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ABSTRACT 19 
In recent revisions of the Structural Design Codes in New Zealand, a number of changes have been 20 

made to seismic design provisions.  One of the more significant revisions was the way in which the 21 

level of detailing is determined for potential plastic hinges.  Previously the level of detailing was 22 

based principally on the structural ductility factor, which is broadly similar to the reduction factor, 23 

R, used in US practice.  With the revision it is based on the predicted magnitude of curvature that 24 

the plastic hinge is required to sustain in the ultimate limit state.  This paper explains why the 25 

structural ductility factor does not give a reliable guide to the deformation sustained in an individual 26 

plastic hinge.  In addition, based on test results of 37 beams, 25 columns and 36 walls, design 27 

curvature limits are proposed for different categories of plastic hinge. 28 

 29 
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 32 

INTRODUCTION   33 
In New Zealand, capacity design is required in the design of all ductile structures.  This involves 34 

identifying a ductile failure mechanism for the structure and locating the positions of the associated 35 

plastic hinges.  These are referred to as primary plastic hinges and are likely to develop in regions 36 

of maximum moment due to the design actions, and these are the main source of inelastic response 37 

and ductile behavior of a structure.  On the other hand, secondary plastic hinges are regions where 38 

inelastic actions (i.e. yielding) may develop due to mechanisms not considered in the analysis such 39 

as elongation of primary plastic hinges and changes in dynamic characteristics, which arise when 40 

primary plastic hinges are yielding.  Secondary plastic hinges involve limited levels of inelastic 41 

deformation.  Generally, the inelastic demand is considerably less in secondary plastic hinges than 42 

in primary plastic hinges.  The regions outside the primary plastic hinges are designed with a 43 

specified margin of strength greater than the actions that can be applied to them when the primary 44 

plastic hinges are resisting their maximum strengths.  This process is intended to ensure that in the 45 

event of a major earthquake the structure will be ductile, and that non ductile failure mechanisms 46 

will be suppressed.     47 

In New Zealand, the new Loadings Code
1
 (referred to as NZS 1170.5:2004

1
 hereafter) requires the 48 

level of detailing used in potential plastic regions to be based on the predicted material strains 49 

imposed on the region in the ultimate limit-state.  This is a significant change from the provision of 50 

detailing potential plastic hinges based on global displacement ductility demand, which existed in 51 

the previous version of New Zealand Loadings Code
2
 (i.e. NZS 4203:1992

2
).  The 2006 revision of 52 
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the New Zealand Concrete Code
3
 (referred to as NZS 3101:2006

3
 hereafter) is the first structural 1 

code to be written to comply with the new seismic design approach recommended in NZS 2 

1170.5:2004
1
.  For flexural members, NZS 3101:2006

3
 specifies the material strain limits for 3 

different levels of detailing in terms of nominal curvatures as actual material strains in 4 

reinforcement and concrete cannot be easily determined.  The curvatures are used as an index of the 5 

expected strain levels in the plastic hinges in the ultimate limit state.   6 

The code revision committees, who introduced the requirement to detail potential plastic hinges on 7 

the basis of the level of deformation they are required to sustain in the ultimate limit-state, 8 

considered this step as leading to more efficient structures with better defined levels of seismic 9 

performance.  This is the first time that such a requirement has been introduced into a national 10 

seismic design code of practice.  As shown in this paper, this step can be readily incorporated into 11 

current practice without involving appreciable extra effort in design.  The reason behind the shift 12 

from the use of the global structural ductility factor to calculated curvature levels in plastic hinges is 13 

described in this paper.   14 

In addition, the background to a proposed amendment of the current material strain (i.e. curvature) 15 

limits specified in NZS 3101:2006
3
 is given.  These proposed values, which as far as possible are 16 

based on test results, are simpler to apply than those in the first edition of NZS 3101:2006.  The 17 

main objectives of seismic design provisions are that a structure can sustain a serviceability limit 18 

state earthquake with minimal damage, the design basis earthquake (return period of 500 years for 19 

most buildings) for the ultimate limit state with a high margin of safety against collapse and the 20 

maximum credible earthquake (return period of 2,500 years) with a margin of safety.  The material 21 

strain limits given in this paper are intended to satisfy the serviceability criteria as well as both the 22 

design basis earthquake (i.e. ultimate limit state) and maximum credible earthquake criteria.  23 

 24 

RESEARCH SIGNIFICANCE 25 
This paper explains why global displacement ductility factor does not reliably represent the level of 26 

deformation demand in plastic hinges in reinforced concrete structures.  It is proposed that nominal 27 

curvatures in potential plastic hinges, calculated by simplified rules, be used as an index to define 28 

the level of detailing required in the plastic hinges.  Curvature limits for the different levels of 29 

detailing are proposed.  As far as practical these are based on test results.  This approach should 30 

allow the seismic performance to be better defined.   31 

 32 

STRUCTURAL DUCTILITY AND INELASTIC DEFORMATION IN PLASTIC HINGES 33 
The structural ductility factor, µ, gives a measure of the ductility of a structure as a whole.  34 

However, as illustrated in Figure 1, the structural ductility factor does not give a reliable measure of 35 

the inelastic deformation imposed on any specific potential plastic hinge.  Figure 1(a) shows a 36 

structural wall supported on a stiff foundation.  The resultant load deflection relationship is shown 37 

on the right hand side of the figure.  The ductility one displacement (µ=1.0) is relatively small as the 38 

deformation in the foundation and supporting structure is small.  A similar structural arrangement is 39 

shown in Figure 1(b).  In this case an identical wall to the one shown in Figure 1(a) is supported on 40 

a flexible foundation.  When lateral seismic design forces are applied, the yielding displacement (i.e. 41 

µ=1.0) is larger for this wall due to the flexible foundation.  Note that the displacements used to 42 

calculate the displacement ductility in traditional sense are measured based on an absolute 43 

coordinate system, which includes the rigid body displacement due to the rotation of the foundation. 44 

As can be seen in the figure, a maximum allowable value of inelastic deformation of the plastic 45 

hinge, which is a true measure of required detailing, results in different values of maximum 46 

displacement ductility in these two systems. In other words, when the two structures are taken to the 47 

same level of ductility much greater inelastic deformation is imposed on the plastic hinge in the 48 

wall with the flexible foundation than in the case of the wall with the stiff foundation.  It is this 49 

deformation which is the main factor determining the level of detailing required to prevent failure.  50 

From this, it can be seen that the structural ductility factor does not give a reliable guide to the 51 

inelastic deformation demand placed on plastic hinges.  It was on this basis that NZS 1170.5:2004
1
 52 
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and NZS 3101:2006
3
 require the inelastic deformation demand consistent with the ultimate limit 1 

state actions to be used to determine the level of detailing. 2 

A general term “material strain” is introduced in NZS 1170.5:2004
1
 to cover different forms of 3 

inelastic deformation (i.e. curvature, shear deformation, axial strain etc.) in a plastic hinge.  In NZS 4 

3101:2006
3
, three levels of detailing are introduced to cover different material strain demands, 5 

namely nominally ductile, limited ductile and ductile.  The nominally ductile plastic region (NDPR) 6 

requires no special detailing for seismic actions.  Members designed with nominally ductile plastic 7 

regions have limited ductility, which is sufficient to enable the levels of moment redistribution 8 

defined in the Standard to be sustained.  However, the level of ductility is generally inadequate for 9 

plastic regions that are required to sustain appreciable inelastic deformation in a major earthquake.  10 

Typically, NDPR detailing will be found in regular nominally ductile structures (formerly referred 11 

to as elastically responding structures).  Limited ductile plastic region (LDPR) detailing is required 12 

in plastic regions that are predicted to sustain moderate levels of inelastic deformation in the 13 

ultimate limit state, while ductile plastic region (DPR) detailing is required where high inelastic 14 

deformation demands are predicted to occur in the ultimate limit state. 15 

 16 

ESTIMATION OF MATERIAL STRAIN (CURVATURE) DEMAND 17 

Calculation of inter-story drift and plastic hinge rotations in the ultimate limit state 18 
The magnitude of the predicted inelastic rotation acting in primary plastic regions may be obtained 19 

by a number of different methods.  With time history analyses, in which inelastic deformation 20 

characteristics of members are modelled and P-delta actions are included, the plastic hinge rotations 21 

may be obtained directly from the output of the analysis.  Questions remain on which ground 22 

motion records should be used in nonlinear time-history analysis.  Different ground motions, even 23 

when they are scaled to match the design spectra, can result in very different values of inelastic 24 

deformation
4
.  Consequently, to know the reliability of the adopted value of plastic hinge rotation, a 25 

large number of analyses using different earthquake records are required.  Elastic time-history 26 

analyses are not permitted by NZS1170.5:2004
1
.  Where other elastic based analyses are used, such 27 

as the equivalent static or the modal response spectrum methods, the ultimate limit-state lateral 28 

displacement envelope is obtained by modifying the corresponding elastically predicted envelope, 29 

first to allow for P-delta actions and second for inelastic deformation, as specified in NZS 30 

1170.5:2004
1
.  31 

The ultimate inter-storey drift in any storey in a frame or in a wall structure may be broken down 32 

into elastic and plastic components, as illustrated in Figure 2.  The elastic component may be taken 33 

as equal to the value found from an equivalent static or first mode analysis of the structure.  Note 34 

that this gives a conservative estimate of elastic limit for storeys other than where the first yielding 35 

occurs in a structure as different storeys reach inelastic stage at different stage.  Alternatively, a less 36 

conservative value of the elastic component is found by scaling the elastic value predicted from the 37 

analysis by the ratio of average design flexural strength of the primary plastic regions in the storey 38 

under consideration to the corresponding average value of the seismic design moments. The plastic 39 

inter-storey drift is obtained by subtracting the elastic component of inter-storey drift from the total 40 

inter-storey drift.  The resulting plastic rotations in the plastic hinges may be calculated as 41 

illustrated in Figure 2 from the geometry.  As shown in Figure 2(a), the column rotation in a storey 42 

θc is given by: 43 
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where δi, p is the inter-storey displacement due to plastic drift in the storey i and hi is the height of 45 

storey i.  In a frame, the plastic rotation of a beam in any level may be estimated based on the 46 

average gradient associated with the plastic deformation in the storey above and the storey below 47 

the level of the beam being considered.  Hence, the corresponding plastic rotation in a plastic hinge, 48 

θp, is given by: 49 
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where L is the span of the beam between column centre-lines and L' is the distance between the 2 

centres of the plastic hinges in the beam, which can be calculated if the location and length of the 3 

plastic hinge is known.  The position of plastic hinge can be determined from the bending moment 4 

profile and the plastic hinge lengths for different types of members are specified in the design codes.   5 

Similarly, the rotation in columns or walls can be found from the geometry and inter-storey drift of 6 

the storey containing the wall or column.  As illustrated in Figure 2(b) a designer may, in some 7 

situations, permit plastic hinges to form in some columns provided other columns or walls in the 8 

structure have a margin of strength significantly above that required to prevent the formation of a 9 

column sway mechanism in a major earthquake.  The expression for the plastic rotation in walls and 10 

columns can be readily derived from the geometry shown in Figures 2(b) and (c). 11 

 12 

Calculation of curvature 13 
It is important to recognise the different forms of plastic regions (namely unidirectional and 14 

reversing) that may develop.  In reversing plastic regions, inelastic rotations or shear deformations 15 

in both directions (positive and negative) are induced in the same zone as the structure sways 16 

backwards and forwards.  However, in unidirectional plastic regions the inelastic curvature 17 

accumulates in the same direction
5-6

.  The predicted maximum curvature demand, or material strain, 18 

in a plastic region is obtained by dividing the plastic hinge rotation, θp, by the effective plastic hinge 19 

length, leff, and adding on the curvature, φy, associated with the first significant yield in the plastic 20 

region.  Hence, the maximum curvature in a plastic hinge is given by: 21 
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Figure 3 shows effective plastic hinge lengths for reversing and unidirectional plastic hinges in 23 

beams.  It should be noted that the term “effective plastic hinge length”, which is used to calculate 24 

the material strain, is a length over which the plastic curvature is assumed to be uniform.  This is 25 

much shorter than (and should not be mistaken with) the “ductile detailing length” that defines the 26 

distance over which yielding of the reinforcement, or spalling of the concrete, may be expected to 27 

occur.  Any detailing that is required to sustain large plastic deformation to avoid premature failure 28 

should extend over the full ductile detailing length, which is specified through the detailing 29 

instructions in a concrete structures standard (for beams, it is taken as 2 times the overall depth).  30 

For a reversing plastic hinge, or a unidirectional plastic hinge close to the supporting member, 31 

where yielding can only occur on one side of the critical section, the effective plastic hinge length in 32 

beams or columns is taken as the lesser of either of h/2 or the larger of h/4 or 0.2M/V (moment 33 

divided by shear at the critical section), where h is the section depth.  For walls the effective plastic 34 

hinge length is taken as the smaller of Lw/2 or 0.15M/V, where Lw is the length of the wall.  As 35 

shown in Figure 3(b), for unidirectional plastic hinges, which form away from the supporting 36 

member, yielding can develop on both sides of the critical section.   In such cases, the effective 37 

length of the plastic hinge may be taken conservatively as twice the corresponding value for 38 

reversing plastic hinges.  In these cases the gradient of the moment diagram (equal to the shear 39 

force) is low and hence a little strain hardening can cause the plastic length to extend over an 40 

appreciable distance.  In practice where unidirectional plastic hinges form, the curvature of the 41 

plastic hinge located against the face of the supporting member (generally a column) limits the 42 

deformation that the member can sustain. 43 

In design, the curvature limits in plastic hinge regions are required to ensure that the material strains 44 

do not exceed values appropriate for the level of detailing that is used.  Consequently, a number of 45 

conservative approximations may be made with more detailed calculations required only if the 46 

simplified methods indicate curvature demand is too high.  Conservative short cuts, which may be 47 

made for determining required detailing levels in moment resisting frame structures include: (i) 48 

checking curvatures only for beams in the storey sustaining the greatest inter-storey drift and using 49 
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the level of detailing required for this beam for a wide group of beams; (ii) assuming the rotation of 1 

a column due to plastic deformation, θc, is equal to the drift in the storey with the maximum inter-2 

storey drift; and (iii) assuming the drift due to the elastic deformation of the frame is negligible. 3 

 4 

CURRENT PROVISIONS RELATED TO MATERIAL STRAIN LIMITS 5 
The approach followed in NZS3101:2006

3
 for calculating curvatures is similar to that proposed by 6 

Baker in 1956
7
.  Uniform plastic strains are assumed to develop in a beam, column or wall for an 7 

effective plastic hinge length.  In actual flexural members, the strains are far from uniform.  8 

However, by selecting an appropriate “effective plastic hinge length”, leff, it is considered that a 9 

uniform curvature could be used throughout leff to predict the total plastic rotation.  These 10 

assumptions are illustrated in Figure 4.   11 

Current recommendations for material strain limits in NZS 3101:2006
3
 are taken as a product of the 12 

coefficient listed in Table 1 and the curvature corresponding to first yield of the reinforcement, 13 

which can be calculated using the neutral axis depth determined by section analysis.  These limits 14 

are based on experience/intuition and were intended to be conservative.  Although there was limited 15 

time available during the revision of the Code to define limiting material strains based on 16 

experimental data, the committee was not prepared to wait until the next revision of the code to 17 

adopt this new philosophy.  It was felt that the progress made by merely embarking on this more 18 

convincing approach to the detailing of plastic regions would outweigh the impediment due to lack 19 

of quantitatively verifiable inelastic demand limits.  Subsequently, conservative limits were adopted 20 

on an ad hoc basis and the research communities in New Zealand were requested to come up with 21 

more robust values of the material strain limits.  The changes in the material strain limits suggested 22 

in this paper will both simplify the design process and give material strain limits which are more 23 

soundly based than is currently the case.    24 

 25 

INADEQUACY OF ANALYSIS IN PREDICTING MATERIAL STRAIN LIMITS 26 
The actual strain levels in the longitudinal reinforcement and concrete in a plastic hinge cannot be 27 

accurately predicted.  Figure 5 illustrates the actions in a beam plastic hinge located close to a 28 

column.   Part (a) of the figure indicates a typical crack pattern, while part (b) shows the profile of 29 

flexural tension force in reinforcing bars. As shown in Figure 5(b) the longitudinal beam 30 

reinforcement yields over a length of “g + e + f”.  The distance “e” in the beam is a function of the 31 

difference between the maximum bending moment resisted at the critical section of the plastic 32 

region, Mmax, and the moment which induces first yield of the longitudinal reinforcement, My1.  The 33 

value of the length “e” is given by: 34 
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where M/V is the ratio of moment to shear at the critical section.  The increase in Mmax above the 36 

moment at first yield depends mainly on the strain hardening characteristics of the reinforcement.   37 

The additional extension of yielding in the beam, which is known as the tension lag and denoted as f 38 

in Figure 5(b), is associated with diagonal tension cracking in the beam, as illustrated on the free 39 

body shown on the right hand side of Figure 5(a).  In the free body diagram, it can be seen that the 40 

compression force in Section 2 is in equilibrium with the tension force in Section 1. Hence, if the 41 

stirrups do not carry any shear, the product of T1 and the internal lever arm (jd) gives the moment 42 

M2 at Section 2, not M1 at Section 1. Therefore, yielding has to extend for a distance xd (projection 43 

of the diagonal crack) to be in equilibrium with the compression force at the section at the head of 44 

the crack. On the other hand, when the stirrups resist the full shear Vs, the resultant of the vertical 45 

stirrup forces will be at half-way along the diagonal crack.  In this case, the product of T1 and jd 46 

corresponds M2-Vsxd/2, which is the moment at the section mid-way between 1 and 2. Hence, the 47 

yielding extension in this case is xd/2. Generally, at the end of the plastic region, provided the shear 48 

stress is sufficient to cause diagonal cracking, the value of xd is approximately equal to the effective 49 

depth.   With reversed inelastic cyclic loading diagonal tension cracks form from both faces of the 50 

beam.  The intersection of these cracks effectively destroys the shear that can be resisted by the 51 
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concrete alone; i.e. Vc is zero.  In this situation, the value of tension lag, f, for practical purposes can 1 

be taken as half the effective depth, d/2.   2 

The formation of diagonal cracks in the beam column joint causes yielding to extend for some 3 

distance through the joint zone.  The extent of yield penetration into or through a joint, shown as 4 

“g” in Figure 5(b), depends on many factors, the most important of which are the number and 5 

magnitude of inelastic load cycles, the depth of the column relative to the diameter of bar, the 6 

reinforcement yield stress, the axial load on the column and the stress in the column reinforcement.  7 

This yield penetration length increases as bond resistance is lost due to yielding of the 8 

reinforcement and cyclic loading.   9 

Figure 5(c) shows the curvature distribution along a plastic region in a beam based on the strains in 10 

the flexural tension reinforcement.  For comparison the assumed analytical curvature over the 11 

length leff is also shown.  The yield penetration and anchorage pull out of the reinforcement in the 12 

joint zone results in cracks forming either at or close to the face of the column or/and at the face of 13 

the extreme reinforcement in the column.  It may be noted that the yield extension of the 14 

reinforcement over the distance “g + e + f”, which is equal to the distance between C and A in 15 

Figure 5(a), is associated with flexural compression of the concrete between the face of the column 16 

and point B.  Hence, the assumption of plane sections remaining plane is at best, even for 17 

unidirectional plastic regions, a very rough approximation.  It should also be noted that the 18 

assumption that the inelastic curvature accounts for the total inelastic displacement is not strictly 19 

correct, as shear deformation does not induce curvature and it has been found to account for 30 20 

percent or more of the total displacement in beams subjected to extensive inelastic cyclic loading
8-10

.  21 

For these two reasons, namely plane sections not remaining plane and shear deformation being 22 

ignored in the calculation of curvature limits, analytical curvatures in unidirectional plastic hinges 23 

cannot be used to predict realistic strain levels in either the reinforcement or concrete.   24 

With inelastic cyclic loading, an additional complication arises due to elongation of plastic hinges
10

.  25 

With flexural cracking in beams, columns and walls elongation occurs unless they are subjected to 26 

moderate to high axial load ratios.  This elongation increases substantially when inelastic 27 

deformation is applied.  In unidirectional plastic hinges, elongation occurs as the tensile strains in 28 

the reinforcement are greater than the corresponding compression strains in the concrete.  With 29 

reversing plastic hinges, there are two causes of elongation. 30 

1. When longitudinal reinforcement yields, wide cracks develop.  Micro cracks form round the 31 

bars and the slip of the bars through the concrete results in chips and aggregate particles being 32 

pulled into the cracks.  Additional material is dislodged from the crack surfaces due to shear 33 

displacements, which develop across cracks.  This material tends to prevent the cracks from 34 

closing when the direction of moment and shear reverse.  Consequently, the concrete dilates 35 

when subjected to inelastic cyclic loading
10

. 36 

2. Diagonal compression forces are sustained in the beam web due to the action of the shear 37 

reinforcement.  The longitudinal component of these forces causes the flexural tension force at a 38 

section to be greater than the corresponding flexural compression force.  Hence, a bar 39 

previously yielded in tension is not subjected to sufficient compression to cause it to yield back 40 

and close the crack upon load reversal.  This causes a part of the strain to be left unrecovered, 41 

thereby leading to a permanent elongation
10

. 42 

Hence, the aforementioned issues must be addressed before realistic strain levels can be predicted in 43 

reinforcement or concrete. 44 

 45 

ASSESSMENT OF LIMITING MATERIAL STRAINS FROM TEST RESULTS 46 
To avoid the analytical problems described above, the proposed material strain limits for ductile and 47 

limiting ductile members are derived from test results of structural members.  For each type of 48 

member an effective plastic hinge length is assumed.  Using this value, an ultimate curvature is 49 

calculated from the test results.  This value is based on the assumption that all the inelastic 50 

deformation arises from curvature in the effective plastic hinge length.  The limiting rotation is 51 

calculated from the displacement sustained when the strength of the member degrades to 80 percent 52 
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of its theoretical strength.  The process of assessing a limiting curvature from individual test results 1 

for a member is illustrated in Figure 6 and set out in the steps given below.  2 

1. Each test unit is assessed to determine if the detailing in the potential plastic region satisfied the 3 

requirements for nominally ductile, limited ductile or ductile detailing, as set out in NZS 4 

3101:2006
3
, or if it did not qualify for any of these. 5 

2. From the pre-yield loading cycles, the displacement sustained at approximately ¾ of the 6 

theoretical strength is extrapolated linearly to the load level corresponding to the theoretical 7 

strength of the member.  This is taken as the ductility one displacement, δe, as illustrated in 8 

Figure 6. 9 

3. Scrutinising a large number of test results showed that in the majority of cases failure occurred 10 

in a load cycle which involved displacements ranging from a large negative displacement to a 11 

large positive displacement, or vice versa.  This indicates that it was the range of total 12 

displacement from the start to end of a half cycle that was responsible for failure, rather than the 13 

peak displacement measured from the initial position at the start of the test.   In recognition of 14 

this, the ultimate curvature is based on the average of the peak displacements sustained in the 15 

half cycle before failure occurred.  With reference to Figure 6, this displacement is equal to 16 

0.5|(δ
+

max - δ
-
max)|, where δ

+
max and δ

-
max are the maximum positive and negative displacements 17 

sustained in the half cycle before the load dropped below 80% of the theoretical strength. As all 18 

tests considered in this paper are on reversing plastic hinges, averaging the peak displacements 19 

in the two directions is justified. Nevertheless, this approach underestimates the displacement 20 

capacity of unidirectional plastic hinges, for whish the absolute maximum displacement may be 21 

a more reasonable measure of the displacement capacity. 22 

4. In many tests, several cycles of loading were applied between specific positive and negative 23 

displacements before failure occurred.  Clearly in such cases, the member would have been 24 

capable of sustaining one or more number of larger displacement cycles before failure occurred 25 

if the previous load cycles had not been applied.  Results of several beam tests suggested that 26 

this effect could be conservatively predicted by multiplying the critical displacement found in 27 

step 3 by 1.05
(n-1)

 but not greater than 1.5,
 
where n is the number of times the positive and 28 

negative displacement peaks are sustained in the displacement cycles being considered before 29 

the applied force resisted at a peak displacement drops below 80 percent of the theoretical 30 

strength.  This process is illustrated in Figure 6, where in the half load cycle between δ
+

max and 31 

δ
-
max the value of n was 4 before the load sustained at the peak positive and negative 32 

displacements dropped to 80% of the theoretical strength (0.8Hi).  Consequently, the critical 33 

displacement found in step 3 in this case would be multiplied by 1.05
3
. 34 

The ultimate curvature due to plastic deformation obtained from a test, φp, calculated as set out in 35 

steps 1 to 4 is given by: 36 
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where leff is the effective plastic hinge length, αr is the repetition coefficient calculated as the lesser 38 

of 1.05
(n-1)

 and 1.5, and δ
+

max , δ
- 

max, δe and n are as defined in steps 1 to 4 above.  39 

 40 

PROPOSED MATERIAL STRAIN LIMITS IN POTENTIAL PLASTIC REGIONS 41 
A major factor influencing the behaviour of plastic hinge zones is the type of deformation that they 42 

are required to sustain.  As outlined in references
5-6

, plastic hinges may be subjected to reversing or 43 

unidirectional inelastic actions.  The vast majority of tests on plastic regions, which may be 44 

classified as ductile or limited ductile, have been made on reversing actions.  The few beams, which 45 

have been tested as unidirectional plastic hinges in ductile plastic regions, have indicated that these 46 

zones can sustain in excess of twice the rotation in a comparable reversing plastic hinge
10

.  For 47 

nominally ductile plastic regions, the situation is different and no suitable test results could be found 48 

in the readily available literature for the beams subjected to cyclic inelastic loading. 49 
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 1 

Ductile and limited ductile plastic regions  2 
From an analysis of test results, Priestley and Kowalsky

11
 proposed that the curvature in a plastic 3 

region in a member sustaining a section ductility of one, φy, could be taken as a product of a 4 

constant and the yield strain divided by the overall depth of the member.  The constant was found to 5 

vary for different types of members and reinforcement arrangements, but it was generally close to 6 

2.0, and for simplicity it has been assumed to be equal to 2.0 for all cases.  It is decided to give 7 

limiting curvature values in ductile and limited ductile regions as a multiple of φy, as this avoids the 8 

need for detailed analysis of the section to find the curvature at first yield.  On this basis, the 9 

curvature φy in a potential plastic region, corresponding to the stage where significant inelastic 10 

deformation is initiated, is taken as: 11 

h

y

y

ε
φ

2
=      (6) 12 

where εy is the yield strain and h is the member depth or wall length.  13 

The maximum curvature for the ultimate limit state is taken as a product of φy and two factors, 14 

namely Kd, which allows for the type of member and level of detailing used in the plastic region, 15 

and Ky, which allows for the reinforcement grade.  While φy increases with the yield stress of 16 

reinforcement, the ultimate curvature that can be sustained in many cases depends on the strain 17 

capacity of the concrete and the buckling resistance of the reinforcement.  The grade of 18 

reinforcement does not have a major influence on the concrete strain capacity.  Nevertheless, the 19 

buckling tendency of the main bars and consequently the anti-buckling resistance of the provided 20 

reinforcement depend, to some extent, on the yield strength of the longitudinal reinforcement
12-13

.  21 

Analysis of experimental results from beam, column and wall tests indicates that for yield stress 22 

levels above 425MPa (62ksi) there was no significant change in the ultimate curvature that could be 23 

sustained.  The introduction of the Ky factor allows for this observation and it effectively limits the 24 

ultimate plastic curvature that can be used with reinforcement that has a yield stress in excess of 25 

425MPa (62ksi) to the value that would be sustained with a yield stress of 425MPa (62ksi).  With 26 

this adjustment the limiting ultimate limit-state curvature in a ductile or limited ductile plastic hinge 27 

is given by: 28 

yyd KK φφ =max     (7) 29 

where Kd is as defined above, φy is given by Equation 6 and Ky is the factor allowing for 30 

reinforcement grade, which is given by: 31 
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Beams 33 

Limiting curvatures were calculated from 37 beam tests taken from the literature
8-9, 14-16

.  There 34 

were no test units that could be classified as either limited ductile or nominally ductile beams.  Of 35 

these, 19 were classified as containing ductile detailing and 18 tests were discarded as they 36 

contained details not representative of current practice.  In particular, many of these test units had 37 

shear reinforcement that was in excess of twice, and in some cases up to 7 times, the amount 38 

required by current practice.  Most of these discarded beams sustained very high curvatures and 39 

they did not exhibit the shear pinching characteristic more representative of current practice.  Some 40 

beams
8-9

 differed from the others in that yield penetration of the reinforcement into the supporting 41 

column was limited by welding additional bars onto the beam reinforcement in the anchorage zone 42 

in the supporting member.  This reduced the pullout of the reinforcement and hence led to 43 

conservative values of curvature in the plastic regions.  The results of the tests for beams with 44 

ductile plastic detailing are summarised in Table 2 and shown in Figure 7, where the ultimate 45 

curvatures are plotted against the shear stress (maximum shear force divided by the shear area) 46 

normalised with respect to the square root of the concrete compressive strength.  The shear stress 47 
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level, within the range of tests that were examined, appeared to have little influence on the ultimate 1 

curvature.   2 

Columns 3 

Limiting curvatures were calculated from 25 column tests
17-20

.  Of these, 9 were classified as having 4 

ductile plastic regions and 7 as limited ductile plastic regions.  The remaining 9 test units did not 5 

satisfy the requirements for either ductile or limited ductile detailing.  The results of the analyses 6 

are summarised in Table 2 and Figure 8, where the ultimate curvatures are plotted against the axial 7 

load ratio (N/Agfc
’
).  In this case, the maximum axial load ratio (N/Agfc’) of the test units for ductile 8 

plastic region considered was equal to 0.3.  It is apparent in the figure that increasing axial load, N, 9 

does not significantly reduce the ductility of the limited ductile plastic regions, which is one of the 10 

objectives on which the confinement criteria are based
3
.  The same condition is assumed to apply to 11 

columns with ductile plastic regions. As in the beams, the ultimate curvatures in column plastic 12 

hinges were also found to be independent of shear stress.   13 

Walls 14 

Two different sets of wall tests were examined, namely thin singly reinforced walls and ductile 15 

walls with two layers of reinforcement (one for each side face of the wall).  Ultimate curvature 16 

values were determined from the experimental results of 29 thin singly reinforced walls
21-25

.  Of 17 

these nine were rejected, five on the basis they were not representative of practice and 4 as they had 18 

aspect ratios (i.e. length/height) less than 0.75 and failed by sliding shear.  At present, there is no 19 

codified method in NZS 3101:2006
3
 for assessing sliding shear in walls.  The results from units 20 

with height to thickness ratios, which exceeded the permissible slenderness ratio by more than 35 21 

percent, were also excluded from the data as were the results of two tests where the ultimate 22 

curvatures were more than 50 percent greater than those of similar companion units.  The results 23 

obtained from remaining units are listed in Table 2 and shown in Figure 9, where the ultimate 24 

curvatures are plotted against the factor (ρfy/fc’+ N/Agfc’), which gives an assessment of the 25 

maximum compression force induced in the wall.   26 

The test walls described in references
22-24

 were constructed with vertically concave shape with the 27 

initial vertical alignment imperfection equal to the maximum permissible for standard construction.  28 

The other feature to note is that three of the walls tested by McMenamin
24

 failed, or partially failed, 29 

when some of the vertical reinforcement fractured.  The results obtained from these walls gave 30 

limiting curvatures that were amongst the lowest observed in the series of tests.  The reason for the 31 

apparent lack of ductility of this reinforcement is unknown.  The reinforcement did not have a 32 

distinct yield point, but the nominal yield stress measured at an offset strain of 0.2 percent was 33 

504MPa (73ksi) and the ultimate stress was 1.28 times the yield stress at a strain of 20 percent.  The 34 

results of these three units have also been included in Table 2 and in Figure 9.  35 

The results of tests
26-28

 on 7 ductile rectangular walls reinforced with two layers of reinforcement 36 

were also analysed.  Several of these walls formed wall elements in coupled walls.  The axial load 37 

on these varied significantly during the test.  Due to the widely varying axial load levels and the 38 

limited number of tests, the ultimate curvatures have not been shown in a figure.  However, the 39 

average ultimate curvature, the standard deviation and the calculated lower characteristic curvature 40 

calculated from these tests are included in Table 2.   41 

 42 

Nominally ductile plastic regions 43 
None of the 98 tests reviewed in this paper covered the details that could be categorised as 44 

nominally ductile plastic regions.  To fill the gap in our knowledge of the behaviour of nominally 45 

ductile plastic regions, a research project has been started at the University of Canterbury.  However, 46 

it will be some time before these results are available.  Hence, curvature limits for this category are 47 

proposed based on engineering judgement.  For members where the design strength is limited by 48 

flexure rather than shear, the limiting curvatures in nominally ductile unidirectional plastic regions 49 

of beams are taken as the smaller of the values corresponding to: a compression strain in the 50 

concrete of 0.004, which is generally taken as a strain when spalling of the concrete may be 51 

expected; and a tensile strain in the reinforcement of 0.016. 52 
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For reversing plastic regions, it is proposed that the corresponding limits are taken as approximately 1 

60 percent of the corresponding unidirectional limits, which, with a little rounding give a limiting 2 

concrete compressive strain of 0.0025 and a limiting tensile reinforcement strain of 0.010.  For 3 

nominally ductile plastic regions, where the design shear strength controls the design strength of the 4 

member, no inelastic deformation capacity should be assumed. 5 

 6 

Recommendations for material strain limits 7 
As mentioned earlier, the material strain limit for diagonally reinforced coupling beams is given in 8 

NZS 3101:2006
3
 as a shear deformation as these members deform with little or no flexural 9 

deformation.   This value was derived from an assessment of limited experimental work on coupling 10 

beams
28-29

.  Suggesting a change in the current limit for shear deformation is not in the scope of this 11 

paper.  Furthermore, no material strain limits have been proposed for axial tension or compression 12 

at present. 13 

Table 3 gives the recommended values for the coefficient Kd used in Equation 7 for calculating 14 

curvature limits for reversing plastic hinge regions in beams, columns and walls.  These are based 15 

on suitably rounded curvature limits corresponding to lower characteristic values summarised in 16 

Table 2.  However, as there were no suitable tests for limited ductile plastic regions in beams the 17 

curvature limit has been placed approximately mid way between those for nominally ductile and 18 

ductile plastic regions.  The recommended limiting curvatures for nominally ductile beams and 19 

walls are similar to the current values in NZS3101:2006
3
, though the maximum tensile strain limits 20 

have been changed.  With the proposed values the curvature limit is approximately 2.5φy to 4.0φy 21 

for reinforcement grades 500 and 300 respectively, where φy is given by Equation 6.  For 22 

unidirectional plastic regions, the curvature limits may be doubled for ductile and limited ductile 23 

beams and columns and for nominally ductile plastic regions the strain limits may be increased to 24 

0.004 and 0.016 for concrete and reinforcement, respectively. 25 

 26 

DISCUSSION 27 
The limiting material strains listed in the paper are for the ultimate limit state (design basis 28 

earthquake) where a high margin of safety is required.  However, it is believed that plastic regions 29 

proportioned to meet these limits will also satisfy the greater deformation required for the maximum 30 

credible earthquake (return period of 2,500 years) to be met with an adequate margin of safety.  31 

There are two reasons for this. 32 

• The maximum deformation limit from each test was based on displacement cycles with positive 33 

and negative peaks of nearly equal value.  However, in an earthquake the peak displacement is 34 

only sustained in one direction.   35 

• A decrease in the flexural resistance of a plastic region in practice results in a redistribution of 36 

forces to other plastic regions in indeterminate structures.  Hence, the average strength and 37 

deformation capacities of plastic hinges in a region of the structure (such as plastic hinges in one 38 

storey of a moment resisting frame building) is the controlling factor rather than the ultimate 39 

design limits based on the lower characteristic values.  The difference between the mean and 40 

lower characteristic values of deformation capacity is appreciable, as can be seen from Table 2.  41 

Allowance for this effect can make an appreciable difference to the total displacement that can 42 

be sustained before collapse occurs.   43 

It should be noted that the proposed curvature limit was found from displacements measured in tests 44 

on the basis of the assumption that the inelastic curvature accounted for the inelastic displacement.  45 

This is not strictly correct, as shear deformation does not induce any curvature and it has been found 46 

to account for 30 percent or more of the total displacement in beams subjected to extensive inelastic 47 

cyclic loading
8-10

.  Nevertheless, shear displacements in plastic regions in columns and walls are 48 

generally considerably smaller than the corresponding values in beams.  It should also be noted that 49 

the displacement history imposed by an earthquake is likely to have a significant influence on the 50 

maximum deformation that can be sustained before failure.  If the maximum deformation is 51 

imposed near the start of a ground motion when the plastic regions have little damage, they are 52 
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likely to be able to sustain greater deformation without failure than if the maximum deformation 1 

was imposed near the end of the ground motion.  Analysis of test results on beams has shown that 2 

the dissipated energy is not in itself a good guide to deformation capacity.  It was found that greater 3 

energy could be dissipated when a large number of relatively small displacement cycles are applied 4 

than when a relatively few large displacement cycles are applied
30

. 5 

Although the proposed curvature limits for beams and columns may appear at first glance to be 6 

more conservative than the values given in NZS 3101:2006
3
, they are not necessarily so due to the 7 

way they are calculated.  In the proposal, the limiting curvatures are given in terms of a multiple of 8 

a curvature corresponding to the initiation of significant inelastic deformation.  This curvature limit 9 

is significantly larger than the first yield curvature on which the curvature limits are currently based 10 

in NZS 3101:2006
3
.  Moreover, the use of a simple equation to estimate the curvature initiating 11 

significant inelastic behaviour for ductile and limited ductile plastic regions simplifies design 12 

calculations compared with the requirements given in NZS 3101:2006
3
. 13 

The material strains (curvatures) calculated by the design approach outlined in this paper should be 14 

considered as an index to the conditions in a plastic hinge; they are not true curvatures.  In 15 

particular, reinforcement strains assessed from these curvatures can be considerably greater than the 16 

actual values.  In practice, provided that seismic grade reinforcement (with a strain at maximum 17 

stress equal to or greater than 10%) is used, the plastic rotations should not be limited by the 18 

reinforcement.  Moreover, a relatively simple failure criterion has been adopted in assessing the 19 

ultimate deformation capacity of members and only a limited number of test results which were 20 

readily available were assessed in this paper.  There is scope for further research looking at a wider 21 

range of test results and in assessing material strain limits by more sophisticated techniques based 22 

on damage indices. 23 

 24 

CONCLUSIONS 25 
The following conclusions can be drawn based on the discussions and results presented in this 26 

paper: 27 

1. To improve the reliability of seismic  performance of structures, NZS 1170.5:2004
1
 introduced 28 

the requirement that the detailing of plastic regions be determined on the basis of calculated 29 

material strains they sustain when subjected to the deformations defined in the ultimate limit 30 

state.  Subsequently, NZS 3101:2006
3
 has set material strain limits for three different types of 31 

plastic regions.  This is a paradigm shift from the previous approach of designing and detailing 32 

all plastic regions based on global structural displacement ductility factor.  It has been shown in 33 

this paper that the structural ductility gives a poor indication of the required level of 34 

deformation in plastic regions.   35 

2. Two types of plastic hinges (namely unidirectional and reversing) based on the nature of 36 

inelastic action and three types of plastic regions (namely ductile, limited ductile and nominally 37 

ductile) based on the expected level of inelastic deformation have been explained.  The basis of 38 

calculating a plastic hinge rotation and hence material strain (curvatures in plastic hinges) has 39 

been outlined together with a number of approximations which may be used to simplify the 40 

design procedure. 41 

3. Issues related to: (i) the very assumption of plane section remains plane being invalid; (ii) the 42 

predicted deformation not relating to curvature unless shear deformation is excluded; and (iii) 43 

inability of analytical models to take into account elongation of plastic hinges that occurs 44 

invariably during reversed cyclic actions; render it difficult for material strain (curvature) limits 45 

to be predicted analytically.  Hence, experimental data have been used to establish curvature 46 

limits in this paper. 47 

4. Based on the analysis of test results from 37 beams, 25 columns and 36 walls, 48 

recommendations have been made for material strain limits for limited ductile and ductile 49 

plastic regions.  The proposed material strain limits are intended to provide a high margin of 50 

safety against failure in the ultimate limit state earthquake and an adequate margin of safety 51 

against collapse for the maximum credible earthquake with a return period of 2,500 years.  52 
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These new material strain limits have been proposed as an amendment to the current values of 1 

NZS 3101:2006
3
. 2 

 3 
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Table 1: Limiting material strains for potential plastic regions [NZS3101:2006
3
] 1 

Potential plastic region 

classification 

Material strain limits 

(Section curvature ductility in flexural plastic hinge region) 

Nominally ductile  (NDPR)                     Unidirectional      5 (αfy)          Reversing       3 (αfy) 

Limited ductile  (LDPR)                          Unidirectional     30 (αfy)         Reversing      15 (αfy) 

Ductile  (DPR)                                       Unidirectional     60 (αfy)         Reversing      30 (αfy) 

y

fy
f

400
=α

  

but not exceeding 1.1 (fy in MPa) 

 2 

 3 

 4 

Table 2: Summary of ultimate curvatures from test results 5 
 Beams Columns Walls 
 Ductile Limited 

ductile 

Ductile Single 

layer 

reinforcing 

Ductile double 

layer 

Reinforcing 

Average 27.3 Ky 18.5 Ky 26.8 Ky 9.3 Ky 20.6 Ky 

Std. deviation 5.8 Ky  4.9 Ky 5.9 Ky 2.4 Ky 4.1 Ky 

Lower Characteristic 17.7 Ky 10.4 Ky 17.0 Ky 5.4 Ky 13.9 Ky 

Number of units 19 7 9 20 7 

The correction factor for grade of reinforcement, Ky, is given in Equation 8. 6 

 7 

 8 
Table 3:  Recommended Kd values for reversing plastic regions 9 

Beams Columns Walls 
Nominally 

Ductile
@

 

Limited 

Ductile 

Ductile Nominally 

& limited 

Ductile 

Ductile Nominally 

ductile
@

 

Limited 

ductile
* 

Ductile** 

εc ≤ 0.0025 

εs ≤ 0.010 

10 17.5 10 17.5 εc ≥ 0.0025 

εs ≥ 0.010 

5.0 

8.5
+ 

12.5 

15.0
+ 

*  limited ductile doubly reinforced and singly reinforced walls 10 
** 

two layers of reinforcement in each direction and confined as required by the Code
3
  11 

+ 
  for walls with confined boundary elements which resist 70% or more of compression force calculated as for 12 

the ultimate limit state 13 
@

       for nominally ductile beams & walls, permissible strains in concrete and reinforcement (εc and εs) are specified, 14 
not kd values15 
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Figure 1. Effect of foundation rigidity on displacement ductility 3 
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Figure 2. Calculation of plastic hinge rotations 2 

 3 
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 1 

Figure 3. Effective plastic hinge lengths for reversing and unidirectional plastic hinges 2 
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 1 

Figure 4. Actual and analytical curvatures in a beam sustaining plastic deformations 2 
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 1 

Figure 5. Deformations in a plastic region in a beam 2 
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 1 

Figure 6. Interpretation of experimental force-displacement curves to calculate curvatures 2 
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Figure 7. Ultimate curvatures sustained in beam tests 2 
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Figure 8. Ultimate curvatures sustained in column tests 2 
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Figure 9. Ultimate curvatures sustained in singly reinforced walls 3 
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