PDcontro1.o" access

the commands for the UPP card. "rt-IJrio_sched.o" and "rt-IJrio_fifo.o" are modules that

22

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

come with the RTL kernel. It is from these two modules that "PDcontrol.o" access

commands to set up timers and fifos respectively.

To insert the modules, the user has to log into an "xterm" terminal as a super user. On the

"xterm" prompt, type in "su" and hit "Enter". The ''xterm'' will then prompt for a

password. When logged on as a super user, use the "insmod" command to insert the

modules individually. At the prompt, type in the commands:

II insmod rt ~rio _ sched.o

.. insmod rt ~rio _ fifo.o

.. insmod UPP.O

II insmod PWM.o

.. insmod PDcontro1.o

"UPP.o" has to be inserted before "PWM.o" as "PWM.o" has functions that refer to

"UPP.o". To remove a module, simply type "rmmod" followed by the name of the

module. A super user has authority to change almost everything on the Linux operating

system; therefore the ''xterm'' where the super user role is assumed is only used for

inserting and removing modules.

The next step in to launch the "option" program as a normal user in another "xterm"

window. The user is then presented with a number of movement choices for the rig:

"Initialise", "Manual", "Step", "Ramp", "Sine", "Multiple Step", "Exit". "Initialise"

move the weights down to the very bottom and initialises the encoder. "Manual" allows

the user to control the movement of the weights manually using the keyboard arrow keys.

"Step" prompts the user to enter a start point and end point for the rig to perform a step

function. "Ramp" and "Sine" is similar to "Step" because a start point and end point has

to be entered to define the movement. However, a time element has to be additionally

entered to defme the length of the movement for both cases.

The "Multiple Step" choice allows the user to step the rig a number of times to and from

a number of positions one after another. It first prompts the user for the number of steps

23

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

that need to be perfonned and then prompts the user for the positions and periods to stay

at these positions. "Exit" merely exits to program.

3.6 CONTROLLER PERFORMANCE

Due to the ratio of positive gain to negative gain (section 3.3), the PWM signal for

downward motion is scaled by a factor of 0.538. Hence:

PWM+=u

PWM-= 0.538 u

Where u is the computed output signal from the controller.

3.6.1 Implementation of a PID controller on RTL

A PID controller was implemented under RTL. The structure of the controller is as

follows:

u(k+ 1) = Kpe(k) + Kd[ll e(k) -18e(k-1) + ge(k-2) - 2e(k-3)]/6LJt + Z [Kie(k)]LJt

(3.3)

where: k is the sampling number starting at 0 and incremented by one at each interrupt,

u(k) is the output in PWM E {-I 00%,100%},

e(k) is the error signal (desired position- current position),

LJt is the sampling interval or interrupt interval,

Kp is the proportional gain,

Kd is the derivative gain,

Ki is the integral gain.

and Z [Kie(k)]LJt is limited to be less than 50 to prevent integrator windup.

The values {Kp, Kd, Ki} = {0.75, 0.002, 0.01} were used with an interrupt of 1ms to

obtain the step responses shown in Figures. 3.7 to 3.10. The effect of gravity can be

clearly seen in the negative steady state offsets visible in the expanded scale graphs

shown in Figures 3.8 and 3.10. Essentially the anti windup limit for the integrator part of

the controller is set too low to remove the error. Also evident in Figure 3.10 is the effect

of the oil compressibility. The mass oscillates against the "spring" fonned by the

24

ClLAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

compressible column of oil in the cylinder as the mass velocity is being halted rapidly

near the target position.

OutputJ Respond Comparison :J[JtPlJ~ Raspond Comparison

600 ====:;===========;
550

601

500 600.5

~ 6001---------------1

§

0.5 1.5
Time, seconds

2.5

~ 599.5
"-

599

598.5

0.5 1.5
llrr18, seconds

Figure 3.7 Step response from 200mm to Figure 3.8 Close up of Figure 3.7.
600mm.

600

550

E 450 ~
E

·f 400i
CL 350 ~

300 !

250

200
0.5

OU!pUtf Respond Companson

~
§

~

1.5
Time, seconds

0.5

Oo.ltout/ ,~85pond Comparison

1.5
Time, seconds

Figure 3.9 Step response from 600mm to Figure 3.10 Close up of Figure 3.9.
200mm.

3.6.2 Implementation of an Observer Based controller on RTL

2.5

2.5

An observer based state space state feedback digital controller was designed using

MATLAB and was implemented under RTL. The structure of the resulting controller is:

u(k+l):::: 95.1u(k) - 1l.lu(k-l)+ OJ)J[8.42e(k) - 7.51e(k-l)] (3.3)

25

CHAPTER 3- SINGLE AXIS HYDRAULIC TEST RIG

Where k is the sampling number starting at 0 and incremented by one at each interrupt,

u(k) is the output in PWM (limited to a maximum of 100%),

e(k) is the error signal (desired position - current position).

The following graphs are the step responses for this controller.

Output! Respond Comparison Output! Respond Companson

600

(
601.5

550
601

500

6005
E 450 E
E E
g' 400 g 600

l' E ;;;

&I If.. 350 II
599.5

I 300

599
250

200 5985

6 10 6
lime, seconds TI me, seconds

Figure 3.11 Step response from 200mm to Figure 3.12 Close up of Figure 9.
600mm.

OutputJ Respond Comparison Output! Respond Companson

600
201

550

200.5
500

10

450 200f-------BliHilllr-------------i
E
E

~ 400

& 350

300

E
E
c
,g 1995
i'l
0..

199

\
\

\ 250
198,5 ~m'WW1f1NYVY1'V1f'l1f1f'iYYlfifY1'n'1rrIY1Jlrm

200 198"----_~_~_~_~_~_~_-'"

6 8 10 12 14 6 8 10 12 14

li me, seconds Time, seconds

Figure 3.13 Step response from 600mm to Figure 3.14 Close up of Figure II.
200mm.

The interrupt latency has been tested on a 486-66 MHz PC and found to be less than 70

/-ls. A major advantage, other than cost, of using a PC operating under the RTL system is

that controllers are relatively easy to develop, implement and test thus allowing easy

programming of real-time machine control applications. So far, RTL has been

successfully used to control a single axis hydraulic test rig at sampling rates of up to

1000Hz.

26

CHAPTER 4- MANIPULATOR KINEMATICS

CHAPTER 4- MANIPULATOR KINEMATICS

4.1 INTRODUCTION

The Unimate model 2000B is a serial link robot. It has six degrees of freedom, with five

of these being revolute joints and one being a prismatic joint. The Denavit-Hartenberg

notation was used as a systematic method of describing the kinematics of the robot [1]. It

uses a minimum number of parameters to completely describe the kinematics relationship

between links.

Figure 4.1 Unimate 2000B

27

CHAPTER 4· MANIPULATOR KINEMATICS

4.2 DENAVIT-HARTENBERG CD-H) NOTATION

Joint i

I Joinr·i + 1

Unk i

)"/

\

\ ~I

d i
ai

-rJi'~!
I

\ /
I

-].

Figure 42 Denavit-Hartenberg notation

Figure 4.2 shows a pair of adjacent links, link i-I and link i, plus their associated joints,

joints i-I, i, i+ 1. Line HiOi in the Figure is the common normal to joint axes i and i+ 1.

The relationship between the two links is described by the relative position and the

orientation of the two coordinates frames attached to the two links. In the D-H notation,

the origin of the i-th coordinate frame OJ is located at the intersection of joint axis i+ 1 and·

the common normal between joint axes i and i+ 1. Note that the frame of link i is at joint

i+ 1 rather than at joint i. The Xi axis is directed along the extension line of the common

normal, while the Zi axis is along the joint axis i+ 1. Finally, the Yi axis is chosen such that

the resultant frame Oi-XiYiZi forms a right hand coordinate system.

The location of the frame Oi relative to frame OJ.! is completely determined by the

following four parameters:

ai the length ofthe common normal

di the distance between the origin Oi-! and the point Hi

<Xi the angle between the joint axis i and the Zj axis in the right hand sense

8 j the angle between the Xi-! axis and the common normal HiOi measured about the

Zi.l axis in the right hand sense

28

CHAPTER 4- MANIPULATOR KINEMATICS

The parameters ai and <Xj are constant parameters that are determined by the geometry of

the linle ai represents the link length and <Xj is the twist angle between the two joint axes.

One of the other two parameters di and Oi varies as joint i moves.

The are two types of joint mechanisms used in manipulator arms: revolute joints in which

the adjacent links rotate with respect to each other about the joint axis, and prismatic

joints in which the adjacent links translates linearly to each other along the joint axis. For

a revolute joint, parameter Oi is the variable that represents the joint displacement, while

parameter di is constant. For a prismatic joint, on the other hand, parameter di is the

variable representing the joint displacement, while Oi is constant.

(4.01)

where

Xi and Xi-l are 4xl position vectors in Oi-XiYiZi and Oi-I-Xi-IYi-IZi-l.

cosO; - sin 0; cos a; sinO; sin a; Q; cosO;

A;-l = sinO; cosO; cosai - cos Oi sin a; Q; sinO;
(4.02)

I

0 sinai cosai d i

0 0 0 I

The matrix A{-l represents the position and orientation of the frame i relative to

frame i-I. The fIrst three 3xl column vectors of A{-l contain the direction cosines of the

coordinate axes of frame i, while the last 3xl column vector represents the position of the

origin Oi. In other words, the former represents the rotation of frame Xi to frame Xi-l and

the latter represents the translation of frame Xi to frame Xi-I. The derivation of formula

A{-l can be obtained from [1].

Therefore, equation (4.01) can be used to defIne the end point (end-effector) of a

manipulator with n number of joints from the base frame when given the D-H

parameters.

I.e. (4.03)

29

CHAPTER 4- MANIPULATOR KINEMATICS

4.3 X-Y-Z Fixed Angles

As mentioned in the previous section, the fIrst three

3xl column vectors of A:-1 contain the direction

Zi-l

cosines of the coordinate axes of frame i in frame i-I.

These three 3xl column vectors describe the

orientation of the i-th reference frame to the i-I

reference frame. It can be more simply defmed

Figure 4.3 X-Y-Z fIxed angles
as angles y, ~, a and they are the angles around fIxed

axis Xi-I, y i-I, Z i-I respectively [2]. This x-y-z fIxed

angles method was the one chosen for this thesis. However, there are in total, 12 ways of

describing the three rotations about fIxed axes including the one currently discussed.

Some of the other methods are rotation around e.g. (Xi-I, Yi-I, Xi-I), (Zi-I, Yi-I, Xi-I),

(Zi-I, y i-I, Zi-I). There are also 12 other ways of describing the three rotations using Euler

angles where the axes of rotations are rotated with each rotation [2].

In the case of x-y-z fIxed angles method, the rotations are done in the order of y, ~ then

a. The directions of Xi-I, Yi-I and Z i-I do not change as the rotations are performed.

Below is the matrix representing the rotation of frame Xi to frame Xi-I.

[

cac/3 crofor - sacr crof3cr + sacr1
i-iRxyz (r, /3, a) = sac/3 srofor - cacr srof3cr - cror

- s/3 cfor cf3cr

(4.04)

where c and s are short for cos and sin. See [2] the derivation of (4.04). Equation (4.04)

allows angles y, ~ and a to be found. Below are the equations to solve all three angles l
.

/3 = A tan 2(-r3P ~ rl~ + r2~),

a = A tan 2(r2P rll),

r = A tan 2(r32 , r33)

1 Atan2(Y,X) is the four quadrant arctangent of the real parts ofthe
elements of X and Y. -1t S Atan2(Y,X) S 1t.

30

(4.05)

CHAPTER 4- MANIPULATOR KINEMATICS

where:

[""
'i2

"" j i-JRxyz(y,fJ,a) = r21 r22 r 23

r31 r32 r33

(4.06)

Equation (4.05) describes only the rotation of frame Xi to frame Xi-I without translation.

When translation is added, it is of the form

'il 'i2 r13 Px

i-lA=
r2l r22 r23 Py (4.07)

I
r 3l r32 r33 pz

0 0 0 1

In the form above, it fully describes the movement from one reference frame to another

with rotation described in the first 3x3 matrix and translation described in the last

column. The 4th row is merely put in to make the matrix square so that it is commutable

for multiplication when changing from one reference frame to another, i.e. the

homogenous coordinate in (4.01) remains homogenous.

4.4 KINEMATICS OF UNIMATE MODEL 2000B

The Unimate Model 2000B consist of an arm segment and a wrist segment (see Figure

4.4). The arm segment is made out of the Rotary, Down-Up and In-Out joints with the

last being a prismatic joint. The wrist segment is made out of the Bend, Yaw and Swivel

joints.

The arm segment is used to position the end-effector of the manipulator to a certain point

(x, y, z) in the workspace. The wrist segment is then used to rotate the end-effector into a

certain orientation (y, ~, a).

Six degrees of freedom is the minimum requirement for a manipulator to be able to move

its end-effector to any point and orientation within the manipulator workspace.

31

32

CHAPTER 4- MANIPULATOR KINEMATICS

a, EXTEI\lD AND

RETR.ACT BOOM
{Out~ln= 0)

c. BOOM
LEFT OR RIGHT
{Rotary)

~. ROTATE HAND ASSEMBLY ON
AXlSINT58SECT1NG "0" AXI~·

(Yaw"'Y)

Figure 4.4 X-Y-Z ftxed angles

b, ELEVATE AND
D.EPRESS BOOM

(poiNn,Up ,= Dl

i:l, PiVOT HAND
..;xSSEMBf.Y

(Bend =61

f. PIVOT AaOUT PERPENDICULAR
LINE PHAWN TO AXIS OF YAW
(Swiv;1lI""'S)

CHAPTER 4- MANIPULATOR KINEMATICS

Figure 4.5 Reference frame on each joint

The above Figure depicts the reference frame at each joint. All joints are positioned at

their origins; therefore 81, 82, 84, 85 and 86 are zero when the manipulator is in the

position as shown in the Figure. The origins of frame 3&4 coincide.

The table below shows the four variables needed for the D-H convention.

Link number <Xi (degrees) aj (mm) di (mm) 8j (degrees)

1 +90 0 1066.8 81

2 +90 120.65 0 82

3 -90 0 d3 0

4 90 0 0 84

5 -90 0 200 (Lb) 85

6 0 0 440 (Ly) 86

Table 4.1 LInk Parameter for Ummate Mode12000B

33

CHAPTER 4- MANIPULATOR KlNEMA TICS

cos e) 0 sine) 0 - sine2 0 cose; - a2 sine2

AO - sine) 0 -cose) 0 A)- cose2 0 sine2 a2 cose2
)-

0 1 0 d)
2 -

0 1 0 0

0 0 0 1 0 0 0 1

1 0 0 0 cose4 0 sine4 0

A2- 0 0 1 0 A3
-

sine4 0 -cose4 0
3 -

0 -1 0 d3

4 -
0 1 0 0

0 0 0 1 0 0 0 1

coses 0 - sines 0 cose6 - sine6 0 0

A4 - sines 0 coses 0
AS =

sines coses 0 0
s -

0 -1 0 ds
6 0 0 1 d6

0 0 0 1 0 0 0 1

The derivation of Ai was done through two steps ofD-H instead of one. Unlike the other

transformations, Ai from A~ requires first a rotation about Zl then about Xl' (the rotated

YI

YI'
~---7

ZI'

Figure 4.6 Transformation from frame 1 to frame 2.

Link number <Xi (degrees) aj (mm)

1 ' 0 0

2 90 0

Table 4.2 Link Parameter for Ai

34

di (mm) 8i (degrees)

0 90

0 82

CHAPTER 4- MANIPULATOR KINEMATICS

Hence:

0 -1 0 0 COSB2 0 sinB2 0

A~
1 0 0 0 J' sinB2 0 cosB2 0

0 0 1 0
A2 =

0 1 0 0

0 0 0 1 0 0 0 I

Since:

Al o I' (4.08) 2 AJ,AZ

Therefore:

-sinB2 0 cosBj - a2 sinB2

AI- cosB2 0 sinBz a2 COsB2
2 -

0 1 0 0

0 0 0 1

4.5 INVERSE KINEMATICS

The direct kinematics equation (4.03), establishes the functional relationship between the

joint variables and the end-effector position and orientation. The inverse kinematics

consist of the detemlination of the joint variables corresponding to a given end-effector

position and orientation. The solution of this problem is fundamental to transfoml the

motion specification, assigned to the end-effector in the operation space, into the

corresponding joint space motions that allow execution of the desired motion.

The Unimate 2000B has six degrees of freedom therefore it has a finite number of

solutions for inverse kinematics. A manipulator arm must have at least six degrees of

freedom in order to locate its end-effector at an arbitrary position with an arbitrary

orientation in its workspace. Manipulator amlS with less than 6 degrees of freedom are

not able to perfoml such arbitrary positioning. On the other hand, if a manipulator aml

has more than 6 degrees of freedom, there exist as infmite number of solutions to the

inverse kinematics equation.

35

CHAPTER 4- MANIPULATOR KINEMATICS

4.5.1 Solving the Inverse Kinematics equation

Equation (4.03) states that

Let

x i-n = TXi

Where

T = i/i-n Ai-n+1 Ai- 2 Ai-I
1"';_n+1 i-n+2'" i-I i

T is directly derived from equation (4.09)

For a 6 degree of freedom manipulator arm

TO =AOAIA2A3A4A5
6 123456

(4.09)

(4.10)

(4.11)

Therefore, closed form solutions exist for an arbitrary end-effector location T. The above

equation can be written in many different forms. For example, post multiplying both

sides by the inverse of A~ yields

Further pre-multiplying both sides by (A~rl ,

TI = (Ao)-I T(A5)-1 = AIA2 A3 A4
5 I 6 2345

(4.12)

(4.13)

The left and side of equation 4.12 is only the function of 86, while the right-hand side

involves all the other joint displacements. Similarly, equation 4.13 has 81 and 86 on the

left-hand side and the remaining joint displacements on the right-hand side. Since T is

known (from the orientation and position of the end-effector), 86 could be worked out

from equation 4.12 and hence 81 from equation 4.13.

The symbolic math toolbox in the mathematics program Matlab was used to help solve

the inverse kinematics of the Unimate 2000B. The program was used to expand the

matrices so that 6 independent equations could be found to solve for 81, 82, d3, 84, 85, 86•

"function inverse" in Appendix E shows the program in Matlab.

36

CHAPTER 4- MANIPULATOR KINEMATICS

The further mathematical manipulation of the equations found are presented in Appendix

A.

The equations to solve for the 6 joint variables are:

81= tan- l(r23-pyiLy , ru-px/Ly)

86= tan-I (c8 Ir22- s8lrl2 , s8lrn- c81r21)

8s= Atan2(c86s8Irn-c86c8Ir21- s86s8Irl2- s86c8Ir22, s8Ir13- c8Ir23)

Numerically solve for 82:

Lbr31s86+ Lbr32c86- Lyr33+ pz- dl=
t82((Lbrlls86+ Lbrl2c86- Lyr13+ Px)/c81)+ t82a2S82+ a2c82

84= Atan2((-r3Is86- r32c86)1 (c8sc86r31- c8ss86r32- r33s8S)) -82

d3= (Lbr3IS86+ Lbr32c86- r33Ly+ pz- dl- a2 c82)1 s82

4.5.2 Multiple Solutions to Inverse Kinematics

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

The six degrees of freedom manipulator has a fixed number of joint solutions to any

given end-effector position and orientation. Therefore, it is solvable unlike

Equation 4.14 shows that 81 has 2 solutions due to the property oftan-I from regions of 0

to 2n:. Due to the fact that the Rotation joint is limited from 1100 to -1100
, it was decided

for simplicity to limit the 81 to 900 (n:/2) to _900
(-n:/2) so that the extra solution do not

propagate into 4 solutions through equation 4.15. The atan function in the C

programming language is also limited in the range of 900 (n:/2) to -900
(-n:l2).

86 also have 2 solutions as can be deduced from equation 4.15. lfthe extra solution from

81 in the quadrant of n:l2 to 3n:12 was retained, equation 4.15 would resolved in 4

solutions for 86. Once again, for simplicity sake, 86 were limited to 900 (n:/2) to -90 0 (-n:/2)

even though the Swivel joint can rotate from n: to -n:. This allows for simple computation

when solving the inverse kinematics.

37

CHAPTER 4- MANIPULATOR KINEMATICS

There is only one solution for 85 because Atan2 (equation 4.16) was used resulting from

knowing both sin8s and cos8s. There is also one solution for 82 because the Up-Down

joint only rotates from 30° to _27°. A numerical approach was used to solve for 82 as it

cannot be isolated in equation 4.17 using any trigonometric relationship.

Lastly, d3 (equation 4.18) has only one solution because no inverse trigonometric

function is required to solve for it.

However, the flexibility of the manipulator is limited by fixing the solution of 86 between

11: and -11:. If 86 were not limited, there would be two different orientation of the

manipulator for any end-effector position in the workspace.

4.6 MANIPULATOR HARDWARE

4.6.1 Manipulator Hydraulics

All six axis of the Unimate 2000B manipulator are powered by hydraulic actuators,

which are under control of servo valves. Hydraulic actuators for In-Out and Down-Up

motions are connected directly to their respective loads. For rotation, a rack and pinion

converts linear travel of the hydraulic rams to rotary motio1l. The motion of Bend, Yaw

and Swivel are transmitted by systems of chains, gears and shaft since the wrist is moved

by the arm and the wrist has to be kept at a minimum weight. A ball nut and spline shaft

arrangement was used to transmit motion to the wrist axes.

The hydraulic power is generated using a type of vane pump that is powered by a 10 hp

(7.5 kW) electric motor. The accumulator has been charged with dry nitrogen to a

pressure of 525 psi (3.5 Mpa). This extra pressure ensures that the system pressure will

be maintained when flow demand exceeds pump output flow capacity. Each of the 6

servo valves has four way infinite position valves, which are controlled by electric

signals. The polarity of the signal controls the direction of the movement, while the

magnitude of the signal controls the size of the valve opening. A larger valve opening

means a higher flow rate, therefore a faster joint movement. A servo valve directs the

38

CHAPTER4-MANIPULATORKINEMATICS

hydraulic fluid to one side of a hydraulic actuator and opens the opposite side for the

return flow. When moving in the opposite direction, the connections are reversed.

The Rotary and In-Out actuators are slightly different. The rotary actuator consists of two

actuators at opposite ends of the rack. Hydraulic fluid is admitted from the piston side of

each actuator just as though it was a single piston in a single actuator. The In-Out

actuator has fluid at system pressure at the rod side of the piston at al times. The servo

valve controls fluid flow to or from the piston side only of the Out-In actuator. The

Swivel motion utilises a hydraulic motor, not a linear actuator. See [6] for more

information on the manipulator hardware.

4.6.2 Manipulator Safety Measures

A physical barrier in the form of a chain has been installed across half of the hydraulics

lab to prevent people from going into the manipulator workspace. There are also infrared

sensors in front and behind the manipulator. When the sensor beam is broken, a relay

turns off the hydraulic pump.

A start and stop relay is used to start and stop the hydraulic pump. However, this is not

enough to stop the manipulator as hydraulic pressure is still accumulated in the

accumulator. Another remote emergency stop button was also installed in the circuit

between the UPP card and manipulator. When this circuit board emergency stop button is

activated, all PWM signals to the manipulator are stopped thus closing all actuator

valves. This effectively stops the movement of the manipulator even when the

accumulator is still fully charged.

Therefore, when required to stop the manipulator instantly, the circuit board emergency

stop button should be pressed first, then the stop button for the hydraulic pump relay.

4.6.3 The Circuit Board

The manipulator originally was controlled by discrete electronics. It was decided in an

earlier project to use none of the onboard electronics except for the solenoid, encoder and

39

CHAPTER 4- MANIPULATOR KINEMATICS

some wiring. The function of the circuit board is to amplify the PWM signals for the

valves, produce the correct voltage for the encoder scan output, and provide a suitable

medium for the encoder signals to the computer.

The major inputs and outputs for the circuit board are listed on the following page.

CD 32 bit link to the computer

I» 15 input bits, 13 bits for the encoder, leaving 2 for other inputs

CD 6 output bits to scan the encoders

It 6 positive amplified PWM signals for each of the valve

It 6 negative amplified PWM signals for each of the valve

It Common for PWM

., 24V power output (positive and earth)

It 15Voutput

It 5Voutput

Originally, an external 24V power source was going to be applied to the control circuit

board to power the PWM amplifiers. The control circuit board steps down the voltage to

15Vand 5V to power the encoder lamps and logic respectively. The robot also has a built

in 28V power source as well as existing wiring to power the 15V encoder lamp and the

5V logic signals for the encoder output. Fortunately, the external control circuit board is

able to run on the 28V power source therefore eliminating the need for an external power

source for the control circuit board.

4.6.4 The Absolute Grayscale Encoders

The encoders return an absolute value that defines where the joints are orientated or

positioned. The encoders consist of an encoder disk, a light source, a photocell cathode

and related circuitry for each of the available 15 bits. The disk has 15 concentric rings of

grayscale-patterned slots across its surface. The 15 photocells are able to sense light

transmitted through the 15 rings, and send 15 bits for the light pattern sensed. Of the 15

available signals, all encoders on the manipulator use only 13.

40

CHAPTER 4- MANIPULATOR KINEMATICS

There are 6 encoders; these encoders are multiplexed so that only one encoder is read at

one time. Therefore, only 20 wires are needed instead of 84 wires. Each encoder has a 13

bits output that joins up to the same wires from the other encoders. Only one encoder is

active driving the sensed bits down the wires at anyone time. The active encoder is

selected one at a time so that 6 select and read operations are required to determine the

manipulator position.

41

CHAPTER 5- MANIPULATOR CONTROL

CHAPTER 5- MANIPULATOR CONTROL

5 .1 SOFTWARE DESIGN

The software implementation was in two parts as was done for the single axis hydraulic

test rig. The controller was implemented in RTL where real-time processes are executed

where as the User Interface (01) was implemented in Linux for sending information to

the controller from the user. The program in RTL was given the name "RT" and the UI in

Linux was given the name "option".

The RTL part for the manipulator varied from the RTL part in the single axis hydraulic

test rig in the way the Interrupt function is controlled. The Interrupt function in the single

axis hydraulic test rig was started and halted from the UI where as the Interrupt function

of the manipulator is started as soon as it is inserted and only halted when it is removed.

There is also a separate "visual" program where information on the manipulator joints

(position and PWM signal) is updated every 300 interrupts or 50 complete position

readings. This "visual" program is automatically started when "option" is launched.

43

CHAPTER 5- MANIPULATOR CONTROL

Shared Memory

HOLD COEFF
TRACK COEFF

DESIRED
ACTUAL ... ACTUATION r--....

CURRENT
--------, --- -------

Linux ,,.
."

RT ~ rtfO: msg option
.... i ,

rtn: Signal
""',

rt£1: yes
' ... :...-

rtf3: Visual
visual ~ ..

,I""" , ,
L ______________ _

Figure 5.1 Communication between RT, option and visual.

Figure 5.1 shows the whole software set up on the PC. There are altogether 4 fifos used

in the set up. rtill is used to transfer to RTL the "msg" structure that determines the mode

required for RTL to function in. rtfl transfers the "Signal" structure to set the PWM

signals when it is in the manual control mode. rtf2 is used to send an integer variable

"yes" to inform the UI when a movement has been completed. rtfJ sends the "Visual"

structure to the "visual" program in Linux that inform the user about the current states of

the joints (PWM, position).

The shared memory between RTL and Linux starts at the 38th Mb of RAM out of the

39Mb in the PC. This 1Mb of RAM has been allocated for information storage accessible

only by programs "RT" and "option". "HOLD _ COEFF" and "TRACK _ COEFF" are both

structures of controller coefficient. "DESIRED" is a structure of paths for the joints to

track during a movement, while "ACTUAL" is a structure of paths and PWM signals that

the joints have carried out during a movement. "ACTUATION" is a structure of PWM

signals to be performed by the actuators in a movement. Finally, "CURRENT" is a

structure of current joint positions that RTL writes to when "SampleNumber" is at 1. Fig.

5.2 shows the different movements the manipulator can perform.

44

CHAPTER 5- MANIPULATOR CONTROL

Onen rtf 0.1.2 • Open Shared
memory

• Point
Shared memory to
RAM address ..
Open another x-term
window for the "visual"
program.

• Choose modes
I
I

1
Function: Manual()

--. (Generates PWM signals ..
from keyboard to send to

...
RTL.)

2 Function: MultipleSteplnput. ---. Function: Waiting.
~

Function: SaveData. --. (Keyboard input of joint (Wait for movement (Saves all position and ~
positions to step to.) to finish.) PWMdata of the

movement to a file.)

Function: SingleSteplnput. Function: Waiting. Function: SaveData.
3 (Keyboard input for one ---. (Wait for movement (Saves all position and --. ---. --.

particular joint position to
to finish.) PWM data of the

movement to a file.)

Function: EndPointInput. Function: Waiting. Function: SaveData.
4 (Keyboard input of end- (Wait for movement (Saves all position and
~ ---. ---. ---.

effector position and to finish.) PWM data of the
orientation.) movement to a file.)

9
Unhook shared memory "" Exit program

I

...

Figure 5.2 Choices of different movements in "option"

45

CHAPTER 5- MANIPULATOR CONTROL

5.1.1 Software Design in RTL

5.1.1.1 Fifo Handler

There are four modes in which the RTL program "RT.o" may function. The program

RT.o can only be in one of these mode at anyone time. These modes are decided by

variable "msg.command" sent through rtf 0 from the UI. They are: "hold",

"follow_track", "manual_actuate" and "tracking_actuate". The default mode is "hold"

because it starts at this mode and the modes "follow_track" and "tracking_actuate" revert

back to "hold" once "SampleNumber" exceeds a predefined "NumSample".

"SampleNumber" is incremented every six interrupts because each interrupt services one

joint and there are six joints on the manipulator.

The function "my_handler" is executed only once every time something is written into

rtf() (see Figure 5.3). Different operations are done depending on the mode rtf 0 receives

from the UI. When the "hold" mode is executed, RTL firstly copies the

"Hold_Coefficient" (coefficients for the controller) from shared memory. It then sets

"holding" to the hold position for all six joints at the positions it was previously at, one

"SampleNumber" before. Finally it resets the "SampleNumber" back to O.

When the "follow_track" mode is implemented, RTL copies "Desired_tracking" G oint

positions for the joints to follow) from shared memory. It then copy "Track_coefficient"

(coefficients for the controller) from shared memory. Lastly, it resets "SampleNumber"

back to 0 for the start of the tracking movement. There are two different coefficients

("Hold_Coefficient" and "Track_coefficient") because it gives the user flexibility of

having two different controllers for when it's stationary and when it's moving.

The "manual_actuate" mode is used for manual control of the manipulator and all it does

is read the PWM signal for all joints from rtf 1.

The last possible mode is the "tracking_actuate" mode where the manipulator tracks

PWM signals instead of joint positions. It is meant for the use in system identification

46

CHAPTER 5- MANIPULATOR CONTROL

where the system response (position, velocity, acceleration) is compared to signal input

(PWM) so that a model can be derived from the system. When the "tracking_actuate"

mode is sent through rtf 0, the "my_handler" function copies "Actuate_Tracking" (PWM

signal for the actuators at each joint) from shared memory and then resets

"SampleNumber" to O.

47

CHAPTER 5- MANIPULATOR CONTROL

Wait for fifo"O" to
be witten into for msg.command= hold (default mo~e Copy Hold_Coefficient ----.. holding position= previous

~
SampleNumber is

~ msg.command
.. from shared memory positions one reset to O .

.ill
SampleNumber before .

msg.command= follow_track .. Copy Desired_Tracking
~

Copy Track_coefficient
~

Sample Number is
~ '"' points for one whole from shared memory reset to O.

movement from shared
memory

msg.command= manual actuate Read fifo" I" for Signal .. - (PWM size) for all ..
actuators.

Copy Actuate_Tracking

msg.command= tracking actuate (PWM size) for one whole
Sample Number is - .. movement from shared .. ~ .. lIP reset to O. memory

~

Figure 5.3 Different modes for "RT" operation.

48

CHAPTER 5- MANIPULATOR CONTROL

5.1.1.2 Interrupt Function

The Interrupt function is always running and the variable "Actuator_No" is incremented

near the end of each interrupt. Therefore, each interrupt services one joint and the next

joint is serviced when the next interrupt happens.

At the start of an interrupt, the encoder is read and this reading is then converted from

grayscale to normal binary. It then checks whether "Actuator_No" is 4 or 5 (Yaw or

Swivel) because the positions of Yaw depends partly on the position of Bend and the

position of Swivel depends partly on the position of Yaw. After the joint dependencies

have been compensated for, the Interrupt function splits into four possible paths

depending on which of the four modes it is running (see Fig. 5.4).

When in the "hold" mode, the "ErrorCalc" function is called to calculate the PWM signal

and then this calculated signal is send to the "Valve Signal" function to set the hydraulic

ram valve. When in the "follow_track" mode, it goes through the same procedure as

"hold" except that it copies the joint positions of the movement to shared memory at the

end of the movement (NumSample 2 SampleNumber-I).

For the "manual_actuate" mode, only the "Valve Signal" function is called to set the

hydraulic ram valve. The "tracking_actuate" mode is the same as "manual_actuate" mode

because PWM signals are send to RTL and the controller is not used to calculate it. The

difference is that the "manual_actuate" mode copies a predefmed PWM signal path

"ACTUATION" from shared memory for one movement and copies the joint positions of

the movement to shared memory at the end of the movement (NumSample 2

SampleNumber-I). This mode was added to allow system identification to be done on

any actuator of the manipulator. System identification gauges the system response

(position, velocity, acceleration) to different signals so that a mathematical model can be

found to describe the system. This mathematical model can be used to aid controller

design.

49

CHAPTER 5- MANIPULATOR CONTROL

The rest of the interrupt function applies to all modes. After "SampleNumber" increments

by a certain set amount i.e. 50 complete position readings (300 interrupts), the

information of the joints at that instant is send through rtf "3" to be printed on the

"visual" program. This is to inform the current status of the joint positions as well as the

PWM signals send to each joint. It then increments "Actuator_No" or resets it to 0 if the

current "Actuator_No" is 5 so that the joint serviced after Swivel is Rotate. Once

"Actuator_No" has been switched to the next joint, that particular encoder (next joint) is

turned on so that when the next interrupt happens, it would have been on long enoughfor

the encoder output signal to be stable.

Next in the Interrupt function, "SampleNumber" is checked to see if it exceeds

"NumSample-I" to check if a movement has been completed. If that is the case, RTL

switches back to "hold" (default) mode only ifit is not in the "manual_actuate" mode to

make sure that a user can manually control the manipulator as long as possible. It also

resets "SampleNumber" to 0 if "SampleNumber" exceeds "NumSample-1 ".

The whole Interrupt function finished but restarts when the UPP card generates the next

interrupt.

50

CHAPTER 5- MANIPULATOR CONTROL

Function: ReadInput16 -. Function: GrayScale .. N .. Switch:
(reads encoder no. (converts grayscale msg.comand
Actuator_No) to binary)

y does Actuator_l' 0 A~

~r = 4 or 5?

Compensate for current
joint dependency on
previous joint

msg.command = hold (default mode) 'IF

... msg.command =follow _track ... msg.command = manual_ actuat{ msg.command = tracking_actuatot

Function: Function: Function: Function:

ErrorCa1c ErrorCa1c ValveSiQ11al ValveSiQ11al
Function: Function:

Valve Signal Valve Signal 4 SampleNumb" Is SampleNumber
;::: NumSamples- 1 ?

, Num:amPle,- I ?,
Y N

Copy actual (positions Copy actual (positions
done in movement) done in movement)
into shared memory into shared memory

~r ~ ~Ir ", "r ...
"" san>PleNun>b?~ y Print joint increased by ..
Inter ~er _Visual ? N

... information to
"visual" program Actuator No -

k>- Increment =0 ... Actuator No
Is Actuator No > -

N No of Actuator?
If Is SampleNumber Is mg.command =

.. Turn on encoder ' NumSan>ple!-~anua_actuate?

... no. Actuator No .. y

N N

holding position=
previous positions one
SampleNurnber before .

...
Wait till next H SampleNumber = 0

I ...

interrupt happens I""" msg.command= hold

t

Figure 5.4 Interrupt Handler of "RT"

51

CHAPTER 5- MANIPULATOR CONTROL

5.1.2 Compiling the Software

All the software needed to control the test rig is specified in the "makefile" (See

Appendix D). When "make" is typed at the prompt in the directory where the "makefile"

is kept, all the files in the "make file" is compiled using the GNU C compiler.

In the case of the manipulator, "option.c", "visuaLc" are compiled into "option" and

"visual" respectively. The real-time software "RT.c" is compiled into "RT.o". Notice that

compiling "RT.c" uses many real-time flags that "option.c" and "visua1.c" do not require.

"RT.o" functions in RTL however "option" and "visual" function in Linux.

5.1.3 Header Files

"rtshare.h" is a header file included in both "option.c" , "visua1.c" and "RT.c" as it

initialises variables that both these programs use. This ensures that these variables are of

identical size (float, int, char etc) since information is transferred between these two

programs via fifos and shared memory.

"kinematics.h" is a header file included in "option.c" that contain functions to solve for

forward and inverse kinematics of the manipulator.

The header files PWM.H and Upp.h are both included in "RT.c" for accessing commands

to control the UPP card.

5.2 USING THE SOFTWARE

In RTL, there are 5 modules that need to be inserted. One of the modules is "RT.o" and

the rest are "PWM.o", "UPP.o", "rt-'prio_sched.o" and "rt-'prio_fifo.o". "PWM.o" and

"UPP.o" are modules from which "PDcontro1.o" access the commands for the UPP card.

"rt-'prio_sched.o" and "rt-'prio_fifo.o" are modules that come with the RTL kerneL It is

from these two modules which "RT.o" access commands to set up timers and fifos

respectively.

52

CHAPTER 5- MANIPULATOR CONTROL

To insert the modules, the user must log into an "xterm" terminal as a super user. On the

"xterm" prompt, type in "su" and hit "Enter". The ''xterm'' will then prompt for a

password. When logged on as a super user, use the "insmod" command to insert the

modules individually. At the prompt, type in the commands:

III insmod rt ~rio _ sched.o

III insmod rt ~rio _ fifo. 0

III ins mod UPP.o

III insmod PWM.o

III insmod RT.o

"UPP.o" has to be inserted before "PWM.o" as "PWM.o" has functions that refer to

"UPP.o". To remove a module, simply type "rmmod" followed by the name of the

module. A super user has authority to change almost everything on the Linux operating

system; therefore the ''xterm'' where the super user role is assumed is only used for

inserting and removing modules.

The next step in to launch the "option" program as a normal user in another ''xterm''. The

user is then presented with a number of movement choices for the manipulator:

It Manual

It Multiple Step Input

It Single Step Input

• End Point and Angle Input

The "Manual" choice allows the user to control each actuator manually usmg the

keyboard directly without having to hit "Enter". The "Multiple Step Input" choice

prompts 6 positions for all six actuators to step to while "Single Step Input" prompts for

which actuator to step and a position to step to. The "End Point and Angle Input" choice

allows the user to define an end point and orientation for the end-effector of the

manipulator to step to.

53

CHAPTER 5- MANIPULATOR CONTROL

5.3 GRAYSCALE CONVERSION

The encoders on the manipulator are absolute encoders. Therefore, there is no need to

initialise the encoders in any situation. However, the encoders are grayscale devices.

Grayscale is a binary scale that changes I bit at a time for each position increment. Below

is a table ofnonnal3 bits binary compared to their grayscale counterpart.

Decimal Binary Grayscale

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Table 5.1 Decimal, Binary and Grayscale converSlOn

It can be seen in table 5.1 that the binary sometimes changes multiple bits for an

increment. For instance, the single increment from ':001" to "010" changes both the fIrst

and second bit at the same time. This introduces the possibility of large errors if any of

the changing bits were misread. Using the change from "001" to "010" as an example,

"000" could be read if only the change in the first bit out of the two is detected. On the

other hand, if only the change in the second bit is detected, it could read "011".

The advantage of grayscale is that it eliminates the possibility of large errors by limiting

each increment to only one changing bit at any time. However, grayscales need to be

converted to nonna1 binary so that computers could recognise them for their value.

54

CHAPTER 5- MANIPULATOR CONTROL

The conversion from grayscale to normal binary is defined as follow:

BinarYi= Grayscalei XOR BinarYi+l

The i-th bit of the binary scale is simply the XOR operation of the i-th bit of the grayscale

with the (i+ 1)th bit of the binary scale. For any grayscale-binary conversion of n number

of bits, the (n+ 1)th bit of the binary scale is "0" , to kick start the conversion process.

5.4 CONTROLLER DESIGN

The controller is implemented in RTL. The controller is used in every mode except

"manual", where the actuation is controller manually by the user.

5.4.1 Controller Structure

For each of the 6 actuators, the controller is of the following form:

i=k i=k i=k k

u(k + 1) = ~)w(i)u(i)] + ~)Kp (m)e(i)] + Kd [I e(i)f(i)]/pl1t + I [Ki e(k)]l1t
i=k-n+l i=k-m+l i=k-p+l

(5.1)

where:

k is the sampling number starting at 0 and incremented by one every 6th interrupt,

u(k) is the output in PWM E {-I 00%, 100%},

e(k) is the error signal (desired position- current position),

f(P) is the filter coefficient to filter the error signal,

Kp(m) is the proportional gains,

w(n) is the weights for previous PWM outputs,

Kd is the derivative gain,

Ki is the integral gain,

Jt is the sampling interval or six interrupt interval.

A controller of such a form allows it to be either a P .LD controller or an Observer Based

controller. An Observer Based controller needs information on previous output, which a

P.LD. controller does not need. All the control coefficients are sent as one single structure

from U.L to RTL. This allows the controller to be changed at any time of operation to

55

CHAPTER 5- MANIPULATOR CONTROL

make testing controllers flexible. It also allows adaptable or self-tuning controllers to be

implemented.

Friction exists in all six joints. Therefore, a PWM of greater than zero is needed to start

any of the six joints moving. It is therefore a requirement that the PWM signal send to the

actuators has a minimum value that just starts it moving. The manipulator was tested in

the "manual" mode to fmd these values and they are:

InI0ut actuator: PWM ~ 26, PWM ~ 17;

Rotate actuator: PWM ~ 22, PWM ~ 18;

Up/Down actuator: PWM ~ 14, PWM ~ 26;

Bend actuator: PWM ~ 25, PWM ~ 28;

Yaw actuator: PWM ~ 21, PWM ~ 16;

Swivel actuator: PWM ~ 20, PWM ~ 20;

There are two controllers for the manipulator. One operates when in the 'hold' mode, and

a different one for all the other modes. This is to ensure that the manipulator is able to

stay stationary when in the 'hold' mode regardless of the capability of the controller

being tested.

5.4.2 Control Responses

Figure 5.5 and Figure 5.6are step responses to a P.I. controller of values:

InI0ut actuator: Kp(n-l)= 20, Ki=200;

Rotate actuator: Kp(n-l)= 25, Ki=20;

Up/Down actuator: Kp(n-l)= 30, Ki=90;

Bend actuator: Kp(n-l)= 3, Ki=3;

Yaw actuator: Kp(n-l)= 4, Ki=20;

Swivel actuator: Kp(n-l)= 20, Ki=80;

56

CHAPTER 5- MANIPULATOR CONTROL

100
1500

/ 1400
50

rmJWlMN 1300
/ 0

!

/ -50 1200
l -100

0 1 2 3 4 5 0 2 3 4 5
Ti me, seconds

0
Time, seconds

0 ill / (I)

N~./'· ~ -20

/
0)
(I)

E-40 -50
(I)

1:0
-0 -60
!Y

-80 -100
0 1 2 3 4 5 0 2 3 4 5

Time,
50

Ti me, seconds
ill 0 (I) --
(I)
>-
0) 0 (I)

E-10 / c
S:

I -50 0
0-20 --.
D-
=:t -100

0 1 2 3 4 5 0 1 2 3 4 5
Time, Time, seconds

Figure 5.5 Step response for the ann ofUnimate 2000B

57

CHAPTER 5- MANIPULATOR CONTROL

1iJ
Q) 0 f---------=~---------I
Q) ..?~

~ 50 /'

~ -;00 /
co

-150 '--~-~-~-~----'
o 2 3 4 5

Time, seconds
100,-~-~~~-~-~

1iJ

to:T~
(lJ i
>- l

-200 '--~-~-~-~----'
o 2 3 4 5

Time, seconds
50,-~-~~~-~-~

1iJ
Q)

~ Or-~--------------~

; -50 /

Jj /
-100 ,-I _~_~_~_~-----'

o 2 3 4 5
Time, seconds

50,--~-~-~-~--,

2:
S -50
0...

1 2 3 4 5
Time, seconds

100,-~-~~~~~-~

50
~
~

2: 0
S
0... -50

-100 '---'--i~_~_~_~-----,
o 1 2 3 4 5

Time, seconds
100,-~~~~~~~-~

50
~ 2....-

2: o
S
0... -50

-1 00 '----'---'-~-~-~----'
o 1 2 3 4 5

Time, seconds

Figure 5.6 Step response for the wrist ofUnimate 2000B

The abrupt switching in the PWM signal apparent in the In/Out, Bend, Swivel joints are

due to the minimal absolute PWM settings discussed in the later part of section 5.4.1. The

P.I. controller proves adequate in achieving simple path tracking for the manipulator.

58

CHAPTER 6- DISCUSSION and RECOMMENDATON

CHAPTER 6- DISCUSSION and RECOMMENDATON

6.1 SOFTWARE IMPROVEMENTS

6.1.1 Real-Time Linux versus Real-Time Application Interface

There is another version of real-time kernel for Linux called RT AI (Real-Time

Application Interface) developed by The Aerospace Engineering Department of Milan

Polytechnic in Italy (Dipartimento di Ingegneria Aerospaziale Politetnico di Milano­

DIAPM). The RTAI plug-in helps Linux to fulfil some real time constraints (few

milliseconds deadline, no event loss). It is based on a RTHAL: Real Time Hardware

Abstraction Layer. This concept is also known in Windows NT. The HAL exports some

Linux data & functions closely related to the hardware. RTAl modifies them to get

control over the hardware platform. That allows RTAl real time tasks to run concurrently

with Linux processes. The HAL defines a clear Interface between RTAI & Linux [12].

A feature of RTAI implementation is that interrupt handlers preambles take care of the

task switch (TS) flag within RTAL Thus floating point operations can be freely used in

interrupt handlers, without causing a trap fault from Linux processes. On the other hand,

RTL has a function that executes when an interrupt is generated by the UPP card. This

function starts by saving the FPU (Floating-Point Unit) registers and clearing the task

59

CHAPTER 6- DISCUSSION and RECOMMENDATON

switch flag in the CRO register so that the processor ignores the exceptions that are

generated when the FPU is used later. See section 2.3 for more details. This capability of

RTAI is extremely useful as floating-point calculations are used extensively in robotics

and control applications. Having a real-time kernel that saves the floating-point registers

in the FPU reliably by itself allows it to interface to any hardware. The programming of

modules in RTAI is similar to RTL because fifos and shared memory are used. Therefore,

it is easy for an RTL programmer to switch to RTAI.

6.1.2 Extensions to RTL for control applications

There are free software-extensions developed by other technical institutes to run on

Linux. These have built in functions to simplify the development and tuning of

controllers in RTL. However, these do not support the UPP card but the source codes of

these programs could be changed to accommodate the UPP card. Two such extensions

are:

6.1.2.1 RTiC-Lab

The Real Time Controls Laboratory (RTiC-Lab) was developed by the Rotating

Machinery and Controls (ROMAC) Laboratories at the University of Virginia. It is a

semi-detached open source software designed to run. on Linux and RTL. It is designed as

an easy to use controls prototyping tool. It gives the controls engineer real time access to:

• Plant states,

• Plant I/O,

• Controller states,

• Controller parameters (scalar or matrix), and

• Hard real time environment for plant modelling

Run time data can currently be saved to:

• stdout, and data files

Although modules are now being coded to add plotting capabilities. Most importantly,

RTiC-Lab is intended to be extensible by creating a simple to use interface in Linux so

that users can add their own modules. RTiC-Lab is released under the Free Software

60

CHAPTER 6- DISCUSSION and RECOMMENDATON

Foundation's General Public License (GPL), allowing the source codes to be obtained and

modified.

6.1.2.2 RTLT

Real-Time Linux Target (RTLT) is a software package developed by Quality Real Time

Systems that gives the user the ability to implement a Simulink block diagram on a

standard Intel PC in hard real-time. Specifically, RTLT is a set of source files, device

driver libraries, a template make file , and an MEX-file interface that uses RTW (Real­

Time Workshop) to automatically generate C code from a user defmed Simulink block

diagram. The C code is first generated and compiled on a PC running RT-Linux. A target

for running the generated code is then built on the same PC.

During the execution of a Simulink block diagram, R TL T captures sampled data from

one or more input channels using standard I/O boards (e.g., AID channels, digital lines,

and encoder lines, etc.). RTLT then provides the data to the block diagram model. The

Simulink block diagram model then processes the data accordingly. RTLT then outputs

the processed data via one or more output channels (e.g., DI A channels). A custom

Simulink block library and four different hardware I/O board drivers are also provided.

The user can also observe the behaviour of any signal during or after the real-time run via

the Simulink Scope blocks. If the user builds the Simulink code in the external mode, the

user can perform on-line parameter tuning during real-time execution.

6.1.3 Graphical User Interface (GUI)

The user interface (UI) at the moment are just prompts on the xterm windows. A GUI

ought to be developed on the Linux side. This can be done using the Java programming

language, which is now supported on Linux. A development tool kit for Java can be

obtained through their web site for free. The advantage of using Java is that it has reliable

graphics library and is constantly improved by a dedicated group of people at Sun Micro

Systems.

Java is also a web-enabled language that allows it to run through any web browsers like

Internet Explorer and Netscape Navigator. The Java interpreter unique to each operating

system also allows for easy portability between different operating systems.

61

CHAPTER 6- DISCUSSION and RECOMMENDATON

6.2 HARDWARE PROBLEMS

It was noted in section 4.6.4 the absolute encoders have to be switched on before reading.

When interrupts of less than 6 ms were used to switch between actuators, there can be 2

or 3 erroneous readings from the encoders due to the fact that the encoders are not fully

switched on when the reading occurs. Figure 6.1 shows a stepping response for all

actuators with an interrupt time of Ims. Notice the two erroneous readings for the In/Out,

Up/Down and Bend joints individually. Also, notice the three erroneous readings for the

Yaw joint.

Therefore, the encoders need to be improved physically or the interrupt time will have to

be kept at 6 ms and above to ensure enough time to switch on the encoder. An interrupt

between actuators of 6 ms would results in a complete position reading of the

manipulator in 36ms.

62

2000~--~--~--~

I 1500 /

S 1000
o
C 500

50,---~--~---.

Til
(l)

i 0/
I
a::: o '---__ -'--__ -'--__ --1 -1 00 I..--__ -'--__ ~ __ -----.J

o 5 10 15 0' 5 10 15
Ti me, seconds

~100~-~~~~~--~ 300r-____ T~i~m~e~,s~e~c~o~n~ds~--~
(f)
(l)
(l)
;? 50

:E..
c

200

100
~ 0 r--r-!---'-----'-----
~ / 0 /
:::J -50 I..--____ ~ __ ~ __ ____J _ '100 '------'----~-----'

o 5 10 15 0 5 10 15
400r-__ .-~~I~m~e~,s~e~c~o~nd~s~--~ 50.-____ T_im~e~,s-e-c-o-nd~s----~

~ I
~ 200 I'

~ O~J~~-----'---
('iJ

>-

Til
(l)

~ 0 1-,,,,,=::.:::::::;::;;:;::;::;;:;::;::;;:;==== ;? 1 J
:E..
g: -50
Jj

-200 L--__ ~ __ ~ __ ____J -1 00 '----~----'------'
o 5 10 15 0 5 10 15

Time, seconds Time, seconds

Figure 6.1 Erroneous readings at an interrupt time of Ims per axis.

CHAPTER 6- DISCUSSION and RECOMMENDATON

6.3 CONTROLLER IMPLEMENTATION

The software design has been implemented in such a way that the user can change the

controller coefficients while the robot is moving (refer to section 5.4). If an adaptive

algorithm is to be utilised for identifying the parameters of the robot, the algorithm can be

implemented on Linux ("option") and when the latest estimates have been calculated,

new controller coefficients can be determined and sent to the RTL ("RT.o") side. This

way, RTL can be saved from doing extensive processing and left to run the controller

reliably.

System identification could also be easily extended into the software, as there is already a

"tracking_actuate" mode in RTL ("RT.o") that allows the robot actuators to follow PWM

signals send to it by Linux ("option"). This allows the user to gauge the system response

from tailored inputs so that a mathematical model of the system can be identified. The

System Identification toolbox in Matlab correlates signal input to system response

(position, velocity and acceleration) and also allows different types of system models to

be derived (State Space, ARX, etc).

6.4 PATH GENERATION

The software has not been written to perform path tracking, as not enough information on

the parameters of the robot is known for a feed-forward controller. A function can be

easily written to generate a path from a minimum of three points. A path has to have a

starting and ending point with at least one intermediate point between the former two

points. A polynomial or cubic spline interpolation can be used to generate the path [14].

The end-effector position is defined by 6 variables (x, y, z, y, ~, ex), see section 4.3 for

more details. It would be troublesome to have to define 6 variables for each point as there

are at least three points needed to generate a path. In a pick and place movement of a

manipulator, it is often desired that the end-effector keeps a constant orientation. Imagine

a manipulator picking up a cup; it would be desirable that the contents of the cup do not

get tipped out along the path i.e. keep the cup level.

63

CHAPTER 6- DISCUSSION andRECOMMENDATON

Therefore, it is vital that the "f and ~ angles do not change along the path. The a angle has

to change in accordance to the Rotate joint angle in a I: I relationship. If the end-effector

is to move from point "A" to point "e" through point "B", with the knowledge of the

starting position (XA' y A, ZA) and orientation ("fA, ~ A, aA), all we need now is the

intermediate position (XB' YB, ZB) and ending position (xc, Yc, zc) to define the path. This

is due to the fact that the "f and ~ angles are constant throughout the path. The aB and ac

can be found using the (XB' YB, aA) and (xc, Yc, aA) variables respectively.

Since the software has functions to calculate the inverse kinematics of the manipulator, it

is only a matter of using appropriate interpolation algorithm to generate a path.

64

CHAPTER 7- CONCLUSION

CHAPTER 7- CONCLUSION

The Unimate 2000B is in adequate working order and can still be used for further

research into robotics. With its inverse kinematics problem solved, it is ready for research

in robotics and controller design (control algorithm). In the case of the current software, a

feedback controller was implemented with no feed-forward. Feed-forward is a controller

design based on the mathematically derived dynamics of a manipulator. It linearises the

non-linear dynamics of a manipulator to allow trajectory following. Since the dynamic

model of the Unimate 2000B is not known, a feed-forward controller was not

implemented.

RTL has been found to be excellent for the control of the Unimate 2000B. RTL would

also be more than adequate in the control of most mechanical systems where a sampling

rate of 1 kHz is considered very fast. A 486-66MHz PC running RTL using the FPU has

a latency of not more than 70 ~s. This would mean a maximum latency of 7% for

interrupts of 1 ms, see section 2.3 for more detail. For faster computers such as high end

Pentiums, the latency could be a lot less, but cache flushing takes extra time.

In the research of digital control of mechanical systems, DSPs are frequently used. Most

mechanical engineers have poor knowledge of digital hardware. The use of real-time

operating systems saves mechanical engineers from having to familiarise themselves with

the hardware architecture of a DSP. DSPs are notorious for their fast paced changes on

65

CHAPTER 7- CONCLUSION

the market and vendors of DSP embedded systems rarely make provision to interface

older boards with the newer ones and the 110 features might vary too. There is also the

problem that DSP embedded systems have limited RAM for data logging.

Therefore, RTL is ideal for the research on mechanical control systems. Once a good

control algorithm has been developed through the use of R TL, the algorithm can then be

ported to a DSP. With a clear understanding of the control requirements after

implementation on RTL, a suitable DSP embedded system can be chosen for the task.

Real-Time operating systems will play an increasingly important role in the research of

digital controllers for mechanical systems. The research into robotics and real-time

operating systems reported in this thesis has shown that a comprehensive system capable

of meeting the current future needs of robotics research has been developed. That this

development is freely available and supported by academic institutions worldwide is a

great benefit.

66

REFERENCES

REFERENCES

[IJ Asada, H. and Slotine, J. 1. E. Robot Analysis and Control. John Wiley and Sons,
Inc. 1986.
TJ211.A798

[2J Craig, John. J. Introduction to Robotics. Addison-Wesley, Publishing Company.
1989.
TJ 211.C886

[3J Dunlop, G. R and Murphy, 1. D. 1. A universal pulse processing board Jor
instrumentation and machine control, Proc. NELCON'93, Auckland, New
Zealand 1, 171-178. 1993

[4] Dunlop, G. R. and Hampson, S. P. (1995) An integrated digital control system
Jor hydraulic actuators. Innovations in Fluid Power (Seventh Bath International
Fluid Power Workshop), Eds. Burrows C R and Edge KA, RS.P. John Wiley &
Sons Inc., ISBNO 471 956880 Ch 13 pp177-186.

[5] Dunlop, G. R. and Hampson, S. P. (1995) Bond graphs Jor nonlinear modeling
oj an electro-hydraulic system. Active Control in Mechanical Engineering, Paris,
France, Ed. L. Jezequel, Editions Hermes, ISBN 2-86601-450-2, pp57-68.

[6J Donald, S.D. Commission oj a Hydraulic Powered Robot. Christchurch,
University of CanterbulY. 1998. Project No: 30. (3rd pro project report:
Mechanical Engineering)

[7J Hampson, S.P. and Dunlop, G. R. Digital controlled hydraulic rig suitable Jor
teaching advanced control theory. IPENZ Trans 19,1, 28-33.

67

REFERENCES

[8] Hampson, S.P.; Sirisena, H. R. and Dunlop, G. R. (1995) Model predictive
control of a hydraulic actuator, Proc. SICICI'95, IEEE Singapore International
Conf. on Intelligent Control, Singapore, July 3-7, 1,396-401.

[9] Hilton, E.F. RTiC-Lab (Real-Time Controls Laboratory).
http://128.143.47.231/~etb4v!Iiic-lab.html

[10] Johnson, M.K. and Troan E.W. Linux Application Development. Addison­
Wesley. 1998.

[11] Kelly, A. and Pohl, 1. A Book on C. Addison-Wesley. 1995

[12] Mantegazza, P.;Bianchi, E.;Dozio, L. DIAPM-RTAI (Dipartimento di Ingegneria
Aerospaziale Politecnico di Milano- Real-Time Application Interface).
http://www.aero.polimi.it/projects/rtai/

[13] Palmer, C.N. Computer Control of a Hydraulic Test Rig. Christchurch,
University of Canterbury. 1998. Project No: 32. (3 rd pro project report:
Mechanical Engineering)

[14] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T. and Flannery, B.P. Numerical
Recipes in C. Cambridge University Press. 1988.

[15] Sciavicco, L. Siciliano, B. Modeling and Control of Robot Manipulators.
McGraw-Hill. 1996.
TJ 211.S416

[16] Yao, Z.G. RTLT (Real-Time Linux Target).
http://v.,'Ww. qrts .com/products/rtlinuxtarget/index. shtml

[17] Yodaiken, V The RT-Linux approach to hard real-time.
http://luz. cS.nmt. edulrtlinux.new / documents/papers/whitepaper .html

[18] Yodaiken, V; Barabanov, M. A Real-Time Linux.
http://www .1ilinux. org/rtlinux.new / documents/papers/lj .ps

68

APPENDIX A- INVERSE KINEMATICS ofUNIMATE 2000B

APPENDIXA- INVERSE KINEMATICS o(UNIMATE 2000B

69

APPENDIX A- INVERSE KINEMATICS ofUNIMATE2000B

Invefse Kinematics:

(2)

¢ s8 l pxl Ly - c8 l Pyi Ly = c8s

L.H.S. of (1) equals L.R.S. of (3)

¢ S81fn- C8If23= s8 l Pxl Ly - c8 l pyl Ly

¢ t8If13- f23= t8 l Pxl Ly - pyl Ly

¢ t81(f13- Pxl Ly)= f23- pyl Ly

¢ 81= tan-1(r23-py/Ly , r13-pxiLy)

(5)/(4)

¢ -t86= (S81f12 -C8If22)/(S81fU- C8If21)

¢ 86= tan-1(C81r22- s81r12 , S81rll- C81r21)

70

(1)

(2)

(3)

(4)

(5)

(6)

APPENDIX A- INVERSE KINEMATICS ofUNIMATE 2000B

(7)

(6)/(7)

¢ t8s= (C86S8Ifn-c86C8jf21- s86s81fl2- s86c8jf22)1 (S8If13- C81f23)

¢ 85= Atan2(c86s81rll-c86c81r21- S86S81r12- s86c81r22 , s81r13- c81r23)

In T30 (1,4)

Lbf11S86+ Lbf12C86- Lyfl3+ pc c81 c82d3- c8l s82a2

In T4i (2,4)

(8)

(9)

RH.S of(IO) equals RH.S of(l1)

¢ (LbfllS86+ Lbfl2C86- Lyf13+ px + c8 1 s82a2) 1 c81 c82

= (Lbf3IS86+ Lbf32C86- Lyf33+ pc dl - c82a2) 1 s82

¢ Lbf31S86+ Lbf32C86- pz- dl - c82a2

= t82(LbfllS86+ Lbf12C86- Lyf13+ px + c81 s82a2) 1 c81

¢ Lbr31s86+ L br 32c86- Lyr33+ pz- dl

= t82((Lbrl1s86+ L br12c86- Lyr13+ Px)/c81)+ t82a2s82+ a2c82

(Numerically solve for 82)

In T40 (3,1)

-s82 s84+ c82 c84= c8sc86f31- c8ss86f32- f33 S8S

(8)

(9)

(10)

(11)

(12)

71

In T40 (3,3)

c92 S94+ s92

(12)

APPENDIX A- INVERSE KINEMATICS ofUNIMATE 2000B

~ c(92 +94)= c9sc96f31- c9ss96f32- f33S9S

(13)

~ s(92 +94)= -f31S96- f32C96

(15)/(14)

~ t(92 +94)= (-f3IS96- f32C96) / (c9sc96f31- c95s96f32- f33 S9S)

~ 94= Atan2((-r31S96- r32C96), (c9sc96r31- c9ss96r32- r33S9s») -92

(11)

~ d3= (Lbr31S96+ Lbr32c96- r33Ly+ pz- d1- a2 C92)1 s92

72

(13)

(14)

(15)

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT

LATENCY

73

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

makefile

all: intlaten.o IntCon

you might have to change this

the path to the rt-linux kernel

RTL_DIR = /usr/src/rtl
RTLlNUX_DIR = /usr/src/linux
INCLUDE= -I/usr/src/linux/include -I//usr/src/rtl/include
CFLAGS = -Wall -Wstrict-prototypes -02 -fomit-frame-pointer -fno­
strength-reduce -D __ RT __ -D __ KERNEL __ -DMODULE -c

EXECFLAGS = -02 -Wall

intlaten.o: intlaten.c
gcc ${INCLUDE} $ {CFLAGS} intlaten.c

IntCon: IntCon.c

clean:

74

gcc ${INCLUDE} $ {EXECFLAGS} -g -0 IntCon IntCon.c

rm -f intlaten.o
rm -f IntCon

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

/* MyFifo.h */

#ifndef MYFIFO_H_
#define MYFIFO_H_

#define START_TASK 1
#define STOP_TASK 2
#define READ_REG 3

typedef struct my_msg_struct
int command;
int task;
int period;

}MyMsg;

#endif

75

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

1* intlaten.c *1

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <asm/rt_irq.h>
#include <asm/io.h>
#include </usrlsrc/rtl/include/rtl_sched.h>
#include </usrlsrc/rtl/include/rtl_nfifo.h>
#include </usrlsrc/rtl/include/rtl fifo.h>
#include "upp.h"
#include "MyFifo.h"
#include </usrlsrc/rtl/include/rtl_sync.h>

#define Period 1000

static UINT card;

static
static
static

int IntCount=O;
int Running=FALSE;
int IntTime;

int SaveFpuRegs[28];

void IntFunc{void)
{

int Flags;
long linuxCRO;

rtl_no_interrupts{Flags); II'disable interrupts

76

_asm __ volatile_{"movl %%crO,%%eax": "=a" (linuxCRO):: "ax");
_asm __ volatile_{"clts"); II clear task switch flag

asm __ volatile_{"fsave %0" : "=m" (SaveFpuRegs));

IIIntTime=UPPReadData{card,18) ; II get counter value

IntTime=UPPReadData{card,18) ; II get counter value

if (Running)

rtf-put{l, &IntTime, sizeof{IntTime));

IntCount++;
UPPIntStatClear{card,l) ; II clear interrupt flag

asm __ volatile_{"frstor %0" : "=m" (SaveFpuRegs));
II restore floating point regs

_asm __ volatile_{"movl %%eax,%%crO":: "a" (linuxCRO): "ax");
II restore crO

rtl_restore_interrupts{Flags); II restore interrupt enable

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

static void LoadUpp(void)

1* The following section contains the program that is placed into the
UPP

microcontroller on the UPP card
*1

static ProgType pwc[]=
{

{"USCR",OxOO},I* Stop The UPP *1
{"MFNR",Ox02},I* Set the number of functions to be programmed to

1 *1

{"FNR",OxOl}'/* Select function 1 for programming *1
{"CMR",Ox50},I* INC command for interrupt*1
{"RASRA",OxOF2}, 1* Counter register *1
{"RASRB",OxOF3},I* Compare register *1
{"IOARA", OxOFF},
{"IOARB", OxOFF},
{"IOARC", OxOO},

signal *1
1* OxOFl Select internal port for output of

} ;

{"IOARD", OxOFF},

{"UCER2",OxOO},11 disable upp contact lines
{"UCER1",OxOO},I* disable all UPP contact lines
{ "DDRl " , OxFF} ,
{ "DDR2 " , OxFF} ,
{"NDER",OxOO},I* Disable the next data register
{"USCR",Ox02},I* Start The UPP *1
{ " " , O}

card=Ox230; II address for pwm stuff
UPPLoadprogram(card,pwc) ;

*1

*1

UPPWriteData(card,19,Period) ;
UPPWriteData(card,18,O);
UPPIntStatClear(card,l);
UPPIntEnableWrite(card,l,OxOl) ;

II set compare register
II reset counter

UPP
}

II clear interrupt flag
II enable interrupt on

int nummm[]={7,6,5,4,3,2,1,O};
static ProgType pwcC[]=
{

} ;

{"USCR",OxOO},I* Stop The UPP *1
{"UCER2", OxO}, I I disable upp contact lines
{"UCER1",OxO},I* disable all UPP contact lines *1
{"DDR1",OxO}, II data dir input
{ "DDR2" , OxO} ,

int FifoHandler(unsigned int fifo)

77

MyMsg msg;
int err;
int Data;

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

float A=1.2,B=2.3,C;

C=A*B;

while «err = rtf_get (2, &msg, sizeof(msg)))
{

switch (msg.command)
{

case START_TASK:
LoadUpp() ;
Running=TRuE;
IntCount=O;
II rtf-put(l, nummm, sizeof(int)*8);

break;
case READ_REG:
Data=12345;
rtf-put(l,&C,sizeof(C));

II UPPWriteData(card,19,Data);

sizeof

I I Data=inportb (Ox21) ; IIUPPReadData(card,18);
II rtf-put(l,&Data,sizeof(Data)) i

Ilrtf-put(l,&IntCount,sizeof(IntCount)) ;
break;

case STOP_TASK:

))

Running=FALSE;
UPPIntEnableWrite(card,3,O);
UPPLoadProgram(card,pwcC);

1/ disable interrupts
II stop upp

break;
default: return -EINVAL;
}

if (err ! = 0) {
return -EINVAL;

return 0;

int numm[]={O,l,2,3,4,5,6,7};
int init_module(void)
{

rtf_create (1, 4000);
rtf_create (2, 400); Ilinput control channel
rtf_create_handler(2, FifoHandler);

(IRQ7, IntFunc);
return 0;

void (void)

UPPIntEnableWrite(card,l,O); II disable interrupts

(IRQ7) ;

78

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

/* :IntCon.c */

#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <rtl fifo.h>
#include <asm/rt_time.h>

#include "MyFifo.h"

int buf[50];

int main()

int fdO, ctl;
MyMsg msgi

int i,j,ni
int Max=O,Min=1000i
float Total=::Oi
int g, bar[20]={0};

if ((fdO
{

open("/dev/rtfl", O_RDONLY)) < 0)

(s tderr , II Error opening / dey / rtf 1 \n II) i

exit(l) ;

if ((ctl
{

open (1\ /dev/rtf2 ", O_WRONLY)) < 0)

(stderr, "Error opening /dev/rtf2\n");
exit(l) ;

/* now start the tasks */
msg.command = START_TASK;
msg. 1000;

if
{

(ctl, &msg, sizeof(msg)) < 0)

(stderr, "Can't send a command to RT-task\n");
exit(l);

79

APPENDIX B- SOFTWARE FOR TESTING INTERRUPT LATENCY

for (i = 0; i < 100000;)
{

msg.command = READ_REG;
msg.period = 1000;

n = read(fdO, buf, sizeof(buf));
n=n/sizeof(int) ;

for (j=O;j<n;j++)
{

if (buf[j] > Max) Max=buf[j];
if (buf[j] < Min) Min=buf[j];
for(g=O; g< 20; ++g)

{

if(buf[j]>= g*10 && buf[j]<=
(g+1)*10)

++bar [g] ;

Total+=buf [j] ;

i=i+n;

msg.command = STOP_TASK;
if (write (ctl, &msg, sizeof(msg)) < 0)

fprintf(stderr, "Can't send a command to RT-task\n");
exit (1) ;

printf("\n\nMax %f microsecond\nMin %f microsecond\nAverage %f
microsecond\n" , (float) Maxi 2 . 0, (float) Mini 2.0, (float) Total I (float) il 2.0)

for(g=O; g< 20; ++g)
{ printf ("number btwn %d-%d microsecond: %d\n", g*5, (g+l) * 5,

bar [g]); }
return 0;

80

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXlS

HYDRAULIC TEST RIG

81

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

f* makefile *f

all: function.o option PDcontrol.o

you might have to change this

the path to the rt-linux kernel
RTLINUX . . f .. f . . flinux
INCLUDE = ${RTLINUX}fincludeflinux

CFLAGS = -02 -Wall

function.o: function.c option.c MyFifo.h
gcc -I${INCLUDE} ${CFLAGS} -c -g function.c

PDcontrol.o: PDcontrol.c MyFifo.h
gcc -I${INCLUDE} $ {CFLAGS} -D __ KERNEL -D __ RT __ -c PDcontrol.c

option: option.c function.c MyFifo.h
gcc -I${INCLUDE} ${CFLAGS} -0 option option.c function.o -1m

clean:
rm -f PDcontrol.o function.o option option.c- PDcontrol.c­

getkey.h- function.c- makefile- MyFifo.h-

82

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/* MyFifo.h */

#define START_TASK
#define SLOW
#define STOP_TASK
#define INITIALISED

#define size
#define NumSamples
#define MaxSetting
#define TerminalCount
#define Pulse
#define InterPeriod
#define SampleTime

struct my_msg_struct
int command, Max;

} ;

struct control_data

1
2
3
4

200
l6000
100
5000
3.25e-6
300
Pulse*InterPeriod

float PosG, DerG, IntG, Signal;
} ;

struct array {
int SetPos;

} ;

struct my_msg_struct msg;
struct control_data data;
struct array ary;

int End;
int inf1, inf2;
int ctl, fdb, dcs, dta;
int StartPosition, EndPosition;
float InputDerG, InputIntG, InputPosG, Integ;
int Samp1 eNumber, Number;
int ValveSetting[NumSamples], ReadPosition[NumSamples],
SetPosition[NumSamples], RamPosition[NumSamples];

void Write_fifo (void) ;
void ErrorCalc (void) ;
void ResetValues(void) ;
void Manual (void) ;
void SetPulse (void) ;
void Input (void) ;
void move (void) ;
void Initialise(void);
void Finish (void) ;
void SaveData (void) ;
void StepInput (void) ;
void RampInput (void) ;
void MultiStep (void) ;
void Sinewave (void) ;
void FollowPath(void) ;
void ValveSignal (float, int) ;
void Interrupt (void) ;

83

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/* PDcontrol.c */

#define MODULE
#include <math.h>
#include <linux/module.h>
#include <linux/errno.h>
#include </usr/src/rtl/include/rtl_sched.h>
#include </usr/src/rtl/include/rtl_fifo.h>
#include "PWM.H"
#include "MyFifo.h"
#include "Upp.h"

#define NumChannels 2
int ArrayPWM[NumChannels];
int TypePWM[NumChannels]= {2, 2};
RTIME begin, end, latent;
int between;

/*--
*/

void Interrupt (void)

end= rt_get_time();
switch (msg.command)

{

case START_TASK:
ErrorCalc() ;
break;

case SLOW:
ValveSignal(data.Signal, msg.Max);
break;

default:
ValveSignal(O.O, 20);
break;

/*--
*/

84

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*
*/
void ErrorCalc(void)
{

float Distance [4] , Deriv, Result;
int i, Intmax= 50, Maxvalve= 100;
//float SampleTime= InterPeriod* 3.25e-6;

SampleNumber++;

if (SampleNumber >= NumSamples)

rtf_get (3, &ary, sizeof(int»;

RamPosition[SampleNumber]=
Distance[3]= ary.SetPos- RamPosition[

() ; }

//LastDistance= ary.SetPos- RamPosition[] i

Deriv= (11*Distance[3]- 18*Distance[2]+ 9*Distance[l] 2*Distance[O])/
6*SampleTime;
Integ= Integ+ (data, IntG*Distance [0]
if (Integ > Intmax)

Integ= Intmax;
if (Integ < -Intmax)

Integ= -Intmax;

) i

Result= (data.PosG* Distance[3])+ (Integ)+ (data.DerG* Deriv);

ValveSignal(Result, Maxvalve);

for (i=O; i<4; i++) {Distance[i] Distance[i+l];}

return;

/*-----------­
*/

85

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--
*/
void ValveSignal (float Signal, int Max)

float PWM1, PWM2;
float AreaRatio= 0.44;

if (Signal>= 0)
{ PWM2=0;

if (Signal< Max)
PWM1= Signal;
else
PWM1= Max;

if (Signal< 0)
{ PWM1= 0;

if (Signal>= -Max)
PWM2= (-(Signal));

else
PWM2= Max;

ArrayPWM[O]= PWM1;
ArrayPWM[l]= PWM2* AreaRatio;
SetPWMValues(ArrayPWM);
infl= ReadSingleEncoder(O);
rtf-put(2, &infl, sizeof(infl));
inf2= PWM1- PWM2;
//inf2= end -begin;
rtf-put(2, &inf2, sizeof(inf2));
begin= rt_get_time();
return;

/*--
*/
int my_handler (unsigned int fifo)

86

int err, n, i;

while ((err = rtf_get(l, &msg, sizeof(msg)))
switch (msg.command) {

sizeof (msg)

case START_TASK:
rtf_get (4, &data, sizeof(data));

StartTimerInt(InterPeriod) ;
break;

case SLOW:
rtf_get(4, &data, sizeof(data));
StartTimerInt(InterPeriod);

break;
case INITIALISED:

SetEncoder(O, 5);
break;

case STOP_TASK:
StopTimerInt() ;

ValveSignal(0.0,20) ;
for(i=O; i<2; i++)

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

{ End= -1;
rtf-put(2, &End, sizeof(int));}

SampleNurnber= 0;
while((n= rtf_get (3, &ary, sizeof(int))) > 0)

break;
default:

return -EINVAL;

if (err ! = 0) {
return -EINVAL;

return 0;

int init_module(void)

rtf_create (1, sizeof(msg));
rtf_create (2, sizeof(int)*NumSamples);
rtf_create (3, sizeof(int)*NumSamples);
rtf_create (4, sizeof(data));
rtf_create_handler(l, &my_handler);
InstallPWMControl(2, 100, TypePWM);
//InstallOutputs(8);
//WriteOutput(OxOff);
InstallEncoder(l) ;
InstallTimerlnt(Interrupt);
return 0;

void cleanup_module(void)

rtf_destroy(l);
rtf_destroy (2) ;
rtf_destroy (3) ;
rt f_des troy (4) ;
RemoveTimerlnt();
stopUpp();

87

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/* option.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/errno.h>
#include "MyFifo.h"

void main(void)

int choice;

system("clear") ;

if ((ctl= open (" /dev/rtfl" , O_WRONLY)) <0)
{

fprintf(stderr, "Error opening /dev/rtfl\n");
exit(l) ;

if ((dcs= open (" /dev/rtf2" , O_RDONLY)) <0)
{

fprintf(stderr, "Error opening /dev/rtf2\n");
exi t (1) ;

if ((fdb= open("/dev/rtf3" , O_WRONLY))<O)
{

fprintf(stderr, "Error opening /dev/rtf3\n");
exi t (1) ;

if ((dta= open (" /dev/rtf4" , O_WRONLY)) <0)
{

do
{

88

fprintf(stderr, "Error opening /dev/rtf4\n");
exit(l) ;

printf (" HYDRAULIC ACTUATOR PROGRAM \n\n");
printf (" (1) Manual Control \n");
printf(" (2) Move Ram to bottom, set position to zero \n");
printf (" (3) STEP Input \n");
printf(" (4) Multipule STEP Input \n");
printf(" (5) RAMP Input \n");
printf (" (6) Sine Wave Input \n");
printf (" (7) Path Input \n");
printf(" (8) Set Pulse \n");
printf(" (9) Quit \n");

switch(choice= getchar())
{

casellI:
Manual() ;

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

}

}

break;

'2' :
tialise () ;

break;

case'3 1

Steplnput () ;
break;

case'4'
() i

break;

case' 5' :
Ramplnput()i
break;

case'6'
Sinewave();
break;

case'7'
FollowPath();
break;

case' 8' :
SetPulse();
break,;

case' 9' ;
break;

default:
printf("Choose 1 to 9
break;

while (choice != '9');
return;

) ;

89

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/* function.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/errno.h>
#include <math.h>
#include <string.h>
#include "MyFifo.h"
#include "getkey.h"

/*--
*/
void Send_error (void)

fprintf(stderr, "Can't send a command to RT-task\n");
exit(l);

/*--
*/
void SetPulse(void)

float inputsignalj

system("clear") ;
getchar() ;
printf("Enter percentage of PWM pulse (0- 100)\n");
scanf (" %f", &inputsignal);
data.Signal= inputsignal;
if (write (dta, &data, sizeof(data)) < 0) { Send_error(); }

getchar() ;
printf("Press Enter to start ram NOW\n");
if (getchar()== 10)

{

msg.Max= MaxSetting;
msg.command= SLOW;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error(); }

}

printf("Press Enter to STOP ram NOW\n");
if (getchar()== 10)

{

msg.command= STOP_TASK;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error(); }

}

Finish() ;

printf("Press Enter to Save Data\n")j
if (getchar()== 10) {SaveData();}

return;

90

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*----------------------------
*/

void Manual (void)

do

int Choice[3] , rubbish[100001;

system (" clear 11) ;

getchar();
printf("Press the UP arrow to move up \n");
printf("Press the DOWN arrow to move down \n");
printf("Press Space Bar to close the valve \n");
printf("press 'e' to quit \n") i

{

get_key (Choice) ;

if (Choice[O]== 'e')
data.Signal= 0.0;

if((data.Signal< && [0]== 27)&& (Choice[21== 65
))

data.Signal= data.

if((data.Signal> -
(Choice[2]== 66))

data.Signal= data.

if (Choice[O]== 32)
data.Signal:::: 0.0;

/ldata.PosG=O;
Iidata. IntG=O;
Ildata.DerG=O;
msg.Max=
msg.command: SLOW;

10.0;

) &&(Choice[Ol== 27)&&

10.0;

if (write (dta, &data, sizeof(data)) < 0)
{ printf("dta\n");

Send_error(); }
if (write(ctl, &msg, sizeof(msg)) < 0)
{ ("msg\n");

Send_error(); }

}

while ((Choice[O] 2)ii(Choice[0]== 27));

msg.command= STOP_TASK;
printf("STOP\n") ;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error(); }
read(dcs, rubbish, sizeof(rubbish));
return;

91

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--*/
void Input (void)

system("clear") ;
printf("Enter starting position. ");
scanf("%d", &StartPosition);

printf ("Enter end position. ") ;
scanf("%d", &EndPosition);

printf ("Enter position Gain (must be +ve) . ") ;
scanf (" %f", &InputPosG);

printf("Enter Derivative gain (must be +ve).
scanf ("%f", &Inpu tDerG) ;

printf("Enter Integral Gain (must be +ve).
scanf ("%f", &InputIntG);

data.Signal= 0;

printf ("finishedInput\n");
return;

II) i

II) i

/*--*/

92

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST ruG

/*---------- ------------------- -----------------------*/
void Steplnput(void)

int i;

Input();
getchar();
printf("Press Enter to move ram to initial
if (getchar() 10)

(

move() ;

for (i=O; i< NumSamples; i++)
{

ary.Setpos= EndPosition;
SetPosition[i]= EndPosition;

ion\n");

if (write (fdb, &ary, sizeof(ary)) < 0) { send_error(); }

printf(" step array\n");

data.DerG= InputDerG;
data.PosG= InputPosG;
data.lntG= InputlntG;
msg.Max=

if

}

(dta, &data, sizeof(data)) < 0) (Send_error(); }

Enter to step ram NOW");
10)

msg.command= START_TASK;
if (ctl, &msg, sizeof(msg)) < O~ (send_error(); }

f(lIstep started\n");

Finish() ;

Enter to Save Data\n ll
);

(SaveData();}

return;

/* */

93

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--*/
void MultiStep (void)

int n, step, dist, StayNum, i=O, TotalNum=O;

Input ();
getchar();
data.DerG= InputDerG;
data.PosG= InputPosG;
data.IntG= InputIntG;
msg.Max= MaxSetting;
if (write (dta, &data, sizeof(data)) < 0) (Send_error();

printf("Enter number of steps to perform. _ ");
scanf (" %d", &step);

for(n=l; n<=step; n++)
{ printf ("Enter the absolute distance of the %dst step. - \n", n);

scanf ("%d", &dist);
printf("Enter the number of time samples to stay at that step

(each sampling is %f. - \n", SampleTime);
scanf ("%d", &StayNum);

TotalNum= StayNum+ TotalNum;
while(i< TotalNum && i< NumSamples)
{

ary.SetPos= dist;
SetPosition[iJ= dist;
if (write (fdb, &ary, sizeof(ary)) < 0) (Send_error(); }
++i;

getchar() ;
printf (" Press Enter to step ram NOW") ;
if (getchar()== 10)

{

msg.command= START_TASK;
if (write(ctl, &msg, sizeof(msg)) < 0) (Send_error(); }

}

printf (" step started\n");

Finish () ;
printf("Press Enter to Save Data\n");
if (getchar()== 10) (SaveData();}

return;

/*--*/

94

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*
void RampInput(void)

int i;
float increment, RampTime;
//float SampleTime= InterPeriod* 3.25e-6;

Input () ;

printf ("Enter Ramping Time (seconds). ") ;
scanf ("%f", &RampTime);
getchar();
printf("Press Enter to move ram to initial tion\n");
if (getchar()== 10)

{

move();
}

increment= (EndPosition-StartPosition)* (RampTime) ;

for (i=O; i< NumSamples; i++)

ary.SetPos= StartPosition+ increment*i;
if (((increment< 0)&& (ary.SetPos< EndPosition))

I I ((increment> 0)&& (ary.SetPos> EndPosition)))
{ary.SetPos= EndPosition;}

SetPosition[il= ary.Setpos;
if (write (fdb, &ary, sizeof() < 0) { Send_error(); }

printf("generated ramp

data.DerG= InputDerG;
data.PosG= InputPosG;
data.IntG= InputIntG;
msg.Max= MaxSetting;

) ;

if (write(dta, &data, sizeof(data)) < 0) { Send_error(); }

printf(IIPress Enter to step ram NOW");
if (getchar() 10)

{

msg.command= START_TASK;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error(); }

}
printf ("ramp started\n");

Finish () ;

printf (II Press Enter to Save Data \n II) ;

if (getchar()== 10) {SaveData();}

return;

/*--------

*/

*/

95

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--*/
void Sinewave(void)
{

float Period;
int Sinval, Magnitude,i;

Input() ;
printf("Enter Period (seconds). ");
scanf("%f", &Period);
getchar() ;
printf("Press Enter to move ram to initial position\n");
if (getchar()== 10)

{

move ();

Magnitude= ceil((EndPosition-StartPosition)/2);
for (i=O; i< NumSamples; i++)

Sinval=StartPosition+Magnitude*(l-
cos(i*SampleTime*2*3.14159/Period));

ary.SetPos= Sinval;
SetPosition[il= Sinval;
if (write (fdb, &ary, sizeof(ary)) < 0) { Send_error(); }

printf ("generated sine array\n") ;

data.DerG= InputDerG;
data.PosG= InputPosG;
data.lntG= InputlntG;
msg.Max= MaxSetting;

if (write (dta, &data, sizeof(data)) < 0) { Send_error();

printf ("Press Enter to fluctuate ram NOW") ;
if (getchar()== 10)

{

msg.command= START_TASK;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error()i }

}

printf (" ramp started\n");

Finish () ;

printf("Press Enter to Save Data\n");
if (getchar()== 10) {SaveData();}

return;

/*--*/

96

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--*/
void move (void)

int i;
printf(nin move\nn);
for (i=O; i< NumSamples; i++)

{

ary.SetPos= StartPosition;
if (write (fdb, &ary, sizeof(ary)) < 0) { Send_error(); }

printf (noutof move forloop\nn);

data.PosG= 0.5;
data.IntG= 0.05;
data.DerG= 0.0;
msg.Max= 20;

if (write (dta, &data, sizeof(data)) < 0) { Send_error(); }

msg.command= START_TASK;
if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error(); }
printf(n%d %d %f %f %f\nn,msg.command, ary.SetPos, data.PosG,

data.DerG, data. IntG) i

printf (n move started\nn);
Finish () ;

return;

/*--*/
void FollowPath(void)

int count=O, i;
int Time [NumSamplesJ ;
char line[20J;
char file [15J ;
char filename [sizeJ ;
char *Datafile=n/home/jly16/Pathdata/ n ;
FILE *fp;

printf(nEnter Path filename .. ie:path.txt) n);
scanf(n%sn, &file);
strcpy(filename, Datafile);
strncat(filename, file, 15);

if ((fp=fopen(filename, nrn))== NULL)
{printf(nCould not find file. Press ENTER to exit.\nn);

if (getchar()== 10)

do

return;

fgets(line, 20, fp);
sscanf(line, n%d\t%d\nn, &Time[countJ, &SetPosition[countJ);
count++;
while (!feof(fp));

97

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

printf("Enter position Gain (must be +ve).
scanf ("%f", &InputPosG);
printf("Enter Derivative gain (must be +ve)
scanf ("%f", &InputDerG);
printf("Enter Integral Gain (must be +ve).
scanf ("%f", &InputIntG);

StartPosition= setPosition[O];

II) ;

II) ;

printf("Press Enter to move ram to initial position\n");
if (getchar()== 10)

{

move ();

for (i=O; i< count; i++)

ary.SetPos= setPosition[i];
if (write (fdb, &ary, sizeof(ary))< 0) { Send_error(); }

data.DerG= InputDerG;
data.PosG= InputPosG;
data.IntG= InputIntG;
msg.Max= MaxSetting;

if (write (dta, &data, sizeof(data)) < 0) { Send_error();

printf("Press Enter to let ram follow path");
if (getchar()== 10)

{

msg.command= START_TASK;
if (write (ctl, &msg, sizeof(msg)) < 0) { Send_error(); }

}

printf (" ramp started\n");

Finish () ;

printf("Press Enter to Save Data\n");
if (getchar()== 10) {SaveData();}

return;

/*--*/

98

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

1*-----------------
void Initialise(void)

data.Signal= -20.0:
msg.Max= 20;
msg.command= SLOWi
if (write (dta, &data, sizeof(data)) < 0)
if (write(ctl, &msg, sizeof(msg)) < 0) {
Finish () ;
msg.command= INITIALISED:

Send_error();
(); }

if (write(ctl, &msg, sizeof(msg)) < 0) { Send_error() i
printf("Initialisation Completed\n");
printf ("Press I ENTER I to return to main menu. \n") i

getchar() i
if (getchar () 10)

system ("clear") i

return;

----*1

1*----- ---------------------*1

99

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/*--
*/
void Finish{void)

int buf[20000], n;
int i, j=O;
int Max= 0, Min= 10000;
float Total=O;

Number= 0;
while ({n= read{dcs, buf, sizeof{buf))) > 0)
{

n= n/sizeof{int);
for{i= 0; i< n; i++)

{

if (j%2 !=O)
{

ValveSetting[Number]= buf[i];
if (Number%100 ==0)

{ system{"clear");
printf{ "%d\t%d\t%d\n" , Number, ValveSetting[Number] ,

ReadPosition[Number]) ;}
/*if (j >1)

{

if (ValveSetting[Number] > Max) Max= ValveSetting[Number];
if (ValveSetting[Number] < Min) Min= ValveSetting[Number];
Total+= ValveSetting[Number];
++Number;
}*/

if (j >1)
{++Number;}

else
ReadPosition[Number]= buf[i];
if (/*{Number >= TerminalCount &&

abs{ReadPosition[Number]- ReadPosition[Number-
(TerminalCount/2)]) <= 10

&& abs{ReadPosition[Number]- ReadPosition[Number-
TerminalCount]) <= 10)*/ ReadPosition[Number]==-l I I
Number >= NumSamples-10)

{

msg.command= STOP_TASK;
if (write{ctl, &msg, sizeof{msg)) < 0) { Send_error{);
read{dcs, buf, sizeof{buf)); /*clear the buffer.*/
printf{"\nMax%d\nMin%d\nAverage%f\n" , Max, Min,

Total/Number);
return;

}//close else
++j;
}//close for

//printf{"2n: %d\n", n);
if (ReadPosition[Number]== -1)

{return; }

100

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

f (nbefore return\n");
return;

/*---------------------------
*/

void SaveData(void)

int count; //Number;
//float valve[5000] ,
char fi 1 e [15 J ;

tion[5000];

char filename [size] ;
char *outputFile= n/home/j
FILE *cp;

6/Ramdata/ II ;

printf(nSave data? (y/n)\nn);
if (getchar() 'y')

return;
printf(nEnter Filename
scanf(n%sn, file);
strcpy(filename,
strncat(filename, file,

.. ");

le) ;
15) ;

if ((cp= f open (f i 1 ename , n wt n)) NULL)
{ printf ("Could not open file\n");

return;

for (count=li count< Number; count++)
{fprintf (cp, n%d\t%d\t%d\t%d\n", count, ReadPosition[count] ,

SetPosition[count] ,ValveSetting[count]) i
}

fclose (cp) ;
printf(ndata stored Press 'Enter' to continue.\n");
if (getchar() 10)

return;

101

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

/* getkey.h */

#include <stdio.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <unistd.h>

static char
int ch[3] j

(ch)

{

102

static struct termios my_kb, orig_kb;

tcgetattr(STDIN_FILENO, &orig_kb) i

my_kb
my_kb. I ISIG I ICANON) i

my_kb.c_cc[4] 1;

tcsetattr(STDIN_FILENO, TCSAFLUSH, &my_kb);
ch [0] = () ;
if (ch[O]== 27)

{ch[l]= ()j
ch [2] = () ;

tcsetattr(STDIN_FILENO, TCSAFLUSH, &orig_kb);
return;

APPENDIX C· CONTROL SOFTWARE FOR SINGLE· AXIS HYDRAULIC TEST RIG

function plotdata %Matlab file for graph plotting

file=('f:\Ramdata\') i

('Filename to retrive. in inverted commas. »'); %gets
filename
filename=strcat(file,data) ;
sample=input('Sampling time in seconds. »');
%combine to get the whole path

result= dlmread(filename, '\t');
%read the data from the file

size= length(result)
time= result(:,l) .*sample;
actual: result(:,2) .*0.1;
desired= result(:,3) .*0.1;

velocity= O.l*(actual(size)- actual(ceil(size/2)))/(time(size)
time(ceil(size/2)))

figure (1)
error= actual- desired; %calculates error
plot(time, error, 'b'); %plots the error curve
1 ine ([0 max (t ime) J , [0, 0] , 'color' , 'r') ;
%the zero line is included for
xlabel('Time,seconds');
ylabel('error, mm');
title(strcat('Error Plot', data}};
zoom yon; %enable the zoom function
% click the left mouse button to zoom in, to zoom out

figure (2)
plot(time,desired, 'r-');
hold on
plot(time, actual, 'b'};

the input signal

%axis([min(time) max (time) 190 610])
%plot the system curve
xlabel('Time, seconds');
ylabel('Position, mm ');
title(strcat('Output/ Comparison', data}};

zoom on;

%title('Outputl ') ;

figure (3)

plot (time, PWM, 'b');

xlabel('Time, seconds'};

103

APPENDIX C- CONTROL SOFTWARE FOR SINGLE-AXIS HYDRAULIC TEST RIG

ylabel (' PWM, (%) ');

title(strcat('PWM/ Respond Comparison', data));

hold off
zoom yon;

104

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE

2000B

105

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

#makefile

all: visual RT.o option

the path to the rt-linux kernel
RTLINUX .. / .. / .. /linux
INCLUDE = ${RTLINUX}/inelude/linux

CFLAGS = -02 -Wall

visual: visual.e kinematies.h rtshare.h
gee -I${INCLUDE} $ {CFLAGS} -0 visual visual.e -1m

RT.o: RT.e rtshare.h
gee -I${INCLUDE} $ {CFLAGS} -D __ KERNEL __ -D __ RT __ -e RT.e

option: option.e kinematies.h rtshare.h
gee -I${INCLUDE} $ {CFLAGS} -0 option option.e -1m -lslang

clean:
rm -f funetion.o option* option.o option.e- funetion.e­

makefile- Non_rt.h- rtshare.h- RT.o RT.e-

106

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/* rtshare.h */

#define Base_Address ((38 * Ox100000)) //RAM between 38-39Mb is
reserved for shared memory

#define hold 0
#define follow_ track 1
#define manual - actuate 2
#define tracking_actuate 3

#define NumSamples 250 /*Number of Samples the controller goes
through before resetting to the hold position, also mean that each
movement has 2000 Samples where each sample consist of 6 interrupts*/
#define MaxSetting 100 //Maximun setting for PWM
#define Second-per_Pulse 3.25e-6 //clock rate of UPP in seconds
#define InterPeriod 1846 //308 //InterPeriod x Second-per_Pulse=
1 ms (interrupt period)
#define SampleTime
#define No_of_Actuator

(Second-per_Pulse*InterPeriod)
6

#define Inter-per_Visual 12 //no. of interrupts for each visual
printout into program "visual"

#define No_of_Deriv 4
#define IntMax 50

int Actuator_No, SampleNumber, bit;
float holding[No_of_ActuatorJ;
typedef float scalar;
typedef scalar OnebySix[6J; //lx6 matrix
typedef scalar FourbyFour[4J [4J; //4x4 matrix

const float metric_gradient[1={-0.2617, -0.0295, 0.01432, 0.06057,
0.08877, -0.09595},
metric_constant [J={2041, 120.277, -27, -110, -169, 243.8};

/*for the conversion of binary into degress or rom for each joint*/

const float joint_dep[J= {O, 0, 0, 0, 1, O};
position dependency

//coefficient for joint

const int limit-pos[No_of_ActuatorJ= {2041, 110, 30, 110, 174,180};
/* maximum limit of joints*/
const int limit_neg[No_of_ActuatorJ= {976, -110, -27, -110, -169,-180};
/* minimum limit of joints*/

const int pminim[No_of_Actuatorl= {26, 22, 14, 25, 21, 20},
nminim[No_of_ActuatorJ= {17, 18, 26, 28, 16, 20};

/*minimum value of PWM to start moving the rams*/

107

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/*-----------------------------fifo's--------------------------------*/

struct my_msg_struct {
int command;

} msg; //control message send from user interface to RT.o

struct my_signal_struct {
int PWM[No_of_Actuator];

} Signal; //PWM value send through fifo when in "manual" control mode

struct my_visual_number {
float Points[No_of_Actuator], PWM[No_of_Actuator];
int msg, SampleNumber;
float InterSeconds;
Visual; //structure of data send to "visual" program for user to see

/*-------------~-----------shared memory-----------------------------*/

typedef struct
float OutPut [No_of_Actuator] [No_of_Deriv],

PosG[No_of_Actuator] [No_of_Deriv], //proportional gain
DerG[No_of_Actuator], //derivative gain
IntG[No_of_Actuator], //integral gain
filter [No_of_Deriv] ; //coefficients to smooth out the derivative

HOLD_COEFF; //coefficient for difference equation when robot is in
"hold" mode

typedef struct
float OutPut [No_of_Actuator] [No_of_Deriv],

PosG[No_of_Actuator] [No_of_Deriv] ,
DerG[No_of_Actuator],
IntG[No_of_Actuator],
filter [No_of_Deriv] ;

TRACK_COEFF; //coefficient for difference equation when robot is NOT
in "hold" mode

typedef struct
float Points [No_of_Actuator] [NumSamples];

} DESIRED; //desired path for robot defined by user interface

typedef struct
float Points [No_of_Actuator] [NumSamples],

PWM[No_of_Actuator] [NumSamples];
} ACTUAL; lithe actual path performed by robot

typedef struct
float PWM[No_of_Actuator] [NumSamples];

} ACTUATION; lithe PWM signals send to the ram valves

typedef struct

108

unsigned char inuse;
float Points[NumSamples];
CURRENT; //current positions of the rams at start of each movement

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

typedef struct

HOLD_COEFF Hold_Coefficient;
TRACK_COEFF Track_Coefficient;
DESIRED Desired_Tracking;
ACTUAL Actual_Tracking;
ACTUATION Actuate_Tracking;
CURRENT Current_Position;

Shared_Mem; //summing all structures together for shared memory
allocation

109

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/* RT.c */

#define MODULE
#include <math.h>
#include <unistd.h>
#include <linux/module.h>
#include <linux/errno.h>
//#include <time.h>
#include </usr/src/rtl/include/rtl_sched.h>
#include </usr/src/rtl/include/rtl_fifo.h>
#include "PWM.H"
#include "rtshare.h"
#include "Upp.h"
#define AreaRatio 0.44

extern void * vremap(unsigned long offset, unsigned long size);
extern void vfree(void * addr);

Shared_Mem *ptr;
struct Coefficient{

float OutPut [No_of_Actuator] [No_of_Deriv],
PosG[No_of_Actuator] [No_of_Deriv],
DerG[No_of_Actuator],
IntG[No_of_Actuator],

filter[No_of_Deriv];
coeff;

DESIRED desired;
actual;
actuation;
current;

ACTUAL
ACTUATION
CURRENT

/*--*/
int ReadInput16 (void) //read input from encoder
{

int Result;

Result= UPPReadPort(Ox0230, 1)+ UPPReadPort(Ox0230, 2)*256;
return Result;

/*--*/

110

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
float GrayScale(int raw_reading)
{

//converts grayscale to binary

int i,gray_convert_integer=O, array_binary[14l= {a}, array_gray[14l=
{a}, a=8192; //0010 0000 0000 0000

float temp;

for (i= 0; i< 14; ++i)
{

if ((raw_reading & a) 0)
array_gray[il= 0;
else
array_gray[il= 1;

array_binary[il= array_gray[il A array_binary[i-1li
gray_convert_integer += array_binary[il* a;
a »= 1;

/*converts binary to degrees or mm for each joint*/
temp= gray_convert_integer* metric_gradient[Actuator_Nol+

metric_constant[Actuator_Nol;

return temp;

/*--*/
void ValveSignal(float PWM) //sends the PWM signal to the ram valves
{

if (PWM> MaxSetting
PWM= MaxSetting;

if (PWM< -MaxSetting)
PWM= -MaxSetting;

SetSinglePWMValue(Actuator_No, PWM);
actual. PWM [Actuator_Nol [SampleNumberl= PWM;
return;

/*--*/

111

APPENDIX D- CONTROL SOFTWARE FOR UNlMA TE 2000B

/*--*/
float ErrorCalc(float SetPos) //Calculates PWM signal according to a
differential equation
{

float Deriv=O, Error_Sum=O, Output_Sum=O;
int i;
static float e[No_of_Actuator] [No_of_Deriv+1],

u[No_of_Actuator] [No_of_Deriv+1], Integ [No_of_Actuator] ;

e[Actuator_No] [No_of_Deriv-1]=
actual.Points[Actuator_No] [SampleNumberl- Setpos;

for (i=O; i<No_of_Deriv; ++i)

Deriv += coeff.filter[i]*e[Actuator_No] [i];
Error_Sum += coeff.PosG[Actuator_No] [i]*e[Actuator_No] til;
Output_Sum += coeff.OutPut[Actuator_No] [i]*u[Actuator_No] [i];
e[Actuator_No] [i]= e[Actuator_No] [i+1];
u[Actuator_No] [i]= u[Actuator_No] [i+1];

Deriv =Deriv/ (6*SampleTime);

Integ[Actuator_No]= Integ[Actuator_No]+
coeff.IntG[Actuator_No]*e[No_of_Deriv -1] [Actuator_No]*SampleTime;

if (Integ[Actuator_No]> IntMax)
Integ[Actuator_No]= IntMax;

if (Integ [Actuator_No] < -IntMax)
Integ[Actuator_No]= -IntMax;
/*limits the integral gain*/

u[Actuator_No] [No_of_Deriv -2]= Error_Sum + Output_Sum +
Integ[Actuator_No]+ (coeff.DerG[Actuator_No]*Deriv);

if (u[Actuator_No] [No_of_Deriv -2]> 0)
u[Actuator_No] [No_of_Deriv -2]= (1-

(pminim[Actuator_No]/MaxSetting))*u[Actuator_No] [No_of_Deriv -2]+
pminim[Actuator_No] ;

else
u[Actuator_No] [No_of_Deriv -2]= (1-

(nminim[Actuator_No]/MaxSetting))*u[Actuator_No] [No_of_Deriv -2]­
nminim[Actuator_No] ;

/*--

112

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/*--*/
void Interrupt (void) //Interrupt function that executes at each
interrupt
{

int i, input14bit, yes=l;
float PassingSignal=O;
static long begin, end;

end= rt_get_time();
Visual.InterSeconds= (end-begin)*1000000/RT_TICKS_PER_SEC;

//converts computer ticks to microseconds
begin= rt_get_time();

input14bit= ReadInput16() & 32767; //Olllfff masking to read first
14 bit

actual.Points[Actuator_No] [SampleNumber]= GrayScale (input14bit) ;

if (Actuator_No== 4 I I Actuator_No== 5)
{

actual.Points[Actuator_No] [SampleNumber]=
actual.Points[Actuator_No] [SampleNumber]+
joint_dep[Actuator_No]*actual.Points[Actuator_No-1] [SampleNumber];

} /*orientation of joint 5 (yaw) is dependant on joint 4 (bend),
so is joint6 (swivel) on joint 5 (yaw)*/

if (SampleNumber==l && Actuator_No==5
{

for(i=O; i< No_of_Actuator; ++i)
current. Points [i]= actual.Points[i] [SampleNumber];
if (0== ptr-> Current_Position.inuse)
memcpy(&ptr->Current_Position, ¤t, sizeof(current));

//copies the position of the joints to shared memory at the
start of each movement

switch (msg. command)
fifo 0 (msg)

//conditional selector according to message from

{

case hold:
passingSignal= ErrorCalc(holding[Actuator_No]);
ValveSignal(PassingSignal) ;
break;

case follow_track:
passingSignal=

ErrorCalc(desired.Points[Actuator_No] [SampleNumber]);
ValveSignal(PassingSignal) ;
if (SampleNumber>= NumSamples-1)

{

memcpy(&ptr->Actual_Tracking, &actual, sizeof(actual));
rtf-put(2, &yes, sizeof(yes)); //tells user interface to

read from shared memnory
//copies the actual path done by robot to shared memory

break;

case manual actuate:
ValveSignal(Signal.PWM[Actuator_No]);
break;

113

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

case tracking_actuate:
ValveSignal(actuation.PWM[Actuator_No] [SampleNurnber]);
if (SampleNurnber>= NumSamples-l)

{

memcpy(&ptr->Actual_Tracking, &actual, sizeof(actual));
rtf-put(2, &yes, sizeof(yes));

//copies the actual path done by robot to shared memory
break;

default:
ValveSignal(O) ;
break;

//end of conditinal selector

/* (information send back to the visual screen) */
if (SampleNurnber% Inter-per_visual== 0)

{

visual.Points[Actuator_No]=
actual.Points[Actuator_No] [SampleNurnber];

Visual.PWM[Actuator_No]= actual.PWM[Actuator_No] [SampleNurnber];

if (Actuator_No== 5)
{

Visual.msg= msg.command;
visual.SampleNurnber= SampleNurnber;
rtf-put(3, &Visual, sizeof(Visual)); /*send to fifo 3 (vsl),

to be send to "visual program*/

/* (increment counter) */
++Actuator_No;
if (Actuator_No>= No_of_Actuator)

{

Actuator_No= 0;
++SampleNurnber;
//rotate between the 6 joints and increments SampleNurnber after

each rotation

WriteOutput(Actuator_No) ; //turn encoder on for reading

/* (change control mode back to 'hold' after 'follow_track' &
'tracking_actuate') */

if (SampleNurnber>= NumSamples)
{

if (msg.command!= manual_actuate)
{

for (i=O; i< No_of_Actuator; ++i)
holding[i]= actual.Points[i] [SampleNurnber-l];

msg.command=hold;
//return to "hold" control mode after movement

SampleNurnber= 0; //reset SampleNurnber after each movement

//begin= clock();
return;

114

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
int my_handler(unsigned int fifo) //reads from fifo 0 (msg) to for
control mode instructions
{

int err,i;

while ((err = rtf_get(O, &msg, sizeof(msg)))
switch (msg.comrnand) {

case hold:

sizeof(msg)

memcpy(&coeff, &ptr-> Hold_Coefficient, sizeof(coeff));/*copies
hold coefficients into controller*/

if (SampleNurnber != 0)
for (i=O; i< No_of_Actuator; ++i)
{holding [i] = actual. Points [i] [SampleNurnber-1] ; }

else
for (i=O; i< No_of_Actuator; ++i)
{holding[i]= actual.Points[i] [NumSamples-1];}

/*holds at coordanates of previous Sample*/
SampleNurnber=O; //resets SampleNurnber to start movement
break;

case follow_track:
memcpy(&desired, &ptr-> Desired_Tracking,

sizeof(desired));/*copies desired tracking coordinates from shared
memory*/

memcpy(&coeff, &ptr-> Track_Coefficient, sizeof(coeff));
SampleNurnber=O; //resets SampleNurnber to start movement
break;

case manual actuate:
rtf_get (1, &Signal, sizeof(Signal));

in "manual" control mode*/
break;

case tracking_actuate:

/*gets value of PWM signal

memcpy(&actuation, &ptr-> Actuate_Tracking,
sizeof(actuation)) ;/*copies the PWM signals from shared memory*/

Samp leNurnber= 0 ;
Actuator_No= 0;
break;

default:
return -EINVAL;

if (err != 0)
return -EINVAL;

return 0;

/*--*/

115

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
int init_module{void) //events executed once RT.o is inserted with
"insmod"

int PwmType[]= {1, 1, 1, 1, 1, 1};

ptr= (Shared_Mem *) vremap {Base_Address , sizeof{Shared_Mem));
points to RAM allocated for shared memory

rtf_create{O, sizeof{msg));
rtf_create{l, sizeof{Signal));
rtf_create{2, sizeof{int));
rtf_create{3, sizeof{Visual) *20) ;
rtf_create_handler{O, &my_handler);
InstallPWMControl{No_of_Actuator, 100, PwmType);
bit= Installoutputs(4); //4 bits installed to
//UPPPortDir{Ox232,2, Oxff);
SampleNumber= 0;
Actuator_No= 0;
InstallTimerInt{Interrupt) ;
StartTimerInt{InterPeriod) ;
return 0;

//ptr

void cleanup_module (void)
"rmmod"

//events executed once RT.o is removed with

116

StopTimerInt{) ;
vfree{ptr); //free pointer to shared memory
rtf_destroy{O) ;
rtf_destroy{l) ;
rtf_destroy (2) ;
rtf_destroy(3) ;
RemoveTimerInt{);
StopUpp{) ;

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/*option.c*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/errno.h>
#include <ctype.h>
#include <slang/slang.h>
#include <sys/nunan.h>
#include <math.h>
#include <string.h>
#include "rtshare.h"
#include "kinematics.h"

int cmd, m_act, linux_rd, vsl;
Shared_Mem *ptr;
HOLD_COEFF hold_coeff={

{ {O/O/O/O}/ {a/a/a/a}, {a/a/a/a}, {a/a/a/a}, {a/a/a/a}, {a/a/a/a} },
{ {0/0/0/10}, {0/0/0/10}, {0/0/0/1l}, {O/O/O/O.S}, {0/0/0/1},

{0/0/0/2} },
{O/O/O/O/O/O},
{200, 29/ 100/3/14/ 80},
{ll, -18/ 9/ -2}

}; //control coefficients in hold mode
TRACK_COEFF track_coeff={

{ {O/O/O/O}/ {a/a/a/a}, {a/a/a/a}, {a/a/a/a}, {a/a/a/a}, {a/a/a/a} },
{ {0/0/0/20}, {0/0/0/20}, {0/0/0/31}, {0/0/0/3}, {0/0/0/2}, {0/0/0/4}

},

{O/O/O/O/O/O},
{200, 29/ 100/3/14/ 80},
{ll, -18/ 9/ -2}

}; //control coefficients in follow_track mode
DESIRED desired;
ACTUAL
ACTUATION
CURRENT

actual;
actuation;
current;

/*--*/
void Send_error (void) //eror shown when fifo not functioning

fprintf(stderr, "Can't send a conunand to RT-task\n");
exit (1) ;

/*--*/

117

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/*--*/
void Manual (void) //UI for manual control of robot by keyboard

int i, j=O;
char ch='\O', decision;

system("clear") ;

number 1-9
'a' or 'z'
's' or 'x'
'd' or 'c'
, f' or 'v'
'g' or 'b'

for size
to move
to move
to move
to move
to move

of
'+ '
'+ '
'+ '
'+ '
'+ '

PWM increment\n\n");
or 'for In/Out\n");
or ' , for Rotation\n");
or 'for Up/Down\n");
or ' , for Bend\n");
or 'for Yaw\n") ;

getchar() ;
printf ("Press
printf ("Press
printf ("Press
printf ("Press
printf ("Press
printf (" Press
printf ("Press
printf ("Press
printf ("Press

'h' or 'n' to move '+, or 'for Swivel\n");
Space Bar to stop all axis \n");
, q' to qui t \n");

SLang_init_tty(-l, 0, 1); //initialise SLang mode (direct reading
from keyboard)

do
{

ch= SLang_getkey();

if (isdigit (ch) ! =0)
{

j=isdigit(ch)? ch: '0';
j=j-48;

}/*if it is a digit, convert 'ch' into a digit, this would be the
incremental value defined by user*/

decision= isalpha(ch)?
alphabet

if (decision== 'a')
Signal.PWM[O]+= j;

user
if (decision== 'z')

ch: '0'; //decision= 'ch', if ch is an

//increment by j, incremental value given by

Signal.PWM[O]= Signal.PWM[O]- j;

118

if (decision== 's')
Signal.PWM[l]+= j;

if (decision== 'x')
Signal.PWM[l]= Signal.PWM[l]- j;

if (decision== 'd')
Signal.PWM[2]+= j;

if (decision== 'c')
Signal.PWM[2]= Signal.PWM[2]- j;

if (decision== 'f')
Signal.PWM[3]+= j;

if (decision== 'v')
Signal.PWM[3]= Signal.PWM[3]- j;

APPENDIXD- CONTROL SOFTWARE FOR UNIMATE2000B

if (decision== 'g')
.PWM[4j+= j)

if (decision== 'b')
.PWM[4j= Signal.PWM[4j- j)

if (decision== 'h')
.PWM[Sj+= j)

if (decision== 'n')
.PWM[Sj= Signal.PWM[Sj- j)

if (isspace (ch) ! =0 II decision==' q')
for(i=O; i< No_of_Actuator) ++i)

{

Signal.PWM[ij= 0;

for(i=O) i< No_of_Actuator; ++i)
printf("%d\t", Signa1.PWM[ij);
printf (" \n") ;

if (write (m_act, &Signal, sizeof(Signal)) < 0) {

msg.command= manual_actuate)
if (write (cmd, &msg, sizeof(msg)) < 0) { Send_error(); }

(); }

} while (ch !='q')) I/q for quiting the "manual" control mode

SLang_reset_tty();
msg.command= hold;

printf("STOP\n"))
if (write (cmd, &msg,
return;

I/reset to normal mode
//reset back to "hold" control mode

sizeof(msg)) < 0) { Send_error(); }

/*----------------------------------- -----*/

void MultiSteplnput(void) //steps each joint to desired position
{

int i,j;

for (i=O; i< No_of_Actuator; ++i)
printf ("Enter the of Actuator%d to step to\n", i))

scanf ("%f", &desired. Points [iJ [OJ) i //enter 6 positions to step to

path
}

for (j=O; j)
desired.Points[iJ [jJ desired.Points[iJ [OJ; //generate each step

,&desired, sizeof(desired)); memcpy(&ptr->
memcpy(&ptr-> sizeof(track_coeff));

msg.command= follow_track;
if (write (cmd, &msg, sizeof(msg)) < 0) { Send_error() i }

return;

119

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
void SingleSteplnput(void)
position

//steps only 1 selected joint to desired

{

int i,j, selected_actuator=O;

ptr-> Current_Position.inuse= 1;
memcpy(¤t, &ptr->Current_Position , sizeof(current));
ptr-> Current_Position.inuse= 0;

printf("Actuator position are: ");
for (i=O; i< No_of_Actuator; ++i)

printf("%5.1f\t", current.Points[i]);

do
printf("\nSelect an actuator to step 0-5:\t");
scanf("%d", &selected_actuator); //select the actuator for

stepping
printf("\nEnter position of actuator to step to:\t");
scanf("%f", ¤t.Points[selected_actuator]); //select a

position to step to
} while(selected_actuator >=No of_Actuator I I selected_actuator

<0) ;

for (i=O; i< No_of_Actuator; ++i)

for (j=O; j <NumSamples; ++j)
desired.Points[i] [j]= current.Points[i]; //generate step path

memcpy(&ptr-> Desired_Tracking, &desired, sizeof(desired));
memcpy(&ptr-> Track_Coefficient, &track_coeff, sizeof(track_coeff));

msg.command= follow_track;
if (write (cmd, &msg, sizeof(msg)) < 0) { Send_error(); }

return;

/*--*/
void EndPointlnput(void)
{

int i, j, N=6;
char *w[6]={"alpha", "beta", "gamma", "x", "yO, HZ"};

OnebySix end-point, joint;

for (i=O; i< N/2; ++i)

printf ("Enter value for %s, the angle around %s axis\n", w[i],
w[N-i-1]);

scanf ("%f", &end-point [i]) ;
values

for i=N/2; i< N; ++i)

120

//enter "alpha", "beta", "gamma"

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

printf("Enter value for %s, the distance along the %s axis\n",
w[i], w[i]);

scanf ("%f", &end-point [i]);

Inverse_calc (end-point, joint);
kinematics.h

for (i=O; i< No_of_Actuator; ++i)
{

//enter "x", "y", "z" values

//inverse kinematic function in

printf("The position of Actuator%d to step to %f\n", i,
joint [i]) ;

for (j=O; j <NumSamples; ++j)
desired.Points[i] [j]= joint[i]; //generate tracking path

memcpy(&ptr-> Desired_Tracking, &desired, sizeof(desired));
memcpy(&ptr-> Track_Coefficient, &track_coeff, sizeof(track_coeff));

msg.command= follow_track;
if (write (cmd, &msg, sizeof(msg)) < 0) { Send_error(); }

return;

/*--*/
void Waiting (void)
{

int yes=O;

//waiting for end of movement message from fifo"2"

printf ("Waiting for Movement to Complete ... \n");

for (
{

; read (linux_rd, &yes, sizeof(~es)))

if (yesl=O)
{

read (linux_rd, &yes, sizeof(yes));
return; //exits Waiting() function when able to read from

fifo"2"

return;

/*--*/

121

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/* -- -*/
void SaveData(void)

int countdown, countside;
char file[15];
char filename[200]i
char le= "/home/jly16/RobotData/": //directory specified
FILE *cp;

();
printf("Save data? (y/n}\n");
if (() 'y')

return;
printf("Enter Filename .. "}; //create a new file or overwrite

existing
memcpy(&actual, &ptr-> sizeof(actual»;
/* copy information out from shared memory */

scanf ("%s n, file);
strcpy(filename,
strncat(filenarne, file, 15); /Iadding filename to directory

if((cp= (filename, f1wtfl»== NULL)
{ printf(ncould not open file\nfl);
return;

for (countdown=O; countdown<
{

fprintf (cp, n%d\t n
, countdown);

++countdown)

for (countside=O; countside< No_of_Actuator; ++countside}
{

fprintf(cp, f1%.lf\t%.lf\t%.lf\t",
desired. Points [countside] [countdown],
actual.Points[countside] [countdown], actual.PWM[countside] [countdown]
) ;
}

fprintf (cp, fI \nfl) :

fclose(cp}; //close file

printf ("data stored Press 'Enter' to continue. \nlt) ;
if (getchar()== lO}

return:

1*-- ----

122

*/

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*------------------------------
void main(void)
{

int choice, fd, visualprogram;

if ((cmd= open("/dev/rtfO" , O_WRONLY))<O) //open rtf 0
{

fprintf(stderr, "Error
exi t (1) ;

/dev/rtfO\n") ;

if ((m_act= open("/dev/rtfl", O_WRONLY))<O) //open rtfl
{

fprintf(stderr, "Error opening /dev/rtfl\n");
exit (1) i

if ((linux_rd= open("/dev/rtf2", O_RDONLY))<O) //open rtf2

fprintf(stderr, "Error opening /dev/rtf2\n");
exit (1) ;

if ((fd= open("/dev/mem", O_RDWR)) < 0) //open shared memory
{ printf ("Can I t open /dev/mem\n") i }

ptr= (Shared_Mem *) mmap(O, sizeof(Shared_Mem), PROT_READ I
PROT_WRITE,\

MAP_FILE I MAP_SHARED, fd, Base_Address);
/*ptr points to allocated RAM for shared memory*/

if (MAP_FAILED== ptr)
{ printf (" "); }

visualprogram=fork() i

if 0)

*/

if(execl (l/usr/Xl1R6/bin/xterm" , "xterm", "-e", "visual", 0) < 0)
/*starts "visual" program to monitor the robot joints*/

memcpy
/* copy

do
{

("Can I t open program visual \n") ;
("%d\n" I visualprogram);

Hold_coefficient,
hold_coeff into shared memory */

, sizeof(HOLD_COEFF)) i

system ("clear") ;
(" HYDRAULIC SIX AXIS ROBOT PROGRAM \n \n") ;
(" (1) Manual Control \n");
(" (2) Mul tipule STEP Input \n") i

(" (3) SingleRamStep Input \n") i

(" (4) End Point and Angle Input \n")i
(" (6) Sine Wave Input \n");
(" (7) Path Input \n") i

(" (8) Set Pulse \n");

123

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

printf (" (9) \n") ;

switch(choice= getchar())
{

}

}

case'l' :
Manual() ;
break;

case '2' :

Waiting();
SaveData();

break;

case '3' :

() ;

SingleStepInput() ;
Waiting() ;

SaveData();
break;

case' 4' :
EndPointInput();
Waiting ();

SaveDa ta () ;
break;

/*case'6' :
Sinewave () ;
break;

case' 7' :
FollowPath() ;
break;

case' 8' :
SetPulse();
break;*/

case' 9' :
break;

default:
printf(nChoose 1 to 9
break;

while (choice != '9');
munmap(ptr, sizeof(Shared_Mem));
return;
}

124

) ;

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

1* kinematics.h *1

#define pi 3.14159
#define Lb 200
#define Ly 440
#define a2 120.65
#define dl 1066.S
1*-------------------------- ----------------------------*1

I FourbyFour trans) void forward_calc (OnebySix
I*calculates the end-effector
positions (lx6)*1

orientation and position (4x4) from joint

{

float c[7], s[7] I d3;
int ii

d3= raw_relative[O]; 1* actuator"O" the prismatic joint (In-Out) is
the 3rd joint in kinematics calculations *1

for
{

for
{

(i=li i<3;

sri]=: sin(
c[i]= cos{

Ilconverts

(i=4i i<7;

s[i]= sin(
c[i]= cos(

Ilconverts

++i)

++i)

[i]* 11S0);
[i]* 11S0);

[i-1]* 11S0);
[i-1] * piI1S0);

trans [0] [0] - c [6] * c [5] * c [1] * s [2] * c [4] -
c[6]*c[5]*c[1]*c[2]*s[4]+c[6]*s[1]*s[5]+s[6]*c[1]*s[2]*s[4]
s [6] *c[l] *c [2] *c [4];

trans [0] [1] s[6]*c[5]*c[lJ*s[2]*c[4]+s[6]*c[5J*c[1]*c[2]*s[4]­
s[6]*s[l]*s[5]+c[6]*c[1]*s[2]*s[4]-c[6]*c[1]*c[2]*c[4];

trans [0] [2] s [5] * c [1 J * s [2 J * c [4 J + s [5 J * c [1] * c [2 J * s [4] + s [1] * c [5 J i

trans [0] [3]
Ly*s[5J*c[l]*s[2]*c[4]+Ly*s[5]*c[1]*c[2]*s[4]+Ly*s[lJ*c[5]
Lb*c[l]*s[2]*s[4J+Lb*c[1]*c[2]*c[4]+c[1]*c[2]*d3-c[1]*a2*s[2];

trans [1] [0] -c [6] *c [5J *s [1] *s [2J *c [4]-c [6] *c [5] *s [1] *c [2] *s [4]
c[6J*c[1]*s[5]+s 6]*s[1]*s[2]*s[4]-s[6]*s[1]*c[2J*c[4];

trans [1] [1]
s[6]*c[5]*s[1]*s 2]*c[4]+s[6]*c[5]*s[1]*c[2]*s[4]+s[6]*c[1]*s[5]+c[6]*s
[1]*s[2]*s[4]-c[6]*s[1]*c[2]*c[4];

trans [1] [2] s[5]*s[1]*s[2]*c[4]+s[5]*s[1]*c[2]*s 4]-c[1]*c[5];

trans [lJ [3J s [5] *s [1] *s [2] *c [4] +Ly*s [5] *s [1] *c [2J *s [4]-
Ly*c[1]*c[5]-Lb*s[lJ*s[2]*s[4]+Lb*s[1]*c[2]*c[4]+s[1]*c[2]*d3
s [1] * a2 * s [2] i

125

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

trans [2] [0] = c [5] * c [6] * c [2] * c [4] - c [5] * c [6] * s [2] * s [4] - s [6] * s [2] * c [4] -
s[6]*c[2]*s[4] ;

trans [2] [1] = - c [5] * s [6] * c [2] * c [4] +c [5] * s [6] * s [2] * s [4] - c [6] * c [2] * s [4] -
c[6]*s[2]*c[4] ;

trans [2] [2]= -s[5]*c[2]*c[4]+s[5]*s[2]*s[4];

trans[2] [3]= -
s[5]*Ly*c[2]*c[4]+s[5]*Ly*s[2]*s[4]+Lb*c[2]*s[4]+Lb*s[2]*c[4]+s[2]*d3+a
2*c[2]+d1;

trans [3] [0] = 0;

trans[3] [1]= 0;

trans [3] [2] = 0;

trans [3] [3] = 1;

/*for (i=O; i<3; ++i)
{

for (j=O; j<3; ++j)
trans[i] [j]= trans[i] [j]*180/pi;
}*/

return;

/*--~--------------~----------*/

126

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
//Numerical solution to solve the Up-Down angle//

float Numerical_Up_Down (float px, float pz, float rll, float r12,
float r13, float r31, float r32, float r33, float sl, float cl, float
s6, float c6)
{

int i,j;
float eqn[2] ,Joint2, k=O.Ol;

Joint2= (30.0*pi/180.0);

eqn[l]= Lb*r31*s6+Lb*r32*c6-r33*Ly+pz-dl­
tan(Joint2)*((Lb*rll*s6+Lb*r12*c6-r13*Ly+px)/cl)­
tan(Joint2)*a2*sin(Joint2)-a2*cos(Joint2);

for(i=l; i<= 3; ++i)
{

j=O;
Joint2= (Joint2+ k);
k= pow(O.l, i+l); //in each subsequent loop, "k" the solution

resolution gets smaller
eqn [0] =eqn [1] ;
while (((eqn [0] > 0 && eqn [1] > 0) I I (eqn [0] < 0 && eqn [1] < 0)) &&

j< 10000*k)
/*when eqn interates pass "0", while loop is exited*/
{

eqn [1] =eqn [0] ;
printf("eqn[l]:%f\n", eqn[l]);

Joint2= (Joint2- k); //decrementing the solution
eqn[O]= Lb*r31*s6+Lb*r32*c6-r33*Ly+pz-dl­

tan(Joint2)*((Lb*rll*s6+Lb*r12*c6-r13*Ly+px)/cl)­
tan(Joint2)*a2*sin(Joint2)-a2*cos(Joint2); //calculate eqn for new
solution

printf("Joint2:%f\n", Joint2);
printf("eqn[O]:%f\n", eqn[O]);

printf("j:%d\n", j);
++j;
}

printf("In for loop\n");

printf ("At Return\n");
return Joint2;

//End Of Numerical Solution//

/*--*/

127

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/* -- */
void Inverse_calc (OnebySix EndPoint, OnebySix Joint)
{

int i, yes=Oj
float r11,r12,r13,px, r21,r22,r23,py, r31,r32,r33,pz;
float sl,cl,s2,c2,s4,c4,s5,c5,s6,c6, sumj

for (i=Oj i<3; ++i)
EndPoint[i] EndPoint[i]*pi/180;

/** converts 1x6 joint into 4x4 end-effector matrix**/
rll= cos(EndPoint[O])*cos(EndPoint[l]);
r12= cos(EndPoint[O])*sin(EndPoint[1])*sin(EndPoint[2])-

sin(EndPoint[O))*cos [2));
r13=

cos(EndPoint[O])*sin(EndPoint[1))*cos(EndPoint[2))+sin(EndPoint[O])*sin
(EndPoint[2])j

px= EndPoint[3]j

r21= sin(EndPoint[O])*cos(EndPoint[l]);
r22=

sin(EndPoint[0])*sin(EndPoint[1])*sin(EndPoint[2])+cos(EndPoint [0])*cos
(EndPoint[2])j

r23= sin(EndPoint[0])*sin(EndPoint[1])*cos(EndPoint[2))­
cos(EndPoint[O])*sin(EndPoint[2])j

py= EndPoint[4];

r31= -sin(EndPoint[l]);
r32= cos(EndPoint[1])*sin(EndPoint[2])j
r33= cos(EndPoint[1])*cos(EndPoint[2]);
pZ= EndPoint [5] j

/ **** *** ******* * ***** *** *convertion ends * ** ** * * ** * ** *.* ** * * * * * /

/** Inverse Kinematics Calculations STARTS here **/

Joint[l]= atan«r23-(py/Ly))/ (r13 (px/LY)))j
sl= sin(Joint[l))j
cl= cos(Joint[l));

i=O;
Joint[5)= atan((-sl*r12+c1*r22)/ (sl*rl1-cl*r21));
while(yes==O && i< 2) //i< 2 makes sure a maximum of 2

is executed

s6= sin(Joint[5]);
c6= cos(Joint[5]);

Joint[2]= Numerical_Up_DOwn (px, pz, r11, r12, r13 t r31, r32,
r33, 81, c1, s6, c6);

/*Numerical function to solve for Joint[2]*/
if (Joint[2)< limit-pos[2]*pi/180 && Joint[2]>

limit_neg[2]*pi/180)

128

/*make sure Joint[2) is within joint limits*/
{

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

yes=li Ilif , while loop is exited
printf ("yes! ! ! ! ! ! ! ! ! ! ! ! \n") i

i=i+l;
if (Joint[5]> 0 &&

{ Joint[5]= Joint[5]
if (Joint[5]< 0 &&

{ Joint[5]= Joint[5] ;}
I*if Joint[2] out of joint limit, iterate again with Joint[5] in

a different quadrant*1

printf("i= %d\n" , i);
}

Joint[4]= atan2(c6*sl*rll-c6*cl*r21-s6*sl*r12+s6*cl*r22, sl*r13
cl*r23) ;

1*--

s5= sin(Joint[4]) i

c5= cos(Joint[4]);

sum= atan2 «-r31*s6-r32*c6), (c5*r31*c6-c5*r32*s6-r33*s5));

s2= sin(Joint[2]);
c2= cos(Joint[2]);

Joint[3]= sum- Joint[2];
s4= sin(Joint[3]);
c4= cos [3]) ;

Joint[O]= (Lb*r31*s6+Lb*r32*c6-r33*Ly+pz-dl-a2*c2)/s2;

1** Inverse Kinematics Calculations STOPS here **1

for (i=l; i<No_of_Actuator; ++i)
Joint[i] Joint[i]*180/pi; Ilconvert radians back to degrees

return;

------------*1

129

APPENDIX D- CONTROL SOFTWARE FOR UNIMA TE 2000B

/*--*/
void Euler_calc (FourbyFour input, OnebySix orientation) /*converts 4x4
end-effector matrix into Euler angles*/

orientation[OJ= atan2 (input[lJ [OJ, input [OJ [OJ);

orientation[lJ= atan2(-input[2] [OJ, sqrt(pow(input[OJ [OJ ,2)+
pow (inpu t [1 J [0 J , 2))) ;

orientation[2J= atan2(input[2J [lJ, input[2J [2J);

orientation[3J= input [OJ [3J;

orientation[4J= input[lJ [3J;

orientation[5J= input[2J [3J;

return;

/*--*/

130

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

/* visual.c */

#include <stdio.h>
#include <math.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/errno.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <string.h>
#include "rtshare.h"
#include "kinematics.h"

void main(void)
{

int vsl, n, i;
FourbyFour g;
OnebySix position;

if ((vsl= open (" /dev/rtf3" , O_RDONLY)) <0)
{

fprintf (stderr, "Error opening /dev/rtf3 \n") j

exit (1) ;

while ((n= read(vsl, &Visual, sizeof(Visual))) > 0)
fifo"3"

//read from

printf("msg:%d\t%d\t%6.2fmicro seconds", Visual.msg,
Visual.SampleNumber, Visual.lnterSeconds);

printf (" \n") ;

for(i=O; i< No_of_Actuator; ++i) ,
{printf(" %5.2f\t", Visual.Points[i]);}

printf("\n\t");

for(i=O; i< No_of_Actuator; ++i)
{printf(" %3.lf\t", Visual.PWM[i]);}

printf (" \n") ;

forward_calc (Visual.Points, g);
and orientation from joint positions,

/*calculate end-effector position
the function is in kinematics.h*/

Euler_calc(g, position); //calculate the Euler angles, the
function is in kinematics.h

printf("\norientation:");
for (i=O; i<3j ++i)

position[i]= position[i]*180/pij
printf("\t%5.2f", position[i])j

printf (" \nposi tion: ") j

for (i=3j i<6j ++i)

131

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

("\t%5.2f", position[i]);

return;

132

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

function plotsix %Matlab function to plot response graph

file=('f:\Ramdata\'); %make sure this is the correct directory

actuator= {'In/Out', 'Rotate', 'Up/Down', 'Bend', 'Yaw', 'Swivel'};
data=input('Filename to retrive. in inverted commas. »'); %gets
filename
filename=strcat(file,data) ;
sample=input('Sampling time in seconds. »');
%combine to get the whole path

result= dlmread(filename, '\t');
%read the data from the file

time= result(:,l)*sample;

clf;
figure(l);
title('ARM plot for Rotate, Extend, Up-Down')
for i=1:3

desired(:,i)= result(:, 2+3*(i-l));
actual(:,i)= result(:, 3+3*(i-l));
PWM(:,i)= result(:, 4+3*(i-l));

subplot(3,2,1+2*(i-l))

if i==l
unit= '(mm)';

else
uni t= '(degrees) , ;

end;

plot(time,desired(:,i) , 'r-'); %plot the input signal
hold on
plot(time, actual(:,i), 'b');
xlabel('Time, seconds');
ylabel (strcat (actuator(i) ,unit)) ;
hold off;
zoom xon;

subplot(3,2, (2*i));
plot(time, PWM(:,i), 'b');
xlabel('Time, seconds');
ylabel (' PWM, (%) ');
zoom xon;

end

figure(2) ;
title('WRIST plot for Bend, Yaw, Swivel')

for i=4:6
j=i-3;

desired(:,i)= result(:, 2+3*(i-l));
actual(:,i)= result(:, 3+3*(i-l));

133

APPENDIX D- CONTROL SOFTWARE FOR UNIMATE 2000B

PWM(:,i)= result(:, 4+3*(i-l));

subplot(3,2,l+2*(j-l));

plot(time,desired(:,i), 'r-')i %plot the input signal
hold on
plot(time, actual(:,i), 'b');
xlabel('Time, seconds');
ylabel(strcat(actuator(i),unit)) ;
hold off
zoom xon;

subplot (3,2, (2*j))
plot(time, PWM(:,i), 'b');
xlabel('Time, seconds');
ylabel ('PWM, (%) ');
zoom xon;

end

134

APPENDIX E- MATLAB FILES FOR KINEMATICS AND INVERSE KINEMATICS

APPENDIX E- MATLAB FILES FOR KINEMATICS AND

INVERSE KINEMATICS

135

APPENDIX E- MATLAB FILES FOR KlNEMATlCS AND INVERSE KlNEMATlCS

function forward %function to calculate the end-effector matrix frame
syms d3 t1 t2 t4 t5 t6 T1 T2 T3 T4 T5 T6 d1 a2 Lb Ly

T1= [cos(t1) 0 sin(t1) 0;
sin(t1) 0 -cos(t1) 0;
o 1 0 d1; 0 0 0 1 J ;

T2=[-sin(t2) 0 cos(t2) -a2*sin(t2)
cos(t2) 0 sin(t2) a2*cos(t2)
o 1 0 0
o o o 1J ;

T3 = [1 0 0 0; 0 0 1 0; 0 -1 0 d3; 0 0 0 1 J ;

T4= [cos(t4) 0 sin(t4) 0; sin(t4) 0 -cos(t4) 0;
o 1 0 0; 000 1J;

T5= [cos(t5) 0 -sin(t5) 0; sin(t5) 0 cos(t5) 0;
o -1 0 Lb; 0 0 0 1J;

T6= [cos(t6) -sin(t6) 0 0; sin(t6) cos(t6) 0 0;
o OiLy; 0 0 01J;

T04R= simplify(T1*T2*T3*T4);
T05R= simplify(T1*T2*T3*T4*T5);
T06R= simplify(T1*T2*T3*T4*T5*T6)

%shows end-effector orientation in alpha, beta and gamma angles
tanalpha= simplify(T06R(2,l)/T06R(l,l))
tanbeta= simplify(-T06R(3,l)/sqrt(T06R(l,l)A2+T06R(2,l)A2))
tangamma= simplify(T06R(3,2)/T06R(3,3))

136

APPENDIX E- MATLAB FILES FOR KINEMATICS AND INVERSE KINEMATICS

function inverse %generates equations for solving inverse kinematics
syrns d1 a2 d3 t1 t2 t4 tS t6 T1 T2 T3 T4 TS T6 Lb Ly r11 r12 r13 px r21
r22 r23 py r31 r32 r33 pz

T01= [cos(t1) 0 sin(t1) 0;
sin(t1) 0 -cos(t1) 0;
o 1 0 d1; 000 1J;

T12= [-sin(t2) 0 cos(t2) -a2*sin(t2)
cos(t2) 0 sin(t2) a2*cos(t2)
o 1 0 0
o o o

T23= [1 0 0 0; 0 0 1 0; 0 -1 0 d3;0 0

T34= [cos(t4) 0 sin(t4) 0; sin(t4) 0
0 1 0 0; 0 0 0 1J;

T4S= [cos (tS) 0 -sin(tS) 0; sin(tS) 0
0 -1 0 Lb; 0 0 0 1J;

1J;

0 lJ;

-cos(t4) 0;

cos(tS) 0;

TS6= [cos(t6) -sin(t6) 0 0; sin(t6) cos(t6) 0 0;
o 0 1 Ly; 0 0 01J;

T06= [r11 r12 r13 px; r21 r22 r23 py; r31 r32 r33 pz; 0 0 0 1J;

Tinv01= simplify(inv(T01));
T16L= Tinv01*T06
T16R= simplify(T12*T23*T34*T4S*TS6)

Tinv12= simplify(inv(T12));
T26L= simplify (Tinv12*T16L)
T26R= simplify(T23*T34*T4S*TS6)

Tinv23= simplify(inv(T23));
T36L= simplify (Tinv23*T26L)
T36R= simplify(T34*T4S*TS6)

Tinv34= simplify(inv(T34));
T46L= simplify(Tinv34*T36L);
T46R= simplify(T4S*TS6);

Tinv4S= simplify(inv(T4S));
TS6L= simplify(Tinv4S*T46L);
TS6R= simplify(TS6);

TinvS6= simplify(inv(TS6));
T1SL= simplifY (T16L*TinvS6)
T1SR= simplify(T12*T23*T34*T4S)

T14L= simplify (T1SL*Tinv4S)
T14R= simplify(T12*T23*T34)

T2SL= simplify(Tinv12*T1SL)
T2SR= simplify(T23*T34*T4S)

137

APPENDIX E- MATLAB FILES FOR KINEMATICS AND INVERSE KINEMATICS

138

	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1
	1.1 Brief Description of Project
	1.2 Why Use Real-Time Linux?
	1.3 Universal Pulse Processor Card

	Chapter 2
	2.1 Introduction
	2.2 Communication between Linux and RTL
	2.3 Interupt Latency for Floating Point Processing

	Chapter 3
	3.1 Introduction
	3.2 Hardware of the Single-Axis Test Rig
	3.3 Performance Single Axis Test Rig
	3.4 Software Design
	3.5 Using the Software
	3.6 Controller Performance

	Chapter 4
	4.1 Introduction
	4.2 Denavit-Hartenberg (D-H) Notation
	4.3 X-Y-Z Fixed Angles
	4.4 Kinematics of Unimate Model 2000B
	4.5 Inverse Kinematics
	4.6 Manipulator Hardware

	Chapter 5
	5.1 Software Design
	5.2 Using the Software
	5.3 Greyscale Conversion
	5.4 Controller Design

	Chapter 6
	6.1 Software Improvements
	6.2 Hardware Problems
	6.3 Controller Implementation
	6.4 Path Generation

	Chapter 7
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

