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Executive Summary

Hazard risk management requires the complex analysis of dynamic datasets.
However, on a national scale, there are issues related to heterogeneity among
datasets, data quality and data accuracy, which often need to be reconciled man-
ually or with hard-coded rules. Much time and effort therefore has to be given to
the reconciliation of the datasets that could otherwise be used for the modelling
and prediction of hazards. To improve this balance, more automated integra-
tion processes are required. This would allow experts to focus on assessing the
probable size and extent of hazards and the reduction of their impacts ahead of
time.

In addition, because hazard datasets change regularly (e.g. rainfall and
landscape for flood), the datasets need to be integrated in real-time whenever
possible. In the spatial domain, automated real-time integration and analysis
of data is most effectively achieved at a local scale; currently used Spatial Data
Infrastructures (SDI) are not designed with automation in mind, but rather to
minimise interoperability issues. As such, it is proposed that the current SDI
be improved, shifting its capabilities towards those of a Spatial Knowledge In-
frastructure (SKI), which would allow data to be integrated, and analyzed in
real-time, enabling experts to refocus on the repercussion of hazards and the
risks associated with them.

Dealing with natural hazards, whether planning or response, requires work-
ing with an increasing quantity of disparate spatial data. However, increasing
data volumes are difficult to manage, particularly when data are distributed by
multiple agencies. Consequently, from the hazard management perspective, data
can be difficult to find and differing formats can make it challenging to produce
consistent and integrated datasets across regional boundaries. This is particu-
larly the case for data required with national coverage e.g. for a major hazard
such as flooding which crosses agency boundaries. To aid with the development
of flood risk mitigation, there is a need to increase data interoperability and
accessibility, allowing improved mapping and assessment of flood hazard. This
project aimed to address these issues through the specification of federated spa-
tial data infrastructures, and the development of prototype APIs which leverage
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these data into relevant information, building on Program 3 (Spatial Infrastruc-
tures) of the CRC-SI, which has explored federated data modelling methods to
connect and provide a user generated view into different and disparate datasets.
The project sought to develop outcomes from Program 3 towards the specifi-
cations of a workable pilot SKI implementation; to improve real-time access to
hazard data and data federation. APIs were developed to illustrate the rapid
production of information to flood managers, such as determination of the sig-
nificance of measured or forecast rainfall.

A key Phase 1 objective was to engage with flood risk management prac-
titioners (end users) to identify current practice and needs for data federation,
identify data sources and types which are relevant for flood risk management,
review existing spatial data infrastructure technologies and assess their capabil-
ities for real-time data federation.

In Phase 2, to be implemented at a later date, the SDI identified in will
be implemented alongside the toolbox developed. Together these will form the
basis of a spatial knowledge infrastructure which allows for real-time federation
of the flood risk data identified and is responsive to the needs of end users.

Through these two project phases, the core goal of the project is to enable
the implementation of a SKI which comprises an SDI to host static and dynamic
data of relevance to flood risk assessment, and APIs which leverage these data to
produce information of relevance. Ultimately, the SKI system’s uniqueness will
be found in using spatial and temporal data from multiple data sources on-the-
fly in situations where near real-time answers are required to real time, possibly
life-threatening, situations.

Stakeholders play a crucial role in all parts of an SDI. Despite this, the im-
plementation of SDIs has generally been restricted to enforcing policies and reg-
ulations on data collectors and data providers, often neglecting the consumers.
A Spatial Knowledge Infrastructure (SKI) aims to step towards a next stage of
SDI, where instead of giving data to consumers (and letting them extract the
knowledge—the current approach), the knowledge is derived from within the
SKI by automated real-time data integration and processing. The consumers
then do not need to have specialised technical knowledge and can gain access
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to knowledge on-demand without having to search for, understand, manipulate,
and harmonise the data.

An SKI depends on ontologies where concepts are represented, inferred au-
tomatically, and queried over. This may be achieved using an entirely linked data
approach (ideal, but which requires significant time, resource and funding com-
mitments), an ontology-based data access approach (which limits some capabili-
ties of linked data), or a hybrid approach, whereby the ontology-based approach
can be used to address the gaps in linked data and be reduced or phased out as
more links between data are created.

To understand the needs of flood risk practitioners towards the development
of an SKI, two workshops in Wellington, New Zealand, and Christchurch, New
Zealand were conducted in June 2018. The aims of the workshops were to
identify the current methods used in flood risk management, the gaps in data
and tools, the needs of the stakeholders, and whether there is demand for real-
time analysis and integration of data.

The workshops were divided into three parts. The first part focused on
datasets identification: which crucial datasets are available? what works well in
terms of data provision? what are the current issues? and what improvements
can be made to existing practice? The second part focused on identifying im-
provements to current tools and desired next generation tools. The third part
focused on explaining the concept of an SKI, and to gather the users’ thoughts
on a potential SKI implementation.

The workshops identified the strong current demand, particularly from local
government and utility operators, for flood modelling services. Typically these
are to support local plans, flood protection scheme design and evaluation, and
asset and infrastructure design and management. This demand is met by a ma-
ture and well skilled supplier community based within the private, research and
local government sectors. In terms of outputs, we learned from participants that
currently models tend to be created to simulate specific events (e.g. for a partic-
ular probability of occurrence / return period) rather than establishing a range
of flood / depth probabilities at a particular location. Modelling to determine
quantified risk (as a function of probability and consequence) is not common.
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Key findings included a clear need for improvement in the current SDI; the
lack of data consistency, quality, and real-time data feeds were identified as re-
quired improvements, alongside improved accessibility and documentation. The
participants require data that is of high quality, consistent, easily accessible (e.g.
centralised access), and of higher coverage.

Out of the three data categories assessed (source, pathway, receptor), re-
ceptor data requires most improvement; more data to be captured and made
available.

A main tool identified to be a priority was a national flood model system,
which would be consistent and provide live flood information. However, such a
system should be open so that experts can input their own datasets, and extract
their needed information. It would help in facilitating impact evaluation, enable
the development of site specific models for infrastructure design activities, and
allow near real-time scenario modelling.

It was also recognised that the flood models should be flexible enough to
allow integration with existing risk assessment tools such as RiskScape.

The importance of understanding uncertainty in outputs, and supporting
the visual interpretation of flood datasets was noted. The current inability to
do these effectively were seen as key issues. It was agreed by the participants
that more effort should be made to resolve them. Virtual reality and augmented
reality were suggested as possible solutions.

The identified priorities for improved flood-risk modelling and the issues
identified with the current system strongly support the implementation of a Spa-
tial Knowledge Infrastructure (SKI). Approaches to improved data accessibility,
consistency, interpretation, exploitation, customisation, and confidence can be
tackled by taking an SKI-based approach. The participants saw benefits with the
concept of an SKI for better flood-risk management. However, concerns were
identified, particularly with regard to trust in the automation process, and in
the ability to fund of such a system. Other significant issues that would require
resolution include the governance of the SKI and the development of capability
to deliver and maintain it.
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To fully implement an SKI, the participation of its stakeholders is crucial.
This project has taken this first step by engaging with flood modellers and man-
agers to understand their needs and interests. Such users provide essential feed-
back to support system design and adoption. However, before a national scale
implementation can occur, prototyping is required to ensure that the SKI meet
these users’ needs.

For the next phase of the project, use cases for the SKI will need to be
identified alongside the requirements that the system need to fulfil. We suggest
that stakeholder engagement workshops and presentations be held at regular
intervals during the implementation of a flood SKI. This will result create and
sustain demand for frequent updates and prototyping, which will drive a user-
focused implementation of the SKI, resulting in an better likelihood of uptake.
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1 Introduction

Hazard risk management requires the complex analysis of dynamic datasets that
are often from different domains (e.g. land, water, meteorology, transport, geog-
raphy, geology). To mitigate the risk of hazards, it is imperative that related data
are processed in a timely and efficient manner allowing more time for prepara-
tion and response to disaster events.

Current methods to achieve this either rely on historic data to find patterns
of re-occurrences, or use predictive models to determine the likelihood and po-
tential damage of hazards. At a local scale, where the different datasets follow
common standards and policies they are easier to integrate. On a national scale,
there are issues related to heterogeneity among datasets (different syntaxes and
schemas), data quality and data accuracy; these issues often need to be recon-
ciled manually or with hard-coded rules. The majority of the labour involved is
therefore focused on the reconciliation of the datasets instead of the modelling
and prediction of hazards.

For a more proactive management of hazards, more automated integration
processes are required to reconcile disparate and heterogeneous datasets. This,
in return, would allow experts to focus on the extent of hazards and the reduc-
tion of casualties ahead of time. In addition, because hazard datasets change
regularly (e.g. rainfall and landscape for flood), the datasets need to be inte-
grated in real-time whenever possible.

In the spatial domain, automated real-time integration and analysis of data
can be achieved but only at a local scale. The currently used Spatial Data Infras-
tructure (SDI) is not designed with automation in mind, but rather to minimise
interoperability issues. As such, it is proposed that the current SDI be improved
towards a Spatial Knowledge Infrastructure (SKI), which would allow data to
be integrated, and analyzed in real-time, enabling experts to refocus on the
repercussion of hazards and the risks associated with them. Duckham, Arnold,
Armstrong, McMeekin, and Mottolini (2017) use the term Spatial Knowledge
Infrastructure (SKI) to refer to an SDI that is semantically enabled allowing the
real-time integration and analysis of data.
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A shift to using more semantic enabled data would allow SDIs to infer new
knowledge on-the-fly, and ease scalability and interoperability issues enabling
more focused management of hazard risks.

1.1 Flood hazard

Flood is a significant hazard that can impair economic and social activities, cause
damage to infrastructures, threaten lives, and have lasting geographical impacts
with soil erosions and land slides (Ran & Nedovic-Budic, 2016). In 2017, from all
natural disasters worldwide, flooding occurred 38% of the time, was responsible
for 35% of total deaths, and impacted 60% of people experiencing hazards (EM-
DAT, 2018). This hazard does not only affect the immediate flood plains but also
secondary ones as the flood passes through them (Wrachien, Garrido, Mambretti,
& Requena, 2012).

Flood hazards have traditionally been handled by attempting to control
them using structures such as barricades or redirecting the flood. However, this
approach requires constant maintenance and such ‘flood prevention’ methods
can often be short-termed and insufficiently funded (Brown & Damery, 2002).
For these reasons, there has been a shift towards flood-risk management, where
the focus is not only on controlling the hazard but also on reducing its social
impacts (Galloway, 2008). Flood-risk management is then a function of the
likelihood of a hazard occurring, and the severity of its consequences (Ran &
Nedovic-Budic, 2016).

However, the confidence in identifying a flood risk, and predicting its im-
pacts is highly depended on the quality and accuracy of the data used—more
accurate and better quality data increases the confidence of the prediction. Cur-
rently, the quality of core datasets relevant to flood risks is sub-optimal, or miss-
ing (e.g. national digital elevation models). In addition, flood-risk identification
and prediction require the creation of flood models, which can vary depend-
ing on the methods used (Teng et al., 2017). Each of the different models and
methods has their own benefits and disadvantages, but generally, the accuracy
of a model is directly related to the intensity of the data processing, where more
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accurate models require more processing power (Teng et al., 2017).

Further to the numerous modelling methods, flood-risk management re-
quires a common governance of multiple disciplines (Hartmann & Driessen,
2017), which can lead to heterogeneities as the same concept can be defined
differently (Wrachien et al., 2012). This issue is especially prevalent in hazard-
risk management because the outputs of a user are required as the inputs for
another user. Hence, the overall output of a hazard analysis is based on the
interoperability of cross-domain datasets.

Common issues with current methods impairing flood-risk management have
been identified from workshops and interviews lead by Land Information New
Zealand (LINZ), University of Canterbury (UC), and Curtin University (CU). The
main issues were that of data coverage, governance, policy, standardisation, ac-
cessibility, uncertainty, quality, and their real-time processing. As data coverage,
governance, policy, and quality are issues to be addressed in the data collection
phase, they are not discussed in this report. However, data standardisation, ac-
cessibility, uncertainty, and real-time processing are issues that can be resolved
using technologies such as Linked Data (LD), cloud computing, and the Seman-
tic Web in a next-generation Spatial Data Infrastructure referred to as a Spatial
Knowledge Infrastructure (SKI).

1.2 Project overview

Dealing with natural hazards, whether planning or response, requires an in-
creasing quantity of disparate spatial data. However, increasing data volumes
are difficult to manage, particularly when data are distributed by multiple agen-
cies. Consequently, from the hazard management perspective, data can be diffi-
cult to find and differing formats can make it challenging to produce consistent
and integrated datasets across regional boundaries. This is particularly the case
for nationally-relevant data for a major hazard such as flooding which crosses
agency boundaries. To aid with the development of flood risk mitigation, there
is a need to increase data interoperability and accessibility, allowing improved
mapping and assessment of the flood hazard. This project aimed to address

10



these issues through the specification of federated spatial data infrastructures,
and the development of prototype APIs which leverage these data into relevant
information.

The project built on Program 3 (Spatial Infrastructures) of the CRC-SI,
which has explored federated data modelling methods to connect and provide
a user generated view into different and disparate datasets. In hazard risk and
emergency management, time is a critical factor: SDI and SKI can help to re-
move barriers to access and provide linkages between necessary data, which are
often held by different agencies at a national, regional or local level in both the
public and private sectors, each of which maintain specific data for their own
geographical areas and applications of interest. The project sought to develop
outcomes from Program 3 towards the specifications of a workable pilot SKI im-
plementation, to improve real-time access to hazard data. In this project, APIs
were developed to illustrate the rapid production of information to flood man-
agers, such as determination of the significance of measured or forecast rainfall.
Project outputs will be used to validate and improve current methods of federat-
ing disparate datasets, as well as inform how ‘semantic’ data infrastructure can
further be built.

1.3 Project aims and objectives

The broad aim of this project was to conduct work which will enable the devel-
opment of a SKI for real-time data federation of relevant spatial and temporal
data for agencies responsible for flood risk management and to develop proto-
type APIs which can leverage these data into products of relevance for flood risk
mitigation. In Phase 1 of the project, reported here, the primary objectives were
to:

1. Engage with flood risk management practitioners (end users) to identify
current practice and needs for data federation;

2. Identify data sources and types which are relevant for flood risk manage-
ment, including but not limited to infrastructure (e.g. stopbanks), topog-
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raphy (e.g. LiDAR), temporal data (e.g. river gauge data), flood observa-
tional data, climatology, and existing flood zonation;

3. Review existing spatial data infrastructure technologies and assess their
capabilities for real-time data federation; and

4. Develop a prototype spatial toolbox (API) which can allow rapid (real-
time) visualisation of statistics of relevance to flood risk management (e.g.
100-year flood levels; rainfall intensity-duration-frequency curves), and
provide an indicative map of likely flood areas.

In Phase 2, to be implemented at a later date, the SDI identified in (3) will
be implemented alongside the toolbox developed in (4), which together will
form the basis of a spatial knowledge infrastructure which allows for real-time
federation of the flood risk data identified in (2) and is responsive to the needs
identified in (1).

Through these two project phases, the core goal of the project is to enable
the implementation of an SKI which comprises an SDI to host static and dynamic
data of relevance to flood risk assessment, and APIs which leverage these data
to produce information of relevance (Figure 1). These APIs will enrich data of
relevance to flood risk management, through the provision of products such as
the statistical characterisation and analysis of river flow or rainfall event data.
From the outset, in order to achieve an SKI of most relevance, the project was
guided by an assessment of needs from end users via workshops and interviews
(Section 5); these will help ensure the inclusion of all relevant data and the
appropriateness of the tools implemented.

1.4 Uniqueness and impact

Ultimately, the SKI system’s uniqueness will be found in using spatial and tempo-
ral data from multiple data sources on the fly in situations where near real-time
answers are required in possibly life-threatening situations. Once developed, the
SKI will be an early demonstrable example of the ability to manage and derive
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new information from spatial and temporal data across multiple agencies at mul-
tiple levels of government for decision making in assessing and mitigating flood
risk in a way which has not been possible previously.

The system developed will validate for hazard managers how a federated
SDI can be used to develop or improve mitigation plans, through the provision
of appropriate data and relevant information. The outputs of the project can
help to improve the management of the significant risk of flooding posed within
parts of New Zealand and Australia, particularly when mitigation is insufficient
due to the lack of appropriate available data. Further, once the system has been
demonstrated within the area of flood risk management and mitigation, it will
be possible to develop it for use in other situations such as bush fire risk man-
agement and mitigation.

The project helps to inform New Zealand data suppliers of how better to
make their information available, how their information is used and valued in
flood management and how the private sector can leverage the project outputs to
develop innovative products and services using the most up-to-date information.
The system developed in project phase 2 will facilitate an increased up-take and
usage of spatial data which exists in New Zealand.

1.5 Report scope and outline

The purpose of this report is to address the objectives of the project phase 1, as
detailed in Section 1.3. The report also aims to provide comprehensive guidance
towards the development of an SKI system, with a view towards future imple-
mentation in project phase 2. The scope of the report is restricted to flood risk
management: while hazard risk is an ultimate end-goal, the development of sys-
tems for improved flood risk assessment and management are a challenging first
step. The guidelines and framework presented in this report can be expanded to
other hazards such as bush fires, earthquakes, and droughts. The technologies
introduced in this report as part of an SKI are limited to the semantic Web, cloud
computing, and Geospatial Information System (GIS) technologies.

Section 2, presents a review of SDI technologies with particular focus on
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hazard-risk management, and proposes improvements to current SDI technolo-
gies towards more semantic-centred datasets. In Section 3, these ideas are de-
veloped into an outline of a prototype SKI, with a particular focus on flood risk
management; in Section 4, a prototype API which may form part of a SKI is
presented.

These ideas were assessed from the perspective of end-users or flood risk
management professionals during two half-day workshops in June 2018. The
results of these workshops are presented in Section 5 in three parts: assessing
data needs (Section 5.1), assessing tool requirements (Section 5.3), and looking
forward towards how we might develop and implement an SKI (Section 5.4).

Finally, in Section 6, the workshop outcomes are summarised and a pathway
forward mapped, together with challenges faced in SKI implementation.
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2 Next generation Spatial Data Infrastructures

There are many definitions for the concept of a Spatial Data Infrastructure (SDI)
(GSDI Technical Working Group, 2009; Hendriks, Dessers, & van Hootegem,
2012). However, a commonality among all of them is the notion of an infras-
tructure (physical and virtual) to facilitate the use of spatial data. Infrastructure
means a foundation that facilitates the spatial data supply chain from acquisition
to delivery from different data sources (e.g. technologies, policies, and other in-
stitutional arrangements). The term ‘use’ can be expanded to include sharing
of and access to spatial data. An SDI is therefore defined here as: the common
technologies, policies, and other institutional arrangements for the acquisition,
process, distribution, use, maintenance, and preservation of disparate spatial
data to support its access, use, and sharing.

An SDI is required for disparate spatial data to interoperate, allowing for the
retrieval of existing data and the creation of new solutions (e.g. the management
of hazard-risks). However, this premise is based on either changing existing
heterogeneous datasets to a new, homogeneous dataset, or to create the datasets
anew. These cause problems because the growing number of spatial data means
that a lot of data needs to be changed or re-surveyed—the latter might not be
possible in certain instances (e.g. historical datasets)—which can be time and
resource intensive. Further this requires businesses to cooperate and conform to
the SDI, which might not necessarily benefit their current business models.

2.1 SDI in Flood-Risk Management

Major issues identified as part of the workshops and interviews were data cov-
erage, governance, policy, standardisation, accessibility, uncertainty, quality, and
their real-time processing. SDIs are meant to resolve the issue of standardisa-
tion and governance but they are often implemented regionally and for specific
datasets. For the proper management of flood-risk, it was identified that a na-
tional SDI is needed so that the required cross-domain data are interoperable at
large scale—flooding is often a cross-border hazard. This would mean a total
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coverage of a nation, that is standardised and accessible.

The GSDI Technical Working Group (2009) identify the processes that are
needed to truly resolve interoperability issues among datasets, they are:

1. Cross-border matching of datasets: this process can also be called data fed-
eration, it includes finding similar datasets that might be served by two
independent service providers. Given that the syntax, structure, and se-
mantics of the datasets can be different, it can be difficult to find similar
datasets as no common language is used.

2. Cross-sector combinations of datasets from different repositories: this is
data fusion where there is a need to create new data from existing data.
There might be a case where a user query cannot be determined unless
different datasets are fused together. For example, if no flood datasets exist
in a particular region, they might have to be created by a combination of
other datasets (e.g. rainfall, wind speed, elevation, and other geographic
datasets).

3. Cross-type of data: this is syntactic heterogeneity where the datasets are
represented in different data format (e.g. vector vs raster).

4. Overlap of the representation of the same entity that conflict: this is data
conflation where the representation of the same entity from different data
sources do not agree. The main issue with data conflation is finding the
right datasets among a multiple conflicting ones, where in some cases, a
compromise might have to be made to find a new common dataset that
reconciles the conflicting ones.

Hence, it is commonly required to federate, fuse, and conflate interoperable
datasets independently of their formats. This is often the case for flood-risk man-
agement because the datasets from different regions need to be gathered (feder-
ation), combined together to model the flood (fusion), and conflicting datasets
need to be reconciled (conflation). Further, the data can be in different formats,
requiring their seamless integration. For example, raster images from satellites
and vectors from Web Feature Services.

17



2.2 SDI limitations

While a national SDI can resolve heterogeneities in datasets, the implementation
of an SDI can be complex due to several reasons as mentioned by Hendriks et
al. (2012). First, different SDIs can have different objectives at different granu-
larity, from abstract to specific ones. Second, an SDI is heavily influenced by its
stakeholders from a wide variety of disciplines, skill-sets, and view-points. Third,
an SDI contains many aspects and components that often cannot be completely
and/or logically listed. Fourth, an SDI is an organic concept that needs to evolve
(technologically, politically, culturally, and socially) as the world changes. This
evolution requires an SDI to be proactive to potential changes but at the same
time reactive to unpredictable ones and these difficulties are magnified in large
scale SDIs.

The current methods used to discover and access data using SDIs are often
partially manual processes and can rely on human interactions and cooperation.
For example, the use of geoportals which provide a repository for spatial data
end-points require the manual registration of Web services (which need to be
approved by a human user). In addition, they often only offer metadata keyword
search and hence require domain specific knowledge (i.e. which keywords to
search for), in order to efficiently find the required datasets. Further, geoportals
are not cross-discoverable which limits their disoverability abilities.

When accessing data from an SDI, flood modellers still need to find, inte-
grate, and process cross-domain datasets. However, these processes can be slow
when done manually, or require bespoke customisation to automate processes.
For better nationally accessible flood-management solutions, the traditional SDI
needs to evolve to include automation, and machine processing which would
allow data to be analysed and processed in real-time. For this to happen, there
must be a standard for machines to comprehend the datasets and process them
properly. A Spatial Knowledge Infrastructure (SKI) aims to address these limi-
tations by adding semantics to existing SDIs enabling real-time data integration
and processing.
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2.3 Literature Review

Better hazard-risk management is an important research topic that is multi-
faceted, containing different areas of research such as improving SDIs (Conti,
Filho, Turra, & Amaral, 2018; Hendriks et al., 2012; Janowicz et al., 2010; Lutz,
Sprado, Klien, Schubert, & Christ, 2009), automating the acquisition of data
(Hu, Li, Lin, Chen, & Yang, 2018), mapping hazards (Kaur, Gupta, Parkash, &
Thapa, 2018), analysing the hazards (Martínez-Graña et al., 2018; Metcalfe,
Beven, Hankin, & Lamb, 2018; Sayers, Penning-Rowsell, & Horritt, 2018), and
the prediction of their impact (Rauter & Winkler, 2018).

2.3.1 Current SDIs

Williamson (2003) describes the hierarchy of SDIs based on their coverage and
scale; this is shown in figure 2. The SDIs at the lower levels have more detailed
datasets, while the SDIs at a higher level deals with larger scale datasets. The
corporate level SDI is the base level of the hierarchy (and hence has the most
detailed datasets), and any SDI level above (local to global) is formed by inte-
grating spatial datasets from the corporate SDIs to ensure their wider coverage.
An SDI at a high level, therefore, depends on the datasets of SDIs at the lower
levels.

Global SDI

Regional SDI

National SDI

State SDI

Local SDI

Corporate SDI

Figure 2: An SDI Hierarchy (Williamson, 2003, Chapter 2, p. 30)
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Corporate SDIs
Corporate SDIs are concerned with the handling of spatial data at the corpo-

ration level. They ensure that datasets are stored and exposed appropriately to
their stakeholders. SDIs at this level can also be of local and state level simulta-
neously, serving datasets at each of these scales.

Examples of corprate SDIs include: the Public Sector Mapping Agency (PSMA),
Landgate, and the Department of Environment, Land, Water and Planning (DELWP)
in Australia. These SDIs differ and have different functions. For instance, PSMA
is a national aggregator in Australia and hence also part of the national level
SDI. Landgate and DELWP cover datasets at the local and state level.

Local and State SDIs
Landgate and DELWP are examples of SDIs that cover datasets locally and at

the state level. Landgate is in charge of the spatial data in Western Australia,
and DELWP for Victoria. Each has their own standards and conventions that
are subjective to their location, and the data they serve. For this reason, these
datasets are not usually interoperable and require an SDI at a higher level to
integrate them.

National SDIs
National SDIs can ensure that data from lower level SDIs are integrated to

produce national datasets. For Australia, a central body such as PSMA is used
to aggregate the disparate data. To integrate heterogeneous data, there are dif-
ferent methods that can be used; PSMA reconciles the heterogeneous data to
their own local schema, but this causes duplication of data and data updates are
slow. By contrast Geoscience Australia (GA) create national level datasets which
may duplicate more detailed local data. In New Zealand, LINZ coordinate the
collation of some local data in to national datasets (e.g. address, aerial imagery,
elevation data) as well as producing national level datasets (e.g. road and river
networks, building outlines), but again, more detailed and accurate data may be
available for discrete local areas from local (sub-national) sources.

At an international level, the European Community has established the In-
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frastructure for Spatial Information (INSPIRE). Its aim is to ease the sharing of
spatial data across disparate public sector organisations in Europe and enable
European level data integration (European Commission, 2018). The INSPIRE
programme provides regulations and supporting guidelines regarding its SDI
implementation that data provider must follow (European Commission, 2014).
(The INSPIRE Directive has been transposed in to the laws and regulations of
the Member States). This ensures a level of interoperability. While this avoids
some of the issues experienced by PSMA and GA, some providers only provide
data following the minimum rules and regulations, leading to a lower quality of
data and a mixed levels of implementation across Member States.

Other initiatives in different countries in building a national SDI, include
Zambia1, New Zealand (New Zealand Government, 2011), Canada2, and Aus-
tralia3. These initiatives, however, have weaker mandates and rely on voluntary
support, and are often therefore left either incomplete, outdated, or unimple-
mented.

Regional and Global SDIs
Two initiatives at the regional and global level include the Global SDI Working

Group (GSDI-WG) (GSDI Technical Working Group, 2009) and the Global Earth
Observation System of Systems (GEOSS)4.

The GSDI-WG has been providing globally acceptable standards and prac-
tices to make spatial data interoperable at the global level; this information is
available in their ‘SDI Cookbook’ (see GSDI Technical Working Group (2009)).
They have acknowledged that their vision and mission has been adopted by inter-
nationally resourced organisations such as the United Nations, World Bank, and
the Open Geospatial Consortium. As such, they have decided to cease their oper-
ations in 2018 due to having completed their mission of increasing the awareness

1http://www.nsdi.mlnrep.gov.zm/
2http://www.nrcan.gc.ca/earth-sciences/geomatics/canadas

-spatial-data-infrastructure/10783
3http://ggim.un.org/knowledgebase/KnowledgebaseArticle50364

.aspx
4https://www.earthobservations.org/geoss.php
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of global interoperability (GSDI, 2018).

A different attempt for a global SDI is the Global Earth Observation Sys-
tem of Systems (GEOSS)5 which allow multiple independent Earth observation,
information and processing systems to coordinate, interact, and expose diverse
information to a wide range of users. While GEOSS relies on countries to make
their national data available following their specifications, there have been ef-
forts by some countries to integrate their national data onto this globally ac-
cessible platform. For example, the European Global Earth Observation System
of Systems6 (EuroGEOSS). EuroGEOSS is a broker that aims for cross-discipline
data integration globally using GEOSS. EuroGEOSS relies on already federated
spatial data in the different domains. As such, before a solution such as Euro-
GEOSS can be implemented, the issue of heterogeneous data at the state level
needs to be resolved first—Europe achieves this through INSPIRE. GEOSS, Euro-
GEOSS, and INSPIRE are examples where a global SDI (GEOSS) integrates SDIs
at the regional and national level (EuroGEOSS), which in turn, uses SDIs at the
state and local level (INSPIRE).

2.3.2 SDI Components for Better Hazard-Risk Management

Aside from the hierarchy of SDIs and their data integration, SDI components
specific to this project’s use case—hazard-risk management—must also be con-
sidered. The components reviewed in this section are the acquisition of data, the
mapping and analysing the hazards, and the prediction of their impact.

Data Acquisition
The traditional method to obtain spatial data is through manual surveying of

the earth, nowadays though, there are more advanced, precise, and automated
ways to acquire spatial data. For example, Unmanned Aerial Vehicles (UAVs),
satellites, sensors, autonomous vehicles, and radars. In hazard risk management,

5https://www.earthobservations.org/geoss.php
6https://ec.europa.eu/info/research-and-innovation/knowledge

-publications-tools-and-data/knowledge-centres-and-data-portals/
eurogeoss/about-eurogeoss_en
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current, and more localised information is required to improve the management
of risks to the individual. For such, recent works involve the creation of mobile
applications to facilitate the reporting of incidents by common users (Olyazadeh,
Sudmeier-Rieux, Jaboyedoff, Derron, & Devkota, 2017), and foraging social me-
dia platforms such as Twitter (Stowe et al., 2018).

However, a common challenge is the automated evaluation and selection
of quality data. As data become more readily available online, human efforts to
manually filter them are inefficient, and machines are required to quickly process
the data instead. Hu et al. (2018) address this issue with the development of an
ontology to semantically associate the observation capability of sensors. Their
ontology is effective in helping sensor planners to make evidence-based sensor
selection decision for the given flood observation task. Ontologies such as the
one developed by Hu et al. (2018) can be used for properly selecting the right
data from the varying sensors, improving the quality of the data obtained in
real-time and reducing the amount of data needing processing.

Data Mapping
Further, machine automation is also needed to effectively process data in a

timely manner. Due to the vast amount of data available, manually processing
and filtering the data is inefficient. Neural networks7 were used by Rauter and
Winkler (2018) to automatically map new hazard zones. Rauter and Winkler
(2018) focused on snow avalanche data, feeding their neural networks with
historic data. Using this method, they managed to train their network using
existing hazard maps and apply them to other regions, demonstrating that the
knowledge gained from the network can be used in regions that do not have
the hazard mapped. Using a similar idea, existing flood models can be used as
training sets, and the existing known mappings can be applied to regions that
are not mapped.

On a large scale, Vousdoukas et al. (2016) proposed a new methodology for
mapping coastal flood hazard at European scale which accounts for the contri-

7Neural networks is a supervised machine learning technique, that uses interconnected pro-
cesses to make statistical decisions based on pre-defined training sets.
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bution of waves, uses improved inundation modelling and up-gradable physics-
based framework. They found that the flood intensity index approach (Iw) (Dot-
tori, Martina, & Figueiredo, 2016), and the LISFLOOD-FP (Bates & Roo, 2000)
approach can be successfully used at large-scale.

Data Analysis and Prediction
Martínez-Graña et al. (2018) looked at the coastal vulnerability of the Menor

Sea due to floods. The vulnerability was estimated using Remote Sensing tech-
niques, and the risk of flooding was based on different time scenarios. Similar to
Vousdoukas et al. (2016), they account for the contribution of waves in their pro-
posal, and argue that their methodology can be used to accurately and effectively
establish the sectors of high vulnerability (based on their physical characteristics
and geographical position) to reduce the impact of flood innundation due to rises
in sea level.

Metcalfe et al. (2018) propose a new simplified method to analyse the
impacts of widely distributed enhanced hillslope storage on flood risk. They
demonstrated that their simplified method can effectively model distributed hill-
slope storage within a less complex framework. On the other hand, Röthlis-
berger, Zischg, and Keiler (2017) found that spatial cluster analysis provided
more information for prioritizing flood protection measures compared to the
aggregation of data (which is more appropriate for nation-wide data analyses
according to them).

However, hazards can also occur at the same time (e.g. an earthquake caus-
ing a tsunami). In this area, Kaur et al. (2018) investigated the application of
current geospatial technologies for mapping multi-hazards, and the characteri-
sation of their associated risk. They studied the region of Gangtok which is sus-
ceptible to multi-hazards such as earthquake, landslide, windstorm, flash floods
and hailstorm. They concluded that the assessment of multi-hazard risks is more
accurate at smaller scale, which can then give an effective spatial distribution of
principal diverse risks at large scale.

It is evident that technologies used to produce higher quality and more ac-
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curate hazard information are present, and continue to improve. Nonetheless,
there is a gap where these technologies are not applied simultaneously to pro-
duce knowledge based on current hazard conditions. This is due to a lack of
spatial infrastructure to bind these technologies, and issues with dataset interop-
erability and accuracy. The next section discusses the semantic Web technologies
that can fill this gap. By incorporating semantic Web technologies to current
SDIs, a knowledge infrastructure can be built which can facilitate decision mak-
ing to better manage hazards—this knowledge infrastructure is referred to as a
SKI in this report.
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3 Developing a Spatial Knowledge Infrastructure for

Flood Hazard Management

3.1 Overview

Stakeholders play a crucial role in all parts of an SDI. Despite this, the implemen-
tation of SDIs has generally been restricted to enforcing policies and regulations
on certain groups: data collectors and data providers, often neglecting the con-
sumers. Arnold (2016) describes this as a ‘push’ supply chain, where data get
‘pushed’ to the consumers based on anticipated demands rather than allowing
the consumers to ‘pull’ the information they want.

A Spatial Knowledge Infrastructure (SKI) aims to step towards a next stage
of SDI, where instead of giving data to consumers (and letting them extract the
knowledge—the current approach), the knowledge is derived from within the
SKI by automated real-time data integration and processing. The consumers
then do not need to have specialised GIS knowledge and can gain access to
knowledge on-demand without having to search for, understand, manipulate,
and harmonise the data. This, in return, would inform the public about hazard
risk, which could lead to more devolved adaption measures being taken and
greater resilience to hazards (Hung, Lu, & Hung, 2018). In order to achieve this,
technologies that allow the representation of knowledge are required. This can
be achieved through the Semantic Web (Web 3.0).

3.2 The Semantic Web (Web 3.0)

Web 3.0 is envisioned, by the inventor of the Web, as an extension to the current
Web where information is better defined hence allowing machines to ‘compre-
hend’ data (Berners-Lee, Hendler, & Lassila, 2001); in Web 3.0, machines can
understand and process data, allowing for better automation for human con-
sumption. The Resource Description Framework (RDF) (W3C, 2014a) was for-
mulated to help standardise the semantic Web. RDF allows the representation
of knowledge and is recommended for use by the World Wide Web Consortium
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(W3C). It allows resources and their relationships to be expressed on the Web
by using triples, which takes the form of <subject> <predicate> <object>,
where the subject resource and the object resource are linked using a predicate
resource. This creates data that are linked together, and is given the term Linked
Data (LD).

Based on this framework, other semantic Web languages have emerged,
such as (not all are listed here): Web Ontology Language (OWL) (W3C, 2004),
which allows the expression of what a resource is on top of RDF which expresses
how a resource is written; OWL2 (W3C, 2012), which provides more expres-
sive terms and features to OWL; Shapes Constraint Language (SHACL) (W3C,
2017c) whose aim is to define the structure of an ontology for its validation;
SPARQL Protocol and RDF Query Language (SPARQL—a recursive acronym)
(W3C, 2013c), which enables the querying of triples; RDFa8 (RDF in attribu-
tions) which allows users to annotate HTML elements using LD; and JSON-LD9

which aims at facilitating the representation of LD via JavaScript Object Notation
(JSON).

3.2.1 Ontology

The term ontology is used for the graph produced as a result of linking data
together. Although the term ontology originates from philosophy—the study of
existence and the nature of things —it has been adopted in computer science and
is defined by Gruber (1993) as the explicit specification of domain knowledge,
its concepts and their relationships; in this case, Linked Data.

Ontologies created by other people can be reused, reducing duplication of
efforts and encouraging the sharing of concepts and knowledge. Upper ontolo-
gies are ontologies that have been abstracted to provide a starting point for more
domain-specific ontologies; certain vocabularies and rules might have been ex-
pressed in the upper ontologies, which then do not need to be re-created but only
reused. A few well-known upper ontologies are Friend of a Friend10 (FOAF),

8https://rdfa.info
9http://json-ld.org/

10http://xmlns.com/foaf/spec/
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Dublin Core11, and Simple Knowledge Organization System12 (SKOS).

Further, there are groups that create and publish more specific ontologies
to aid ontology developers. One such group, founded by Google, Microsoft,
Yahoo, and Yandex, can be found at https://schema.org/. It has a myriad
of different ontologies that can be used by the community and is used by its
founders. An example is in email reservations, where the reservation details are
embedded using schema.org ontologies. The reservation details can then be
automatically and seamlessly integrated by email assistant tools into calendars,
reminders, notifications, and maps (Guha, Brickley, & Macbeth, 2016).

Other groups aim to promote other ontologies to help discover high-quality
ones. For example, Linked Open Vocabularies (LOV)13, which exposes vocabu-
laries that adhere to certain criteria such as the stability of the URI, availability
on the Web, use of standard formats, publication best practices, quality of the
metadata and documentation, and versioning policy. There are also ontologies
that are published by standard bodies such as W3C and OGC.

By using ontologies, concepts and knowledge can be shared across the Web,
enabling non-expert user to utilise expert knowledge easily. In addition, RDF
provides the standard ground for ontologies to be specified in, allowing ma-
chines to use this common language to find, and process data homogeneously.
By adding this semantic component to existing SDI technologies, a shift to more
automated and cross-domain applications is possible. In terms for flood-risk
management, this means that flood inputs, processes, and outputs can all be
uniformly computed by machines, allowing user to focus more on the impact of
the flood rather than its simulation.

Further, with the aid of reasoners, the inference of new knowledge within
ontologies can be achieved, where inferred relationships between concepts are
automatically determined by the reasoner. This automatic inference of new
knowledge based on existing data makes the Semantic Web a powerful machine-
oriented platform for important decisions such as the management of risk haz-

11http://dublincore.org/
12https://www.w3.org/2004/02/skos/
13http://lov.okfn.org/dataset/lov/about
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ards. The intermediary role of people from a traditional SDI is reduced, and a
lot of the complex processes and information can be done by machines instead.
For example, human users will no longer have to manually find the various data
Web services available as all the data would be linked in a unified graph. Syntac-
tic interoperability will not be an issue either, as all the data will be available in
a Semantic Web language (which are interchangeable). Rules implemented by
human users can be added in a local ontology to prevent conflicting insertion of
data, and languages such as SHACL can be used to validate ontologies against a
preferred structure.

3.3 SKI Architecture

Duckham et al. (2017, p. 4) define an SKI as: ‘a network of data, analytics,
expertise and policies that assist people, whether individually or in collaboration,
to integrate in real time spatial knowledge into everyday decision-making and
problem solving.’

Based on this definition, Arnold, McMeekin, Ivánová, and Armstrong (2018)
extend an SDI to an SKI by adding two components:

1. Knowledge Representation; and

2. Analytics.

Knowledge can be represented using ontologies, and analytics are the pro-
cesses that are enabled by proper knowledge representation. As such, a major
extension to an SDI is the representation of data as ontologies instead of conven-
tional documents.

As illustrated in figure 3, an SKI can be seen as a three-tiered architecture,
with the resources being made available through the Web (bottom section), cus-
tomised user applications interfacing with the SKI (top section), and the SKI
broker (middle section) extending existing SDI components to enable the com-
putation of complex processors (i.e. real-time federated reasoning, inferencing
of new knowledge, and analysis of data).
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3.3.1 Components of an SKI Broker

While an SKI broker makes use of existing infrastructures as much as possible,
there are components that are unique to it. For one, to optimally make use of
ontologies, special databases called triple stores or graph-based databases must
be used; these are referred to as Linked Data stores here. With RDF, rules can be
inserted and the ontology reasoned over to find new relationships between data
automatically.

Cloud Computing

SKI Broker

«subsystem»
Linked Data Store

«subsystem»
Result Assembly Unit

«subsystem»
Query Assembly Unit

Resources

«subsystem»
Query Processing Unit

«uses»

API

send assembled result

send result collection

send linked data

request resource

send response
send records

request records

send structured query

send open query

*

*

User App

Web Interface

Spatial Metadata
Catalogue

Figure 4: SKI Broker Components - Generalised

As illustrated in figure 4, open queries from the outside world need to be
translated into structured query for the broker to understand. This structured
query then needs to be assembled and individualised to the disparate but rele-
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vant resources on the Web (which include metadata catalogues)—this process
utilises a Linked Data Store within the broker to store the semantic represen-
tattion of the resources. Once the relevant resources are received, the results
are then assembled to provide the solution required by the user. The returned
harmonised result can then be displayed by the user apps. Any complex process
required by the SKI broker can be facilitated by making use of cloud computing.

For its proper usage, an SKI demands that data be linked. However, this
solution depends on an ideal scenario where all data are linked together. To
implement an SKI in the current Web, where linked data exist alongside non-
linked data, there must be some additional components to transform the non-
linked data into linked data. In figure 5, these additional components are shown
in red.

An Ontology harmonization Unit maps the LD from existing linked data
stores to the ontology used by the SKI. This is required because existing linked
data might not necessarily use the same vocabulary as the SKI broker, and hence
need to be mapped to the SKI’s ontology for their proper reasoning and querying.

To allow the reasoning of non-linked data, an Ontology Creation Unit is used.
It transforms non-linked data into linked data understood by the SKI, allowing
their reasoning. The newly created linked data can then be reasoned and queried
over.
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3.4 SKI Implementation

An SKI depends on ontologies where concepts are represented, inferred auto-
matically, and queried over. The main challenge is to change the existing non-
linked data into linked data using RDF. While there has been research to (semi-)
automatically engineer ontologies (see An and Park (2018), Xiang, Zheng, Lin,
and He (2015), Wächter and Schroeder (2010), and Lee, Kao, Kuo, and Wang
(2007)), the full automation of this process is unlikely as it is resource intensive,
requiring both domain and ontology experts (Simperl & Luczak-Rösch, 2014).
A different approach is to utilise an intermediary process that allows LD and
non-linked data to interoperate, this is known as Ontology-Based Data Access
(OBDA). In this section, both approaches are discussed.

3.4.1 Approaches

Entirely Linked Data Approach
This approach relies on the data providers translating their current datasets

into linked data, and enabling a SPARQL endpoint to their ontology. This allows
the data providers to keep ownership of their data, and can modify the inferences
and rules in their ontology. However, this approach requires all data providers to
use the same ontologies and vocabularies to ease the querying of their datasets.
While a federated ontology can be used to harmonise different ontologies, this
task adds another layer of complexity, and should be avoided. As such, before
any spatial dataset is transformed to linked data, the stakeholders of the SKI
should agree on the core ontologies to be used at a national level, and domain
experts should agree on the inferencing rules needed to facilitate hazard-risk
management.

The core ontologies should be robust enough to prevent conflicting knowl-
edge insertion while providing a high-level standard for the representation of
the domain. The core ontologies should also be flexible enough to allow data
providers to develop a more specialised local ontology based on the core on-
tologies to best represent their datasets. Finding such a balance requires the
participation of all stakeholders involved. For this approach, federated SPARQL
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queries are possible, and hence a mediator between users and data providers
simply need to translate the user’s query into federated SPARQL queries to all
data providers.

The task of inferencing knowledge is done at the repository level, which
distributes the load of such a complex task. However, multiple linked data stores
will need to be implemented at each data provider, and there is a paradigm shift
that needs to occur (from non-LD to LD). This approach should be the aim of a
fully operational SKI, but is time and resource intensive. It requires motivation
and commitment to complete this approach, and it should be remembered that
this approach is an ongoing effort to be respected by all stakeholders.

Ontology-Based Data Access Approach (OBDA)
This approach makes use of an ontology that maps non-linked datasets to the

federated ontology. In this case, there are two ontologies: (1) the federated
ontology that represents the domain of interest (e.g. risk hazards), and (2)
the intermediary ontology that maps the non-linked datasets to the federated
ontology. (1) is used as the base for federated queries, it includes all the rules,
inferencing, and axioms required in the domain of interest, and (2) simply acts
as a bridge between linked data and non-linked data.

Similar to the previous approach, this one requires core ontologies and vo-
cabularies to be designed. However, the data providers do not need to change
their business models and/or datasets. The entirety of integrating (federating,
conflating, and fusing) the datasets is done by the SKI broker, which can be
expensive. The broker is required to translate the user query into queries un-
derstandable by the data providers Web endpoints. Given that they do not
have a SPARQL endpoint, different translations might be required; for exam-
ple, SPARQL to WFS calls, or SPARQL to a specialised API calls. The information
required for the translation is stored in the intermediary ontology, and hence
high-level inferencing can be achieved (e.g. determining which Web service are
more appropriate to answer the user query). However, in this approach, data-
level inferencing is difficult. A possible solution for data-level inferencing is to
retrieve only the datasets relevant to the user query, add them to the ontology
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on-the-fly, inference over it, and answer the query, but this solution is not ideal
as the broker’s capacity to process simultaneous queries is then limited.

Hybrid
The entirely linked data approach requires a lot of time to be fully imple-

mented, and the OBDA approach limits some capabilities of linked data such
as inferencing. The hybrid approach aims to combine both approaches, where
OBDA is used for data that are not linked, while the entirely linked data approach
is used for LD stores. During the implementation of an entirely LD SKI, less OBDA
processes would be required—easing the processing load on the broker—and,
eventually, most of the data will be linked and the entirely linked data approach
can be used with a minimum amount of OBDA technologies. This alleviates
the responsibilities of the broker while still enabling the querying of non-linked
datasets. As it is unrealistic to expect all legacy data to be converted to Linked
Data (Bikakis, Tsinaraki, Gioldasis, Stavrakantonakis, & Christodoulakis, 2013),
this approach is required. Nonetheless, all the approaches require the following
components:

1. A core ontology, which is robust enough to act as a standard for the domain,
but also allows the development of more specialised versions of it;

2. Agreements from the stakeholders on the approach to use, and how to
proceed about it;

3. Ontology and domain experts to guide the stakeholders, and the develop-
ment of the ontologies; and

4. An SKI broker to mediate between users and data providers.

3.4.2 SKI Technologies

Ontologies
Ontologies for flood-risk management are few, being either incomplete or too

generalised. Where ontologies do exist, it is good practice to reuse them, so
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promoting global interoperability (W3C, 2013b), and reducing duplication of
efforts. While it is acknowledged that most of the ontologies used in an SKI solu-
tion for hazard-risk management will need to be engineered, there are nonethe-
less some existing ontologies that are still relevant for this project which should
be considered. A list of these is provided in appendix A.

Linked Data Stores
Linked Data stores are needed to effectively store and query RDF data. There

are a wide range of Linked Data Stores available: open-source, commercial,
and freemium. Data to be queried in a Linked Data Store should be query-able
through a Web service, and be available in standard ontology formats such as
Turtle14, RDF/XML15, and JSON-LD. For the querying of ontologies, SPARQL is
the standard; it allows complex queries to be expressed in terms of triples. A
common saying is that SPARQL is for RDF what SQL is for databases. Therefore,
the exposed Web Services should enable a SPARQL endpoint to allow for the
querying of the linked datasets. While the final choice of a Linked Data Store lies
with the implementor of the SKI, a review and recommendation of some them
are provided in appendix B of this report.

SPARQL Endpoints
A SPARQL endpoint acts as a bridge between a Linked Data Store and the

users. For remote querying, it needs to be exposed via the Web. For this rea-
son, Linked Data Stores already implement their own querying interface, and
that interface simply needs to be translated into a Web interface with the neces-
sary security features such as sanitisation of the queries. There are specifications
for the SPARQL language16, its protocol specifications17, and its result specifi-
cations18. Any SPARQL endpoint implementation can be used as long as they
adhere to the standards and meet their design requirements of the SKI. These
are left for the software developer to specify.

14https://www.w3.org/TR/turtle/
15https://www.w3.org/TR/rdf-syntax-grammar/
16https://www.w3.org/TR/rdf-sparql-query/
17https://www.w3.org/TR/rdf-sparql-protocol/
18https://www.w3.org/TR/rdf-sparql-XMLres/

37

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/TR/rdf-sparql-XMLres/


Reasoners
Reasoners are also included in most Linked Data stores, however there are

also commercially and open-sourced reasoners available such as Bossam (Jang
& Sohn, 2004), RacerPro (Haarslev, Hidde, Möller, & Wessel, 2012), FaCT++
(Tsarkov & Horrocks, 2006), Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007),
and HermiT (Shearer, Motik, & Horrocks, 2008). These are a matter of imple-
mentation based on specific requirements and are left to the software developer
to specify.

3.4.3 Global Interoperability

The GSDI Technical Working Group (2009) mentions the importance of an SDI to
be interoperable at the global level. The same applies for an SKI—for an SKI to be
beneficial at a global level, it should be implemented with the concept of Global
SKI in mind. The best way to achieve global interoperability is fundamentally
to consider international standards and best practices (Conti et al., 2018). In
the case of an SKI, the standards and best practices to be looked at pertain to
spatial data and linked data. Section 3.4.4 discusses the existing best practices in
regards to spatial data and linked data, while section 3.4.5 discusses the relevant
standards.

3.4.4 Best Practices

Publishing Spatial Data on the Web
W3C and OGC have worked together to formulate a set of best practices for

publishing Spatial Data on the Web19. They are called the Spatial Data on the
Web (SDW) Working Group, and have published a set of recommended criteria
of best practices (SDW, 2017). A summary produced by the group is found in
table 1.

19https://www.w3.org/2015/spatial/wiki/Main_Page
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Best Practice 1: Use globally unique persis-
tent HTTP URIs for Spatial Things

Best Practice 8: State how coordinate val-
ues are encoded

Best Practice 2: Make your spatial data in-
dexable by search engines

Best Practice 9: Describe relative position-
ing

Best Practice 3: Link resources together to
create the Web of data

Best Practice 10: Use appropriate relation
types to link Spatial Things

Best Practice 4: Use spatial data encodings
that match your target audience

Best Practice 11: Provide information on
the changing nature of spatial things

Best Practice 5: Provide geometries on the
Web in a usable way

Best Practice 12: Expose spatial data
through ‘convenience APIs’

Best Practice 6: Provide geometries at the
right level of accuracy, precision, and size

Best Practice 13: Include spatial metadata
in dataset metadata

Best Practice 7: Choose coordinate refer-
ence systems to suit your user’s applications

Best Practice 14: Describe the positional
accuracy of spatial data

Table 1: Best practices for publishing Spatial Data on the Web (SDW, 2017)
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Linked Data
Similarly, W3C has published a set of best practices for producing linked data

(W3C, 2013a). The seven best practices for producing linked data are listed as:

1. Model the data

2. Name things with URIs

3. Re-use vocabularies whenever possible

4. Publish human and machine readable descriptions

5. Convert data to RDF

6. Specify an appropriate license

7. Host the linked dataset publicly and announce it

5-Star Deployment Scheme for Linked Open Data
Tim Berners-Lee also suggested a 5-star deployment scheme to gauge the qual-

ity of Linked Open Data. The criteria is cumulative, where the higher stars pre-
sume the previous ones, i.e. to achieve 5-stars, the previous stars from 1 to 4
must also be achieved (W3C, 2013b). This scheme is shown below.

1-Star: Publish data on the Web in any format with an explicit Open License;

2-Stars: Publish structured data on the Web in a machine-readable format;

3-Stars: Publish structured data on the Web in a document, non-proprietary
data format;

4-Stars: Publish structured data on the Web as RDF; and

5-Stars: Have the identifiers in the RDF file link to useful data sources.

The first star can be summarised as being openly useable by adding an open
license to the data, and being linkable as it must be published on the Web. The
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second star refers to the data being machine-readable, meaning using a struc-
tured format that allows data to be parsed and processed. The third star ensures
that the structured format used is non-proprietary, and hence can be read by
any machine free of charge. The fourth star ensures that the linked data format
used is internationally standardised, by using the Resource Description Format
recommended by W3C, and the fifth star pushes linked data to use other linked
data, to promote a Web of linked data.

3.4.5 Standards

Standards are required to ensure interoperability at the syntactic and structural
level. That is, by using agreed upon standards, the data make use of the same
schema, and the same file format. In a non-linked data environment, Steiniger
and Hunter (2012) classify relevant standards into (1) data delivery standards,
(2) data format standards, (3) data search standards, and (4) others. Relevant
standards for each of these categories in relation to spatial data are mentioned:

1. Data delivery:
OGC standards for Geospatial Web Services (WMS, WFS, WMTS, WFS-T,
WCS, WCPS);

2. Data format:
GML, KML, WKT, GeoJSON;

3. Data Search:
CSW, WFS-G, ISO 19115, ISO 19119, ISO 11179; and

4. Others:
WPS, CTS, WTS, SLD, SE, WMS.

Additionally, there are standards related to the Semantic Web, which are
conveyed below.

1. Search and discovery:
SPARQL;
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2. Linked Data format:
RDF – OWL, XML/RDF, TTL, N3, JSON-LD;

3. Naming things:
URIs; and

4. Others:
upper ontologies.

In an entirely linked data environment, only the semantic Web standards
would need to be utilised. However, the adoption of the Semantic Web is a slow
process, and is always evolving. As such, standards for both non-linked data and
linked data need to be considered.
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4 Prototype API: A Web-Application for Rainfall Data

Analysis

A prototype API was developed as part of this project to demonstrate to flood
risk professionals a potential tool which could be of SKI, highlighting some of
the key capabilities of such a system, including data linking and near real-time
data analytics. The API was developed by Jiakai Li in February 2018 as part of
the course DATA601 Applied Data Science Project, completed as part of a Masters
in Data Science at the University of Canterbury; this section summarises the
project report of Li (2018) and presents the outputs from the API.

4.1 Introduction

Rainfall data have become easier to obtain in recent years and are often now
readily available online. Using these data, a risk analysis system can be devel-
oped for flood or river managers to improve their accessibility to live data and
provide near real-time risk information derived from them, enabling quick deci-
sions to be made. The purpose of this project was to establish a prototype of such
a system, which can be further developed into a powerful application to acquire
and integrate multiple online data sources for comprehensive real-time rainfall
data analysis and visualisation. For easy access and duplication, the project was
constructed from scratch in a public server (Google cloud) environment, based
on open-source statistical computing software of R and its powerful packages.

The web application prototype was developed to conduct the following data
analysis tasks:

1. Data acquisition: On-demand acquisition of the latest rainfall data from
individual gauge observation sites across Canterbury, New Zealand.

2. Extreme value analysis and mapping data visualisation: For each site, using
the up-to-date rainfall timeseries acquired, a Gumbel statistical probability
distribution is fitted to the historical data; the statistical probability of the
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most recent rainfall observation is then calculated and visualised in terms
of magnitude and likelihood.

3. Intensity-duration-frequency (IDF) curve analysis: For individual sites, the
web application utilises all the data from that site to calculate and visualise
up-to-date IDF curves.

4. Bayesian inference: For individual sites, the web application utilises all the
historical data and the Markov Chain Monte Carlo (MCMC) method to sam-
ple posterior rainfall observations and index parameters, and fit a Bayesian
inference model to approximate posterior probability distributions. This
enabled uncertainty in calculated rainfall likelihoods to be accounted for,
given the variable lengths of the rainfall timeseries available.

4.2 Software Stack

The general software stack for the developed API is shown in Figure 6. The
interface between the user and this system is through a website published on
Google cloud compute instance. The interaction between the front-end website
and the back-end R computing is based on OpenCPU, which could provide a
reliable and interoperable HTTP API for data analysis based on R. Moreover, the
Bayesian statistical modelling is completed by using PyMC3, a Python package
that focuses on the advanced Markov Chain Monte Carlo and variational fitting
algorithms. To implement the software stack, several coding developments were
needed:

1. Front-end developments were completed in HTML, JS, and CSS, which
provided the basic interactions between the web users and the API system.

2. Most parts of the statistical analysis code were written in R, including data
import and pre-processing, mapping data visualisation and IDF curve anal-
ysis.

3. The Bayesian statistical model was written in Python using packages in-
cluding PyMC3, NumPy, and TensorFlow (which is a dependency of PyMC3).
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The full API was implemented using OpenCPU, meaning that coding for both the
website and computing could be integrated into one single R package and mod-
ified separately without interfering with each other, thereby providing increased
flexibility.

The front-end web interface was developed using:

• HTML and CSS for the basic structure, layout and style, and

• Javascript for the basic functionality and interaction with R via openCPU.
Code was developed to implement user interactions, such that user can up-
load multiple excel files, click on the "update map" button, and also choose
site name from the drop bar. From this code, functions in openCPU.js li-
brary are called to enable R functions to be run from the back end, and to
obtain results. The JQuery.js library was also utilised for efficiency.

Figure 6: Prototype API software stack
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4.3 Approach

4.3.1 Data sources and pre-processing

Rainfall gauge metadata were extracted from Canterbury Maps20, which pro-
vided the site number, name and location (latitude and longitude) of each site.
Observation data of raw rainfall values for each site in Canterbury were obtained
from Environment Canterbury21, and included three variables:

1. Observation site number: a unique six-digit code for each site which al-
lows its identification via the metadata, and connects the site to its spatial
location enabling mapping.

2. Time of each observation, rounded to the nearest second.

3. Rainfall intensity in millimetres per hour (mm/h) to 1 decimal place. These
data were available in comma-separated values (CSV) text format.

The rainfall data files in CSV format were downloaded and imported into
a single R data frame object, into which site information (ID code, location and
name) for each record was appended. In addition, the text-format time variable
was converted to an R time-stamp object, enabling rapid query based on year,
month etc. After pre-prosessing, each data entry in the R data frame consisted
of six variables: (1) observation site number, (2) time of the records, (3) rain-
fall intensity records, (4) longitude of the observation site, (5) latitude of the
observation site, and (6) the site name, for example:

217810 2005-11-01 0 171.8638 -42.75268 MOUNT BYRNE

4.3.2 Extreme value analysis and rainfall observations mapping

Rainfall extreme values were analysed based on the Fisher-Tippett-Gnedenko
theorem, or extreme value theorem, which deals with the stochastic behaviour

20https://canterburymaps.govt.nz/
21https://www.ecan.govt.nz/
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of extreme values in an event. A probability analysis for the recorded rainfall
observation was conducted using a Gumbel distribution, suggested by Nadara-
jah and Choi (2007) to provide a reasonable model for annual maxima rainfall
observations. For each site, the annual maxima rainfall series was extracted and
ordered, then the Gumbel distribution fitted using a Maximum Likelihood ap-
proach in order to estimate the distribution location and scale parameters with
daily updated rainfall observations, the web application was designed to update
the estimated parameters every time an update occurs in the input rainfall data
files.

The extreme value analysis allowed for the mapping of current daily ob-
servations, visualised according to their magnitude and likelihood of occurrence
relative to the historical record. Thus, the web application could potentially
form part of a real-time risk analysis system, since during extreme rainfall events
users can obtain rapid estimates of rainfall probabilities. To produce the map,
the latest observation from the rainfall records for each site is extracted, then
the cumulative probability for that observation value calculated. Each site was
represented on the map using point indicating the site location. The size of the
point was determined by the relative magnitude of the rainfall value (against
all observations); the colour of the point was determined using the calculated
probability, with blues used for frequent (i.e. high probability) observations and
reds for infrequent (i.e. low probability, or more extreme) observations.

4.3.3 IDF curve calculation

Intensity-Duration-Frequency (IDF) curves represent a statistical summary of the
likelihood of rainfall occurrence at different temporal scales, standardised us-
ing the average hourly or daily intensity. IDF curves describe the relationship
between rainfall intensity, rainfall duration, and return period (i.e. annual ex-
ceedance probability). They allow for the estimation of the return period of
an observed rainfall event or conversely of the rainfall amount corresponding
to a given return period for various aggregation times (Elsebaie, 2012). Here,
the Gumbel distribution was fitted to annual maxima series derived from hourly
data for each duration from 1 to 24 hours, using procedures described by Chow
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(1951).

4.4 Web application

The web application was developed as a Google cloud compute engine instance22.
A screenshot of a development version is shown in Figure 7. End users can up-
load data as multiple CSV files with variables "site no", "DateTime", and "Rain-
fallTotal" (in mm/hr), The raw observation data can be downloaded from Envi-
ronment Canterbury23.

In the plotted mapping data (Figure 7, upper section), a bubble on the map
stands for an observation site, with a radius proportional to the latest rainfall
intensity observation in this site. The colour of the bubble indicates the flood-
ing risk of this observation site, specifically the probability of a higher rainfall
intensity than the current one. The colour is divided into three classes according
to the probability: (1) high risk (red) means a probability of observing a higher
rainfall intensity is lower than 10%; (2) medium risk (orange), means a proba-
bility between 10% and 20%; and (3) low risk (blue), means a probability higher
than 20%. By combining these two pieces of information, hydrology managers
will be able to analyse the rainfall data more easily.

After receiving files uploaded by the web user, the drop bar on the left side
of the web page will be updated by unique values from the site names in the
uploaded files. The raw data will then be further processed to generate all data
needed to plot the IDF curves for the selected site. The web application generates
IDF curve return periods of 2, 5, 10, 25, 50, 100, and 1000 years with durations
ranging from 1 to 24 hours (Figure 7, middle), and displays the raw rainfall
observations as a timeseries (Figure 7, lower). Furthermore, by using the Plotly
package, this web application can provide a more interactive figure to help the
users interact with the plot. For example, the IDF curves can be zoomed into to
view their details more clearly, and an IDF curve for a given return period can be

22An updated version of this will be made available via https://geospatial.ac.nz/
rainapp/ in early 2019

23http://data.ecan.govt.nz/
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Figure 7: Prototype API website front end
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highlighted for selection.

The developed system was illustrated to flood risk practitioners as part of
the workshops; results from this assessment are presented in Section 5.3.

4.5 Further developments

The back-end of the website was largely based on OpenCPU, allowing statistical
analysis with the R language. However, the inclusion of Python code increased
the complexity of the system. For further developments, it would be preferable
to avoid using both of these languages. Geospatial libraries are available for
both R and Python (e.g. GDAL), but Python is more closely integrated with
GIS packages. The statistical analysis functions could be re-written in Python,
with server applications provided by Flask instead of OpenCPU to deploy the
application: Flask is a comparable package to OpenCPU in Python.

Additional developments of the user interface are also needed:

1. Automatic update of data
In mapping the data, the data files must be uploaded by the user. The
model fits the data each time an update is made. The system can be made
to acquire the rainfall data automatically from Environment Canterbury
every hour and update the underlying models. This would increase the
efficiency of the system for end users.

2. Improvements to IDF curve analysis
For the IDF curve analysis, this project can successfully produce the curve
with a duration ranging from 1 to 24 hours for return periods up to 1000
years. However, to ensure precision, the duration in minutes should be
included as well. Moreover, the IDF curves can take various mathematical
expressions, but the system was developed with only one expression.

3. Application to other regions
The system was developed as a prototype to show the feasibility and most
functions were designed to process data from Environment Canterbury.
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Therefore, the code modification must be undertaken before the system
can be scaled to the rest of the regions in New Zealand.

4. Use of additional data sources
The project only utilised rain gauge data from Environment Canterbury.
Additional data sources are available and could be included to provide
a more comprehensive system. For example, the web application can be
further developed to integrate rainfall observations from data sources such
as Global Precipitation Measurement (GPM) from NASA; forecast rainfall
could be included through inclusion of weather models such as the Global
Forecast System (GFS).
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5 Assessment of user-needs: workshops

To understand the needs of flood-risk practitioners, two workshops in Welling-
ton, New Zealand, and Christchurch, New Zealand were conducted in June
2018. The aims of the workshops were to identify the current methods used
in flood-risk management, data gaps and limitations, the needs of the stake-
holders, and whether real-time analysis and integration of data is a desired and
useful step towards better and easier flood-risk prediction and management.

The workshops were divided into three parts. The first part was focused
on dataset identification: which crucial datasets are available? what works well
in terms of data supply? what are the current related issues? and what im-
provements can be made to existing practice? The second part was focused on
identifying improvements to current tools and desired "next generation" tools.
The third part of the workshop was focused on explaining the concept of an SKI,
and to gather the users’ thoughts on a potential SKI implementation.

Over 60 individuals attended, with representatives from:

• Commercial flood modelling consultancies;

• Crown Research Institutes;

• Regional and Territorial local government;

• Water utility operators;

• Central government departments;

• Regional Civil Defence and Emergency; Management (CDEM) groups; and

• Resilience consultancies.

To help frame the workshops, preparatory interviews were undertaken with
a selection of flood modelling practitioners and users to establish typical data
requirements, insights into current practices, and barriers/areas for potential
improvement in data supply, flood modelling and risk assessment practice.
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5.1 Workshop Part 1—Datasets Identification

Part 1 of the workshop focused on identifying the current practices of the work-
shop participants. This part of the workshop introduced the practitioners to the
source-pathway-receptor model of a flood hazard risk, and questions related to
the data requirements in these three categories were asked.

The source category relates to data representing or relating to the cause of
flooding (e.g. water level), the pathway category is data representing or relating
to the conduit of the flood water (e.g. stop banks), and the receptor category
relates to data representing or relating to recipients that would be adversely
affected by flooding (e.g. people).

The questions asked were:

(1) What are the critical datasets you need for modelling flood risk?

(2) What currently works well or presents problems in obtaining and using
these data?

(3) What improvements could be made to this current state, generally, or for
specific datasets?

5.1.1 Data Requirements Overview

The responses to the three questions can be summarised into six broad cate-
gories:

1. Accessibility;

2. Coverage (spatial and temporal);

3. Governance;

4. Policy;

5. Standardisation; and

6. Uncertainty and data quality.
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Accessibility
This category is related to the ease of access of the datasets; whether the

datasets can be easily found, downloaded, and used. The responses are sum-
marised below.

• Data download services are available and used to freely access local and
central government open data (e.g. http://opendata.canterburymaps
.govt.nz/, https://data.linz.govt.nz/, and https://data
.mfe.govt.nz/ ) and provide access to some frequently used datasets.

• The download of large and fragmented datasets is problematic and time
consuming.

• Available data is not always easy to discover—making clearer what is and
is not available, and what barriers to access and use exists, would be ben-
eficial.

• Greater access to real-time data would be an improvement.

Table 2 shows the answers related to accessibility that were common in all
three datasets: source, pathway, and receptor.

Identified Problems What Currently Works Well Desired Improvements
Hard to download large
datasets

Easy to access download ser-
vices

Access to data in real-time

Data are saved in individ-
ual files, making it slow to
download large datasets

Stock-take of existing avail-
able datasets and barriers to
making them available

Difficult to find and access
some datasets (need to know
who to ask in the councils)

Table 2: Accessibility Overview Findings

Coverage
Data coverage relates to the spatial and temporal extent of data available and
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whether it is usable, consistent, and fit for use. An overview of the responses
related to coverage is given below.

• There is inconsistency, spatially and temporally, in the availability of input
data which drives inconsistency in methods and quality of model outputs.

• Datasets with good resolution are becoming increasingly available e.g. Li-
DAR elevation data or LiDAR derived elevation models.

• Improvements sought are for: greater consistency, coverage and resolution
in datasets; the ability to feedback new data into existing datasets to create
updates; and centralised repositories for the collation of local datasets.

The overview findings in relation to coverage across all data categories are
provided in table 3.

Identified Problems What Currently Works Well Desired Improvements
Insufficient frequency of
measurements in datasets
both temporally (update
cycle and time sries fre-
quency), and physically
(spatial resolution)

Resolution of some data Reduction of current 2-3 hrs
time lag in processing real-
time satellite imagery

Reliance on aver-
ages/Interpolated data
due to lack of measure data

Feedback improved DEM’s to
a central collection.

Make it easier to share and
access model outputs
Gathering site data and feed-
ing it back for consumption
Centralised datasets

Table 3: Coverage Overview Findings

Governance
Governance of the data influences its availability and quality throughout the

whole data supply chain, including its consistency, and usability.
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The responses related to governance are summarised below, with table 4
providing an overview of the responses across all data categories:

• Lack of coordination and agreement on a range of factors (such as stan-
dards, method, data discovery and access) is resulting in issues such as du-
plication, gaps, inefficient pre-processing / reprocessing of data and poor
accessibility of data.

• Improvements through better coordination, standardisation, data federa-
tion, data management practice and centralised processing have all been
identified.

Identified Problems What Currently Works Well Desired Improvements
Lack of authoritative
source of data; multi-
ple providers/sources of
the same or similar data;
unidentified data provider

One organisation to collect
all data or a high-level coor-
dination of providing consis-
tent data

De-centralised the respon-
sibility for data; it cre-
ates inconsistencies at re-
gional and national levels,
with gaps and duplication
between agencies and their
data

Coordinate federated agen-
cies and host data from one
place of access

Super-computers to hold and
process data and models
Establish common respon-
bilities and approaches for
dataset collection and man-
agement

Table 4: Governance Overview Findings

Policy
Policies ensure that data are available in a consistent and standardised manner.

Below is a summary of the findings related to policies.
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• There is recognition that both open data policy drivers and commercial
imperatives are both at play in the data supply chain, and have an effect
on the potential re-use of existing data and model outputs.

• Open data initiatives have been seen to benefit data accessibility and use,
and reduce cost.

Table 5 shows the responses obtained that relate to policies across all three
categories of source, pathway, and receptor datasets.

Identified Problems What Currently Works Well Desired Improvements
CRIs conflicting drivers of
providing freely and openly
available data and their need
to operate on a commercially
competitive way and protect
their IP

Open and freely available
data

Property data is hard and
costly to access—IP is com-
mercially licensed
Possible ethical concerns
about making property
values freely available

Table 5: Policy Overview Findings

Standardisation
Standardisation ensures that data are structured and made available in a con-

sistent manner across different sources. The findings found in relation to stan-
dardisation are summarised below.

• Lack of standardisation in several key aspects of flood modelling and data
collection is creating adverse impacts in a number of ways:

– Inconsistent methodologies make comparison of outputs difficult.
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– Inconsistent semantics, data collection methods and processes and da-
tum all contribute to uncertainty in and between model methods and
outputs.

– Lack of consistent data documentation, formats and management all
impact on the efficiency and reliability of working with the data and
model outputs.

• There are some good examples where standardisation is driving improve-
ment in practice and our ability to model e.g. work done through the LAWA
initiative (https://www.lawa.org.nz/), national LiDAR base speci-
fication (https://www.linz.govt.nz/data/linz-data/elevation
-data), national horizontal and vertical datum, use of international stan-
dards such as WaterML (http://www.opengeospatial.org/standards/
waterml).

Table 6 shows the responses obtained across all dataset categories in relation
to standardisation.

Identified Problems What Currently Works Well Desired Improvements
Lack of common semantics
to support users understand-
ing and interpretation of the
data

Guidelines for LiDAR, stan-
dards for data (e.g. LAWA)

Standardisation of datasets
(content, formats, seman-
tics)

Insufficient standardisation
in data exchange formats

Interoperability of some
datasets

Standardisation of data col-
lection and their coverage

Regional variability of data
coverage and quality

National map projection Need to set common ARI—
plus these assessments often
vary with hazard type (e.g.
volcano, earthquake, flood)

Variation in vertical datums
used and the ability to
recognise this and interpo-
late/convert between them

Technology

Table 6: Standardisation Overview Findings
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Uncertainty and Data Quality
Uncertainty and data quality relates to the fit-for-use, and fit-for-purpose of

the datasets, and how these can be determined. A summary from the responses
are:

• There is a lack of information on data provenance that allows users to
assess fitness-for-purpose limits the ability to make informed choices about
data use and quantification of uncertainty.

• There is a lack of up-to-date data, or the ability to assess its currency which
creates risks of inappropriate use.

• Improved and consistent metadata would help to address some of these
problems.

• There is a recognised need to better understand and communicate uncer-
tainty but the methods and tools for doing this do not exist or are not
readily or routinely available.

Table 7 shows the responses obtained in relation to data quality and uncer-
tainty across all three data categories of source, path, and receptor.

5.2 Data Requirements Findings

This section reports on the responses obtained in relation to particular dataset
categories. Section 5.2.1 reports on the source category, section 5.2.2 reports on
the pathway category, and section 5.2.3 reports on the receptor category.

5.2.1 Source

Key source datasets that are necessary to support a range of modelling activities
identified by the workshop participants are shown in table 8.

The issues, positive points and potential improvements to the current state
of these data are summarised below.
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Identified Problems What Currently Works Well Desired Improvements
Poor/non-existent metadata
describing datasets

Handling of uncertainty

Uncertainty over relevance
or fitness-for-purpose of
available data

Need to communi-
cate/understand error
with different data

Poor warrantability of data;
lack of audits to confirm data
quality
Absence of effective under-
standing and communica-
tion of errors and uncer-
tainty in data and model out-
puts
Keeping datasets up-to-date
(e.g. pipe data)

Table 7: Uncertainty and Data Quality Overview Findings

Precipitation Fluvial Coastal Tidal Estuarine
Long term rainfall
record

River network Water level–measured Joint probability water
levels

Rainfall–measured Flows–measured Water level–modelled Groundwater
Rainfall–modelled Flows–modelled Water level–long term

record
Groundwater level–
measured

Rainfall–probability Water level–measured Water level–uncertainty
estimates

Dam Breach

Rainfall–real-time Water level–long term
record

Wave height–measured Dams and reservoirs

Rainfall–forecast Water level–uncertainty
estimates

Wave height–modelled Tsunami

Rainfall–forecast uncer-
tainty

Water level–modelled Wave height–forecast Models

Climate change scenar-
ios

Water bodies Recorded

Table 8: Source Critical Datasets
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Issues

• Combining data from multiple providers / source impacts reliability and
adds time.

• Spatial distribution of measuring sites (rainfall, water levels, waves) is too
sparse—impacts on forecast and model reliability.

• The lag between real-time events and data availability is too great for near
real-time modelling.

• The need to interpolate between modelled outputs introduces greater un-
certainty.

• Gaps in key datasets–spatially, temporally (real-time and long-term record)–
even when model inputs are patched together from different sources (au-
thoritative and crowd sourced).

• Particular shortage of water level measurement sites in estuaries.

• Poor rain and snow data at high elevations plus remote upstream areas.

• Reduction in the number of groundwater monitoring sites resulting in a
shift from use of data real-time to averages.

Positives

• Data is available from council website / services.

• NIWA river network and High Intensity Rainfall Design Service (HIRDS)
availability.
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Improvements

• Fine resolution for small catchment assessment.

• Gauge-corrected rain radar to provide real-time data feeds.

• Improved rainfall radar to provide both raw data and rainfall estimates
with confidence estimates.

• Disaggregation of long-term sea level resolved in to different components
(astronomic surge, tsunami etc.)

5.2.2 Pathway

Table 9 shows the critical datasets identified that are necessary for a range of
modelling activities. Issues, positive points and potential improvements of the
identified datasets are provided hereafter.

Issues

• Land use classes used to infer surface roughness can be too coarse.

• Currency: land surface has changed meaning DEMs are out of date; storm
water network changes are not recorded.

• Inconsistency in use of available vertical datums.

• Inconsistent resolution and accuracy in DEMs.

• Slow uptake of the use NZ Vertical Datum 2016–requires more conversion
grids.

• Topographic data is poor where there is no LiDAR coverage.

• Access to existing topographic surveys.
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• Information on stopbanks is inconsistent, incomplete and often not current.
Unconsented stopbanks are often unrecorded.

• Poorly defined and out-of-date and data availability of shoreline/coastline
reference positions, including estuaries/river mouths.

• Topography and hydrography is dynamic (e.g. earthquakes, slips, construc-
tion, floods and erosion/deposition).

• Drains and streams not accurately or consistently defined in drainage net-
work datasets.

• Numerous incompatible and variable datasets of land cover and soil datasets
across NZ.

Positives

• Ground model data posted to OpenTopography.Org.

• High quality openly available LiDAR where it exists.

Improvements

• Capture and publish flood action plans activation levels.

• Standardised procedures to assess hydrology/runoff.

• Standardised freeboard calculation guidelines.

• Use of national standard for collecting, processing LiDAR accuracy to pre-
cision .
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5.2.3 Receptor

Critical datasets identified in relation to the receptor category are provided in
table 10.

People Property Critical Infrastructure
Statistics NZ census
datasets

Building outlines Emergency routes, evacua-
tion corridors

Statistics NZ Inte-
grated Data Infras-
tructure (IDI)

Building use/type
and value/cost

NZ Lifelines national in-
frastructure vulnerability
report

Social vulnerability
index

Surveyed floor lev-
els/threshold levels

Asset value

Dwellings EQC land damage
claims data (flood-
ing)

Asset condi-
tion/vulnerability

Critical customers District planning
data/maps

Environmental Assets

Rest homes Property value Ecological datasets
Damage and clean-up
costs

Culture and Heritage

Consents Council/culture heritage
registers

Current land use and
value
Future planned
land use/urban
growth/zoning maps
Debris surveys

Table 10: Receptor Critical Datasets

The issues and potential improvements to the identified pathway datasets
are shown in table 11. No positives were identified by the workshop participants.
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Issues Improvements
Assumed population figures based on
average numbers per dwelling.

Develop tools/scripts to make estimates
available online.

Assessing history of floodplain develop-
ment.

Days under water–pasture damage i.e.
how quickly the paddock drains, advice
to district councils.

Availability, accessibility and re-usability
for any required receptor dataset.

Floor height, feed national model.

Infrastructure–no data on some assets,
no common model for data and analysis,
collating different asset and utility types
of data, attributes/ metadata varies, in-
direct damages, intangible losses, clean-
up costs.

Census data - spatially available: aver-
age household size, demographics.

Costs/ damage–inaccessibility of insur-
ance of datasets, insufficient granular-
ity/resolution in data, poor accessibility
of asset information.

Key assets and lifelines database.

What constitutes environmental dam-
age? Little information available (ex-
cept from DoC).

Updated topographic survey informa-
tion could be used to update asset data.

Floor levels–minimum information on
existing floor so these have to be sur-
veyed; lack of accuracy standards for
floor level survey.

Building consents data made available.

Table 11: Receptor Issues and Improvements
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5.3 Workshop Part 2 - Tools Identification

The second part of the workshop was aimed at gaining an insight into which tools
would be useful and practical for flood risk practitioners, for either planning or
emergency management. This section started by briefly defining a SKI as “a
network of data, analytics and policies allowing data integration and analysis in
real time” (further detail on this was provided in Part 3 of the workshop, see
Section 5.4). Two examples of analytical applications which can be developed
as part of a SKI for flood risk were then illustrated:

• Statistical analysis time-series data in real-time: a working demonstration
as detailed in Section 4, and

• Advanced stochastic flood modelling for scenario assessment: a conceptual
outline, as summarised in Figure 8.

While viewing the demonstrations, participants were asked to consider which
tools they would find to be most useful for flood risk management. Following
the demonstration, the specific questions addressed were:

(1) What tools would be most useful? What is a priority? What’s on your
wish-list?

(2) Which methods can be further developed?

(3) What linkages can we make to other tools or models? (e.g. RiskScape?
Climate models?)

(4) What would be the use of depth/ probability outputs c.f. single event sim-
ulations?

Participants addressed these questions simultaneously in their discussions. Sec-
tions 5.3.1 and 5.3.2 deal with the tools requirements and issues identified, re-
spectively; 5.3.3 then comments on the potential for the development of these
tools.
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Figure 8: Conceptual outline of an advanced stochastic flood modelling system.
Users were presented with the concept of using a SKI to assist with model de-
velopment and facilitating the running of many 1000s of scenarios via cloud
computing. Such scenarios include detailed assessment of exceedance proba-
bility, uncertainty analysis of model simulations, or "what-if" scenarios such as
potential stopbank (levee) breach or altered flood risk due to climate change.

5.3.1 Tools

Priorities
The development of a national flood model system was recognised to be a

priority for development. This would consist of hydrology tools including rain-
fall/ runoff and river models and an associated toolbox for data processing and
analysis of model outputs. It was noted that the system should:

1. Be consistent across the country and provide a first cut at flood information
where no existing model exists;

2. Have flexibility, including an ability to upload and run existing flood mod-
els and utilising a flexible mesh;

3. Answer fundamental flood risk questions as a priority, including: where
floods, how often, when, how deep, for how long, and when will the flood
recede?, taking into account protection requirements such as stopbanks
and drains;
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4. Provide outputs as depths with associated probabilities and allow data ex-
port and validation; and

5. Integrate with other applications and systems, such as a SDI which can be
developed to provide national flood data, or BIM for asset data, or rain-
fall probability models; this will allow the systems developed to consume
boundary conditions which utilise and respond to local conditions.

It was also recognised that a complementary approach between fluvial and plu-
vial flooding is needed, with respect to a combination of experience and expertise
needed to building a flood model system, and with regard to modelling scenar-
ios.

Scenarios
It was suggested that the system developed should be used for scenarios which:

1. Facilitate impact evaluation, rather than only focussing on hazard mod-
elling, to allow assessment of flood consequences for given scenarios through
integration with “receptor” datasets;

2. Enable the development of high-detail and site specific models for infras-
tructure design activities such as land-use planning, or for the development
of mitigation scenarios;

3. Allow scenario modelling, including scenarios which explore differences in
volume above critical thresholds vs peak water level and discharge (which
are derived from assessments of annual exceedance probability), or changes
in rainfall intensities such as derived from climate models or the High-
Intensity Rainfall Design System (HIRDS)24 developed by NIWA; and

4. Ideally allow near real-time modelling, on-the-fly during an emergency sit-
uation, or now-casting based on rain gauges or forecasts, with depths pro-
vided in terms of building floor levels.

24https://hirds.niwa.co.nz/
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The recognised importance of impact evaluation as an output of the modelling
system suggests that a dynamic integration with tools such as RiskScape25 would
be beneficial. It was also stated that in order to achieve national consistency,
the model system will depend on standardisation, particularly in terms of data
collection; it was suggested that a tool could be developed to help prioritise
future data collection at a national scale.

5.3.2 Issues

System end users
Questions were raised regarding the identity of the system end users, in par-

ticular with regard to whether they might be members of central or local govern-
ment, or consultants. However, it was thought important that it should be made
easier for smaller groups to set up localised models from the national dataset/
tool. These groups may include local or regional councils, or local communities.

Communication and model uncertainty
The communication regarding outputs and modelling was highlighted as be-

ing critical for appropriate interpretation, and it was suggested that public au-
thorities may be able to contribute funds towards the development of appro-
priate visualisation tools, such as through using augmented or virtual reality
systems (AR/VR). The clear communication of modelling assumptions, the un-
derlying models and data used, were highlighted as crucial to avoid possible
mis-interpretation. In particular, developing an effective strategy for the com-
munication of model uncertainty was recognised as important and it was sug-
gested that model scenarios should include an assessment of how uncertainties
propagate and effect model results.

25https://www.riskscape.org.nz/
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5.3.3 Potential

The identified priorities suggests a strong support within the professional com-
munity for the concept of an SKI, with a clear desire to make flood modelling
and flood risk assessment more accessible and routine. However, concerns were
raised regarding potential issues with regard to local modelling vs. national
consistency, particularly since supporting data are not yet available nationwide.
Scale issues have been identified as likely to be a significant challenge, particu-
larly with respect to the automation of detailed, large-scale localised models in
urban areas, which need, for example, to include detailed information on sur-
face and underground drainage infrastructure. The automation of such models
is likely to be difficult, and a multi-scale modelling approach may be required,
such as through the use of a nested system of models.
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5.4 Workshop Part 3 - Imagining the future of SKI

The purpose of part 3 of the workshop was to identify whether the stakeholders
related to a flood-risk hazard management found value in the use of an SKI. The
following three questions were asked:

(1) Data access: How do you currently access flood modelling data?

(2) SKI benefits: How can an SKI benefit you? and

(3) SKI concerns: What are your concerns regarding an SKI?

It is to be noted that the concept of an SKI was not familiar to the workshop
attendees. As such the questions asked were aimed at providing clarification
of current practice and confirmation of assumed benefits of using an SKI rather
than exploring the features and working of an SKI in technical detail.

5.4.1 Data Access

The data access question was aimed at gauging the current practices in regards
to obtaining flood-related data. From the responses obtained, current access
to data can be categorised as council websites, desktop applications, personal
contacts, and other custom APIs from various organisations.

From these, it could be observed that no centralised access to related data
could be found in any one place, and that it is difficult to find these pieces of
information. More surprising is that some datasets are obtained by knowing a
particular contact person and phoning or emailing them to get a download link
to the datasets.

These answers show that there is a need for a centralised method to search
for and retrieve datasets irrespective of their formats and locations.
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5.4.2 SKI Benefits

The question posed in this section aimed to build understanding of where the
stakeholders saw value in an SKI. The responses obtained can be categorised as:

• Data consistency:
Greater data consistency was seen as positive in an SKI infrastructure be-
cause the data can be standardised using the Semantic Web and ontologies.

• Data accessibility:
The accessibility of the data was seen as being easier in an SKI given that
data will be linked, and hence no ‘islands’ of data would exist.

• Data understanding:
Given that the purpose of ontologies is to map the knowledge in a machine-
readable manner, the data in an SKI would be more understandable as they
would be formally described with ontologies. Further, knowledge can be
easier understood, and less technical skills are required as they would be
mostly machine processable.

• Data exploitation:
Understanding the data leads to better exploitation of the data. For this
category of responses, some use of data in an SKI were: real-time analysis
of the data (as soon as they get uploaded), predictions using the data, Arti-
ficial Intelligence (AI) related tasks, and the enablement of more expressive
queries.

• Data customisation:
Providing a common foundation to express knowledge and concepts in an
SKI led to the stakeholders suggesting that the manipulation of the data
outputs would be easier. For example, flood maps using disparate satellite
photos, and data translations that are customised to the user.

• Data confidence:
The SKI can provide a layer of confidence that is based on collective expert
effort to formalise concepts use and knowledge created. This ensurers that
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the chosen concept is modelled by experts in that domain. Further, the data
used can be traced back if knowledge provenance is included in the SKI.
This means that the trust level and confidence of the data can be confirmed
to the user.

5.4.3 SKI Concerns

Apart from the challenges that are present in implementing an SKI (e.g. organi-
sational, funding, capability) other concerns raised by the stakeholders relate to
its automation. While having machines automatically process the data can be
efficient, there are concerns in regards to the trust of the inputs, and processes;
the quality of the output depends on the input. Further, there were concerns in
regards to the provenance of, not only the data, but also of the processes and
modelling stages of the SKI—how can the processes be confirmed and trusted if
they are all automated.

In addition, by moving more manual processes to automated ones, the issues
of ethics and morals need to be addressed. The stakeholders mentioned that
some knowledge can be detrimental to particular parties, but in an SKI, such
knowledge would be available to anybody, and could potentially be misused by
anybody. Another aspect is the misinterpretation of the data by the users; while
experts traditionally can explain what the data means, in an SKI, the user may
depend solely on their own interpretation of the ontologies, modelled concepts
and outputs, hence data and knowledge representation is a concern to address.

In regards to the implementation of an SKI the issues of funding and mod-
elling were raised. An SKI requires a lot of ongoing collaboration among experts,
and funding would be required to maintain a national SKI. Hence, an SKI is re-
source intensive at the initial stage both in human and monetary resources.

In summary, the main concerns raised were about trust of the automation
process, the open data model paradigm, the user interpretation of data, and the
resouces required to implement and maintain an SKI.
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6 Discussion

There is clear demand, particularly from local government and utility operators,
for flood modelling services. Typically these are to support local plans, flood pro-
tection scheme design and evaluation, and asset and infrastructure design and
management. This demand is met by a mature and well skilled supplier com-
munity based within the private, research and local government sectors. Models
tends to be created to simulate specific events (e.g. for a particular probability
of occurrence / return period) rather than establishing flood / depth probabil-
ities. Modelling to determine quantified risk (as a function of probability and
consequence) is not common.

6.1 Key findings

There is a clear need for improvement in the current SDI. In this project’s use
case—hazard risk management—the lack of data consistency, quality, and their
real-time feed were identified by the workshop participants to be in need of
improvement, alongside their accessibility and documentation. While the par-
ticipants have identified some positives to the current datasets, only a few se-
lective datasets were mentioned in this regard. Out of the findings, it can be
summarised that the participants desire data that is of high quality, consistent,
easily accessible (e.g. centralised access), and of higher coverage. Out of the
three data categories (source, pathway, receptor), the category requiring more
improvement can be said to be the receptor dataset, which requires more data
to be surveyed and made available.

A main tool identified to be a priority was a national flood model system.
The participants desired a national flood model system that would be consistent,
and provide live flood information. However, such a system should be open so
that experts can input their own datasets, and extract their needed information.
Such a system would help in facilitating impact evaluation of a flood, enable
the development of site specific models for infrastructure design activities, and
allow near real-time scenario modelling. It was also recognised that the flood
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model system should be flexible enough to allow its integration in existing risk
assessment tools such as RiskScape.

In terms of issues with current flood tools and systems, the uncertainty and
visual interpretation of flood datasets were raised. It was agreed by the partic-
ipants that more work was needed that would allow users to correctly interpret
flood datasets in ways that recognise and account for uncertainties. Virtual real-
ity and augmented reality were suggested to be a possible solution.

The identified priorities for improved flood-risk management and the is-
sues identified with the current system potentially lend themselves to resolu-
tion through the implementation of a Spatial Knowledge Infrastructure (SKI).
Better data accessibility, consistency, interpretation, exploitation, customisation,
and confidence could theoretically be achieved with an SKI. The participants all
found benefits in the concept of an SKI for better flood-risk management. How-
ever, there were concerns identified, mainly of trust of the automation process,
information misuse, data interpretation and of the funding of such a system.

None of these are easily overcome, therefore small-scale or partial demon-
strators are necessary as a first-step to provide tangible, beneficial outputs and
confidence that an larger SKI implementation would be worth investing in.

6.2 Pathways forward for SKI implementation

To fully implement an SKI, the participation of stakeholders is crucial. We have
taken this first step by gauging the interests of flood-related stakeholders, and
creating a group of users that can engage with this project as it develops to
provide us with essential feedback.

For the next phase demonstrator use cases for the SKI will need to be iden-
tified alongside the requirements that the system needs to fulfil. A grant will be
obtained to develop an SKI of small scale for a particular use case.

This should be open source and simple enough for easy adoption, as well as
being independent of a single platform/server to host it on (as this incurs ongo-
ing costs). For this aspect, the SKI should be mobile enough for any organisation
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to deploy their own‘mini-SKI’ on existing infrastructure, while allowing regional
councils and aggregation parties to adopt an SKI that federates those mini-SKIs.
Hence, a ‘web of SKIs’ will be produced, enabling any SKI holders to interact
with any other linked SKI.

6.2.1 User Engagement

An SDI’s primary aim should be user adoption (Hendriks et al., 2012; Masser,
2017), this aim applies to an SKI also. A spatial infrastructure should not be seen
as a stand-alone tool to be used, but rather as a foundation that is assimilated by
a user to facilitate a more homogeneous experience with spatial data—hence the
term infrastructure. While the functional aims of an SKI are important, Hendriks
et al. (2012) state that an infrastructure has better chances of serving its purpose
if user adoption is kept in mind. Further, involvement with the stakeholders is
a needed step to ensure user needs are addressed (Baker, Coaffee, & Sherriff,
2007; Kmoch, Klug, Ritchie, Schmidt, & White, 2016), as well as to facilitate the
dissemination of information (Conti et al., 2018). User engagement is as impor-
tant in ontology design, where the stakeholders need to agree on requirements,
priorities, and about alternatives to representing the domain concepts for the
interests of both the individual and the community (Simperl & Luczak-Rösch,
2014).

To engage the users, there must be ongoing workshops and presentations in
regards to the implementation of the prototypes. Doing so creates the necessity
to use technologies and components that can be adopted by the users (Kmoch et
al., 2016). Moreover, to facilitate data sharing (whether linked or not), Wallis,
Rolando, and Borgman (2013) stress that existing social and cultural implica-
tions of the users need to be considered.

Therefore, we suggest that stakeholders engagement workshops and pre-
sentations be held at regular interval during the implementation of a flood SKI.
Doing so will result in an urgency for frequent updates and prototyping, which
will drive a user-focused implementation of the SKI, resulting in a higher likeli-
hood of adoption.
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6.3 Challenges to SKI technical implementation

While an SKI can resolve interoperability issues and allow for real-time process-
ing of data, there are various challenges to be addressed.

Implementing an SKI carries many of the challenges of SDI implementation
e.g agreeing governance, policies and consistent technical approaches at a na-
tional level with multiple interested parties are very difficult and are often the
reasons behind slow or incomplete implementations. With an SKI the additional
need to develop a semantic enablement layer supported by linked data will be
a significant challenge, and though linked data approaches have been used for
over a decade they are not mainstream to most organisations producing and
using the types of data identified as key to flood risk modelling.

URI Patterns and Minting
Linked data rely on naming each ‘thing’ using a persistable and unique URI.

While any unique and persistable URI can be used, there needs to be a common
agreement in regards to the domain, subdomains, and path patterns of the URI.
This is needed for the proper scaling and maintenance of linked data (Yu &
Liu, 2015); as more data graphs are named, there are less URIs available, and
hence well-designed URI patterns and naming conventions are needed to cater
for all abstract levels of ‘things’ ensuring no conflicts during the naming process.
However, the same issue of participation remains, where the responsibility of
properly using the conventions specified still rests on the user, or on a moderating
body.

In addition, a graph whose URI changes will directly affect existing appli-
cations that are dependent on the graph. Resolving this issue requires a process
known as URI minting. This process involves using a URI that can be redirected
to other URIs. As such, if a URI needs to be changed, the minter URI will reflect
that change. For this to happen, a common domain needs to be managed by a
centralised body, for example, PURL26, and the URI patterns described previously
need to be respected by the centralised body.

26https://archive.org/services/purl/
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SPARQL
SPARQL endpoints are gateways that allow the querying of linked data through

SPARQL. An endpoint, however, requires the exposure of the Web service which
leads to various security vulnerabilities (Kumar & Kumar, 2014) that need to
be addressed. For example, malicious SPARQL injections are possible (Bamash-
moos, Holyer, Tryfonas, & Woznowski, 2017), and given that the time complexity
of SPARQL is polynomially related to the input query (Perez, Arenas, & Gutier-
rez, 2006), a Denial of Service attack can be easily achieved. Therefore, the
types of queries that the endpoint allows need to be restricted, or filtered (as
in Bamashmoos et al. (2017)), or ontologies can be used to detect these Web
attacks (Razzaq et al., 2014). However, the issue remains of deciding the thresh-
old timeout value, or the type of query where less expressivity could lead to
more vulnerability, but a more secure endpoint reduces the querying potential of
linked data.

Yu and Liu (2015) mention that composing SPARQL queries is difficult for
the common user as they need to first fully understand the queried ontology.
Instead, Yu and Liu (2015) suggest that linked data should be provided in a
RESTful manner. However, this would limit the capabilities of SPARQL, hence a
compromise needs to be met to ensure expressivity against ease of use.

SKI Ontologies
While the adoption of semantic Web technologies is growing (Bikakis et al.,

2013; Schmachtenberg, Bizer, & Paulheim, 2014), ontologies related to the spa-
tial domain are still lacking, being either incomplete or too general. Even though
related ontologies are noted in appendix A, these ontologies are to be considered
as potential parts of a greater ontology whose core ontology is for hazard-risk
management. This project still requires major engineering of ontologies for both
spatial data and flood-related data. In addition, organisations will also need to
follow standards and conventions imposed by Linked Data and RDF to properly
use the SKI and its ontologies.
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Ontology Evaluation
What constitute a good ontology is still the debate of much research (Amith,

He, Bian, Lossio-Ventura, & Tao, 2018; Lourdusamy & John, 2018). However, a
main success criterion is ontology usability—whether the ontology can be used
by specific users to achieve goals effectively, efficiently, and satisfactorily (Ma, Fu,
West, & Fox, 2018). Nonetheless, this gap in the semantic Web research makes
it difficult to properly choose or evaluate ontologies to be used or engineered for
the SKI.

Data Licensing
The semantic Web is based on the promise of open data, where all data are

shared, and hence can be openly accessed. There are available license ontologies
(W3C, 2017a) that can be used, and Schmachtenberg et al. (2014) found that
the dct:license, cc:license, and dc/dct:rights are the most important RDF terms
used. Nonetheless, there are still issues to be addressed such as (1) restricting
access to Linked Data, (2) charging for the use of commercial Linked Data, and
(3) charging for data used in deriving facts (Arnold et al., 2018).

Semantic Web Evolution
The semantic Web, like any technology, has undergone many evolutionary

steps throughout the years starting with RDF (W3C, 2014a) and RDFs (W3C,
2014b) to OWL (W3C, 2004) and OWL2 (W3C, 2012), and SHACL (W3C, 2017c)
and ShEx (W3C, 2017b) for validation. More changes are likely to occur and
as such, during the development of an SKI, it is important to keep up-to-date
with these changes. Reed (2017) mentions that INSPIRE underwent a similar
development cycle as for software, and this is likely to happen during an SKI
implementation.

7 Conclusion

The findings from workshops in Wellington and Christchurch with flood-risk
management practitioners indicate that the implementation of a Spatial Knowl-
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edge Infrastructure can provide solutions to some of the problems faced regard-
ing data accessibility and analysis. Improvements made though taking an SKI
approach include better data accessibility, consistency, interpretation, exploita-
tion, customisation, and confidence.

The second phase of this project will focus on a small scale SKI prototype
specific to a particular flood use case. Afterwards, it is hoped that the proto-
type will promote the implementation of a large scale SKI that can be used for
hazard-risk management. It is planned that the SKI will be open sourced after
the funding runs out, and that the SKI will be distributed in nature. That is, it
will not run on a centralised system but rather, different data providers and users
can run their own SKI, hence producing a Web of SKIs.

As such, this report has introduced the concept of an SKI and has laid down
the starting block to implement an SKI for hazard-risk management. The stan-
dards, tools, technologies, and architecture were outlined and reviewed. Along-
side these, the challenges to address were mentioned and the next steps towards
a full implementation of an SKI for better hazard-risk management were sug-
gested.
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Appendices

A Relevant Ontologies

While ontologies will need to be tailored to the given use case, it is good practice
to reuse existing ontologies as much as possible, so that the same terms and con-
cepts are used at a global level facilitating global interoperability. For this reason,
this section lists some relevant ontologies in regards to risk-hazard management.

List of relevant ontologies:

Name: Geo
Purpose: To represent latitudes and longitudes in the WGS84 geodetic reference
URL: http://www.w3.org/2003/01/geo/wgs84_pos

Name: DCAT
Purpose: To represent data catalogs
URL: https://www.w3.org/TR/vocab-dcat/

Name: DublinCore
Purpose: To represent various types of metadata
URL: http://dublincore.org/documents/dcmi-terms/

Name: DQV
Purpose: To annotate quality of data
URL: https://www.w3.org/TR/vocab-dqv/

Name: FOAF
Purpose: To represent people entities
URL: http://xmlns.com/foaf/spec/
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Name: GeoNames
Purpose: To add geospatial information
URL: http://www.geonames.org/ontology/documentation.html

Name: GeoSPARQL
Purpose: To represent spatial objects and their geometries
URL: http://geosparql.org/

Name: GeoSPARQL functions
Purpose: Represents spatial functions in GeoSPARQL
URL: http://www.opengis.net/ont/sf#

Name: GML
Purpose: To represent GML in LD format
URL: http://www.opengis.net/ont/gml#

Name: MOAC
Purpose: To represent entities related to crisis management activities as Linked
Data
URL: http://www.observedchange.com/moac/ns/

Name: LOCN
Purpose: To describe places
URL: https://www.w3.org/ns/locn

Name: OWL2
Purpose: High-level expressiveness of LD
URL: https://www.w3.org/TR/owl2-primer/

Name: PROV-O
Purpose: To represent the provenance of LD
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URL: https://www.w3.org/TR/prov-o/

Name: RDFS
Purpose: Basic expression of LD
URL: https://www.w3.org/TR/rdf-schema/

Name: SKOS
Purpose: To represent hierarchies of data
URL: https://www.w3.org/TR/skos-primer/

Name: Time
Purpose: To represent time
URL: https://www.w3.org/TR/owl-time/

Name: Vcard
Purpose: To describe people and organizations
URL: http://www.w3.org/2006/vcard/ns#

Name: VoID
Purpose: To represent LD metadata
URL: https://www.w3.org/TR/void/
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B Linked Data Stores: Review and Recommenda-

tion

Linked Data stores are needed to effectively store and query RDF data. However,
the linked data stores should also allow for spatial querying for this project’s
use case. In this section, existing linked data stores are reviewed based on their
advertised features, and various user reviews found on the Web.

AllegroGraph

AllegroGraph27 is a triple store that is used in both open source and commercial
projects. It has both a commercial and a free but limited version, and can be
used with Java, Python, Ruby, Perl, C#, Clojure, and Common Lisp. The main
feature of AllegroGraph is its ability to scale to ‘billions of quads while maintain-
ing superior performance’ 28. There is also an Amazon Machine Image (AMI)
allowing for the easy use of AllegroGraph using Amazon’s server. It supports
SPIN, which allows functions to be called in a SPARQL query. This feature makes
any sort of queries very powerful as they can be highly customised. AllegroGraph
also offers RDFS reasoning supporting all of RDF and RDFS predicates and se-
lected ones from OWL. In AllegroGraph, both static and dynamic materialisation
of data inferences can be used. In addition, Prolog is also included, which would
allow high-level rules to be expressed.

However, to make use of AllegroGraph’s most powerful features such as
federation, warm standby, Point in Time recovery, Replication, and triples level
security, it needs to be bought. The free version limits the triples to 5 Million,
the developer tier limits it to 50 Million, and the enterprise level has unlimited
number of triples.

27https://allegrograph.com/
28https://franz.com/agraph/allegrograph/
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BlazeGraph

BlazeGraph is an open source graph database that supports RDF and SPARQL.
It is the first GPU-accelerated database for large graphs. It does not support
GeoSPARQL, but can store spatial objects and have the basic capabilities for sim-
ple spatial queries.

GraphDB

GraphDB comes with different versions – Free, standard, and enterprise. The
free version has full capabilities except that it can only handle two queries in
parallel at a time. It supports all the features of a triple store, such as querying,
inferencing, and reasoning. It performs querying and reasoning using file-based
indices, meaning that the data are grouped by documents and those documents
are indexed for fast processing. It is also available as a docker image. However,
GraphDB only supports within and nearby spatial queries.

Jena Triple Database (TDB)

Apache Jena is an open source project for the Semantic Web. It supports RDF,
reasoning and inferences. Jena TDB focuses on quick data access, not inser-
tion. Open source projects provide more freedom as it allows total control of the
code. TDB supports spatial indexing, as well as, GeoSPARQL, but the functions
are currently limited to: east, west, north, south, intersectsBox, isWithinBox,
isWithinCircle, and isNearBy 29. Further, these spatial operators cannot compare
different shapes, only shapes to literal values.

Neo4J

Neo4J is a free pure-graph database. As RDF data models are directed labelled
graphs, using a graph database can be utilised if features pertaining to graphs

29https://jena.apache.org/documentation/query/spatial-query.html
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are required (e.g. fast traversal, nearest neighbour, degrees of separation, short-
est path algorithms). While Neo4J can be extended to reason over RDF data,
reasoning which is an important part of RDF does not come natively, neither
does SPARQL—a plug-in was developed though. Nonetheless, Neo4J can sup-
port these spatial operators: contain, cover, covered by, cross, disjoint, intersect,
intersect windows, overlap, touch, within, and within distance.

RDF4J Core Databases

This database is developed by the RDF4J group30, and is advertised as being
intended for small to medium-sized databases. The amount of triples it can
efficiently process is up to 100 Million. RDF4J itself is a framework to work
with RDF data, and as such RDf4J databases are compatible with their frame-
work. The database is free, and supports the most spatial operators in this list
such as: boundary, ocnvexHull, difference, ehContains, ehCoveredBy, ehCov-
ers, ehCoveredBy, ehCovers, ehDisjoint, ehInside, ehMeet, ehOverlap, envelope,
equals, intersection, relate, sfContains, sfCrosses, sfDisjoint, sfIntersects, sfOver-
laps, sfTouches, sfWithin, symDifference, and union. Further, it includes reason-
ing of SHACL and SPIN.

Stardog

Stardog31 is a commercial product that is easy to set-up and use. Their base
is a graph database that can reason, infer, do spatial queries, and search text
semantically. However the spatial features are not part of the free version, and
are currently limited to relate, distance, within, nearby, and area operators.

30http://rdf4j.org/
31https://www.stardog.com/
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Parliament

Parliament32 is an open-source triple store (under the BSD license) designed
for the Semantic Web. It boasts of efficient querying and insertion of data by
reordering query execution to start with the most restrictive query first. In addi-
tion, Parliament supports GeoSPARQL and temporal queries. The most important
aspect of an ontology for automation is the inferences that can be derived from
existing data. Parliament makes use of a rule engine as a means for fast infer-
ences of new data. Their rule engine implements RDFS inferences and some
selected elements of OWL. However, it is also possible to add further man-made
rules for more specific inferences. Being an RDF database, Parliament provides a
SPARQL endpoint that is decoupled from the server. The spatial operators it sup-
ports are: contains, crosses, disjoint, equals, intersects, overlaps, touches, and
within.

Virtuoso

Virtuoso is presented as ‘a modern enterprise-grade solution for data access, vir-
tualization, integration and multi-model relational database management (SQL
Tables and/or RDF Statement Graphs)’ https://virtuoso.openlinksw
.com/. Virtuoso is composed of multiple engines such as RDBMS, virtual databases,
messaging and storage protocols, and reasoning and inferences. The virtual
database engine acts as a middle-man to access multiple other databases and
hence, allowing join operations across federated databases of multiple types. It
has both open source and commercial licenses by OpenLink Software. It uses an
SQL Relational Database Management System (RDBMS) as its core. Available
spatial functions in Virtuoso are: intersects, within, bounding box, as text, and
distance.

32http://parliament.semwebcentral.org/
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Recommendation

While there are a lot of linked data stores available, the important factors would
be the ease of use and flexibility of the chosen solution. The database should
be flexible enough to allow the developers to inject code that is not currently
available, but it also needs to be a fully functional triple store with querying,
reasoning, and inferencing included natively. In addition, the familiarity of a
programming language is important for its ease of adoption alongside the cost
of the program.

For these reasons, the recommended database should be free to use and
modify (i.e. open source), and be in a common programming language. It
must support spatial queries to a reasonable extent, and have good documen-
tations. For these reasons, RDF4J is recommended. RDF4J uses Java, a com-
mon programming language, and it supports numerous GeoSPARQL operators,
alongside reasoners for SHACL (W3C, 2017c) and further has its own frame-
work. While virtuoso, Stardog, and AllegroGraph have promising features, they
are commercial by design, and hence not recommended to prevent a ‘vendor
lock-in’. Parliament is not recommended because it has not been updated since
2015, and hence might be outdated and not maintained any more. Jena Triple
Database could be a good option, however, its supported spatial operators are
lacking. As for BlazeGraph, it does not support spatial queries and hence is not
recommended.

However, RDF4J databases are designed for small to medium-sized databases
for up to 100 million triples. If more triples need to be stored, commercial soft-
ware might need to be purchased, and further reviews will need to be conducted.
For the purpose of a prototype, RDF4J should suffice.
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