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ABSTRACT 

Structural health monitoring (SHM) provides a basis for rapid decision making under extreme 

conditions and can help ensure decisions are based on both accurate and timely information. 

Nonlinear hysteretic behaviour plays a crucial role in seismic performance-based analysis, 

design and assessment. This paper presents a health monitoring method using measured 

hysteretic responses. Acceleration and infrequently measured displacement are integrated 

using a multi-rate Kalman filtering method to generate restoring force-displacement 

hysteresis loops. A linear/nonlinear regression analysis based two-step method is proposed to 

identify nonlinear system parameters. First, hysteresis loops are divided into 

loading/unloading half cycles. Multiple linear regression analysis is applied to separate linear 

and nonlinear half cycles. Pre-yielding stiffness and viscous damping coefficient are obtained 

in this step and used as known parameters in the second step. Then, nonlinear regression 

analysis is applied to identified nonlinear half cycles to yield nonlinear system parameters 

and two damage indicators: cumulative plastic deformation and residual deformation. These 

values are closely related to structural status and repair costs. The feasibility of the method is 

demonstrated using a simulated shear-type structure with different levels of added 

measurement noise and a suite of ground motions. The results show that the proposed SHM 

method effectively and accurately identifies physical system parameters with up to 10% RMS 
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added noise. The resulting damage indicators can robustly and clearly indicate structural 

condition over different earthquake events.  

 

KEY WORDS: structural health monitoring; nonlinear regression; hysteresis loops; damage 

identification; system identification  
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1. INTRODUCTION 

 

Whenever a strong motion earthquake occurs, buildings are expected to remain standing with 

various degrees of damage. Critical decisions must be made within a short period of time 

concerning whether the buildings is suitable for continued occupancy. Vibration-based 

structural health monitoring (SHM) has gained much interest and attention in the civil 

engineering community in recent years. It is recognised as a powerful tool to identify damage 

at its earliest stage and to determine the residual useful life of structures, especially for rapid 

evaluation after a major event [1].  

 

Many vibration-based SHM methods for civil structures are based on identifying changes in 

modal characterises [2-5]. However, only low frequency modes related to structural global 

deformation can be measured accurately, and these modal parameters are insensitive to 

localized damage in some cases and typically more applicable to structures where vibration 

response is highly linear [6]. Local diagnostic methods, such as impedance-based [7] and 

guided-wave based [8] methods, have been developed to improve sensitivity to local failure 

modes. However, they rely on close proximity to damage location and typically require many 

sensors distributed throughout a structure, which is currently impractical.   

 

Advanced signal processing tools, such as wavelet analysis [9], empirical mode 

decomposition and Hilbert transform [10], are also being proposed. These techniques offer 

the advantage of determining both the location and time of the damage. However, they cannot 

directly identify physical system parameters and quantify the level of nonlinear damage due 

to the absence of a physical system model. Therefore, a number of model-based system 

identification methods have been presented, including a range of time-domain filters to track 
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time-variant model parameters [11-18]. However, only a few address nonlinear hysteresis and 

hysteresis-based damage indicators [19]. 

 

Hysteretic behaviour plays a critical role not only in seismic performance-based analysis and 

design [20-21], but also in capturing the nonlinear yielding and energy absorption associated 

with damage [23].  A SHM method that captures hysteretic response would give more insight 

into structural nonlinearity and quantify the level of nonlinear damage.  

 

Structural restoring force-displacement hysteresis loops can be constructed from measured 

responses [24-26]. Accelerometers are the most commonly used instruments in civil 

structures, and displacement and velocity have to be obtained from numerical integration. 

This procedure is fraught with major pitfalls due to the effects of noise, limiting accuracy of 

the hysteretic loops and damage detection methods based on hysteresis monitoring. However, 

recent advances in low-rate displacement sensors, such as GPS [27],  enable sensor fusion 

methods that deliver accurate displacement, velocity and acceleration. Several sensor fusion 

methods, such as the multi-rate Kalman filtering method [28], the cubic spline displacement 

correction method [29], the finite difference FIR filter method [30] and the finite element FIR 

filter method [31], have been proposed. These methods are expected to suppress 

measurement noise effectively and yield high quality hysteresis loops.  

 

Structural damage indicators can be further extracted from constructed hysteresis loops. 

Secant stiffness was first calculated to determine the occurring of degradation and damage in 

[32]. System effective stiffness was extracted to describe the evolution of the structural 

stiffness in [33]. Evolution of hysteresis loop shape was considered as a rapid visual indicator 

of system degrading in [34]. Although these damage indicators can be used to indicate the 



5 

 

occurrence of damage, they are largely qualitative. Damage indicators that can quantify 

structural damage and closely related to structural post-event safety and repair costs are 

urgently needed.  

 

This research presents a simple and novel health monitoring method for hysteretic structures 

subjected to seismic excitation. A multi-rate Kalman filtering technique is applied to estimate 

high quality displacement and velocity from high-rate sampled acceleration and low-rate 

sampled displacement data. Hysteresis loops are constructed and a regression analysis based 

two-step method is proposed to identify pre-yielding, viscous damping coefficient, yielding 

displacement and post-yielding stiffness, and resulting nonlinear damage indicators. The 

feasibility and robustness of the proposed method is illustrated for different noise levels over 

a suite of earthquake events.  
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2. CONSTRUCTION OF HYSTERESIS LOOPS 

 

Toussi and Yao [24] first presented the idea of generating system hysteresis loops from 

recorded seismic response data. For this proof-of-concept study, it will be assumed that the 

structure in question can be adequately modelled as a single-degree-freedom (SDOF) system 

for simplicity and clarity. This situation is also true if the test structure responds primarily in 

a single mode, and can be defined: 

𝑚𝑥̈ + 𝑓(𝑥, 𝑥̇) = −𝑚𝑥̈𝑔                                                    (1) 

where 𝑥, 𝑥̇ and 𝑥̈ are displacement, velocity and acceleration related to the ground; f is the 

total restoring force;  𝑥̈𝑔is ground acceleration and m is the mass.  

 

Rewriting Equation (1) and including viscous damping restoring force yields: 

𝑓(𝑥, 𝑥̇) = −𝑚[𝑥̈𝑔 + 𝑥̈] = −𝑚𝑢 = 𝑐𝑥̇ + 𝑓𝑠(𝑥, 𝑥̇)                                (2) 

where 𝑢 is absolute acceleration; 𝑐  is viscous damping coefficient and 𝑓𝑠(𝑥, 𝑥̇) is stiffness 

restoring force. Assuming m to be known a priori and 𝑢 to be measured, f is consequently 

obtained.  Dynamic displacement and velocity can be obtained from measured sensor data by 

integration and correction. Thus, hysteresis loops can be constructed by graphing the 

restoring force versus displacement with time as an implicit parameter.  

 

Direct integration of measured acceleration to obtain velocity and displacement is sensitive to 

noise and can cause significant distortion of estimated displacement [35]. Data fusion of 

high-rate acceleration and low-rate displacement measurements can effectively suppress 

noise and yield good estimates of velocity and displacement. If high-rate acceleration and 
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low-rate displacement measurements are available, estimation of displacement and velocity 

from the measurements can be modelled by a discrete dynamic system: 

𝒙𝑘+1 = 𝑨𝑠𝒙𝑘 + 𝑩
𝑠𝑢𝑘 + 𝜶𝑘                                            (3) 

𝑧𝑘 = 𝑯𝑘𝒙𝑘 + 𝜷𝑘                                                     (4) 

where Equation (3) is the system equation and Equation (4) is the observation equation, 𝑢𝑘 is 

the measured acceleration and 𝑧𝑘  is the measured displacement. The state vector 

𝒙𝑘 comprises the displacement 𝑑𝑘 and the velocity 𝑣𝑘, i.e., 

𝒙𝑘 = [
𝑑𝑘
 𝑣𝑘
]                                                            (5) 

Note that the sub-index k indicates a progression in time. 𝑨𝑠 is a 2 × 2 matrix describing the 

system dynamics, 𝑩𝑠 is  2 × 1 input matrix and 𝑯𝑘 1 × 2 design matrix, defined: 

𝑨𝑠 = [
1 𝜏𝑎
0 1

];    𝑩𝑠 = [
𝜏𝑎
2 2⁄
𝜏𝑎

];     𝑯𝑘 = [1 0]                           (6) 

where 𝜏𝑎  is the acceleration sampling interval. In Equations (3) and (4), 𝛂  is a vector of 

acceleration measurement noise with distribution (𝟎, 𝑸𝑠) and 𝜷  is the vector of displacement 

measurement noise with distribution (𝟎, 𝑹𝑠). Both are assumed to be Gaussian white noise 

processes with covariance q an r. Thus, 𝑸𝑠 and 𝑹𝑠 are given by: 

𝑸𝑠 = [
𝑞 𝜏𝑎

3 3⁄ 𝑞 𝜏𝑎
2 2⁄

𝑞 𝜏𝑎
2 2⁄ 𝑞𝜏𝑎

];     𝑹𝑠 =
𝑟

𝜏𝑑
                                       (7) 

where  𝜏𝑑 is the displacement sampling interval. 

 

With Equations (3) to (7), a discrete time multi-rate Kalman filter can be used to estimate the 

displacement and velocity at each acceleration sampling instant [28,36].  
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3. SHM BASED ON REGRESSION ANALYSIS OF HYSTERESIS LOOPS 

 

Many civil structures exhibit hysteresis when subject to severe cyclic loading. Figure 1 shows 

general hysteretic loops without considering system stiffness or strength degradation. A 

hysteretic cycle consists of a loading and an unloading half cycle. Any loading/unloading half 

cycle can be further divided into two nearly linear regimes: elastic and plastic, governed 

by  𝑘𝑒  , the pre-yielding stiffness and  𝑘𝑝 , the post-yielding stiffness, respectively. The 

elastic-plastic transition is generally smooth and gradual, but small. Omitting the transition 

process, the original half cycle can be represented by two line segments with different slopes, 

as shown in Figure 1,  to capture the essential system dynamics.  

 

 

 

 

    

  

         

 

 

  Figure 1 Hysteretic loops for arbitrary response 

If the approximated two lines and their interaction point are found, the nonlinear plastic 

deformation during the half cycle can be easily calculated. Damage indicators related to post-

event structural safety and repair costs, such as residual deformation and cumulative plastic 

deformation, can then be directly obtained by summing identified nonlinear deformation from 

all half cycles. Thus, the SHM problem is converted to a search for this approximation for 

each half cycle. 
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Hysteretic loops can be divided into many loading or unloading half cycles by identifying the 

points where the sign of the velocity changes. During a seismic event, structural behaviour is 

linear for most half cycles and nonlinear for fewer others. For linear half cycles, a single 

segment line approximation is enough. For nonlinear half cycles, a broken line approximation 

is needed.  Hence, a two-step approximation method is developed to optimally approach the 

original half cycle.  In the first step, linear and nonlinear half cycles are separated. In the 

second step, identified nonlinear half cycle are further estimated.  

 

Regression analysis is a powerful tool for modelling the relationship between a dependent 

variable and one or more independent variables [37]. Recalling Equation (2), displacement 𝑥 

and velocity 𝑥̇ are defined as the independent variables and restoring force 𝑓 as the dependent 

variable. Thus, the optimal approximation of each half cycle formulates a regression problem. 

 

3.1 Step 1: linear regression to each half cycle 

Multiple linear regression is applied to each half cycle. It is equal to use an equivalent linear 

system assumption to each half cycle. Thus, Equation (2) can be rewritten: 

−𝑚[𝑥̈𝑔 + 𝑥̈] = 𝑐𝑙𝑥̇ +  𝑘𝑙𝑥                                                (8) 

where 𝑘𝑙  is the effective system stiffness and  𝑐𝑙  is the effective system damping. All 

observation variables (𝑥, 𝑥̇, 𝑥̈, 𝑥̈𝑔) can be obtained directly or indirectly from measurements. 

Structural mass is assumed known a priori. Equation (8) holds at each sampling instant k, 

with variables defined: 

𝑦𝑘 = −𝑚[𝑥̈𝑔𝑘 + 𝑥̈𝑘]                                                (9a) 
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𝑥1,𝑘 = 𝑥̇𝑘                                                          (9b) 

𝑥2,𝑘 = 𝑥𝑘                                                          (9c) 

The optimal approximation problem can be formulated as: 

𝒀 = 𝑿𝜷 + 𝝐                                                   (10a) 

𝒀 =

{
 
 

 
 
𝑦1
𝑦2
⋮
𝑦𝑘
⋮
𝑦𝑛}
 
 

 
 

 ,    𝑿 =

[
 
 
 
 
 
1 𝑥1,1 𝑥2,1
1 𝑥1,2 𝑥2,2
⋮ ⋮ ⋮
1 𝑥1,𝑘 𝑥2,𝑘
⋮ ⋮ ⋮
1 𝑥1,𝑛 𝑥2,𝑛]

 
 
 
 
 

,    𝜷 = {

𝛽0
𝛽1
𝛽2

} ,   𝝐=

{
 
 

 
 
𝜖1
𝜖2
⋮
𝜖𝑘
⋮
𝜖𝑛}
 
 

 
 

                    (10b) 

where n is the number of all observed response variable pairs,  𝒀  is regressand, 𝑿 is the 

repressor, 𝜷  is the regression coefficients vector to be estimated, and 𝝐  is the vector of 

estimation error due to measurement noise and model error and is random and normally 

distributed. The least squares method then finds the unbiased estimates of the regression 

coefficients: 

(𝑏0, 𝑏1, 𝑏2) = 𝐚𝐫𝐠𝒎𝒊𝒏𝜷[(𝒀 − 𝑿𝜷)
′(𝒀 − 𝑿𝜷)]                                 (11) 

where the vector (𝑏0, 𝑏1, 𝑏2) is the estimates of the regression coefficients of  (𝛽0, 𝛽1, 𝛽2).  

 

Comparing Equations (10) and (8), it is clear that the least squares estimates,  𝑏1 and 𝑏2, are 

the effective linear system damping and the effective stiffness coefficient, respectively. When 

there is no plastic deformation presented in the half-cycle, 𝑘𝑙 should approach the system true 

pre-yielding elastic stiffness,  𝑘𝑒, and when there is nonlinear plastic deformation, 𝑘𝑙should 

capture a secant average stiffness of 𝑘𝑒 and 𝑘𝑝. Therefore, 𝑘𝑙  is similar to the secant stiffness 

in [32], but derived in a least squares sense here.   
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The estimated equivalent stiffness 𝑘𝑙  can vary over different half cycles. Varying 𝑘𝑙  is a 

significant indicator of the nature of the dynamic system. It is reasonable that the hysteresis 

curve is linear when the half cycle displacement increment ∆𝑑 is small and nonlinear when 

∆𝑑 is larger than the structural yield displacement. A rapid drop in 𝑘𝑙 at large displacement 

increment can be viewed as a good indicator of occurring inelastic behaviour during that half 

cycle. Thus, the plot of 𝑘𝑙 versus ∆𝑑 will be used to identify the potential nonlinear half cycle. 

   

In addition, the estimated equivalent linear damping coefficient 𝑐𝑙 is the measure of system 

energy dissipation. System energy dissipation capacity will increase due to the added 

hysteretic damping. The plot of 𝑐𝑙 versus ∆𝑑  may also be used as another indicator of the 

inelastic half cycles. Thus, linear and nonlinear half cycles can be separated by using a 

threshold determined from these indicators.  

 

For all identified linear half cycles, the multiple linear regression process yields many 

estimates of viscous damping coefficient 𝑐 and pre-yielding elastic stiffness 𝑘𝑒. The statistical 

mean of 𝑐 and  𝑘𝑒 over all these linear half cycles will be considered as ‘true’ values and be 

used as known parameters for the next step. 

 

3.2 Step 2: nonlinear regression analysis to identified nonlinear half cycles 

The post-yielding stiffness is typically about a 5%-10% of pre-yielding stiffness for many 

civil structures. Thus, the slope of the hysteresis curve for a nonlinear half cycle will undergo 

sudden change. To optimally approximate the nonlinear half cycles, data points in these 

nonlinear half cycles must be divided into multiple segments, and regress a different linearly 

parameterized polynomial for each segment. 𝑘𝑒 and  𝑘𝑝  can be obtained directly from 

estimated regression coefficients. The difficulty is associated with the unknown interaction 

http://dict.baidu.com/s?wd=increment
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point of each segment and the joint point of the segmented regression lines has to be 

estimated. It is actually a special nonlinear regression problem, named multi-phase linear 

regression.  

 

This nonlinear regression problem has a long history in mathematics [38-40] and has been 

applied in some engineering fields [41]. However, it is has not been used extensively in civil 

engineering. Let(𝑥𝑘,𝑦𝑘), 𝑘 = 1,… , 𝑛, be 𝑛 pairs of observation values of displacement and 

the restoring force within a nonlinear half cycle. Because the viscous damping coefficient 𝑐  

is estimated from the first identification step, the stiffness restoring force can be calculated: 

𝑓𝑠(𝑥, 𝑥̇) = −𝑚[𝑥̈𝑔 + 𝑥̈] − 𝑐̃𝑥̇                                      (12) 

where 𝑐̃  is the estimated viscous damping coefficient from the first step. To optimally 

approximate the nonlinear half cycles, a multi-phase linear regression model can be defined: 

{
𝑓1 = 𝑎1𝑥 + 𝑏1,                   𝑥1 ≤ 𝑥 ≤ 𝑥0
 𝑓2 = 𝑎2𝑥 + 𝑏2,                   𝑥0 < 𝑥 ≤ 𝑥𝑛 

                                (13) 

where 𝜶 = {𝑎1, 𝑏1, 𝑎2, 𝑏2}
𝑇 is the set of the unknown regression coefficients of each segment 

and 𝑥0is the unknown interaction point. The interaction point satisfies the linear constraint to 

ensure the continuity of the solution at the interaction point: 

𝑎1𝑥0 + 𝑏1 = 𝑎2𝑥0 + 𝑏2                                                  (14) 

Using a least squares method, it is possible to seek the best estimate of the vector  𝜶, which 

minimize the residual sum 

𝑅(𝜶) = ∑ [𝑦𝑘 − (𝑎1𝑥𝑘 + 𝑏1)]
2

 𝑥1≤𝑥𝑘≤𝑥0 + ∑ [𝑦𝑘 − (𝑎2𝑥𝑘 + 𝑏2)]
2

𝑥𝑛≥𝑥𝑘>𝑥0            (15) 

and subject to the constraint Equation (14).  

 

To minimize the function  𝑅(𝜶), a method similar to the one implemented in [41] is used here. 

Conceptually, if the transition point is known, the minimum of  𝑅(𝜶)  can be found by 
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computing a standard linear regression for each segment. Thus, given a specific division 

between data points 𝐼  and  𝐼 + 1 , the residual sum can be minimized over  𝜶̃𝑰 =

{𝑎1, 𝑏1, 𝑎2, 𝑏2}
𝑇, and this outcome yields a sequence of residual sum functions  𝑅𝐼(𝜶)(𝐼 =

2, … , 𝑛 − 2, ) . The goal is to pick the  𝐼 that gives the minimum value for  𝑅𝐼(𝜶). Note that 

this is true only when  𝑥𝐼 ≤ 𝑥0 ≤ 𝑥𝐼+1. The estimator of 𝑥0 has to be computed using the 

linear constraint Equation (14) from the elements of  𝜶̃𝑰 to check that 𝑥0 is in fact between 

the two data points 𝐼  and  𝐼 + 1  to ensure the solution  is the final solution. Using the 

proposed nonlinear regression analysis method, each nonlinear half cycle is approached by a 

two-segment broken line. This process yields the estimates of post-yielding stiffness and 

yielding turning point on each nonlinear half cycle.  

 

3.3 Damage Indicators 

Information obtained from the proposed two-step method can be used to derive important 

damage indicators related to damage severity and repair cost of the target structure.  In 

particular: 

1) The pre-yielding and post-yielding stiffness, 𝑘𝑒 and 𝑘𝑝,  give good approximation of the 

actual system mechanical behaviour. 𝑘𝑝  clearly indicates the system residual load 

carrying capacity after yielding. The 𝑘𝑝 to 𝑘𝑒 ratio, like bilinear factor α, can be used as 

a damage indicator to represent the sacrificial or residual stiffness during seismic events. 

Finally, changes in 𝑘𝑝 and 𝑘𝑒 over time indicate system stiffness/strength degradation. 

2) The yielding turning points identified in Step 2 are related to system yield 

deformation, 𝑑𝑦. It can be seen from Figure 1 that for an unloading half cycle i: 

𝑑𝑦𝑖 =
𝑥𝑚𝑎𝑥,𝑖−𝑥0,𝑖

2
                                                    (16) 

where  𝑥𝑚𝑎𝑥,𝑖  is  the displacement history maximum during the half cycle, 𝑥0,𝑖  is 

estimated interaction point of the half cycle i. For a loading nonlinear half cycle i: 

http://dict.baidu.com/s?wd=sacrificial
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𝑑𝑦𝑖 =
𝑥0,𝑖−𝑥𝑚𝑖𝑛,𝑖

2
                                                     (17) 

where 𝑥𝑚𝑖𝑛,𝑖  is the displacement history minimum during the half cycle i. 

3) Cumulative plastic deformation can be used to capture the accumulation of damage 

sustained during dynamic loading. It can be calculate by summing the absolute plastic 

deformation over all nonlinear half-cycles. The nonlinear plastic deformation 𝑑𝑝 for an 

unloading half cycle i  can be calculated:  

 𝑑𝑝𝑖 = (𝑥𝑚𝑖𝑛,𝑖 − 𝑥0,𝑖) × (1 −
𝑘𝑝

𝑘𝑒
)                                     (18) 

       and for a loading half cycle i : 

𝑑𝑝𝑖 = (𝑥𝑚𝑎𝑥,𝑖 − 𝑥0,𝑖) × (1 −
𝑘𝑝

𝑘𝑒
)                                     (19) 

       Thus, the cumulative plastic deformation 𝑑𝑛𝑒𝑡 is defined: 

𝑑𝑛𝑒𝑡 = ∑ |𝑑𝑝𝑖|
𝑛𝑙
𝑖=1                                                     (20)  

       and the residual deformation 𝑑𝑟𝑒𝑙 is defined: 

𝑑𝑟𝑒𝑙 = ∑ 𝑑𝑝𝑖
𝑛𝑙
𝑖=1                                                     (21) 

        where 𝑛𝑙 is the number of identified half cycles. 

Other damage indices may also be easily obtained based on identified parameters. The more 

important point is that with the estimated physical system parameters, model validation and 

response prediction for future seismic event is also possible, which will give a further critical 

reference for evaluation of structural safety and repair costs. Finally, quantified knowledge of 

these values could provide a better foundation for decision making by building owners, 

tenants and insures, reducing debate and speeding up recovery.  
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4. SIMULATED PROOF-OF-CONCEPT STRUCTURE 

 

The simulated proof-of-concept structure is a SDOF moment-resisting frame model of a five-

story building shown in Figure 2. The seismic weight per floor is 1692 kN for the roof level 

and 2067 kN for all other levels. The frame system is designed  using the displacement-based 

design approach to sustain a target drift of 2% under a 500-year return period earthquake.  A 

push-over analysis shows bilinear behaviour between base-shear and roof displacement with 

yield deformation 𝑑𝑦 = 46.5mm, pre-yielding stiffness 𝑘 =27300kN/m and bilinear factor 

𝛼 = 0.065. The estimated linear structural fundamental period is ~1.20s. The detailed 

nonlinear push-over results can be found in [19].  A damping ratio of 5% is assumed which is 

common for civil structures and the corresponding viscous damping coefficient c is 

521kN.s/m. 

           

(a)  front view                                                                  (b)   plan view 

Figure 2 The simulated five-storey shear type building 

Structural displacement and acceleration response is obtained through Newmark numerical 

integration. The sampling frequency is 200Hz for the measurement of acceleration and is 

20Hz for the displacement. The objective of applying the proposed SHM method is to 

determine  the structural properties of the pre-yielding stiffness, bi-linear factor, yielding 

deformation and estimate cumulative plastic deformation and residual deformation to indicate 

potential structural damage. The proposed method is implemented in MATLAB®.   
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First, the targeted structure was subjected to the 1987 Superstition Hill earthquake with peak 

ground acceleration (PGA) of 0.358g (EQ1 in Table 1). The SHM method was first 

demonstrated for proof of the concept using noise-free response signals. The effect of choices 

of the threshold to separate linear and nonlinear half cycles is investigated. Next, the effect of 

measurement noise was studied by adding a white noise process to acceleration and 

displacement response and ground acceleration, respectively.  Four noise levels of 3%, 

5% ,10% and 20% RMS noise-to-signal are considered.  This case was repeated for 100 

Monte Carlo runs to find the effect of noise and the range of possible variation at the given 

noise level.  

Table 1 Selected 20 ground motions  
 

EQ Event Year MW Station R-Distance(km) Soil Type Duration(s) PGA(g) 

EQ1 Superstition Hill 1987 6.7 EI Centro Imp. Co. Cent 13.9 D 40.0 0.358 

EQ2    Brawley 18.2 D 22.0 0.156 

EQ3    Plaster City 21.0 D 22.2 0.121 

EQ4 Northridge 1994 6.7 Beverly Hills 14145 Muuhol 19.6 C 30.0 0.516 

EQ5    Canoga Park – Topanga Can 15.8 D 25.0 0.356 

EQ6    Glendale – Las Palmas 25.4 D 30.0 0.206 

EQ7    LA – Hollywood Stor. FF 25.5 D 40.0 0.231 

EQ8    N. Hollywood– Coldwater Can 14.6 C 21.9 0.273 

EQ9    LA – N Faring Rd 23.9 D 30.0 0.298 

EQ10    Sunland– Mt Gleason Ave 17.7 C 30.0 0.127 

EQ11 Loma Prieta 1989 6.9 Capitola 14.5 D 40.0 0.529 

EQ12    Gilroy Array #3 14.4 D 39.9 0.555 

EQ13    Gilroy Array #4 16.1 D 40.0 0.417 

EQ14    Gilroy Array #7 24.2 D 40.0 0.226 

EQ15    Hollister Diff. Array 25.8 D 39.6 0.269 

EQ16    Saratoga – W Valley Coll. 13.7 C 40.0 0.332 

EQ17 Cape Mendocino 1992 7.1 Fortuna –Fortuna Blvd 23.6 C 44.0 0.116 

EQ18    Rio Dell Overpass– FF 18.5 C 36.0 0.171 

EQ19 Landers 1992 7.3 Desert Hot Springs 23.3 C 50.0 0.385 

EQ20    Yermo Fire Station 24.9 D 44.0 0.245 

 

To assess the robustness of the proposed method over different ground motions, the simulated 

structures were subjected to a suite of 20 ground motions with different spectral 

characteristics and PGA, as shown in Table 1. These earthquake records are widely used in 

earthquake engineering [19]. In each case, the noise level of 10% RMS is considered.  
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It is noted that in this study the 10% RMS Gaussian white noise was selected as a typical to 

relatively large level of sensor noise for measured ground acceleration, structural acceleration 

and displacement [28]. It is also large enough to encompass typical reported acceleration and 

displacement sensor accuracy [27, 29-31]. In fact, measurement of 10% RMS means 99% of 

errors are in +/- 30% which is a large level for any random sensor noise. Examination of 

different noise levels is used to prove the robustness and sensitivity of the method to different 

levels of noise. 
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5. RESULTS AND DISCUSSIONS 

 

5.1. Validation of the proposed method using noise-free response  

Simulated noise-free high-rate acceleration and low-rate displacement responses were first 

used as inputs to reconstruct high-rate displacement and velocity using the multi-rate Kalman 

filtering method. These reconstructed responses, together with ground and response 

acceleration, are input to SHM procedure.  

 

Figure 3 plots the identified equivalent linear system stiffness  𝑘𝑙  and equivalent viscous 

damping coefficient 𝑐𝑙  for each half cycle versus half cycle displacement ∆𝑑, respectively. 

The points in Figure 3 can be divided into two regimes according to the trend of variation. 

When the half cycle displacement is small, 𝑘𝑙   and 𝑐𝑙  are nearly constant because the 

structure behaves linearly. Both drop rapidly as the amplitude of displacement exceeds a 

critical value.  Therefore, Figure 3 can be used a qualitative indicator of system linear or 

nonlinear behaviour during an earthquake. If all points are around a horizontal line, the 

structure can be viewed linear or nearly linear. Otherwise, nonlinear deformation should be 

considered. Based on Figure 3, a threshold can be assigned to separate linear and nonlinear 

regimes. In this case, the threshold of 0.11m is used and the effect of the choices will be 

investigated in next section.  

 

All points in linear regions directly give estimates of pre-yielding stiffness and viscous 

damping coefficient. Table 2 gives the statistical results of these two parameters. It can be 

seen that the identified mean of  𝑘e is very close to the true model values with relative error 

of 0.1%. Since viscous damping restoring force forms a very small part of the total restoring 
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force, the mean estimate error of the viscous damping coefficient is a litter larger but still 

satisfying. Overall, the results demonstrate that the proposed method can give good estimates 

of system pre-yielding stiffness and viscous damping coefficient.  

 

Table 2 Estimations of pre-yielding stiffness [KN/m] and viscous damping coefficient [KN.s/m] 

 Mean Mean error St.d 95% confidence interval True value 

Pre-yielding stiffness 27335 0.1% 271 [27263, 27407] 27300 

viscous damping coefficient 482 7.5% 108 [453, 510] 521 

 

 

Figure 3 Linear regression results:  (top) effective stiffness with half-cycle displacement; (bottom) effective viscous damping with half-cycle 

displacement 
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Figure 4 Simulated hysteresis loops 

 

Figure 5 Identified nonlinear half cycles and multi-phase linear regression results for 2 half cycles. The line is the identified model and the 

circles are the simulated data. 
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Half cycles in nonlinear regime are identified using Step 2. Figure 4 shows the simulated true 

hysteresis loops. Figure 5 shows the identified nonlinear half cycles and multi-phase linear 

regression approximation results. It can be seen that using the threshold, the main nonlinear 

hysteretic half cycles are captured (#31, 32) that dominate the nonlinear structural behaviour.  

Multi-phase linear regression results approach the identified hysteresis half cycles very well. 

Table 3 shows the detailed multi-phase regression results for two half cycles, #31~32. It can 

be seen that the estimated bilinear factor and yield displacement are very close to the true 

parameters. The derived plastic displacement in each nonlinear half cycle can be summed to 

obtain the cumulative plastic deformation and residual displacement. In this case, the 

cumulative plastic deformation is 169.1mm and the residual displacement is +40.3mm.   

 

Table 3 Estimated structural performance parameters from multi-phase linear regression analysis  

Half Cycle # Bi-linear factor 
Yield displacement 

(mm) 

Plastic displacement 

(mm) 

31 0.062 46.7 -64.4 

32 0.061 47.3 +104.7 

Mean 0.062 47.0 / 

Mean Error 4.6% 1.1% / 

True values 0.065 46.5 / 

 

5.2. Effect of threshold chosen 

The effect of the choice of threshold is investigated by varying its values between 0.09m and 

0.13m. The results are listed in Table 4. It can be seen that there is little effect on the 

identification accuracy of the linear parameters, pre-yielding stiffness and viscous damping 

coefficient when the threshold chosen varies from 0.09m to 0.13m. However, identified 

bilinear factor and yield displacement shows a larger error when the threshold is lower 

because some linear or nearly linear half cycles are identified as nonlinear. In this situation, 

multi-phase linear regression will give poor results due to wrong regression model used. Thus, 

identification accuracy improves when only large displacement nonlinear half cycles are 
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considered (thresholds larger than 0.11m). However, it is noted that a very large threshold 

will mean some large displacement half cycles lost and underestimate the cumulative plastic 

deformation.  

Table 4 Effect of threshold chosen on identification results 

 
Pre-yielding 

stiffness(KN/m) 

Viscous damping 

(KN.s/m) 
Yield deformation (mm) Bilinear factor 

True 27300 521 46.5 0.065 

Threshold =0.09m  

Mean 27380 464 39.2 0.284 

Coefficient of variation 0.007 0.174 0.356 1.581 

Mean error 0.3% 10.9% 15.7% 336.9% 

     

Threshold =0.10m  

Mean 27371 468 46.7 0.079 

Coefficient of variation 0.007 0.176 0.010 0.702 

Mean error 0.3% 10.2% 0.4% 21.5% 

     

Threshold =0.11m  

Mean 27335 482 47.0 0.062 

Coefficient of variation 0.010 0.224 0.008 0.008 

Mean error 0.1% 7.5% 1.1% 4.6% 

     

Threshold =0.12m  

Mean 27335 482 47.0 0.061 

Coefficient of variation 0.010 0.224 0.008 0.008 

Mean error 0.1% 7.5% 1.1% 6.2% 

     

Threshold =0.13m  

Mean 27335 482 47.0 0.061 

Coefficient of variation 0.010 0.224 0.008 0.008 

Mean error 0.1% 7.5% 1.1% 6.2% 

 

5.3 Effect of noise on parameter identification 

Figure 6 shows the multi-phase linear regression analysis results for 100 runs at different 

noise levels. It can be seen that the as the noise level increases, the nonlinear regression 

accuracy and consistency both decrease. A threshold of 0.11m was used in all cases. 

 

The statistical summary of identified system parameters compared to the true model 

parameters are listed in Table 5. It can be seen from Table 5 and Figure 6 that the numerical 
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accuracy of the identified parameters is generally very good and the two-step identification 

method proposed can give robust system performance parameters even at 10% RMS added 

noise level. In particular, the identified pre-yielding stiffness and yield displacement are less 

sensitive to noise than the viscous damping coefficient and bilinear factor. Even with added 

20%RMS noise, the mean relative error of pre-yielding stiffness and yield displacement is 

within 2%. Thus, the identification of pre-yielding stiffness and yield deformation using the 

proposed method is highly robust to measurement noise. The identified bilinear factor is also 

excellent to 10% noise and good at 20%. It is more sensitive to noise due to there being far 

less data points in the nonlinear regime than in elastic regime, and regression analysis is 

sensitive to the number of data points. Identification accuracy would be improved if there 

were more large plastic displacements to provide a larger number of data points. 

 

 

(a) 3% RMS noise 

 

(b) 5% RMS noise 
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(c) 10% RMS noise 

 

(d) 20% RMS noise 

Figure 6 Identified nonlinear half cycles and multi-phase linear regression results 

 

Table 5 Statistical summary of estimated system parameters for 100 Monte-Carlo runs (threshold =0.11m) 

 
Pre-yielding  

stiffness(KN/m) 

Viscous damping 

(KN.s/m) 
Bilinear factor 

Yield deformation 

(mm) 

Actual Model 27300 521 0.065 46.5 

     

Noise-free     

Mean 27335 482 0.062 47.0 

Coefficient of variation 0.0000 0.0000 0.0000 0.0000 

Mean error 0.1% 7.5% 4.6% 1.1% 

     

3%RMS white noise     

Mean 27335 481 0.062 47.1 

Coefficient of variation 0.0000 0.0124 0.0212 0.002 

Mean error 0.1% 7.7% 4.6% 1.3% 

     

5%RMS white noise     

Mean 27336 482 0.064 47.2 

Coefficient of variation 0.0018 0.0210 0.0345 0.0035 

Mean error 0.1% 7.5% 1.5% 1.5% 

     

10%RMS white noise     

Mean 27237 474 0.071 47.3 

Coefficient of variation 0.0082 0.0625 0.0706 0.0080 

Mean error 0.2% 9.0% 9.2% 1.7% 

     

20%RMS white noise     

Mean 26825 440 0.092 46.9 

Coefficient of variation 0.0142 0.1293 0.0855 0.0130 

Mean error 1.7% 15.5% 41.5% 0.9% 

 

5.4 Identification results over 20 seismic events 
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Tables 6 list the identified system parameters and damage indicators over 20 seismic events 

with 10%RMS added noise. A ‘-’ is presented where the structure is identified as remaining 

linear during the event. The structure was identified as remaining linear for all of  EQ2, 3, 5, 

6, 9, 10,12,14, 17 and 19, and as nonlinear for the other events.  Therefore, the proposed 

method can directly detect whether the structure undergoes nonlinear deformation. The 

identified system model parameters match very well with true model parameters and 

demonstrate the proposed method is robust to ground motions. The method can derive two 

damage indicators: cumulative plastic deformation and residual deformation, used to assess 

structural damage severity and repair costs. For example, estimated maximum cumulative 

plastic deformation is 500.4mm for EQ11, which indicates the structure is significantly 

damaged, while it is much lower for EQ7.  

Table 6 Identification results for 20 seismic events with 10%RMS added noise 

Event 

 # 

Pre-yielding 

stiffness 

(KN/m) 

Yield 

displacement 

(mm) 

bilinear factor 

Viscous damping 

coefficient 

(KN.s/m) 

Estimated 

cumulative plastic 

deformation 

 (mm) 

Residual 

deformation 

(mm) 

EQ1 27237 47.3 0.071 474 168.1 42.0 

EQ2 27421 - - 448 - - 

EQ3 27218 - - 500 - - 

EQ4 26870 51.0 0.108 544 391.5 54.7 

EQ5 26971 - - 557 - - 

EQ6 28119 - - 480 - - 

EQ7 27411 45.8 0.141 475 21.1 20.0 

EQ8 26967 46.0 0.200 577 214.7 33.4 

EQ9 27622 - - 461 - - 

EQ10 27531 - - 453 - - 

EQ11 26723 46.7 0.154 512 500.4 9.3 

EQ12 27571 - - 453 - - 

EQ13 27346 44.6 0.131 468 198.1 30.0 

EQ14 27819 - - 478 - - 

EQ15 26976 47.1 0.112 506 98.3 60.8 

EQ16 27016 47.4 0.123 521 368.0 91.9 

EQ17 27470 - - 463 - - 

EQ18 27289 46.6 0.126 480 234.6 64.0 

EQ19 27540 - - 459 - - 

EQ20 26974 46.9 0.128 503 307.7 97.9 

True 27300 46.5 0.065 521   
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It should be noted that there is no specific, direct comparative assessment of the proposed 

method against any existing SHM techniques. The primary reason is that to the best of the 

authors knowledge at this time, no prior, automated SHM methods split the linear half-cycles 

from the nonlinear half-cycles of response and pull out nonlinear half-cycle displacement and 

post-yielding stiffness. A possible exception is the work of Nayerloo et al [19], which is a 

much more complex, model-dependent algorithm. Equally importantly, the method of [19] is 

restricted to fitting a Bouc-Wen model, which is highly restrictive and can lose accuracy 

when the measured response is not similar to the underlying model employed. In contrast, the 

approach presented here is more general to any nonlinear, elasto-plastic method. Finally, it is 

important to note that we found no prior works that directly identified nonlinear stiffness in 

this fashion making direct comparison very difficult for those that do address nonlinear 

behaviour. 

 

Although the efficiency of the method is demonstrated using a simple closed-formed problem, 

the value of the proposed method can be evaluated from three perspectives. First, the key of 

the method is to capture half-cycles and get elasto-plastic properties from them.  Therefore, it 

is not dependent on any specific mechanics model, and relies only on direct measurements 

and identified half-cycles. Hence, the proposed method can be generalized to identify any 

form of hysteretic system with nonlinear half cycles, and the validation presented is not 

circularly dependent on the model while also being robust to the added noise.  

 

Second, the identification procedure is carried out from half-cycle to half cycle. It thus can 

capture time-variant physical parameters to characterize a degrading hysteretic system. 

Finally, the identification procedure is essentially performed storey by storey. Therefore, the 
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proposed method is completely generalizable to overall nonlinear multi-storey structures and 

a wide range of mechanics. 

 

However, the robustness of the method to real data is still partly unproven since the 

significant plastic real data is limited available. The proposed identification procedure 

remains to be experimentally validated and further test before implementation in the field for 

final performance evaluation. 

 

Equally, it is critical to note that the model used in simulation does not affect this method 

which is effectively model-free, relying only on measurable, with noise, responses. The 

validation thus knows the results exactly to assess accuracy and equally is not tied to the 

model used to simulate the data, ensuring a robust validation 
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6. CONCLUSIONS 

This paper develops a novel SHM method for civil structures using hysteresis loops 

reconstructed from seismic response data. Low-rate sampled displacement and high-rate 

sample acceleration are fused by the multi-rate Kalman filtering method to construct high 

quality hysteresis loops. A two-step regression analysis based method is developed to identify 

nonlinear system parameters and extract damage indicators related to structural health status 

and repair costs.  

 

To apply linear and nonlinear regression analysis, system hysteretic loops are split into many 

half cycles where restoring force is a monotone function of displacement. A special nonlinear 

regression method, named multi-phase linear regression is used to directly estimate turning 

points and post-yielding stiffness. This approach significantly simplifies the nonlinear system 

identification procedure for obtaining pre-yielding stiffness, viscous damping coefficient, 

post-yielding stiffness and the yield displacement simultaneously.  

 

From the results obtained in this study, it is clear that the proposed method is feasible and 

effective for nonlinear system identification and damage indicator extraction. When no 

measurement noise is added, the proposed SHM procedure can identify system physical 

parameters with very high precision. Even with 10% or 20% RMS noise, the method 

identifies some system parameters with good precision, and has good repeatability and 

robustness. The proposed method is also robust over different ground motions, and can 

directly detect whether nonlinear response occurs.   
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Overall, the proposed SHM method is simple, direct and robust. The identification procedure 

is performed time segment by time segment, which provides the possibility for it to be 

implemented in real-time or near real-time. Although the concept is proven focusing on 

structural systems that display non-degraded hysteresis behaviour, it can be easily extended 

to degrading structures and arbitrary changes in system parameters, including degradation. 
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