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Abstract 
 
This paper introduces a new set of moment functions based on Chebyshev polynomials which 
are orthogonal in the discrete domain of the image coordinate space. Chebyshev moments 
eliminate the problems associated with conventional orthogonal image moments such as the 
Legendre moments and the Zernike moments.  The theoretical framework of discrete orthogonal 
moments is given, and their superior feature representation capability is demonstrated. 
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1  Introduction 
 
Moment functions are used in image analysis as feature descriptors, in a wide range of 
applications like object classification, invariant pattern recognition, object identification, robot 
vision, pose estimation and stereopsis. A general definition of moment functions Φpq of  order 
(p+q), of an image intensity function  f(x, y)  can be given as follows: 

                        Φpq = Ψ∫ ∫
x y

pq(x,y) f(x, y) dx dy,                p, q = 0,1,2,3....        (1) 

where Ψpq(x,y)  is a continuous function of (x, y) known as the  moment weighting kernel  or the  
basis set.  The simplest of the moment functions, with 

Ψpq(x,y)  = xp yq
           (2) 

were introduced by Hu [1]  to derive shape descriptors that are invariant with respect to image 
plane transformations. Legendre and Zernike moments were later introduced by Teague [2]  
with the corresponding orthogonal functions as kernels.  These orthogonal moments have been 
proved to be less sensitive to image noise as compared to geometric moments, and possess far 
better feature representation capabilities.  The information redundancy measure is minimum in 
an orthogonal moment set.  The computation of orthogonal moments of images pose two major 
problems [3, 4, 6]:  (i)  The image coordinate space must be normalized to the range (typically, 
−1 to +1)  where the orthogonal polynomial definitions are valid. (ii)  The continuous integrals 
in (1) must be approximated by discrete summations without loosing the essential properties 
associated with orthogonality. 

This paper introduces a new set of moment functions based on Chebyshev (some times also 
written as “Tchebichef” [5])  polynomials that are orthogonal in the discrete domain of the 
image coordinate space. Chebyshev moments completely eliminate the two problems referred 

20 



above, and preserve all the theoretical properties, since their implementation does not involve 
any kind of approximation. The superiority of Chebyshev moments over conventional 
orthogonal moments in terms of their feature representation capability can be conclusively 
established by using the inverse moment transform.  Images reconstructed using the inverse 
transform of Chebyshev moments provide lower reconstruction errors compared to those 
obtained using Legendre and Zernike moments. 
 
 
2  Chebyshev  Moments 

Given an  NxN  image,  we first seek discrete orthogonal polynomials {tn(x)} that satisfy the 
condition 

                            ,           m, n = 0,1,2, … N−1.       (3) t x t x n Nm n m
x

N
( ) ( ) ( , )=

=

−
∑ ρ δ

0

1
n

where  ρ(n,N)  is the squared norm of the polynomial set tn. The classical discrete Chebyshev 
polynomials[5]  satisfy the property of orthogonality (3), with 
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and have the following recurrence relation: 
 

  ,   n =1,…, N−1. (5) ( ) ( ) ( )( ) ( ) ( ) ( )n t x n x N t x n N n t xn n+ − + − + + −+ −1 2 1 2 11
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However, the Chebyshev polynomials as defined above together with their norms, become 
numerically unstable for large values of N. It can be easily verified that the magnitudes of  tn 
grow at the rate of Nn.  We therefore further scale the Chebyshev polynomials tn(x)  by a factor 
N−n  to make them suitable for image analysis, and define the Chebyshev moments as follows 
(henceforth  tn(x)  denotes the scaled polynomials): 

        Tpq = 
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and the scaled Chebyshev polynomials tp(x) are computed using the following recurrence 
relation: 
 
      t0(x)  =  1.          (8) 

         t1(x) =  
2 1x N

N
+ −

          (9) 
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The classical Chebyshev polynomials modified as above do not lead to numerical overflows for 
large images.  Both the polynomials and the associated moments do not show large variation in 
the dynamic range of values, as in the case of geometric moments. Since the Chebyshev 
polynomials are exactly orthogonal in the discrete coordinate space of the image, we further 
have the following theorem: 

Theorem:  The image intensity function  f(x, y)  has a polynomial representation given by 

     f(x, y) =       (11) T t x t ypq p q
q

N
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N
( ) ( )

=

−

=

−
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0

1

0

1

where the coefficients  Tpq  are the Chebyshev moments defined in (6).  The above result 
follows when the left-hand side of (3)  is applied as an operator to both sides of equation (6). 
 
 
3  Image Feature Representation 
 
Equation (11) is the inverse Chebyshev moment transform, and provides an image 
reconstruction from a finite set of its moments. The reconstructed image is a measure of image 
features that are captured by the moment terms. The following figure shows the original image 
of the letter ‘E’ on a 20x20 pixel grid (N=20), and the reconstructed images using equation (11), 
with the maximum order of moments varied from 5 through 11. 

 
  Figure 1:  Image reconstruction using Chebyshev moments 
 
There is also a close relationship between Chebyshev and Legendre moments arising 
from the fact that the Chebyshev polynomial values tend to the values of the Legendre 
polynomials evaluated at the corresponding points in the normalized coordinate space  
[-1,1],  as the image size N  tends to infinity.  Indeed, the discrete approximation of 
Legendre moments[4] is very similar to the expression for Chebyshev moments. Legendre 
moments λpq  of order (p+q) are defined as 
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where  Pn()  denotes the Legendre polynomial of order n.  The binary image reconstruction 
using the above moments is given in Fig. 2. 

Figure 2:  Image reconstruction using Legendre moments 
 
A comparison plot of root-mean-square reconstruction error obtained from the above results is 
in  Fig. 3. The superior feature representation capability of Chebyshev moments over Legendre 
moments is evident from this figure.  The higher reconstruction error in Legendre moments is 
also partly due to the approximation of continuous moment integrals, which result in significant 
discretization errors when the image size is small. 
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Figure 3:  Comparison of reconstruction errors using Chebyshev and Legendre moments. 
 
 
4  Computational Aspects 

The symmetry property of Chebyshev polynomials can be made use of, to considerably reduce 
the time required for computing the associated moments. The scaled Chebyshev polynomials 
have the same symmetry property which the classical Chebyshev polynomials satisfy: 

)()1()1( xtxNt n
n

n
−−=−−           (13) 

The above relation suggests the subdivision the domain of an NxN  image (where N is even) into 
four equal parts, and performing the computation of the polynomials only in the first quadrant 
where  0 ≤  x, y  ≤  (N/2 −1).  The expression for Chebyshev moments in (6) can be modified 
with the help of  (13),  as follows: 
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In addition to reducing the computation time by a factor of 4, the symmetry property is also 
useful in minimizing the storage required for the scaled Chebyshev polynomials. The scaled 
Chebyshev polynomial t  can be expressed as a polynomial of  x, as given below. The 
polynomial expansion is useful in relating the Chebyshev moments to the discrete 
approximation of geometric moments. 
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and    are the Stirling numbers of the first kind [7], which satisfies the equation sk
i( )
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5  Noise Effects 

It is well known that image noise significantly affects the reconstruction error.  Moments of 
higher orders can become more sensitive to image noise.  The effect of noise was analyzed 
using a 60x60 binary image of a Chinese character shown in Fig. 4. The reconstructed images 
with the maximum order of moments varied from 18 to 30 in steps of 2  are also given in Fig. 4. 
 

Original Image With Noise 

 

Image Reconstruction Using Chebyshev Moments 

 
 

Image Reconstruction Using Legendre Moments 

 

Figure 4:  Reconstruction of an image after adding noise. 
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Figure 5:  Effect of image noise on reconstruction error. 
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The root-mean-square error of reconstruction for both Chebyshev and Legendre moments are 
plotted in Fig. 5.  The performance of Chebyshev moments is still better compared to that of 
Legendre moments.  Chebyshev moments of higher orders are also less sensitive to image noise 
as can be seen from Fig. 5.  As the order of Legendre moments are increased, the noise factor 
starts dominating, and causes an increase in the reconstruction error. 
 
 
 
6  Conclusions 

The paper has presented the theoretical framework for discrete orthogonal moments based on 
Chebyshev polynomials for a more accurate representation of image features than those 
obtained using continuous moment functions.  The motivation for developing discrete 
orthogonal moments arises from the need for circumventing the commonly encountered 
problems of  large discrete approximation errors and coordinate transforms associated with 
Legendre and Zernike moments. Images can be accurately reconstructed using the inverse 
Chebyshev moment transform. Image reconstruction from moments also demonstrate the 
superiority of the feature representation capability of Chebyshev moments over Legendre 
moments. Certain computational aspects of Chebyshev polynomials are also discussed. 
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