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Abstract

Cognitive impairment in Parkinson’s disease:

a study of early-phase amyloid PET and arterial spin labeling perfusion MRI

by Megan Stark

The characteristic motor symptoms present in Parkinson’s disease are often accompanied

by a range of non-motor symptoms; in particular, cognitive impairment leading to de-

mentia has an 80% cumulative prevalence in PD but with incredibly variable time for

dementia onset. This study presents and compares early-phase [18F] Florbetaben (FBB)

positron emission tomography (PET) and arterial spin labeling magnetic resonance imag-

ing (ASL MRI) of perfusion in the context of cognitive decline and imminent conversion

to dementia in Parkinson’s disease.

Patients underwent a comprehensive neuropsychological battery prior to inclusion in the

study, which was used to classify patients as PD with normal cognition (PD-N, n=4),

mild cognitive impairment (PD-MCI, n=41) or dementia (PDD, n=5), and to assign

each patient a summary global cognitive score and an individualized Parkinsons disease

dementia risk score (PDDRS). Early-phase FBB PET images, and structural and arterial

spin labeled MR images were acquired for each patient, which were then coregistered,

normalized and smoothed in preparation for analysis.

The relative measures of brain function given by each imaging modality were analysed

using the general linear model, in order to identify any association with cognitive sta-

tus and dementia risk in the subject group. Cognitive decline and increased dementia

conversion risk were found to be significantly associated with distinct regions of cortical

hypoperfusion as quantified by the ASL data. FBB-derived images did not exhibit any

significant association with cognition or dementia risk, and did not correlate significantly

with ASL perfusion measures, suggesting that the two techniques are measuring different

physiological phenomenon. A network based approach using principal component analysis

identified networks of cortical hypoperfusion in the ASL data that related significantly to

cognition and risk of conversion to dementia.

This thesis raises questions regarding the physiological information presented by early-

phase PET, which remains a worthwhile area of further investigation. The PDDRS-related

perfusion network developed here presents a potential biomarker of imminent conversion

to dementia in Parkinsons disease.
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Chapter 1

Introduction

1.1 Research Rationale

Parkinson’s disease (PD) is the second most common neurodegenerative disorder behind

Alzheimer’s disease (AD) (Alves et al., 2008), increasing in prevalence with age. PD

affects an estimated 1% of those over 60 and 4% of individuals in the oldest age group

(de Lau & Breteler, 2006). PD currently affects roughly 10,000 people in New Zealand

(T. J. Anderson, 2013), with an average age at diagnosis of 591. Demographic trends

predict this number to double by 2035 and quadruple by 2050 (Bach et al., 2011).

The clinical features of PD are dominated in the early disease stages by motor symptoms

of rigidity, postural instability, bradykinesia and resting tremor (Dickson, 2012). These

primary motor symptoms have been attributed to the loss of dopaminergic neurons in the

substantia nigra and small mid-brain structures, which was thus commonly regarded as

the epicentre of PD neuropatholgy for many years. Treatment of the motor symptoms

targets the dopaminergic nigrostriatal pathway and is typically effective in early disease

stages, thus disease burden is more heavily influenced by dysfunction in non-motor aspects

of patient health. Over the last decade, the observation that the heterogeneous motor

symptoms are often accompanied by several non-motor features has driven much broader

research concerning the etiology, pathogenesis and treatment of PD (Docherty & Burn,

2010). What has emerged is a continually evolving disease picture wherein the non-motor

1http://www.parkinsons.org.nz/

1



Chapter 1 - Introduction 2

features are becoming an increasingly significant source of disability and carer burden

(T. J. Anderson, 2013).

In particular, cognitive decline and conversion to Parkinson’s disease dementia (PDD) is

known to greatly reduce patient quality of life, and often necessitates full time or nursing

home care. Of the roughly 7 million people affected by PD globally, 80% are expected

to progress to PDD anywhere from 2-20 years after clinical diagnosis (Aarsland & Kurz,

2010). Mild cognitive impairment in PD (PD-MCI) is considered to confer higher risk of

conversion to PDD, however dementia onset is also variable within this group. Ideally, all

PD-MCI would be offered the opportunity for inclusion in trials for preventative therapies,

however this is impractical at early trial stages and inclusion of those with a natural

preservation of cognition may mask trial results. The goal thus becomes the elucidation of

any core neuropathological features driving conversion to PDD, that may be preserved in

those PD-MCI subjects exhibiting sustained cognitive status. This thesis is but one part of

a wider HRC funded study with the New Zealand Brain Research Institute (NZBRI) that

aims to identify genetic, clinical and imaging biomarkers to this effect (T. J. Anderson,

2013).

1.1.1 Thesis aims

This thesis focuses on the use of neuroimaging techniques in the evaluation of cognitive

status and dementia risk, specifically imaging brain perfusion in those classified as PD-

MCI. The aim is to construct an informative model, based on perfusion data, that may be

used to predict cognitive status in individuals and perhaps help to identify those at risk

of imminent conversion to PDD. The model is constructed based on the perfusion data of

50 PD subjects taking part in the HRC funded study at NZBRI. Data was obtained using

arterial spin labelling MRI (ASL MRI), a well established method of perfusion imaging,

and early-phase PET imaging of the Amyloid tracer Florbetaben (FBB). This second

method is investigated as a novel method of imaging perfusion, and compared against

the images obtained using ASL MRI through voxel wise statistical analysis. All subjects

underwent an extensive neuropsychological battery to produce an overall cognitive score

and Parkinson’s disease dementia risk score (PDDRS) prior to scanning. This thesis

investigates if there exists any correlation within the data provided by both modalities



Chapter 1 - Introduction 3

with the cognitive scores and PDDRS of the subject group, with the aim to form perfusion

networks predictive of cognitive status and conversion risk using these data.

1.2 Neuropathology and imaging of cognition

The neuropathological basis of cognitive dysfunction in PD is not well understood, and

research into the underlying causes of cognitive deterioration is ongoing. The observation

of metabolic abnormalities in PD has provided valuable insight and enabled the develop-

ment of an analysis framework that may be applied to data concerning other aspects of

brain function, such as cerebral blood flow.

1.2.1 Metabolic changes

Deficiencies in both dopaminergic and non-dopaminergic neurotransmitters, such as sero-

tonin, norepinephrine, and acetylcholine, are frequently implicated in the pathogenesis of

non-motor features in PD (Scatton et al., 1983) (Hasselmo, 2006), notably cognition. As

such, these possible biomarkers of cognition in PD have provided the impetus for several

pharmacological interventions for the treatment of cognitive impairment and mood (Diaz

& Waters, 2009). Underlying the deficiencies in these neurotransmitters is neuronal dys-

function. A properly functioning neuron utilises cerebral glucose in the production of ATP,

which is in turn used by the cell in neuronal maintenance and production of neurotrans-

mitters (Mergenthaler et al., 2013). Thus, measuring the regional cerebral metabolic rate

of glucose (rCMRglc) provides a useful measure of neuronal function. Imaging rCMRglc

with 18F-fluorodeoxyglucose (FDG) PET has therefore been understandably well explored

as an avenue of disease severity assessment in neurodegenerative disorders (Eidelberg et

al., 1995).

Cortical hypometabolism has been linked to cognitive changes in PD in several indepen-

dent studies using FDG PET (Huang, Mattis, et al., 2007) (Ma et al., 2007) (Liepelt

et al., 2009). However, due to the substantial variability in metabolic activity between

brain regions, it is difficult to use regional estimates of metabolism to adequately describe

response to treatment in a clinical setting. A more clinically relevant measure has been

provided by network analysis, wherein multivariate analysis is used to extract regions of

abnormal metabolic activity in PD vs controls, that correlate significantly with motor
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dysfunction and the results of neurological testing. Independent metabolic networks of

spatial covariance relating to motor and cognitive aspects of the disease have provided

unique insight into the areas of the brain implicated in PD (Huang, Tang, et al., 2007).

The efficacy of a cognition-related metabolic spatial covariance pattern (PDCP) in the

evaluation of cognition in PD has been previously validated (Huang et al., 2008), wherein

expression of the network was seen to increase stepwise with worsening cognitive impair-

ment (p < 0.01). This method is not limited to metabolic information, and it is of clinical

interest to explore network analysis with other measures of brain function. One such

objective measure also known to correlate with neuronal function is cerebral blood flow.

1.2.2 Network analysis of cerebral blood flow

The network approach of Huang et al. may also be used to examine patterns of cerebral

blood flow (CBF), or brain perfusion, in PD.

Perfusion refers to the capillary blood supply delivering oxygen and nutrients to brain

tissue, in units of ml/min/100g (T. R. Melzer, 2011). While technically a measure of

simple flow rate (ml/min), the term CBF is somewhat synonymous with perfusion in

the literature. Similarly to rCMRglc, measuring regional CBF is a useful method of

inferring neuronal function, such that decreases in ATP production and consumption due

to neuronal damage are concomitant with changes in cerebral perfusion. Blood flow to

the damaged region may decrease, while other regions may see compensatory increases.

This same effect may also indicate disease- or age-related vasoconstriction, which must

be corrected for in study designs including older subjects.

There is a close coupling between rCMRglc (µmol/min/100g) and regional CBF (rCBF)

at rest, measured consecutively in the same individuals with FDG PET and H15
2 O PET

respectively (Jueptner & Weiller, 1995). Imaging rCBF using PET or single-photon emis-

sion computed tomography (SPECT) does not yield absolute, quantitative values, but

rather relative values normalised to a reference region or global mean. This can introduce

bias if there is a systematic increase or reduction in blood flow across the subject group,

either globally or in the chosen reference region. ASL provides an alternative method of

imaging CBF that yields absolute perfusion values in a completely non-invasive manner

(T. Melzer et al., 2011), and has shown to accord well with perfusion studies using H15
2 O

PET (Ye et al., 2000). ASL offers faster scan times over tracer techniques, deposits no
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radiation dose to the patient, and is an easily repeatable addition to existing MRI routines

(T. R. Melzer, 2011). Little processing is required to extract absolute perfusion values

from these data.

A previous study conducted at the NZBRI explored the efficacy of ASL MRI data in the

construction of a disease-related network in PD, relating to motor and cognitive aspects

of the disease (T. Melzer et al., 2011). Areas found to be involved in the network included

decreases in posterior and lateral posterior parietal areas and dorsolateral prefrontal cor-

tex, with preserved perfusion in globus pallidus. Areas of decreased perfusion indicated

by the network were found to be significantly related to cognition as measured by MoCA

score (P=0.001, β = 0.41), but no other variables.

It will be useful to construct a spatial covariance network of perfusion using novel early-

phase PET and compare this to ASL-derived networks. Replication of the previous results

may validate the pre-processing chain and analysis used in this thesis, such that results

from early-phase PET imaging may be regarded as correct for this subject group.

1.2.3 Early-phase PET imaging using an amyloid tracer

Early-phase PET imaging involves obtaining PET data immediately following injection,

such that the uptake of the radiotracer is imaged. This contrasts with late-phase PET,

where much of the radioactivity has been eliminated and what remains is related to the

biological process of interest.

Early-phase PET has been seen to correlate highly with metabolic information obtained

using FDG PET in the same individuals (Hsiao et al., 2012). Given the high correlation

between CBF and glucose metabolism, it may be that this data is providing perfusion-like

information and could be used in a similar fashion to ASL MRI data in spatial covariance

network analysis. Should this hypothesis prove true, the clinical implications may be

highly significant as one tracer may be used to image multiple aspects of PD pathology

in one PET session. This is valuable in the case of limited scanner availability, and would

reduce cost and patient exposure to ionising radiation. Using a tracer that binds to

amyloid plaques for this purpose enables the investigation of amyloid deposition in PD

using late-phase PET.
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The aggregation of misfolded β-amyloid (Aβ) proteins into plaques within the brain is

a diagnostic hallmark of Alzheimer’s disease (AD), and has been implicated particularly

in early AD as a precursor to neuronal damage and cortical atrophy (Nordberg, 2004).

The deposition of amyloid in AD has been shown to precede cognitive impairment, and

may continue to accumulate as subjects move into the disease stage, namely memory

loss, cerebral atrophy and dementia (Villain, 2012). It is not much of a step to extend

this investigation of Aβ to include cognitive decline in PD. Amyloid deposition has been

shown to occur in PD-MCI and PDD, with a greater point prevalence in PDD (Petrou et

al., 2015).

The potential link of Aβ with cognition in PD will be investigated under the wider study

at NZBRI, and may provide another indication of dementia risk in PD. While outside the

scope of this thesis, the Aβ study nonetheless influences the choice of tracer used here in

order to achieve the clinical benefit of informative early and late-phase PET in the same

session.

1.2.3.1 Choice of amyloid PET tracer

Historically, the PET tracer of choice for imaging amyloid deposition has been [11]C Pitts-

burgh Compound B (PiB) (Klunk et al., 2004). For most practical applications, imaging

Aβ plaques using PiB PET is unfeasible due to the short half life of 11C (∼ 20 min-

utes), necessitating an in-house cyclotron for tracer production. Longer-lived fluorine-18

labeled radiotracers (half-life ∼ 110 minutes) have been developed that achieve compa-

rable levels of binding to Aβ plaques, and may be produced commercially off-cite and

delivered to the PET-scanning facility. There have been three such tracers labelled with

18F approved by the US Food and Drug Administration (FDA) for imaging Aβ plaques:

florbetapir, flutemetamol and florbetaben (Jeffrey, 2014). Florbetaben (FBB) in par-

ticular displays excellent linear correlation with global PiB standard uptake value ratio

(SUVR) in AD (r=0.97, p< 0.0001) with a similar effect size to PiB (Cohen’s d, Pib: 3.3;

FBB: 3.0)(Villemagne et al., 2012), and tracer binding matches well with Aβ distribution

given by post-mortem biopsy (T. J. Anderson, 2013). FBB may be readily produced and

transported in a timely manner from Cyclotek Pty Ltd in Melbourne, for use in PET

scanning at Southern Cross Hospital, Christchurch. Thus, FBB was the radiotracer of

choice for this study.
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1.2.3.2 Florbetaben pharmacokinetics

FBB is a fluorine-18 labeled stilbene derivative that has demonstrated high binding affinity

to Aβ plaques in the brain of AD patients (Sabri et al., 2015). FBB binds highly to

plasma proteins, with an unbound fraction of 1.6%, making this radiotracer well suited

for imaging arterial blood supply. Uptake within the brain is rapid, reaching a maximum

18F radioactivity concentration of ∼6% injected dose/L at 10 minutes post intravenous

injection of 300 MBq of FBB. PET imaging is thus conducted over the immediate 10

minutes post injection in an effort to image the initial radiotracer uptake within the brain

(early-phase).

FBB is eliminated from blood plasma with a mean biological half-life of ∼1 hour, and is

completely eliminated from the body within 24 hours post injection. The mean effective

radiation dose a typical patient will receive from administration of 300 MBq FBB is 5.8

± 0.42 mSv, which has been shown to be well tolerated (Sabri et al., 2015).



Chapter 2

Imaging principles

In this chapter, I will discuss the operational and physical principals behind the imaging

modalities used in this study, namely positron emission tomography (PET) and arterial

spin labeling magnetic resonance imaging (ASL MRI). Both modalities are employed

to obtain perfusion data, with the aim to compare the two and extract characteristic

perfusion networks relating to cognition and dementia risk in our subjects. ASL MRI

has been shown previously to yield networks of abnormal perfusion relating to cognitive

decline in PD-MCI(T. Melzer et al., 2011), thus this study determines if PET perfusion

imaging may yield comparable results within our subject group.

2.1 Positron Emission Tomography

Positron emission tomography (PET) is an imaging modality based on the detection of

annihilation coincidence photons, following injection of a positron-emitting tracer sub-

stance. Depending on the pharmaceutical attached to the radionuclide, the tracer may

be used to examine a variety of biologic functions and processes. In this case, the initial

up-take and flow of the amyloid tracer, [18F]Florbetaben (FBB), will be imaged immedi-

ately following injection to obtain the early-phase information. The scanner used in this

study is a GE Discovery 690 PET-CT scanner.

8
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Figure 2.1: Emission of two 511-keV photons by electron-positron annihilation following
positron emission by the radionuclide. Figure adapted from (Verel et al., 2005).

2.1.1 Principals of Operation

Annihilation coincidence photons are produced when a positron emitted from the decay

of a proton-rich radionuclide interacts with an electron, causing annihilation. This anni-

hilation converts the entire mass of the electron-positron pair into two 511-keV photons,

travelling in nearly-opposite directions. Positrons travel only very short distances in mat-

ter before annihilation occurs, thus detection of the position of the interaction provides

the approximate location of the tracer substance within the patient at the time of emis-

sion (see figure 2.1). Transverse images of the activity distribution within the patient may

then be reconstructed from the acquired data by the PET system computer. Annihila-

tion photons must escape the patient to be detected, and are thus affected by attenuation

and scatter that serve to reduce image quality. Modern PET scanners are almost always

coupled with x-ray CT systems to allow on-board attenuation correction, while energy-

discrimination and timing circuits attempt to separate true coincidences from random

coincidences and those affected by scatter (Bushberg et al., 2012, Chapter 19).

2.1.1.1 True Annihilation Coincidence Detection

The detector geometry encircles the patient and is designed to detect annihilation photons

produced at approximately the same time. The line connecting these detected photons is

termed the line of response (LOR), along which an annihilation interaction is presumed

to have occurred. Annihilation coincidence detection (ACD) thus establishes the trajec-

tories of detected photons without the use of collimation, avoiding the loss of sensitivity
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and reduced spatial resolution that occurs with collimated detector systems. However,

the detected LOR’s may provide inaccurate information as a result of scatter and random

coincidence detection. Figure 2.2 depicts true, scatter and random coincidence detection.

A true coincidence is given by the nearly simultaneous detection of two annihilation pho-

tons resulting from a single interaction, and gives the correct LOR. A scatter coincidence

is a true coincidence resulting from a single interaction, but gives an incorrect LOR as

a result of photon scatter within the patient shifting the apparent origin of the anni-

hilation photons. A random coincidence detection gives a false LOR as a result of the

nearly simultaneous detection of two annihilation photons produced from separate inter-

actions, mistakenly identified as coincidence photons. Scatter and random coincidences

thus reduce image contrast and increase statistical noise in PET data; to combat this,

PET systems use detectors capable of energy discrimination and highly accurate timing

circuits to detect true coincidence pairs.

Figure 2.2: True, scatter and random coincidence detection. Figure adapted from (Verel
et al., 2005).

2.1.2 PET Detector System

A typical PET detector system consists of several rings of detectors surrounding the

patient. Scintillation detectors are used in PET systems over gas-filled or semi-conductor

detectors, as these have comparatively low intrinsic efficiency for the detection of 511-

keV photons. Scintillation detectors generally consist of large scintillator crystals coupled

to several photomultiplier tubes (PMTs). Scintillation materials absorb the energy of

incident ionising radiation and re-emit it in the form of visible or ultraviolet light in a

process known as luminescence (Bushberg et al., 2012, Chapter 17). Luminescence occurs

as an electron drops from an excited energy state, provided by the incident 511-keV

photon, to a lower energy state, ideally releasing a photon of light with energy equal
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to the transition. The emitted photon is converted into electrical current and amplified

by the PMT electronics, and the location of the scintillation event determined from the

relative magnitudes of the signals produced by the PMTs. The accuracy of the signal

obtained by this detector is thus dependent on the many different components and the

various efficiencies of each component in detecting and converting the deposited energy

between forms.

The PMTs operate in pulse-mode such that each scintillation interaction is processed

separately from other interactions, yielding the time signal, deposited energy, and location

of each interaction. The scintillation material used in PET systems is chosen to give a high

detection and conversion efficiency for 511-keV photons, with a short decay time between

electron energy states, decreasing the dead-time at high count rates. The material is also

ideally transparent to it’s own emissions. High detection and conversion efficiency for 511-

keV photons is particularly important for use in timing circuits and energy resolution in

the PET system electronics. Historically, bismuth germanate (Bi4Ge3O12), abbreviated

BGO) has been the material of choice for PET scintillation detectors due to it’s high

density and high detection efficiency, but is now being passed over in favour of recently

developed inorganic materials with comparable detection characteristics and shorter decay

times. The material used in the GE Discovery 690 PET/CT Scanner is cerium-doped

lutetium yttrium oxyorthosilicate (Lu2Y2−xSiO4O, abbreviated LYSO). The light emitted

by the LYSO crystals is converted to an electrical signal and amplified by the PMTs. The

signal collected by each PMT is rejected or accepted according to an acceptable energy

window around the 511-keV annihilation energy, and passed through timing circuits which

generate a time signal for each pulse. Coincidence circuitry then determines coincidence

pairs and LOR’s based on this information.

The rate of random coincidence detection is dependent on the coincidence time window

τ and the actual count rates S1 and S2 at the corresponding detectors, given by:

Rrandom = τS1S2

At higher count rates, the rate of random coincidence detection increases and will decrease

the signal-to-noise ratio of the resulting images. In systems able to employ a sufficiently

small time window, considerations for time-of-flight (TOF) of emitted photons can be
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made. Without TOF information, the probability of interactions along the LOR is as-

sumed to be uniform. TOF information allows localisation of interaction events along the

LOR within a Gaussian distribution of width ∆x, reducing noise correlation between two

emission events (Surti, 2015). This serves to increase the SNR and reduce artifacts, and

is particularly useful for high count rates and when imaging larger volumes. In this study,

TOF corrections are made by the on-board scanner software for early-phase PET data to

due the very high count rates incident on the detector directly following injection.

2.1.2.1 GE Discovery 690 PET/CT detector components

The GE Discovery 690 PET/CT detector system consists of 24 concentric detector rings

81 cm in diameter, with a total detector width along the z-axis of 40 mm. 64 image

slices may be obtained simultaneously across a 157 mm axial field of view (FOV). The

entire detector system contains 13824 cerium-doped lutetium yttrium oxyorthosilicate

(Lu2Y2−xSiO4O, abbreviated LYSO) scintillation crystals. LYSO is an inorganic scin-

tillation material developed as an alternative to BGO, discussed previously. LYSO has

attenuation properties that are very similar to those of BGO, and also has a much higher

rate of decay from the excited state, providing prompt emission of light. The coincidence

time window for this system is 4.9ns, allowing corrections for TOF.

2.2 Magnetic Resonance Imaging - the basics

Magnetic resonance imaging (MRI) is an imaging technique based on the magnetic prop-

erties inherent to the nucleus of an atom. Protons and neutrons within a nucleus possess

nuclear ‘spin’, which can be understood as magnetic dipoles. In stable nuclei containing

equal numbers of protons and neutrons, these magnetic dipoles sum to zero and can-

cel out. When there are uneven numbers of protons and neutrons, a nuclear magnetic

moment exists about the nucleus, often visualised as an arrow vector with magnitude

and direction. Under the influence of an external magnetic field B0, a large number of

nuclei possessing random magnetic orientation will assume a non-random alignment in

either the direction of the applied magnetic field (parallel) or in the opposite direction

(anti-parallel). There will be a slightly higher proportion of spins aligned in the parallel

direction, thus producing a net magnetisation within the sample. By convention, the
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magnetic field B0 is applied in the z-direction of a three-dimensional cartesian coordinate

system; the net magnetisation in the direction of the applied magnetic field is thus de-

noted Mz and is known as the longitudinal magnetization. This magnetisation is maximal

under equilibrium conditions and is denoted M0, the equilibrium magnetisation.

An applied external magnetic field B0 also causes a magnetic spin to have a certain

precessional frequency about it’s axis, proportional to the strength of the magnetic field

and determined by the gyromagnetic ratio unique to each element. This relationship may

be written as:

ω = γB0 (2.1)

where ω is the resonant or Larmour frequency and γ is the gyromagnetic ratio (for hydro-

gen, ω = 127.7 MHz at 3T, γ = 42.57 MHz T−). Equation 2.1 describes the behaviour

of a magnetic spin within an external magnetic field, and is thus the key relationship

underpinning MRI (T. R. Melzer, 2011).

The net magnetisation of spins within a magnetic field is not sufficient to produce signal in

MR. To obtain signal, the net longitudinal magnetisation must be tipped into the trans-

verse plane. Application of a radio frequency (RF) electromagnetic pulse perpendicular

to B0 and tuned to the resonant frequency promotes spins from the lower energy parallel

direction to the higher energy anti-parallel direction, and causes brief phase coherence

(Bushberg et al., 2012). This phase coherence generates a perpendicular magnetisation

vector rotating at the applied RF frequency, known as the transverse magnetisation Mxy.

Immediately following a 90◦ RF pulse, Mz is at a minimum and Mxy is at a maximum.

The gradual return of the excited spins to equilibrium, where Mz is maximal and Mxy

is zero, results in the emission of energy equal to the energy of the applied RF pulse.

This energy emission is detected by receiver coils and generates the all-important MR

signal. The rate at which the transverse and longitudinal magnetisation decay occur are

dependent on the structural and magnetic characteristics of the sample, and enable the

large amount of tissue selectivity available using MR. These characteristics determine the

so-called T1 and T2 relaxation times of tissues, and relate to longitudinal magnetisation

recovery and transverse magnetisation decay respectively.
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2.2.1 T1 and T2 relaxation

T1: spin-lattice

Immediately following the excitation pulse, longitudinal magnetization Mz will begin to

recover as a result of excitation energy being released from the spin back to the lattice of

molecules surrounding it; it is thus termed spin-lattice relaxation. T1 is the time taken

for the exponential recovery of Mz to reach 63% of equilibrium following a 90◦ excitation

pulse. Spin-lattice relaxation is highly dependent on the molecular structure and com-

position of tissue; long T1 times are given by dense structures and watery fluids, while

viscous fluids possess the shortest T1 times. The recovery of longitudinal magnetisation

may be described by the following equation (Brown et al., 2014):

Mz = Mz(0)e
− t/T1 +M0[1− e

− t/T1] (2.2)

where Mz(0) is the longitudinal magnetisation at the time of the excitation pulse and t

is the elapsed time from the excitation pulse.

T2: spin-spin

The initial transverse magnetisation Mxy induces a damped sinusoidal signal in the re-

ceiver coil, known as the free induction decay (FID) envelope. T2 relaxation is the time

taken for the FID envelope to exponentially decay to 37% of the peak level following the

excitation pulse. Transverse magnetisation decay occurs due to macromagnetic inhomo-

geneities in the local magnetic field of the tissue causing the excited spins to gradually

dephase, thus earning the moniker, spin-spin relaxation. The decay of transverse mag-

netisation due to T2 effects may be described by the following equation (Brown et al.,

2014):

Mxy = Mxy(0)e
− t/T2 (2.3)

Dephasing of spins occurs faster in tight structures able to support local magnetic field

variations, and slower in free moving amorphous structures. Thus, dense structures such

as bone exhibit very short T2, while fluids such as cerebrospinal fluid (CSF) exhibit long

T2. Dephasing may also be caused by inhomogeneities in the applied magnetic field B0,
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Figure 2.3: T1 and T2 decay for the same tissue. T1 recovery is on the order of 5-10 times
longer than T2, although they both occur simultaneously. Figure adapted from (McRobbie

et al., 2003).

characterised by the time constant T’. The transverse magnetisation decay constant due

to both intrinsic and extrinsic inhomogeneities is termed T2*, and is always shorter than

T2. T2* is related to T2 and T’ by

1

T2∗
=

1

T2
+

1

T2′
(2.4)

T1 is typically on the order of 5 to 10 times longer than T2 (see table 2.1); the difference

in decay time of longitudinal and transverse magnetisation in the same tissue is depicted

in 2.3. While both longitudinal recovery and transverse decay occur simultaneously, Mxy

can be seen to decrease significantly faster.

The tuning of various imaging parameters in an MR pulse sequence makes use of these

differences in the T1 and T2 constants of different tissues in order to obtain the desired

tissue contrast.

Tissue T1 (ms) T2 (ms)

Grey matter 1820 100
White matter 1084 70
Cerebrospinal fluid 4163a 500b

Fat 371 133
Blood 1932 275

a. Value retrieved from (Lin et al., 2001)
b. Value retrieved from (Piechnik et al., 2009)

Table 2.1: Approximate values for T1 and T2 at B0 =3T and 37◦ (Stanisz et al., 2005).
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2.2.2 MRI pulse sequence parameters

There are many different pulse sequences used in MRI to emphasise differences in proton

density, T1 times, and T2 times of tissues. There are several important parameters

employed to this effect that vary depending on the imaging objective.

The repetition time (TR) is the period of time between excitation pulses, during which T1

recovery and T2 and T2* decay occur. The length of TR varies depending on the pulse

sequence employed, and may be on the order of milliseconds to thousands of milliseconds.

The echo time (TE) is the time between the excitation pulse and the peak amplitude of

the FID echo. The echo is produced by applying a 180◦ inversion pulse at TE/2, causing

rephasing of the spins and subsequent regrowth of the FID envelope, producing an ‘echo’

with peak amplitude at time TE. This is known as a spin echo pulse sequence (figure

2.4). Some pulse sequences use magnetic field gradients in place of an inversion pulse to

produce an echo; in these sequences, a negative magnetic field gradient applied directly

after the 90◦ RF pulse causes rapid loss of phase coherence, which is then reversed by

switching the polarity of the applied gradient. When the effects of the negative gradient

have been completely reversed by the positive gradient, an echo is produced; however,

this and subsequent echoes will decay exponentially according to T2*, as the gradients

do not correct for the effects of intrinsic and extrinsic magnetic field inhomogeneities (T2

and T2* effects). This sequence is known as a gradient echo sequence.

The inversion time (TI), employed in inversion recovery sequences, is the time between

the 180◦ inversion pulse and a 90◦ readout pulse that converts the recovered longitudinal

magnetisation to transverse magnetisation. Subsequently, an additional 180◦ pulse is

required at TE/2 to refocus the transverse magnetisation and generate the echo of the

readout pulse. Careful selection of the TI may be used to nullify the signal of certain

tissues, and is selected according to the T1 relaxation time of the undesired tissue.

2.2.3 Spatial localisation

MR signal localisation is achieved through the use of magnetic field gradients superim-

posed over the main field B0, that induce position-dependent changes in precessional

frequency and phase of the spins within that gradient. Magnetic field gradients are pro-

duced within the magnet bore by a 3-axis gradient system (figure 2.6), wherein three
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Figure 2.4: Spin echo pulse sequence diagram, demonstrating the repetition time TR
between excitation pulses and the echo time TE. A 180◦ pulse is applied at time TE/2 to

produce the echo at TE. Figure adapted from (T. R. Melzer, 2011).

Figure 2.5: Gradient pulse sequence diagram, demonstrating the creation of an echo using
reversed polarity magnetisation gradients. The magnetisation gradients decrease or increase
the precessional frequency of the spins depending on their spatial position within the gradient,
causing rapid loss of phase coherence. Phase coherence is re-established using a magnetic
field gradient of reversed polarity applied for an equal amount of time, producing an echo.

Figure adapted from (T. R. Melzer, 2011).

magnetic coils directed along each of the x, y and z directions produce magnetic gradients

Gx, Gy and Gz, which spatially modify the magnetic field within the bore. The magnetic

field strength in the z-direction experienced by a spin at position (x,y,z) within this net

gradient is thus (T. R. Melzer, 2011):

B̄ = (B0 +Gxx+Gyy +Gzz)ẑ (2.5)

This is useful, as the position of spins within a gradient may be determined by their

resultant change frequency and phase. There are three gradients applied over the course

of a pulse sequence; the slice select gradient (SSG), the frequency encode gradient (FEG)

and the phase encode gradient (PEG).

Slice select gradient - Gz

The slice select gradient is applied concurrently and in the same direction as the RF
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Figure 2.6: Orientation of magnetic gradient coils and main magnetic coil within an MR
bore. Figure adapted from (Bushberg et al., 2012).

excitation pulse to select an imaging slice in the z-direction. Application of Gz causes a

shift in resonant frequency of the spins in the z-direction following the linear variation of

the SSG. Given that the RF pulse confers energy only to those spins precessing at the

defined centre frequency, the frequency shift will result in spin excitation limited to a

specific slice within the SSG. The following equation describes the spatial dependency of

the spin resonant frequency (MHz T−1) within the SSG (McRobbie et al., 2003):

f(z) = γB(z)

= γ(B0 + z ·Gz) (2.6)

The width of the slice is determined by the strength of the magnetic gradient across the

field of view and the bandwidth (BW) of the excitation pulse:

width =
BW

γGz
(2.7)

Thus the same slice width may be achieved using a narrow BW as a wide BW, by altering

the SSG strength accordingly. A narrow bandwidth is generally desired, due to the inverse

relationship of bandwidth with signal to noise ratio (SNR ∝ 1√
BW

). However, the wide

slice widths required to image a desired volume would necessitate a low gradient strength,

which may result in chemical shift artifacts (Bushberg et al., 2012). The width of the SSG
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is thus a matter of trade-off between the desired SNR and the propensity for chemical

shift artifacts in the image volume.

Frequency encode gradient - Gx

The frequency encode gradient, or readout gradient, is applied perpendicular to the SSG

during the growth and decay of the induced echo. Either of the orthogonal directions may

be chosen, but here it is defined in the x-direction as GX . The FEG causes the precessional

frequency of the spins within the selected slice to vary according to their position on the

x-axis. Acquiring the signal of the echo simultaneously with application of the readout

gradient thus assigns spatial information in the x-direction to detected signal intensities.

Phase encode gradient - Gy

Lastly, the phase encode gradient induces a frequency shift in the y-direction, resulting

in a spatially dependent phase-shift when the PEG is turned off and all spins revert to

the resonant frequency. Applied prior to signal acquisition, this enables readout of spatial

information in y based on the degree of phase shift experienced by the spins. A ‘rewinder’

gradient of opposite polarity is generally applied after signal acquisition to re-establish

phase conditions prior to the next excitation. Multiple PEG steps may be applied with

incremental changes in field strength to provide spatial information at different points

within the field of view (FOV) (Bushberg et al., 2012).

2.3 Factors affecting image quality in MR

Spatial resolution, SNR and contrast to noise ratio (CNR) go hand in hand in terms of MR

image quality, and a great deal of parameter juggling is often required to find the optimum

balance. SNR is generally regarded as the greatest limiting factor in MRI, dependent on

the choice of pulse sequence, voxel volume, field of view (FOV), slice width, phase and

frequency encode matrix size, number of signal averages, RF bandwidth and receiver

coil quality. Many of these parameters are also directly related to spatial resolution and

contrast sensitivity.

It is easiest to examine the interplay of these factors by looking at the maths involved.

The CNR of two tissues A and B in a sample image is dependent on noise in the image

and the difference in signal intensities SA and SB, such that:
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CNRAB =
SA − SB
noise

Both CNR and SNR are thus inherently dependent on the factors determining signal and

noise in MR. The signal achievable in a particular sequence is primarily dependent on

spatial resolution, and is also scaled by a relaxation factor Fsequence specific to the pulse

sequence employed. The signal intensity in MR is therefore given by:

signal ∝ ∆x ·∆y ·∆z · Fsequence (2.8)

The relaxation factors for spin echo and gradient echo pulse sequences (used in this study)

are as follows (McRobbie et al., 2003):

FSE ∝
[
1− e(− TR/T1)

]
· e(− TE/T2) (2.9)

FGE ∝
sinα · (1− e(− TR/T1) · e(TE/TE∗))

1− cosα · e− TR/T1
(2.10)

Both of these factors are dependent on the acquisition parameters TE and TR and the

tissue characteristics T1 and T2. When optimising parameters in the pursuit of image

quality, TE and TR are usually decided upon first, as they relate directly to the tissue

characteristics. The T2* dependence of FGE is a consequence of using applied gradients

instead of a 180◦ inversion pulse to produce an echo, as these do not eliminate transverse

magnetisation relaxation caused by magnetic field inhomogeneities.

Noise in MR is proportional to the RF bandwith and inversely proportional to the number

of excitations (NEX), the frequency encode matrix size (NFE), and the phase encode

matrix size (in two directions for 3D, NPE1 and NPE2). Thus, image noise may be

expressed as (McRobbie et al., 2003):

noise ∝
√
BW√

NEX ·NFE ·NPE1 ·NPE2

(2.11)

Dividing equation 2.8 by equation 2.11 yields the SNR:

SNR ∝ ∆x ·∆y ·∆z · Fsequence ·
√
NEX ·NFE ·NPE1 ·NPE2√
BW

(2.12)
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The SNR can be improved by increasing the voxel size, decreasing the number of exci-

tations and the number of frequency and phase encode steps, or by decreasing the RF

bandwidth. However, increasing the SNR by continuing to change these parameters ceases

to be beneficial past a certain point, as image artifacts may appear due to other factors.

2.4 Relevant MRI techniques

Pulse sequences

The pulse sequences relevant to this thesis are gradient-recalled echo (GRE) and proton-

density weighted fast spin echo (FSE) sequences. These sequences are similar, but differ

in that GRE uses applied gradient fields to generate transverse magnetisation rather than

a 180◦ RF inversion pulse.

A modified GRE sequence is used to produce the T1-weighted images for spatial co-

registration within subject, while FSE sequences are used in ASL to produce images of

labelled arterial blood water and un-labelled controls; the difference between the labelled

and control images is then used to calculate a quantified measure of cerebral blood flow.

2.4.1 Structural T1 weighted MRI

T1-weighted acquisitions such as 3D spoiled gradient recalled echo acquisition (3D SPGR)

typically have a short TR and short TE, to maximise the differences in T1 characteristics

of tissues and minimise the differences in T2 characteristics (see figure 2.7). Due to the

short TR, T2* effects dominate and allow a build up of transverse magnetisation to occur

in tissues with long T2 times. These steady-state contributions are prevented in 3D

SPGR by introducing a semi-random phase change in subsequent RF excitation pulses

in the acquisition. This shifts the residual transverse magnetisation components out of

phase, preventing build up of the transverse steady-state signal and effectively removing

T2* effects from the acquisition(Bushberg et al., 2012, Chapter 12). This leaves a T1-

weighted image with 1 mm isotropic resolution and good contrast rendition of grey and

white matter acquired over a very short TR, with very low contribution from CSF.
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Figure 2.7: T1 weighting is achieved using a relatively short TR to maximise signal differ-
ences from T1 characteristics, and a short TE to minimise transverse decay. Figure adapted

from (Bushberg et al., 2012).

2.4.2 Proton density weighted MRI

Proton density weighted MR imaging highlights the differences in the number density of

protons in magnetised tissues. This is done by minimising the differences in signal caused

by the T1 and T2 characteristics of the different tissues in the imaging slice (see figure

2.8). Choosing a long TR allows the longitudinal magnetisation to recover for all tissues,

thus reducing the effect of T1 characteristics. Choosing a short TE minimises T2 and T2*

effects as it does not allow enough time for significant transverse magnetisation decay to

occur.

Figure 2.8: Proton density weighting is achieved using a long TR to minimise signal differ-
ences from T1 characteristics, and a short TE to minimise T2 (transverse decay) influence.

Figure adapted from (Bushberg et al., 2012).
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2.4.3 Arterial Spin Labelling

Arterial spin labelling (ASL) has previously been mentioned as a non-invasive method

for quantitative measurement of perfusion, eliminating the need for potentially harmful

exogenous or intravenous radiotracers such as those used in PET imaging (Dai et al.,

2008).

ASL methods acquire perfusion data through the use of external RF and magnetic field

gradient pulses applied across a chosen labelling plane. The RF and gradient pulses invert

the magnetic spins of water molecules in the feeding arteries within the labelling plane,

which then flow into the imaging volume. The longitudinal magnetisation of the tagged

blood water entering the image volume acts in the opposite direction to the non-labelled

tissue magnetisation M0, causing a reduction of the longitudinal magnetisation in that

region. Areas of high perfusion thus see a greater reduction in signal. The difference

between this tagged image and a proton-density weighted image acquired without any

labelling is used to produce a quantified measure of the cerebral blood blow through the

volume. The quantification process will be detailed further in Chapter 4.

There are several methods in use to carry out ASL, which mainly differ in the way the

in-flowing blood water is labelled. Pulsed ASL (PASL) uses a single RF pulse to invert the

the spins in the blood water volume that will flow into the imaging field, while continuous

ASL employs a continuous RF field across the labelling plane, inverting spins through flow-

driven adiabatic passage. Continuous labelling offers better signal-to-noise ratio (SNR)

than pulsed ASL, but suffers from reduced efficiency, lack of multi-slice imaging capability

and the mechanical limitations of standard MR hardware preventing continuous-mode

operation of RF pulses (Dai et al., 2008). This study employs a modification of CASL

using pulsed RF and gradient fields (pseudo-continuous ASL), and is able to achieve the

flow-driven adiabatic inversion strategy without the need for specialist hardware.

There are some disadvantages associated with ASL, including relatively low signal acquisi-

tion over a long scan time and large voxel sizes, resulting in a relatively low SNR achievable

using ASL. ASL is also sensitive to state changes (opening/closing eyes, caffeine ingestion

etc.), which may introduce variation across the subject data. This variation cannot be

corrected for in this study as information regarding such state changes was not acquired.

Additionally, vascular differences between subjects may result in incorrect timing of signal

acquisition when using a constant delay time between labelling and acquisition. These
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factors, while not inconsiderable, do not outweigh the potential benefits of non-invasive

perfusion imaging using MRI.
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Study Design and Participants

Why study PD-MCI?

Patients with worsening cognition in the category of PD-MCI are considered to have high

risk of conversion to PDD, however dementia onset is still variable within this group. It

is possible that those at greater risk of conversion within the greater PD-MCI group may

display certain pathological differences, evidenced by changes in cerebral blood flow. Par-

ticipants were therefore selected from the wider progression study based on the fulfilment

of the requirements for mild cognitive impairment, following completion of a compre-

hensive neuropsychological battery. These tests across five cognitive domains determine

whether the individual has PD with normal conition (PD-N), mild cognitive impairment

(PD-MCI) or dementia (PDD). Only those individuals who fell into the PD-MCI cate-

gory, as defined by the Movement Disorders Society Task Force (M DSTF) Level II criteria

(Litvan et al., 2012), were included in the initial cohort, however the study was extended

to include PD-N and PDD patients after additional funding was secured. This chapter

gives an overview of the methods employed at the NZBRI to determine the subject group

and the overall study design.

3.1 Neuropsychological battery

The five cognitive domains examined are executive function, attention and working mem-

ory, learning and memory, visuo-spatial performance and language. The results of each

25
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test are given in terms of z-score, or the number of standard deviations of the result from

the mean in age, education, and gender normative data for that test.

Impairment on neuropsychological tests is demonstrated if the patient scores at least

1.5 standard deviations (SDs) below normative data, as per the methods described by

(Wood et al., 2016). PD-N is indicated if a patient does not meet this impairment criteria

from the results of neuropsychological testing, and does not report significant change in

cognition. Scoring 1.5 SDs below normative data in two tests within a single domain is

sufficient to classify the patient as PD-MCI. Significant impairment sufficient for diagnosis

of PDD is demonstrated if the patient scores at least 2 SDs below normative data in any

single test within two of the five domains, and also has impaired daily living as indicated

by their significant other. An individual may satisfy the impaired test requirements for

PDD but still be classified as PD-MCI if they can still function in daily life unassisted,

however this is unlikely. The impaired daily living tests consist of questions answered by

the individual’s significant other.

The tests included within each domain are given in table A.1. Secondary measures of

cognition are provided by the Montreal Cognitive Assessment (MoCA, a global cognitive

screen), the Dementia Rating Scale (DRS-2), and the Alzheimer’s Disease Assessment

Scale - cognition (ADAS-Cog) tests, while measures of functional and psychiatric sta-

tus are provided by Instrumental Activities of Daily Living (IADL), Clinical Dementia

rating (CDR) status, Global Deterioration Scale (GDS), Parkinson’s Disease Question-

naire (PDQ-39), Neuropsychiatric Inventory (NPI) and Geriatric Depression Scale (GDS)

(T. J. Anderson, 2013).

3.2 Study participants

Inclusion Criteria

1. Diagnosis of PD-MCI at baseline, as defined by the level II M DSTF criteria (Litvan

et al., 2012):

a) PD according to the UK Brain Bank Criteria;

b) Gradual decline in cognitive ability reported by patient or caregiver, or ob-

served in serial clinical testing;
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c) Cognitive deficits on the neuropsychological test battery consistent with mild

cognitive impairment as above;

d) Cognitive deficits not sufficient to interfere significantly with functional inde-

pendence;

2. Community living with a significant other, who can accompany the patient as an

informant.

Exclusion Criteria

Patients were initially excluded from participation in the study based on fulfilment of any

of the following criteria (T. J. Anderson, 2013):

1. PD-N at baseline.

2. PDD at baseline, as defined by the MDSTF criteria.

3. Dementia with Lewy Bodies (DLB).

4. Presence of other explanations for cognitive impairment.

5. Other PD-associated comorbid conditions that, in the opinion of the clinician, sig-

nificantly influence cognitive testing.

6. Prior neurosurgery as treatment for PD.

Note that exclusion criteria 1) and 2) were removed some time after scanning began due

funding being awarded to include PD-N and PDD. The inclusion of PD-N and PDD

patients in the study will provide a better representation of the full cognitive spectrum

present in PD.

Possible participants were recruited from an existing group of PD patients that had pre-

viously taken part in a longitudinal study at the NZBRI. At that time, 85 were classified

as PD-N, 54 were PD-MCI and 46 were PDD. The 46 PDD patients were automatically

excluded, while the PD-N and PD-MCI patients were re-screened using the MoCA test.

Those who scored < 28 (100% sensitivity for PD-MCI; 40% specificity) were invited to

undergo comprehensive neuropsychological testing to evaluate cognitive status. Addi-

tional patients were recruited from public and private PD clinics using the same screening

process. Following testing, those who met the inclusion criteria as defined above were
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invited to participate in the study. Table 6.1 in the results gives the demographics of the

50 subjects included in this study.

The results of the neuropsychological testing battery for all 50 participants are included

in table A.2. This table summarises each domain as an average z-score. The average score

across all five domains represents the overall cognitive ability of the participant, hereafter

referred to as the cognitive z-score.

3.2.1 Parkinson’s disease dementia risk score

Conversion to dementia in PD was previously investigated in a longitudinal study con-

ducted at the NZBRI, following 119 PD patients over 4 years (T. Anderson et al., n.d.).

Over this time, 26 subjects developed dementia, with age, MoCA, Stroop Interference,

Map Search, and Trails B found to be most predictive of conversion. These assessments

were used in a Bayesian probabilistic Gaussian process model to give individualised prob-

abilities of developing dementia within 4 years, forming the Parkinson’s disease dementia

risk score (PDDRS). The PDDRS displayed a high sensitivity for discriminating between

converters and non-converters to dementia within 4 years (AUC=0.92, 95% CI 0.85-0.98).

PDDRS scores are formed for all study participants taking part in the longitudinal con-

version study at the NZBRI. This thesis determines if any correlation exists between

perfusion changes in the subject group and the PDDRS score, such that the presence

of specific regional changes may be used to evaluate the risk of imminent conversion to

dementia in future subjects.
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3.3 PET and MRI imaging protocols

FBB PET imaging protocol

Amyloid PET scanning was performed at Southern Cross Radiology in Christchurch us-

ing a GE Discovery 690 scanner. [18F]Florbetaben (FBB) was employed to image both

dynamic brain perfusion and amyloid deposition. Approximately 6.7 GBq of FBB was

produced in Melbourne by Cyclotek Pty Ltd and flown to Christchurch for scanning, with

a remaining activity of ∼1 GBq, sufficient for three patient doses. Participants underwent

10 minutes of scanning acquired in list mode (continuous acquisition) immediately follow-

ing injection of 300 MBq (± 20 MBq) of FBB. The raw data was reconstructed using an

iterative time of flight plus SharpIR algorithm. A low dose CT scan acquired using the

GE scanner immediately prior to PET acquisition enabled attenuation correction of the

PET data by the on-board GE software.

T1-weighted structural MRI protocol

Structural brain images were acquired using a T1-weighted, 3D spoiled gradient recalled

echo acquisition (3D SPGR, echo time = 2.8 ms, repetition time = 6.6 ms, inversion time

= 400 ms, flip angle = 15◦, acquisition matrix = 256×256×170, field of view = 250 mm,

slice thickness = 1 mm, voxel size = 0.98× 0.98× 1.0 mm3).

The structural T1-weighted images were used as a gold standard to which all other images

in the study were co-registered. As such, these images maintained their initial orientation

throughout pre-processing to ensure this co-registration was consistent across all acquired

and created images. Accuracy in this step was vital, as any errors in co-registration may

have a significant effect on the results of statistical analysis.

ASL MRI perfusion imaging protocol

Quantified whole brain perfusion was acquired by removing background contributions

(proton density weighted images) from spiral, fast spin echo images prepared using psuedo-

continuous arterial spin labelling (repetition time = 6 s, echo spacing 9.2 ms, post-labelling

delay = 1.525 s, labelling duration = 1.5 s, eight interleaved spiral arms with 512 samples

at 62.5 kHz bandwidth and 30 phase encoded 5mm thick slices, NEX = 5, total scan time

= 6 min 46 s, units: ml/100 g/min) (Dai et al., 2008). These images were acquired with

the subject at rest with their eyes closed.
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3.4 Image Pre-processing

FBB PET

The summed 10 minute perfusion images, corrected for time-of-flight and attenuation

corrected, were co-registered to the structural MR (3D SPGR) images using SPM12, a

statistical parametric mapping software package in Matlab1. The SPGR image was seg-

mented into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) tissue

segments. Structural SPGR images were then warped into standardised space using DAR-

TEL (Ashburner, 2007). The images were then smoothed using an 8mm FWHM Gaussian

kernel. A possible measure of grey matter perfusion was provided by the standard uptake

value ratio (SUVR) image, created by dividing all global grey matter voxel values by the

mean of the cerebellar grey matter voxels. SUVR images normalised to global grey matter

were also created for use in direct voxel by voxel comparison of FBB derived perfusion

and ASL derived perfusion.

ASL MRI

Quantified ASL perfusion images of cerebral blood flow were co-registered, normalised,

and smoothed using parameters derived from the structural MRI processing, following

the same protocol as the FBB-derived perfusion preprocessing. The mean perfusion mea-

surements for select cortical and sub-cortical grey matter regions were extracted for use

in further analysis.

3.5 Statistical analysis

Linear regression

All voxel-wise comparisons and linear regression were performed using a permutation-

based inference tool for non-parametric thresholding. For each contrast, the null distribu-

tion was generated over 5000 permutations at alpha level α <0.05, correcting for multiple

comparisons using threshold-free cluster enhancement (Winkler et al., 2014). Linear re-

gression was employed for both imaging modalities using cognitive z score and PDDRS

as regressors, correcting for age and sex. The results of this linear regression were used

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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to identify whether any significant correlation with cognition or PDDRS exists for either

FBB or ASL derived perfusion, and to determine the validity of further enquiry into these

measures using network analysis.

Voxelwise comparison

Voxel-based multiple linear regression was used, following the method described above, to

assess the spatial association between the two perfusion modalities. This model was used

to determine the extent of the spatial association between FBB-derived perfusion and

ASL-derived perfusion should it exist. Extracted mean voxel values within select cortical

and sub-cortical regions were used to verify the results of the voxelwise comparison.

Network analysis

Voxel-based principal component analysis was used to identify sources of grey matter

perfusion variation in the subject data. Logistic regression methods were used to isolate

any components shown to correlate significantly with cognition or PDDRS, as per the

method described by (Spetsieris et al., 2009). Principal components that were significantly

associated with clinical measures of cognition and dementia risk (p< 0.05) were used in

linear combination to create a cognition-related perfusion network. The reliability of

these networks was assessed using a bootstrap estimation procedure and leave-one-out

cross validation.
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Pre-Processing Methods

Before any analysis could take place, the PET and MR raw image data were pre-processed

to bring all images into the same normalised space, accounting for individual differences

in brain shape, size and location in the scanner geometry. The pre-processing steps also

attempted to reduce the effect of patient movement during image acquisition.

The raw PET and MRI data for each individual was sent in DICOM format to the NZBRI

DICOM store from the servers at Hagley Radiology. Each individual has a PET series

number and an MRI series number; these were kept together with the individual’s clinical

and neuropsychological testing results in an excel spreadsheet. All incoming MRI and

PET data was backed up on CD, a dedicated hard-drive, and the NZBRI servers.

4.1 Statistical Parametric Mapping

Pre-processing of PET and MR images for analysis was carried out using SPM12, the most

recent Statistical Parametric Mapping software package in MATLAB, designed specifically

for the analysis of brain imaging data sequences. The SPM PET graphical user interface

(GUI) includes options tailored specifically for spatial pre-processing of PET/MRI images.

This GUI can be found in Appendix A. These functions can be run in batches using the

SPM Batch Editor and saved for later use. The batches may also be called in MATLAB

using the matlabbatch function.

32
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4.1.1 DICOM to NIFTI conversion

Once retrieved from the Hagley workstation, the relevant DICOM files were first converted

to single file NIFTI (.nii) format, which contains both image and header information

for that individual. This is the format that was used exclusively in pre-processing and

analysis. This could be done using DICOM Import in SPM12, or by using the built-

in dcm2nii application in the Linux window. The DICOM Import routine is designed to

convert a set of DICOM files into an SPM compatible 3D image volume, either in separate

img and hdr files or as a single NIFTI file. DICOM to NIFTI conversion using SPM was

not always reliable for this study dataset, perhaps as a result of the complexity of the

DICOM image format or the use of image fields set by the scanner manufacturer which

are not recognised by this version of SPM. For this reason, the dcm2nii application was

used to import and convert the patient data to NIFTI format in this study. While this

method requires manual file selection, it is much more reliable, and also gives the option

of converting to 4D image volumes.

4.1.1.1 Naming Conventions

The relevant PET and MR images for this study were identified by calling specific elements

of the DICOM header information using MATLAB. Header information was obtained

using the function gems dicominfo.m. The header element SeriesDescription gave the

name of the series as set by the technician prior to acquisition. The required PET series

was named ‘10 Min TOFAC Brain’ and gave the average 10 minute attenuation corrected

image, corrected for time-of-flight. The required MRI series were named ‘3D SPGR’, ‘3D

ASL (non contrast)’ and ‘Cerebral Blood Flow’. Conversion of the 3D ASL DICOM files

to NIFTI format yielded two separate images, namely the labelled ‘difference’ image and

the non-labelled ‘control’ image. All imported images were checked visually and labeled

for each individual according to their PET and MRI series numbers.

Using the series numbers 15434 (PET) and 38356 (MRI) as an example, the naming

conventions were as follows:

• 10 Min TOFAC Brain - ‘perf tofac 15434.nii’

• 3D SPGR - ‘s 38356.nii’
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• 3D ASL - ‘control 38356.nii’, ‘diff 38356.nii’

• Cerebral Blood Flow - ‘cbf 38356.nii’

Correct and accurate was important to allow MATLAB scripts to be used to carry out pre-

processing. The PET and MR images were placed in dedicated folders for pre-processing,

ordered by series number.

4.1.2 Downsampling and Unified Segmentation

The structural MR images were interpolated to a higher resolution by the scanner and

therefore required to be downsampled to the acquisition resolution (256×256×170). This

was done using MATLAB, and creates a ‘ds’ image against which all other images are

spatially aligned. Segmentation of the ‘ds’ image can then occur.

Unified Segmentation in SPM segmented, bias corrected and spatially normalised each

downsampled structural brain image according to pre-defined tissue probability maps

and generalised registration models created from averaging many structural brain images.

Tissue probability maps (A.4) depicting grey matter, white matter, cerebrospinal fluid,

bone, skin and air were imported into the routine and a non-linear deformation field was

applied to best fit the map to each individual. Generalised registration information for

each tissue was included to provide prior information on the tissue locations based on

images from other subjects, rather than assuming stationary prior probabilities based on

mixing proportions (Ashburner et al., 2015).

Segmentation was carried out separately for each individual, with one input ds image per

segmentation. The routine was defined to output a native tissue class image for each of the

selected tissues, with the prefixes ‘c1ds’ to ‘c5ds’. These are the images of the distribution

of each tissue type specific to the input ‘ds’ image and thus retain the same dimensions.

For grey and white matter, these images were also given in a form that was later used

within the Dartel toolbox in spatial normalisation (‘rc1ds’ and ‘rc2ds’ for grey and white

matter respectively). The ‘dartel imported’ images provided the first estimation for size

to use in the normalisation of PET FBB to MRI scans (121x145x121).
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4.1.3 Coregister - Estimate

Before any statistical analysis could occur, all images across multiple modalities had to be

brought into alignment. The fist step in this process was coregistration. Within-modality

coregistration was relatively simple, and was achieved using a least squares approach to

optimise a 6 parameter rigid body spatial transformation (Ashburner et al., 2015). The

6 parameters of the affine transformation were estimated to best match each successive

input image to the selected reference image. The ‘goodness of fit’ of the transformation

in spatially matching the images was based on an objective optimization function or

matching criterion, in this case the mean squared difference between the images. For

between-modality registration, a rigid body transformation within subject required more

complex matching criterion. The SPM routine Corgister - Estimate used a registration

method based on information theory introduced by Collignon et al. (1995). This method

employs mutual information (MI) of voxel pairs as matching criterion, where MI is a

measure of the mutual dependence of two variables and is assumed to be maximised when

the two images are in register. The MI, also known as Shannon information, of two

random variables X and Y is given by:

S(X;Y ) =
∑
x,y

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(4.1)

where p(x,y) is the joint probability distribution function of intensities of X and Y, and

p(x) and p(y) are the marginal probability distribution functions of intensities of X and Y

respectively. S(X,Y) is zero when the two images are completely independent of each other

and maximised when they are completely inter-dependent, such that there exists a one-to-

one mapping of the voxels in each image. This can also be thought of as zero dispersion

between the 2D grey-value histograms of the common voxel pairs of each image when

the images are in perfect register (Collignon et al., 1995). In multi-modality registrations

the images will rarely be completely inter-dependent. The MI objective function was

maximised by 6 rigid body parameters determined using Powell’s method for optimisation

(Press, Teukolsky, Vetterling, & Flannery, 1992). In order to obtain faster convergence,

the images and the histogram were smoothed slightly by the routine to make the cost

function as smooth as possible (Ashburner et al., 2015). This also reduced the chance of

the algorithm getting caught within local minima.
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There are three input options that designate the reference image and the images to be

brought into register. The ‘reference’ image remains fixed in it’s original orientation, while

the ‘source’ image is spatially transformed to best fit the reference image. ‘Other’ images

may be selected to remain in alignment with the source image. The T1-weighted SPGR

images were used as the reference images for co-registration, to which all other images

were aligned. Coregistration was run separately for each source image, of which there were

two: the PET 10 minute TOFAC image and the control image obtained by ASL MRI. The

CBF and difference images were defined as ‘other’ images to remain in alignment with the

control image. The routine realigned the original images rather than creating new ones,

and registration parameters were stored in the headers of the coregistered images.

4.1.4 Dartel Normalisation and MNI space

Dartel (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) is

a method for between-subject registration based on the application of a single computed

flow field for each individual, considered to be constant in time. The Dartel algorithm

takes one or two images, in this case the grey and white matter Dartel images created

during segmentation, and warps them to a set of standard brain templates. The defor-

mation applied to the images is output as a flow field that may be used to warp the scans

for that individual to normalised space, in this case the average brain coordinate system

defined by the Montreal Neurological Institute, known as MNI space. The MNI standard

brain was defined by averaging a large number of MRI scans of normal controls in order

to create a standard space that was representative of the population. The previously used

standard brain was defined from the dissection of a single human brain by the neurosur-

geon Jean Talairach, who formed the well known Talairach Atlas. The current standard

MNI template used in this study is ICBM152 (figure 4.1), an average brain template of

152 MRI scans of normal brains registered by a 9-parameter affine transformation to the

previous MNI template, MNI3051 (created from the average of 305 normal brains regis-

tered to the Talairach Atlas). MNI space has largely replaced Talairach coordinates as

the standard template for brain image normalisation.

In this step, the dartel grey and white matter images created during segmentation were

used within Dartel to create a flow field for each individual (‘u rc1ds’). The ICBM152 grey

1http://www.nil.wustl.edu/labs/kevin/man/answers/mnispace.html
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Figure 4.1: Two of the ICBM152 grey matter tissue templates, depicting a) the smoothest
template used in the first outer iteration and b) the sharpest template used in the final outer

iteration. The templates also contain standard white matter images (not shown).

matter tissue templates were selected and used at each outer iteration, starting relatively

smooth and becoming steadily sharper with each iteration. The earlier iterations required

more regularisation to ensure the deformations were smooth, while the later iterations

applied less to give closer matching of details (Ashburner et al., 2015). The created

flow fields were applied after quantification to warp the processed scans into the same

normalised space.

4.1.5 Quantification of ASL Cerebral Blood Flow

Once the control and difference images given by the ASL acquisition were coregistered to

the structural (ds) image, they were then used to give a quantified image of the cerebral

blood flow (CBF) (4.2).

The quantification of the CBF images is based on the equation:

cbf = 6000 ·

(
λ ·
(
1− e(− 2/1.2)

)
· e(w/T1)

2 · T1 ·
(
1− e(− 1.5/T1)

)
· ε

)
·

(
diff

(g · nex) · cont

)
(4.2)



Chapter 4 - Pre-processing Methods 38

Figure 4.2: A very simple representation of the ASL quantification process. The difference
between the control and tagged image given by ASL yields a quantified measure of perfusion,
cut to include only the brain volume. This process includes the consideration of many factors

not represented here.

where λ is the brain-blood partition coefficient of water, set to the whole brain average

of 0.9; w is the post-labelling decay time, set to 1.525 seconds; T1 is the spin-lattice

relaxation time of blood, set to 1.6 seconds at 3T; ε represents the combined efficiency

of labelling and suppression in the acquisition sequence, defined as 0.8*0.75; the con-

stants 1.5 and 2 represent the labelling and background saturation/suppression time in

seconds respectively, with the suppression time corrected for the T1 time of grey matter

(1.2 seconds); diff and cont are image matrices containing the voxel values of the dif-

ference and control images; NEX is the number of excitations or signal averages, set to

5. The quantified perfusion values were scaled by a factor of 6000 to convert L/kg/s to

ml/100g/min.

The quantified perfusion images were cut according to an extracted brain mask, acquired

using the Brain Extraction Tool (BET) (Smith, 2002) within the FMRIB Software Library

(FSL) (Jenkinson et al., 2012). The thresholding parameters were modified for each

individual following an initial check of the mask - the mask was made more stringent if

too much undesired tissue (skull, eyes) remained, and less stringent if the initial mask cut

regions of cerebral grey matter and cortical ribbon.

Extremely high artefactual voxel values were then eliminated from the quantified and

cut CBF images, yielding the final perfusion image for each individual. Using the same

scan number as before as an example, these images were thus named ‘ecqCBF 38356.nii’.

Figure 4.2 demonstrates the typical appearance of the control, difference and quantified

CBF images.
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4.1.6 Warp to normalised space

The ‘create warped’ batch within SPM contains input fields for the dartel flow field and the

images to be warped, and allows warping with and without modulation. This modulation

allows the spatially normalised images to be rescaled by the Jacobian determinants of the

deformations (Ashburner et al., 2015).

The quantified and cut CBF images and the coregistered FBB tofac images were warped

using the subject-specific flow fields generated by the Dartel routine (see section 4.1.4).

The dartel grey matter (c1ds) images created during segmentation were also warped to

MNI space, as they were used in the next step to normalise the grey matter intensities

in the FBB and ASL images to the cerebellar grey matter (FBB) and global grey matter

(both FBB and ASL). The images were input separately into the ‘create warped’ batch,

selecting warp with modulation for the dartel grey and white matter images and no

modulation for the ASL and FBB images.

4.1.7 Normalise to Cerebellum and global grey matter

Images of the standard uptake value ratio (SUVR) from the 10 minute FBB TOFAC

images were created in this step. The same process was used to normalise both the

TOFAC and the ecqCBF images to the whole brain grey matter for use in voxelwise

analysis.

A standard brain mask of the reference region was input and combined with the subject-

specific grey matter image (c1ds) to form a mask of the grey matter within the reference

region for that subject. This mask was used to obtain mean values within this region from

the selected image to be normalised. Prior to normalisation, any voxels not containing a

signal intensity value were set to zero. These ‘not-a-number’s arose in the outer edges of

the image matrix as a consequence of coregistration. The normalised images were created

by dividing the input image by the extracted mean voxel value in the reference region, and

were then smoothed using an 8mm Gaussian smoothing kernel. Smoothing was necessary

in order to reduce the proportion of residuals exhibiting non-normal distribution, such

that parametric methods could be used in statistical analysis (T. R. Melzer et al., 2012).

Smoothing also helps to account for slight image misalignment, as may still be present

despite pre-processing and coregistration. The amount of smoothing applied is a matter
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of trade-off between spatial resolution and normality of the data. Residuals, parametric

methods and non-parametric methods are discussed in section 5.1.

FBB TOFAC images were normalised to grey matter in the cerebellum and global grey

matter, creating two different SUVR images (denoted FBBcer and FBBGM for clarity).

The ecqCBF images from ASL were either left un-normalised (ASLnon) or were normalised

to global grey matter (ASLGM ). Measures relative to global grey matter were created for

both FBB and ASL datasets in order to allow direct voxelwise comparison in later analysis.

Global grey matter was chosen for this purpose as the ASL data could not be normalised

to the cerebellum, as values within this region may be missing or unreliable due to the

geometry of the acquisition (T. R. Melzer, personal communication). The FBBGM and

ASLGM data will not be used in linear regression with cognition as they may contain bias

associated with systematic global reductions.

4.1.8 Convert 3D to 4D

The final pre-processing step was more a matter of convenience than necessity. The per-

fusion images of the 50 subjects, having been coregistered, quantified, warped, normalised

and smoothed, were grouped by order of MRI series number and combined into a 4D file

using SPM’s 3D to 4D batch option. This enabled easy selection of the images for use in

analysis.

The filenames of the pre-processed data are summarised in table 4.1.

Table 4.1: Pre-processed image data filenames, in 3D, 4D and abbreviation (to be referred
to henceforth).

3D file name 4D file name Abbreviation

ssuvr wperf tofac (scan#).nii AB FFBperf 4D.nii FBBcer

ssuvr GMnorm wperf tofac (scan#).nii AB FFBperf GMnorm 4D.nii FBBGM

swecqCBF (scan#).nii AB ASLperf 4D.nii ASLnon

swecqCBF GMnorm (scan#).nii AB ASLperf GMnorm 4D.nii ASLGM
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Analysis Methods

A common issue with tracer-based imaging modalities, such as FBB PET, is the prevalence

of noise in the data due to absorption or scatter effects within tissues, reducing the

proportion of true coincidences detected. Development of faster scintillation materials

and optimised detector systems has helped to increase the signal-to-noise ratio (SNR) of

PET, however it is still an inherently noisy modality. ASL MRI suffers from relatively low

difference in signal between the labeled and control image frames, acquired over a shorter

period of time than PET. While increasing SNR, the use of larger voxels in ASL also has

the effect of decreasing image resolution. Methods of statistical analysis must then be

employed that are powerful enough to extract significant results, regardless of low SNR

or image resolution. Additionally, PET and MRI data have high dimensionality, with

each image composed of around 105 voxels on average. High dimensionality of samples

combined with low sample sizes is generally undesirable, as it limits simple exploration of

the data and makes discerning trends difficult.

This chapter details various methods of statistical analysis that were used to make mean-

ingful inferences about the data, accounting for high data dimensionality. The implemen-

tation of linear regression and voxelwise regression analysis using the general linear model

is discussed, as is correction for multiple comparisons. This type of analysis was used

to determine the extent of any spatial correlation between FBB derived perfusion and

ASL derived perfusion, and any regions of abnormal perfusion that related significantly

to cognitive z-score or PDDRS in either imaging modality. Data reduction is also dis-

cussed as a method of separating relevant characteristics from noise. This thesis employed

41
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principal component analysis (PCA) to extract components of image variance that were

significantly related to cognition or PDDRS, from which perfusion networks were formed.

5.1 The General Linear Model - Background

The general linear model (GLM) refers to a group of statistical analysis methods centred

on inferential tests of hypothesis or analysis of variance (Friston et al., 2007). The GLM is

alternately known as analysis of variance or multiple regression analysis, and may be used

to carry out a number of types of analyses; these include simple t-tests, one-way ANOVA

or more complex correlation and linear regression analyses. While the GLM subsumes

many different processes for statistical inference, they are all mathematically similar.

5.1.1 Mathematical basis of the GLM

The core idea behind the GLM is that an observed response variable Y may be expressed

in terms of a linear combination of independent explanatory variables X, weighted by an

optimised coefficient β, plus a well behaved error term ε, usually representative of noise

in the dataset (Friston et al., 2007). The basic form of the GLM for the ith observation

in Y , in the case of p multiple regressors, is as follows:

Yi = β0 + β1Xi,1 · · ·+ βpXi,p + εi (5.1)

where β0 is a dummy variable providing an intercept. This equation can be visualised as

yielding a plane in p-dimensional space, known as the regression surface. The objective

of linear regression is to fit a regression surface to the observed surface through a linear

combination of the independent variables, such that the difference between the regression

surface and the observed surface is minimised by the least squared difference between

them. The deviation between two points in the regression and observed surfaces is called

the residual value.

The goal is thus to compute the coefficient values that minimise the residuals, achieving

the best fit of the regression surface to the observed surface. The model can be written in

matrix form as in Rawlings et al. (1998), where Y is a 1×n column of observations on the
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dependent variable, X is a n×(p+1) matrix of observations on the independent variables,

β is a (p + 1) × 1 column vector including the intercept and p correlation coefficients to

be estimated, and ε is a n× 1 vector of well behaved error terms. Thus:

Y = βX + ε (5.2)

or:


Y1

Y2
...

Yn

 =


1 x1,1 x1,2 . . . x1,p

1 x2,1 x2,2 . . . x2,p
...

...
...

. . .
...

1 xn,1 xn,2 . . . xn,p




β0

β1
...

βp

+


ε1

ε2
...

εn


Note that the first column of X is populated by ones, providing the intercept β0. The

matrix X is a matrix of known constants, β is a vector of unknown constants, and Y

and ε are vectors of random variables. X is known as the design matrix, and contains

all available knowledge about experimentally controlled factors or confounds, and deter-

mines the form the analysis will take (t-test, linear regression, etc.). Within β containing

elements j = 0, . . . , p, each element βj can be regarded as a partial correlation coefficient

relating the independent variable or confound Xj to the corresponding element of the

dependent variable Yj , providing the other elements of the independent variable remain

constant (Rawlings, Dickey, & Pantula, 1998). Regarding the error terms, it is common to

assume that the elements εj are identically and independently distributed (IID assump-

tions), with a variance of σ2. Under these assumptions, the probability density function

of the errors follows a Gaussian distribution, thus having spherical iso-contours. Errors

following this assumption are said to obey sphericity. Non-sphericity in the data arises

due to regional changes in error variance and interdependencies within the error terms,

and are typically accounted for by introducing variance and smoothness estimators within

the model (Friston et al., 2007).

Looking at equation 5.2, it follows that for some estimate of the correlation parameters

β̂, the random errors or residuals of the model e are given by the difference between the

predicted values and the observed output values:
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e = Y −Xβ̂

A solution may be obtained by minimising the sum of the squared residuals with respect

to some estimate of the correlation parameters β̂ - in other words, forming the normal

equations for the model. By definition, these equations minimise the sum of the square

differences between the left and right sides of equation 5.2. The process is known as

Ordinary Least Squares estimation (OLS), and assumes error sphericity. The first step

is to derive a relationship for the sum of the squared residuals
∑
e2i , which will then be

minimised with respect to β̂. It is useful to realise that
∑
e2i is equal to the inner product

of the error vector with itself, e′e:

∑
e2i = e′e = (Y −Xβ̂)′(Y −Xβ̂)

= Y′Y − 2β̂′X′Y + β̂′β̂X′X (5.3)

Minimising equation 5.3 with respect to β̂, using the vector differentiation identity ∂x′x
∂x =

2x, yields the normal equations for the relationship 5.2 in matrix form:

∂

∂β
[e′e] = 0

= −2X′Y + 2β̂X′X

∴ X′Y = β̂X′X (5.4)

Solving equation 5.4 yields the correlation parameters β̂ relating the covariates to the

observed data, and is thus the relationship underpinning regression analysis. A unique

solution to the normal equations exists only if the matrix X is of full column rank (contains

no linear dependencies) such that the inverse X′X exists. The normal equations are always

constant, thus an estimate of the solution will take the form

β̂ = (X′X)−1(X′Y) (5.5)
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This yields an estimate of the coefficient values β̂ that may be used to construct an

estimate of the regression surface Ŷ, as given by:

Ŷ = Xβ̂ (5.6)

It is clear that the GLM is heavily dependent on the form of the design matrix X, wherein

the columns of explanatory variables correspond to experimental confounds or covariates,

to be removed or examined by the model respectively. Columns are defined as confounds

or components of interest by the form of the contrasts applied within the GLM. For

example, a linear regression of the perfusion data with subject cognitive score may be

performed removing any variation in voxel intensity related to age and sex, as these are

known confounds in brain perfusion. Within a contrast C1, assigning a value of 0 to

the columns containing subject age and sex will remove any related experimental effects.

Assigning the component of interest, in this case cognitive score, a value of +1 will direct

the GLM to search for any positive correlation with that covariate. Significance on the

contrast C1 would thus indicate a positive correlation of the data with cognitive score,

accounting for age and sex. Similarly, assigning -1 to the covariate column will direct the

GLM to search for any negative correlation with cognitive score. The GLM determines

the appropriate statistical test based on the form of the design matrix and contrasts.

5.1.2 Parametric and non-parametric statistical inference

This study used both parametric and non-parametric methods for statistical inference.

The difference between the two rests on certain distributional assumptions (or lack thereof)

made by each method, the fulfilment of which affects the power of each method to ob-

tain significant results. Parametric methods assume that the data and model residuals

come from a population that follows a Gaussian probability distribution, described by a

fixed set of parameters. Non-parametric methods do not make distributional assumptions

and allow these parameters to change, and thus may supervene in terms of sensitivity

when distributional assumptions are violated. This may occur when degrees of freedom

are small and voxel sizes are large in relation to smoothness. Should the assumptions

remain true, parametric methods yield greater accuracy and sensitivity and require less

computing power, but are regarded as somewhat less robust in a general sense.
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5.2 The General Linear Model - Implementation

Implementation of the GLM was accomplished using robust Biological Parametric Map-

ping (BPM) (Casanova et al., 2007), SPM (Friston et al., 2007), or FSL’s Randomise

function (Winkler et al., 2014). The choice of method was dependent on the type of

analysis being carried out. BPM is a software package developed to be used specifically

in multi-modal image analysis, and was used in this study to carry out direct voxelwise

correlation analysis between FBBGM and ASLGM image data. SPM was used to run sim-

ple linear regression analysis of the FBBcer and ASLnon data with discrete explanatory

variables (EVs) and confounds. FSL was used to carry out both voxelwise and correlation

analysis, and differs from BPM and SPM in the use of non-parametric methods and per-

mutation testing in order to make inferences about the data. Traditional BPM is closely

integrated with SPM, and as such both employ parametric methods to carry out analysis.

All three methods required corrections to be made for multiple comparisons. Depending

on the image resolution, a typical MR image may contain hundreds of thousands of voxels,

with an associated statistical inference at each voxel. The significance level is set to α =

0.05 for most statistical tests, corresponding to a 5% probability of incorrectly rejecting the

null hypothesis and falsely identifying a voxel as significant. While this is acceptable in the

analysis of small datasets, this translates to potentially thousands of false-positives when

making many comparisons across MR images. False-positives resulting from multiple

comparisons were dealt with by controlling either the family-wise error rate (FWE) or

the false discovery rate (FDR) through various methods, discussed here. FWE controls

the expected absolute number of false positives, while FDR controls the expected fraction

of identified positives that may be false (T. R. Melzer, 2011). FWE is therefore more

stringent, but may result in some loss of true positive results.

5.2.1 FSL

FSL corrects for FWE, or the chance of one or more false positives, by making use of spatial

neighbourhood information surrounding significant voxels in conjunction with permuta-

tion testing. Threshold-free cluster enhancement (TFCE) presents the significant voxels

in terms of the extent of cluster-like spatial support surrounding it, without the prior def-

inition of a cluster-forming threshold (Smith & Nichols, 2009). FSL obtained voxelwise



Chapter 5 - Analysis Methods 47

Figure 5.1: This design matrix, created using FSL’s GLM graphical user interface, specifies
cognitive z-score as the tested effect, with age and sex (binary: F=1, M=0) as the confound
effects. The applied contrasts direct the GLM to search for a positive or a negative correlation
of the data input into Randomise with the tested effect. Testing correlation of perfusion with
PDDRS used a design matrix of the same form, with PDDRS as the tested effect instead of
cognitive z-score. The design matrix was the same for both FBB and ASL related perfusion

analysis.

p-values for the data by repeating the TFCE statistic over a set number of permutations,

employing resampling without replacement at each permutation using the Randomise

function (Winkler et al., 2014). In this way, cluster-like structures were enhanced while

the image remained fundamentally voxelwise (Webster, 2015).

The Randomise function carries out permutation testing based on several input param-

eters and a specified design matrix. Figure 5.1 demonstrates the design matrix used in

this thesis to carry out linear regression analysis of the image data with cognitive z-score,

accounting for age and sex. The contrasts defined in this matrix directed Randomise

to test for positive (+1) and negative (-1) correlation of the data with the tested ef-

fect (cognition), taking into account the confound effects (age and sex). Confound-only

residuals were formed by fitting the data to the specified confounds alone, which were

then permuted to form an estimation of the confound-related signal. The data including

the estimated confound signal was then fitted within the GLM, and the TFCE statistic
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performed for each voxel, examining those voxels that fall within an applied whole brain

grey matter mask. This process was repeated over the desired number of permutations

to build a distribution of the voxelwise TFCE statistics under the null hypothesis. The

resultant image may be thresholded to view only the voxels that significantly reject the

null hypothesis. These voxels are said to correlate significantly with the tested effect for

this data, corrected for multiple comparisons.

5.2.2 BPM and SPM

BPM permits voxelwise comparison in neuroimaging by allowing a different design matrix

to be tested by the GLM at each voxel; each design matrix contains the tested covariate,

defined as the image data at that particular voxel, along with the standard discrete

confounds (age and sex) (Casanova et al., 2007). SPM employs the same design matrix at

each voxel, and is well applied to linear regression studies involving discrete explanatory

variables.

SPM implements the GLM using parametric methods, assuming normal distribution of

error terms following the method described in section 5.1.1. The regression is optimised by

minimising the least squared difference between the regression surface and the observed

surface. Traditional BPM follows this same method. This thesis used an extension of

BPM titled robust BPM, wherein the regression was carried out minimising M-estimates

of the data rather than the least squared difference (Yang et al., 2011). The M-estimates

account for outliers by assuming non-normal distribution of error terms, thus rBPM is a

non-parametric method of statistical inference. The regression is carried out by solving

the M-estimates using an iteratively re-weighted least squares method (Yang et al., 2011),

and thresholded to control the family-wise error rate. Aside from this difference, SPM

and robust BPM are closely linked, as BPM relies upon SPM for statistical inference and

visualisation.

Statistical inference within SPM was carried out using a two-step method, wherein false

positives were controlled by the clusterwise false discovery rate (FDRc). An initial alpha

level of α = 0.001 identified those voxels that were significant in the regression according to

a P-value of p < 0.001, uncorrected for multiple comparisons. The spatial neighbourhood

information of these ’significant’ voxels was then examined to form a clusterwise FDRc

corrected threshold. This cluster threshold corresponds to an alpha level of α = 0.05
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(automatically set by SPM), and defines how many voxels a cluster must contain to be

termed significant, controlling the FDR. Clusters that survived the FDRc threshold were

said to be significant at p< 0.05, corrected for multiple comparisons.

5.2.3 Methods - correlation and regression analysis

1. Both FSL and SPM were used to carry out multiple linear regression analysis with

the FBBcer and ASLnon image data, where cognitive z-score and PDDRS were tested

effects, accounting for age and sex. Individual domain score was also applied in

separate linear regression using SPM, providing a break down of the overall cognitive

z-score correlation into its constituent domains.

2. Direct voxelwise comparison between FBBGM and ASLGM was initially carried out

using FSL, where the ASLGM data were input as a voxel-dependent explanatory

variable into the GLM. The design matrix is given in figure A.7. The voxelwise

component of FSL’s permutation testing method is still undergoing beta testing,

thus comparison using robust BPM was also employed using the same form for

the design matrix, as an alternative method of voxelwise correlation analysis. The

design matrix used within BPM is the same as that used in the previous analysis.

3. Mean values were extracted from a range of cortical and sub-cortical areas using

regional brain masks applied to the FBBGM and ASLGM data. The mean regional

voxel values were directly compared between the two imaging modalities in support

of the voxelwise correlation results given by (1), yielding correlation coefficients and

associated P-values for each region.

An example of the command to call FSL’s Randomise function, carrying out linear re-

gression using TFCE, is as follows:

• randomise -i AB FBBperf 4D.nii -o FBB cog cor -d cog age sex.mat -t cog age sex.con

-n 5000 -m maskGM s4 m0wrp1ds cut.nii -T -D

where -i specifies the input 4D image file; -o specifies the output filename of the correlation

image; -d specifies the design matrix file (.mat); -t specifies the contrast file (.con); -n

specifies the number of permutations, set to 5000; -m inputs an optional brain mask, here
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defined as the global grey matter; -T directs Randomise to employ the TFCE statistic

at each voxel; -D directs Randomise to de-mean the data at each permutation. This last

parameter is necessary as the mean was not modelled in the design matrix (see figure 5.1).

5.3 Principal Component Analysis

Principal component analysis (PCA) is a data reduction method based on orthogonal

linear transformation, wherein a large number of correlated variables are transformed to

give a smaller number of uncorrelated principal components. The objective when using

PCA is to achieve accurate dimension reduction by extracting a few principal components

that describe most of the variance with the least loss of information (Razifar et al., 2009).

The expression of these components in varying degrees can reveal statistically independent

patterns of perfusion, or networks, within our subjects.

The data is shifted onto an axis that best fits the variance, and a set of uncorrelated

eigenvectors are formed to describe the data according to this new axis. The eigenvectors

along which the variation in the data is maximal are known as the principal components

(Ringnèr, 2008), each of which can be expressed as a linear combination of the original

variables in the dataset. Relatively few of these principal components may then be used

in linear combination to represent the original samples in the dataset, greatly reducing

the number of variables and allowing for more efficient and visually assessable comparison

between samples. PCA is best used with data that fits a Gaussian distribution.

5.3.1 Mathematical basis of PCA

Consider the n×m data matrix

X = [x1, x2, x3, ..., xm]T (5.7)

where the m columns represent each observed voxel value xi, and each of the n rows

represents a different subject (Jolliffe, 2002). The principal components are obtained by

extracting the eigenvectors of the sample covariance matrix C = E{XXT }, a matrix

wherein the element i, j describes the covariance of the ith and jth elements of X. The
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principal diagonal gives the variance of each voxel value within our dataset. The trans-

formation is defined by the m-dimensional set of eigenvectors wi = (w1, ..., wm)i that map

each row vector xi to a new vector si = (s1, ..., sn)i such that each individual variable of si

inherits the maximum possible variance of the columns of X. The principal components

are given by

si = wT
i X

Which can be written in matrix form as:

S = WX (5.8)

where S = [s1, ..., sn]T and W = [w1, ..., wn]T .

5.4 Principal Component Analysis - Implementation

All perfusion images were preprocessed according to the methods described in Chapter

4, additionally applying a study specific grey matter mask to remove any voxels with a

< 10% chance of being grey matter. Image data were then log-transformed and de-meaned

twice to remove the group mean and individual mean across all voxels.

The eigenvectors and corresponding eigenvalues of the PET and ASL perfusion datasets

were calculated from their covariance matrices by PCA. Scaling each eigenvector by the

square-root of its corresponding eigenvalue produced components of unit variance; these

were the principal components of the dataset. The inverse scaled eigenvectors indicated

the expression of each component in each individual, while the relative size of each eigen-

value quantified the total variance encompassed by that particular spatially fixed principal

component (T. Melzer et al., 2011).

The principal components were ordered by how much of the variance they represent,

with the first principal component capturing the most variance. The first few principal

components may account for a large amount of the total variance in the data, in which case

the remaining components may be rejected to reduce dimensionality without significant

loss of data (Razifar et al., 2009). The choice of how many principal components to include
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in linear regression with cognitive z-score and PDDRS was made based on the amount of

variance contained within the components. Those components that represented 67% of

the variance were used in a linear regression with cognitive z-score and PDDRS. Perfusion

networks relating specifically to these measures were formed by linear combination of the

resultant significant (p< 0.05) principal components, using the correlation coefficients

given by the regression. The networks were then z-scored by removing the mean and

dividing by the standard deviation of the group voxel values. The z-score images were

thresholded according to |z| > 1.96; this relates to an alpha level α = 0.05, thus the

surviving voxels were deemed to relate significantly to cognition or PDDRS (p< 0.05).

The direction of the correlations represented by positive (z > 1.96) and negative (z < 1.96)

voxel loadings were determined by comparing the absolute mean values from the ASLnon

data within these regions. The extracted mean values from positive and negative loadings

were ordered according to subject cognitive z-score or PDDRS and split into two groups

by the median. A higher mean in one group indicated increased perfusion in that region

relative to the median, and was thus associated with higher or lower cognitive z-score or

PDDRS. The direction of the perfusion changes within the positive and negative voxel

loadings were determined and classified as representing increased, decreased or preserved

perfusion relating to the examined covariate.

5.4.1 Bootstrapping of cognition and PDDRS related perfusion net-

works

In order for the perfusion networks created in the previous step to be more easily applicable

as a possible prediction measure, it was necessary to create a z-score image that was

more representative of the population. The z-score was created by dividing the network

image by the standard deviation of the population, which was obtained using a bootstrap

estimation procedure.

The bootstrap procedure obtained an approximate population standard deviation by re-

sampling the data with replacement over 5000 iterations of PCA. Linear regression at

each iteration determined those PC’s that correlated significantly (p< 0.05) with the de-

pendent variable, in this case cognitive z-score or PDDRS. The PC’s were used in linear

combination as before to form a cognition or PDDRS-related perfusion network specific

to the resampled group at that iteration. The voxel loadings of the 5000 networks were
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then used to approximate the mean and standard deviation of the resampled population

intensity values per voxel. The population z-score image was created by dividing the

original principal component network by the bootstrap population standard deviation.

5.4.2 Validation of cognition and PDDRS related perfusion networks

The ability of the created perfusion network to predict cognition in subjects outside of this

group was assessed using leave-one-out (LOO) cross validation. This involves removing 1

subject, and creating a cognition or PDDRS related network from the remaining 49. The

expression of this network in the removed subject was then calculated to give a predicted

cognition-related or PDDRS-related network score. This process was repeated for all 50

subjects, and the predicted network scores compared against the actual network scores.

The strength of the correlation represents how accurately the network may perform in

practice as a predictive model.



Chapter 6

Results and Discussion

6.1 Participants

Table 6.1 gives the demographics of the 50 subjects included in this study. There were

considerably more PD-MCI (n=41) subjects than PD-N (n=4) and PDD (n=5), due to

time constraints restricting the number of subjects able to be included in the analysis.

Education and age were reasonably equal across PD-N, PD-MCI and PDD, displaying

no significant difference across the groups. Symptom duration was variable, particu-

larly in PD-MCI (range, 1-23 years), but not significantly different across the subject

groups. MoCA scores within each group decreased with worsening cognition, with signif-

icant ANOVA across all groups at p<0.001. Cognitive z-score and PDDRS also displayed

significant ANOVA across all groups, at p<0.00001 and p<0.01 respectively.

Table 6.1: Demographics and clinical assessments of the study participants.

PD-N PD-MCI PDD

n 4 41 5
Female:male 1:3 9:32 0:5
Age, years 75.5 (5.0); 71-84 72.3 (5.7); 59-86 77.6 (5.2); 68-84
Education, years 14.0 (1.6); 12-16 12.4 (2.7); 9-19 12.4 (1.5); 11-15
MoCA** 26.3 (0.8); 25-27 22.0 (3.2); 15-28 16.8 (3.0); 12-20
PD symptom duration, years 13 (4.0); 10-20 8 (5.2); 1-23 8 (4.7); 3-15
UPDRS-III 49.5 (16.0); 25-68 38.7 (12.3); 16-65 52.4 (10.9); 38-65
Hoehn and Yahr median 2.5; 2-4 2.5; 1.5-4 3; 2.5-3
Cognitive z-score*** 0.17 (0.51); -0.37 to 0.62 -0.98 (0.62); -2.44 to -0.12 -1.83 (0.44); -2.3 to -1.1
PDDRS* 0.25 (0.14); 0.10-0.49 0.64 (0.33); 0.048-0.99 0.99 (0.01); 0.96-0.99

Values are Mean (Standard Deviation) : Range.
Significant ANOVA across all groups *p<0.01, **p<0.001, ***p<0.00001.

54
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6.2 Linear regression analysis - Cognition

6.2.1 FSL

Linear regression analysis carried out using FSL’s randomise function found extensive

significant positive correlation (p< 0.005, FWE corrected using TFCE) within the ASLnon

perfusion data with cognitive z-score, accounting for age and sex in the model (figure 6.1).

There was found to be no significant correlation of FBBcer voxel values with cognition

using the same model.

The results found from analysis of the ASLnon data follow the same pattern seen in other

works studying the correlation of perfusion and metabolism with cognition, namely signifi-

cant positive correlation located in the precuneus, frontal, prefrontal and bilateral parieto-

occipital cortical regions (T. Melzer et al., 2011)(Huang, Mattis, et al., 2007). Cognitive

Figure 6.1: Axial view of the correlation map output by FSL’s Randomise, looking at
ASLnon positive correlation with cognition, removing age and sex. Areas containing voxels
that were significant (p< 0.005, FWE corrected using TFCE) in the positive correlation with
cognitive z-score are shaded from red to yellow according to the strength of the correlation.
Decreases in perfusion with cognition were found in the precuneus, lateral occipital lobes,

superior parietal lobes and the prefrontal cortex.
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dysfunction has been shown to be particularly associated with metabolic and perfusion

deficits in posterior cortical regions (Firbank et al., 2003)(Nobili et al., 2009)(Liepelt et

al., 2009). At this stage, the significant correlation of ASLnon with cognition in these

regions, supported in the literature, helps to verify the pre-processing chain and method-

ology employed with this subject group.

The FBBcer and ASLnon images theoretically represent a similar physiological aspect of

brain function; thus it was surprising to find no significant correlation of voxel values with

cognition in the FBBcer data, given the strong positive result seen with ASLnon. It may

be reasonable to attribute a small disparity in the results to the fact that the ASLnon data

was not normalised to a reference region, while the FBBcer data was normalised to the

cerebellum. Whole brain grey matter, white matter and cerebellum as reference regions for

intensity normalisation of perfusion images have been shown to produce different results

in the comparison of MCI, AD and healthy controls (Lacalle-Aurioles et al., 2013), such

that significant differences between the groups were only found when normalising to the

whole brain grey matter as a reference region. In separate linear regression analysis, the

choice of reference region is not as important, as inherent properties of the data should

still be apparent in the analysis.

It may be that this application of early-phase FBB PET imaging does not represent a

measure of perfusion as was originally thought, but rather yields a measure of blood pool

in the brain as a result of radiotracer activity reaching a constant level before the end of

the scanning period. FBB activity reaches a maximum concentration of ∼ 6% injected

dose/L within the brain at 10 minutes post-injection (Sabri et al., 2015). The time taken

for injection and patient set-up is around 2-3 minutes, thus maximum uptake is reached

before the end of the 10 minute scan period. It may be incorrect to include the final

2-3 minutes of continuous scan data in the summed 10-minute image, as the constant

concentration may cloud perfusion information. Creating a summed image from the first

6-7 minutes post injection may give a more physiologically relevant image in terms of

perfusion, removing the potential blood pool effect. This may be a worthwhile area of

future study concerning early-phase PET imaging.

Typical ASLGM and FBBGM images for the same subject are presented in figure 6.2, for

the purpose of direct visual comparison. The ASLGM images (A) exhibit a large amount

of variation, and often show a marked signal deficit in the posterior parietal region, an



Chapter 6 - Results and Discussion 57

Figure 6.2: Sample axial brain slices of A) quantified and cut ASL cerebral blood flow
normalised to global grey matter, with high values removed, and B) standard uptake value
ratio from early-phase FBB PET, normalised to global grey matter. ‘Hot’ areas of high

signal (red) theoretically relate to increased perfusion in these areas.

area known to display hypoperfusion in PD-MCI and PDD (Nobili et al., 2009)(Firbank

et al., 2003). This may indicate that the problem does indeed lie with the interpretation of

early-phase PET FBB as a measure of perfusion, rather than the result of pre-processing

misjudgement or error. Visually, the FBBGM images (B) display strong signal across the

entirety of the brain, which may support the ‘blood pool’ hypothesis. Direct voxelwise

comparison of the ASLGM and FBBGM data, normalised to the whole brain grey matter

for the same relative measure (Lacalle-Aurioles et al., 2013), was used in a later section

to verify the lack of agreement seen here (see section 6.4).

6.2.2 SPM

Multiple linear regression correlation analysis using SPM supported the results obtained

using FSL: the cluster-wise FDRc corrected cognitive z-score correlation with the ASLnon

data was significant in the precuneus, posterior parietal and prefrontal regions (FDRc =

2608 voxels, p< 0.05), while analysis of the FBBcer data yielded no significant correlation.

A summary of the SPM correlation analysis with the ASLnon data is included in figure

6.3, where the correlation map has been FDRc corrected. Figure 6.4 gives a summary

of the FBBcer correlation statistics, showing no significant voxels or voxel clusters that

survive FDRc correction.
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Figure 6.3: There was a widespread significant positive correlation of voxel values with
cognitive z-score within the ASLnon perfusion data (p< 0.05, FDRc corrected), found using
SPM. The extent threshold is here defined by the significant cluster extent determined by
FDRc correction (k=2608 voxels). Areas of significant positive correlation are shaded red to
yellow according to the strength of the correlation. This correlation follows a very similar

pattern as that seen using FSL to carry out the regression (figure 6.1).
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Figure 6.4: There was found to be no surviving positive correlation between FBBcer voxel
values and cognitive z-score using SPM (FDRc corrected for multiple comparisons). The
required voxel extent for significance was FDRc = inf , relating to no surviving voxel clusters
(p< 0.05 uncorrected). This result supports the finding obtained from the same analysis

using FSL.
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6.2.3 Domain results

The specific neuropsychological domain scores, used to compute overall cognitive Z-score,

were then input into separate linear regression analyses with the FBBcer and ASLnon

image data. This may provide further insight as to the particular cognitive domains

associated with changes in perfusion, and the regional extent of this correlation. SPM

was employed for this purpose, as it is less computationally expensive than FSL.

As expected, FBBcer displayed no correlation with any of the domain scores, surviving

FDRc correction. This was not surprising due to the lack of correlation with overall

cognitive z-score seen previously.

The ASLnon data was found to correlate significantly (p< 0.05, FDRc-corrected) with

three of the five domains, namely executive function, attention and working memory, and

visuo-spatial performance. Figures 6.5, 6.6 and 6.7 present a summary of the results for

each regression. Executive function and attention were found to correlate with voxels

values primarily in the precuneus and posterior parieto-occipital regions, while visuo-

spatial performance was involved with voxels in the lateral parietal and temporal lobes.

These areas are involved in somatosensory and visual association, and the integration

of various sensory interpretations for the formation of thought based on sensory input

(Tortora & Derrickson, 2012). The precuneus is known to be associated with a number of

higher-order cognitive functions, such as episodic memory, self-processing and perception,

and the processing of visuo-spatial information (Cavanna & Trimble, 2006).

6.3 Linear regression analysis - PDDRS

Linear regression analysis was again carried out on both FBBcer and ASLnon data, this

time with subject PDDRS score as the explanatory variable, accounting for age and sex.

The design matrix for this regression, carried out using Randomise, is given in figure A.6.

There was found to be no significant correlation of FBBcer voxel values with PDDRS in

this subject group. This null result was not surprising as PDDRS is closely related to

cognitive z-score, and so further supports the finding of no significant correlation between

FBBcer data and cognition.
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Figure 6.5: There was a significant positive correlation of voxel values with executive func-
tion domain score within the ASLnon perfusion data (p< 0.05, FDRc corrected), primarily
in the precuneus and parieto-occipital cortex. The extent threshold applied here was defined
by the significant cluster extent determined by FDRc correction (k=23119 voxels). Areas
of significant positive correlation are shaded red to yellow according to the strength of the

correlation.
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Figure 6.6: There was a significant positive correlation of voxel values with attention
domain score within the ASLnon perfusion data (p< 0.05, FDRc corrected), primarily in the
precuneus and left parieto-occipital cortex. The extent threshold applied here was defined
by the significant cluster extent determined by FDRc correction (k=27067 voxels). Areas
of significant positive correlation are shaded red to yellow according to the strength of the

correlation.
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Figure 6.7: There was a significant positive correlation of voxel values with visuo-spatial
domain score within the ASLnon perfusion data (p< 0.05, FDRc corrected), primarily in
the bilateral temporo-parietal cortical areas. The extent threshold applied here was defined
by the significant cluster extent determined by FDRc correction (k=3151 voxels). Areas
of significant positive correlation are shaded red to yellow according to the strength of the

correlation.
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ASLnon was found to display a significant negative correlation with PDDRS (p< 0.001,

FWE-corrected), following a very similar pattern as that seen previously with cognitive

z-score. Significant results on the negative contrast indicated negative correlation of

voxel intensity with PDDRS sufficient to reject the null hypothesis, i.e. a decrease in

perfusion within a significant region corresponded to an increased dementia risk score, or

vice versa. This would seem to indicate that decreased perfusion in these regions (shaded

blue/green in figure 6.8) is a significant indicator of imminent conversion to dementia,

as given by the PDDRS. Linear regression analysis using SPM also exhibited extensive

negative correlation in these regions (figure 6.9, FDRc = 111685 voxels, p< 0.05), which

supports the finding obtained using FSL. The spatial extent and direction of the perfusion

changes in the ASLnon data relating to increased PDDRS were determined using network

analysis (see section 6.5.2).

Figure 6.8: There was a widespread significant negative correlation of voxel value with
PDDRS within the ASLnon perfusion data (p< 0.001, FWE corrected). Areas of significant
negative correlation are shaded blue to green according to the strength of the correlation.
This correlation follows a very similar pattern as that seen with cognition, a reflection of the

close relationship of the PDDRS with cognitive z-score.
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Figure 6.9: There was a widespread significant negative correlation of voxel values with
PDDRS within the ASLnon perfusion data (p< 0.05, FDRc corrected). The extent threshold
is here defined by the significant cluster extent determined by FDRc correction. Areas of
significant negative correlation are shaded red to yellow according to the strength of the
correlation. This correlation follows a very similar pattern as that seen using FSL to carry

out the regression (figure 6.8).
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6.4 Voxelwise Correlation Analysis

Voxelwise correlation analysis between the ASLGM and FBBGM image data was per-

formed, first using FSL’s Randomise function and then using the rBPM toolbox. The

results of this analysis determined if there exists any correlation between the PET and

ASL-derived images for this subject group, such that they can be said to demonstrate the

same relative measure of brain perfusion.

6.4.1 FSL

FSL was initially used to carry out voxelwise correlation analysis of FBBGM with ASLGM

perfusion image data. The design matrix employed here is given in Appendix A (figure

A.7). The permutation produced a map of the voxelwise correlation coefficients, which was

thresholded according to an alpha level α = 0.05, corresponding to significant correlation

(p< 0.05). No voxels survived this threshold, indicating no significant correlation between

the FBBGM and ASLGM perfusion data.

The extensive lack of significant correlation seems to support the hypothesis that FBBGM

and ASLGM do not in fact show the same relative measure of grey matter perfusion. It

would be reasonable to expect significant correlation across almost all brain regions, if

early-phase amyloid PET and ASL MRI were in fact both measures of perfusion. As the

option to add voxelwise EVs to the GLM in FSL was still in development at the time

of this analysis, it was deemed prudent to check that these results were correct. This

was achieved by running voxelwise correlation of the FBBGM and ASLGM image sets

with themselves. Randomise uses resampling without replacement in the permutation, so

this is a viable approach to verify the permutation inference method used by FSL. From

this analysis, we would expect complete correlation across the whole brain; however, that

was not found. Figure 6.10 displays axial mean brain slices overlaid with the correlation

between ASLGM and itself, where red areas represent significant positive correlation and

blue areas represent significant negative correlation (p< 0.05).

The presence of negative correlation in the image indicates that there was some error in

the current work’s implementation of FSL’s algorithm, used to test voxelwise image corre-

lation. Furthermore, the correlation of FBBGM with itself did not present as significant.

This may be due to an error in the permutation, as the option to add voxelwise EVs as
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Figure 6.10: This figure shows the voxelwise correlation map output by FSL’s Randomise,
where ASLGM was compared against itself in order to verify results of the permutation. Red
areas represent areas of significant positive correlation (p< 0.05); blue areas represent areas
of significant negative correlation. The results of this correlation indicate error in the per-
mutation employed by FSL to conduct voxelwise analysis, which is still under development.

confounds in the FSL GLM is still in development. This issue may be addressed in future

work by examining the code used to conduct voxelwise correlation analysis within the

Randomise function. For the purpose of this thesis, voxelwise analysis using rBPM was

employed as an alternative to FSL, on the basis that rBPM was developed specifically for

voxelwise multi-modality analysis and should yield representative results.

6.4.2 Results using rBPM

Verification of the rBPM voxelwise analysis was first carried out in the same manner as

with FSL. The resulting correlation image displayed significant voxels (p< 0.05, FWE

corrected) across the whole brain, with a correlation coefficient of r=1 as expected (see

figure 6.11). Interpretation of the results given by rBPM may thus be carried out with

confidence that the procedure is correct.

Figure 6.11: The voxelwise correlation map output by FSL’s Randomise, where ASLGM

was compared against itself in order to verify results of the permutation. There is significant
correlation (p< 0.05 FWE corrected, r=1) across the entire brain, within the confines of the

grey matter mask applied in the regression.
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The design matrix employed by rBPM in the voxelwise analysis of FBBGM with ASLGM

is the same as that used previously within FSL (figure A.7). There was very little signifi-

cant correlation found between the two image sets, with only one small cluster surviving

correction for multiple comparisons (figure 6.12 A; p<0.05 FWE corrected), correspond-

ing to a moderate correlation of r=0.6. The uncorrected correlation image (figure 6.12

B; p<0.001 uncorrected) presents a larger number of significant voxels; however, these

correspond to a low R-value (r=0.4), far below that which may be regarded as a strong

correlation (r>0.7). Further relaxation of the statistical threshold revealed more voxels

involved in the correlation (figure 6.12 C; r=0.3, p<0.01 uncorrected), but these can not

be regarded as being truly significant. It can be concluded that there exists no evidence

of any voxel intensity correlation between the FBBGM and ASLGM image data for this

subject group.

Figure 6.12: The results of the voxelwise correlation between FBBGM and ASLGM us-
ing robust BPM found very little association; (A) A single voxel cluster (red arrow) was
deemed significant by the analysis (r=0.6, p<0.05, FWE corrected), visible in one axial slice;
(B) A less stringent statistical threshold of p<0.001 uncorrected revealed greater voxelwise
association, however the correlation was quite weak (r=0.4); (C) Further relaxation of the
statistical threshold revealed more voxels involved in the correlation, but these may not be

regarded as significant (r=0.3, p<0.01 uncorrected).
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6.4.3 Comparison of regional mean values

The null result given by the previous voxelwise analysis was supported by comparison of

mean regional voxel values, extracted from various cortical and subcortical brain regions

using the script ‘mean vals.m’. The regions chosen for comparison were the global grey

matter, whole brain, precuneus, thalamus, midfrontal gyrus and putamen.

The regional mean values obtained from the FBBGM and ASLGM data for each subject

were entered into a simple correlation analysis, yielding Pearson’s correlation coefficients

for each region (table 6.2). The midfrontal gyrus (MFG) was the only region that displayed

a significant correlation between the regional mean values from each dataset, and even

then, the correlation was not strong (p=0.009, r=0.4). The scatter plots representing

each of the regional correlations are included in Appendix B (figures B.1, B.2 and B.3).

The lack of correlation is apparent from visual assessment of these scatter plots, with the

exception of the MFG scatter plot, which do not follow a linear slope but rather take on

a ‘shotgun’ pattern.

These findings support the results of the voxelwise correlation; however, at this stage

early-phase FBB PET should not be disregarded as a potential measure of perfusion.

Further examination of FBB employing only the first 6-7 minutes may avoid the blood

pool phenomenon proposed in this thesis. This may be a valuable avenue of future enquiry

with this same subject group under the longitudinal study at the NZBRI.

Grey
matter

Whole
brain

Precuneus Thalamus Midfrontal
gyrus

Putamen

P-value 0.6 0.5 0.2 0.8 0.009* 0.5
R-value -0.07 0.1 0.2 -0.03 0.4 0.1

Table 6.2: P and R-values obtained from comparison of mean regional values, extracted
from select cortical and subcortical regions of ASLGM and FBBGM data. There was found to
be no significant correlation within the examined regions, except for the midfrontal gyrus*.
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6.5 Principal component analysis

Principal component analysis (PCA) was performed on the ASLnon perfusion data only,

given the distinct lack of correlation within FBBcer data with either cognition or PDDRS.

The first 10 principal components were selected for further investigation, on the basis that

they explained ∼67% of the variance. These 10 z-scored principal components (PCs) were

then examined for any correlation with cognitive z-score and PDDRS by linear regression

analysis.

6.5.1 Cognition-related network

PCs 1, 3, 4 and 7, explaining 23.8, 10.1, 4.1 and 2.8% of the variance respectively, were

found to relate significantly with cognitive z-score (p<0.05). Figure 6.13 illustrates these

components, thresholded at |z| >1.96, corresponding to a two-tailed p<0.05.

The PC’s were used in linear combination to form a characteristic cognition-related ASL

perfusion network, using the correlation coefficients from the regression (1, 3, 4 and 7;

β = -2.23, -1.82, 3.1381, 3.71). The direction of the correlation represented by positive

(z > 1.96) and negative (z < −1.96) voxel loadings was determined by comparing the

absolute mean values from the ASLnon data within these regions. Positive loadings in

the cognition-related network were found to relate to decreased perfusion, while negative

loadings were found to indicate preserved perfusion.

Network reliability and validation

In order for the ASLnon cognitive network to be reliable as a predictor of cognition outside

of this subject group, the network was z-scored according to a derived population standard

deviation. This was done using the bootstrap estimation procedure described in the

method (see section 5.4.1). The resulting cognition-related network, representative of

the resampled population, is given in figure 6.14, where red and blue regions denote

preserved and decreased perfusion respectively, thresholded according to |z| > 1.96. It is

important to remember that regions coloured red indicate preservation and not relative

increases (as is the usual convention in neuroimaging). Perfusion deficits were located in

the left lateral occipital cortex (superior and inferior), posterior parieto-occipital regions,

left inferior temporal gyrus, and the right lateral occipital cortex, to a lesser degree. The
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Figure 6.14: Cognition-related perfusion network created by the bootstrap estimation
procedure. Perfusion deficits were located in the left lateral occipital cortex (superior and
inferior), posterior parieto-occipital regions, left inferior temporal gyrus, and the right lat-
eral occipital cortex, to a lesser degree. Preserved perfusion was located in the anterior
paracingulate and cingulate gyrus, caudate, thalamus and bilateral superior frontal gyrus.

particular involvement of the posterior parieto-occipital region in the network is supported

by previous network analysis conducted by Melzer et al (2011), which identified this

region as relating significantly with cognition and age. Preserved perfusion was located in

the anterior paracingulate and cingulate gyrus, caudate, thalamus and bilateral superior

frontal gyrus.

LOO cross-validation was used to assess the reliability of the cognitive network. The

cross-validation found a strong correlation between the predicted and actual network

scores (coefficient of correlation r=0.81, p< 0.000001). A scatter plot of the estimated

cognitive network scores against the actual network scores shows this correlation (figure

6.15). The strong correlation indicates the cognition-related perfusion network formed

from this subject group may be a reliable predictor of network score in an independent

ASL perfusion dataset. This is an exciting result, as network scores obtained from neu-

roimaging in this way could conceivably be used to evaluate individual cognitive status,

supplementary to neuropsychological testing.
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The predictive accuracy of this model, while high, may have suffered slightly from over-

fitting. This introduces random error or noise that reduces the performance of the network

in making predictions. Over-fitting could be avoided in the future by the use of more

advanced machine learning algorithms, such as support or relevance vector machines, or

by the inclusion of a larger proportion of PD-N and PDD subjects. This may allow the

formation of a more representative cognition-related network, less affected by noise and

outliers, that may further improve the capability of this model in predicting cognition

from perfusion data.

Figure 6.15: LOO cross-validation carried out on the cognition-related network displayed
a strong correlation between the predicted network scores and the actual network scores
(r=0.81, p<0.000001). This indicates the cognition-related network model may be well ap-

plied in the evaluation of independent datasets outside of this thesis.

6.5.2 PDDRS-related components

Of the 10 principal components entered into linear regression analysis with PDDRS, com-

ponents 1 (figure 6.13 A) and 3 (figure 6.13 B) were found to be significant (p<0.01).

These components explained 23.8 and 10.1% of the variance in the ASLnon data respec-

tively. The PC’s were used in linear combination to form a characteristic PDDRS-related
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Figure 6.16: PDDRS-related perfusion network created by the bootstrap estimation proce-
dure. Perfusion deficits were located primarily in the posterior bilateral occipital cortex and
left superior parietal lobule, extending through the post-central, middle-frontal and superior
frontal gyri. Preserved perfusion was located anterior cingulate and paracingulate gyri, with

some involvement in the frontal medial and frontal orbital cortex.

ASL perfusion network, using the correlation coefficients from the regression (1 and 3; β

= 1.48, 1.11).

Regions described by the positive (z > 1.96) and negative (z < −1.96) voxel loadings were

examined as before, this time ordering the mean values given by the positive and negative

regions by increasing PDDRS. Thus, the first group of voxel values within each region has a

lower mean PDDRS than the second group, separated at the median PDDRS. Examining

the area described by the negative loadings, the mean of the first group was found to

be higher than the mean of the second group, corresponding to decreasing perfusion with

increasing PDDRS. The areas described by the positive loadings were found to correspond

to preserved perfusion in the subject data. Negative loadings were thus coloured blue to

indicate perfusion deficits, while the positive loadings indicating preserved perfusion were

coloured red.
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Network reliability and validation

The bootstrap estimation procedure was employed once again, yielding a population stan-

dard deviation for the PDDRS network from resampled statistics. The bootstrap PDDRS

network, given by dividing the original PDDRS network by the derived standard devi-

ation, is given in figure 6.16. This network demonstrated decreased perfusion in the

posterior bilateral occipital cortex, precuneus, left supramarginal and angular gyri, left

superior parietal lobule and the frontal pole, with some involvement in the post central,

midfrontal and superior frontal gyri. The network showed preserved perfusion relating

to PDDRS primarily in the anterior cingulate and paracingulate gyri, with some involve-

ment in the frontal medial and frontal orbital cortex. Decreased and preserved perfusion

in the areas defined by this pattern was associated with a higher risk of development of

dementia.

Visually, the PDDRS network appears less noisy than the cognition-related network, which

may relate to an improved performance of the model in predicting network score from

perfusion data outside of this subject group. Leave-one-out cross validation gave an

Figure 6.17: LOO cross-validation carried out on the PDDRS-related network displayed
excellent correlation between the predicted network scores and the actual network scores

(r=0.98, p< 0.000001).
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almost perfect correlation between the predicted PDDRS network scores and the observed

network scores for this subject group (coefficient of correlation r=0.98, p< 0.000001). This

finding suggests that cortical perfusion changes in PD have an even stronger and more

stable association with the risk of conversion to dementia than with cognition. This is

compelling, as a PDDRS network such as that derived in the current work could be quickly

and easily evaluated in individuals undergoing routine MRI, prior to cognitive screening.

While neuropsychological testing will always be necessary to complete a full patient evalu-

ation, the PDDRS network expression may present an extremely useful first-pass screening

measure to help identify those at imminent risk of developing dementia. Additionally, the

model used to calculate PDDRS from subject data may benefit from the inclusion of per-

fusion information as a significant and stable predictor of imminent conversion, given the

strong positive results in this thesis.

6.6 Strengths, limitations and future work

The current work adds to existing perfusion literature, examining a reasonably large

sample size of 50 well characterised subjects. It was initially intended to include data from

85 subjects in the analysis, however numerous delays in scanning reduced the number of

subjects that could feasibly be included within the time-frame of this thesis. A subject

group of 50 subjects was sufficient to obtain significant results. Notably, an association

of cognitive dysfunction with decreased perfusion in posterior parietal regions replicated

previous work (T. Melzer et al., 2011), and was well supported by the results of linear

regression and cognition-related network analysis with this subject group. The inclusion

of more subjects in future analysis may strengthen this finding and reduce the affect of

noise and random error in the cognition-related network model.

The correlation of PDDRS with ASL-derived perfusion in PD-MCI had not been examined

prior to this study. A significant negative correlation of PDDRS with perfusion was found

in the posterior bilateral occipital cortex and precuneus, relating to decreased perfusion

in these areas for this subject group. The current work introduces the possibility of using

perfusion information to infer not only current cognitive status, but also the individualised

risk of imminent future conversion to dementia. The results presented here justify the
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inclusion of perfusion information in the predictive model used to calculate PDDRS, which

may improve the sensitivity of the model in screening for at-risk individuals.

Early-phase FBB PET was examined as a novel method of perfusion imaging; here, key

issues were highlighted concerning the choice of scan time as it relates to the biological

measure obtained. It was hypothesised that a blood pool effect may mask perfusion in-

formation due to non-optimal selection of time-frame for the summed PET image. Had

the 2-3 minute patient set-up time been accounted for initially, this blood pool effect

might not have limited the results obtained from early-phase FBB PET. However, the

blood pool hypothesis may present an interesting and worthwhile area of future investiga-

tion, regarding the physiological information obtained from different dynamic time frames

within the first 10 minutes of FBB PET imaging.

The lack of correlation between the FBB and ASL-derived data could also be due in

part to the sensitivity of perfusion data to state changes. Factors such as the time of day,

drowsiness, caffeine ingestion and eye status can effect regional cerebral perfusion (Poudel

et al., 1994)(Haller et al., 2013). MRI and PET data were acquired on different days, and

without controlling for these factors; therefore, there may have been some unaccounted-for

variation in the data that reduced the strength of the correlation.

This thesis was limited by a lack of range in cognitive status, due to the inclusion of pre-

dominantly PD-MCI patients in the subject group. This may have affected the reliability

of the cognition-related network model, as a result of slight overfitting of the data reduc-

ing the prediction accuracy in subjects outside of the studied group. The PDDRS-related

network did not seem to be affected by this, suggesting that the association of perfusion

with PDDRS is more stable than the association with the global cognitive measure used

here, and is less affected by outliers. A higher proportion of PD-N and PDD participants

were unable to be included in this thesis as a result of numerous delays in scanning caused

by external factors. Planned future work within the longitudinal study may remedy this

issue and produce a more representative cognition-related perfusion network.

The reliability of the network analysis may be further improved by the use of independent

component analysis (ICA) instead of PCA to identify meaningful characteristics within

the data. It is perhaps more biologically relevant to employ ICA to extract underlying

patterns from perfusion data, as ICA rests on the assumption that the signals comprising

a dataset are statistically independent and uncorrelated with each other (Stone, 2002).
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PCA requires only that they be uncorrelated, which is a relatively weak constraint to

impose on this data. It is realistic to assume independent physical processes produce

uncorrelated signals. These stronger constraints used by ICA may therefore be well-

suited to perfusion data, and yield more robust networks less affected by noise. Future

analysis could compare the networks given by PCA and ICA, and determine the most

appropriate method for use in network analysis of perfusion imaging.

6.7 Concluding remarks

The primary aim of this thesis was to investigate the use of ASL MRI and early-phase

FBB PET in the evaluation of cognitive status and dementia risk, and to create infor-

mative perfusion networks from these data. To this end, the results of linear regression

analysis with cognitive z-score and PDDRS given by each imaging modality were com-

pared; significant correlation of perfusion with cognition and dementia risk were identified

in the ASL data, while this correlation was absent in the FBB-derived data for this cohort.

There was also found to be very little voxelwise correlation between the FBB and ASL-

derived images. It was proposed that these results may be due to a masking of perfusion

information by retained signal, instead resulting in a blood pool image. Examining the

kinetics of FBB within different time-frames over the first 10 minutes post-injection may

provide valuable insight in regards to functional imaging using early-phase FBB PET.

This hypothesis warrants further investigation.

Network analysis employed with the ASL-derived perfusion data revealed significant net-

works of perfusion relating to cognitive z-score and PDDRS. Both networks displayed

significant posterior hypoperfusion, consistent with previous findings. The regions show-

ing perfusion deficits in the cognition and PDDRS networks are believed to be involved

with the processing and integration of somatosensory information, visuospatial process-

ing, language, episodic memory, reflections of self and other aspects of higher cognitive

function (Tortora & Derrickson, 2012)(Cavanna & Trimble, 2006). The PDDRS-related

network may be the most compelling aspect of this thesis, as it represents a promising

avenue of evaluating disease severity and future dementia risk.

Early-phase PET and ASL MRI present exciting opportunities in terms of the future of

neuroimaging and the evaluation of disease. This work presents and compares these two
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modalities for the first time in the context of cognitive decline and future conversion to

dementia, two highly impactful elements of disease burden in PD. While considerable

work remains, the results obtained here add to our understanding of the Parkinson’s

disease neuropathology and underlying functional changes, and raise interesting questions

regarding the way early-phase PET data is interpreted. Planned future work may lead

to the development of the PDDRS network as a new imaging biomarker of imminent

dementia in PD.
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Figure A.3: The SPM12 graphical user interface (GUI), employed here to carry out pre-
processing on PET and MRI data.
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Figure A.4: The tissue probability maps (TPMs) for a) grey matter, b) white matter,
c) cerebrospinal fluid and d) bone. The TPMs for skin and air are also used in the SPM

segmentation routine but are not included here.
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Figure A.5: The FSL GLM graphical user interface (GUI), demonstrating the options for
a higher-level/non-timeseries design. The number of main EV’s can be changed to allow
multiple tested effects and confounds, entered as discrete data. Voxel dependent EV’s are
input as a 4D image file, with dimensions matching exactly that of the data the EV is being

compared to.
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Figure A.6: The design matrix implemented by FSL’s Randomise, with Parkinson’s dis-
ease dementia risk score (PDDRS) as the tested covariate and age and sex as confounds.
Significant results on the negative contrast indicate decreased voxel values with increased
PDDRS. For the ASL perfusion data, this may indicate decreased perfusion corresponding

to increased risk of conversion to dementia.
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Figure A.7: This design matrix, created using FSL’s GLM graphical user interface, specifies
the ASLGM 4D image file as a voxel-dependent explanatory variable, represented graphically
here by the mean value across all voxels. The FBBGM images input into Randomise are
compared voxel-by-voxel with the corresponding ASLGM images, using permutation inference
with threshold-free cluster enhancement. Both positive and negative voxelwise correlation

are tested using the contrasts specified in this design.
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Appendix C

Matlab Code

Here I have included two scripts that were employed in this thesis. The SUVR creation

script was used to normalise the images to a chosen reference region.

The PCA function carried out principal component analysis on the data, followed by

a logistic regression to identify significant PC’s relating to the chosen covariate. The

bootstrap and LOO procedures employed very similar methods as those used in this

function, modified to resample the data and compute individual network expression.

Other scripts were used to stream-line preprocessing, but were not included here.

SUVR creation script:

%% SUVR: Normalise images to cerebellum or global grey matter

% This script takes an input image and normalises it by the mean grey matter

% voxel value within a chosen mask. Here , SUVR images are created from FBB

% tofac images by normalising to the mean value in the cerebellar grey

% matter or global grey matter. ASL perfusion images are left non normalised

% or normalised to global grey matter.

%%

spm('Defaults ','pet');

!source /etc/profile.d/fsl.sh

%Set working directory. This directory contains all subject image data

%within MRI series folders.

direct = '/data/analysis/pet -fbb/MRI_m/';

92



Appendix C. Matlab Code 93

%Define MRI scan numbers

input = [

];

scan_num = num2str(input (: ,1));

for i =1: size(scan_num ,1)

%Uncomment either tofac or ecqCBF.

%warped tofac image.

vph1 = spm_vol(spm_select('FPList ',[direct scan_num(i,:)],'^wperf_tofac.*.nii$ '));

hot1 = spm_read_vols(vph1);

%warped ecqCBF image

vph1 = spm_vol(spm_select('FPList ',[direct scan_num(i,:)],'^wecq.*.nii$ '));

hot1 = spm_read_vols(vph1);

%Grab the GM image produced by segmentation step

vph2 = spm_vol(spm_select('FPList ',[direct scan_num(i,:)],'^mwc1ds.*.nii$ '));

hot2 = spm_read_vols(vph2);

%Uncomment the appropriate mask.

%Cerebellum mask.

vph3 = spm_vol('/.../r_cerebellum_mask.nii ');

%Global GM mask

vph3 = spm_vol('/.../maskGM_s4_m0wrp1ds_cut.nii ');

hot3 = spm_read_vols(vph3);

%Deal with NaN.

hot1(isnan(hot1 ))=0;

%Grab voxels that have a >90% chance of being grey matter (as defined by

%the subject grey matter segment image) that are within the chosen mask.

gm = (hot3 >0) & (hot2 >0.1);

%Get mean PET or ASL voxel value within the chosen region.

avg_pet_gm = mean(hot1(gm));

%Create SUVR by dividing by the avg_pet_wm value.

suvr_pet = hot1/avg_pet_wm;

%***********************************

% Write as image.

[pth nam] = spm_fileparts(vph1.fname );

s = regexp(nam ,'\_', 'split ');

vph1.dt = [16 1];
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%normalising wperf_tofac to whole brain GM

vph1.fname = [pth filesep 'suvr_GMnorm_wperf_tofac_ ' char(s(3)) '.nii'];

%normalising wperf_tofac to cerebrellum

vph1.fname = [pth filesep 'suvr_wperf_tofac_ ' char(s(3)) '.nii'];

%normalising wecqCBF to whole brain GM

vph1.fname = [pth filesep 'wecqCBF_GMnorm_ ' char(s(2)) '.nii'];

spm_write_vol(vph1 , suvr_pet );

disp(sprintf('%d SUVR images created ',i));

end

PCA network creation function, with logistic regression:

function [srp_r_c ,c,es ,s_es ,vs,scvs ,pat ,col_av ,col_std ,inputfile ,net] = spm_pca_linear_AB

%-------------------------------------------------------------------------

% 2015 - Tracy Melzer , Megan Stark

% Original by Richard Watts (2010)

%-------------------------------------------------------------------------

% Output variables:

% srp = subject residual profile: the twice demeaned data

% c = covariance matrix

% es = vector of eigenvalues associated with eigenvectors(principal

% components) 100*(es)/sum(es) = %variance explained by each of the

% components.

% s_es = scaled eigenvalues

% vs = Eigenvectors (expression or 'score ' of each component)

% scvs = scaled eigenvectors --These represent the expression of each PC in

% each individual.

% pat = [# voxels x #subject] matrix of linear principal components:

% First column is PC1 , second column is PC2 , etc...pat is saved as

% 'pattern_matrix ' in the current working directory (line 255)

% col_av = group average (if ASL , average CBF of entire group)

% col_std = group standard deviation

% inputfile = list of images used in the analysis

%

% Saved Variables:

% pca### = Principal Component images

% average_lin = group average brain image (average at each voxel)

% std_lin = standard deviation image for the group (std at each voxel)

%--------------------------------------------------------------------------

% This script uses a Grey Matter (GM) mask to restrict analysis to GM

% perfusion (avoid the need to log transform the input data).

%--------------------------------------------------------------------------
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%Things that can/need to be changed in this script depending on use:

% 1. nComponents: Sets the number of Principal Component image to write out

% 2. mask: Study specific GM mask (or other mask)

% 3. out_direct: set the location of the PC images written out

% 4. group: covariate to use in logistic regression with PCs to form

% network

%set number of PCs to use in logistic regression and to write out. Can

%change this according to how many PC 's make up 67% of the variance.

nComponents = 15;

%use the oxford mask defining mean GM (modulated normalised)

mask = spm_vol('/.../maskGM_s4_m0wrp1ds_cut.nii ');

%Specify output directory

out_direct = '/.../PCA';

%spm_select opens dialogue window to select study images

[inputfile sts] = spm_select(inf , 'image ', 'Select input images for PCA');

v = spm_vol(inputfile );

%--------------------------------------------------------------------------

%Import mask

y_mask = spm_read_vols(mask);

%*************************************************************************

%Find the voxels in/out of the mask.

ind_out = find(y_mask ==0); %Voxels outside the brain.

ind_in = find(y_mask ); %Voxels inside the brain.

fprintf('Reading files\n');

%**************************************************************************

%Pre -define srp and define vols = number of subjects (images) in the analysis

vols = size(v,1);

zrp = zeros(vols ,size(ind_in ,1));

srp = zeros(vols ,size(ind_in ,1));

srp_r = zeros(vols ,size(ind_in ,1));

srp_r_c = zeros(vols ,size(ind_in ,1));

k=1;

%Sets up linear indexing and excludes voxels not part of GM.

for j = 1:size(v,1)

y = spm_read_vols(v(j));

%Exclude non -GM voxels

z = y(ind_in );
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zrp(k,:) = reshape(z,1 ,[]);

k=k+1;

end

%Find any values equal to zero or NaN and set them to 1, otherwise log transform

%won 't work. Zeros and NaN 's arise due to coregistration.

a = find(zrp <=0);

zrp(a)=1;

ns = isnan(zrp);

zrp(ns)=0;

srp=log(zrp);

%Calculate Row mean (subject mean)

row_av = mean(srp ,2);

fprintf('Subtracting mean image\n');

%1: subject de -mean 2: group de-mean

%Subtract row averages (subject average) so that voxel values represent

%within -subject derivations from the mean of the subject image.

for ii = 1:vols

srp_r(ii ,:) = (srp(ii ,:)- row_av(ii));

end

%Columns are then averaged to create a characteristic mean image vector for

%the group. The column averages are subtracted from the individual matrix

%entries to produce a matrix of 'residual ' images termed the subject

%residual profile (SRP). This represents the matrix of deviations from the

%subject and group means.

col_av = mean(srp_r ,1);

col_std = std(srp_r ,0,1);

%Demean and Normalize standard deviation to 1.

for jj = 1:size(srp ,2)

srp_r_c(:,jj) = (srp_r(:,jj)-col_av(jj));

end

%A covariance matrix is contstructed from the subject residual prodiles by

%computing the covariance between each pair of SRP matrix rows. divide by

%'n' not 'n-1'.

fprintf('Calculating covariance matrix\n');

c = zeros(vols ,vols);

for ix=1: vols

for iy=ix:vols
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c(ix ,iy) = sum(srp_r_c(ix ,:).*srp_r_c(iy ,:))/( vols -1);

c(iy ,ix) = c(ix ,iy);

end

end

fprintf('Calculating and sorting eigenvalues and eigenvectors\n');

[vo ,d] = eig(c);

[t,index] = sort(diag(d)); % Sorts eigenvalues into ascending order

index (:) = size(srp ,1)-index (:)+1; % Descending order index

vs(:,:) = vo(:,index); % Sort eigenvectors

es = t(size(srp ,1): -1:1); % Sort eigenvalues

%take absolute value of eigenvalues

es = abs(es);

fprintf('Creating eigenvector images\n');

%*************************************************************************

vols = size(v,1);

zrp = zeros(vols ,size(ind_in ,1));

srp = zeros(vols ,size(ind_in ,1));

srp_r = zeros(vols ,size(ind_in ,1));

srp_r_c = zeros(vols ,size(ind_in ,1));

%#of components for log reg

comp = 12;

%set up group variable for logistic regression

group = zeros(vols ,1);

k=1;

% %sets up GM mask

%Sets up linear indexing and excludes voxels not part of GM.

for j = 1:size(v,1)

y = spm_read_vols(v(j));

z = y(ind_in );

zrp(k,:) = reshape(z,1 ,[]);

k=k+1;

end

%log transform the data

a = find(zrp <=0);

zrp(a)=1;

srp = log(zrp);

%if using just values of interest (ind_in), then calculating subject rows:
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row_av = mean(srp ,2);

%subtract row averages so that voxel values represent within -subject

%deviations from the mean of the subject log image.

for ii = 1:vols

srp_r(ii ,:) = (srp(ii ,:)- row_av(ii));

end

col_av = mean(srp_r ,1);

col_std = std(srp_r ,0,1);

%Demean group average (not using stdeviation right now)

for jj = 1:size(srp ,2)

srp_r_c(:,jj) = (srp_r(:,jj)-col_av(jj));%./col_std(jj);

end

%covariance matrix

c = zeros(vols ,vols);

for ix=1: vols

for iy=ix:vols

c(ix ,iy) = mean(srp_r_c(ix ,:).*srp_r_c(iy ,:));

c(iy ,ix) = c(ix ,iy);

end

end

%fprintf('Calculating and sorting eigenvalues and eigenvectors\n');

[vo ,d] = eig(c);

[t,index] = sort(diag(d)); % Sorts eigenvalues into ascending order

index (:) = size(srp ,1)-index (:)+1; % Descending order index

vs(:,:) = vo(:,index); % Sort eigenvectors

es = t(size(srp ,1): -1:1); % Sort eigenvalues

% need absolute value of eigenvalues

es = abs(es);

%Weight by the sqrt of eigenvalue

s_es = sqrt(es);

%Create the scaled Eigenvectors: Scale by square root of eigenvalue.

%Mult when calculating log reg and div when calculating PC's. Use divide to

%set variance of patterns (PC 's) to one.

scvs = zeros(size(vs));

scvs_div = zeros(size(vs));

tvs = vs ';

for h = 1:vols

scvs(:,h) = vs(:,h)*s_es(h);

scvs_div(:,h) = vs(:,h)/s_es(h);

scvs_trans(h,:) = s_es(h)*tvs(h,:);

end
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%Create the PC 's by multiplying the transpose of the SRP matrix by the

%scaled eighenvectors.

pat = srp_r_c '* scvs_div;

%Write out the PC 's for nComponents

[pth ,nam ,ext ,num] = spm_fileparts(v(1) .fname );

%% Write out the PC 's for nComponents

pat_vol = zeros ((v(1) .dim (1)*v(1) .dim (2)*v(1) .dim (3)), vols);

for i = 1:vols

mid = pat_vol(:,i);

mid(ind_in) = pat(:,i);

pat_vol(:,i) = mid;

end

for component = 1: nComponents

network_volume = reshape(pat_vol(:, component),v(1) .dim(1),v(1) .dim(2),v(1) .dim (3));

mask.fname = [out_direct 'pc' sprintf('%.3d', component) ext];

mask.dt = [16 0];

spm_write_vol(mask , network_volume );

end

%Write out mean vol and standard deviation: First reshape row vectors

%into 3D volume.

mean_mid = zeros((v(1) .dim (1)*v(1) .dim (2)*v(1) .dim (3)) ,1);

std_mid = zeros ((v(1) .dim (1)*v(1) .dim (2)*v(1) .dim (3)) ,1);

%Assign values to 3D volume

mean_mid(ind_in) = col_av;

%std_mid = col_std;

std_mid(ind_in) = col_std;

%Write out volumes in output directory.

meanim = reshape(mean_mid ,v(1) .dim(1),v(1) .dim(2),v(1) .dim (3));

mask.fname = [out_direct 'average_lin ' ext];

mask.dt = [16 0];

spm_write_vol(mask , meanim );

stdim = reshape(std_mid ,v(1) .dim(1),v(1) .dim(2),v(1) .dim (3));

mask.fname = [out_direct 'std_lin ' ext];

mask.dt = [16 0];

spm_write_vol(mask , stdim);

%% stepwise logistic
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% Set up group variable for logistic regression. Either cognitive z score

% or PDDRS , input values into group and change output PCA network file name

% accordingly (below)

group = [

];

%Stepwisefit runs the logistic regression

[b,se,pval ,inmodel ,stats ,nextstep ,history] = stepwisefit(scvs (:,1: nComponents),group);

%Output coefficients , intercept and PC expression from the logistic

%regression with the group variable

betas = inmodel (:).*b(:);

intercept = stats.intercept;

net = stats.intercept + scvs (:,1: nComponents )*betas;

%Create the network

net_im = stats.intercept + pat(:,1: nComponents )*betas;

av_net = mean(net_im );

st_net = std(net_im );

newnet = (net_im -av_net )/ st_net;

newnet_lin_im = zeros((v(1) .dim (1)*v(1) .dim (2)*v(1) .dim (3)) ,1);

net_lin_im_im = zeros((v(1) .dim (1)*v(1) .dim (2)*v(1) .dim (3)) ,1);

newnet_lin_im(ind_in) = newnet;

net_lin_im_im(ind_in) = net_im;

newnet_im = reshape(newnet_lin_im ,v(1) .dim(1),v(1) .dim(2),v(1) .dim (3));

net_im_im = reshape(net_lin_im_im ,v(1) .dim(1),v(1) .dim(2),v(1) .dim (3));

%Write out new network as NIFTI. Change network name (cogZ/pddrs)

v(1) .fname = [out_direct '/cogZ_network.nii '];

v(1).dt = [16 0];

spm_write_vol(v(1), newnet_im );

v(1) .fname = [out_direct '/net_image.nii '];

v(1).dt = [16 0];

spm_write_vol(v(1), net_im_im );

fprintf('Done\n');
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