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Abstract 

 

Type 2 diabetes (T2D) is a chronic disease characterised by a range of dysfunctions in 

glycaemic regulation. These dysfunctions are known to include insulin resistance (IR), hyper-

insulin secretion, hypo-insulin secretion and altered hepatic glucose balance, all in the 

course of developing the disease. IR, in particular, is a condition in which the circulating 

insulin is less effective in lowering the glucose levels in blood. Insulin hypersecretion is most 

associated with pre-diabetes, but can sometimes occur in early diabetes in concert with 

sufficient IR. Insulin hyposecretion, on the other hand, is most often present in longer-term 

diabetes and is a result of reduction in β-cell mass. Hence, the ability to accurately monitor 

and diagnose these stages of progression would offer unique insight and clinical 

opportunity. 

 

As an individual progresses towards T2D, the amount of insulin required to deal with the 

glucose loads increases. This outcome is ultimately driven by low insulin sensitivity (SI = IR-1). 

Additionally, T2D is said to have a lower insulin secretion capability, and thus, resulted in 

consistently increase glucose levels in the blood. Thus, more specifically, precisely observing 

and understanding the metabolic disorder as changes in both SI and endogenous insulin 

secretion (UN) may provide further insight into the heterogeneous etiology of type 2 

diabetes, and clinical intervention opportunities.  

 

Although, several test protocols and mathematical modelling strategies have been 

developed to quantify these key aspects of T2D, particularly in SI and UN, the goal of this 
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thesis is to find how to effectively improve the precision and clinical utility of these model-

based assessments when assessing the SI and UN. This thesis focuses on minimising the 

identification error or accurately identify the SI value particularly for individual with 

established T2D. In addition, this thesis also develops and analyses a proportional-derivative 

(PD) control model that may potentially be able to replace the conventional and accepted 

methods for estimating the participant-specific UN profile, which are not precise and thus 

introduce error. 

 

In particular, many modelling strategies use fasting glucose (G0) as basal glucose 

concentration (GB) when assessing the insulin sensitivity. With the assumption of GB = G0, 

most of the model-based SI assessment able to produce a highly correlated of an SI value to 

gold standard euglycaemic hyperinsulinaemic clamp (EIC). However, some of the model-

based like dynamic insulin sensitivity and secretion test (DISST), was developed in a 

relatively healthy, normoglycaemic cohort. Thus, the assumption of GB = G0 might be untrue 

as prior studies have suggested that GB and G0 should be treated differently particularly for 

T2D individuals. Hence, the outcomes of identifying GB potentially provide accurate 

assessment of SI value, in particular, for pre-diabetes individual, are investigated and 

quantified for the first time. 

 

It is understandable that UN plays a leading role in glucose homeostasis. Pathological 

changes in UN can enable early diagnosis of metabolic dysfunction before the emergence of 

type 2 diabetes. A PD control model that defines UN as a function of glucose concentration is 

proposed and analysed to provide further insight and modelling capability for this 
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prediabetic state. In addition, it offers the ability to add precision to estimating SI and 

additional diagnostics around UN. 

 

Thus, finally, the proposed PD UN model is further analysed to provide more information in 

determining each participant’s glycemic condition. The characterised gains of derivative 

control, 𝜙𝐷 and proportional control, 𝜙𝑃 are used in identifying and discriminating the UN 

profile for each metabolic state. Hence, the outcome will potentially improve the overall 

identification of UN profile. 
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Chapter 1. Introduction 

 

Diabetes has gone from rarity to global epidemic. Global estimations of diabetes prevalence 

by King et. al. estimate that there will be a total of 300 million adults with diabetes in 2025 

(King et al. 1998). The World Health Organization (WHO) estimates an increase of more than 

110%, from 171 million in 2000 to 366 million in 2030, of diabetes case worldwide (Wild et 

al. 2004). The International Diabetes Federation (IDF) estimates that the total number of 

people living with diabetes will rise about 55% from 382 million in 2013 to 592 million in 

2035 (IDF 2013). While these estimates vary wildly, they share common themes of 

exponential growth and large number of people with diabetes. 

 

Diabetes continues to increase in prevalence and significance due to developments in 

economics and urbanization that lead to sedentary lifestyles changes leading to reduced 

physical activity and increasing obesity (Whiting et al. 2011). Diabetes is characterised by 

high levels of insulin resistance and insulin secretory dysfunction that affect glucose uptake 

and utilization by most cells of the human body. Thus, a combination of resistance to insulin 

action and an increasingly inadequate compensatory insulin secretory response results in 

changing the metabolic state of an individual a healthy state, through pre-diabetes and early 

onset type 2 diabetes to manifest diabetes (Ferrannini 1997; WHO 2006). In particular, an 

absolute deficiency of insulin secretion occurs in manifest diabetes (ADA 2014). Hence, 

understanding the underlying metabolic disorder in the pathogenesis of diabetes could 

provide valuable information to instigate therapies to mitigate or delay the onset of the 

disease.  



2 
 

This chapter reviews and discusses the physiological characteristics of glucose and insulin 

that are associated with insulin resistance and the pathogenesis of type 2 diabetes. 

 

1.1 Glucose 

 

Glucose is a simple sugar or monosaccharide that consists of three elements: carbon, 

hydrogen and oxygen. Glucose is the most important carbohydrate and is used by the body 

as the main source of energy. During the conversion of glucose to pyruvate via glycolisis, 

energy is released for use in the cells (Guyton & Hall 2006). Hence, adequate glucose is 

essential in providing energy to maintain cellular function and thus, the body. 

 

Figure 1.1 illustrates the level of glucose in the blood stream in a simulated healthy 

individual. Immediately after a meal, the digestive system breaks down the carbohydrate in 

food into glucose. The glucose produced is absorbed into the blood stream and results in 

sharp increase in blood glucose level. A healthy individual has a blood glucose level of 72 - 

90 mg·dL-1 (4 - 5 mmol·L-1) before a meal. However, the blood glucose level of most healthy 

individuals will increase above 140 mg·dL-1 (7.78 mmol·L-1) after a meal containing large 

amounts of carbohydrates (Guyton & Hall 2006). In response to the increased blood glucose 

level, pancreatic β-cells secrete a significant amount of insulin to lower the blood glucose 

level back to a safe level.  

 

Glucose is transported around the body passively via the blood stream. Insulin is required to 

mediate glucose uptake into cells, thus removing it from the blood, particularly in the liver, 
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muscles and adipose tissue. Glucose can also be directly taken up by cells itself in the brain 

and central nervous system without the need of insulin. 

 

 

Figure 1.1: Schematic illustration of the effect of blood glucose level after meal. 
 

Although, glucose is used by the cells to produce energy, excess glucose can be stored in the 

liver and muscles, primarily as glycogen, for future use. However, the body’s ability to store 

glycogen is limited. Hence, further excess glucose is then stored in adipose tissue as fat.  

 

Naturally, the body constantly regulates the blood glucose level as a part of metabolic 

homeostasis. A healthy fasting blood glucose level is in the range of 4 – 5 mmol·L-1. 

However, if this glucose balancing system is disrupted, it can lead to hyperglycemia, where 

the blood glucose level is elevated above safe levels (≥ 200 mg·dL-1,   11.1 mmol·L-1) (ADA 

2014; WHO 2006). If left untreated, hyperglycemia can lead to the emergence of T2D and 

significant complications (Duckworth 2001; Laakso 1999a,b). On the other hand, if blood 

glucose levels fall too low, into the range of 20 – 50 mg·dL-1 (1.11 – 2.78 mmol·L-1), 

hypoglycaemia occurs (Guyton & Hall 2006), which carries its own significant risk (Cryer 

1997; Cryer & Polonsky 2008; McCrimmon & Frier 1994; Wilson 1983) and thus adds risk to 

treating hyperglycemia with insulin.  
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An individual is defined as having impaired fasting glucose (IFG) when the value of fasting 

plasma glucose is in the range of 100 mg·dL-1 (5.6 mmol·L-1) to 125 mg·dL-1 (6.9 mmol·L-1), or 

impaired glucose tolerance (IGT) when the plasma glucose value in the range of 140 mg·dL-1 

(7.8 mmol·L-1) to 199 mg·dL-1 (11 mmol·L-1) at the 2-hour mark of an oral glucose tolerance 

test (OGTT) (ADA 2014). These IFG and IGT individuals have been referred to as having a 

pre-diabetes state, indicating a high risk of further development of diabetes (ADA 2014; 

Shaw et al. 1999; Tuomilehto et al. 2001; Vendrame & Gottlieb 2004). Maintaining a 

balanced glucose level in the blood is crucial for health. Failing to continually control blood 

glucose levels leads to the development of metabolic disorders, particularly diabetes, all of 

which have significant complications that can reduce quality and length of life. 

 

1.2 Insulin 

 

One of the primary hormones produced by pancreatic β-cells of the islets of Langerhans is 

insulin (Guyton & Hall 2006). The insulin hormone is composed of two polypeptide chains, A 

(21 amino acids) and B (30 amino acids) chains. These two amino acids are connected by 

disulfide bonds (Chevenne et al. 1999).  

 

Insulin plays the primary significant role in maintaining glucose homeostasis. The β-cells, 

representing 60% of all the cells of the islets of Langerhans, secrete insulin in response to 

elevated glucose levels in the blood stream. These insulin secretions enable glucose to be 

absorbed by muscle and adipose tissue cells, regulate storage and release of glucose in the 

liver, and promote fat synthesis and storage (Guyton & Hall 2006; Jefferson et al. 2001). 

Hence, it dominates the glucose removal portion of human metabolic regulation. 
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Figure 1.2 illustrates the important role played by insulin in glucose uptake. Once released 

into the blood stream, insulin is then distributed to interstitial fluid. There, it binds to its 

receptor of muscle and adipose tissue cell outer membranes. This action, in turn, activates 

an intercellular reaction that include translocation of glucose transporter proteins from 

intracellular vesicles to the plasma membrane (Holman & Kasuga 1997; Myers & White 

1996), which then results in influx of glucose (Jefferson et al. 2001).  

 

 

Figure 1.2: Effect of insulin on glucose uptake and metabolism. Adapted from 
http://biology-pictures.blogspot.co.nz/. 

 

Once, glucose enters the cell, it undergoes energy-releasing glycolysis process that. In the 

case of energy abundance, insulin also plays a critical role in storing the excess energy 

mainly in the liver and muscles by converting the glucose into glycogen through 

glycogenesis. Moreover, it also promotes the synthesis of fatty acids through lipogenesis, 

where the energy is stored in adipose tissue as fats (Guyton & Hall 2006).   

 

http://biology-pictures.blogspot.co.nz/
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Initially, the β-cells secrete insulin into the portal vein and it travels through the liver to the 

heart before entering the blood circulation. From 60 – 80% of endogenous insulin secretion 

is extracted during this first pass extraction by the liver after being released (Cobelli & Pacini 

1988; Ferrannini & Cobelli 1987; Meier et al. 2005; Toffolo et al. 2006). Later, insulin is also 

cleared by the kidneys, as well as through cellular degradation after mediating glucose 

uptake (Guyton & Hall 2006; Jefferson et al. 2001). Hence, there are multiple clearance 

paths. 

 

In general, the secretion of insulin by the pancreatic β-cells is bi-phasic in healthy individuals 

(Guyton & Hall 2006; Jefferson et al. 2001). The strong spike of first phase secretion is 

released from stored and pre-produced insulin immediately after a sudden increase in 

glucose level within a short period of time. Later, a prolonged second phase secretion is 

more slowly and gradually released to eventually bring glucose levels back to normal. 

Importantly, the healthy pancreas secretes the right amount of insulin in response to the 

appearance of glucose in the blood stream. Failure to produce enough insulin to clear the 

excess glucose leads to elevated glucose levels in the blood and ultimately to prolonged 

hyperglycemia and T2D. 

 

1.3 Pathogenesis of Type 2 diabetes mellitus (T2DM) 

 

Diabetes mellitus is a chronic disease characterized by prolonged or uninterrupted elevated 

blood glucose levels (hyperglycemia) resulting from defects in insulin secretion, insulin 

action, or both (ADA 2014). Naturally, glucose homeostasis is achieved when the level of 

glucose is consistently controlled to a normal basal level of approximately 4 – 5 mmol·L-1. 
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Regulation is accomplished via glucose uptake by the cells via insulin mediated uptake. 

However, as the body’s ability to regulate glucose levels in blood deteriorates, the glucose 

stays in the blood stream until it is cleared, more slowly, through renal clearance of the 

kidneys (Arleth et al. 2000). This abnormal condition occurs in established diabetes and 

results in prolonged elevated blood glucose concentrations.  

 

There are two major types of diabetes, Type 1 and Type 2 (Guyton & Hall 2006). Figure 1.3 

illustrates the etiopathogenesis of these two types. In general, Type 1 diabetes (T1D) results 

from the body’s failure or inability to produce insulin. The etiology of T1D is characterised by 

the destruction of the pancreatic β-cells caused by an auto-immune disorder or as a result 

of the action of genetic markers (ADA 2014; Bluestone et al. 2010). Individuals with T1D 

need to have exogenous insulin to maintain a safe level of glucose in the blood stream.   

 

T2D results from the body’s inability to produce enough insulin. Prior studies and definitions 

have characterized T2D by fasting hyperglycemia and an excessive rise in the plasma glucose 

concentration above baseline following glucose or meal ingestion (DeFronzo et al. 1983) 

resulting from impaired insulin utilization (insulin resistance) coupled with the body’s 

inability to compensate with insulin production (insulin deficiency). Hence, there is a 

fundamental difference in the two forms of diabetes. 

 

Theoretically, it can be said that type 2 diabetes is related to the development of IR and 

impaired β-cells. Over time, T2D is developed due to consistent and excessive insulin 

resistance leading to increase requirements for insulin production that, if not halted, 

eventually leads to loss of β-cell function and diminished secretion. Thus, loss of β-cells 



8 
 

eventually results in a total loss of insulin secretion. Hence, the glucose level in the blood 

increases, increasingly without restraint. 

 

 

Figure 1.3: Illustration of the pathophysiological differences between normal, type 1 and 
type 2 diabetes. Adapted from endocrineweb.com/endocrinology/overview-pancreas. 

 

As a result, it is generally agreed that insulin resistance is the predominant driver of the 

pathogenesis of T2D (Docherty 2011). A study has reported that up to 10 years ahead of a 

formal diagnosis of type 2 diabetes, those who developed the disease had 60% higher mean 

IR than those that did not (Martin et al. 1992). It is also found that amongst obese 

individuals, IR is the strongest predictor of subsequent type 2 diabetes and cardiovascular 

disease risk (McLaughlin et al. 2007). Figure 1.5 shows a clear relationship between insulin 

production, insulin sensitivity and glucose concentration in blood stream. The nature of 

insulin production increases and subsequently reaches a maximised plateau before 
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declining, as illustrated in Figure 1.4. This behaviour is known as Starlings curve of the 

pancreas (Clark et al. 2001; Gastaldelli et al. 2004). A similar curve was also presented in 

Ferrannini et. al. (Ferrannini 1997). 

 

Figure 1.4: A generalisation of the inter-relationships between insulin production, insulin 
sensitivity and glucose concentration during the pathogenesis of type 2 diabetes (T2D). Note 

that NGT and IGT are normal glucose tolerance and impaired glucose tolerance, 
respectively. Adapted from (Docherty 2011). 

 

As an individual moves from normal glucose tolerance (NGT) to IGT, the glucose 

concentration often remains the same. However, the SI value decreases as IR increases, as 

defined. This decrease results in higher demands on insulin production to stabilize blood 

glucose levels. As a result, this physiological change often goes unnoticed for a long time. 

Thus, the disease can be well established long before diagnosis when insulin production 

becomes significantly impaired and blood glucose levels rise. Hence, early identification of 

insulin resistance or sensitivity, as well as insulin production, could potentially ameliorate 

the worst long term symptoms of the disease if appropriate intervention is taken. 
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1.4 Preface 

 

The main objective of this thesis is to better understand the identification of SI and β-cell 

function through the secretion of endogenous insulin. This thesis focuses on two parts: 1) 

accurately assessing SI value particularly for individuals with established T2D from the 

perspective of model-based SI assessment; and 2) identifying a smoother physiologically UN 

profile based on a development of PD control model. A brief overview of the thesis includes: 

 

Chapter 1 discusses the physiological characteristics of glucose and insulin that are associate 

with IR and the pathogenesis of T2D. 

 

Chapter 2 reviews current and established model-based SI assessments. 

 

Chapter 3 introduces a 3-parameter modelling approach for SI assessment. The approach is 

compared to a previous 2-parameter identification for individuals with established T2D. 

 

Chapter 4 validates the importance of introducing GB as a variable in a 3-parameter 

identification approach using DISST model. 

 

Chapter 5 underlines the impact of identifying GB as a variable towards assessing the SI 

value. 
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Chapter 6 explores a different modelling approach of identifying the UN profile through the 

development of PD UN model as opposed to the typical approach of deconvolution of C-

peptide measurements. 

 

Chapter 7 presents a PD model that defines UN as a function of changes in glucose 

excursion.  

 

Chapter 8 reflects how the information gathered from PD UN model can be used in 

discriminating the condition state of an individual.  

 

Chapter 9 summarises and concludes the outcomes of this thesis. 

 

Chapter 10 defines possible future work for this research. 
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Chapter 2. Review of model-based insulin sensitivity 

(SI) tests 

 

This thesis revolves around model-based assessment of insulin sensitivity and insulin 

secretion in the clinical evaluation of the etiology and diagnosis of diabetes. This chapter 

provides an overview of current model-based methods for assessing insulin sensitivity (SI), 

which is, as noted, an important metabolic marker of risk for type 2 diabetes. 

 

2.1 Introduction 

 

T2D is a metabolic disease that affects the body’s ability to regulate blood glucose 

concentrations (DeFronzo & Ferrannini 1991; Ferrannini 1997; Martin et al. 1992). Studies 

show that T2D is characterized by fasting and postprandial hyperglycaemia (DeFronzo et al. 

1983; Firth et al. 1986; Kirkman et al. 2006; Rizza 2010) and causes complications 

comorbidities with significant personal, social and economic cost (Bonow & Gheorghiade 

2004; Gakidou et al. 2011; King 1999; Lam & LeRoith 2012; Santaguida et al. 2005). 

Although, this hyperglycaemia is attributed to a combination of impaired insulin utilization 

(insulin resistance) and a limited ability to compensate with insulin production (net insulin 

deficiency), many investigations found that SI (SI = IR-1) is a key causative and diagnostic 

factor in T2D (DeFronzo & Ferrannini 1991; Ferrannini 1997; Harris et al. 2003; Martin et al. 

1992) and is also associated as a major risk factor for cardiovascular disease (Hanley et al. 

2005; McLaughlin et al. 2007; Santaguida et al. 2005; Zimmet et al. 1999). Thus, a practical 
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test that able to accurately identify SI would be clinically advantageous as a diagnostic and 

to better understand the physiological changes in T2D.  

 

Many already developed tests measure SI as the efficiency in the use of insulin to reduce 

blood glucose (Ferrannini & Mari 1998; Pacini & Mari 2003). Each test employs a different 

clinical method, and thus results in a different level of accuracy or resolution. Hence, the 

researcher or clinician has to choose the best test in terms of intensity, cost, accuracy and 

physiological relevance. Therefore, a high resolution, simple, repeatable clinical measure of  

insulin  sensitivity  would  have clinical  and  research  benefits for diagnosis, research, and  

evaluating  the  impact  of interventions (ADA 1998). 

 

The aim of this chapter is to provide an overview on the most frequently used insulin 

sensitivity tests and, in particular, model-based SI assessments. However, the vast majority 

of these tests and models have  been  extensively  reviewed  and discusses by  Lotz (Lotz 

2007), Docherty (Docherty 2011) and Jamaludin (Jamaludin 2013). Hence, the focus here, in 

this chapter, is to give a summary of these tests in terms of diagnostic accuracy, as well as 

clinical burden and intensity of assessing the insulin sensitivity and secretion. 

 

2.2 Overview of insulin sensitivity test 

2.2.1 Euglycaemic hyperinsulinaemic clamp (EIC) 

 

The EIC is regarded as the gold-standard for investigating and quantifying insulin resistance 

or insulin sensitivity (Ferrannini & Mari 1998; Pacini & Mari 2003). It measures the amount 

of glucose necessary to compensate for a hyper-physiologically increased insulin level. First 
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introduced in 1979 (Defronzo et al. 1979), this test infuses insulin at a constant rate and 

glucose at a variable rate to “clamp” the plasma glucose concentration at a normal fasting 

concentration, typically around 4.6 – 5.0 mmol·L-1 (McAuley et al. 2001).  

 

The EIC defines an insulin sensitivity index (ISI) as the mean glucose infusion rate is divided 

by the mean insulin concentration. Both variables are measured at a steady state level at 

the end of the test. It has good repeatability (Defronzo et al. 1979; Mari et al. 2001; 

Monzillo & Hamdy 2003). However, it is very difficult to perform, time consuming, and 

increasingly avoided even by clinical researchers (Ferrannini & Mari 1998; Radziuk 2000). In 

addition, the test needs a total of 180 to 300 minutes to complete, with consistent 

attendance by highly trained medical personnel, making it too intensive for subjects and 

clinicians. 

  

Although the EIC test is the gold standard reference for insulin sensitivity value, it does not 

provide an evaluation of a participant’s insulin production at the same time. A second EIC 

test using a sustained hyper-physiological glucose concentration, instead of hyper-

insulinaemia, is performed to estimate the insulin production. Thus, insulin production and 

sensitivity cannot be identified concurrently with the EIC test, and neither is accurately 

estimated at the physiological levels or actions. 

 

2.2.2 Intravenous glucose tolerance test (IVGTT) 

 

The IVGTT is the most well-used and common dynamic insulin sensitivity test protocol. This 

test protocol assesses glucose tolerance through an intravenous injection of glucose. A 
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series of blood samples are taken, and 20 or more samples are then assayed for glucose and 

insulin concentration, and, sometimes, connecting peptide (C-peptide) concentration, as 

well. Since the SI value cannot be identified directly from the data, a non-linear least-square 

parameter identification approach, typically using the minimal-model (MM) of glucose-

insulin dynamics is used to analyse the data (Bergman et al. 1985; Bergman et al. 1979b; 

Bergman et al. 1981; Boston et al. 2003; Caumo et al. 1999).  

 

The minimal model identifies two metabolic parameters, insulin sensitivity (SI
MM) and 

glucose effectiveness (SG
MM). SI

MM defines the sensitivity of insulin to mediate glucose 

uptake and inhibit liver glucose production (Bergman 1989; Bergman et al. 1985). SG
MM, on 

the other hand, quantifies the ability of glucose to decay from plasma at constant basal 

insulin (Ader et al. 1985; Best et al. 1996). In addition, the minimal model has been used 

with other models to identify metrics of first and second phase insulin secretion (Toffolo et 

al. 1980).  

  

The insulin sensitivity metrics from the IVGTT have been well-validated against the EIC 

(Beard et al. 1986; Bergman et al. 1987; Saad et al. 1994). However, some studies have 

shown significant difference to the EIC with R = 0.44 – 0.85 (Donner et al. 1985; Foley et al. 

1985; Galvin et al. 1992). Furthermore, the IVGTT is also known to produce ambiguous 

insulin sensitivity values and erratic correlations with the EIC (Bonora et al. 1989; Ferrannini 

& Mari 1998). Although, the IVGTT and minimal model are less clinically intense than the 

EIC, it remains a research-only application as the test is still impractical for use in wider 

clinical setting due to its length, intensity and complexity of parameter identification 

approach. 
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2.2.3 Oral glucose tolerance test (OGTT) 

 

The OGTT is a simple test that involves oral consumption of a drink containing a pre-defined 

glucose content. A standard dose of glucose, often 75g glucose in 250 mL of flavoured 

water, is ingested by mouth and blood glucose levels are checked one and/ or two hours 

later. The OGTT is used to diagnose patients of pre-diabetes, type 1 or type 2 diabetes (ADA 

2014). The two most common protocols are the 75g 2-hour trial and the 50g 1-hour trial.  

 

The OGTT by itself, does not calculate insulin sensitivity directly and insulin production 

characteristics are not frequently measured or estimated. Its simplicity and accurate 

portrayal of the ability to dispose of glucose have made it the most common clinical 

diagnostic of diabetes (ADA 2014). In particular, the OGTT only measures the body’s ability 

to remove a glucose load throughout the 1 or 2-hour trial, but provides no measure of 

secretion. Instead, it yields the net combination of SI and secretion seen as glucose removal.  

 

A series of mathematical equations have been suggested to be applied, together with the 

OGTT, to assess the insulin sensitivity (Cederholm & Wibell 1990; Gutt et al. 2000; Matsuda 

& DeFronzo 1999; Piche et al. 2007; Stumvoll et al. 2000). The OGTT is rarely used to assess 

SI in clinical investigation. It is instead very well used as an accepted method for the 

diagnosis of diabetes (ADA 2014; WHO 2006). 
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2.2.4 Homeostasis model assessment (HOMA) 

 

HOMA identifies insulin sensitivity and an index of β-cell function based on measured 

plasma glucose and insulin in a fasting state using a very simple physiological glucose-insulin 

model (Levy et al. 1998; Matthews et al. 1985; Turner et al. 1979). HOMA has been 

validated against the EIC. As this method solely depends on the precision of the fasting 

glucose and insulin measurements, a small error may affect the overall calculation of both 

indices of SI and β-cell function (Pacini & Mari 2003). Hence, the correlation between the 

EIC and HOMA varies between R = 0.22 and R = 0.93 (Bonora et al. 2000; Lorenzo et al. 

2010; Mari et al. 2001; Mather et al. 2001; Matthews et al. 1985; Pacini & Mari 2003; Piche 

et al. 2007), with most having on the poor side.  

 

2.2.5 Dynamic insulin sensitivity and secretion test (DISST) 

 

The DISST was designed to obviate the limitations of other tests. It provides quantitative 

measures of insulin sensitivity and insulin secretion. It is a dynamic test with a physiological 

model-based assessment, similar to the insulin modified IVGTT (IM-IVGTT).  The DISST was 

developed to be an accurate IVGTT alternative that enables a shorter test duration, more 

physiological dosing, less frequent sampling, and higher robustness, all with a lower total 

cost of clinical testing (Lotz 2007; Lotz et al. 2010; Lotz et al. 2008).  

 

The DISST uses a low dose of intravenous glucose bolus of 5 – 20 g and is followed by a low 

dose of intravenous insulin bolus of 0.5 – 2 U. Blood samples are measured and assayed for 

glucose, insulin and C-peptide concentration. The DISST identifies the participant-specific SI 
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and also UN through a developed pharmaco-kinetic and pharmaco-dynamic model that 

represent the pathways and interactions between insulin, C-peptide and glucose in the 

human body. 

 

The DISST produces a highly correlated metric of insulin sensitivity to the EIC test through 

in-silico study (R = 0.99) (Lotz et al. 2008). In-vivo studies also yielded a high correlation (R = 

0.82) (McAuley et al. 2011). In addition, the DISST was able to identify participant-specific 

UN profiles through deconvolution of measured C-peptide. As C-peptide is equimolarly 

secreted together with insulin from pancreatic β-cells (Rubenstein et al. 1969), the 

deconvolution method is considered to be effective in indentifying UN profiles (Van Cauter 

et al. 1992). Thus, the DISST is a unique test that can quantify both insulin sensitivity and 

secretion at the same time with low cost but high robustness. 

 

The DISST was further developed by Docherty (Docherty 2011), who eliminated the need for 

insulin and C-peptide assays via an iterative parameter identification method. The quick 

dynamic sensitivity test (DISTq) reduces the clinical intensity and assay cost of the DISST and 

correlated well to the fully sampled DISST in an in-silico Monte-Carlo analysis with R=0.89 

(Docherty et al. 2009). With the low cost and high accuracy of the DISTq, it would be able to 

screen more patients for type 2 diabetes risk (Docherty et al. 2011b). 

 

2.3 Summary 

 

Figure 2.1 shows the relationship between accuracy and intensity of different SI tests. The 

EIC is regarded as the gold standard in assessing SI. However, the EIC test cannot 
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concurrently identify both insulin production and insulin sensitivity, both of which are 

required for accurate diagnosis and understanding of the etiology of diabetes. A second 

clamp protocol is needed to assess UN. Hence, it is only limited to research setting, as it is 

too complex, intense and costly for wider clinical application. 

 

The IVGTT with a minimal model analysis is suggested as a valid alternative to the EIC and is 

widely used by researchers. However, the IVGTT test has not achieved wide acceptance in a 

clinical application given that they are also very complex and time consuming. Additionally, 

relying on the minimal model in analysing and assessing SI, often leads to issues, particularly 

in over-parameterisation that causes the inability to distinguish between insulin and non-

insulin mediated glucose disposal (Docherty et al. 2011a; McDonald et al. 2000; Pillonetto et 

al. 2002). Hence, the test is known to produce inconsistent SI values and unpredictable 

correlation to the EIC particularly for individual with higher insulin resistance (Docherty et 

al. 2011a; Pillonetto et al. 2003; Quon et al. 1994).  

 

The OGTT and HOMA are cheaper and simpler compared to the IVGTT and EIC (Figure 2.1). 

A mathematical model is needed to analyse data obtained from the OGTT to identify an SI 

value. However, the OGTT is not often used in applications that require accurate assessment 

of SI. However, the OGTT is widely accepted and used as a method to diagnose type 2 

diabetes. 
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Figure 2.1: Comparison of different SI tests based on the test’s intensity and accuracy in 
terms of repeatability (CV in %). The clinical target area is added for a better clinical test. 

Adapted from (Jamaludin 2013; Lotz 2007). 
  

HOMA, on the other hand, identifies SI values based on fasting glucose and insulin values. 

However, with only one sample required of both glucose and insulin concentration, it does 

not fully represent the insulin-glucose dynamics. Thus, HOMA is used only in research that 

requires a simple, SI surrogate. 

 

The DISST is a dynamic model-based test, similar to the IM-IVGTT. The DISST was developed 

to capture high resolution estimates of SI and also the UN profile. With high correlation to 

the gold standard EIC with R = 0.82 in in-vivo, the DISST insulin sensitivity is a more 

representative measure than other insulin sensitivity metrics due to its physiological model 
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of pharmaco-kinetic and pharmaco-dynamic of glucose, insulin and C-peptide 

measurements. It also delivers a well-accepted UN secretion profile that others do not. 

 

Although the DISST seems to be the best protocol for assessing SI and UN based on higher 

repeatability and lower intensity (Figure 2.1), there remains a scope better at diagnosis by 

improving the DISST model. The DISST, like any other model-based SI assessment, uses the 

assumption that basal glucose level is equal to the fasting glucose level when assessing 

insulin sensitivity. However, this assumption is untested and may be untrue for individuals 

with established T2D. Originally, the DISST identifies SI together with a glucose distribution 

volume (VG) in a 2 parameter approach employing the iterative integral method (IIM). 

However, if basal glucose is considered as a variable, a 3 parameter approach is needed, 

where basal glucose is identified together with the SI and VG value. Hence, SI can be 

potentially assessed with better accuracy in this case, particularly for T2D individuals.  

 

In addition, the DISST identifies the participant-specific UN profile based on deconvolution of 

C-peptide measurement. Although it remains to be the best method in identifying 

endogenous insulin, due to the fact that C-peptide and insulin are co-secreted from β-cells, 

these C-peptide measurements are relatively sparse. Hence, while diagnostically effective, 

there is room for improvement and to reduce sampling and thus cost, which is the focus of 

this research. 
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Chapter 3. 3-parameter identification of model-based 

insulin sensitivity assessment 

 

This chapter discusses an adaptation to enable identification of 3 parameters, comprising 

GB, SI and VG, when assessing SI value for individuals particularly with established T2D. 

 

3.1 Introduction 

 

The pathogenesis of T2D is well known, and is characterized by IR and β-cell dysfunction 

(Kahn 2003). β-cell dysfunction is associated with reduced and inconsistent endogenous 

insulin production, while IR as a condition refers to a state in which the body becomes less 

effective or unable to use secreted endogenous insulin for lowering blood glucose. An 

individual can have IR with, or without, β-cell dysfunction and reduced insulin secretion. 

These conditions contribute to major metabolic disorders, such as glucose intolerance or 

hyperglycemia, and, if left untreated, ultimately lead to the emergence of T2D.  

 

In particular, IR is a strong early predictor of subsequent T2D, up to 10 years in advance 

(DeFronzo & Ferrannini 1991; Ferrannini 1997; Harris et al. 2003; Martin et al. 1992). It is 

also associated with increased cardiovascular disease risk (Hanley et al. 2005; McLaughlin et 

al. 2007; Zimmet et al. 1999) as part of an overall syndrome of conditions that can emerge. 

Early identification of IR would thus benefit diagnosis and offer the opportunity to reduce 

subsequent risk and its social and economic impact. 
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The ability to quantify SI and UN is essential to improving the understanding of the complex 

physiology underlying type 2 diabetes. The first is associated with IR, while the second is 

associated with the ability to endogenously secrete insulin to reduce glucose level. Thus, it is 

necessary to assess both to enable complete diagnosis. 

 

Throughout the years, many experimental tests have been designed to quantitatively assess 

SI and UN (Bergman et al. 1985; Hovorka & Jones 1994). Mathematical models of glycaemic 

dynamics, in particular, have been coupled with clinical data to identify these 2 key aspects 

in the pathogenesis of type 2 diabetes. However, none have yet been accepted as a clinical 

standard, and are primarily used as research tools. 

 

SI is defined as the ability of insulin (exogenous or endogenous) to lower blood glucose 

concentration by stimulating glucose uptake and suppressing its glucose production (Pacini 

& Mari 2003). The EIC is regarded as the gold standard method for identifying SI (Ferrannini 

& Mari 1998; Pacini & Mari 2003), due to its good accuracy and high repeatability (Defronzo 

et al. 1979; Monzillo & Hamdy 2003). The EIC measures SI through the amount of glucose 

necessary to compensate for a hyper-physiologically increased insulin level while 

maintaining a normal, fasting glucose concentration of about 5 mmol·L-1 (Pacini & Mari 

2003).  

 

However, the EIC is increasingly avoided by clinical researches due to its experimental 

complexity, the need for clinical expertise in administering the test, and its time consuming 

design (Ferrannini & Mari 1998; Radziuk 2000). Thus, the IVGTT with minimal model 

assessment was proposed as a potential way to mitigate the clinical intensity of the EIC 
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(Pacini & Bergman 1986). However, the IVGTT is known to produce ambiguous insulin 

sensitivity values and erratic correlations with the EIC (Bonora et al. 1989; Ferrannini & Mari 

1998). This difficulty is particularly true for those with low SI (higher IR) (Pillonetto et al. 

2002; Quon et al. 1994), which is, paradoxically, the target population requiring the most 

accuracy in an SI test. It is also costly and clinically intensive due to the frequent, typically 1-

3 min, sampling. 

 

The DISST is a low intensity test that incorporates a clinical protocol similar to the IM-IVGTT 

(Bergman et al. 1979b; Ward et al. 2001). The DISST data modelling and data fitting 

methods were customized to the clinical protocol to allow a robust measurement of SI that 

avoids the problems encountered with FS-IVGTT assessment in insulin resistant patients 

(Caumo et al. 1999; Cobelli et al. 1986; Docherty et al. ; Krudys et al. 2006). The DISST also 

compares very favourably with EIC in assessing SI with strong correlation of R = 0.82, and 

produced highly repeatable SI and UN metrics (Lotz 2007; Lotz et al. 2010; Lotz et al. 2008; 

McAuley et al. 2011). In addition, it provides UN and SI resolution where the supra-

physiological EIC does not (Lotz 2007; McAuley et al. 2011).   

 

The pharmacokinetics and pharmacodynamics of the DISST model relates the rate of 

glucose decay to the concentration of insulin available in the interstitium to provide a metric 

of SI (Lotz 2007; Lotz et al. 2010). Like all other model-based assessments of SI (Bergman et 

al. 1979b; Bergman et al. 1981; Bergman et al. 1987; Boston et al. 2003; Caumo et al. 1999), 

the DISST model-based approach uses the participant’s measured G0 as their modelled GB so 

that G0 = GB. Hence, SI is identified together with VG in a 2-parameter identification 

approach.    
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Although, the DISST model, with the assumption of G0 = GB, produces an SI value that is 

highly correlated to the EIC value. However, the model was developed in a relatively 

healthy, normoglycemic cohort (Lotz ; Lotz et al. 2010). Understandably, G0 is defined as a 

glucose concentration taken early in the morning after an overnight fast of 8 hours or more. 

While, GB, on the other hand, is defined as the stable overnight glucose concentration 

(Holman & Turner 1981). Hence, the assumption of G0 = GB might be untrue for some cases, 

particularly those involving low SI value. More specifically, prior studies show that G0 levels 

and insulin concentrations are slightly higher in the morning than their overnight “basal” 

levels, especially for participants with diabetes (Holman & Turner 1977,1978,1979,1981).  

 

In addition, the evidence suggests that GB and G0 should be treated as separate entities for 

individuals with established diabetes as the levels are determined by relative insufficiencies 

in SI, UN and rates of gluconeogenesis (Cahill 1971; Cahill et al. 1959; Steele et al. 1968). 

Therefore, identifying GB as a variable may provide more precise information particularly 

when assessing SI value especially for individuals with T2D. Hence, a new 3-parameter 

identification approach is developed in this chapter, where GB is identified in concert with SI 

and VG. 

 

3.2 DISST Model 

 

The DISST provides quantitative measures of both SI and UN (Lotz et al. 2010; McAuley et al. 

2011; McAuley et al. 2007).  The DISST is similar to the insulin modified IVGTT, which 

typically uses an alternative modelling approach that requires a higher intensity test. The 
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DISST model describes the UN secretion profile from the deconvolution of C-peptide 

concentration (Van Cauter et al. 1992):  

  

C-peptide Pharmaco-kinetic Model 

𝐶̇ = −(𝑘1 + 𝑘3)𝐶 + 𝑘2𝑌 +
𝑈𝑁
𝑉𝑝

 (3.1) 

𝑌̇ = −𝑘2𝑌 + 𝑘1𝐶 (3.2) 

 

The insulin kinetics are described (Lotz et al. 2010): 

Insulin Pharmaco-kinetic Model 

𝐼̇ = −𝑛𝑘𝐼 − 𝑛𝐿
𝐼

1 + 𝛼𝐼𝐼
−
𝑛𝐼
𝑉𝑝
(𝐼 − 𝑄) +

𝑈𝑒𝑥
𝑉𝑝
+ (1 − 𝑥𝐿)

𝑈𝑁
𝑉𝑝

 (3.3) 

𝑄̇ = −(𝑛𝐶 +
𝑛𝐼
𝑉𝑄
)𝑄 +

𝑛𝐼
𝑉𝑄
𝐼 (3.4) 

 

Finally, SI is identified from a glucose insulin pharmacodynamic (PD) model (Chase et al. 

2005): 

Glucose-Insulin Pharmaco-dynamic Model 

𝐺̇ = −𝑝𝑔𝑢(𝐺 − 𝐺𝐵) − 𝑆𝐼(𝐺𝑄 − 𝐺𝐵𝑄𝐵) +
𝑃𝑡
𝑉𝐺

 (3.5) 

 

All values for Equations (3.1) – (3.5) are described in Table 3.1. 
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Table 3.1: Nomenclatures of DISST model 

 
 

Variable Unit Description Role 

C pmol·L-1 Plasma C-peptide concentration measured 

I mU·L-1 Plasma insulin concentration measured 

G mmol·L-1 Blood glucose concentration measured 

Y pmol·L-1 Interstitial C-peptide 

concentration 
simulated 

Q mU·L-1 Interstitial insulin concentration simulated 

QB mU·L-1 Basal interstitial insulin 

concentration 
simulated 

UN mU·min-1 Endogenous insulin secretion  
simulated/ 

deconvoluted 

k1, k2, k3 min-1 C-peptide transport rates a-priori 

Vp L Plasma insulin distribution volume a-priori 

Vq L 
Interstitial insulin distribution 

volume 
a-priori 

nk min-1 Renal insulin clearance rate a-priori 

nI L·min-1 Plasma-interstitial diffusion rate a-priori 

nC min-1 Interstitial insulin degradation 

rate 
a-priori 

Uex mU·min-1 Exogenous insulin input rate a-priori 

Pt mmol·min-1 Exogenous glucose input rate a-priori 

pgu min-1 Non-insulin mediated glucose 

disposal rate 
a-priori 

αI L·mU-1 Hepatic insulin clearance 

saturation parameter 
a-priori 

GB mmol·L-1 Basal blood glucose concentration identified 

Vg L Glucose distribution volume identified 

nL min-1 Hepatic insulin clearance rate identified 

xL 1 
Fractional first-pass hepatic insulin 

extraction 
identified 

SI L·mU-1·min-1 Insulin sensitivity identified 



28 
 

3.3 Parameter identification 

3.3.1 2-parameter identification approach 

 

Initially, the DISST model uses a 2-parameter (x = [SI, VG]) identification approach when 

assessing the SI value, having made the assumption of G0 = GB. Previously, these participant-

specific parameter values of SI and VG were identified based on the physiological simulation 

of interstitial insulin and measured glucose data using the iterative integral method 

(Docherty et al. 2012). The glucose samples that were taken in the first 5 minutes after the 

glucose bolus were disregarded by the identification methods, as this period is heavily 

influenced by mixing kinetics that are not captured by the whole body model of glucose 

metabolism (Edsberg et al. 1987; Lotz et al. 2010). Linear interpolation was then used as an 

estimate of the glucose response to the test stimulus.  

 

In the identification procedure, the integral formulation of Equation 3.5 was rearranged and 

separated into the coefficients of the known and unknowns parameters, yielding: 

 

−𝑆𝐼∫ (𝐺𝑄 − 𝐺𝐵𝑄𝐵)
𝑡

0

𝑑𝑡
⏟            

𝐶𝑆𝐼

+
1

𝑉𝐺
∫ 𝑃𝑡𝑑𝑡
𝑡

0⏟    
𝐶𝑉𝐺

= 𝐺𝑡 − 𝐺0 +∫ 𝑝𝑔𝑢(𝐺 − 𝐺𝐵)𝑑𝑡
𝑡

0⏟                  
𝐶

 
(3.6) 

 

These coefficients of CSI, CVG and C were evaluated over the sample times from t = 0 until 

𝑡 = 𝑡1, 𝑡2, ⋯ , 𝑡𝑒𝑛𝑑 at the end of the test. These sample periods were chosen to minimise the 

fitting error and the variability of the identified insulin sensitivity (Docherty et al. 2011a). 

Subsequently, a matrix formulation was arranged to define the SI and VG terms, as defined:   
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[
 
 
 
 𝐶𝑆𝐼𝑡=0

𝑡=𝑡1 𝐶𝑉𝐺𝑡=0
𝑡=𝑡1

𝐶𝑆𝐼𝑡=0
𝑡=𝑡2 𝐶𝑉𝐺𝑡=0

𝑡=𝑡2

⋮

𝐶𝑆𝐼𝑡=0
𝑡=𝑡𝑒𝑛𝑑

⋮
𝐶𝑉𝐺𝑡=0

𝑡=𝑡𝑒𝑛𝑑]
 
 
 
 

[
−𝑆𝐼
1
𝑉𝐺
⁄ ] =

[
 
 
 
 𝐶𝑡=0

𝑡=𝑡1

𝐶𝑡=0
𝑡=𝑡2

⋮

𝐶𝑡=0
𝑡=𝑡𝑒𝑛𝑑]

 
 
 
 

 (3.7) 

where 𝑡𝑖 (𝑖 = 1, 2 … ) < 𝑡𝑒𝑛𝑑 capture different integration intervals. 

 

The values of VG are limited to identification of values within 12 to 25% of the participant’s 

bodyweight to reduce the effect incomplete mixing might have on the SI term (Defronzo et 

al. 1979; Ferrannini & Mari 1998; Lotz 2007; Lotz et al. 2010). However, while this 2-

parameter identification approach might be true for a more normoglycemic, healthy cohort, 

it may not hold in T2D or high insulin resistance.  

 

3.3.2 3-parameter identification approach 

 

Previous studies have suggested that GB and G0 should be treated as separate entities 

especially for individuals with established diabetes (Holman & Turner 

1977,1978,1979,1981). Hence, the participant-specific parameter values of GB, SI and VG can 

be identified in a 3-parameter identification approach by adapting the Gauss Newton 

parameter identification method (Björck 1996). The iteration function is defined: 

 

  

where 𝐱𝑖 = [𝐺𝐵𝑖 , 𝑆𝐼𝑖, 𝑉𝐺𝑖]
𝑇 and i is the iteration number. The Jacobian matrix (J) and the 

residual matrix (ψ) are defined: 

𝐱𝑖+1 = 𝐱𝑖 − (𝐉
𝐓𝐉)−1𝐉𝐓𝛙  (3.8) 



30 
 

 

where n is the number of measured samples, 
𝛿𝜓1

𝛿𝐺𝐵𝑖
 is the derivative of the residual matrix 

with respect to GB, G(xi,t1) is the modelled glucose concentration at t = t1 given xi, GS(t1) is 

the measured glucose level at t = t1.  

 

VG is similarly limited to within the range of 12% to 25% of participant’s body weight to 

avoid any parameter estimation issues. Equation 3.8 is iterated using Equation 3.9 until 

convergence to a tolerance. 

 

3.4 Summary 

 

With an assumption of G0 = GB, like most model-based assessments of SI employed, the SI 

value is well addressed by DISST model using a 2-parameter identification approach. 

However, previous studies have demonstrated that G0 is not equal to GB especially for 

individual with established diabetes. Hence, the original DISST model, while appropriate for 

more normoglycaemic cohorts, needs to model basal glucose level as a variable for 

assessing individuals with established T2D. This chapter presents the equations and 

rationale for a novel 3-parameter identification approach. 

  

𝐉(𝐱𝑖) =

[
 
 
 
 
 
 
 
𝛿𝜓1
𝛿𝐺𝐵𝑖

𝛿𝜓1
𝛿𝑆𝐼𝑖

𝛿𝜓1
𝛿𝑉𝐺𝑖

𝛿𝜓2
𝛿𝐺𝐵𝑖

𝛿𝜓2
𝛿𝑆𝐼𝑖

𝛿𝜓2
𝛿𝑉𝐺𝑖

⋮ ⋮ ⋮
𝛿𝜓𝑛
𝛿𝐺𝐵𝑖

𝛿𝜓𝑛
𝛿𝑆𝐼𝑖

𝛿𝜓𝑛
𝛿𝑉𝐺𝑖]

 
 
 
 
 
 
 

,         𝛙(𝐱𝑖) = [

𝐺(𝐱𝑖, 𝑡1) − 𝐺𝑆(𝑡1)

𝐺(𝐱𝑖, 𝑡2) − 𝐺𝑆(𝑡2)
⋮

𝐺(𝐱𝑖, 𝑡𝑛) − 𝐺𝑆(𝑡𝑛)

] (3.9) 
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Chapter 4. The necessity of identifying the basal 

glucose set-point in the Type 2 Diabetes 

 

This chapter underlines the importance of identifying GB as a variable, as opposed to other 

typical model-based SI assessments, where GB is set equal to G0. In particular, the impact of 

this approach is assessed for individuals with established T2D, where assessing SI accurately 

is important. 

 

4.1 Introduction 

 

The DISST is an alternative modelling approach that allows a lower intensity test compared 

to the IM-IVGTT that is often used to assess those with T2D and those with high insulin 

resistance (Bergman et al. 1979b; Ward et al. 2001). The DISST SI value is highly correlated 

to the EIC SI value (R=0.82), which is widely regarded as the reference method (McAuley et 

al. 2011). In particular, the DISST is able to produce highly repeatable SI metrics and also 

provides quantitative measures of UN via deconvolution of C-peptide data (Lotz 2007; Lotz 

et al. 2010; Lotz et al. 2008; McAuley et al. 2011).   

 

However, the DISST model and identification methods use the participant’s measured G0 as 

their GB setting GB = G0. The GB term in the DISST model effectively has the role of 

determining the set-point towards which the modelled glucose response moves. This choice 

thus matches assumptions in all other model-based tests (Bergman et al. 1979b; Bergman et 
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al. 1981; Bergman et al. 1987; Boston et al. 2003; Caumo et al. 1999). However, it is 

important to note that the DISST model was developed in a relatively healthy, 

normoglycemic cohort (Lotz ; Lotz et al. 2010). Hence, re-defining the role of GB as a variable 

in the DISST based approach to assessing SI could more clearly capture the observed 

glycaemic behaviour especially in T2D. 

 

More specifically, studies have shown that G0 levels and insulin concentrations are slightly 

higher in the morning than their overnight “basal” levels, especially for participants with 

established diabetes (Holman & Turner 1977,1978,1979,1981). Thus, the assumption of GB = 

G0 needs to be reviewed. In addition, prior evidence suggests that GB and G0 should be 

treated as separate entities for individuals with established diabetes as the levels are 

determined by relative insufficiencies in SI, UN, and rates of gluconeogenesis (Cahill 1971; 

Cahill et al. 1959; Steele et al. 1968).  

 

Hence, this chapter presents a novel modelling approach that identifies GB as a variable in a 

3-parameter identification (x = [GB, SI, VG]). The goal is to capture more accurate glucose 

dynamics, particularly for individuals with established type 2 diabetes. Results are thus 

expected to be improved over the 2-parameter identification approach, especially for T2D 

and highly insulin resistant cohorts. 
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4.2  Methods 

4.2.1 Participants 

 

Fourteen individuals with established type 2 diabetes mellitus were recruited from the 

Wellington region of New Zealand to take part in an Atkins-Based low carbohydrate dietary 

intervention study. Recruited participants were aged between 30 and 65 with a BMI range 

of 34 to 46 kg·m-2 at baseline.  Participants were excluded if they had major physiological or 

psychological illness at the time of testing. Pregnant or lactating females were also 

excluded.  Two participants discontinued the intervention, the first citing personal reasons, 

and the second left the study due to a renal stone. Twelve participants each underwent 

three IM-IVGTTs over a 24 week period resulting in a total of 36 data sets for the study. 

Participants had their age and BMI recorded (median [IQR]; 47.5 [42.5, 54.5] and 40.40 

[37.48, 43.48], respectively). Full demographic details and results of the intervention study 

have been previously described (Krebs et al.). Table 4.1 provides some further demographic 

data. Ethics approval for this study was provided by the New Zealand Ministry of Health, 

Central Regional Ethics Committee. 
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Table 4.1: Participant characteristics at baseline (W0) week 12 (W12) and the end of the trial 
at week 24 (W24) as well as their duration of diabetes. 

 
 

Participant 
Gender  

(M/ F) 

Age 

(yrs) 

Height 

(m) 

Weight (kg) Duration 

of diabetes 

(years) 
W0 W12 W24 

1 M 46 1.81 142.6 133.1 137.0 10 

2 M 56 1.79 130.8 121.1 114.4 1 

3 F 52 1.55 82.0 77.6 76.2 11 

4 F 55 1.71 121.7 111.7 108.7 6 

5 F 35 1.61 119.5 106.2 104.9 2 

6 M 56 1.79 145.3 140.6 135.9 5 

7 F 38 1.57 113.5 110.0 107.0 3 

8 F 45 1.59 95.6 87.6 86.6 7 

9 M 49 1.75 134.0 118.6 115.9 2 

10 M 41 1.71 128.0 127.0 132.3 4 

11 F 54 1.56 96.3 86.2 81.5 2 

12 M 44 1.80 130.7 123.5 122.8 0.5 

25% 

Median 

75% 

6 M 

6 F 

42.5 

47.5 

54.5 

1.58 

1.71 

1.79 

104.9 

124.9 

132.4 

96.9 

115.2 

125.3 

95.8 

111.6 

127.6 

2.0 

3.5 

6.5 

 

4.2.2 Clinical procedure 

 

The IM-IVGTT clinical protocol utilised in this study was similar to the protocol defined by 

Ward et al. (Ward et al. 2001). A 0.2 g·kg-1 glucose bolus was administered at t = 1 minute 

and then an infusion of insulin that was intended to replicate the insulinaemic response of a 

normoglycaemic individual was administered. An insulin infusion was started at t = 2 

minutes at a rate of 3.5 mU·kg-1·min-1 and was reduced to 0.5 mU·kg-1·min-1 at t = 7 minutes. 
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Further reductions occurred at t = 17 minutes, to 0.25 mU·kg-1·min-1, and at t = 50 minutes, 

to 0.1 mU·kg-1·min-1. The infusion of mU·kg-1·min-1 was maintained for the remainder of the 

procedure. Venous blood samples were taken and put into fluoride oxalate tubes at times: t 

= -10, -5, -1, 0, 2, 3, 4, 5, 6, 8, 10, 12.5, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 

140, 160, 180, 210, 240, 270 and 300 minutes. Blood samples were assayed for glucose and 

insulin concentration using standard commercial assays (Roche Diagnostics, New Zealand) at 

an accredited laboratory (Diabetes and Lipid Laboratory, University of Otago, Dunedin, New 

Zealand). 

 

4.2.3 Physiological model 

4.2.3.1 DISST Model 

 

With only glucose and insulin concentrations available from the clinical trial, the interstitial 

insulin kinetics and glucose dynamics of the DISST models was used (Lotz ; Lotz et al. 2010):  

 

𝑄̇ = −(𝑛𝐶 +
𝑛𝐼
𝑉𝑄
)𝑄 +

𝑛𝐼
𝑉𝑄
𝐼 (4.1) 

𝐺̇ = −𝑝𝑔𝑢(𝐺 − 𝐺𝐵) − 𝑆𝐼(𝐺𝑄 − 𝐺𝐵𝑄𝐵) +
𝑃𝑡

𝑉𝐺
 (4.2) 

  

where the equation nomenclature is well defined in Chapter 3, Section 3.2, Table 3.1. Note 

that 𝑉𝑄, 𝑛𝐼 and 𝑛𝐶  are defined a-priori based on anatomical functions (Barrett et al. 2009; 

Docherty 2011; Lotz et al. 2010; Van Cauter et al. 1992), while the DISST model sets 𝑝𝑔𝑢 as a 

constant at 0.004 min-1 (Lotz et al. 2010). 
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4.2.4 Parameter identification 

 

𝑄 was simulated via integrating factors and a linear interpolation of 𝐼.  

 

 𝑄 = 𝑒
−∫ 𝑛𝐶+

𝑛𝐼
𝑉𝑄

𝑡1
𝑡0

𝑑𝑡
(𝑄0 + ∫ 𝑒

∫ 𝑛𝐶+
𝑛𝐼
𝑉𝑄

𝑡1
𝑡0

𝑑𝑡𝑡1

𝑡0

𝑛𝐼

𝑉𝑄
𝐼𝑑𝑡) (4.1a) 

 

where 𝑄0 is determined assuming a steady state at t = -10 minutes: 

𝑄0 =

𝑛𝐼
𝑉𝑄
𝐼0

𝑛𝐶 +
𝑛𝐼
𝑉𝑄

 (4.3) 

The DISST model typically sets 𝐺𝐵 = 𝐺0 (Lotz ; Lotz et al. 2010). Hence, 𝐺0 acts as a surrogate 

basal glucose concentration level. However, for individuals with elevated fasting glucose, 

this assumption may not be accurate (Holman & Turner 1977,1978,1979,1981), and is 

tested in this study.  

 

In this analysis, 𝐺𝐵 was identified in concert with 𝑆𝐼 and 𝑉𝐺. The typical approach used with 

the DISST model identifies only SI and VG. Thus, the outcomes of the 3-parameter 

identification approach (x = [GB, SI, VG]) model can be compared to the outputs of the typical 

2-parameter identification approach (x = [SI, VG]). A Gauss Newton parameter identification 

method was used to identify these 3 parameters. A full detailed description of the 

identification methodology via Gauss Newton method was previously discussed in Chapter 

3, Section 3.3.2.  
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The Jacobian was numerically evaluated using perturbations of [𝛿𝐺𝐵 , 𝛿𝑆𝐼, 𝛿𝑉𝐺] =

[10−3, 10−8, 10−3]. These perturbation values were 0.1% of the order of magnitude of the 

expected parameter values. Glucose samples between t = 1 and t = 10 minutes were 

disregarded by the identification methods, as this period is heavily influenced by mixing 

kinetics that are not captured by the whole body model of glucose metabolism (Edsberg et 

al. 1987; Lotz et al. 2010).  

 

Identifying GB in concert with SI and VG can cause identified parameter trade off in some 

cases (Docherty et al. 2011a). The value of VG was thus limited to physiologically measured 

bounds from other studies (Defronzo et al. 1979; Ferrannini & Mari 1998; Lotz 2007; Lotz et 

al. 2010). In particular, VG was limited to the range of [0.12Bw, 0.25Bw] where bodyweight 

(Bw) is measured in kg and the coefficients have units of l·kg-1, which is a standard 

estimation approach linking volume to an easily measured value. Similarly, GB was limited to 

a minimum of 3 mmol·L-1. Both sets of limits are physiologically outside normal published 

bounds, but do not allow non-physiological results, such as negative or very small GB or 

volume. 

 

4.3 Statistical analysis 

 

Identified model residuals compared to the clinical data and interpretation of population 

trends were used to assess the performance of the GB identified - DISST model. The p-values 

are defined with signed ranksum (prs) and Kolmogrov Smirnov test (pks) to assess median 

and variability of non-parametric non-Gaussian distributions. A Pearson correlation (R value) 
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is used in the analysis to show the linear relationship between two sets of data. All analysis 

was undertaken using MATLAB (R2013b, Mathworks, Inc., Natick, MA, USA). 

 

4.4 Results 

 

Table 4.2 shows the tabulated data comparing the 2- and 3- parameter identification 

approaches across all 36 tests over 24 weeks of the clinical study. It can be clearly seen that 

adopting the 3-parameter identification approach in assessing the SI value lead to significant 

differences between the measured G0, identified basal glucose (GB-ID), and resulting 

identified SI values between the two identification approaches. Although, there is no 

significant different in variability for VG values as pks (Kolmogorov Smirnov) = 0.2975, the 

medians are significantly difference since prs (Signed-ranksum) < 0.00001. 

 

Figures 4.1 and 4.2 show the individual relationships between G0, GB-ID and identified SI from 

the 2- and 3- parameter identification approaches for the DISST model across all participants 

and tests. Note the bias about the 1:1 line indicating that on average, the identified, model-

based basal set point for glucose (GB-ID) was significantly lower than the fasting rate (G0) for 

this cohort with diabetes. Figure 4.1 shows there were significant differences in median and 

variability between the G0 and GB-ID values in this cohort (prs<0.0001, pks<0.0001). In general, 

G0 was higher than the GB-ID value, with only 4 exceptions over 36 results (11.1%). Although 

there was a significant difference in the levels of GB-ID and G0, they were relatively well 

correlated (R=0.70), indicating a moderately consistent bias in the relationship between 

values.  
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Table 4.2: Tabulated data of G0, GB-ID, SI and VG identified from two modelling approaches 
across 36 tests. 

 

 2-parameter identification 3-parameter identification 
 G0 

[mmol·L-1] 
SI 

[×10-4 L·mU-

1·min-1] 

VG 
[L] 

GB-ID 
[mmol·L-1] 

SI 
[×10-4 L·mU-

1·min-1] 

VG 
[L] 

 16.85 3.27 35.65 9.59 0.34 35.65 

 6.67 3.14 26.03 7.54 3.08 32.70 

 16.33 7.80 11.38 11.48 2.71 14.99 

 7.73 7.88 28.14 5.38 4.35 30.43 

 8.50 9.27 28.23 5.57 4.39 29.88 

 7.51 2.18 30.50 8.53 2.71 33.48 

 14.42 6.01 23.13 9.29 1.95 28.38 

 6.64 22.85 14.95 3.95 11.56 16.48 

 9.07 1.92 33.50 6.24 0.78 33.50 

 6.62 5.19 31.30 4.27 2.29 32.00 

 7.25 8.61 12.14 4.67 3.59 16.25 

 8.58 5.23 24.08 5.76 2.31 29.15 

 11.36 1.93 29.04 9.14 0.96 33.28 

 6.05 4.89 23.52 5.60 4.13 25.57 

 10.33 8.17 11.10 3.00 1.32 12.14 

 6.62 11.59 20.40 4.29 6.57 23.79 

 6.75 8.51 26.55 3.57 3.15 26.55 

 7.09 2.12 33.82 6.38 2.73 33.14 

 12.62 5.95 23.29 9.42 2.82 27.50 

 6.51 26.11 13.45 3.43 11.33 15.25 

 5.12 4.85 29.65 4.11 3.57 29.65 

 5.60 6.21 31.75 5.77 7.05 28.31 

 6.96 7.87 13.08 4.64 5.20 13.98 

 6.64 10.27 22.81 5.30 7.09 22.75 

 11.72 2.96 26.83 9.69 1.15 34.25 

 5.91 6.01 17.76 3.86 3.82 18.75 

 10.80 11.17 9.14 3.51 2.50 11.91 

 6.69 10.48 27.17 5.94 8.50 27.18 

 7.60 9.50 20.51 3.51 2.62 25.52 

 6.74 3.21 29.70 7.57 3.89 33.98 

 9.96 6.50 23.01 6.58 1.79 26.75 

 6.76 16.67 11.87 4.65 10.24 14.08 

 6.09 5.34 28.97 5.33 4.70 27.15 

 9.92 6.26 21.37 5.53 1.47 25.23 

 6.39 12.00 11.83 5.43 7.62 15.52 

 7.22 7.82 21.30 5.37 4.47 26.37 

25% 6.63 4.87 16.36 4.28 2.30 17.61 

Median 7.16 6.38 23.41 5.48 3.36 26.95 

75% 9.94 9.39 29.01 7.06 4.95 31.21 

 



40 
 

 

Figure 4.1: Relationship between G0 and GB-ID across tests. The 1:1 G0 = GB-ID line (dots) is to 
show the bias between approaches. The solid line has R=0.70. 

 

Figure 4.2 shows the effect that identifying GB-ID has on the identified SI values in the 3-

parameter approach. There is a reasonably strong correlation between the SI values 

between the 2- and 3- parameter identification of the DISST model (R=0.83). The bias 

indicates that by identifying basal glucose, the model captures consistently lower SI values 

for those with established T2D. 
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Figure 4.2: Relationships between SI values of 2- and 3- parameter identification approach 
across tests. The 1:1 line (dots) is to show the bias between approaches. The solid line has 

R=0.83. 
 

Figure 4.3 shows the fitted glucose profiles and measured glucose data from 3 different 

participants. It also shows that the identified GB-ID levels are well below the measured G0 

values, as depicted in Figure 4.1. Figure 4.4 illustrates the residual errors for all 36 tests of 

both the typical DISST model and the proposed three parameter identified model that 

identifies basal glucose. Note again that the glucose samples taken within 10 minutes of 

glucose injection were ignored due to un-modelled mixing effects. 
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Figure 4.3: Blood glucose participant-specific profile (G(t)) for participants 2, 7, 10 with 2- 
and 3- parameter identification approach. 
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Figure 4.4: Residual error (mean and standard error, 𝑆𝐸 =
𝑆𝐷

√𝑁
) between the measured 

glucose data and the response model by Equation 2 for all 36 tests. The residuals reflect 
model accuracy after bolus dosing and mixing errors are passed. 

 

4.5 Discussion 

 

This analysis is the first study to demonstrate that glucose excursions are more accurately 

modelled using basal glucose as an identified variable in the DISST model, rather than 

assuming fasting glucose G0 = GB for individuals with established type 2 diabetes. The typical 

approach employed when using the DISST model defines the G0 as equal to the GB. Hence, 

the glucose response defined by the original model typically tends towards the measured 

basal value (G0).  
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However, this analysis has shown that this assumption is not valid for a cohort with 

established diabetes. This discrepancy in the assumption is evidenced by the significant 

distinction in the values of G0 and GB. In addition, this discrepancy reduces as participant 

glycaemic control improved across the 24 weeks of the dietary intervention study (Krebs et 

al.). Figure 4.1 shows that while most participants had elevated G0 levels, the GB-ID was often 

much closer to the lower value seen in healthy subjects. In particular, 14 of the 36 identified 

GB values were in the normal reference range of 4-5.6 mmol∙L-1 (ADA), while only 2 of 36 

measured G0 values were in that range.  

 

However, there were some participants for whom GB-ID remained very high throughout the 

intervention. Of the three participants that exhibited GB-ID values greater than 9 mmol·L-1, 

two were first diagnosed 10 years prior to this trial. In contrast, the mean duration of 

diabetes for the whole cohort was 4.4 years (SD=1.0 year) and median was 3.5 years. This 

outcome indicates a possible mechanism of dysfunction in type 2 diabetes that develops 

during the course of the disease, and matches the well-known growth of dysfunction over 

time in T2D individuals. However, while this study lacks the numbers required for conclusive 

proof of this trend, it does show the ability of the improved identification approach to 

better capture expected metabolic behaviour. 

  

Figure 4.2 shows the effects of SI values when identified the GB values used are significantly 

lower than the measured G0 values for these type 2 diabetes participants. Hypothetically, if 

models set GB = G0, SI will be used in the model to account for low glucose levels, rather 

than GB and is thus identified in the 2-parameter case as a higher SI value. A recent study 

shows that type 2 diabetes subjects have SI values in the magnitude of 1-4×10-4 L·mU-1·min-1
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(Lotz 2007). Although, there is not enough evidence to prove a precise range of SI value for 

type 2 diabetes participants, it is understandable that lower SI value contributes to the 

pathogenesis of type 2 diabetes as SI is inversely proportional to IR (Ferrannini 1997). 

Hence, there is good reason to believe that the lower GB-ID values are real and realistic based 

on current knowledge. 

 

Figure 4.3 shows the blood glucose profiles of three participants as modelled by the typical 

2-parameter (x = [SI, VG]) and 3-parameter (x = [GB, SI, VG]) DISST identification approach. 

While the typical 2-parameter DISST identification fails to fully capture the responses of 

these participants, the amended 3-parameter identification method captures the observed 

behaviours more closely. This outcome is confirmed by the residual plots in Figure 4.4 that 

indicate a much smaller, more consistent trend about the measured data. This change 

implies the modified model captures previously un-modelled effects due to poor a-priori 

estimates in the model that are rectified by identifying 3 parameters instead of 2.   

 

The original DISST model was developed (Lotz et al. 2010) and validated (McAuley et al. 

2011) primarily in relatively normoglycaemic and glucose tolerant cohorts. In these cohorts, 

the incidence of impaired fasting glucose was relatively low, and thus, the assumption GB = 

G0 was well founded. However, the glycaemic behaviour of the cohort used in this analysis 

showed that this assumption was most not valid in these participants. In particular, the 

lower glucose levels achieved in the later part of the test would be falsely attributed to 

increased insulin sensitivity, rather than a GB value that was lower than G0. The significantly 

biased residuals in Figure 4.4 validate the outcome where they show that the typical DISST 

model cannot capture all the dynamics of this T2D cohort without identifying GB directly. 
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Overall, these results indicate that the original 2-parameter approach, while appropriate for 

normoglycaemic and mild intolerant cohorts (Lotz ; Lotz et al.), is less suitable for highly 

insulin resistant individuals with established type 2 diabetes. Furthermore, it is unknown 

how much the outcomes of this study would be applicable to pre-diabetic individuals that 

have elevated blood glucose. Hence, this assertion remains to be determined. 

 

Neither DISST identification approach accurately captures the peak value of the measured 

blood glucose data. This particular result was due to the disregarded glucose data within 10 

minutes of glucose injection. This data was rejected due to the unmodelled effects of 

intravascular mixing (Edsberg et al. 1987). A second compartment to model local/global 

mixing kinetics could be added. However, this addition was deemed unnecessary, as such 

compartments do not add value to the DISST modelled outcomes (Lotz et al. 2010). The 

approach used was intended to avoid over-fitting and/ or over-modelling of mixing effects. 

 

Although, this analysis was done in a small test cohort, the outcomes are significant as it has 

shown that GB is an important variable when modelling the glycaemic behaviour in 

established type 2 diabetes. It also showed that GB can be quite different to the typically 

assumed G0 value used in all other studies, and that it may also have some diagnostic value. 

These findings suggest that the GB value should be treated as a variable in DISST model 

identification for this cohort. Further validation in a much larger cohort will provide a 

broader foundation for these findings.  
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4.6 Summary 

 

This analysis has shown the presence of a dysfunction in the basal (set-point) glucose in 

individuals with type 2 diabetes. The magnitude of the dysfunction has been shown to be 

linked to insulin sensitivity and the degree of fasting glucose. This analysis suggests that the 

basal glucose is a more appropriate variable for individuals with type 2 diabetes, as using 

the fasting glucose measurement as the basal set-point was shown to be a poor assumption 

for this cohort - although this requires confirmation in a larger study with a clamp as the 

reference. 
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Chapter 5. Impact of identifying the basal glucose set-

point on model-based assessment of insulin 

sensitivity 

 

This chapter portrays the influence of identifying the basal glucose set point as a variable 

towards assessing SI. It is particularly targeted for individuals with established T2D, where 

model-based SI tests often fail or suffer poor resolution. 

 

5.1 Introduction 

 

SI is widely regarded as an important index that quantifies the body’s ability to lower blood 

glucose concentration with insulin and is one of the key element in the pathogenesis of type 

2 diabetes (Pacini & Mari 2003). The pathogenesis of T2D progresses through 3 distinct 

stages: 1) NGT; 2) IGT; and 3) T2D (Pories & Dohm 2012). Typically, SI reduces during the 

progression of type 2 diabetes (Hanley et al. 2003; Ingelsson et al. 2005; Martin et al. 1992; 

Zethelius et al. 2004). A NGT individual will have a high value of SI, while a T2D will have a 

lower value of SI.       

 

The DISST was designed to capture high resolution estimates of participant-specific SI and 

UN profiles (Lotz 2007; Lotz et al. 2010; McAuley et al. 2011). The DISST compares 

favourably with the gold standard EIC in assessing SI with strong correlation of R = 0.82 

(McAuley et al. 2011). Like most model-based assessments of SI and IR (Bergman et al. 
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1979b; Bergman et al. 1981; Bergman et al. 1987; Boston et al. 2003; Caumo et al. 1999), 

the DISST model approach uses the participant’s measured G0 as their modelled GB so that 

G0 = GB. However, previous studies have shown that G0 levels and insulin concentrations are 

slightly higher in the morning than their overnight levels, especially for diagnosed diabetes 

participants (Holman & Turner 1977,1978,1979,1981). This evidence suggests that GB is not 

fully represented by G0, especially for these individuals. 

 

However, whether G0 and GB should be treated as separate entities has yet to be 

determined for any cohort. In addition, it is not known whether identifying GB in the DISST 

model would lead to a better result in assessing the SI value.  This chapter uses a new 

parameter identification approach to evaluate the impact on the identified SI value from a 

model-based SI assessment when acknowledging GB as an identified model variable in a 

cohort of individuals with type 2 diabetes. 

 

5.2 Methods 

 

A total of 36 full test IM-IVGTT data sets, recorded from 12 participants in a 24-week dietary 

intervention study, were used to further analyse the efficacy of SI value between measured 

G0 and identified GB in a 2- and 3- parameter identification approaches. A full detailed 

description of the identification methodology was well discussed in Chapter 4, Section 4.2. 
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5.3 Statistical analysis 

 

The median and variability of SI and GB values are compared using the signed ranksum (prs) 

and Kolmogrov Smirnov (pks) tests, respectively. The signed ranksum test compares the 

specific participant matched SI results from the 2- and 3- parameter identification 

approaches. In addition, the Kolmogrov Smirnov (KS) test is sensitive to differences in both 

location and shape of the empirical cumulative distribution functions of SI distributions from 

the two approaches. P-values less than p < 0.05 were considered significant. All analysis was 

undertaken using MATLAB (R2013b, Mathworks, Inc., Natick, MA, USA). 

 

5.4 Results 

 

Table 5.1 contrasts measured G0 values and identified GB values across the participants and 

weeks of testing as well as the SI values identified across the two identification approaches. 

There were significant differences between the pooled patient- and week- specific G0 and 

identified GB values in this cohort (Signed ranksum: prs<0.0001, Kolmogorov Smirnov: 

pks<0.0001). Although there was a significant difference in the magnitudes of GB and G0, 

they were relatively well correlated (R=0.70), indicating a moderately consistent bias in the 

relationship between the measured and identified values. A similar trend can be seen for 

the identified SI values from the typical 2-parameter (x = [SI, VG]) and 3-parameter (x = [GB, 

SI, VG]) identified models. In particular, there were significant differences across the two 

identification approaches in identified SI values (Signed ranksum: prs<0.0001, Kolmogorov 

Smirnov: pks<0.0001) with a stronger correlation of R=0.83. 
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Table 5.1: Tabulated data of initial G0, GB, SI identified from two modelling approaches 
across all participants. 

 

Participant 
G0 [mmol·L

-1
] GB [mmol·L

-1
] 

SI2-parameter DISST 

 [×10
-4

 L·mU
-1

·min
-1

] 

SI3-parameter DISST 

 [×10
-4

 L·mU
-1

·min
-1

] 

W 0 W 12 W 24 W 0 W 12 W 24 W 0 W 12 W 24 W 0 W 12 W 24 

1 16.85 11.36 11.72 9.59 9.14 9.69 3.27 1.93 2.96 0.34 0.96 1.15 

2 6.67 6.05 5.91 7.54 5.60 3.86 3.14 4.89 6.01 3.08 4.13 3.82 

3 16.33 10.33 10.80 11.48 3.00 3.51 7.80 8.17 11.17 2.71 1.32 2.50 

4 7.73 6.62 6.69 5.38 4.29 5.94 7.88 11.59 10.48 4.35 6.57 8.50 

5 8.50 6.75 7.60 5.57 3.57 3.51 9.27 8.51 9.50 4.39 3.15 2.62 

6 7.51 7.09 6.74 8.53 6.38 7.57 2.18 2.12 3.21 2.71 2.73 3.89 

7 14.42 12.62 9.96 9.29 9.42 6.58 6.01 5.95 6.50 1.95 2.82 1.79 

8 6.64 6.51 6.76 3.95 3.43 4.65 22.85 26.11 16.67 11.56 11.33 10.24 

9 9.07 5.12 6.09 6.24 4.11 5.33 1.92 4.85 5.34 0.78 3.57 4.70 

10 6.62 5.60 9.92 4.27 5.77 5.53 5.19 6.21 6.26 2.29 7.05 1.47 

11 7.25 6.96 6.39 4.67 4.64 5.43 8.61 7.87 12.00 3.59 5.20 7.62 

12 8.58 6.64 7.22 5.76 5.30 5.37 5.23 10.27 7.82 2.31 7.09 4.47 

25% 

Median 

75% 

6.96 

8.11 

11.75 

6.28 

6.69 

8.71 

6.54 

6.99 

9.94 

5.02 

6.00 

8.91 

3.84 

4.97 

6.07 

4.25 

5.40 

6.26 

3.20 

5.62 

8.24 

4.87 

7.04 

9.39 

5.67 

7.16 

10.82 

2.12 

2.71 

3.97 

2.78 

3.85 

6.81 

2.14 

3.86 

6.16 

 

 

Figure 5.1 shows the individual relationships between G0 used in the 2-parameter 

identification and identified GB from the 3-parameter identification for all participants and 

weeks. Note the bias about the 1:1 line indicating that, in almost all cases, the identified GB 

value was significantly lower than G0 for this cohort with diagnosed type 2 diabetes. There 

were only 4 exceptions over 36 results (11.1%) where G0 < GB. 
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Figure 5.1: Relationship between G0 and identified GB across all participants and weeks. 
 

 

Figure 5.2 exhibits a significant reduction in SI values from the 3-parameter identification 

compared to the typical 2-parameter identification approach. Table 5.1 shows that the 

highest SI value identified by the 3-parameter case was 11.56×10-4 L·mU-1·min-1, compared 

to 26.11×10-4 L·mU-1·min-1 for the 2-parameter case. Figure 5.3 shows the distribution of G0 

and identified GB across SI values from the two modelling approaches. 
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Figure 5.2: Relationships between SI values identified from the typical 2-parameter (x = [SI, 
VG]) and 3-parameter (x = [GB, SI, VG]) DISST model across all participants and weeks. 

 

Figure 5.4 shows the fitted blood glucose models against the measured glucose data for 

Participants 2 and 10. It shows the impact of adopting G0 = GB in the 2-parameter case and 

identifying GB in the 3-parameter case. For Participant 2 in week 12 the identified GB value 

was similar to the G0 value and thus, there was minimal difference in the simulations or SI 

values (left panel vs right panel). In contrast, Participant 10 exhibited a much larger 

discrepancy between GB and G0. Hence, this participant’s simulations and SI values across 

models were quite different. 
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Figure 5.3: Distribution of fasting and identified basal glucose concentration and identified 
insulin sensitivity between the 2-parameter (x = [SI, VG]) and 3-parameter (x = [GB, SI, VG]) 

DISST model. 
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Figure 5.4: Blood glucose participant-specific profile (G(t)) for Participants 6 and 10 with 
typical 2-parameter and 3-parameter identification of the DISST model. 

 

Figure 5.5 shows the discrepancy in SI values across the two identification approaches. The 

bias in SI values across the two model approaches was -3.16 x10-4L·mU-1·min-1 (IQR: -10.50 

to 0.66 x10-4L·mU-1·min-1). 
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Figure 5.5: Bland Altman plot of insulin sensitivity values from 2- and 3- parameter 
identification approaches of DISST model. 

 

5.5 Discussion 

 

Typical model-based identification of SI sets G0 as the basal blood glucose level, GB, that the 

glucose level tends towards (Bergman et al. 1979b; Bergman et al. 1981; Bergman et al. 

1987; Boston et al. 2003; Caumo et al. 1999; Docherty 2011; Lotz 2007; Lotz et al. 2010; Lotz 

et al. 2008; McAuley et al. 2011). However, this study finds a significant distinction between 

fasting G0 and “set-point” GB glucose concentration for these insulin resistant participants. 

The results suggest that GB should be identified as a variable during the modelling of 

glycaemic data from individuals with type 2 diabetes, when using the DISST or similar 
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model. Furthermore, the findings indicate a possible mechanism of dysfunction for 

individuals with longer term established type 2 diabetes. 

 

Figure 5.3 shows the impact of G0 and GB in assessing the SI value. In broad terms, when the 

model is fit to the clinical data, increasing GB is compensated by higher SI values. Hence, 

setting GB = G0, where this analysis finds GB < G0 (p < 0.001), will yield higher SI values. The 

typical model thus effectively captures a low glucose level as an effect of SI, rather than (a 

lower than assumed) GB.  

 

Identification of GB thus proves crucial in identifying a more representative value of SI for 

this cohort using this model. In particular, for this insulin resistant cohort, use of a lumped 

parameter SI, that is representative of both peripheral and hepatic insulin sensitivity, is best 

modelled in conjunction with GB as an identified variable. However, there was no evidence 

to support the necessity of identifying GB in healthy cohorts, where the assumption of GB = 

G0 by other model-based identification of SI is much more accurate (Beard et al. 1986; Pacini 

et al. 1998). 

 

Figure 5.4 shows blood glucose profiles (G(t)) fitted by the two identification approaches. As 

Participant 10 has G0 > GB, the fit-to-data is much better for the 3-parameter identification 

(Median absolute residual error (RE) = 0.0800 mmol·L-1) than the 2-parameter case (RE = 

0.5233 mmol·L-1) where the RE was   7̴× larger. Hence, it is clear that assuming GB = G0 in the 

model has not captured the behaviour of this dataset particularly well, and the identified 

model with the 2-parameter approach is thus not fully representative of the patient state.  
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However, if G0 ≈ GB as in Participant 2, the fitted G(t) profiles from both models were well 

calibrated against the measured glucose data. The RE of fitted (G(t)) profile and measured 

glucose data is 0.1657 mmol·L-1 compared to 0.1350 mmol·L-1 for the 2- and 3-parameter 

cases, respectively. This result implies that, when the G0 ≈ GB the adapted model 

identification approach provides minimal benefit and no impediment and thus, the SI values 

across the approaches are equivalent. However, it is important to note, that one does not 

know if G0 ≈ GB until after the 3-parameter identification is performed. Thus, the approach 

should be used in either case. 

 

Table 5.1 shows that while most participants had elevated G0 glucose levels, GB was 

identified closer to a normal reference range of 4-5.6 mmol∙L-1 (ADA). In particular, 14 of the 

36 GB values (38.9%) identified were in the normal range, while only 2 of 36 G0 values (5.6%) 

were in that range. Figure 5.1 shows that G0 was typically higher than identified GB, with 

only 4 exceptions over 36 results (11.1%). This result implies that most individuals with type 

2 diabetes have a lower set point GB level than assumed by G0 and would thus attain lower 

glucose levels if sufficient exogenous insulin and/or longer-term fasting was introduced 

(Ciampolini et al. 2010).  

 

The Bland Altman plot in Figure 5.5 implies that the bias is not equal to a constant value of -

3.16 x10-4. A random variation of data around slope of -0.64 can be clearly seen. However, it 

can be said that, the SI value identified by 3-parameter is significantly lower compare to 2-

parameter identification approach particularly at SI value > 10 ×10-4 L·mU-1·min-1. However, 

this figure is well affected by Participant 8. SI values for Participant 8 across the clinical study 

in Table 5.1 shows that while 2-parameter approach identified SI in wider range of 16 – 
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26×10-4 L·mU-1·min-1, the 3-parameter approach identified in much narrow range of 10 – 

12×10-4 L·mU-1·min-1. This indicates an inconsistent value of SI will be identified when 

adopting the assumption G0 = GB particularly for established T2D participant.     

 

Throughout the study, Participant 8 maintained relatively high values of SI compared to 

other participants. This participant had been diagnosed with diabetes 7 years prior to the 

study. The high values of SI imply that their diabetes is predominantly driven by an inability 

to produce sufficient insulin. This lack of insulin ultimately led to high fasting glucose levels 

(G0 in Table 5.1, Figure 5.1). However, when increased levels of insulin were introduced by 

the IM-IVGTT, the participant’s glycaemic response tended towards a value much lower 

than the fasting value of G0 and towards the identified GB ≈4mmol∙L-1 and GB < G0 that was 

found for that participant.  

 

Table 5.1 shows that Participant 10 experienced a modest weight loss between week 0 and 

week 12 (0.8%) that was concurrent with an improved in SI value. However, after week 12 

the participant failed to comply the diet and gained 4.2% body weight over the second 

period. Hence, the SI of Participant 10 fell between week 12 and week 24. This result aligns 

with the general trend of improved SI due to weight loss (Camastra et al. 2005; Ferrannini et 

al. 2005). Throughout the study, Participant 10 had consistent identified GB values within 

the healthy range. In contrast, their G0 values at week 0 and 12 were slightly elevated, and 

the week 24 G0 was a highly elevated 9.92 mmol∙L-1. This result shows that while the change 

in diet had a quick effect on the fasting glucose, the GB remained healthy throughout the 

intervention. Hence, the adapted 3-parameter model identification approach captured an 

underlying and important aspect of this participant’s metabolic response.  
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Participant 11 achieved improvements in every aspect as a result of the intervention. In 

particular, their body weight dropped, SI improved, and G0 improved. Changes in GB were 

minimal for this participant but GB < G0 was true throughout the intervention. However, by 

identifying GB, the SI values of this participant were altered. Inspection of the SI values from 

the simple 2-parameter identification of the DISST model does not exhibit the expected 

improvement in insulin sensitivity for this participant. Thus, setting GB = G0 potentially 

obscured improvements in SI that were elucidated by the 3-parameter model identification. 

 

Glycaemic responses of healthy individuals tend toward the fasting level. Nine of the 12 

participants had glycaemic responses that tended towards a healthy basal GB value, despite 

all participants having impaired fasting glucose at week 0. Two of the 3 individuals 

(Participants 1, 3, 7) that had elevated identified GB values had long-term diabetes. These 

latter results may imply that the basal set point of glycaemia could be a late onset 

dysfunction of the disease – although greater participant numbers would be required to 

confirm this outcome. 

 

Figure 5.2 shows that the identified SI values from the 3-parameter identification are 

significantly lower than for the typical 2-parameter identification, with only 4 exceptions 

over 36 results (11.1%). Although, there is no accepted range of SI values used to diagnose 

participants with T2D, the 3-parameter model identified values in the range of 2 - 4×10-4 

L·mU-1·min-1 are more in line with previous findings (Lotz 2007). This outcome shows that 

when GB is not an identified variable, the participants’ glycaemic dynamics are potentially 

wrongly attributed to SI, and that identification of GB provides a more clinically 

representative result. 
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5.6 Summary 

 

Identifying GB, SI and VG as model variables in a 3-parameter identification allows greater 

descriptive ability of the metabolism of individuals with type 2 diabetes and is thus a 

necessary modification for using the DISST model for this cohort, and in general since no 

accuracy is last when GB ≈ G0. The assumption of GB = G0 effects the typical 2-parameter 

identification and results by leading to potentially erroneous SI values or SI changes from an 

intervention. This analysis has shown that it is important to model the basal glucose value as 

a variable when assessing the SI value for individuals with type 2 diabetes, and presented a 

new effective 3-parameter identification approach to accomplish that task.  
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Chapter 6. Model-based identification of endogenous 

insulin secretion  

 

This chapter discusses the development of a model to identify patient-specific UN 

parameters. The modelling approach will link UN to changes in glucose concentration in a 

feedback control modelling framework. In contrast, UN profiles are typically derived via 

direct inversion or deconvolution of interpolated measured values of C-peptide 

concentration.  

 

6.1 Introduction 

 

Although the pathogenesis of type 2 diabetes varies, the common route includes failure of 

pancreatic β-cells to compensate for IR (Breda et al. 2002; Ferrannini 1997; Kahn 1998; Mari 

et al. 2002; Pories & Dohm 2012). The inability to produce sufficient insulin to meet demand 

results in elevated glucose concentrations. However, this elevation in glucose concentration 

does not occur until the insulin demand exceeds the maximal possible insulin secretion rate, 

which only arrives in the later stages of the pathogenesis of type 2 diabetes and well after 

initial pathological changes in UN has occurred (Ferrannini 1997; Pories & Dohm 2012). Thus, 

diagnosis based solely on IR can miss the early stages of dysfunction. 

 

Thus, measuring endogenous insulin secretion may enable earlier diagnosis of metabolic 

dysfunction, long before elevated glucose occurs, which in turn would allow earlier, possibly 



63 
 

more effective intervention. Many studies have been conducted to determine the best 

technique for identifying the participant’s glycemic condition by measuring their insulin 

secretion and insulin sensitivity (Albareda et al. 2000; Bergman et al. 2002b; Lotz et al. 2010; 

Mari et al. 2005; McAuley et al. 2007). Unlike SI, there is no gold standard for the 

measurement of β-cell function or UN. Thus, most secretion studies use deconvolution of C-

peptide concentration measurements to identify participant-specific UN profiles (Eaton et al. 

1980; Polonsky et al. 1986; Van Cauter et al. 1992), which is a de-facto standard approach.  

 

The deconvolution method is effective due to the fact that insulin and C-peptide are co-

secreted in an equimolar fashion from the β-cells in the pancreas (Rubenstein et al. 1969). 

While the pharmacokinetics of insulin are complex, the pharmacokinetics of C-peptide are 

much simpler. Hence, the process of identifying UN via C-peptide concentration is crucial. In 

particular, insulin undergoes a substantial first pass hepatic extraction before reaching the 

peripheral circulation. In addition, clearance via glucose uptake in the cells is another 

clearance route that is highly variable. This extraction inhibits the modelling of UN directly 

from insulin measurements due to the added, unknown variability and may lead to 

misidentification of UN (Hovorka & Jones 1994; Polonsky & Rubenstein 1986). Thus, the 

single, well defined kidney clearance of C-peptide provides a more suitable basis for 

estimating UN.    

 

This chapter presents a novel PD control model of UN to estimate participant-specific UN 

profiles, as opposed to identification based on a deconvolution approach, which relies on 

frequent, costly C-peptide sampling to capture all the dynamics. The PD control UN model is 

developed to provide an estimation of participant-specific UN profiles based on a 
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physiological model of human body’s closed-loop system in controlling the set of rate of 

insulin secretion in respond to glucose concentration. It also allows for more sparse C-

peptide sampling by providing smooth, physiologically relevant dynamics between 

measurements. 

 

6.2 Existing deconvolution approach 

 

As the concentration of glucose in bloodstream rises, it triggers a response to the β-cell in 

the islet of Langerhans within the pancreas (Figure 6.1) to produce and secrete insulin 

(Cherrington 1999). The release of insulin expedites glucose uptake from blood stream into 

the tissue cells. This endogenous insulin secretion (UN) plays a key role in regulating blood 

glucose concentration to a normal, healthy level of 4 – 5.6 mmol.L-1 (ADA 2014).  

 

Prior studies have shown that insulin is formed from proinsulin, a single-chain polypeptide 

precursor (Steiner et al. 1967; Steiner & Oyer 1967). However, like insulin, C-peptide, is also 

produced by the pancreatic β-cells (Despopoulos & Silbernagl 2003; Guyton & Hall 2006). In 

addition, C-peptide is also originated from the proinsulin and is recognised as a by-product 

of insulin (Chevenne et al. 1999). 
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Figure 6.1: Physiologic anatomy of an islet of Langerhans in the pancreas. Adapted from 
(Guyton & Hall 2006).  

 

Figure 6.2 illustrates the 86-amino-acid precursor proinsulin. This precursor proinsulin is 

cleaved internally to yield C-peptide (31 amino acids) and the A (21 amino acids) and B (30 

amino acids) chains of insulin, which are connected by disulfide bonds (Chevenne et al. 

1999). Thus, both insulin and C-peptide are secreted in equimolar amounts (Rubenstein et 

al. 1969). C-peptide has a lower clearance rate than plasma insulin due to having fewer, less 

variable clearance routes (Rubenstein et al. 1969).  

 

In particular, the fact that C-peptide is only cleared by the kidney and not degraded in the 

liver or tissues, means that it can provide valuable information of endogenous insulin 

secretion via C-peptide models. Thus, by exploiting particular mathematical models of 

insulin kinetics, glucose-insulin dynamics and C-peptide kinetics, models can be used to 

provide a direct estimate of pancreatic β-cell insulin secretion and also of hepatic insulin 

extraction (Mari et al. 2002; Pacini & Mari 2003; Polonsky et al. 1986; Watanabe et al. 

1989).  
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Figure 6.2: Schematic representation of human proinsulin. (Figure taken from 
cebix.com/index.php/science/c-peptide-biology). 

 

The DISST provides quantitative measures of a participant-specific SI value and UN profile 

(Lotz 2007; Lotz et al. 2010; McAuley et al. 2011; McAuley et al. 2007). The physiological 

model used in the DISST is illustrated in Figure 6.3. The DISST SI value is highly correlated to 

the EIC (R = 0.82), and the test can contrast UN characteristics across patient groups with 

different levels of IR (McAuley et al. 2011). The DISST uses the endogenous insulin secretion 

estimation model defined by Eaton et al. (Eaton et al. 1980) and the deconvolution 

approach validated by Van Cauter et al. (Van Cauter et al. 1992), which is widely used in the 

field.  
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Figure 6.3: The physiological model of DISST. Adapted from (Docherty et al. 2009). 
 

The DISST model describes the UN profile from the deconvolution of C-peptide 

concentration (Lotz et al. 2010; McAuley et al. 2011): 

 

𝐶̇ = −(𝑘1 + 𝑘3)𝐶 + 𝑘2𝑌 +
𝑈𝑁
𝑉𝑝

 (6.1) 

𝑌̇ = −𝑘2𝑌 + 𝑘1𝐶 (6.2) 

 

where C and Y are the plasma and interstitial C-peptide concentrations [pmol·L-1] 

respectively; k1, k2 and k3 are the C-peptide transport rate constants [min-1]; UN is the 

endogenous insulin secretion [mU·min-1] with a conversion factor between pmol and mU of 

6.94 pmol·mU-1 and Vp is the volume of plasma distribution [L]. 

 

Table 6.1 shows the derivation of the rate constants of k1, k2 and k3 and Vp that are defined 

a-priori based anatomical functions, as proposed by Van Cauter et al. (Van Cauter et al. 

1992). 
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Table 6.1: A-priori identification of C-peptide kinetics parameters. 
 

Steps: Normal Obese T2D 

1. Short half-life (t1/2-short) [min] 4.95 4.55 4.52 

2. Fraction (F) 0.76 0.78 0.78 

3. Long half-life (t1/2-long) [min] 𝑡1/2 − 𝑙𝑜𝑛𝑔 = 0.14 × 𝑎𝑔𝑒[𝑦𝑒𝑎𝑟] + 29.2 

4. C-peptide transport rates constants 

(k1, k2 and k3) 

𝑘2 = 𝐹 × (𝑏 − 𝑎) + 𝑎 

𝑘3 =
𝑎𝑏

𝑘2
 

𝑘1 = 𝑎 + 𝑏 − 𝑘2 − 𝑘3 

where 𝑎 =
𝑙𝑜𝑔10(2)

𝑡1/2−𝑠ℎ𝑜𝑟𝑡
 and 𝑏 =

𝑙𝑜𝑔10(2)

𝑡1/2−𝑙𝑜𝑛𝑔
 

5. Plasma distribution volume (Vp) If male: 𝑉𝑝 = 1.11 × 𝐵𝑆𝐴 + 0.64 

If female: 𝑉𝑝 = 1.11 × 𝐵𝑆𝐴 + 2.04 

where body surface area (BSA) is defined as: 

𝐵𝑆𝐴 = √
𝑤𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔] × ℎ𝑒𝑖𝑔ℎ𝑡 [𝑚]

36

2

 

 

The DISST uses the integral-based estimation method to identify UN (Hann et al. 2005). 

Initially, the interstitial C-peptide concentration is determined using the analytical solution 

of Equation 6.2 and a linear interpolation between the measured C-peptide data: 

 

𝑌𝑡 = 𝑘1∫ 𝐶𝑖𝑛𝑡𝑒𝑟𝑝𝑒
−𝑘2(𝑡−𝜏)𝑑𝜏

𝑡

0

 (6.3) 

 

where Cinterp represents the linear interpolated of measured C-peptide values. 
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Later information of Y is incorporated into the integral of Equation 6.1: 

 

∫ 𝐶̇𝑑𝑡
𝑡1

𝑡0

= −(𝑘1 + 𝑘3)∫ 𝐶𝑑𝑡
𝑡1

𝑡0

+ 𝑘2∫ 𝑌𝑡𝑑𝑡
𝑡1

𝑡0

+∫
𝑈𝑁
𝑉𝑝
𝑑𝑡

𝑡1

𝑡0

 (6.4) 

 

Rearranging known parameters yields: 

 

𝑈𝑁(𝑡1) − 𝑈𝑁(𝑡0)

𝑉𝑝
= 𝐶𝑡1 − 𝐶𝑡0 + (𝑘1 + 𝑘3)∫ 𝐶𝑑𝑡

𝑡1

𝑡0

− 𝑘2∫ 𝑌𝑡𝑑𝑡
𝑡1

𝑡0

 (6.5) 

 

Then, UN was defined using Equation 6.5 at a 1-minute resolution between t=0 and t=end, 

by interpolating between more sparsely measured C-peptide points. 

 

 

Figure 6.4: Measured C-peptide concentration and UN profile identified by DISST model. 
 

Figure 6.4 shows that the estimated participant-specific UN profile from deconvoluted C-

peptide concentrations. This estimation can thus be used to provide an indication of the 
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secretion of insulin. In specific cohorts it can then be used to gain insight into the 

pathophysiology of type 2 diabetes.   

 

6.3 UN model 

 

Normally, insulin is secreted by the pancreatic β-cells in response to sudden or gradual 

increases in blood glucose level. The amount of insulin secreted is dependent on the glucose 

level that needs to be lowered to a normal range value of 4 – 5.6 mmol·L-1. Although, there 

is no gold standard in identifying insulin secretion, the insulin secretion identification 

method validated by Van Cauter et al. (Van Cauter et al. 1992) has been widely used by 

many leading insulin sensitivity research groups (Bock et al. 2006; Ferrannini & Mari 2004; 

Jones et al. 1997; Mari 1998). However, this model does not account for the 

pharmacodynamic reaction on the β-cells to glucose.  

 

Secreted insulin can be quantified by 3 metrics: 1) basal endogenous insulin production (UB); 

2) first phase insulin production (U1); and 3) second phase insulin production (U2) (Lotz et al. 

2010; McAuley et al. 2011). UB is defined as the insulin required by an individual to maintain 

a constant fasting glucose measurement. U1 quantifies the dependence of insulin secretion 

on the positive rate of change of glucose concentration. Finally, in contrast to U1, U2 is 

quantifies the UN reaction to the glucose concentration over the basal glucose concentration 

at steady state. 

 

In modelling terms, the regulation of blood glucose by insulin secretion is controlled by a 

physiological closed-loop feedback-control system (Cherrington 1999). Hence, a nonlinear 
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PD model is proposed to identify the UN profile based on blood glucose behaviour. The 

proposed PD control UN model estimates the endogenous insulin secretion as a function of 

increasing glucose (derivative control, 𝜙𝐷) and glucose above basal (proportional control, 

𝜙𝑃): 

 

𝑈𝑁 = 𝑈𝐵 +𝜙𝑃(𝐺 − 𝐺𝐵) + 𝜙𝐷〈𝐺̇〉 (6.6) 

 

where UN is the modelled endogenous insulin secretion [mU·min-1]; UB is basal insulin 

[mU·min-1]; G and GB is glucose and basal glucose concentration, respectively [mmol·L-1]; 𝜙P 

and 𝜙D are the proportional, and derivative gains (mU·L·mmol-1·min-1 and mU·L·mmol-1, 

respectively). Finally, it is important to note that 〈𝐺̇〉 indicates the negative rate of change in 

glucose is equal to zero, adding a nonlinear component that is physiologically relevant. 

 

Figure 6.5: Measured glucose concentration and UN profile identified from the PD UN model.  
 

Figure 6.5 shows the example of a UN profile identified from PD UN model. The proposed UN 

model directly links insulin secretion to glucose concentration. The derivative gain (𝜙D), 

determines the first phase (U1) of UN as a function of positive glucose gradient. Identifying 

the first phase insulin secretion is crucial as prior studies have shown that loss of first phase 
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insulin secretion is an independent predictor of T2D (Bunt et al. 2007; Del Prato & Tiengo 

2001; Pratley & Weyer 2001; Vranic et al. 1971; Weyer et al. 1999). The proportional gain 

(𝜙P) determines the second phase (U2) of UN and is thus, an important characteristic in the 

prediabetic state (McAuley et al. 2011; Pories & Dohm 2012).  

 

A similar control approach has been applied previously by Cobelli et al. and Ferrannini et al. 

(Breda et al. 2001; Dalla Man et al. 2010; Mari et al. 2002; Toffolo et al. 2001). It has also 

been used by Doran et al but with fixed PD gains (Chase et al. 2003). However, the proposed 

PD UN model offers model simplicity compared to previous models. The PD UN model allows 

a direct interpretation of physiological pattern of β-cell functions to glucose excursions in a 

simple, readily identifiable model. A rise in glucose level can be easily captured by the 

derivative gain whereas the proportional gain provide valuable information of UN in 

suppressing the glucose level to a normal, healthy level.  

 

6.4 Summary 

 

The proposed UN model is based on the physiological closed-loop control of insulin secretion 

in response to increasing glucose (derivative control, 
D ) and glucose above basal 

(proportional control, 
P ). By defining the model-based UN profiles as dependent on glucose 

levels, the modelling approach is more physiologically representative. Such a model might 

be particularly advantageous where samples were infrequent and deconvolution could not 

provide good resolution, by providing a structured continuous approximation to fit available 

data.  
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Chapter 7. Development of a proportional-derivative 

control model for the endogenous insulin secretion 

response to glucose 

 

This chapter presents a simple PD control model to define insulin secretion as a function of 

increasing glucose rate, derivative control, 𝜙𝐷, and glucose level above basal, proportional 

control, 𝜙𝑃.  

 

7.1 Introduction 

 

Insulin is secreted by pancreatic β cells to maintain normoglycemia. Impaired UN contributes 

to metabolic disorders, such as glucose intolerance or hyperglycemia. Hyperglycemia, if left 

untreated, ultimately leads to T2D. Understanding UN secretion characteristics is thus a 

critical aspect of characterizing this metabolic disorder (Ferrannini et al. 2005; Pacini & Mari 

2003).  

 

Assessing insulin secretion through mathematical modelling received considerable attention 

during the 1970s (Bergman & Urquhart 1971; Cerasi et al. 1974; Grodsky 1972). Unlike 

insulin sensitivity (SI) (Defronzo et al. 1979), there is no gold standard for the measurement 

of β cell function or UN. However, modelling insulin secretion as a function of peripheral C-

peptide levels by mathematical deconvolution is a widespread approach (Eaton et al. 1980; 

Van Cauter et al. 1992). This method proves more accurate than direct measurement of 
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insulin levels. In particular, insulin and C-peptide are co-secreted at equimolar rates from β 

cells (Rubenstein et al. 1969). However, the rate of insulin clearance is more variable than 

the rate of C-peptide clearance due to its greater number and variability of clearance routes.  

 

Relationships between insulin sensitivity and insulin secretion have been defined by a 

number of previous studies (e.g. (Bergman et al. 2002a; Bergman et al. 1981; Cobelli et al. 

2007; Cretti et al. 2001; Docherty et al.)). The IVGTT with minimal model has been the most 

frequently used model-based approach (Breda & Cobelli 2001; Toffolo et al. 1999). 

However, the minimal model is known to produce ambiguous SI values and erratic 

correlation with the gold standard of SI measurement, EIC (Pillonetto et al. 2002; Saad et al. 

1994), particularly for those with low SI (higher IR) (Pillonetto et al. 2002; Quon et al. 1994). 

The DISST provides a model-based SI metric that is highly correlated to the ISI metric from 

the EIC with R=0.82 (McAuley et al. 2011). The DISST also provides quantitative measures of 

UN via deconvolution of C-peptide data (Lotz et al. 2010), yielding significant added 

diagnostic insight. 

 

The physiological model used to evaluate DISST test data typically uses a deconvolution of 

measured C-peptide data to generate a participant specific UN profile.  However, it is known 

that the body uses closed-loop, feedback-control to set the rate of insulin secretion in 

response to glucose and insulin concentrations (Cherrington 1999). Hence, this chapter 

discusses a simple PD control model that defines insulin secretion as a function of rate of 

change of glucose, derivative control, and glucose level above basal, proportional control.  

Understanding the discriminatory ability of these UN gains relative to metabolic status may 
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enable greater insight into the etiology of type 2 diabetes and the metabolic syndrome than 

deconvolved UN secretion rates alone. 

 

7.2 Methods 

7.2.1 Participants and Data 

 

A total of 94 female participants were recruited from the Otago region of New Zealand to 

take part in a 10-week dietary intervention trial. Full trial details are available in Te Morenga 

et al (2010). Inclusion criteria required a body mass index (BMI) greater than 25, or BMI > 23 

and a family history of T2D, or ethnic disposition toward T2D. Participants were excluded if 

they had a major illness, including established diabetes, at the time of testing. In total, 68 

participants provided 204 full test DISST data sets at week 0, week 4 and week 10 of the 

intervention. All participants had their age and BMI recorded (median [IQR]; 42.5 [34.5, 

50.5] and 32.34 [27.92, 36.94], respectively). 

 

7.2.2 Clinical procedure 

 

Participants reported in the morning after an overnight fast. Each participant had a cannula 

inserted in the ante-cubital fossa, a vein in inner elbow, for blood sampling and 

administration of glucose and insulin boluses.  Blood samples were drawn at t=0, 5, 10, 15, 

20, 25, 30, 35, 40 and 50 minutes.  A 10g IV glucose bolus (50% dextrose and 50% normal 

saline) was administered intravenously at t=6 minutes. A 1U IV insulin bolus was 

administered intravenously at t=16 minutes. Blood samples were assayed for plasma 

glucose (Enzymatic glucose hexokinase assay, Abbot Labs, Illinois USA), insulin and C-
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peptide concentration (ELISA Immunoassay, Roche, Mannheim, Germany). All experimental 

procedures were approved by the University of Otago Human Ethics Committee. 

 

7.2.3 Physiological models 

7.2.3.1 DISST model 

 

The DISST provides quantitative measures of both SI and the UN profile (Lotz et al. 2010; 

McAuley et al. 2011; McAuley et al. 2007), and is similar to the insulin modified IVGTT, 

which uses alternative measurement and dosing, as well as a typical modelling approach 

(Bergman et al. 1979a; Ward et al. 2001). The DISST model identifies the UN profile via the 

deconvolution of C-peptide assays (Van Cauter et al. 1992). A full detailed description of the 

DISST model was well discussed in Chapter 3, Section 3.2. 

 

7.2.3.2 Proportional-derivative (PD) endogenous insulin secretion (UN) model 

 

The body uses closed-loop, feedback-control to set the rate of endogenous insulin secretion 

in response to glucose and insulin concentrations to maintain glucose homeostasis 

(Cherrington 1999). The proposed PD controller defines a patient-specific UN profile as a 

function of the rate of change of glucose, derivative control, 𝜙𝐷, and glucose level above 

basal, proportional control, ϕP. The proposed PD control model is well defined in Chapter 6, 

Section 6.3. 
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UB is derived from Equations 3.1 and 3.2 (in Chapter 3, Section 3.2), assuming a steady state 

at t = 0 minutes: 

 

𝑈𝐵 = 𝑘3𝐶0𝑉𝑝 (7.1) 

 

where 𝐶0 denotes the C-peptide measured at 𝑡 = 0. 

 

7.2.4 Parameter identification 

 

Most a-priori parameters are quantified as functions of the participant anatomical 

characteristics (weight, height, sex, age) defined by Van Cauter et al. (Van Cauter et al. 

1992). The DISST methodology typically sets pgu as a constant equal to 0.004 min-1 (Lotz et 

al. 2010). 

 

A 7 parameter identification approach adapting the Gauss Newton method is developed to 

identify the participant-specific parameters of GB, SI, VG, 𝜙P, 𝜙D, nL and xL from the 

measured data. The function is defined: 

 

𝐱𝑖+1 = 𝐱𝑖 − (𝐉
𝐓𝐉)−1𝐉𝐓𝛙 (7.2) 

 

where 𝐱𝑖 = [𝐺𝐵𝑖 , 𝑆𝐼𝑖, 𝑉𝐺𝑖 , 𝜙𝐷𝑖 , 𝜙𝑃𝑖 , 𝑛𝐿𝑖 , 𝑥𝐿𝑖] is the parameter vector and 𝑖 is the iteration 

number. The Jacobian matrix (J) and the residual matrix (ψ) are defined: 
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𝐉(𝐱𝑖) =     

[
 
 
 
 
 
 
 
𝛿𝜓1
𝛿𝐺𝐵

𝛿𝜓1
𝛿𝑆𝐼

⋯
𝛿𝜓1
𝛿𝑥𝐿

𝛿𝜓2
𝛿𝐺𝐵

𝛿𝜓2
𝛿𝑆𝐼

⋯
𝛿𝜓2
𝛿𝑥𝐿

⋮ ⋮ ⋱ ⋮
𝛿𝜓𝑛
𝛿𝐺𝐵

𝛿𝜓𝑛
𝛿𝑆𝐼

⋯
𝛿𝜓𝑛
𝛿𝑥𝐿 ]

 
 
 
 
 
 
 

 

 

𝛙(𝐱𝑖) =

[
 
 
 
 
 
 
 
 
 
 
(𝐺(𝐱𝑖, 𝑡1) − 𝐺𝑀,1) 𝐺𝑀̅̅ ̅̅⁄

⋮
(𝐺(𝐱𝑖, 𝑡𝑛) − 𝐺𝑀,𝑛) 𝐺𝑀̅̅ ̅̅⁄

(𝐶(𝐱𝑖, 𝑡1) − 𝐶𝑀,1) 𝐶𝑀̅̅ ̅̅⁄

⋮
(𝐶(𝐱𝑖, 𝑡𝑛) − 𝐶𝑀,𝑛) 𝐶𝑀̅̅ ̅̅⁄

(𝐼(𝐱𝑖, 𝑡1) − 𝐼𝑀,1) 𝐼𝑀̅̅̅⁄

⋮
(𝐼(𝐱𝑖, 𝑡𝑛) − 𝐼𝑀,𝑛) 𝐼𝑀̅̅̅⁄ ]

 
 
 
 
 
 
 
 
 
 

 

(7.3) 

 

where 𝐼(𝐱𝑖, 𝑡𝑛), 𝐺(𝐱𝑖, 𝑡𝑛) and 𝐶(𝐱𝑖, 𝑡𝑛) are the simulated values at t = tn given 𝐱𝑖; 𝐼𝑀,𝑛, 𝐺𝑀.𝑛 

and 𝐶𝑀,𝑛 are the measured values at t = tn; n is the number of measured samples; and 𝐼𝑀̅̅̅, 

𝐺𝑀̅̅ ̅̅  and 𝐶𝑀̅̅ ̅̅  are the mean measured values of these species. 

 

To avoid model misidentification issues, insulin samples taken within 10 minutes of insulin 

administration and glucose samples taken within 10 minutes of glucose injection in the 

DISST protocol were ignored in the model identification process to minimize errors 

introduced by the confounding effects of intravascular mixing (Caumo et al. 1999; Edsberg 

et al. 1987; Lotz 2007). The value of VG was limited to physiological bounds to reduce the 

effect that incomplete mixing might have during the parameter identification process. In 

particular, VG is constrained within the range of 0.12Bw to 0.25Bw where Bw is measured in 

kg and the coefficients have units of L·kg-1 (Defronzo et al. 1979; Ferrannini & Mari 1998; 

Lotz 2007; Lotz et al. 2010). 
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7.3 Statistical analysis 

 

Model residuals and interpretation of population trends were used to assess the 

performance of the PD based UN model by comparing fitted C-peptide versus measured C-

peptide values. The residual error of C-peptide determines the performance of the UN 

profile of this PD model against the de-convoluted UN profile, as defined by Equations 7.4 – 

7.6. 

 

Mean Residual error of C-peptide (μ) is defined: 

𝜇(𝑡) =
1

𝑛
∑

𝐶𝑓𝑖𝑡𝑡𝑒𝑑(𝑡) − 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)

𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)
 

(7.4) 

 

Standard error of C-peptide (SE) is defined: 

𝑆𝐸(𝑡) =
𝑆𝐷(𝑡)

√𝑛
 

(7.5) 

 

where standard deviation (SD) is defined as: 

𝑆𝐷 = √
∑(𝐶𝑓𝑖𝑡𝑡𝑒𝑑(𝑡) − 𝜇(𝑡))

2

𝑛
 

(7.6) 

 

where blood samples were collected at t = 0, 5, 10, 15, 20, 25, 30, 35, 40 and 50 min for the 

measurement of C-peptide and n is the number of tests conducted amongst 68 participants. 

 

Correlations were used to describe the relationship between ratio of 
𝜙𝐷

𝜙𝑃
 and SI, as well as 

𝜙D against 𝜙P. All analysis was undertaken using MATLAB (R2013b, Mathworks, Inc., Natick, 

MA, USA). 



80 
 

7.4 Results 

 

Figure 7.1 shows the simulated versus measured plasma insulin, glucose, C-peptide and UN 

profiles from one typical participant. Note again that the insulin and glucose samples taken 

within 10 minutes of bolus injection were ignored due to unmodelled mixing effects. In 

general, using the DISST model with a PD derived UN model and a Gauss Newton 

identification method shows that the simulated data fits well against the measured data.  

 

 

 
Figure 7.1: Simulated (solid blue line) and measured (red ‘+’ symbol) of; (A) plasma insulin, 

(B) glucose, (C) C-peptide for a typical participant response to the DISST model, and (D) 
Endogenous insulin secretion profile identified from the PD modelled UN model (solid blue 

line) and from deconvoluted C-peptide measurement (dashed green). 
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Figure 7.2 shows the residual error between the measured C-peptide data and the response 

modelled by PD UN model on Equation 7.1 for all 204 tests. Figure 7.3 shows the 

dependence of the ratio  
𝜙𝐷

𝜙𝑃
 to SI with R = 0.33. Figure 7.4 shows the distribution of 𝜙𝑃 as a 

function of 𝜙𝐷 with weak correlation of R = 0.32. Although the correlation was weak, it 

elucidates greater information on β-cell functionality in maintaining glucose level in 

bloodstream. 

 

 

 

Figure 7.2: Residual error (mean and standard error, 𝑆𝐸 =
𝑆𝐷

√𝑁
) between the measured C-

peptide data and the response modelled by PD UN model. 
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Figure 7.3: Ratio of  
𝜙𝐷

𝜙𝑃
 as a function of SI, with line defined for R = 0.33. 

 

 

Figure 7.4: Distribution of 𝜙D against 𝜙P for all tests. 
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7.5 Discussion 

 

The DISST validation study used deconvolution of measured C-peptide data to determine 

participant-specific UN profiles (Lotz et al. 2010). It clearly showed that similar SI values did 

not necessarily have similar UN profiles. Thus, it was able to differentiate clearly different 

states in the progressive of T2D. 

 

However, regulation of blood glucose by endogenous insulin is effectively a closed-loop 

feedback-control system (Cherrington 1999). Secretion responds to level and rate of change 

of glucose. Hence, a PD model is proposed that mimics this behaviour to identify the UN 

profile.  

 

Studies have also shown that the insulin secretory response to glucose is multiphasic in 

nature (Cerasi 1967; Curry et al. 1968). The first phase of insulin is secreted immediately in 

response to sudden increases in the glucose level. Hence, it causes a rapid elevation of 

plasma insulin with at peak value achieved within five minutes (Lerner & Porte 1971). The 

second phase of insulin is slowly and gradually released in response to sustained elevation 

in plasma glucose (Lerner & Porte 1971). 

 

The PD UN model developed here defines UN based on three physiological stages: 1) UB is 

the basal endogenous insulin production rate; 2) U1, the magnitude of the first phase 

response to glucose appearance; and 3) U2 is the second phase response to glucose. U1 is 

thus, mathematically defined as linearly dependent on the positive rate of change of glucose 
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concentration. Whereas, the magnitude of the U2 is defined as proportional function over 

the basal glucose concentration at steady state (Docherty 2011). 

 

Figure 7.1 shows the plasma insulin, glucose, C-peptide and UN profile of simulated and 

measured data from one participant. In particular, it elucidates the difference between 

identified UN from the PD control and the for less smooth and less realistic deconvoluted UN 

profile. It also shows that the general trends of UN from the PD control UN model were in 

accordance with the deconvoluted UN profile providing a measure of validation. This 

behaviour indicates that the PD UN model is capable of capturing the first and second 

phases of insulin secretion responses to the glucose bolus encountered in dynamic tests. 

Moreover, the proposed model provides a direct physiological link between glucose 

concentration and resultant insulin secretion, which is physiologically accurate and provides 

a means to model this behaviour with limited data. Hence, the main benefit of the proposed 

model may be found when a lack of resolution in the C-peptide samples reduces the 

accuracy of the resulting deconvolved profile. 

 

Figure 7.2 shows the residual error between measured C-peptide data and the response 

modelled by PD UN model and Equation 7.1. It can be said that higher residual error at the 

forth C-peptide assay may be due to timing as this sample attempts to capture peak first 

phase response in the DISST before full mixing may have occurred. However, the residual 

error value tended to stay within the 10% of the measured data.  
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Figure 7.3 shows the distribution of 
𝜙𝐷

𝜙𝑃
 against the SI value. Although the correlation of 

between 
𝜙𝐷

𝜙𝑃
 and SI was weak (R = 0.33), it elucidates a trend between SI and  

𝜙𝐷

𝜙𝑃
. The trend 

indicates that those with low ratios typically had lower insulin sensitivity than the general 

cohort. In general, as the ratio of 
𝜙𝐷

𝜙𝑃
 decreases, SI value will decrease. Hypothetically, IR 

participants typically have limited first phase and high basal secretion, requiring a different 

set of 𝜙𝑃 and 𝜙𝐷 values than a healthy person with high first phase and low basal. 

 

Clinically, an increased basal insulin secretion and blunted first phase response indicates an 

early stage in the progression of impaired glucose tolerance (Lotz et al. 2010; McAuley et al. 

2011). Further, an individual that has established T2D can have low basal insulin and 

virtually no first phase secretion. Equally, a healthy athletic person may generally also have 

low basal secretion, and high or low first phase secretion. Thus, IR participants relied more 

heavily on the second phase or proportional gain in maintaining the glucose homeostasis. 

This latter point was inferred by the diagnostic value of U2 in (McAuley et al. 2011), and 

matches clinical expectations (Ferrannini 1997). Higher second phase secretion is also well 

captured by this PD modelling approach. 

 

Figure 7.4 shows the distribution value of 𝜙𝐷 and 𝜙𝑃. It can be seen that 𝜙𝐷 has a greater 

value than 𝜙𝑃. 𝜙𝐷 was typically an order of magnitude (×20) 𝜙𝑃. Although both gains play 

an important role in glucose homeostasis, it is thought that the U1 provides greater 

influences in suppressing the sudden elevated plasma glucose level back to a normal level. 

Studies have shown that the loss in U1 is a strong predictor of type 2 diabetes (Bunt et al. 
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2007; Del Prato & Tiengo 2001; Pratley & Weyer 2001; Vranic et al. 1971; Weyer et al. 

1999). 

 

This study was undertaken in a cohort of adult female participants that were considered ‘at-

risk’ of type 2 diabetes and related metabolic disorders. Hence, the outcomes of this study 

may be isolated to cohorts of this type. However, it may be reasonably assumed that gender 

does not play a significant role in the modulation of insulin secretion as a function of glucose 

excursions in adults, and no prior literature in a large field suggests otherwise. Furthermore, 

this at-risk cohort is a cohort of greatest clinical interest to the mitigation of glycaemic and 

other metabolic disorders. However, further confirmation must be undertaken in various 

other cohorts. 

 

7.6 Summary 

 

This chapter presents a thorough analysis of a simple, but effective PD control model of 

insulin secretion. The proposed model links insulin secretion to glucose concentration and is 

able to deliver a good compromise between model simplicity and accuracy. Although the 

proposed model requires further validation, it is likely to be useful for analysis of the 

pathogenesis of T2D as it captures the physiological determinants of patient-specific UN 

profile. 
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Chapter 8. The efficacy of the PD UN model in 

identifying the condition stage of a participant   

 

This chapter discuss the efficacy of the proposed PD UN model in identifying the condition 

stage of each participant based on the UN profile derived from PD UN model. 

 

8.1 Introduction 

 

Deconvolution of C-peptide concentration measurements is regarded as the best 

identification method in quantifying the UN profiles, and is used by most studies (e.g. (Eaton 

et al. 1980; Polonsky et al. 1986; Van Cauter et al. 1992)). This method is assumed to be 

accurate due to the fact that insulin and C-peptide are co-secreted in an equimolar fashion 

from the pancreatic β cells (Rubenstein et al. 1969). Unlike C-peptide, acquiring plasma 

insulin measurements to precisely predict UN will lead to false information as insulin 

undergoes a substantial, subject-specific first pass hepatic extraction before reaching the 

peripheral circulation (Hovorka & Jones 1994; Polonsky & Rubenstein 1986). In addition, 

insulin is cleared subsequently by the liver, kidney and peripheral uptake, all of which can be 

variable and hard to quantify. In contrast, C-peptide is only cleared by the kidney, which is a 

reasonably low variability pathway. Thus, C-peptide data is the best, most robust means of 

estimating endogenous insulin secretion. 
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Although the use of  C-peptide has proven a better means of estimating UN (Pacini & Mari 

2003), the need for C-peptide measurement during study is time-consuming and expensive 

(Lin et al. 2010). The added cost can significantly reduce the economic viability of effective 

diabetes screening tests (Docherty et al. 2010; Docherty et al. 2011b). Hence, there remains 

significant scope and impact in better identifying a UN profile without the use of many C-

peptide measurements. 

  

The PD control model discussed in Chapter 7 provides the capability of using the PD model 

to link the patient-specific UN profile to glucose excursions. Physiologically, the amount of 

insulin to be secreted is determined most prominently by glucose level and the change in 

glucose level (gradient). The 𝜙𝐷 and 𝜙𝑃 identified by a PD UN model is thus able to capture 

the physiological characteristics of first and second phase of insulin secretion, respectively.  

 

Studies have shown that the insulin secreted by pancreatic β-cells is secreted in a biphasic, if 

not multiphasic, pattern (Cerasi 1967; Cerasi & Luft 1967; Curry et al. 1968). The UN profile 

in response to glucose challenge or appearance is typically quantified into 2 phases; 1) first 

phase secretion and 2) second phase secretion. The first phase occurs rapidly due to a 

sudden change in glucose level after glucose stimulation and only lasts for few minutes 

(Curry et al. 1968). Unlike first phase, the second phase secretion lasts longer, as it is 

gradually released by the pancreatic β-cells to reduce the remaining elevated glucose level 

to a safe, normal level (Curry et al. 1968). Figure 8.1 shows a schematic UN with first and 

second phase secretion.  
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Figure 8.1: Illustration of insulin secretion from pancreatic β-cell. UB is defined as basal 
insulin, U1 is first phase and U2 is the second phase of insulin secretion. 

 

The relationship between the characteristics of first and second phase UN with T2D is well 

founded by prior studies (Bunt et al. 2007; Del Prato & Tiengo 2001; Pratley & Weyer 2001; 

Weyer et al. 1999). It is thought that the loss of first phase secretion and reduced second 

phase secretion define the UN characteristics of T2D (Cerasi & Luft 1967; Davis et al. 1993). 

Since the PD UN model captures the pancreatic response to glucose, associating 𝜙𝐷 and 𝜙𝑃 

to the first and second phase secretion provides an insight gain towards understanding the 

pathogenesis of type 2 diabetes. In particular, the changes in 𝜙𝐷 and 𝜙𝑃 as diabetes 

develops should illustrate these observed changes in secretion pattern. Hence, this chapter 

investigates the accuracy of this previously proposed PD control UN model in identifying and 

discriminating the UN profile for NGT and IFG participants, particularly in relation to changes 
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in PD model parameters between these two groups. Successful outcome would indicate the 

diagnostic potential of subject-specific 𝜙𝐷 and 𝜙𝑃 values. 

 

8.2 Methods 

 

A total of 204 full test DISST data sets, recorded from 68 female participants in a 10-week 

dietary intervention trial, were used to further analyse the efficacy of PD based UN model. 

The 𝜙𝐷 and 𝜙𝑃 values were identified in a seven parameter identification approach  

(𝑥 = [𝐺𝐵, 𝑆𝐼, 𝑉𝐺 , 𝜙𝐷 , 𝜙𝑃, 𝑛𝐿 , 𝑥𝐿]) using the Gauss Newton parameter identification method 

(Björck 1996). A full detailed description of the identification methodology was discussed in 

Chapter 7, Section 7.2. 

 

8.3 Statistical analysis 

 

In this study, the PD UN model accuracy was assessed via the produced residual matrix (ψ). 

The results of 𝜙𝑃 and 𝜙𝐷 are reported in median and interquartile range (IQR) for 3 

participant categories: All, NGT, and IFG. All analyses were undertaken using MATLAB 

(R2013b, Mathworks, Inc., Natick, MA, USA). 

 

8.4 Results 

 

Among 204 full DISST test data sets, 17 were classed as IFG based on a G0 cut-off value of 

5.56 mmol·L-1 (100 mg·dL-1) as defined by the American Diabetes Association (ADA) criteria 



91 
 

(ADA 2014). Figure 8.2 shows the distribution of 𝜙𝐷/𝜙𝑃 ratio against G0 across NGT and IFG 

group sets of data. It also shows that the median value of 𝜙𝐷/𝜙𝑃 for NGT is higher than for 

IFG with 19.11 min and 2.76 min, respectively. In addition, the distribution data of the ratio 

of 𝜙𝐷/𝜙𝑃 versus G0 are group into A, B and C, and are qualitatively cross-referenced with 

the insulin resistance and first phase secretion plot from Ferrannini et. al. (Ferrannini 1997). 

 

Figure 8.3 shows the gain distribution of 𝜙𝐷 versus 𝜙𝑃 across both groups. It shows that 𝜙𝐷 

values are greater value than 𝜙𝑃. In addition, the dotted lines of 𝜙𝐷/𝜙𝑃 = 5, 10, and 100 

show the distribution of both gains with relations to the state of participants as portrayed in 

Figure 8.2. Furthermore, it shows that as the ratio decreases, the profile of the participant 

moves from NGT to IFG, as expected and seen in Figure 8.2. A full statistical summary of 

both gains are presented in Table 8.1. It can be seen that while the median of 𝜙𝑃 remains 

equal across both groups of participant, 𝜙𝐷 remains significantly different where 𝜙𝐷NGT ≈ 

4 × 𝜙𝐷 IFG, (p < 0.0001). Thus, as expected, 𝜙𝐷 and first phase response is reduced 

significantly in IFG subjects, which is a pre-cursor to T2D. 
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Figure 8.2: Distribution of 𝜙𝐷/𝜙𝑃 against G0 where X = 19.11 min and Y = 2.79 min. Insert 
picture is the insulin resistance (as measured by glucose disposal) and first phase insulin 

secretion plot versus 2 hour glucose levels in NGT, IGT and T2D (adapted from (Ferrannini 
1997)). 
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Figure 8.3: Distribution of 𝜙𝐷  over 𝜙𝑃 during the intervention study. The 𝜙𝐷/𝜙𝑃 = 5, 10, and 
100 dotted lines are shown for context. 

 

Table 8.1: Summary statistics of derivative (𝝓D) and proportional (𝝓P) gains. 
 

  
Median 

[IQR] 

Group Total 
𝜙𝑃 

[mU·L·mmol-1·min-1] 

𝜙𝐷 

[mU·L·mmol-1] 

𝜙𝐷
𝜙𝑃

 

[min] 

NGT 187 
69.58 

[43.06, 96.41] 

1283.37 

[879.35, 1848.09] 

19.11 

[13.19, 27.61] 

IFG 17 
69.47 

[49.51, 100.07] 

302.55 

[25.72, 756.46] 

2.79 

[0.15, 13.25] 

 

 

Figure 8.4 shows the PD model simulated versus measured plasma glucose and UN profiles 
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thus cover the range of participants. Note again that the glucose samples taken within 10 

minutes of bolus injection were ignored due to unmodelled mixing effects. It can be seen 

that as a participant’s G0 rises above the 5.56 mmol·L-1 diagnostic threshold for IFG, the 

value of 𝜙𝐷 drops and becomes approximately equal to 𝜙𝑃. 

 

Figure 8.5 depicts a relationship between the ratio of 𝜙𝐷/𝜙𝑃 against BMI value, which is 

another risk factor for IFG and T2D (Kahn et al. 2006). In particular, 16 out of 17 IFG 

participants are obese and have a lower ratio of 𝜙𝐷/𝜙𝑃. Thus, as the BMI of the participant 

increases, there is a general trend for their profile tends to shift from NGT to IFG. This was 

expected from clinical literature (Kahn et al. 2006).  

 

In addition, Figure 8.6 shows the correlation between each of the gains versus the BMI value 

for both groups. It can be seen that, at BMI > 30, which defines obese (WHO 2000), 𝜙𝐷 for 

the IFG group is significantly lower than for the NGT with median value of each group equals 

to 283 mU·L·mmol-1·min-1 and 1568 mU·L·mmol-1 (p < 0.0001) respectively. Additionally, the 

𝜙𝑃 value for IFG subjects remains closer to the NGT value with median values equal to 70 

mU·L·mmol-1·min-1 and 85 mU·L·mmol-1 (p = 0.3601) respectively. 

 

Figure 8.7 shows the distribution of the ratio of 𝜙𝐷/𝜙𝑃 against the participant’s age. 

Although, NGT participants cover most of the range from 20 to 65 years old, the IFG 

participants are aged 35 to 61 years old. However, Figure 8.7 shows that there is no clear 

relationship between age and the ratio of 𝜙𝐷/𝜙𝑃, which is expected given similar ages and 

different insulin resistance and diabetes status. Thus, the correlations hold with expected 
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and reported clinical observations, and, equally importantly, are poor where no prior clinical 

observation has been found. 

  

 

Figure 8.4: Relationship between plasma glucose concentration and UN profile from 3 
different participant response to the DISST and PD UN model. 
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Figure 8.5: Distribution of the ratio of 𝜙𝐷/𝜙𝑃against BMI value for all 204 tests. 

 

Figure 8.6: Distribution of each derivative and proportional gain versus BMI value. 
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Figure 8.7: Distribution of 𝜙𝐷/𝜙𝑃 against participant’s age. 
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purpose of this chapter was to further validate the PD UN model by its ability to differentiate 

NGT and IFG participants.  

 

The proposed PD UN model distinguishes the UN profile into 3 major roles; UB, first phase 

insulin secretion and second phase insulin secretion. The 𝜙𝐷 captures the first phase of UN 

(U1) based on the dependence of insulin secretion on the positive rate of change of glucose 

concentration. The 𝜙𝑃 effectively determines the second phase of UN (U2), as well as the 

basal level when there is no challenge, based on a proportional function over the basal 

glucose concentration at steady state.  

 

Figure 8.2 shows the distribution of 𝜙𝐷/𝜙𝑃 against G0 on a log scale with the ADA guideline. 

It can be seen that the NGT group has higher gain ratio compared to the IFG group (p < 

0.0001), where the median value of gain ratio was  ̴7× higher. Only 5 out of 187 NGT results 

are below the IFG median value showing clear separation. Theoretically, an individual with 

higher insulin resistance will have a limited first phase secretion, based on many clinical 

observations (Ferrannini 1997), causing a much lower 𝜙𝐷/𝜙𝑃 ratio than a healthy 

participant with a high first phase insulin secretion. Hence, this resultant difference in 

median ratios is expected. 

 

The development of T2D is a more gradual process compared to type 1 diabetes. The 

pathogenesis of T2D progresses through 3 distinct stages: 1) NGT; 2) IGT; and 3) T2D 

(Ferrannini 1997; Pories & Dohm 2012). In addition, IFG is defined by an elevation fasting 

plasma glucose between 100 to 125 mg·dL-1, while IGT, on the other hand, is defined by an 

elevated 2-h post load of OGTT plasma glucose between 140 to 199 mg·dL-1 (ADA 2014; 
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Nathan et al. 2007). Like IGT, IFG also represents as an intermediate metabolic state 

between normal glucose homeostasis and diabetes (Alberti & Zimmet 1998; Ferrannini 

1997; Nathan et al. 2007). In general, determining the value of the 𝜙𝐷 and proportional gain 

𝜙𝑃 is crucial when assessing which stage the participant belongs to. Studies have shown 

that loss of first phase insulin secretion is an independent predictor of eventual type 2 

diabetes (Bunt et al. 2007; Del Prato & Tiengo 2001; Pratley & Weyer 2001; Vranic et al. 

1971; Weyer et al. 1999). In addition, second phase insulin secretion is an important 

characteristic in the prediabetic state (McAuley et al. 2011; Pories & Dohm 2012). However, 

for early diagnosis, it is the changes in 𝜙𝐷 that appear most important, and are captured at 

intermediate stages in the patho-physiology of T2D. 

 

In addition, Figure 8.2 also shows a clear relationship between the ratio of both gains of the 

PD UN model against participant’s condition based on ADA guidelines (ADA 2014). Previous 

study has shown that changes in the first phase secretion reflects directly to the movement 

of the state of individuals from NGT to IGT, and drops drastically as it reaches diabetes 

(Ferrannini 1997). Evidently, if 𝜙𝑃 is assumed to be constant, based on the result of median 

value in Table 8.1 for both groups of participant, 𝜙𝐷 plays a critical role in deciding the ratio 

of 𝜙𝐷/𝜙𝑃. As the value of 𝜙𝐷 increases, the ratio increases until it reaches a plateau before 

it drops significantly. Furthermore, it can be seen that, the ratio of 𝜙𝐷/𝜙𝑃 at the early stage 

of IFG is almost equal to ratio for the NGT group. Prior studies show that UN did not differ 

significantly from normal individuals at early stage of IGT, but later drops abruptly as 

diabetes develops fully (Ferrannini 1997; Groop et al. 1993).   
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Figure 8.3 shows that while 𝜙𝐷 gains are scattered across a wider range from   ̴0 to 4.93×103 

mU·L·mmol-1, 𝜙𝑃 remains in a narrow range from 7.09 to 236.06 mU·L·mmol-1·min-1. In 

addition, Table 8.1 shows that although 𝜙𝑃 holds similar values across both groups, 𝜙𝐷 

remains significantly different between the NGT and IFG groups (p < 0.0001). Thus, as 𝜙𝐷 

decreases, the metabolic state of the participant could be hypothesized to move from NGT 

toward IFG and the first known symptoms of diabetes. Figure 8.3 also shows the lines of 

𝜙𝐷/𝜙𝑃 ratio discriminating different participant types for the most part, as well as this 

trajectory of developing diabetes.  

 

Figure 8.4 elucidates that as a participant is diagnosed with IFG (G0 > 5.56 mmol·L-1 (ADA 

2014)), the value of 𝜙𝐷 tends to reduce and becomes almost equal to 𝜙𝑃. However, for NGT 

participant (G0 < 5.56 mmol·L-1), 𝜙𝐷 has a greater value than 𝜙𝑃. Hence, by judging the 

pattern of each UN profile, it can be said that when 𝜙𝐷 decreases or moves closer to 𝜙𝑃, the 

participant is losing burst secretion for first phase as IR rises (Ferrannini 1997).  

 

In addition, studies show that the intermediate metabolic state between normal and 

diabetes is more associated with decreased insulin sensitivity, rather than insulin secretion 

itself (Ferrannini 1997). The latter point is portrayed in Figure 8.4. In addition, Participants 1 

and 2 have almost similar UN profiles. However, Participant 2 is diagnosed as IFG. Hence, by 

examining the UN profile itself, without considering the fasting glucose condition, this 

Participant 2 could be interpreted as a having normal, healthy pancreatic response to the 

glucose challenge. However, the SI value shows that Participant 2 has a lower SI value, 3.45 

× 10-4 L·mU-1·min-1 compared to SI = 8.92 × 10-4 L·mU-1·min-1 for Participant 1. Although, 
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there is no agreed diagnostic SI value, prior studies have shown that lower SI values are a 

major factor of the pathogenesis of T2D (Ferrannini 1997; Ferrannini & Mari 1998). 

 

While both gains play an important role in defining the participant-specific UN profile, the 

𝜙𝐷 appears to be more important in defining the early changes in the metabolic state of the 

participant. Theoretically, if 𝜙𝑃 is fixed to a certain value, 𝜙𝐷 will vary when quantifying the 

participant-specific UN profile depending on the metabolic state of the participant. A value 

of 𝜙𝐷 ≈ 0 is predicted for participants with type 2 diabetes. Furthermore, down sampling 

measured glucose data when assessing UN characteristics over a limited period of time from 

0 to 30 min will result in significantly reduced clinical cost and clinical attention during the 

trial. With fewer samples, the outcome result would provide less effective information 

compared to a full data set. However, further validation is needed to prove both 

assumptions and to determine the degree to which the findings of this study can be 

interpolated in a down-sampling exercise to reduce test cost and intensity.  

 

Figure 8.5 shows the correlation between the 𝜙𝐷/𝜙𝑃 ratio against the BMI value for both 

NGT and IFG with R = -0.21 and R = 0.05, respectively. Although, the correlation was weak, 

the outcome elucidates the ratio of 𝜙𝐷/𝜙𝑃 for the IFG group is significantly lower than for 

NGT, particularly for obese participants. In addition, judging from Figure 8.6, particularly on 

the distribution of 𝜙𝐷 against BMI value, it can be postulated that obese participants with 

higher fasting glucose have reduced first phase secretion compared to normal, healthy 

participant, matching many clinical studies and the strong association of obesity with IFG 

and T2D. Further, studies have found that the level of first phase insulin secretion is reduced 

in individuals with higher plasma glucose than normal and essentially absent in individuals 
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with fasting hyperglycemia (Brunzell et al. 1976; Kahn et al. 1969). Thus, these results match 

clinical results. Thus, given the loss in first phase secretion for the IFG group, Figure 8.6 also 

shows that the IFG participants rely heavily on second phase secretion to restore 

normoglycemia, again matching known clinical observations.   

 

Figure 8.7 shows age brings little impact during the identification of UN profile. Although 

glucose tolerance decreases with advancing age in general, the aging process generates 

more impact on insulin sensitivity than secretion (DeFronzo 1981). Prior study also shows 

that there is a variability in associating the effects of aging on insulin secretion particularly 

with confounding factors associated with obesity and concomitant insulin resistance 

(Adelman 1989). Thus, the failure to associate age and impaired UN matches clinical results, 

and further validates the diagnostic value of the PD model parameters. 

 

While this PD control UN model requires further validation, it is likely to be useful for 

analysis of the pathogenesis of T2D as it captures the physiological determinants of 

participant-specific UN profiles. Ultimately, this model provides a direct physiological link 

between insulin secretion to glucose concentration, as well as to eventual insulin sensitivity. 

 

8.6 Summary 

 

This chapter discussed a further analysis of the proposed PD UN model adapting a Gauss 

Newton parameter identification method. The proposed model offers model simplicity as 

well as a link between insulin secretion and glucose concentration. In addition, the UN 

profile response from PD UN model provides clear information in determining the condition 
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stage of each participant, and this status is reflected and captured by the values of the PD 

model gains 𝜙𝐷 and 𝜙𝑃.  
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Chapter 9. Conclusions and future work 

 

9.1  Conclusions 

 

Type 2 diabetes mellitus (T2DM) is a metabolic disease that affects the body’s ability to 

regulate glucose levels in blood. T2DM is characterized by fasting hyperglycemia and an 

excessive rise of glucose levels in the blood above baseline following glucose or meal 

ingestion resulting from impaired insulin utilization (insulin resistance) coupled with the 

body’s inability to compensate with insulin production (insulin deficiency). Thus, 

identification of these two main factors can offer the clinical opportunities to ameliorate the 

worst symptoms of the disease. 

 

The broad relationship between insulin sensitivity and insulin secretion is well-known. 

Throughout years, studies have developed test protocols consists of mathematical 

modelling coupled with clinical analysis to identify pathogenesis of T2D through a 

quantitative assessment of insulin sensitivity and estimation of UN. The application of 

modelling to clinical research has since been slow, but the IVGTT with minimal model has 

been the most frequently used model-based approach for measuring glycemic metabolism. 

However, like most model-based assessment, IVGTT is limited to research-only application 

due to its intensity, length and complexity to perform. Furthermore, the IVGTT is generally 

known to produce ambiguous SI values and erratic correlations with the gold standard. 

Hence, this thesis develops a more comprehensive glucose-insulin pharmacokinetics and 
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pharmacodynamics model that can be assessed with high accuracy, high mathematical 

robustness from a novel low cost and duration test protocol for type 2 diabetes patients. 

 

This thesis improves two key aspects that to benefit the analysis of the pathogenesis of T2D. 

More specifically, the identification approach that accurately assesses SI values, especially 

for individuals with established T2D by redefining the role of basal glucose level and 

identifying it directly. Second, this thesis proposed a PD model that able to identify a 

smoother physiologically UN profile that mimic the behaviour of a closed-loop feedback 

control human body system when regulating the blood glucose levels, and enabling for 

more precise estimates of SI from data. Both outcomes also deliver potential real diagnostic 

and monitoring metrics, as well. 

 

With the assumption of G0 equals to GB, like most model-based assessments of SI, the SI 

value is well addressed by DISST model using a 2-parameter identification approach (x = [SI, 

VG]). However, evidence suggests that GB ≠ G0, and thus, should be treated as separate 

entities especially in individuals with established diabetes. Hence, the original DISST model, 

while appropriate for more normoglycaemic cohorts, needs to model GB as a variable for 

assessing individuals with established T2D. A 3-parameter identification approach is 

developed where GB is identified in concert with SI and VG, where (x = [GB, SI, VG]).   

 

Result in Chapter 4 showed a significant differences between the G0 and identified GB values 

in this cohort (prs and pks < 0.0001), although both values were well correlated (R = 0.70). 

This analysis has shown that GB is an important variable for modelling the glycaemic 

behaviour in T2D. This analysis suggests that the identified basal glucose is a more 
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appropriate variable for individuals with type 2 diabetes, as using the fasting glucose 

measurement as the basal set-point was shown to be a poor assumption for this cohort - 

although this requires confirmation in a larger study with a clamp as the reference.  

 

Clinically, identifying GB, SI and VG as model variables in a 3-parameter identification also 

allows greater descriptive ability of the metabolism of individuals with T2D. The assumption 

of GB = G0 effects the typical 2-parameter identification employed by DISST model and 

results by leading to potentially erroneous SI values or SI changes due an intervention, 

which could lead to ineffective interventions being seen as effective, and vice versa. Chapter 

5 showed that the SI value identified by the 3-parameter modelling approach were 

significantly lower (p<0.05) than the 2-parameter modelling approach. The findings were in-

line with expected participant physiology. Thus, the typical modelling approaches, with an 

assumption of GB = G0, can over-estimate sensitivity in this cohort by lumping GB dynamics 

into SI. Finally, the identified GB tracked well with T2D pathogenesis, offering a new 

monitoring metric that in future could augment the well known HbA1C. 

 

Modelling insulin secretion as a function of peripheral C-peptide levels by mathematical 

deconvolution has become a widespread approach. Although it remains to be the best 

method in identifying endogenous insulin due to the fact that C-peptide and insulin are co-

secreted from β-cells, these C-peptide measurements are relatively sparse, costly to obtain 

and time-consuming. Hence, while diagnostically affective, there is room for improvement 

and to reduce sampling and thus cost. 
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The proposed UN model is based on the physiological closed-loop control of insulin secretion 

in response to increasing glucose (derivative control, 
D ) and glucose above basal 

(proportional control, 
P ). By defining the model-based UN profiles as dependent on glucose 

levels, the modelling approach is more physiologically representative. Although the 

proposed model requires further validation, it is likely to be useful for analysis of the 

pathogenesis of T2D as it captures the physiological determinants of patient-specific UN 

profile. 

 

The simplicity of PD UN model provides clear relationship between the UN profile and the 

metabolic state of each participant. This metabolic status is reflected and captured by the 

values of the PD model gains 𝜙𝐷 and 𝜙𝑃. An individual with higher insulin resistance will 

have a limited first phase secretion, based on many clinical observations, causing a much 

lower 𝜙𝐷/𝜙𝑃 ratio than a healthy participant with a high first phase insulin secretion. Result 

in Chapter 8 showed that as a participant diagnoses with IFG (G0 > 5.56 mmol·L-1), the value 

of 𝜙𝐷 tends to reduce and becomes almost equal to 𝜙𝑃. However, for NGT participant (G0 < 

5.56 mmol·L-1), 𝜙𝐷 has a greater value than 𝜙𝑃. Thus, as the metabolic state of a participant 

moves from NGT to pre-diabetes state, the participant is losing burst secretion for first 

phase results in decrease in 𝜙𝐷. 

 

Overall, this thesis has thus delivered these main results to improve the mathematical and 

clinical precision of model-based tests to monitor and diagnosis T2D and its pathogenesis. 

These outcomes resulted in first of their kind models and observations. The methods 

created offer significant future potential as both diagnostic or monitoring, model-based 

biomarkers. 
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9.2  Future work 

 

The outcomes presented in this thesis provide good ground breaking findings in 

understanding the pathogenesis of type 2 diabetes particularly in insulin sensitivity and 

secretion. However, further optimisation can be implemented to improve the early 

diagnosis capability on pre-diabetes stage. 

 

9.2.1  The role of basal glucose (GB) 

 

Chapter 3, 4 and 5 elucidate the importance of defining the role of GB when assessing the SI 

value particularly in individuals with established type 2 diabetes. Result shows that when GB 

is not an identified variable, the participants’ glycaemic dynamics are potentially wrongly 

attributed to SI, and that identification of GB provides a more clinically representative result. 

However, more validation on different cohort, healthy and hyperglycemia, as well as 

different model-based SI assessment approach is required to confirm this outcome. 

 

As GB ≠ G0, it is suggested that the need to fast overnight before undertaking the clinical trial 

is reviewed. The definition of G0 = GB is already argued as study shows that walking in the 

morning or coming up to the clinic while fasting have G0 slightly higher than overnight GB 

levels (Holman & Turner 1981). Thus, while suggesting the participant or volunteer to 

monitor their food consumption, a much relax environment would potentially provide 

better assessment on the SI value. 
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9.2.2  Endogenous insulin secretion model (UN) 

 

Although the main focus of developing this PD UN model is to eliminate the use of C-peptide 

measurements, there is a need for a thorough validation for accuracy for this proposed 

model. Theoretically, UN is based on three physiological responses: UB is the basal 

endogenous production rate; U1, the magnitude of the first phase response to glucose 

appearance; and U2 is the second phase response to glucose (Cheng et al. 2013; Docherty 

2011). However, UB is still dependent on C-peptide measurement at steady state. 

 

Additionally, the interpretation of PD gains of 𝜙𝐷 and 𝜙𝑃 provides a direct relationship 

between UN profile and the metabolic state of participant. However, characterising the 𝜙𝐷 

and 𝜙𝑃 as a function of participants’ anatomical characteristic (weight, height, age, sex) 

would provide better estimation of UN profile. Further validation with larger and different 

cohort is required to quantify the accuracy of this PD UN model. 

 

9.2.3 Real time assessment of insulin sensitivity and secretion 

 

The real time aspect refers to neglecting the use of insulin and C-peptide measurements 

during parameter identification. With the use only of glucose measurements, a diagnostic 

outcome can be generated within few minutes of test completion. Thus, it could 

immediately provide an outcome that can be used by the researcher/ clinician to further 

understand and better control of the participant’s health condition.  
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