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Abstract 

Histopathological classification and grading of biopsy specimens play an 

important role in early cancer detection and prognosis. Nottingham Grading System 

(NGS) is one of the standard grading procedures used in breast cancer assessment, 

where three parameters, Mitotic Count (MC), Nuclear Pleomorphism (NP), and 

Tubule Formation (TF) are used for prognostic information. The grading takes into 

account the deviations in cellular structures and appearance between tumour and 

normal cells, using measures such as density, size, colour, and regularity. Cell 

structures in tissue images are also known to exhibit multifractal characteristics. 

This research focused on the multifractal properties of several graded biopsy 

specimens and analysed the dependency and variation of the fractal parameters 

with respect to the scores pre-assigned by pathologists. The effectiveness of using 

multifractal techniques on breast cancer grading was measured with a set of 

quantitative evaluations for MC, NP, and TF criteria. The developed method for 

MC scoring has obtained 82.87% true positive rate on detecting mitotic cells. 

Furthermore, the overall positive classification rates for NP and TF analysis were 

67.38% and 71.82%, respectively, while obtaining 30.26% of false classification 

rate for NP analysis and 27.17% for TF analysis. The results have shown that 

multifractal formalism is a feasible and novel method that could be used for 

automatic grading of biopsy sections. 
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Chapter 1:  

Introduction 

Cancer is a term that describes the uncontrolled growth of abnormal cells in 

the body [1]. Normal cells follow the orderly path of growth, division, and death. 

Cancer cells begin to form when this process breaks down, as they continue to 

expand and divide. This leads to a mass of abnormal cells that grows out of control. 

Healthy tissue can be invaded by cancer cells; it can harm the body when the 

abnormal cells start to form lumps or masses of tissue, known as tumours, which 

can interfere with the body’s system and function.  

More than 100 different types of cancer have now been discovered. 

According to the statistics collected by the International Agency for Research on 

Cancer (IARC), breast cancer is the most frequent type of cancer among women 

worldwide, as shown in Figure 1-1 [2-4]. The statistic has shown that the incidence 

and mortality rates for breast cancer have rapid growth in many Eastern European, 

Asian, Latin American, and African countries [5]. In addition, breast cancer is the 

major cause of death for women in several developing and developed countries. 

Lack of funding and resources are the reason why these patients do not receive 

medical treatment [2, 5].  
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Figure 1-1 The top nine most frequent cancers for women worldwide, 2008 [2] 

Studies have shown that death from breast cancer can be reduced if the 

disease is managed. An age-standardised rate (ASR) was introduced to adjust the 

population age structures based on different periods of time, geographic areas, and 

population sub-groups. ASR is the ratio of a specific rate in the population being 

studied over the population of an age group in standard population [6]. A health 

services research showed the incidence rate of breast cancer is 39.0 ASR per 

100,000 people, while the mortality rate is 12.5 ASR per 100,000 people. 

Compared to lung cancer which has a high incidence-to-mortality ratio of 1: 0.81, 

breast cancer has a lower ratio of 1: 0.32 [2]. Improving disease management can 

increase the chances of survival and recovery from breast cancer [7].  

1.1    Motivation 

Early detection plays an important role in reducing cancer mortality. The 

current procedure for breast cancer grading is manually performed by pathologists. 

Breast tissue samples of patients are taken and examined under microscopes. 

Pathologists grade the tissue samples based on the deviation of the cell structures 

from normal tissues. A pathologist may have to examine hundreds of slides daily 

[8], which is a subjective and time consuming process. 
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Histopathological images (images of biopsy samples) are now available in 

high resolution and high magnification digital format which can be further 

processed to extract useful structural information. However, the manual analysis of 

such huge sets of data can be time consuming [9]. Figure 1-2 is an example of a 

compressed image of a full size histopathological image. The original size of this 

biopsy sample was 14,654 μm × 11,026 μm. At a ×40.0 magnification scale, this 

histopathological image can be represented in digital format with a resolution of 

58,630 × 44,216 pixels, and it requires 449,149 Kb of digital data storage. 

 

Figure 1-2 A whole slide image at a ×1.0 magnification scale [10] 

The medical data used in this research were provided by Image & Pervasive 

Access Lab (IPAL), Singapore. The research group in IPAL is constructing a 

“cognitive virtual microscopic framework” for the breast cancer grading system. 

This framework introduces a “knowledge-driven medical imaging environment”; it 

can provide a system that is effective, efficient, reliable, and traceable assistance 

for prognosis [8].  
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George and Sager showed that tumours can be classified using the 

multifractal techniques [11]. This research is going beyond George and Sager’s 

research to measure the effectiveness of using multifractal techniques to grade the 

tissues of breast cancer tumours.  

1.2    Objectives 

Cell structures have multifractal characteristics that could be directly used for 

identifying pathological conditions. Multifractal formalism has been developed by 

many researchers; it has been recently used in the domain of biomedical image 

processing. Applying multifractal techniques is a novel approach for analysing 

breast cancer grading. This research aims to explore the relationship between 

various multifractal measures of cell structures in the tissue samples and the 

corresponding scores assigned by pathologists.  

However, this grading system does not replace the work of pathologists; 

rather, it provides a pre-screening analysis for them. The system should reduce the 

workload of pathologists and alert them to the cases that require closer attention.  

1.3    Publication 

The work of this Master’s research has been published in the 26th 

International Conference Image and Vision Computing New Zealand  

(IVCNZ 2011). The details of the paper are as follows: 

ChiangHau Tay, Ramakrishnan Mukundan, and Daniel Racoceanu. 

Multifractal Analysis of Histopathological Tissue Images. In Image and 

Vision Computing New Zealand. IVCNZ ’2011. 26
th 

International 

Conference, Auckland, Dec 2011, pp. 80-85  
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1.4    Thesis Overview 

The thesis contains six chapters, and it is presented as follows: 

 Chapter 2 outlines the overview of breast cancer grading and summarises the 

related work developed by other researches in breast cancer analysis.  

 Chapter 3 contains the working procedure of multifractal technique and 

demonstrates the algorithms to calculate the multifractal spectrum. Several 

applications of multifractal analysis are reviewed in this chapter. 

 Chapter 4 presents the outline of the system structure and implementation of 

this research. The developed methods are fully described and explained.  

 Chapter 5 contains the results and the discussion of the implemented 

methods. 

 The conclusions and suggestions for future work are presented in Chapter 6. 
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Chapter 2:  

Background and Literature Survey 

The overview of breast cancer diagnosis is presented in this chapter. The 

methods for evaluating the features of breast cancer grading are summarised. 

2.1    Overview of Breast Cancer Grading 

Scarff-Bloom-Richardson (SBR) system has been commonly used in the 

United States since 1957 [12]. Nuclear grading was one of the main focuses in SBR 

system; however, the effects of tubules have not been considered. In 1998, two 

European histopathologists, Professor Elston (Professor of Tumour Pathology) and 

Dr Ellis (Reader of Pathology) modified SBR system into Nottingham Grading 

System (NGS) [13, 14], which focuses on three criteria: Mitotic Count (MC), 

Nuclear Pleomorphism (NP), and Tubule Formation (TF). Each criterion 

contributes 1 to 3 points, and they are added to give a final equivalent grade, as 

shown in Table 2-1. Both Collage of American Pathologists and World Health 

Organization recommended NGS for breast cancer grading [15] because NGS 

introduces more specific criteria [13]. Hence it has become the current standard. 

Table 2-1 Nottingham Grading System [16] 

Overall grade Equivalent grade Combined histological grade 

Low Grade I 3-5 points 

Intermediate Grade II 6-7 points 

High Grade III 8-9 points 
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However, the presence of solely a good grading system does not guarantee 

the reliability of pathology results. Pathologists could analyse these medical tests 

based on their experience and subjective opinions [17]; hence the grade of a cancer 

case could have a low agreement between pathologists [18]. Dunne and Going 

carried out a case study to analyse the breast cancer grading ranked by different 

pathologists. The results showed that differences might arise from individual 

decision on nuclear grading in breast carcinoma. Professional pathologists 

specialised in breast cancer tended to grade higher pleomorphism scores than  

non-specialists [19]. Huang et al. also noticed that different doctors could give 

different diagnosis for the same biopsy samples. Although it is not a usual case, a 

doctor can make different prognosis on a same medical test at different times [20].  

Therefore, a computer-aided system is required to provide a standard and 

quantitative measurement for breast cancer assessment. Currently, many computer 

science researchers focus their studies on the algorithms for automatic and  

semi-automatic breast cancer grading system based on the NGS criteria. These 

researches aim to perform the time-consuming pre-screening job, and to provide 

reliable information for pathologists for breast cancer diagnosis.  
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2.2    Mitotic Count Scoring 

The scoring for Mitotic Count (MC) calculates the number of mitotic cells 

found in a high-power field (HPF). HPF is a term used in microscope; it refers to 

the visible area under maximum magnification power of a microscope. The 

diameter of the “field of view” varies between microscopes [21]; the numbers of 

mitotic count related to NGS in 10 HPF is shown in Figure 2-1.  

 

Figure 2-1 The number of mitotic count per 10 HPF by the field diameter [22] 

Mitosis detection is challenging because the mitotic cells are small and have 

different shapes. The mitosis has four main stages determined by the shapes of the 

nucleus (Figure 2-2): prophase, metaphase, anaphase, and telophase [22, 23]. A 

mitotic cell refers to the daughter cells form at metaphase, anaphase, and telophase; 

whereas cells at prophase are not considered as mitotic cells [22]. Different 

circumstances make the process of detecting mitotic cells even more challenging.  

 

(a) (b) (c) (d) 

Figure 2-2 Four stages of mitosis: (a) prophase (b) metaphase (c) anaphase (d) telophase 

[22] 
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Kamen et al. studied an automated recognition of mitosis in tissue sections in 

1984. The aim of their study was to maximise the number of detected mitotic cells. 

Potential mitotic cells were selected by using global and local segmentation 

techniques. The global threshold separated darker elements (mitotic cells, artefacts, 

and inflammatory cells) from the background pixels which were brighter; the local 

threshold then performed a second sieving process to the darker elements. Contour 

features were applied on classification of mitotic cells and non-mitotic cells. This 

method had a result of a large net loss of 37% mitotic cells, and 5% of non-mitotic 

cells were mistaken as mitotic cells [24]. Low image quality and unsuitable staining 

preparation were the cause of the unsatisfactory result [25]. 

In 1993, Kate et al. used region growing method to segment mitotic cells [25]. 

The method was able to correctly classify 81% of the mitotic cells, while obtaining 

30% of false positive rate. A mitotic cell has the darkest pixel in the cell region; a 

seed can start from the darkest pixel and expand to the neighbouring pixels which 

have similar intensity properties. During the classification process, Kate et al. 

analysed contour features for detecting the hairy feature of mitotic cells and 

“optical density measurements” to observe the object feature of mitosis. During the 

training stage, the semi-automated method required the users’ input to classify 

mitotic cells and non-mitotic cells. The system then learned from the first training 

experiment and re-evaluated the entire training set. The result of the fully automatic 

method was not ready for clinical practice, but the semi-automated method could 

be used as a pre-screening device. 

The improvement work from Kate et al. was carried on by Beliën et al. in 

1997. They investigated the effects of spatial resolution on the results of automatic 

mitosis recognition. The process was slow due to hardware limitation back then. 

They suggested that higher resolution in breast cancer sections can improve the 

resolution of the hairy features of mitotic cells, but the irrelevant artefacts formed 

during the preparation of the microscope slides also gained better resolution. The 

combination of the “optical density features” and “minimal grey value feature” 
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worked better at higher spatial resolution. They managed to reduce the false 

negative rate from 19% [25] to 5-8%, but the false positive rate was still 

unsatisfactory, ranging from 22% and 42% [26].  

In 2008, Dalle et al. classified potential mitotic cells by matching the shapes 

and intensity properties of test cells with those of mitotic cells. They captured a set 

of histological image frames, each of 1,024 × 1,280 pixels, from a patient’s sample. 

The average count of mitotic cells over all image frames was calculated and 

multiplied by a factor of 10. NGS states that the MC score is evaluated by the total 

mitotic cells found from 10 randomly selected cell regions; hence the multiplication 

factor was introduced. This method was tested and compared with the results 

analysed by a pathologist. Four out of six grading results agreed with the expert, 

one was overestimated, and one was underestimated [27]. 

Segmentation of mitotic cells is complicated; researchers found that mitotic 

cells are small and can be easily confused with artefacts. However, mitotic cells 

have unique hairy features which make them detectable. 

2.3    Nuclear Pleomorphism Scoring 

Nuclear Pleomorphism (NP) score focuses on the shapes, chromatin 

distribution, and sizes of cell nuclei. The score of NP is listed in Table 2-2; one of 

the key factors in NP scoring is cell nuclei detection. Many methods have been 

proposed for cell nuclei segmentation, such as thresholding [28], watershed [29], 

morphological operation [30], and generic features [31]. However, only the 

methods developed for breast cancer are reviewed in this section. 

Table 2-2 NGS for Nuclear Pleomorphism [16] 

Score Nuclear Pleomorphism scoring 

1 Small regular uniform cells 

2 Moderate nuclear size and variation 

3 Marked nuclear variation 
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Cosatto et al. described a robust method for measuring the size of neoplastic 

nuclei. They used an Active Contour Model (ACM) to segment cell nuclei and 

classified them with a Support Vector Machine (SVM). To remove colour 

variations, Cosatto et al. converted a colour image into CMY (cyan, magenta, and 

yellow) colour space. Then, a 2D Difference of Gaussian filter was applied to find 

the malignant cells, which are always larger than a normal nucleus. Elliptical 

nuclei, which have symmetric shapes, could be detected with a Hough transform 

operation. The outline of an elliptical nucleus could be approximated with ACM. 

The SVM classifier was trained to analyse the shape, texture, and fitness of the 

outline of the malignancies. Cosatto et al. showed that their result obtained 92% 

true positive and 20% false negative in classifying malignant and benign cells [32]. 

Although their method had yet to provide actual NP grading, accurately measuring 

the sizes of malignant cells is a key parameter in NP scoring. 

Dalle et al. applied Gaussian function to model the probability distributions 

of the colours of cells used for NP scoring. Each NP score had a global Gaussian 

model which defined the mean and covariance matrix of the colours in its 

corresponding type of cells; these models represented three types of chromatin 

distribution: homogeneous, moderate, and clumped. On the other hand, every 

detected cell had its own Gaussian model which was then compared with the global 

model. A cell was denoted as a particular type of cell when its colour distribution 

was similar to that global model. Six medical samples were tested, where three of 

them were Score 2 and three were Score 3. This method had correctly classified all 

medical tests with Score 2 and only one for Score 3. The other two Score 3 cases 

were underestimated to be Score 2. Dalle et al. were confident to their result 

because a pathologist only needs enough numbers of cell regions which are Score 2 

and Score 3 to make an assessment [27]. 

Unlike other existing methods that tended to detect every cell in the image, 

Dalle et al. showed that NP scoring could be achieved by analysing the critical cell 

nuclei. Epithelial cells which they defined as the critical cell nuclei always crowd 
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together and have larger shape than inflammatory cells and mitotic cells.  

Dalle et al. first detected a region of interest (ROI), described in [27], and applied a 

gamma correction to the red channel of the ROI. Gamma correction can change the 

brightness and the ratio of red, green, and blue of an image; it highlighted the cell 

nuclei from the background. Then, a threshold operation was applied to separate 

cell nuclei and background. Nearby clusters could be connected with a dilation 

operation, while the isolated clusters remained isolated. After that, an erosion 

operation was applied to separate connected clusters. A candidate critical cell 

nucleus was large and had close-by critical cell nuclei. The measurement for NP 

score was based on the size, shape and, texture of the critical cell nuclei. 

Overall, Dalle et al. found that 7.84% of cell nuclei were incorrectly 

classified. Besides, they also found that the number of critical cell nuclei was 

crucial for classification (Figure 2-3). To minimise the error rate to 7.8%, at least 

40 cell nuclei were required for Score 3. Similarly, NP Score 2 required a minimum 

of 50 cell nuclei to keep the error rate below 12%. This method used less 

processing time while maintaining a good accuracy of the classification [33].  

 

Figure 2-3 Impact of number of critical cell nuclei to the error rate of NP scoring [33] 

A breast cancer detection method which combined neural network as a 

classifier tool was presented by Singh et al. They classified malignant breast tumor 

into three types: Type 1, Type 2, and Type 3. The adaptive thresholding method 

and watershed algorithm were first applied for cell nuclei segmentation. In order to 
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separate stained tissue and background, Singh et al. assumed that local variations 

occurred during the preparation did not affect the measurements. Once the 

individual cells had been detected and segmented, the neural network classified 

malignant and benign nuclei based on eight different nucleus characteristics. The 

result of a histopathological image after applying the method is shown in  

Figure 2-4. The proposed system gave an overall accuracy of 95.80%, which is 

relatively high for breast tumour screening [34].  

   

(a) (b) 

Figure 2-4 Example of (a) a histopathological image (b) results where red represents type 3 

malignant, magenta represents type 2 malignant, blue represents type 1 malignant, and 

green represents benign object [34] 

The score of NP is based on the deviation of cell nuclei in an invasive breast 

tissue region. Although there are many different methods developed for cell nuclei 

segmentation, literatures agreed that the performance of NP scoring is dependent 

on accurate segmentation of cell nuclei.  

2.4    Tubule Formation Scoring 

Tubules refer to the white blobs (lumina) surrounded by a continuous string 

of cell nuclei [35]. The scoring of Tubule Formation (TF) measures the percentage 

of tubules present in a histopathological image. NGS for TF score is shown in  

Table 2-3.  
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Table 2-3 NGS for Tubule Formation [16] 

Score Tubule Formation scoring 

1 Majority of tubule                 (> 75%) 

2 Moderate degree of tubule    (10-75%) 

3 Marked nuclear variation      (< 10%) 

Petushi et al. showed that the microstructure existed in a histological image 

could be modelled; this model could localize TF via segmentation and machine 

learning classification of the cell nuclei [36, 37]. The grading for each section 

image could be distinguished by measuring the average distances between the 

centroids of closest nuclei in a high density region. Besides, Petushi et al. also 

noticed that there was a correlation between tubules and cancer cells. As shown in 

Figure 2-5, a section image which had majority nuclei of cancer cells contained a 

fewer number of tubules. Based on these texture features, the section image could 

be classified as Score 1 and Score 3. The overall results had shown that this method 

worked well in Score 1 and 3 cases, but the result of Score 2 was less satisfactory 

[36]. 

 

Figure 2-5 Scatter plot for the classification of section images using the number of cancer 

cells and tubules as features parameters; C1, C2, and C3 are the quadratic classifier which 

associated with G I, G II, and G III (Score 1, 2, and 3) [36] 
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A “rules-based system modelling” that transformed medical concepts into 

computer vision concepts were developed by Tutac et al. Their model was 

developed for a full NGS diagnosis tool, but only the development for TF is 

described in this section. Tutac et al. defined “DarkCellsCluster” as a symbolic rule 

which contained a group of adjacent cells with intensity value setup between very 

dark and white limits. The pathological criterion TF could be satisfied when the 

symbolic rule for TF “WhiteBlobs” were included in the “DarkCellsCluster”. The 

local grading TF (single criterion of NGS) was calculated with the ratio of TF ROI 

over the area of “DarkCellsCluster”. Among six breast cancer tests which 

composed to 5,600 frames, this method obtained 11% testing errors for TF scores. 

Although the average single component error (including MC and NP) was 11%, the 

global grading errors of NGS was 0% [35]. As a result, the final NGS grade was 

not affected by single component errors. 

Dalle et al. used a morphological operation to segment tubules in a low 

resolution global image. A blob structure containing fat or lumina region was 

considered a TF. Subsequently, the blob structures presented in the neoplasm could 

be found with the morphological filling operation. The ratio of the section occupied 

by tubules and the total area of cells in the image frames denoted the TF score. 

However, the results based on this method tended to score lower than the 

pathologist’s. Dalle et al. explained that their system had slightly stricter 

measurements [27]. 

All researchers agreed that localising the white blobs surrounded by cell 

nuclei was the first step to analyse TF score in the biopsy slides. Hence, it was an 

important aspect during the development of this research. 
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2.5    Summary of Literature Review 

NGS is the benchmark for breast cancer analysis, where MC, NP, and TF are 

used for prognostic information, as shown in Figure 2-6. Automatic and  

semi-automatic methods for breast cancer diagnosis have been developed by many 

researchers. Most of the methods were proposed to address a single NGS criterion. 

Only a few researches focused on complete breast cancer diagnosis tools which had 

an equivalent grading result with NGS. A brief description of how literatures 

approached NGS parameters is summarised in Table 2-4. 

 

Figure 2-6 General schematic of Nottingham Grading System 

  

Nottingham  

Grading System  

(NGS) 

Mitotic Count  

(MC) 

Score: 1, 2, 3 

Nuclear 

Pleomorphism (NP) 

Score: 1, 2, 3 

Tubule Formation 

(TF) 

Score: 1, 2, 3 

Grade I ··········Score 3-5 

Grade II ·········Score 6-7 

Grade III ········Score 8-9 

Combine 
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Table 2-4 Summary of the evaluations for NGS parameters 

NGS 

criterion 

 Methods  

Features Segmentation Classification Measurement 

MC - Darker colour 

- Hairy feature 

- Thresholding  

- Growing 

method 

- Contour feature  - Count the 

number of 

mitotic cells in 

10HPFs 

NP - Larger than 

normal nucleus 

- Active Contour 

Model 

- Adoptive 

thresholding 

- Watershed 

method 

- Support Vector 

Machine 

- Gaussian model 

- Neural network 

- Based on size, 

shape, and 

texture 

TF - White blobs 

surrounded by 

cell nuclei 

- Morphological 

operation 

- Machine 

learning 

- Calculate the 

area ratio of 

tubules and the 

cell region 
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Chapter 3:  

Multifractal Analysis 

Biomedical image processing involves segmentation, automatic recognition, 

and classification of the image features. Image analysis for tissue and cell images is 

complicated and challenging. The shapes of the tissues and cells are irregular; they 

are different in size and have different orientations. Hence, performing such 

complex tasks requires more advanced techniques than traditional image analysis 

methods [38].  

Natural objects exhibit statistical self-similarity, a repetition of form over a 

variety of scales [39]. Tissues and cells have the feature of self-similarity with 

varying degrees of randomness, so they belong to a class of objects known as 

multifractal [40]. Multifractal refers to configurations with different observed 

degree of fractal dimension, an attribute that describes the level of self-similarity 

[41]. Many researchers conclude that multifractal technique is an effective and 

robust tool for image segmentation and interpretation [38, 42-44]. Therefore, 

multifractal technique has been widely applied in biomedical image processing.  

This chapter includes the process of calculating Hölder exponent, denoted as 

α-value, the description of variation in local density of the image. Moreover, the 

types of multifractal measures are illustrated in detail with the properties of each 

measure. The computation of multifractal spectrum, which describes the fractal 

dimension of the image, is demonstrated. In addition, the applications of 
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multifractal techniques on biomedical image processing are reviewed in Section 3.5 

of this chapter. 

3.1    Hölder exponent 

A digital image is numerically represented by a two-dimensional array with a 

configuration of M rows and N columns; each index, known as pixel, contains a 

unique property. Depending on the types of digital image, the unique property of a 

pixel can be different. For example, the pixels of a binary image have binary 

values, the pixels of a greyscale image have intensity values, and the pixels of a 

colour image have red, green, blue, and alpha values. 

Multifractal describes the fractal properties of an image using an  

intensity-based measure within the neighbourhood of each pixel. In an example of a 

greyscale image, each pixel in the image has an intensity value which is 

represented as a multi-level of grey value. These grey values are linearly 

interpolated from black to white, ranging from 0 to 1. The local singularity 

coefficient, also known as the Hölder exponent [38, 44, 45], or α-value, reflects the 

local behaviour of a function μp(w), described in Equation 3.1, around the pixel 

[46]. The window of size w, is centred at the pixel p, as shown in Figure 3-1. The 

variation of the intensity measure with respect to w can be characterised as follows: 

            (3.1)  

                        (3.2)  

                         (3.3)  

where C is an arbitrary constant. In Equation 3.1, αp is an unknown quantity that 

needs to be estimated using the measured values of μp. In Equation 3.2, d is the 

total number of windows used in the computation of αp. The value of αp can be 

estimated from the slope of the linear regression line in a log-log plot where log(μp) 

is plotted against log(w). Furthermore, the slope of a linear regression line is 

calculated with given n sets of X and Y, by: 

                   
             

           
 (3.4)  
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Figure 3-1 Window size of w = 1, 3, 5 at the black centre pixel, p (reproduced from [40]) 

In Nilsson’s research on multifractal-based image analysis [47] , different 

neighbouring shapes can affect the estimation of the local dimension. He applied 

three different shapes (square, rhombus, and round) on the calculation. For a 

homogeneous region, only the square window had a regression slope of two. On the 

other hand, I. Reljin and B. Reljin stated that “the measure is regular” when the  

α-value is approximately two, for instance, “the probability of the signal changes is 

small” [44]. Based on this property, Nilsson determined square window to be the 

natural choice, and it was used in this research. 

An image contains a range of positive, finite α-values, namely the α-range, 

with a minimum value of αmin and a maximum value of αmax. Under some 

circumstances, the minimum α-value could be zero. These α-values are stored in a 

two-dimensional matrix where each element corresponds to the pixel’s location on 

the original image. The resulting image given by computing the local singularity of 

the original image is called the α-image. 

As the computation for the Hölder exponent requires a window surrounding 

each pixel, a problem will occur when computing the pixels around the edge of the 

image. A border of width w (the width of corresponding square window) is 

assigned to address this issue. The pixels located at the border will not be present in 

the image, but the intensity values are included in the calculation of Hölder 

exponents of their inner neighbouring pixels. Figure 3-2(b) shows that only the 

Hölder exponents of pixels inside the black frame will be calculated 
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(a) (b) 

Figure 3-2 The (a) original image (b) border for calculating multifractal measure 

3.2    Multifractal Measures 

There are four common types of intensity measures in multifractal analysis: 

maximum measure, inverse-minimum measure, summation measure, and Iso 

measure [38, 48, 49].  

The function of a multifractal measure is denoted as μw(m, n). Let g(k, l) 

represent the intensity value at pixel (m, n), and Ω be the set of all pixels within the 

measured neighbourhood of a square window size w. 

Since the α-value is always greater than or equal to zero, a pixel which is not 

involved in the calculation is denoted as background and is assigned with a 

negative α-value. 

3.2.1  Maximum measure (max measure) 

In the max measure, as shown in Equation 3.5, μw(m, n) represents the 

maximum intensity value within the square region. A problem may occur if all 

pixels are completely black with an intensity value of exactly 0. This may cause 

mathematical error for computing log(0). To avoid this error, completely black 

pixels are treated as background and are neglected in calculations of max measure. 

                     
       

       (3.5)  
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3.2.2  Inverse-minimum measure (inv-min measure) 

The minimum measure finds the minimum intensity value and assigns it to 

μw(m, n). Nilsson revealed that minimum measure was not reliable [47]; hence, 

Hemsley suggested the inverse-minimum measure which takes the positive 

difference between μw(m, n) and 1 (Equation 3.6) [40]. However, this may cause 

another mathematical error when every pixel is completely white, with intensity 

value of exactly 1. To prevent computing log(0), completely white pixels are 

treated as background and are ignored in calculations of inv-min measure. 

                                
       

       (3.6)  

3.2.3  Summation measure (sum measure) 

Sum measure sums all pixel intensities in the neighbourhood. Similarly if all 

pixels are completely black, then Equation (3.7) will encounter error for calculating 

log(0). Therefore, completely black pixels are treated as background and will not 

be considered in calculations of sum measure. 

                           

       

 (3.7)  

3.2.4  Iso measure 

Iso measure, as illustrated in Equation (3.8), counts the number of pixels in 

the neighbourhood which have a similar intensity values to the centred pixel. If the 

centred pixel is the only pixel with unique intensity in the region, then μw(m, n) is 1. 

Since the probability that the pixels in a neighbourhood to have an identical 

intensity value is very low, the Iso measure can be modified to accept a 5% degree 

of accuracy [40]. This adjustment allows more pixels that have similar intensity 

values to the centred pixel to be considered in the multifractal measurement.  

                                              

where # is the number of pixels 
(3.8)  
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3.3    The α-image 

The results of using different multifractal measures are illustrated in  

Figure 3-4, and the original greyscale image is shown in Figure 3-3 for comparison. 

The α-range for each measure is different: [0.0000, 0.4808] for max measure,  

[0.0000, 0.9354] for inv-min measure, [1.7917, 2.3315] for sum measure, and 

[0.0000, 2.1694] for Iso measure. For display purpose, the original image in  

Figure 3-3 and α-images in Figure 3-4 are normalised to [0.0, 1.0], black to white. 

Besides, the α-histogram for each multifractal measure shows that the distribution 

of α-values has a bell-shaped curve, and is skewed and translated along the α-axis 

respectively. 

  

Figure 3-3 The greyscale image (left) and its corresponding intensity histogram (right) 
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(a) Sum measure 

  
(b) Inv-min measure 

  
(c) Sum measure 

  
(d) Iso measure 

Figure 3-4 The α-image (left) and its corresponding α-histogram (right) 
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The binary images for each multifractal measure displayed in Figure 3-5 are 

produced by thresholding the α-image at different α-series. These α-series represent 

every quarter of the α-ranges. Only the pixels with α-values within the particular  

α-series are assigned as ones and all the others as zeros. For a particular α-series 

and multifractal measure, some of the tissue substances are more observable in the 

binary image. Hence, image features can be detected in a particular range of the  

α-values. This is a unique feature of multifractal analysis. More details are 

discussed in Chapter 4. 

    

    

    

    
(a) 

max measure 

(b) 

 inv-min measure 

(c) 

sum measure 

(d) 

Iso measure 

Figure 3-5 The binary images produced by thresholding the α-image at different α-series 
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3.4    The Multifractal Spectrum 

The following step of multifractal analysis is the calculation of fractal 

dimension where sets of points have the same singularity coefficient α. Multifractal 

spectrum characterises the intensity of the image; it is a unique description of the 

geometric property of fractal dimension. Besides, it can be presented by plots of 

fractal dimension against α-value, as shown in Figure 3-6. The resulting discrete 

plot (Figure 3-6 (a)) can be displayed as a continuous function, as shown in  

Figure 3-6 (b). Clearly, the latter presentation is easier to read and understand; 

hence, multifractal spectrum is presented as continuous functions in this thesis. 

 

(a) (b) 

Figure 3-6 Multifractal spectrum: (a) actual form (b) continuous form 

3.4.1  Fractal dimension 

Theiler demonstrated that fractal dimension can be estimated using a  

box-counting method, a correlation algorithm, or a fixed-mass ball technique [50]. 

Box counting is one of the most commonly used methods for calculating fractal 

dimension [41, 45, 48] because it is simple and easy to implement. For an N by N 

image, box counting only requires an average O((N
2
/2)logN) computation time 

[49], while maintaining a good estimation for the image’s fractal dimension [51]. 

3.4.2  Box-counting method 

Box-counting method counts the number of boxes, n(ε) with box size ε, that 

contain pixels with α-values within the α-interval [αi, αi+1], as shown in Figure 3-7. 

The α-intervals are obtained by subdividing the range of α-values into a  

pre-specified number of sub-intervals. In this research, the number of sub-intervals 
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is 100. Referring to Equation 3.9, the fractal dimension, f(α), can be obtained by 

calculating the slope of linear regression line of the plot of log(n(ε)) against log(ε). 

The size of box ε starts from half the size of the input image of size N, and 

recursively reduces until 1, as shown in Equation 3.11.  

      
         

      
 (3.9)  

                                   
                               

  (3.10)  

   
 

    ,            ,    
    

    
 (3.11)  

 

   

(a) ε = 128 (b) ε = 64 (c) ε = 32 

Figure 3-7 Box-counting method that uses different box sizes ε 

3.4.3  Polynomial curve fitting 

As mentioned earlier, multifractal spectrum is a discrete function of α-values; 

it can be expressed as a continuous function. Representing a large set of f(x) values 

by a continuous polynomial curve (see Figure 3-8 (b)) is useful for obtaining a 

small set of coefficients that we can use for comparing or matching two multifractal 

spectra. A general n-th order polynomial equation, f(α), is an expression which 

consists of sets of variables and constants, defined as follow: 

                
         

         (3.12)  

where x is the variable, n is a non-negative integer, and a0, a1, a2, …, an are 

constant coefficients.  
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Suppose the data points of a multifractal spectrum are the m-th pairs of 

vectors, (x1, y1), (x2, y2), …, (xm, ym), where x is the value of α and y is the value of 

f(α), then a least squares method can fit the spectrum to a polynomial function, 

described as follow: 

              
  

 

   

        (3.13)  
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 (3.16)  

The unknown coefficients a0, a1, …, an can be obtained by solving the linear 

equations in Equation 3.16 with a Gaussian Elimination.  



29 

 

An example of polynomial fitting with a sixth order polynomial equation for 

the multifractal spectrum (in Figure 3-6) is demonstrated in Figure 3-8. The 

equation is given to be: 

 
                                      

                               
        

(3.17)  

with a correlation coefficient of 0.9650. 

  
(a) (b) 

Figure 3-8 Multifractal spectrum: (a) original discrete function (b) sixth order polynomial 

equation 

3.4.4  Adjusting the α-range 

Noise often exists in digital images. A simple equalisation can minimise the 

problem. As discussed in Section 3.3, the α-histogram in Figure 3-4 shows that all 

α-values of the image are distributed along its unique α-range, from αmin to αmax. 

Each α-interval in the α-histogram has its own count for the number of pixels with 

particular α-values. The α-value can be treated as noise when its occurrence in 

corresponding α-interval is below a certain threshold. In this research, the threshold 

is set to 65, which is 0.1% of the total number of pixels in a 256×256 size image. 

The new α-range can be modified by neglecting α-values of occurrence below the 

threshold.  

As shown in Figure 3-9, the α-image based on the summation measure has  

α-values distributed between 1.79 and 2.33. The bold boxes in the figure show the 

α-intervals where the α-values have occurrence below the threshold of 65. These  

α-values are treated as noise and are excluded; the modified α-range is now from 
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1.90 to 2.13. Note that the α-values which located in the middle of the histogram 

are not treated as noise even if its occurrence in corresponding α-interval is below 

the threshold. 

 

Figure 3-9 The magnified portion of the α-histogram of the sum measure from Figure 3-4 

The effect of adjusting the α-range and re-sampling the spectrum is 

demonstrated in Figure 3-10. It should be noted that the multifractal spectra have 

similar trends as the α-histograms show in Figure 3-4. All further calculations on 

multifractal spectrum will include the α-range adjustment. 

  
(a) (b) 

  
(c) (d) 

Figure 3-10 The effect of adjusting the α-range of the multifractal spectrum for Figure 3-3 

which uses the (a) max measure (b) inv-min measure (c) sum measure (d) Iso measure 

0 

65 

1.79 1.85 1.90 1.95 2.01 2.06 2.12 2.17 2.22 2.28 

Frequency 

α 

0.00 

0.75 

1.50 

0.00 0.25 0.50 

before after f(α) 

α 0.00 

0.75 

1.50 

0.00 0.50 1.00 

f(α) 

α 

0.00 

0.75 

1.50 

1.70 2.05 2.40 

f(α) 

α 0.00 

0.75 

1.50 

0.00 1.10 2.20 

f(α) 

α 



31 

 

3.5    Applications in Medical Image Processing 

 Song et al. related electroencephalogram (EEG) signals with multifractal 

theory. They compared EEG signals with rapid eye movement (REM) sleep and 

four different sleep stages: awake, Stage 1, Stage 2, and slow wave sleep (SWS). 

The fluctuation in signals could have correlated, uncorrelated, and anti-correlated 

behaviours. Song et al. showed that EEG signals during different sleep stages could 

be differentiated with multifractal measures. Human sleep EEG signals during 

awaken stage, Stage 1, and REM sleep had shown anti-correlated behaviours, while 

Stage 2 sleep had uncorrelated behaviour, and SWS stage had correlated behaviour. 

Different sleep stages were briefly classified, and a total error rate of 41.8% was 

found [52]. Therefore, Song et al. recommended that a set of scalars could better 

describe human sleep EEGs rather than a single dominant scale which were 

suggested in other researches. 

    

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3-11 Example of an medical image (a) original; result after: (b) Sobel operator (c) 

Robbers operator (d) Prewitt operator (e) Log operator (f) Hölder exponent [53] 

Qi and Yu applied multifractal spectrum as an edge detection tool for a 

medical computed tomography (CT) image. They compared the result with four 

different edge detection tools: Sobel operator, Robbers operator, Prewitt operator, 
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and Log operator. As shown in Figure 3-11, these operators could not precisely 

display the edge information. Intact edges could not be detected with Robert, Sobel, 

and Prewitt operators, while Log operator could not obtain continuous edges. 

However Hölder exponent could detect exact edges with a proper selection of 

multifractal spectrum threshold. Therefore, multifractal theory was concluded to be 

a relatively effective method for edge detection [53]. 

The structure of the human retinal vessels had been proven to have 

geometrical fractal properties by many literatures. Applying the fractal concepts, 

Family et al. presented the first quantitative analysis on the geometry of blood 

vessels in normal human retina in 1989 [54]. A year later, Mainster concluded that 

fractal geometry offered a more accurate description of ocular anatomy as fractal 

dimension could characterise a complete vascular patterns span over the retina [55]. 

Landini et al. (1995) [56] and Avakian et al. (2002) [57] pointed that the previous 

work only focused on a single fractal analysis: retinal vessels might have different 

properties in different regions. In 2006, T. Stosic and B. Stosic showed that human 

retinal vessels have geometrical multifractal properties. Examples of retinal vessel 

are illustrated in Figure 3-12. T. Stosic and B. Stosic also found that by comparing 

the normal cases with pathological cases, images with pathological cases tended to 

have lower generalized dimensions and have a shifted spectrum range. However, 

they suggested more detailed studies were needed to explore the statistical 

significance between normal and pathological cases [58]. 

  

(a) (b) 

Figure 3-12 Image of a retinal vessel structure: (a) normal (b) pathological state [58] 
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The time series of human brain activity could be extracted from arterial spin 

labelling (ASL) Functional Magnetic Resonance Imaging (FMRI). Some 

researchers focused on multifractal formalism when analysing these human brain 

function. Multifractal formalism for FMRI analysis were based on two methods: 

Wavelet Modulus Maxima Method (WTMM) [59] and Multifractal Detruded 

Fluctuation Analysis (MF-DFA) method [60]. Shimuze et al. proposed a 

multifractal FMRI analysis based on WTMM, which had high accuracy in the 

scaling analysis and did not require a prior knowledge of the paradigm. However, 

the extension of application on ASL function time series was limited by the 

complexity of this method [61, 62]. On the other hand, Kantelhardt et al. studied 

multifractal analysis which is based on MF-DFA. Although both WTMM and  

MF-DFA provided similar results, Kantelhardt et al. showed that MF-DFA was 

more reliable than WTMM [60]. Soares et al. used MF-DFA method and 

demonstrated that the voxels from activated and non-activated brain regions 

showed clear differences in the multifractal spectra [63]. The time series of human 

brain activity exhibited self-similarity formalism and could be described with 

multifractal spectra. 

3.6    Summary of Multifractal Method 

Square window is used for calculating the local singularity coefficient of the 

image, and the result of the calculation is called the α-image. Four multifractal 

measures are applied; each measure has its unique characteristics. Multifractal 

spectrum is a function which describes the geometrical property of the α-image; it 

can be estimated via box counting method. A brief flow chart to describe the 

process of calculating the Hölder exponent and multifractal dimension is 

demonstrated in Figure 3-13. 
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Figure 3-13 Summary of calculating the Hölder exponent and multifractal dimension 

Multifractal formalism is an effective tool for biomedical image processing. 

Many researchers have proposed using this technique for different medical 

applications. The multifractal analysis designed for breast cancer grading is 

discussed in Chapter 4.   
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Chapter 4:  

System Structure and Implementation 

The criteria denoted for NGS (described in Chapter 2) and multifractal theory 

(defined in Chapter 3) are combined and demonstrated along with the description 

of the structure for the breast cancer analysis system in this chapter. 

4.1    System Overview 

The system overview for the multifractal analysis of breast cancer grading is 

indicated in Figure 4-1. First, the image frames are loaded to the system, and the 

calculation for Hölder exponent based on four multifractal measures is performed 

to generate the α-images. Then, the α-threshold comparison is applied to separate 

the sub-image frames of epithelial type tissues from those of non-epithelial type 

tissues. Once the epithelial sub-image frames are identified, the system detects the 

mitotic cells and computes the fractal spectra of the α-images. Finally, the 

information for NP and TF are analysed from the multifractal spectra. 
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Figure 4-1 System overview of the multifractal analysis of the tissue images 
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4.1.1  Image data extraction 

The high resolution, high magnification histopathological images and data 

used in this research were provided by IPAL, where 17 histopathological images 

were identified and graded by pathologists. These images can be viewed with the 

FrameWork Viewer, a software workstation for laboratories imaging. As shown in 

Figure 4-2, pathologists can label the invasive regions, identify the mitotic cell, and 

grade the invasive areas with NP and TF scores based on NGS. 

Figure 4-3 shows some of the image samples, with the size of 1,024 × 1,024 

pixels each, that had NP and TF scores pre-assigned by pathologists. Tissue 

substances of similar types occupy a relatively small area of a section image. Hence 

the identified ROIs need to be cropped into smaller sub-images. Figure 4-4 is an 

example of the developed graphical user interface (GUI) program that collects the 

sub-images. The GUI program was built under the OpenGL framework; more 

developed visualising programs can be found in Section 4.5. The sub-images are 

randomly sub-divided into smaller image frames with the size of 288 × 288 pixels 

each, from the labelled invasive region of the histopathological image. Each image 

frame contains a border of 16 pixels wide, which is the window size for measuring 

local singularity coefficient. The sizes of the final α-images are 256 × 256 pixels 

each.  

Each of the 17 histopathological images contributed 150 to 250 sub-image 

frames. 850 sub-image frames were non-epithelial type. 3,270 sub-image frames 

were epithelial types and had NP score pre-labelled by pathologists; only 600  

sub-image frames had TF score pre-labelled. The number of image frames analysed 

in this research is summarised in Table 4-1. 
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(a) A view of a full slide biopsy sample 

 

(b) A section view of ×5.0 zoom in  

Figure 4-2 Screenshots of the FrameWork Viewer 
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(a) (b) 

Figure 4-3 Sample images of pre-labelled: (a) NP (b) TF scores,  

(from top to bottom) Score 1, Score 2, and Score 3 
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Figure 4-4 The developed GUI for cropping 10 sub-image frames from a NP/TF-labelled 

region 

 

Table 4-1 The number of image frames used for data analysis 

 Score  

Criterion 1 2 3 Total 

NP 350 970 1,950 3,270 

TF 160 60 380 600 
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4.2    First Stage Classification 

Petushi et al. classified the tissue micro-textures into five categories: nuclear 

morphology 1 (NM1), nuclear morphology 2 (NM2), nuclear morphology 3 

(NM3), extra cellular matrix (ECM), and adipose tissue (AT). They defined NM1 

to be the nuclei of inflammatory cells, NM2 to be the nuclei of cells of epithelial 

origin, NM3 to be the nuclei of cancer cells, ECM to be a collagen-based matrix, 

and AT to be the area that represents water, carbohydrate, lipid or gas [36, 37]. 

 

Figure 4-5 Tissue micro-textures identified using image processing [36] 

This research classifies the image frames into two tissue structure categories: 

epithelial type and non-epithelial type. Examples of these image frames are given 

in Figure 4-6. Stroma and fat-like tissues (ECM and AT) are categorised as  

non-epithelial tissue because they have a plain tissue substance and are irrelevant to 

breast cancer grading. Furthermore, differentiating the epithelial tissue from stroma 

and connective tissue is a common practice for most cancer tissue types [17]. 

Huang et al. used epithelial tissue images to extract information for Nottingham 

parameters [20, 64]. Hence, only the image frames which have epithelial tissue are 

carried for further analysis. 

  
(a) (b) 

Figure 4-6 The tissue image example of (a) epithelial type (b) non-epithelial type 
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Based on the multifractal properties of sub-image frames, the characteristic of 

epithelial tissue can be identified from the α-range of the max and sum measures. 

The minimum α-value in the Iso measure is the key feature for separating the 

epithelial and non-epithelial tissues. 

Table 4-2 and Figure 4-7 show the α-ranges of sub-image frames generated 

from a histopathological image. As indicated in Figure 4-7 (a) and Figure 4-7 (b), 

epithelial tissues have greater α-ranges of the α-image compared to non-epithelial 

tissues in both max and sum measures. An epithelial tissue contains cell nuclei 

along with other tissue substances; therefore, its intensity distribution is richer than 

the images of stroma and fat-like tissue.  

The image of non-epithelial tissue has a nearly uniform intensity distribution 

and yields higher α-values for Iso measure. As mentioned in Section 3.2.4, the Iso 

measure counts the number of pixels that have similar intensity values as the 

centred pixel. The α-value of a pixel based on Iso measure is small if the intensity 

values of the nearby pixels have great difference. Conversely, non-epithelial tissue 

has larger αmin value. Note that these α-ranges are post-adjusted for noise removal. 

Table 4-2 Examples of α-range from a histopathological example 

 Epithelial  Non-epithelial 

Type of multifractal αmin αmax  αmin αmax 

Max measure [0.00, 0.00] [0.29, 0.51] 
 

[0.00, 0.00] [0.02,0.19] 

Sum measure [1.80, 1.89] [2.20, 2.38] 
 

[1.89, 1.99] [2.01, 2.15] 

Iso measure [0.56, 0.84] [1.94, 2.04]  [0.89, 1.86] [2.01, 2.08] 
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(a) Max measure 

 

(b) Sum measure 

 

(c) Iso measure 

Figure 4-7 The α-range of sub-image frames from a histopathological sample 
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4.3    Mitotic Cell Detection 

As mentioned in Section 2.2, mitotic cells are darker and have irregular 

shapes. These properties enable the detection of mitotic cells from computed  

α-values within the cell region. Figure 4-8 illustrates the detection of a mitotic cell, 

which was pre-detected by pathologists, as labelled “M1” in Figure 4-8 (a). 

From Figure 3-5(a) and Figure 3-5 (c), it is clear that the mitotic cell has 

higher α-values in both max measure and sum measure than other tissue 

substances. The α-threshold based on sum measure is used for detecting mitotic 

cells in this study. As shown in Figure 4-8 (b), the pixels with α-values above 55% 

of the α-range remain visible in the binary image. 

All connected components are marked based on the threshold binary α-image. 

A connected component is considered as noise if its area is smaller than the 

predefined threshold of 100 pixels. The largest remaining component after removal 

of noise usually indicates a mitotic cell. The resulting mitotic cell detected, C1, is 

shown in Figure 4-8(c). 

However, the selection of α-threshold and noise threshold can affect the 

result. The evaluation is discussed in Section 5.3.  

 

(a) (b) (c) 

Figure 4-8 The process of detecting a mitotic cell: (a) original image with a manually 

detected mitotic cell (b) the binary threshold image (c) the computationally detected 

mitotic cell 

M1 C1 
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4.4    Nuclear Pleomorphism and Tubule Formation Analysis 

The information of NP and TF scores can be extracted from the multifractal 

spectra. NP is a measurement for the deviation of cellular structures such as the 

sizes and shapes of cell nuclei. A cell nucleus is darker in colour, and hence its 

pixels’ intensity values are smaller than other tissue substances. Based on this 

feature, the pixels of cell nuclei have a unique multifractal feature. The binary  

α-images of cell nuclei located within the specific α-sub-ranges are shown in 

Figure 4-9. 

The criterion TF is an estimation of the percentage of biopsy sample made up 

of tubules. In this research, the TF criterion was analysed in high resolution image 

frames, where most researchers analysed the TF scoring under low resolution 

global images [27, 35-37]. The advantage of taking this approach is that both NP 

and TF scores can be analysed together. The binary α-images where tubules are 

present within the unique α-sub-ranges are shown in Figure 4-10. 

All four types of multifractal spectra contain the information of NP and TF, 

as summarised in Figure 4-11 and Table 4-3. As mentioned in Section 3.3, every 

image frame has its unique α-range, so the α-sub-range of interest varies between 

each image frames.  
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(a) 

   

(b) (c) 

   

(d) (e) 

Figure 4-9 (a) The original sub-image frame, and the binary α-image of the specific  

α-sub-range for NP analysis: (b) max measure (c) inv-min measure (d) sum measure  

(e) Iso measure 
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(a) 

   

(b) (c) 

   

(d) (e) 

Figure 4-10 (a) The original sub-image frame, and the binary α-image of the specific  

α-sub-range for TF analysis: (b) max measure (c) inv-min measure (d) sum measure  

(e) Iso measure  



48 

 

Table 4-3 Properties of the multifractal spectrum for NP and TF analysis 

Type of 

multifractal 

measures 

α-sub-range of interest 

Nuclear Pleomorphism (NP)  Tubule Formation (TF) 

from, α0 to, α1  from, α2 to, α3 

Max  α0, f(α0) = 1 αmax  αmin 
α3, 

f(α3) at peak 

Inv-min  
α0, 

f(α0) at peak 
α1, f(α1) = 1  α2, f(α2) = 1 αmax 

Sum  α = 2 αmax  α2, f(α2) = 1 α = 2 

Iso  α0, f(α0) = 1 

α1, f(α1) at 

peak 

1.4 < α1 < 1.9 

 

α2 

α2 = 0.75 ×  

α-range 

αmax 

  
(a)  (b) 

  
(c) (d) 

Figure 4-11 Multifractal spectrum for NP and TF analysis: (a) max measure  

(b) inv-min measure (c) sum measure (d) Iso measure 
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4.4.1  The development of the analysis 

The features of NP and TF scores can be extracted from the multifractal 

spectra which have been discussed earlier. Every pixel in the sub-image carries four 

unique α-values calculated via four multifractal measures. If the α-value of a pixel 

is present in the α-sub-range of interest, the system would determine whether it is 

relevant for NP or TF analysis. However, the binary α-images based on the inv-min 

and sum measures contained background pixels that were irrelevant to the analysis. 

Combining the unique features of Iso measure with α-images based on other 

multifractal measures can identify some of the background pixels. Iso measure 

describes the intensity similarity of the centred pixel and its surrounding pixels. 

Therefore, the α-value of the pixel given by Iso measure is small when its intensity 

value differs significantly from its neighbours, and vice versa. This property can be 

applied to improve the quality of NP and TF analysis. 

As discussed above, the enhancement of NP analysis is to combine the  

α-images with the properties of Iso measure. For example, the α-value of a pixel 

based on sum measure is relevant to NP analysis if its α-value based on Iso 

measure is also relevant to NP analysis. For NP analysis, the inv-min measure 

should include the pixels that have α-values below 75% of the α-range of Iso 

measure. Similarly, when sum measure is applied, the system should take into 

account the pixels with α-values below 65% of the α-range of Iso measure. 

This concept can also apply to TF analysis. TF analysis focuses on the 

distribution of tubules in a region. Tubules have constant intensity values; hence, 

the α-values based on Iso measure should be high. Therefore, the analysis using 

inv-min and sum measures should consider pixels with α-value above 75% of the 

α-range of Iso measure.  

For NP analysis, the background pixels present in the binary α-image, as 

shown in Figure 4-12 (b) and Figure 4-12 (d), can be removed. The results are 

shown in Figure 4-12 (c) and Figure 4-12 (e) respectively. Likewise, as shown in 

Figure 4-13, after the enhancement, the background pixels for TF analysis have 
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significantly reduced. Although some of the background pixels remained after the 

enhancement, the estimations for NP and TF analysis have slightly improved and 

the results are still acceptable.  

 

(a) 

  
(b) (c) 

  
(d) (e) 

Figure 4-12Improvement of NP analysis: (a) the original image (b) before enhancement (c) 

after enhancement of inv-min measure (d) before enhancement (e) after enhancement of 

sum measure 
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(a) 

  

(b) (c) 

  
(d) (e) 

Figure 4-13 Improvement of TF analysis: (a) the original image (b) before enhancement (c) 

after enhancement of inv-min measure (d) before enhancement (e) after enhancement of 

sum measure 

Besides, the enhancement of NP and TF analysis also requires the system to 

recalculate the fractal dimension of the image. The multifractal spectrum in 

Equation 3.9 is modified into: 

         
            

      
 (4.1)  

 
                  

                   

 
                   

           

where # is the number of pixels 

(4.2)  

where γ is the fractal spectrum for the particular multifractal measure (inv-min 

measure or sum measure) and δ is the fractal spectrum of Iso measure. This 

modification has affected the fractal spectrum, and the effect on the summation 

measure is demonstrated in Figure 4-14. 
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Figure 4-14 The effect of sum measure on the multifractal spectrum after applying the 

enhancement 

After the enhancement of NP and TF analysis (as labelled in the boxes in 

Figure 4-15 and Figure 4-16 respectively), there is a clear difference between the 

spectra for NP and TF scores. Each score has unique features in the multifractal 

spectra. The key feature of analysing NP and TF scoring is to evaluate the slope of 

multifractal spectrum of the particular α-sub-range. 

   
(a) (b) 

   
(c) (d) 

Figure 4-15 The features of multifractal spectrum for NP analysis: (a) max measure  

(b) inv-min measure (c) sum measure (d) Iso measure 
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(a) (b) 

   
(c) (d) 

Figure 4-16 The features of multifractal spectrum for TF analysis: (a) max measure  

(b) inv-min measure (c) sum measure (d) Iso measure  

4.4.2  Increasing the number of α-intervals 

Fractal dimension is an estimation of a geometric property, local singular 

coefficient, of an image. As mentioned in Section 3.4.2, the number of subintervals 

applied for calculating the multifractal spectrum is 100. Increasing the number of 

α-intervals in the relevant section of α-range can change the estimation of fractal 

dimension. In the example of Figure 4-15 (c), the multifractal spectrum is 

calculated using the α-range [1.8757, 2.2043], but the α-sub-range of interest for 

NP analysis is [2.0000, 2.2043]. By increasing the number of α-intervals at this  

α-sub-range, the resolution of the spectrum can be improved. Figure 4-17 shows the 

difference of using α-range and α-sub-range during the calculation of multifractal 

spectrum. The multifractal spectrum based on the α-sub-range of interest has 

shifted downward because the number of pixels which fall into the  

α-interval has decreased. This has the same effect as increasing the number of 

intervals in the histogram, which causes the sampling distribution to drop. 

0.2 

0.7 

1.2 

0.000 0.125 0.250 

TF=1 

TF=2 
f(α) f(α) 

α 0.0 

0.5 

1.0 

0.000 0.500 1.000 

f(α) f(α) 

α 

0.0 

0.5 

1.0 

1.800 2.000 2.200 

f(α) f(α) 

α 0.0 

0.5 

1.0 

0.800 1.500 2.200 

f(α) f(α) 

α 



54 

 

 

Figure 4-17 The multifractal spectrum that uses different α-range 

4.4.3  Polynomial representation of the multifractal spectrum  

The section of multifractal spectrum based on the α-sub-range of interest, 

which features with NP and TF scores, can be approximated by a cubic polynomial 

function fe(α): 

          
     

         (4.3)  

where C3, C2, C1, and C0 are the arbitrary coefficients of the polynomial function. 

An example is shown in Figure 4-18.  

 

Figure 4-18 Multifractal spectrum of the original function and the cubic polynomial 
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The polynomial representation is useful for transforming the multifractal 

spectrum which is a discrete function to a continuous third order polynomial 

equation. Since the α-sub-range of interest is small and the spectrum is unlikely to 

have more than two turning points, the third order polynomial equation is a 

sufficient approximation of the spectrum. 

4.5    Graphical Interface Development for Analysis 

During the development of this research, several GUI programs were 

developed to assist data analysis, these programs were written in C++ computer 

language under OpenGL framework. Although commercial products such as 

Microsoft Office and Matlab provide data analysis and visual functionalities, the 

developed GUIs were designed for specific task requirements in order to access the 

collected data with better control. 

 

Figure 4-19 Displaying different colour models of an input image  

GUI in Figure 4-19 was designed to demonstrate the colour presentation of an 

image under different colour models: greyscale, hue model, and red, green, blue 

Histogram 

Colour presentation: red, green, blue 

Input image 
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Colour presentation: greyscale, hue model 

Greyscale 

Hue model 
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channels. Intensity histograms for each colour model are placed on the right hand 

side, which show the intensities distribution of colour values of the input image.  

 

Figure 4-20 Displaying multifractal spectra of four sub-image frames 

Meanwhile, GUI in Figure 4-20 was designed to display multifractal spectra 

based on different multifractal measures of the input images. The left panel shows 

multifractal spectra of four sub-image frames; users are allowed to switch between 

multifractal measures. In addition, there are two pairs of horizontal and vertical 

cursor lines, which display the values of Hölder exponent, α, and fractal dimension, 

f(α), on the spectrum. On the other hand, right panel displays the basic information 

of the input sub-image frames: thumbnail, MC, NP, and TF scores, and intensity 

histogram. 
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Figure 4-21 Advanced application of visualization for multifractal spectrum   

GUI in Figure 4-21 is the advanced version of Figure 4-20; it shows more 

information about the fractal dimension of the input sub-image frames. An 

adjustable α-threshold range, in the bottom panel, is introduced and allowed to 

adjust the display of output based on a particular range of α-values. This enables 

the visualisation of the spectrum variance in NP or TF scores at a different α-range. 

The polynomial representations of the multifractal spectra are shown beside the 

spectrum plot, where the polynomial coefficients are displayed under the plots.  
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Figure 4-22 Displaying mitotic cell detection  

On the other hands, GUI in Figure 4-22 was design to visualise the 

correlation between mitotic cells and α-values of the pixels. The input sub-image 

frame is displayed in the middle, while its basic information is located on top. An 

adjustable α-threshold range shows those pixels with α-values within the α-range in 

white colour. This helps to identify the pixels with α-values which are related to 

mitotic cells. 
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4.6    Summary of Implementation 

The process of analysing the histopathological image for breast cancer 

grading is explained in this chapter. The summary of pre-processing the tissue 

image using multifractal technique is summarised in Figure 4-23. The local 

singular coefficients of image are calculated in small image frames of high 

resolution with the size of 288 × 288 pixels each. It has shown that epithelial and 

non-epithelial tissues have different multifractal properties.  

Figure 4-24 is the summary of the developed methods. The mitotic cells have 

higher α-values than the other tissue substances in the region; hence, they can be 

easily segmented. The multifractal dimensions contain the information of NP and 

TF scores and can be estimated via the slope of the multifractal spectra at the  

α-sub-range of interest. The evaluations of these methods are discussed in  

Chapter 5. 
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Figure 4-23 Summary of pre-processing the tissue images with multifractal techniques 
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Figure 4-24 Summary of the procedure of breast cancer grading system
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Chapter 5:  

Results and Discussion 

Using different parameters can change the results of a developed method, the 

evaluations are discussed in this chapter as follows: (1) digital representation of an 

image with different colour models, (2) parameters of α-threshold comparison for 

epithelial and non-epithelial type tissue with different magnification scale,  

(3) detection of mitotic cell with different α-threshold, (4) implementation of NP 

analysis, and (5) implementation of TF analysis. 

5.1    The Effect of Using Different Colour Models 

As discussed in Section 3.1, digital image can be represented in several 

digital formats. The high resolution, high magnification histopathological images 

can be saved as a 24-bit bitmap format, where each pixel is represented by three 

integers ranging from 0 to 255, based on the red, green, blue colour model. 

Histopathological image is presented with true colour while multifractal 

method analyses the intensity variation of a pixel. It is important to define the term 

“intensity” of a colour image because it can refer to the intensity value in greyscale 

or the colour value of a single colour channel. Five colour models were tested: 

greyscale, hue model [65], red channel, green channel, and blue channel. Let i and j 

be the coordinate of the pixel in an image, then the colour representation for these 

colour models are denoted as follows: 

                                     (5.1)  
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 (5.5)  

where r is the red colour value, g is the green colour value, and b is the blue colour 

value. Figure 5-1 illustrates the differences of presenting a colour image in different 

colour spaces. 
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(a) Original RGB (b) Greyscale (c) Hue model 

   

(d) Red channel (e) Green channel (f) Blue channel 

Figure 5-1 Examples of an image frame and its presentation in different colour models 

The intensity distribution of the cell nuclei’s cluster is more uniform in the 

hue model, where cell nuclei have better outer line. However, hue model can have a 

mathematical error when a pixel has identical red, green, and blue colour values. 

Such pixel is treated as h1(i, j) in Equation 5.4 and can cause a division by zero in 

Equation 5.5. Hence, pixels with identical red, green, and blue colour values are 

treated as background and neglected in the calculations. Furthermore, hue model is 

not an ideal model for breast cancer analysis because the information of tubules is 

integrated in the background. 

The images presented in green channel and greyscale have similar intensities 

because green value is the dominance in Equation 5.2. Conversely, the intensity 

distribution of the blue channel is brighter than the other two colour channels. As a 

result, the segmentation of cell nuclei is more difficult because the edges of the 

clusters are not clear. On the other hand, bloodstain may be present in a 

histopathological image. It can be present as background in the red channel because 
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its red colour value is higher than its green and blue colour values. Since the 

bloodstain has lower green and blue colour values, it could be mistreated as a cell 

nucleus in green and blue channels. Therefore, for breast cancer analysis, red 

channel is the best choice for measuring the intensity variation of an image. The 

study on the effect of using different colour models to the results of multifractal 

analysis is further discussed in Section 5.2. 

5.2    The Evaluation of the First Stage Classification 

Using different colour model for the calculation of Holder exponent has 

direct impact to the α-range of the α-images. Figure 5-2 illustrates the average  

α-range of five histopathological samples with magnification scale of ×20.0. 

   

(a) Red channel (b) Green channel (c) Blue channel 

   

(d) Greyscale (e) Hue model 

Figure 5-2 The effect of different colour models to the average α-range of sum measure 

(×20.0) 
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Clearly, the results have shown that blue channel and hue model were not 

suitable for multifractal analysis since they cannot show a clear boundary between 

epithelial and non-epithelial tissues. In contrast, the results from red channel, green 

channel, and greyscale show potential candidates for calculating Hölder exponent. 

A further evaluation which studies the effect of using these three colour models on 

the histopathological image with magnification scale of ×40.0 is shown in  

Figure 5-3. 

 
(a) Red channel 

 
(b)  Green channel 

 

(c) Greyscale 

Figure 5-3 The effect of using red channel, green channel, and greyscale to the average  

α-range of sum measure (×40.0)  
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Red channel has the largest average gap between epithelial and non-epithelial 

tissues than green channel and greyscale model; hence, a threshold boundary can 

easily separate them into two categories.  

The α-thresholds for classifying the epithelial and non-epithelial tissue are 

dependent on the magnification scale of a histopathological image. The 

magnification scales of the image samples used in this research are ×20.0 and 

×40.0. The α-thresholds for classification are listed in Table 5-1. 

Table 5-1 The α-threshold list for classifying the types of tissue structures 

 The α-threshold (α-value) 

 Epithelial type  Non-epithelial type 

 Magnification scale  Magnification scale 

Type of multifractal × 20.0 × 40.0  × 20.0 × 40.0 

α-range of max measure > 0.3 > 0.1  < 0.3 < 0.1 

α-range of sum measure > 0.3 > 0.1  < 0.3 < 0.1 

αmin of Iso measure < 0.8 < 1.2  > 0.8 > 1.2 
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Before performing a breast cancer diagnosis, a pathologist first labels the 

histopatological image into three regions: the invasive area, the normal area, and 

the unknown area. Since the histopathological image has high resolution, the 

invasive cancerous areas are unlikely to occupy in the whole region. The 

identification for invasive areas, ROI, is proposed by Huang et al. [20, 64].  

A comparison of the developed first-stage classification with the work of Huang et 

al. is demonstrated in Figure 5-4.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5-4 ROI: (a) original image sample (b-c) result from Huang et al. [20, 64]  

(d-f) results obtained from this research: max, sum, Iso measures 

Huang et al. defined the ROI as the region in Figure 5-4 (c) inside the grey 

region. On the other hand, this research detected ROI as regions displayed in white 

in Figure 5-4 (d), Figure 5-4 (e), and Figure 5-4 (f). Clearly, the ROIs in this 

research are larger than the ROI from Huang et al.’s.  
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Huang et al. reported that, with NVIDIA GeForce 9400M GPU acceleration, 

finding the ROI of an image slide with low resolution required an average 

computational time of 120 seconds. In contrast, high magnification, high resolution 

histopathological image slide was used for this comparison which sub-divided 

Figure 5-4 (a) into 7,007 sub-image frames of size 288 × 288 pixels each. It took a 

total computational time of 61,189 seconds, about 17 hours (8.733 seconds per  

sub-image frame), on an Intel Core2 Quad CPU Q6600 at 2.40 GHz. GPU 

processing has parallel processing capability and has advantage on CPU 

processing. Moreover, high resolution image was used in this example; the 

computational time took longer although the area of ROI was larger. Using 

different types of processing units and resolutions of image slide caused significant 

variation in the performance of detecting ROI between this research and  

Huang et al.’s. 
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5.3    The Evaluation of the Mitotic Cell Detection 

The selection of α-threshold and noise threshold can affect the results of 

mitotic cell detection. A noise cluster is assumed to occupy less than 100 pixels, 

and it is removed from the results during the computation process. In sum measure, 

the α-values of mitotic cells were distributed across the second half of the α-range. 

All potential mitotic cells can be segmented using this unique feature. Cluster with 

the largest number of pixels after applying α-threshold is considered as a mitotic 

cell. Therefore, the selection of the α-threshold can affect the outcome. 

In this research, 181 sub-image frames containing mitotic cells were selected. 

A comparison chart for different α-thresholds is shown in Figure 5-5. With an  

α-threshold of 65% of the α-range, 152 mitotic cells formed the largest clusters in 

their respective image frames, while 8 mitotic cells were not detected and 21 

detected mitotic cells were not found as the largest cluster in their image frames.  

In contrast, a higher α-threshold has the risk of not detecting more possible 

mitotic cells. For instance, with α-threshold of 80%, 97 mitotic cells were not 

detected because their sizes were smaller than the pre-defined noise threshold.  

Although α-threshold of 65% has the best overall results in detecting mitotic 

cells, α-threshold of 55% was preferred because all mitotic cells could be detected. 

 

Figure 5-5 The effect of α-threshold on mitotic cell detection 
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Figure 5-6 illustrates the effect of α-threshold on the area of clusters detected. 

The decreasing trends show that a lesser amount of pixels are detected at higher  

α-values. This explains why less mitotic cells were detected with higher  

α-threshold. 

 
 (a) Mitotic cells are the largest cluster 

 
(b) Mitotic cells which are not the largest cluster 

 
(c) Not detected mitotic cells 

Figure 5-6 The effect of different α-thresholds to the average size of the mitotic cells 
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A mitotic cell is assumed to be the largest cluster detected in the analysis; 

however, this statement is hardly valid when there are other dominating clusters 

present in the image frame. An example is illustrated in Figure 5-7 where a mitotic 

cell has been identified by pathologists. Three clusters remained in the system 

when the α-threshold was 55% above the α-range. Cluster C1 was recognised as a 

mitotic cell since it occupied the largest area of 281 pixels, followed by cluster C2 

(206 pixels), and the actual mitotic cell C3 (172 pixels). Although the mitotic cell 

C3 was highlighted, it was not recognised as a mitotic cell due to the presence of 

larger clusters in this sub-image frame. Since a mitotic cell is unlikely to be long 

and thin, the system should remove rod-shaped clusters in the binary threshold 

image as noise. 

 

(a) (b) 

Figure 5-7 An unexpected behaviour of the system: (a) manually identified mitotic cell, M1  

(b) a mistakenly detected mitotic cell, C1 

On the other hand, the system could underestimate the level of mitosis when 

there are more than one mitotic cells present in the image frame. As shown in 

Figure 5-8, two mitotic cells, M1 and M2, have been identified by pathologists. 

Although both mitotic cells were the two largest clusters in the image frame, the 

system detected only one largest cluster as a mitotic cell, C1, and ignored the others. 

Since the aim of this research is to develop a pre-screening system for the diagnosis 
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C2 

C3 

C1 
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of breast cancer, the system is expected to recognise all possible mitotic cells in 

available image frames. The five largest clusters in a sub-image frame are 

suggested to be potential mitotic cells, which will be validated by pathologists. 

 

(a) (b) 

Figure 5-8 An undesired behaviour of the system: (a) two manually identified mitotic cells, 

M1 and M2 (b) a detected mitotic cell, C1, the other mitotic cells are omitted 

The true positive rate using the method developed in this research was 

82.87%, which was an improvement on Kate et al.’s result of 81% [25]. Moreover, 

the false positive rate found in this research (17.13%) was reasonably lower than 

that obtained by Kate et al. (30%) [25] and Beliën et al. (19%) [26]. For mitotic cell 

detection, the multifractal technique is a better tool than the growing region 

technique.  

The results of this research are not comparable with the results performed by 

Dalle et al. since this research focused on detecting individual mitotic cell, whereas 

Dalle et al. related their results with the MC score of NGS [27]. 
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5.4    The Evaluation of the NP Analysis 

During the exploration of NP analysis, it was assumed that the multifractal 

spectrum could describe the characteristics of the NP scores. In fact, a section of 

the multifractal spectrum had shown uniqueness in the geometric features of each 

NP score, as demonstrated in Figure 4-15. Based on this discovery, the multifractal 

spectra of sub-image frames with same NP score must be similar and are unique 

from other spectra of different NP scores. A classification approach was applied to 

verify this hypothesis of NP analysis. 

As mentioned in Section 4.4.3, multifractal spectrum is a discrete function 

and can be transformed into a polynomial equation. A reference spectrum is a mean 

spectrum of a set of multifractal spectra, and can be calculated by averaging the 

polynomial coefficients of the multifractal spectra. Since an NP score was assumed 

to have a unique spectrum, a histopathological image should have three different 

reference spectra, each representing an NP score of NGS. Ideally, healthy tissues 

should have their specific reference spectrum, but only the sub-image frames with 

tumour tissues were used in the analysis of NP. In this research, healthy tissues 

have no reference spectrum.  

Furthermore, the α-sub-range which describes the NP information of the 

multifractal spectrum varies between sub-image frames. For each NP score, a 

reference α-sub-range can be calculated by averaging the α-sub-range of every  

sub-image frames with the same NP score in the histopathological image. 

Given that four multifractal measures were applied for NP analysis, each 

measure has three unique reference spectra and reference α-sub-ranges 

respectively. As a result, a histopathological image has 12 reference spectra and 12 

reference α-sub-ranges.  

The multifractal spectrum of a sub-image can then be compared with the 

reference spectrum using three measurements: a distance metric, a gradient 

difference metric, and a hybrid measure that combines both distance and gradient 

difference metrics. Distance metric is a function that measures the distance between 
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the multifractal spectra of an α-image and the reference spectrum. Let ω be a type 

of multifractal measure and τ be the NP score for a reference spectrum, the distance 

metric is calculated as followed: 

  
                                        

       
                                

   (5.6)  

                 
        

  

 

   

 (5.7)  

                             (5.8)  

                                   (5.9)  

Consequently, as defined in Equation 5.6, a sub-image frame is classified as 

NP Score 2 if its multifractal spectrum is closer to the reference spectrum of NP 

Score 2 than the other two reference spectra.  

Similarly, since the multifractal spectrum can be transformed into a 

polynomial equation p(α), the gradient of the curve can be easily calculated by 

differentiating the polynomial equation p(α) into p’(α) with respect to α. Then, the 

gradient difference metric calculates the gradient similarity of the multifractal 

spectrum with the reference spectrum, expressed as follows: 

  
                                        

       
                                

   (5.10)  
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The hybrid measure returns a result of either true (1) or false (0) for a  

sub-image frame with an NP score that combines the results of both distance metric 

and gradient difference metric, where: 

                             (5.14)  

In other words, a sub-image frame is classified as NP Score 2 only when both 

metrics agree that it is NP Score 2. 

The classification results for NP analysis using four different multifractal 

measures is summarised in Table 5-2. These results were contributed by 14 

histopathological images which contained 150 sub-image frames of NP Score 1, 

970 sub-image frames of NP Score 2, and 1,550 sub-image frames of NP Score 3. 

The highlighted cells represent the percentage of correct NP score predictions. 

Clearly, the correct predictions are dominant, but are still unsatisfactory. 

Table 5-2 The classification results for NP scores using different multifractal measures 

M
ea

su
re

 

Actual 

NP 

Score 

Predicted NP Score 

Gradient difference  Distance difference  Hybrid measure 

1 2 3  1 2 3  1 2 3 

M
ax

 

1 58.00 36.67 5.33  53.33 38.67 6.00  48.00 32.67 2.00 

2 1.55 62.47 35.98  3.20 57.22 39.59  1.13 49.59 28.35 

3 0.84 38.65 60.52  1.74 41.36 56.90  0.39 30.71 49.23 

In
v

-m
in

 1 65.33 34.67 0.00  64.67 35.33 0.00  64.00 34.00 0.00 

2 2.78 57.94 39.28  1.86 63.40 34.74  1.55 51.65 28.56 

3 1.10 36.90 62.00  0.71 38.71 60.58  0.65 28.65 52.26 

S
u

m
 

1 77.33 20.67 2.00  78.00 20.67 1.33  77.33 20.67 1.33 

2 2.27 71.65 26.08  2.27 71.96 25.77  2.27 71.44 25.57 

3 0.07 39.94 60.00  0.00 40.26 59.74  0.00 39.74 59.49 

Is
o
 

1 44.67 30.00 25.33  52.00 30.00 0.67  44.67 26.00 0.67 

2 8.56 43.40 48.04  3.81 47.32 48.87  2.89 42.27 44.85 

3 4.13 29.94 65.94  1.23 31.87 66.90  1.23 28.65 64.07 
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The hybrid measure was introduced to the system to provide a double 

assurance for NP estimation. However, when using the hybrid measure, the NP 

score of a sub-image frame cannot be estimated in the condition of disagreement 

between two metrics. For this reason, 20% of the sub-image frames with max 

measure were not classified.  

A voting system is then applied for the NP analysis. This voting system let all 

four multifractal measures to vote for the NP score of a sub-image frame. For 

instance, a sub-image frame is suggested to have a particular NP score if it gained 

more agreeing votes from the multifractal measures. Figure 5-9 shows the result of 

the receiver operating characteristic (ROC) curves for NP classification. Each mark 

on the curve represents the true positive rate against the false positive rate of the 

voting results. The mark with single vote has high true positive rate and high false 

negative rate. Conversely, both true and false positive rates are low for sub-images 

with four agreeing votes from all four multifractal measures. The ROC curves show 

that the numbers of sub-image frames with more than two votes are low; hence the 

NP score of a sub-image frame can be estimated when it gains two agreeing votes 

from any two multifractal measures. 

 

   
(a) 

NP = 1 

(b) 

NP = 2 

(c) 

NP = 3 

Figure 5-9 The ROC curves for NP classification 
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assigned with two different NP scores if there were two different agreements from 

two pairs of multifractal measures.  

Table 5-3 The classification results for NP scores based on the voting system of any two 

multifractal results 

Actual NP 

Score 

Predicted NP Score 

1 2 3 Total 

1 80.00 35.33 0.67 116.00 

2 2.37 74.85 38.04 115.26 

3 0.00 37.68 73.68 111.35 

Hence, the system over-classified 13% of the total sub-image frames 

although the overall correct classification rate and false classification rate were 

74.46% and 38.58%, respectively. Based on this, the overall correct and false 

classification rates are calculated as follows: 

         
                    

           
 (5.15)  

       
                    

           
 (5.16)  

  
       
       

         
    (5.17)  

where NP1, NP2, and NP3 are the numbers of sub-image frames, T1, T2, and T3 are 

the correct predicted rates, in this case (Table 5-3), they are: 

  
          
         
         

    (5.18)  

On the other hand, F1, F2, and F3 are the false classification rate: 

  
                 
                
                

    (5.19)  

A weight factor was introduced to prevent the conflicts during the voting 

process. From Table 5-2, the prediction based on sum measure has better accuracy 
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than the other three multifractal measures. Therefore, sum measure is more reliable, 

so its weight factor is higher than the other three multifractal measures. The weight 

factors w1, w2, w3, and w4 are defined as follows: 

                                                   

       
   (5.20)  

               (5.21)  

                                               (5.22)  

        
 

 

               (5.23)  

where vω,τ represents a vote based on the hybrid measure of the NP scores τ and the 

multifractal measures ω: max, inv-min, sum, and Iso measures respectively. The 

values of weight factors are rationally assigned to give multifractal measures a set 

of leading factors in descent order of sum, Iso, inv-min, and max measures. 

The ROC curves for NP score classification involving weight factors are 

illustrated in Figure 5-10. Although the true positive rates had slightly reduced, the 

false positive rates for single vote had significantly dropped.  

 

   
(a) 

NP = 1 

(b) 

NP = 2 

(c) 

NP = 3 

Figure 5-10 The ROC curves for NP classification after introducing the weight factors 
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that suggested different NP scores had been solved. The weight factors can increase 

the percentage vote of the more favoured NP score. Although 2.36% of the whole 

samples were not classified as any NP score, the overall correct classification rate 

was 67.38% (see Equation 5.15), giving 30.26% (see Equation 5.16) of false 

classification rate. 

Table 5-4 The classification results for NP scores based on the combination of any two 

multifractal results after introducing the weight factors 

Actual NP 

Score 

Predicted NP Score 

1 2 3 Total 

1 77.33 20.00 0.00 97.33 

2 2.16 65.15 30.62 97.94 

3 0.00 29.68 67.81 97.48 

On the other hand, a problem was encountered when the multifractal 

spectrum of Iso measure does not have a local maximum in the α-sub-range of 

[1.40, 1.95]. As shown in Figure 5-11, both spectra assumed the global maxima in 

the α-sub-range of interest were the local maxima; hence the analysis for such 

spectra failed. The local maxima which exist in the α-sub-range of interest can 

hardly be noticed because the spectra are transformed into smooth third order 

polynomial equations. Increasing the order of polynomial can help to solve this 

problem, but also increase the complexity of computation. Therefore it was not 

implemented during this research. 

 

Figure 5-11 Two examples of α-sub-range with undeterminable local maxima  
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Only Dalle et al. presented the results related to NP score. They had six 

medical tests in which all three cases of NP Score 2 and a case of NP Score 3 was 

correctly classified. Meanwhile, two cases of NP Score 3 were underestimated as 

NP Score 2 [27]. However, the results of Dalle et al.’s study are not convincing 

enough due to the small amount of samples tested.  

Although the overall accuracy of NP analysis was lower than 70% while 

obtaining a high false classification rate, the performance of this system is 

reasonably acceptable. Dalle et al. mentioned that a medical case required further 

attention if it had an NP Score of 2 or 3 [27]. Comparing Dalle et al.’s results with 

Table 5-4, this system raised a 20.00% chance of causing a false alarm for NP 

Score 1 and a possible loss of 4.22% of NP Score 2 cases. Besides, 30.63% of NP 

Score 2 cases were overestimated; 29.68% of NP Score 3 cases were 

underestimated as Score 2 while 2.52% of NP Score 3 were not detected. The 

assumption that the multifractal spectrum contains the information of NP score is 

valid although further study is required to improve the accuracy rate. 
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5.5    The Evaluation of the TF Analysis 

The TF analysis used similar classification approach and hypothesis which 

was explained in Section 5.4. There were only three histopathological images with 

TF scores labelled by pathologists. In this research, 160 sub-image frames were 

labelled TF Score 1, 60 sub-image frames were labelled TF Score 2, and 380  

sub-image frames were identified as TF Score 3. The classification results for TF 

scores using different multifractal measures are shown in Table 5-5. The 

highlighted cells represent the percentage of correct TF score predictions.  

Table 5-5 The classification results for TF scores using different multifractal measures 

M
ea

su
re

 

Actual 

TF 

Score 

Predicted TF Score 

Gradient difference  Distance difference  Hybrid measure 

1 2 3  1 2 3  1 2 3 

M
ax

 

1 35.63 37.50 26.88  13.75 63.13 23.13  12.50 31.88 16.88 

2 11.67 56.67 31.67  1.67 60.00 38.33  1.67 50.00 28.33 

3 29.21 6.32 64.47  15.53 53.26 79.21  9.74 5.00 58.68 

In
v

-m
in

 1 53.13 41.25 5.63  57.50 40.63 1.88  49.38 38.88 1.25 

2 35.00 51.67 13.33  34.67 50.00 18.33  26.67 45.00 13.33 

3 19.21 14.74 66.05  23.68 16.58 59.74  15.53 11.58 55.53 

S
u
m

 

1 63.13 32.50 4.38  67.38 31.25 4.38  63.13 31.25 4.38 

2 21.67 68.33 10.00  21.67 68.33 10.00  21.67 68.33 10.00 

3 3.68 19.21 77.11  3.68 19.21 77.11  3.68 19.21 77.11 

Is
o
 

1 25.00 31.25 43.75  54.38 33.13 12.50  23.13 31.25 12.50 

2 28.33 56.67 15.00  35.00 58.33 6.67  26.67 56.67 6.67 

3 8.68 30.26 61.05  3.32 31.32 62.37  6.32 30.00 60.79 

As described in the Section 5.4, the voting system can be unreliable when 

two pairs of multifractal measures suggested different TF scores. Weight factors 

are applied to address the issue. Figure 5-12 shows the ROC curve for TF 

classification after applying the weight factors. The ROC curve of TF Score 1 

closely lies on the diagonal line, which indicated the accuracy rate was only 

slightly above 50%.  
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(a) 

TF = 1 

(b) 

TF = 2 

(c) 

TF = 3 

Figure 5-12 The ROC curve for TF classification after introducing the weight factors 

The classification results for TF that received two votes from the voting 

system are as shown in Table 5-6. Overall, 5.5% of sub-image frames were not 

classified because they did not gain at least two votes from the multifractal 

measures. By applying Equation 5.15 and Equation 5.16 to Table 5-6, the resulting 

positive accuracy rate for this system is 71.82%, with 22.67% false classification 

rate. The positive accuracy rate for sum measure (in Table 5-5) was 72.50% (see 

Equation 5.15) and the false classification rate was 27.17% (see Equation 5.16). 

Although sum measure has higher positive accuracy rate than the voting system, 

the voting system is preferred because the false classification rate was lower than 

that of sum measure. 

Table 5-6 The classification results for TF scores based on the combination of any two 

multifractal results after introducing the weight factors 

Actual TF 

Score 

Predicted TF Score 

1 2 3 Total 

1 48.13 38.75 2.50 89.38 

2 16.67 68.33 11.67 96.67 

3 3.16 10.79 82.37 96.32 

The true positive rate for TF Score 1 was low because a tubule may be large 

in size. It is possible to have a TF which occupies the majority space of a  

sub-image frame. Hence, the analysis for such TF is inaccurate. A possible solution 
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is to increase the size of the sub-image frame with a trade-off of increasing the 

computational resources. 

Instead of presenting the single criterion of TF score, Petushi et al. have 

shown their results in equivalent NGS grade [36]. Therefore, the comparison of the 

effectiveness between TF analysis methods is not feasible.  

Although the method developed by Dalle et al. indicated that the biopsy 

sample with TF Score 1 matched with pathologist’ justifications, other biopsy 

samples pre-labelled as TF Score 3 were underestimated [27]. The developed 

system can correctly classify 82.37% of TF Score 3 and 68.33% of TF Score 2, 

while maintaining 13.95% and 28.34% false positive. However, the positive true 

rate for TF Score 1 was 48.13% and received 41.25% false positive along with 

10.61% of the TF scores not being determined. 

5.6    Summary of Results 

The summary of data collected from the developed methods is presented in 

Table 5-7. The overall results based on multifractal technique have statistical 

relationship with breast cancer grading. Therefore, to improve the system for a 

better diagnosis tool, some of the future developments are suggested in Section 6.2. 

Table 5-7 Overall accuracy rate of the developed methods for each NGS criterion 

NGS 

Criterion 

Overall accuracy (%) No. of 

samples 

tested Condition True  False  
Not 

detected 

MC 82.87  17.13  0.00 181 - Above α-threshold of 55% 

α-range, based on sum 

measure 

NP 67.38  30.26  2.36 2,670 - Hybrid measure (gradient 

and distance metrics) 

- Voting system based on 

four multifractal measures 

with weight factors 

TF 71.82  22.67  5.50 600 
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Chapter 6:  

Conclusion and Future Work 

6.1    Conclusion 

Breast cancer is one of the most deadly cancers for women, which has been 

recorded in many countries. According to the increasing incidence rate of breast 

cancer reported worldwide, early cancer detection and treatment play a major role 

in increasing the chances of recovery from the disease. Nottingham Grading 

System (NGS) is the standard grading procedures used in breast cancer assessment; 

it focuses on three criteria: Mitotic Count (MC), Nuclear Pleomorphism (NP), and 

Tubule Formation (TF). Each criterion can be assigned with 3 scores, and the final 

equivalent NGS grade is the summation of all three criteria. 

Breast tissue samples of patients are taken for biopsy; pathologists need to 

assess hundreds of tissue samples under the microscope every day. The NGS grade 

of tissue samples are based on the deviation of the cell structures from normal 

tissues. Low agreement for medical cases commonly occurs between pathologists 

because they exam breast tissue samples based on their experience and opinion. 

Hence, the evaluation of breast cancer grading is a subjective, manual, and  

time-consuming process. 

Digital high resolution and high magnification histopathological images are 

commonly used for extracting useful structural information. With the rapid growth 

in computer hardware technologies, many computer science researches have 
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focused on computer aided diagnosis systems to develop a standard and 

quantitative measurement for breast cancer assessment. The algorithms for 

automatic and semi-automatic diagnosis system have been proposed to provide  

pre-screening devices for pathologists. 

This research received medical data from Image & Pervasive Access Lab 

(IPAL), from Singapore, who focuses on developing a “cognitive virtual 

microscopic framework” for breast cancer grading. Methods of a computer visual 

system have been progressively developed by IPAL; a new approach for breast 

cancer grading was proposed to study the feasibility of applying multifractal 

techniques on this specific application. 

Multifractal refers to configurations with statistical multiple-level of  

self-similarity. Cell and tissue structures are known to have multifractal 

characteristics. In fact, multifractal formalism is an effective tool for biomedical 

image processing; analysis based on this method has been widely used in several 

medical applications. 

The local singularity coefficient, α-value, describes the local variation of an 

intensity-based measure within the neighbourhood of a pixel. There are four 

commonly used intensity measures in multifractal analysis: maximum measure, 

inverse-minimum measure, summation measure, and Iso measure. Fractal 

dimension (multifractal spectrum) describes the geometrical properties of the local 

singularity coefficients of an image. 

In this research, the relationship between various multifractal measures of 

cell structures in tissue samples and the corresponding pleomorphic scores  

(MC, NP, and TF) pre-assigned by pathologists was investigated. Several 

quantitative evaluations were presented to measure the effectiveness of using 

multifractal techniques for grading the tissues of breast cancer tumours. 

In the analysis of MC, a mitotic cell is darker and smaller than other cell 

nuclei; it also has higher α-values which can be segmented. A cluster which 

occupies more than 100 pixels with α-values above 55% of the α-range in the cell 
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region is defined to be a potential mitotic cell. Based on this argument, all 181  

pre-identified mitotic cells were computationally detected, and 150 of these mitotic 

cells were found to be the largest cluster in their corresponding sub-image frames. 

The information of NP and TF scores can be extracted from the multifractal 

spectra of the sub-image frames. Multifractal spectra with the same NP or TF 

scores have similar geometrical features and curves. Two spectra are similar when 

they have similar gradient and are of short distance apart. The multifractal spectra 

based on four multifractal measures have these geometrical features in the 

respective α-sub-ranges of interest.  

There were 2,670 sub-image frames pre-labelled with three levels of NP 

scores by pathologists. The system has classified 67.38% of sub-image frames with 

the correct NP scores, 30.26% were wrongly classified, with a total of 2.36% net 

loss. On the other hand, 600 sub-image frames with three different TF scores were 

pre-labelled by pathologists. Although a net loss of 5.50% was found, 71.82% of 

sub-image frames were correctly classified while maintaining a false rate  

of 22.67%. 

A medical case required extra notice if it was assigned with NGS Grade II 

(total score 6-7) or Grade III (total score 8-9). The developed methods are not yet 

ready for practical application, but majority mitotic cells were detectable and  

sub-image frames with Score 2 and Score 3 of NP and TF were correctly estimated 

by the system. Further study is required for this system to develop a more effective, 

efficient, and reliable breast cancer prognosis tool.  
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6.2    Future Work 

The results presented in this thesis show that multifractal analysis could be a 

valuable tool in the processing of tissue images for identifying irregularities in the 

cell structure and in estimating the NP and TF scores. Some possible enhancements 

and future research directions are outlined as below: 

1. Integrate the result from the developed methods 

The final equivalent grade of NGS is the combined scores of all three criteria. 

This master studies only focused on the feasibility of using multifractal analysis in 

breast cancer grading, where each criterion was separately handled by a single 

algorithm. Future work could focus on integrating the results from all three 

developed systems in order to provide a complete NGS grading system. 

2. Apply genetic algorithm for α-threshold selection 

The α-thresholds of the first stage classification are manually found for 

magnification scale of ×20.0 and ×40.0. An automatic adaptive α-threshold 

selection system, using the genetic algorithm, can be useful when different 

magnification input samples are available. This reduces the participation from 

users, hence being more time-conserving and avoiding subjective judgements. 

3. Implement a shape detection function 

Kate et al. and Beliën et al. mentioned that mitotic cells have hairy outline 

which can be detected as a unique contour feature. At present, majority mitotic 

cells were found because they were the largest clusters in their thresholded  

α-image. An automatic shape recognition algorithm can improve the accuracy of 

mitotic cells detection by eliminating cells without hairy feature. 

4. Provide actual MC score 

The method of detecting mitotic cells was studied in this research. However, 

it has not been related with MC score because MC score is obtained based on the 

number of mitotic cells found in 10 HPF. It is recommended that MC score can be 

calculated by converting a section of image (in terms of pixels) into HPFs. 
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5. Improve the accuracy of NP and TF score 

Currently, the correct estimation rates for NP and TF were 67.38% and 

71.82% respectively. The system could be improved to increase its accuracy and 

reliability. 

6. Standardise NP and TF reference spectra 

Currently, the reference spectra were exclusive for their input 

histopathological images; these reference spectra were incompatible for different 

medical samples. Global reference spectra for NP and TF are required in future 

development to provide standard measurements in breast cancer pre-screening 

applications. 

7. Introduce multi-scale techniques 

The multifractal analysis attempted in this research could be combined with 

multi-scale techniques (for example, wavelets) to further characterise the features 

of interest at different resolutions. 
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