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ABSTRACT. In this paper, we give a (polynomial-time) 3-approximation 
algorithm for the rooted subtree prune and regraft distance between two 
phylogenetic trees. This problem is known to be NP-complete and the 
best previously known approximation algorithm is a 5-approximation. 
We also give a faster fixed-parameter algorithm for the rooted subtree 
prune and regraft distance than was previously known. 

1. INTRODUCTION 

Phylogenetic (evolutionary) trees are used in evolutionary biology to rep­
resent the tree-like evolution of a collection of present-day species. For many 
groups of species, including most mammals, this representation is appropri­
ate. However, not all groups of species are suited to this type of represen­
tation. Collectively known as reticulation events, non-tree-like evolutionary 
processes such as hybridization, horizontal gene transfer, and recombination 
result in species being a composite of genes derived from different ancestors. 
Such groups of species include certain plant and fish species. 

Historically, one of the main mathematical tools that has been used to 
understand and model reticulate evolution is the graph-theoretic operation 
called 'subtree prune and regraft'. Informally, this operation prunes a sub­
tree of a rooted tree and then reattaches it to another part of the tree. The 
use of this tool in evolutionary biology dates back to at least 1990 [9] and 
has been regularly used since as a way to model reticulate evolution (see, 
for example, [11, 12, 15]. The reason for this use is that if two phylogenetic 
trees on the same set of species are inconsistent, but this inconsistency can 
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be explained by a single reticulation event, then one tree can be obtained 
from the other by a single subtree prune and regraft operation. Moreover, if 
the inconsistency of the two trees requires more than one reticulation event, 
the minimum number of subtree prune and regraft operations that trans­
forms one tree into the other provides a lower bound on the number of such 
events. This lower bound gives an indication of the extent to which retic­
ulation has influenced the evolutionary history of the present-day species 
under consideration. Here one thinks of the two initial trees as correctly 
representing the tree-like evolution of different parts of the genomes of the 
present-day species. 

This paper is concerned with the problem of computing the above min­
imum number of operations. In the rest of this section, we formalize this 
problem, provide some additional background, and informally state the main 
results of the paper. The organization of this paper is given at the end of 
the section. 

A rooted binary phylogenetic X-tree is a rooted tree whose root has degree 
two and all other interior vertices have degree three, and whose leaf set is 
X. For example, ignoring p and its incident edge, Tis such a tree in Fig. 1, 
where X = {1, 2, 3, 4}. Let T be a rooted binary phylogenetic X-tree. For 
the upcoming definition of a rooted subtree prune and regraft operation, we 
regard the root of T as a vertex p at the end of a pendant edge adjoined 
to the original root ( see Fig. 1). Now let e = { u, v} be an edge of T not 
incident'with p, where u is the vertex that is in the path from p to v. Let T' 
be the rooted binary phylogenetic tree obtained from T by deleting e and 
then adjoining a new edge f between v and the component Cu that contains. 
u by: 

(i) creating a new vertex u1 which subdivides an edge in Cu, and ad­
joining f between u' and v, and 

(ii) contracting the degree-two vertex u. 

We say that T' has been obtained from T by a single rooted subtree prune 
and regraft {rSPR) operation. We define the rSPR distance between two 
arbitrary rooted binary phylogenetic X-trees 'Ii and Tz to be the minimum 
number of rooted subtree prune and regraft operations that is required to 
transform 7i into Tz, We denote this distance by drsPR('li, Tz). It is well 
known that, for any such pair of trees, one can always obtain one from 
the other by a sequence of single rSPR operations. Thus this distance is 
well defined. Moreover, this distance is a metric on the collection of rooted 
binary phylogenetic X-trees. To illustrate, consider Fig. 1. Each of 'Ii and 
Tz are obtained from T by a single rSPR operation. 

The computational problem that is the focus of this paper is the following: 
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FIGURE 1. Each of 7i and ~ are obtained from T by a single 
rSPR operation. 

Problem RSPR 
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Instance: Two rooted binary phylogenetic X-trees T and T', and an integer 
k. 
Question: Is drSPR(T, T') $ k? 

Using a characterization of this problem in terms of 'agreement forests' 
(see Section 2) and ideas originating from Hein et al. [10], Bordewich and 
Semple '[3] showed that RSPR is NP-complete. 

Two positive approaches for dealing with a computationally hard problem 
are to find polynomial-time approximation algorithms and fixed-parameter 
algorithms for the problem. In this paper, we give both a polynomial-time 
3-approximation algorithm for RSPR, and a fixed-parameter algorithm for 
RSPR. The approach used in the algorithms is new and builds upon ideas 
used in the fixed-parameter algorithms for related problems by Hallet and 
McCartin [7] and Hallet et al. [8]. A short summary of approximation and 
fixed-parameter algorithms as well as a comparison of these new algorithms 
with previous algorithms is given next. 

1.1. Approximation algorithm. For a minimization problem, an algo­
rithm is said to be an r-approximation if for all instances it guarantees to 
output a feasible solution which is at most r times the size of an optimal 
solution. The existence of polynomial-time approximation algorithms varies 
greatly amongst NP-hard problems. For example, for any constant r, there is 
no such algorithm for the general traveling salesman problem unless P=NP, 
while for the traveling salesman problem in the Euclidean plane there is such 
an algorithm for every r > 1 [1]. In this latter case, we say that the problem 
exhibits a polynomial-time approximation scheme (PTAS). 

i 
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Two related approximation algorithms (which use a different definition 
of agreement forest not corresponding to rSPR) have appeared in the lit­
erature [10, 13]. Both algorithms work in a similar way and are stated as 
3-approximation algorithms. However, each contains an oversight in the 
analysis. Nevertheless, Bonet et al. (2] show that with careful analysis these 
approaches give a (polynomial-time) 5-approximation algorithm for RSPR. 
Our new algorithm, which takes a different approach, improves the approx­
imation ratio to 3. It is known that, unless P=NP, there is no PTAS for 
RSPR and, in particular, no (polynomial-time) r-approximation algorithm 
for r < ~ii~ (4]. 

1.2. Fixed-parameter algorithm. The idea behind fixed-parameter com­
plexity is that while the general case of RSPR is NP-hard, many biologically 
relevant cases require a relatively small number of RSPR operations and so 
may be tractable. In particular, if we take k as the parameter, we show that 
RSPR may be solved in time 0(4kk4 + n3), where n = jXj. The impor­
tance of this result is in the separation of the variables n and k; it shows 
that, for a reasonable range of k, the problem may be tractable even for a 
very large n. This last algorithm greatly improves the running time of the 
0((56k) 2k + n 3) fixed-parameter algorithm for RSPR given by Bordewich 
and Semple (3]. We refer readers unfamiliar with fixed parameterability to 
[6]. 

The paper is organized as follows. Section 2 details some notation and 
concepts that will be used throughout the paper. Also included in Section 2 
is the above-mentioned characterization of RSPR in terms of agreement 
forests. This characterization is crucial to obtaining the results in this paper. 
In Sections 3 and 4, we describe our polynomial-time 3-approximation and 
0(4kk4 + n3) fixed-parameter algorithms for RSPR, respectively. These 
sections also contain the two main results of the paper: theorems stating 
the correctness of the algorithms. The proofs of these theorems rely on two 
key lemmas. The proofs of these lemmas are given in Section 5. Unless 
otherwise stated, the notation and terminology in this paper follows [14]. 

2. PRELIMINARIES 

For ease of reading, we will denote the union of two sets P and Q by 
P + Q. If Q = {q}, that is, Q is a singleton, we denote P + Q by P + q and 
P-Q by P-q. 

2.1. Phylogenetic trees, forests, and partial orders. Let T be a rooted 
binary phylogenetic X-tree. The set X is referred to as the label set of T and 
is frequently denoted by .C('T). A collection :F of subtrees of T is a forest 
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of T if :F can be obtained by deleting a (possibly empty) subset of edges of 
T. For a subset E of the edge set of :F, we denote the forest obtained by 
deleting each of the edges in Eby :F - E. If C is a component of :F, then 
the intersection of X with the vertex set of C is referred to as the label set 
ofC. 

For a forest :F, we impose a partial order on the set that is the union of 
the vertex and edge sets of :F. In particular, for elements g and h in this 
union, we write g < h if g and h are in the same component of :F, g i- h, 
and h is on the path from g to the root in this component. The set 

{g : g < h, g is a vertex or edge of :F} 

is referred to as the set below h. Furthermore, if x and y are vertices of 
the same component of :F, the most recent common ancestor of x and y 
is the minimal vertex of :F that is an ancestor of both x and y under this 
partial order. Note that, when restricted to the vertex set of :F, this partial 
order differs from that used in [14], but is more consistent with the other 
definitions used in this paper. 

Lastly, let C be a component of :F and let X' be a subset of the label set of 
C. The minimal rooted subtree of C that connects the vertices of C labelled 
by the elements of X' is denoted by C(X'). Furthermore, the restriction 
of C to X', denoted by CjX', is the rooted binary phylogenetic tree that is 
obtained from C(X') by contracting any non-root vertices of degree two. 

2.2. Agreement forests. Let T and T' be two rooted binary phylogenetic 
X-trees. For the purposes of the definitions in this subsection, we regard the 
root of both T and T' as a vertex p at the end of a pendant edge adjoined 
to the original root. Furthermore, we also regard p as part of the label sets 
of both T and T', thus we view their label sets as X + p. 

An agreement forest for T and T' is a collection {'Tp, 'Ii, 'Fi,, ... , 'T,.} of 
trees, where Tp is a rooted tree with label set Cp and 'Ii, 'Fi,, ... , T,. are 
rooted binary phylogenetic trees with label sets £1, £2, ... , Ck such that the 
following properties are satisfied: 

(i) The label sets Cp, £1, ... , Ck partition X + p and, in particular, p E 
Cp. 

(ii) For all i E {p, 1, 2, ... , k}, 7;, = TICi = T'ICi, 
(iii) The trees in {7(£,i) : i E {p, 1, 2, ... , k}} and {T' (Ci) : i E {p, 1, 2, ... , k}} 

are vertex-disjoint rooted subtrees of T and T', respectively. 

It is easily seen that if :F is an agreement forest for T and T', then, up to 
contracting non-root vertices of degree-two, :F can be obtained from each of 
T and T' by deleting IFI - 1 edges. A maximum-agreement forest for T and 
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FIGURE 2. :F1 and :F2 are agreement forests for T and T'. 

T' is an agreement forest in which k (the number of components minus one) 
is minimized. The minimum possible value fork is denoted by m(T, T'). In 
Fig. 2, :F1 and :F2 are both agreement forests for T and T' . Indeed, it is 
easily checked that :F1 is a maximum-agreement forest for T and T', and so 
m(T, T'.) = 2. 

Bordewich and Semple [3] showed that drsPR(T, T') can be character­
ized in terms of agreement forests. In particular, they proved the following 
theorem. 

Theorem 2.1. Let T and T' be two rooted binary phylogenetic X -trees. 
Then drsPR(T, T') = m(T, T'). 

The importance of this result for us is that any r-approximation algo­
rithm for approximating the size of a maximum-agreement forest for T and 
T' equates to an r-approximation algorithm for drsPR(T, T'). A similar in­
terpretation can be made for fixed-parameter algorithms that find the exact 
size of a maximum-agreement forest for T and T'. 

Let :F be a forest of T. We say that :F yields an agreement forest 
{Tp, Ti, 'Fi, ... , 'lie} for T and T' if :F has components Cp, C1, C2, ... , Ck such 
that Cil£i = T;, for all i E {p, 1, 2, ... , k }, where Li is the label set of Ci. 
Informally, :F yields an agreement forest if deleting (iteratively) all degree-
1 vertices that are not labeled with an element in X + p, and contracting 
all non-root degree-2 vertices results in the agreement forest. We denote 
by e(:F, T') the size of a minimum set E of edges of :F such that :F - E 
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FIGURE 3. The layout of a minimal incompatible triple. 
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yields an agreement forest for T and T 1
• This is well defined since tak­

ing E to be the set of all pendent edges of F yields the agreement for­
est consisting of isolated vertices. If IEI = e(F, T'), then we say that 
F - E yields a maximum-agreement forest for F and T'. Observe that 
e(T, T') = m(T, T') = drsPR(T, T'). 

2.3. Incompatible triples. A triple is a rooted binary phylogenetic tree 
with exactly three leaves. In the literature, triples are also called rooted 
triples. We denote the triple with leaf set { a, b, e} that has the property 
that the path from a to b and the path from e to the root are vertex disjoint 
by able or, equivalently, bale, 

Let T and T' be two rooted binary phylogenetic X-trees, and let F be a 
forest of T. Let { a, b, e} be a subset of X. We say that able is a triple of 
F if there is a component Ci of F whose label set contains a, b, and e and 
has the property that Cil{a, b, e} is able, Analogously, able is a triple of T' if 
T'l{a,b,e} is able, For example, able and cdla are triples of the tree shown 
in Fig. 3. Furthermore, able is an incompatible triple of F with respect to T' 
if able is a triple of F, but able is not a triple of T'. For such an incompatible 
triple, we define rabc to be the most recent common ancestor of a and e in F 
( or equivalently b and e in F), and define r ab to be the most recent common 
ancestor of a and b in F. 

Let able be a minimal incompatible triple of F with respect to T'. We 
denote the child edge of r ab leading to a by ea and the child edge of r ab 
leading to b by eb, Furthermore, we denote the child edge of r abc leading 
to r ab by er. Finally, let ec denote the first edge on th~ path from r abc to e 
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FIGURE 4. The layout of a pair of overlapping components 
Ts and 'It, The set S (resp. T) is the subset of .Cs (resp . .Ct) 
whose members lie below Vst in T'. 

with the property that, for all elements c' of X - c below ec, the triples cc'\a 
and cc'\b are triples of both :F and T'. We denote the parent vertex of the 
edge ec by re, Note that ec may be the parent edge of c. These definitions 
are illustrated in Fig. 3, where, for the moment, ignore the dashed ovals and 
associated labels. 

Lastly, we impose a partial order on the triples of :F. In particular, we 
write ab\c < xy\z if (i) rabc is a descendant of rxyz or (ii) rabc = rxyz and 
rab is a descendant of rxy· An incompatible triple of :F with respect to T' 
is minimal if it is minimal with respect to this partial order. 

2.4. Overlapping components. Let T and T' be two rooted binary phy­
logenetic X-trees, and let :F be a forest of T that contains no incompatible 
triple with respect to T'. Let Ts and Tt be two components of :F with label 
sets .Cs and .Ct, It is important to note that, because of this assumption on 
triples, T\.Cs = 'Ts\.Cs = T'\.Cs and T\.Ct = Tt\.Ct = T'\.Ct, We say Ts and 'It 
overlap in T' if T'(.Cs) and T'(Ct) share a common vertex. For such a pair 
of overlapping components, we define a minimal common vertex, Vst say, in 
T' to be a minimal vertex in T'(.Cs) n T'(.Ct) with respect to the partial 
order on vertices in T'. Furthermore, with respect to the partial order on 
edges of :F, we let es denote the minimal edge in :F whose set of descen­
dants in X is precisely the descendants of Vst in .Cs, Analogously, we let et 
denote the minimal edge in :F whose set of descendants in X is precisely the 
descendants of Vst in .Ct, These definitions are illustrated in Fig. 4. 

3. APPROXIMATION ALGORITHM 
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In this section we present our polynomial-time 3-approximation algorithm 
for RSPR, and state the key lemma and resulting theorem proving the cor­
rectness of this algorithm. We will prove the theorem in this section, but 
the proof of the lemma, Lemma 3.1, is deferred until the last section. 

Called SPR-APPROX, the pseudocode for the approximation algorithm is 
given in Algorithm 3.1, while an intuitive description of the algorithm and 
why it works is given below. The algorithm SPR-APPROX takes as input 
two rooted binary phylogenetic X-trees T and T'. It proceeds by deleting 
edges from T to obtain a forest :F of T, until :F yields an agreement forest of 
T and T'. To obtain such a forest, it iteratively finds a minimal incompatible 
triple abJc of :F with respect to T', and deletes the associated edges ea, ec, 
and er from :F. When there are no more incompatible triples of :F with 
respect to T', the algorithm iteratively finds components Ts and 'It of :F 
which overlap in T', and deletes the associated edges es and et, When there 
are no more overlapping components, :F yields an agreement forest for T 
and T', and the algorithm outputs both the forest :F and the number of 
edges that have been deleted. We show in Lemma 3.1 that, whenever we 
delete a set of edges from :F corresponding to either an incompatible triple 
of :F with respect to T' or a pair of components in :F that overlap in T', the 
value e(:F, T') decreases by at least one. Since we delete at most three edges 
at each iteration, it follows that the entire run of the algorithm deletes at 
most three times more edges than the minimal possible. 

Algorithm 3.1: SPR-APPROX(T, T') 

:F-T 

k - 0 
while there exists an incompatible triple of :F with respect to T' 

{ 

abJc f-- minimal incompatible triple of :F with respect to T' 
do E f-- { ea, ec, er} with respect to abJc 

:F-:F-E 
k-k+3 

while there exist a pair of components in :F that overlap in T' 

{

Ts, 'It f-- components of :F overlapping in T' 
do E f-- { es, et} with respect to Ts, 'It 

:F-:F-E 
k-k+2 

return (:F, k) 

The proof of the following lemma is given in the last section. 
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Lemma 3.1. Let T and T' be two rooted binary phylogenetic X-trees, and 
let :F be a forest of T. 

(i) If there exists a minimal incompatible triple able of :F with respect to 
T', then 

e(:F - { ea, ec, er}, T') ~ e(:F, T') - 1. 

(ii) If there is no incompatible triple of :F with respect to T', but there 
exist two components Ts and 'It of :F that overlap in T', then, for some 
j E {s,t}, 

e(:F - ej, T') = e(:F, T') - 1. 

(iii) If there is no incompatible triple of :F with respect to T', and no two 
components of :F that overlap in T', then 

e(:F, T') = 0. 

Theorem 3.2. Let T and T' be two rooted binary phylogenetic X -trees, and 
let n = !XI. Let (:F, k) be the output of SPR-APPROX(T, T'). Then :F is an 
agreement forest for T and T', and k is a 3-approximation for drsPR(T, T'). 
Moreover, the running time of SPR-APPROX is O(n5). 

Proof. Referring to Algorithm 3.1, suppose that in the running of SPR­
APPROX(T, T') there were k1 iterations of the first while loop, and k2 
iterations of the second while loop. We begin by showing that 

(1) k1 + k2 ~ drsPR(T, T') ~ 3k1 + 2k2 = k. 

To this end, let :Fo = T and, for all i E {1, 2, ... , (k1 + k2)}, let :Fi be 
the forest generated after the first i iterations of the while loops in SPR­
APPROX(T, T'). We first prove by induction that, for all i, 

(2) e(:Fi, T') + i ~ e(T, T') ~ e(:Fi, T') + 3i1 + 2i2, 

where i1 = min{i, k1} and i2 = max{i - k1, O}. 

For i = 0, (2) trivially holds. Now suppose that (2) holds for all i' < i, 
where i1 ~ 0. If i ~ k1, i.e. the i-th iteration is in the first while loop, then, 
by the inductive hypothesis, 

e(:Fi-1, T') + (i -1) ~ e(T, T') ~ e(:Fi-1, T') + 3(i -1). 

By Lemma 3.l(i), e(:Fi, T') ~ e(:Fi-1, T')-1, hence e(:Fi, T') +i ~ e(T, T'). 
Furthermore, since :Fi has three fewer edges than :F:i-1, we have e( :Fi-1, T') ~ 
e(:Fi, T') + 3, so e(T, T') ~ e(:Fi, T') + 3i and (2) holds. 

If i > k1, then the i-th iteration is in the second while loop. Therefore, 
by the inductive hypothesis, 

e(:Fi-1, T') + (i -1) ~ e(T, T') ~ e(:Fi-1, T') + 3k1 + 2(i - k1 - 1). 
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By Lemma 3.l(ii), e(:Fi, T') ::; e(Fi-1, T')-1, and so e(:Fi, T')+i::; e(T, T'). 
Now :Fi has two fewer edges than :Fi-1, so e(:Fi-1, T') ::; e(:Fi, T') + 2. Thus 
e(T, T') ::; e(:Fi, T') + 3k1 + 2(i - k1) and (2) holds. 

It now follows by (2) that 

e(:F, T') + k1 + k2 ::; e(T, T') ::; e(:F, T') + 3k1 + 2k2, 

Since there are no more while loops to complete, Lemma 3.l(iii) implies 
that e(:F, T') = O. Recalling that e(T, T') = drsPR(T, T'), we obtain (1). 
Hence k is a 3-approximation for drsPR(T, T'). 

In order to bound the running time of SPR-APPROX, note that there 
are at most O(n) iterations. Each iteration in the first while loop involves 
finding a minimal incompatible triple. There are O(n3) triples of :F to 
consider, and a minimal incompatible triple of :F with respect to T' can be 
found in time O(n4), if one exists. Once such a minimal incompatible triple 
is found, determining and deleting the edges ea, ec, and er can certainly 
be done in time O(n4). Each iteration in the second while loop involves 
finding a pair of components in :F that overlap in T'. There are O(n2) pairs 
of components of :F to consider, and such a pair of overlapping components 
can be found in time O(n3), if one exists. Again, once the pair is found, 
determining and deleting the edges e8 and et is fast. Hence each iteration 
takes time at most O(n4) and the overall running time is O(n5) as claimed. 

D 

4. FIXED-PARAMETER ALGORITHM 

In this section we present our fixed-parameter algorithm, SPR-EXACT, 
for RSPR. Like SPR-APPROX, the proof of its correctness depends upon a 
key lemma. The proof of this lemma, Lemma 4.1, is deferred until the last 
section, while the theorem stating this correctness is established here. 

The pseudocode for SPR-EXACT is given in Algorithm 4.1, while an in­
tuitive description of the algorithm and its correctness is given below. The 
algorithm SPR-EXACT takes as input two rooted binary phylogenetic X­
trees T and T', and a parameter k. It proceeds in a similar fashion to 
SPR-APPROX: deleting edges from T to obtain a forest :F of T, until :F 
yields an agreement forest of T and T'. However, instead of deleting a set 
E of edges from :F at each iteration, it branches into IEI computation paths 
with each path corresponding to the deletion of one element of E. 

As with SPR-APPROX, the algorithm SPR-EXACT beings by iteratively 
finding a minimal incompatible triple able of :F with respect to T', and 
deleting each of the associated edges ea, eb, ec and er from :Fin a separate 



12 MAGNUS BORDEWICH1 , CATHERINE MCCARTIN2 , AND CHARLES SEMPLE3 

computation path. When, with respect to T', there are no more incompati­
ble triples between :F and T', the algorithm iteratively finds components Ts 
and Tt of :;:: which overlap in T', and deletes each of the associated edges e8 

and et in a separate computation path. 

The algorithm runs for at most k iterations before declaring either that 
along some computation path it has reached a forest :;:: which yields an 
agreement forest for T and T', or that no such forest can be obtained by 
deleting k or fewer edges. We show in Lemma 4.1 that in each iteration, one 
of the computation paths deletes a single edge from :;:: such that e(:F, T') 
decreases by one. This means that the algorithm does find a solution if one 
exists. Since we branch into at most four paths in each iteration and it turns 
out that each iteration takes time O(n4 ), it follows that the entire run of 
the algorithm takes time 0(4kn4), where n = jXj. The remark at the end of 
this section explains how the running time can be improved to 0(4kk4 +n3 ), 

as claimed in the introduction. 
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Algorithm 4.1: SPR-EXACT(T, T', k) 

:F+-T 
if k < 0 

do return (no) 

else if there exists an incompatible triple of :F with respect to T' 
able+- minimal incompatible triple of :F with respect to T' 
E +- {ea, eb, ec, er} with respect to able 
Ansa +- SPR-EXACT(:F- ea, T', k -1) 
Ansb +- SPR-EXACT(:F- eb, T', k -1) 

do Ansc +- SPR-EXACT(:F - ec, T', k -1) 
Ansr +- SPR-EXACT(:F - er, T', k -1) 
if Ansa = yes or Ansb = yes or Ansc = yes or Ansr = yes 

do return (yes) 
else return (no) 

else if there exists a pair of components of :F that overlap in T' 
Ts, Tt +- components of :F overlapping in T' 
E +- {e8 , et} with respect to Ts, 'It 
Ans8 +- SPR-EXACT(:F - e8 , T', k -1) 

do Anst +- SPR-EXACT(:F- et, T', k -1) 
if Ans8 = yes or Anst = yes 

do return (yes) 
else return (no) 

else return (yes) 

The proof of the following lemma is given in the last section. 

13 

Lemma 4.1. Let T and T' be two rooted binary phylogenetic X-trees, and 
let :F be a forest of T. 

(i) If there exists a minimal incompatible triple able of :F with respect to 
T', then, for some i E { a, b, e, r}, 

e(:F - ei, T') = e(:F, T') - 1. 

(ii) If there is no incompatible triple of :F with respect to T', but there 
exist two components Ts and Tt of :F that overlap in T', then, for some 
j E {s,t}, 

e(:F - ej, T') = e(:F, T') -1. 
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(iii) If there is no incompatible triple of :F with respect to T', and no two 
components of :F that overlap in T', then 

e(:F, T') = 0. 

Theorem 4.2. Let T and T' be two rooted binary phylogenetic X-trees, and 
let n = IX!. Let k be an integer. Then the output of SPR-EXACT(T, T', k) 
is 'yes' if and only if drsPR(T, T') ::::; k. Moreover, the running time of 
SPR-EXACT is 0(4kn4 ). 

Proof Using induction on k, we first show that, for any forest :F of T, 
the output of SPR-EXACT(:F, T', k) is 'yes' if and only if e(:F, T') ::; k. 
Since drsPR(T, T') = e(T, T'), it will follow that the output of SPR­
EXACT(T, T', k) is 'yes' if and only if drsPR(T, T') ::::; k. 

If k = O, then all calls to SPR-EXACT from within SPR-EXACT(:F, T', k) 
will have parameter -1 and therefore return 'no'. Thus SPR-EXACT(:F, T', k) 
outputs 'yes' precisely if :F is a forest of T', and so e(:F, T') = 0, 

Now suppose that the algorithm returns the correct answer whenever the 
input parameter is at most k', where k' ~ 0 and k' + 1 = k. First assume 
that e(:F, T') :> k' + 1. Then, for all edges ~. we have e(:F - ei, T') > 
k'. Therefore, within the algorithm SPR-EXACT(:F, T', k' + 1), Ansi = 
no for all i E {a,b,c,r,s,t} since each call to SPR-EXACT(:F- ei,T',k') 
returns 'no'. Furthermore, since :F is not a forest of T', there is either some 
incompatible triple of :F with respect to T', or some pair of components of 
:F overlap in T'. Hence, in this case, SPR-EXACT(:F, T', k) returns 'no'. 

Now assume that e(:F, T') ::; k' + 1. There are three cases to consider: 

(i) there exists a minimal incompatible triple able of :F with respect to T', 
(ii) there is no incompatible triple of :F with respect to T', but there exist 

Ts and Tt, two components of :F such that Ts and Tt overlap in T', and 
(iii) there is no incompatible triple of :F with respect to T', and no two 

components of :F that overlap in T'. 

If (i) holds, then, by Lemma 4.l(i), there is some i E {a, b, c, r} such that 
e(:F - ei, T') = e(:F, T') -1 ::; k'. Hence, by the induction hypothesis, Ansi 
in SPR-EXACT(:F, T', k) returns 'yes'. If (ii) holds, but not (i), then, by 
Lemma 4.l(ii), there is some j E {s, t} such that e(:F - ej, T') = e(:F, T')-
1::::; k', and so, by the induction hypothesis, Ansj in SPR-EXACT(:F, T', k) 
returns 'yes'. Lastly, if (iii) holds, then SPR-EXACT(:F, T', k) returns 
'yes'. Hence the output of SPR-EXACT(:F, T', k' + 1) is 'yes' if and only if 
e(:F, T') ::::; k' + 1 = k. 
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We bound the running time of SPR-EXACT by induction on k. If k = -1, 
then the algorithm answers 'no' in constant time. Now suppose that the 
running time of SPR-EXACT is 0(4k'n4) for all k', where -1:::; k' < k. As 
for SPR-APPROX, determining if there exists, and if so finding, a minimal 
incompatible triple of :F with respect to 'T' can be done in time O(n4), while 
determining the existence of, and finding a pair of components in :F that 
overlap in 'T' can be done in time O(n3 ). Since the algorithm makes at most 
four calls to SPR-EXACT, each with parameter k - 1, the running time is 
O(n4 + 4.4k-1n4 ) = 0(4kn4 ) as claimed. 0 

Remark. The running time of SPR-EXACT can be easily improved to 
0( 4kk4+n3 ) by first applying the kernalization of Bordewich and Semple [3]. 
This kernalization can be computed in time O(n3) [5] and involves two types 
of reductions each of which reduces the size of the label sets of the two initial 
trees 'T and 'T' while preserving the rSPR distance between them. At the 
completion of the kernalization, the resulting two rooted binary phylogenetic 
trees, T and T' say, have leaf sets of size at most 28drSPR('T, 'T'). Thus, if 
the size of the leaf set of Tis greater than 28k we answer 'no'; otherwise we 
input (T, T', k) to SPR-EXACT, which now runs in time 0(4kk4). 

5. PROOFS OF LEMMAS 3.1 AND 4.1 

In this section we prove the two key lemmas of the paper, namely, Lem­
mas 3.1 and 4.1. The proofs of these lemmas will in turn require some 
additional lemmas. 

Let :F be an arbitrary forest of a rooted binary phylogenetic X-tree 'T, and 
let u and v be vertices of :F. We will write u rv v if u and v are in the same 
component of :F, or equivalently, if :F contains a (undirected) path from u 
to v. For the purposes of this section, two forests :F and :F' of 'T are iso­
morphic if they consist of components Cp, C1, C2, ... , ck and c~, CL C2, ... 'q, 
respectively, such that, up to the ordering of these components, the label 
sets of Ci and q agree for all i E {p, 1, 2, ... , k}. Observe that if :F and :F' 
are isomorphic, then Ci I.Ci = cn.ci for all i E {p, 1, ... , k }, where .Ci is the 
common label set of Ci and q. 

The first of the additional lemmas, Lemma 5.1, will be used frequently in 
this section. 

Lemma 5.1. Let 'T be a rooted binary phylogenetic X-tree and let :F be a 
forest of 'T. Let e and f be edges in the same component of :F, and let E be 
a subset of edges of :F such that f EE but e (/. E. Let VJ be the end-vertex 
off closest to e and let Ve be an end-vertex of e. If 
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(i) VJ ,...., Ve in :F - E, and 
(ii) for all x EX+ p, we have x ,j, VJ in :F - (E + e), 

then :F - (E - f + e) is isomorphic to :F - E. 

Proof. It suffices to show that if x, y E X + p, then x ,...., y in :F - E if and 
only if x ,...., y in F - (E - f + e). First suppose that x ,...., y in :F - E, but 
x ,j, yin :F - (E - f + e). Then the path from x toy in :F - E uses e, but 
not f. Therefore (i) implies that either x,...., VJ or y "'VJ in :F - (E + e); a 
contradiction to (ii). Thus x "'y in :F - (E - f + e). 

Now suppose that x ,j, yin :F - E, but x "'yin :F - (E - f + e). Then 
the path from x toy in :F - (E - f + e) uses f, but note. But then either 
x "'VJ or y ,...., VJ in :F - (E + e); again a contradiction to (ii). Thus x ,j, y 
in :F - (E - f + e), completing the proof of the lemma. D 

Throughout the rest of this section, T and T' will always denote two 
rooted binary phylogenetic X-trees, and :F will always denote a forest of T. 
Also, E will denote a subset of edges of :F such that :F-E yields a maximum­
agreement forest for :F and T'. Moreover, extending the notation introduced 
earlier, let able be a minimal incompatible triple of :F with respect to T'. 
Relative to :F, we will use A, B, and C to denote the subsets of X that are 
descendants of ea, eb, and ec, respectively. Furthermore, D1 and D2 will 
denote those subsets of X - (A+ B + C) such that ad1le is a triple of :F 
for all d1 E D1, and ed2la is a triple of :F for all d2 E D2, Observe that if 
X' is the set of descendant labels of r abc then D1 and D2 partition the set 
X' - (A+ B + C). These definitions are illustrated in Fig. 3. The above 
set-up will simplify the statements of the upcoming lemmas. 

Lemma 5.2. Let able be a minimal incompatible triple of :F with respect to 
T'. Then 

(i) For all a' E A, y E B + D1, and e' E C, the triple a'yle' is an incom­
patible triple of :F with respect to T'. 

(ii) If there exist a' EA and y EB+ D1 such that a'"' y in :F - E, then 
c' ,j, d' in :F - E for all d E C and d' E D1 + D2. 

Proof. For the proof of (i), suppose that there are elements a' E A, y E 
B + D1, and d E C such the a'yle' is a triple of T'. First assume that 
IAI, IBI, ICI ~ 2. By the minimality of able, we have that aa'ld is a triple 
of T', and so ayle' must be a triple of T'. Also, by the definition of ec, the 
triple cc'la is a triple of T', so ayle is a triple of T'. If y E B, then byle is a 
triple of T' and so it follows that able is a triple of T'; a contradiction. If 
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y E Di, then, by the minimality of able, we have that ably is a triple of T'. 
Again it follows that able is a triple of T'; a contradiction. Furthermore, if 
A= {a}, B = {b}, or C = {e}, then the analogous arguments work, thus 
completing the proof of (i). 

To prove (ii), suppose that there are elements a' E A, y E B + D1, e' E C, 
and d' E D1 + D2 such that a' rv y and e' rv d' in F - E. By (i), the 
components of F - E containing a' and y, and containing e' and d' are 
distinct. Furthermore, as a'yle' is an incompatible triple of T', either ydla' 
or a'e'IY is a triple of T'. Since a' rv y and e' rv d' in F - E, this implies 
that both e'd'la' and e'd'IY are triples of T'. Assume that d =/=- e and a'=/=- a. 
Then, as cc'la and, by minimality, aa'le are triples of T', it is routine to 
check that ed'la is a triple of T'. If d = e or a'= a, an analogous but easier 
argument shows that cd'la is a triple of T'. This fact about cd'la is used 
several times in the remainder of the proof. 

There are three disjoint cases to consider depending upon the location of 
d': (I) d' is in D1; (II) d' is in D2 but is not descendant of re; and (III) d' is 
a descendent of re, 

In (I), since the components of F - E containing a' and y, and c' and d' 
are disjoint, a'yld' is a triple of F. Moreover, by the minimality of able, we 
have that a'yld' is a triple of T'. Therefore, as c' rv d' in F - E, it follows 
that a'ylc' is a triple of T'; a contradiction to (i). 

If re is the same as r abc, then neither (II) nor (III) arises, so we may 
assume that re is not the same as rabc· Then, by the definition of ee, there is 
an element d E D2 that is a descendant of re such that either cdla or cdlb is 
an incompatible triple of F with respect to T'. Without loss of generality, 
we may assume that edla is an incompatible triple of F with respect to T'. 

Consider (II). In this case, edld' is a triple of F. Since cd'la is a triple of 
T', but cdla is not, cdld' is not a triple of T'. Thus cdld' is an incompatible 
triple of F with respect to T', contradicting the minimality of able, 

Lastly, consider (III). If d = d', then cd'la is an incompatible triple of 
F with respect to T', contradicting the fact that ed'la is a triple of T'. 
Therefore assume that d =/=- d'. Then dd'le is a rooted triple of F. Since 
cd'la is a triple of T', but edla is not, dd'lc is not a triple of T'. Hence dd'lc 
is an incompatible triple of F with respect to T', again contradicting the 
minimality of able, This completes the proof of the lemma. D 

Lernrna 5.3. Let able be an incompatible triple of F with respect to T'. 
Then there exists an edge f E E such that, for some i E { a, b, c, r}, the 
forest :F - (E - f + ei) is isomorphic to F - E. 
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Proof. First suppose that, for all a' EA, we have a' f rab in :F - E. Then 
take f to be the first edge in E that is on the path from rab to a in :F. 
It follows by Lemma 5.1 that :F - E is isomorphic to :F - (E - f + ea), 
Similarly, if b' f rab (resp. c' f re) in :F - E for all b' E B (resp. c' E C), 
then taking f to be the first edge in E on the path from rab to b (resp. re 
to c) in :F, we have that :F - E is isomorphic to :F - (E - f + eb) (resp. 
:F-(E-f+ee)). 

Now suppose that there are elements a' E A, b' E B, and c' E C such that 
a' ,..., rab ,..., b' and c' ,..., re in :F - E. By Lemma 5.2 (i), a'b'lc' is not a triple 
in T', so there is an edge in E that is on the path from r ab to re in :F. Let 
f be the edge in E on this path that lies closest to re. 

There are two cases to consider depending upon the location off. Firstly, 
assume that f is on the path from rabe to re, Since c' ,..., re in :F - E, it 
follows by Lemma 5.2 that d' f re in :F - E for all d' E D1 + Dz. Therefore, 
by Lemma 5.1, :F - Eis isomorphic to :F - (E - f + ee)· Secondly, assume 
that f is on the path from rab to rabe· Since f was chosen closest to re, we 
have that c' "'rabe in :F - E. Thus, by Lemma 5.2, d' f rabe in :F - E for 
all d1 E D1 + Dz; otherwise c',..., d' in :F - E. Hence, by Lemma 5.1, :F- E 
is isomorphic to :F - (E - f + er)· 0 

Lemma 5.4. Let able be an incompatible triple of :F with respect to T'. 
Then there exists an edge f E E such that :F - (E - f + { ea, ee, er}) is 
isomorphic to a subforest of :F - E. 

Proof. Similar to the proof of Lemma 5.3, first suppose that, for all a' E A 
(resp. c' E C), we have a' f rab (resp. c' f re) in :F - E. Take f to be 
the first edge in Eon the path from rab to a (resp. re to c) in :F. Then, by 
Lemma 5.1, :F -Eis isomorphic to :F-(E- f +ea) (resp. :F -(E- f +ee)), 
and so the statement of the lemma holds. Therefore, suppose that there are 
elements a' EA and c' EC such that a',..., rab and c',..., re in :F - E. 

Assume there exists some y E B + D1 such that y ,..., r ab "' a' in :F - E. By 
Lemma 5.2, a'yld is an incompatible triple of T' and, for all d' E D1 + Dz, 
we have c' f d' in :F- E. Hence d f yin :F - E, so E contains some edge 
on the path from rab to re, Now let f be the closest such edge to re. If f 
is on the path from rabe to re, then, by Lemma 5.1, :F - E is isomorphic 
to :F - (E - f + ee)· If f is on the path rab to rabe, then c' ,..., rabe and so, 
by Lemma 5.2, d' f rabe for all d' E D1. Therefore, by Lemma 5.1, :F - E 
is isomorphic to :F - (E - f + er). Thus under this assumption the lemma 
holds. 

On the other hand, now assume that there is no y E B + D1 such that 
y "'rab ,..., a' in :F - E. Then, in particular, b' f rab for all b' EB. Under 
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this assumption, take f to be the first edge in E on the path from Tab to b 
in :F. To show that :F - (E - f + { ea, ec, er}) is isomorphic to a subforest 
of :F - E it is enough to show that for all x, y E X + p such that x "'y in 
:F - (E - f + { ea, ec, er}), we have x rv y in :F - E. So, for the purposes 
of obtaining a contradiction, suppose that there exist x, y E X + p such 
that x rv yin :F- (E - f + {ea,ec,er}), but x ,f yin :F - E. Then, in 
:F - (E - f + {ea, ec, er}), the path from x toy contains f but none of the 
elements in { ea, ec, er}. It follows that, without loss of generality, x E Band, 
moreover, that y (/. A. Furthermore, by Lemma 5.1, :F - Eis isomorphic to 
:F - (E - f + eb), and soy(/. B. Since er is not in the path from x toy in 
:F - (E - f + { ea, ec, er}), it follows that y E D1, implying that y rv Tabi a 
contradiction. This completes the proof of the lemma. D 

Lemma 5.5. Suppose that no triple of :F is incompatible with T'. Let Ts 
and 'It be two components of :F such that Ts and 'It overlap in T'. Then there 
exists an edge f E E such that, for some i E { s, t}, the forest :F - ( E - f + ei) 
is isomorphic to :F - E. 

Proof. With respect to Ts and 'It, let Vst be a minimal common vertex of 
T'. Furthermore, let S denote the subset of .Cs that are descendants of Vst 
in T' and let T denote the subset of .Ct that are descendants of Vst in T', 
where .Cs and .Ct are the label sets of Ts and 'It, respectively. Recall that 
es is the minimal edge in :F whose set of label descendants is precisely S 
and et is the minimal edge in :F whose set of label descendants is precisely 
T (see Fig. 4). Since :F - E yields a maximum-agreement forest for :F and 
T', either (I) there is no path in :F - E connecting an element in S with an 
element in .Cs - S or (II) there is no path in :F - E connecting an element 
in T with an element in .Ct - T. 

Without loss of generality, we may assume that (I) holds. If es EE, then 
the statement holds trivially with f = es, so suppose es (/. E and let rs be 
an end-vertex of e8 • Then either (i), for all s' E S, we have s' ,f r8 in :F - E 
or (ii), for all s" E .Cs - S, we have s" ,f rs in :F - E. If (i) holds, then fix 
an element s1 E S and take f to be the first edge on the path from rs to s1 

in :F which is in E. If (ii) holds, then fix an element s2 E .Cs - Sand take f 
to be the first edge on the path from rs to s2 in :F which is in E. In either 
case, Lemma 5.1 implies that :F -Eis isomorphic to :F - (E- f + es), This 
completes the proof of the lemma. D 

At last, we prove the two key lemmas of the paper. 

Proof of Lemma 3.1. First suppose that able is a minimal incompatible triple 
of :F with respect to T'. Let E be a minimum subset of edges of :F 
such that :F - E yields a maximum-agreement forest of :F and T'. Note 
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that IEI = e(:F, T'). By Lemma 5.4, there exists an f E E such that 
:F- (E - f + {ea,ec,er}) is a subforest of :F - E. Hence :F - (E - f + 
{ ea, ec, er}) yields an agreement forest of :F - { ea, ec, er} and T'. Thus 
e(:F - { ea, ec, er}, T') ::; IE - fl = e(:F, T') - 1. This inequality gives (i) in 
the statement of the lemma. 

Now suppose :F contains no incompatible rooted triple with respect to T', 
but it does contain two components Ts and 'It that overlap in T'. Let Ebe a 
minimum subset of edges of :F such that :F - E yields a maximum-agreement 
forest of :F and T'. By Lemma 5.5, there exists an f E E and j E {s, t} 
such that :F - Eis isomorphic to :F - (E - f + ej), Thus :F - (E - f + ej) 
yields a maximum-agreement forest for :F and T', and so :F - (E - f + ej) 
yields an agreement forest for :F - ei and T'. Therefore 

e(:F - ej, T') ::; IE - JI = e(:F, T') - 1. 

On the other hand, 

e(:F- ej, T') 2::: e(:F, T') - l{ej}I = e(:F, T') - 1. 

Combining the last two inequalities gives (ii) in the statement of the lemma. 

Lastly, suppose that :F contains no incompatible triple with respect to 
T', and no two components that overlap in T'. Assume that :F consists 
of components Cp, C1, C2, ... , Ck, with label sets .Cp, .C1, ... , .Ck, respectively. 
Then, as :Fis a forest of T, we have Tl.Ci= Ci I.Ci for all i E {p, 1, 2, ... , k}, 
and the. trees in {T(.Ci) : i E {p, 1, 2, ... , k}} are vertex disjoint subtrees of 
T. On the other hand, as :F contains no incompatible triples with respect 
to T', every triple of :Fis a triple of T' and so, by [14, Theorem 6.4.1], 
T'I.Ci = Ci I.Ci for all i E {p, 1, 2, ... , k }. Furthermore, as no two components 
of :F overlap in T', the trees in {T'(.Ci): i E {p,1,2, ... ,k}} are vertex 
disjoint subtrees of T'. Hence :F yields the agreement forest 

{Ci I.Ci: i E {p, 1, 2, ... , k}} 

for T and T'. Part (iii) now follows from the definition of e(:F, T'). D 

Proof of Lemma 4.1. Let able be a minimal incompatible triple of :F with 
respect to T', and let E be a minimum subset of edges of :F such that :F - E 
yields a maximum-agreement forest of :F and T'. Note that IEI = e(:F, T'). 
By Lemma 5.3, there exists an an f E E and i E { a, b, c, r} such that :F - E 
is isomorphic to :F - (E- f + ~). Hence :F - (E- f + ei) yields a maximum­
agreement forest of :F and T', and therefore :F - (E - f + ~) yields an 
agreement forest of :F - ei and T'. Thus 

e(:F - ~. T') ::; IE - f I = e(:F, T') - 1. 

Moreover, 

e(:F - ~. T') 2::: e(:F, T') - l{ei}I = e(:F, T') -1. 

I 
I, 

l·. 

i 
I, 
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Combining the last two inequalities gives (i). 

Parts (ii) and (iii) in the statement coincide with Lemma 3.l(ii) and (iii), 
and so this completes the proof of the lemma. D 
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