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Abstract 

Huntington’s Disease (HD) is a progressive neurodegenerative disease characterised by 

cognitive, motor and behavioural impairments. Corticobulbar symptoms have been reported in 

all stages of HD, and aspiration pneumonia associated with swallowing impairment 

(dysphagia) has been identified as the most common cause of death. Current literature 

examining interventions to treat or rehabilitate dysphagia in HD is limited; therefore, 

conventional treatment consists of compensatory techniques to maintain weight and minimise 

the risk of aspiration. There is emerging multidisciplinary research to suggest that intensive 

rehabilitation may improve or maintain function of corticospinal symptoms in HD. It has not 

yet been documented if these changes are evidenced in corticobulbar systems. This research 

addresses substantial gaps in the literature in respect to evaluation of dysphagia associated with 

HD, and furthermore evaluates an innovative skill-based dysphagia training protocol in 

individuals with HD.  

 

The research programme is comprised of three elements. The first was a systematic review of 

the existing evidence relative to rehabilitation of corticobulbar symptoms associated with HD. 

Relevant electronic databases were systematically searched for literature related to 

corticobulbar rehabilitation in HD. The eight studies which met the inclusion criteria were 

evaluated using standardised critical appraisal tools. The best available evidence was limited 

by a high risk of bias and a lack of validated and objective outcome measures of corticobulbar 

symptoms. This systematic review documented a lack of evidence to support the use of 

rehabilitation to treat corticobulbar symptoms in HD. However, the suggestion of potential 

positive effects and no adverse effects reported in the limited literature provided justification 

for further research in this area. For continuity, this systematic review has been included as part 

of this thesis literature review. The published manuscript can be found in Appendix A. 
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Although instrumental assessments have been used in a limited number of studies to describe 

the manifestation of dysphagia in individuals with HD, no research exists regarding the 

reliability of these measures in this population. The second section of this research was a 

methodological study which evaluated the reliability and variability of existing measures to 

assess dysphagia in individuals with HD. Ten individuals diagnosed with symptomatic HD 

including dysphagia were recruited. Participants underwent instrumental and clinical 

assessments of swallowing function and biomechanics on three separate occasions over one 

week. Objective measures of functional swallowing included the Timed Water Swallow Test 

(TWST) and Test of Masticating and Swallowing Solids (TOMASS). Swallowing 

biomechanics were measured using manofluoroscopy and ultrasound assessments. Test-retest 

reliability was evaluated for each measure using Type 3 intraclass correlation coefficient (ICC 

(3,1)). Results indicated good to excellent reliability (> 0.75) in 5/7 parameters of the functional 

assessments (TWST/TOMASS) and moderate to excellent reliability (> 0.5) in 4/6 ultrasound 

measures. Manometric measures produced poor test-retest reliability (< 0.5). Videofluoroscopy 

measures ranged from poor to moderate reliability (< 0.5 to < 0.75). These data documented 

mixed reliability for measurement of swallowing in HD. The quantified reliability and 

variability in this data can be used in selecting and interpreting outcomes in subsequent 

intervention studies. This research addressed the ongoing need for critical evaluation of the 

reliability and anticipated variability of swallowing outcome measures in individuals with HD.  

 

The final section of this research programme was an exploratory treatment study which 

investigated the feasibility and effectiveness of a skill-based swallowing rehabilitation 

paradigm for individuals with swallowing impairment secondary to HD. Twelve individuals 

diagnosed with symptomatic HD including dysphagia completed ten sessions of daily skill-
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based dysphagia therapy in two weeks using Biofeedback in Strength and Skill Training 

(BiSSkiT) software and surface electromyography hardware. The software incorporated skill 

training approaches to improve participant’s volitional control in manipulating the timing and 

amplitude of the submental muscles involved in swallowing. This intensive intervention, based 

on the principles of motor learning, aimed to maximise early neural re-organisation reported in 

HD and enhance cortical modulation to improve the safety and efficiency of swallowing. A 

within-subject A-B-A study design was utilised to include two-week blocks of no treatment 

pre-therapy as baseline and post-therapy for retention. Swallowing was evaluated using the 

TWST, TOMASS, manofluoroscopy, ultrasound and the Swallowing Quality of Life 

Questionnaire (SWAL-QoL). All participants completed the intervention protocol and 

improved in task performance over the two-weeks of training. A significant improvement in 

quality of life was reported post-therapy (p < 0.05) and maintained two-weeks post-treatment. 

There were significant treatment effects observed as liquid bolus transit times increased and 

upper oesophageal sphincter (UES) distension decreased post-therapy (p < 0.05). These 

changes were not maintained during the non-treatment post-therapy period. This study 

provided preliminary evidence that this intensive skill-based training is a feasible option with 

no adverse effects in individuals with HD. However, there were limited data to suggest this 

intervention protocol significantly altered swallowing biomechanics in this patient cohort. This 

is the first study to evaluate the effectiveness of dysphagia rehabilitation using instrumental 

swallowing outcomes in HD; therefore, further evidence is required to evaluate treatment 

protocols according to swallowing characteristics and disease stage.   
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Chapter 1. Introduction 

 

Swallowing dysfunction (dysphagia) frequently occurs as a result of neurodegenerative disease 

(Clavé & Shaker, 2015; Daniels, 2006; Dziewas et al., 2017b; Sasegbon & Hamdy, 2017). This 

symptom has a significant impact on quality of life (QoL), caregiver burden (Ekberg et al., 

2002), and is often associated with medical complications including aspiration pneumonia 

(Ortega et al., 2017; White et al., 2008). Historically, neurodegenerative conditions such as 

Parkinson’s Disease, Motor Neurone Disease and Huntington’s Disease (HD) have had limited 

evidence to support dysphagia rehabilitation (Plowman, 2015). Compensatory strategies have 

been the primary intervention, with a presumption that intensive rehabilitation may be 

detrimental in these patient populations (Clarke et al., 2018; Hamilton et al., 2012; Hunt & 

Walker, 1989; Keage et al., 2020; Zimmerman et al., 2020). However, emerging evidence 

suggests that early rehabilitative interventions may be beneficial in slowing deterioration or 

even improving functional outcomes in HD (Quinn et al., 2020). This is an important area of 

research in both corticospinal and corticobulbar literature. This research programme focused 

on dysphagia associated with HD. Dysphagia is widely accepted as a universal symptom of 

this disease (Kagel & Leopold, 1992; Schindler et al., 2020), and is associated with aspiration 

pneumonia, the leading cause of death (Heemskerk & Roos, 2012). This research programme 

was inspired by a lack of active treatment approaches available in clinical practice, and the 

need to investigate potential options for early intervention when symptoms are first identified.   

 

The first part of this thesis includes a literature review, including a detailed description of 

normal swallowing from cortical to peripheral control. There is a particular emphasis in 

Chapter 3 on reviewing methods to measure swallowing biomechanics, and how reliable these 

measurement techniques are in a complex neurodegenerative population such as HD. The 
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following chapters then describe the neurophysiology of HD in more detail, and how these 

physiological changes impact on swallowing. This leads to the first part of this research 

programme: a systematic review of the literature to evaluate any existing evidence in 

rehabilitation of corticobulbar symptoms of HD (including dysphagia). For continuity, this 

systematic review has been discussed throughout Chapter 5 which presents research to support 

current treatment approaches in HD. As limited evidence exists evaluating rehabilitation of 

dysphagia in HD, the final part of Chapter 5 includes recent research which has described 

positive effects of swallowing rehabilitation in other aetiologies. Chapter 6 compiles this 

review into an outline of research questions and hypotheses for the subsequent two studies of 

this research programme. 

 

As the literature review highlighted that current evidence evaluating swallowing in HD is 

limited by a lack of standardised outcome measures, the initial research question was raised: 

which are the most reliable measures in this patient population? The second part of this research 

consisted of a methodological test-retest study which evaluated the reliability and variability 

of swallowing measures in a cohort of individuals with HD. This study aimed to identify the 

typical fluctuations in swallowing as measured by a wide range of behavioural and instrumental 

assessments. By quantifying the reliability and estimated variability of swallowing in this 

population, clinicians and researchers can critically analyse results of subsequent intervention 

to evaluate treatment effects with confidence. 

 

The methodology and results of both the test-retest study and the treatment studies are reported 

in Chapters 7 and 8. This final study brings together several elements of this research 

programme to provide preliminary evidence regarding assessment and intervention of 

dysphagia in individuals with HD. The intervention study is the first in the world to evaluate 
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swallowing outcomes using standardised behavioural and instrumental assessments following 

skill-based dysphagia therapy in individuals with HD. The assumptions that skill training can 

change swallowing biomechanics and cortical activation had not been investigated in HD. To 

evaluate treatment effects on cortical connectivity, the outcomes of a single case study are 

described which included magnetic resonance imaging (MRI) of the brain pre- and post-

therapy. This intervention study matches the current momentum within fields of HD and 

dysphagia research to establish early rehabilitation approaches aimed to slow deterioration, 

improve symptoms and optimise QoL for our patients. The results and clinical implications of 

both of these patient studies are discussed in Chapter 9. This research programme addresses 

the substantial gaps in current literature and clinical practice to provide a foundation for future 

research in dysphagia treatment in HD. 
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Chapter 2. The Swallowing Mechanism 

 

Swallowing is a highly complex sensorimotor mechanism which involves at least 25 paired 

muscles of the head and neck, innervated by their respective cranial nerves (CN) (Jean, 2001). 

This fundamental task is crucial for both ingestion as the primary source of nutrition and 

hydration, as well as protecting the upper respiratory tract through effective clearance of the 

pharynx to avoid aspiration of foreign particles (Jean, 2001). Successful swallowing is 

represented by safe and efficient coordination of oropharyngeal mechanisms lasting 

approximately 0.6 to 1.0 s to ensure the bolus is transported from the oral cavity, through the 

pharynx, oesophagus and into the stomach (Doty, 1968; Kahrilas et al., 1996; Logemann, 

1998). There are several levels of central to peripheral control to complete this complex 

biomechanical process, as discussed below.  

 

2.1 Biomechanics of Swallowing 

Swallowing involves muscles of the oral cavity, pharynx, larynx and oesophagus. Eight of the 

12 cranial nerves of the peripheral nervous system are involved in deglutition (Jean, 2001). Of 

these, the trigeminal (CN V), facial (CN VII), glossopharyngeal (CN IX), vagus (CN X), and 

hypoglossal (CN XII) cranial nerves are crucial to relay sensorimotor information between the 

brainstem swallowing centres and the peripheral structures during swallowing (Perlman & 

Christensen, 2003). This biomechanical process incorporates a range of voluntary and 

involuntary elements (Leopold & Kagel, 1997). The understanding of ‘normal swallowing’ is 

a constantly evolving concept within this field of research; studies investigating swallowing in 

healthy adults have demonstrated significant variance both within and across participants 

(Humbert et al., 2018; Steele et al., 2019). Swallowing is adaptive to various conditions 

dependent on bolus viscosity, volume and type of swallowing response, such as sequential 
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swallowing, or saliva swallows during sleep (Daniels & Foundas, 2001; Logemann, 1998; 

Steele et al., 2019). The swallowing mechanism is often conceptualised into three phases; 

however, to acknowledge the significant influence of input prior to the oral phase (Leopold & 

Kagel, 1997), the process of deglutition will be described using four theoretical stages below. 

The phases are complex overlapping sequences. The innervations and durations of each phase 

are highly dependent on interneuronal connections incorporating sensorimotor feedback for 

precise and timely responses (Jean, 2001; Martin-Harris et al., 2005b). 

 

2.1.1 The Pre-oral Phase 

Inclusion of the pre-oral phase of ingestive swallowing is important in recognition of the 

cognitive, motor and sensory stimuli before the bolus enters the oral cavity. These factors 

interact with external environmental aspects and heavily influence individual mealtime 

behaviours. Cognitive or physiological impairments can impact the level of attention, 

awareness of hunger, level of inhibition, speed of eating and the overall safety of deglutition 

(Leopold & Kagel, 1997).  

 

External or environmental factors that influence somatosensory preparation can have a 

significant impact on efficiency of swallowing. Pre-oral visual, sensory and cognitive 

information impacts the resulting oropharyngeal motor response. Deglutition typically begins 

as the olfactory nerve (CN I) and optic nerve (CN II) are activated and provide crucial sensory 

information regarding the smell and sight of the food before the bolus enters the oral cavity 

(Steele & Miller, 2010). This sensory input travels to associated cortical areas for cognitive 

processing and can stimulate saliva production, oral intake and swallowing (Design Council, 

2012; Ebihara et al., 2005). Several examples of altered motor responses to external stimuli 

have been demonstrated in healthy individuals. Some smells, such as citrus, can excite the 
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central nervous system (CNS) for up to 90 min (Wahab et al., 2010); other olfactory input can 

over-excite the CNS and inhibit swallowing (Steele & Miller, 2010). Leopold and Kagel (1997) 

considered this pre-oral phase particularly important to assess in individuals with neurogenic 

conditions as the changes within the CNS associated with these conditions can evoke cognitive, 

psychological and pre-oral sensorimotor impairments. Sensory events occurring before the 

bolus has entered the oral cavity can influence the subsequent mechanisms and exacerbate 

swallowing dysfunction.  

 

2.1.2 The Oral Phase 

The oral phase is predominantly under voluntary control and involves preparation and transport 

of the bolus within the oral cavity. Continuous sensory feedback is crucial throughout this 

phase; information regarding bolus type, volume, taste and temperature feeds into motor 

programme formulation. Afferent information including taste, touch and thermal sensation 

from the tongue, oropharynx, palatine tonsils and faucal pillars integrates via the sensory nuclei 

of CN V, VII and IX located at the nucleus tractus solitarius (NTS) within the central 

swallowing centre (Jean, 2001; Perlman & Christensen, 2003). This sensory information 

influences the frequency and pressure of mastication, bolus placement, formation and transport 

posteriorly when entering the oropharynx (Lowell et al., 2008). Elements such as mastication 

are centrally controlled and can be influenced by sensory feedback. This is demonstrated during 

mastication of an unanticipated texture as the rhythmic motion automatically ceases, and the 

motor programme is adapted (Humbert & Joel, 2012).  

 

Acceptance of the bolus occurs through relaxation of orbicularis oris (CN VII) and jaw opening 

is facilitated by active contraction of the geniohyoid (ansa cervicalis), anterior belly of the 

digastric and mylohyoid muscles (CN V); this movement is combined with the antagonist 
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relaxation of the temporalis and masseter muscles (CN V) and stabilisation of the hyoid bone 

(Perlman & Christensen, 2003). The intrinsic lingual muscles (CN XII) change the shape of 

the tongue to accept the bolus into a cupped midline. The bolus is controlled anteriorly within 

the oral cavity; adequate labial seal through contraction of orbicularis oris (CN VII) is required 

to avoid oral spillage. Glossopalatal approximation, a protective mechanism to prevent pre-

swallow pharyngeal pooling, is initiated through activation of the pharyngeal plexus (CN IX 

and CN X) which contracts the palatoglossus, styloglossus (CN XII), posterior belly of the 

digastric and stylohyoid muscles (CN VII). This is one of the initial involuntary protective 

mechanisms of the swallowing response to prevent airway compromise (Daniels et al., 2019). 

The larynx and pharynx are at rest during this phase, and nasal breathing occurs (Logemann, 

1998). 

 

The position of the bolus within the oral cavity varies across individuals. During mastication, 

contraction of styloglossus, intrinsic lingual muscles and extrinsic lingual muscles (CN XII) 

re-centre the bolus between dentition. Adequate lingual control and buccinator muscle 

contraction (CN VII), prevents lateral sulci residual and manipulates the bolus into a cohesive 

shape. Contraction of the external pterygoids (CN V) allows for lateral mandibular movement 

during rotary masticatory cycles. These rhythmic cycles are sequenced with lingual movement 

manipulating the bolus into position, mixing with saliva to be broken down by dentition. Taste 

via CN VII travels directly to the NTS and is perceived with cortical processing within the 

insula and primary sensory regions (Hamdy et al., 1999).  

 

Lastly, the oral phase involves bolus transport and propulsion which greatly influences timely 

initiation of the pharyngeal phase (Jean, 2001). Once bolus preparation is sufficiently complete, 

lingual approximation pushes the bolus against the hard palate to generate intra-oral pressure 
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and propel the bolus into the oropharynx. Deep proprioceptive receptors of the base of tongue 

(BoT) and oropharynx relay this sensory pressure information to the brainstem to initiate the 

pharyngeal phase motor program (Jean, 2001). During bolus transport, thicker and harder foods 

typically require greater pressure and more swallows to clear compared to the same volume of 

a thinner texture (Steele et al., 2019). These systemic adaptations of intra-oral pressures and 

bolus propulsion are highly influential in the efficient activation of subsequent phases of 

deglutition. Impaired sensory feedback from the oral cavity to the NTS can alter intrabolus 

pressures, delay pharyngeal pressures and result in inadequate hyoid excursion impacting on 

relaxation of the upper oesophageal sphincter (UES) (Steele & Miller, 2010). 

 

2.1.3 The Pharyngeal Phase 

The sequenced activation of sensory receptors and muscle groups are crucial during the 

transition between oral and pharyngeal phases (Martin-Harris et al., 2008). Logemann (1998) 

described the onset of the pharyngeal stage as the moment the “leading edge of the bolus passes 

any point between the anterior faucial arches and the point where the tongue base crosses the 

lower rim of the mandible” (Logemann, 1998, p. 29). If the pharyngeal response was not 

initiated by this anatomical point, it was traditionally considered a delayed swallowing event. 

However, in healthy subjects, the anatomical level where the oral phase ends and the 

pharyngeal phase begins is highly variable both within and between individuals. Recent studies 

report that the bolus commonly accrues in the vallecula and may reach the level of the pyriform 

sinuses before the pharyngeal response is initiated in healthy individuals (Daniels & Foundas, 

2001; Humbert et al., 2018; Steele et al., 2019). Once this initiation occurs at the end of the 

oral phase, the pharyngeal phase is typically considered reflexive due to the irreversible 

sequence of events that occur (Jean, 2001; Logemann, 1998); however, this ‘all or nothing’ 

response is modulated and adapts according to task and bolus type (Daniels & Foundas, 2001).  
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The leading biomechanical markers to indicate the onset of the pharyngeal phase are 

hyolaryngeal excursion (Nam et al., 2015) and arytenoid adduction (Langmore, 2006; Van 

Daele et al., 2005). This complex, yet rapid phase is characterised by both innervation and 

inhibition for groups of paired muscles. Figure 2.1 represents the temporal sequence of integral 

events during swallowing, including the sequence of muscle activation.  

 

Figure 2.1 

Representation of the Temporal Order of key Oropharyngeal Swallowing Events:  

Summarised from Studies Utilising Videofluoroscopy, Endoscopy, Needle 

Electromyography and Submental Electromyography 

 

Note. Key: *McCulloch et al., unpublished data; **Perlman AL, Palmer PM, McCulloch 

TM, Van Daele DJ. Electromyographic activity from human laryngeal, pharyngeal and 
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submental muscles during swallowing. J Appl Physiol 1999;86(5):1663 -

1669. ***Perlman AL, Van Daele DJ. Simultaneous videoendoscopic and ultrasound 

measures of swallowing. J Med Speech Lang Pathol 1993;1(4):223–232. ****Shaker R, 

Dodds WJ, Dantas RO, Hogan WJ, Arndorfer RC. Coordination of deglutitive glottic 

closure with oropharyngeal swallowing. Gastroenterology 1990; 98:1478–1484. Note: 

Dashed and thin lines represent standard deviations. From: “Endoscopic evaluation of 

oral and pharyngeal phases of swallowing” by Langmore (2006). In R. Goyal & R. 

Shaker (Eds.), GI Motility online (para. 11). Nature. 

https://www.nature.com/gimo/contents/pt1/full/gimo28.html 

 

As the bolus is propelled into the pharynx, activation of levator veli palatini (pharyngeal 

plexus) facilitates soft palate retraction to connect to the posterior pharyngeal wall and anterior 

bulging adenoid pad. This velopharyngeal closure seals off the nasopharynx, avoiding bolus 

redirection and contributes to the increased oropharyngeal pressure (Perlman & Christensen, 

2003). During this period, hyolaryngeal excursion is completed. This movement is facilitated 

by contraction of the suprahyoid or submental muscles; specifically, the mylohyoid (CN V), 

anterior belly of the digastric (CN V) and geniohyoid muscles (ansa cervicalis) pull the hyoid 

anteriorly whilst the stylohyoid (CN VII) and posterior belly of the digastric (CN VII) pull the 

hyoid superiorly (Perlman & Christensen, 2003). The submental muscles integral for 

swallowing are depicted in Figure 2.2. Neural redundancy is observed as hyolaryngeal 

excursion is innervated by three cranial nerves (CN V, VII and XII) with three separate nuclei. 

Laryngeal elevation occurs through a combination of hyoid motion and contraction of the 

thyrohyoid muscles (ansa cervicalis). This superior movement of the thyroid cartilage during 

supraglottic shortening contributes to epiglottic inversion to complete aryepiglottic 

approximation (Logemann, 1998).  
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Figure 2.2 

Anatomical representation of the suprahyoid or submental muscles in the inferior view 

  

Note. Reprinted with permission from Gray’s Anatomy for Students: Third Edition, (p. 

1008) by Drake, R., Vogl, A. W., Mitchell, A. W. M., (2015), Churchill Livingstone 

Elsevier, Canada. 

 

BoT retraction continues after the bolus has passed. Simultaneous contraction of the stylohyoid 

(CN VII), posterior belly of the digastric muscles (CN VII), hyoglossus (CN XII), genioglossus 

muscles (CN XII) and glossopharyngeus muscles (pharyngeal plexus) facilitates BoT contact 

with the posterior pharyngeal wall. This contact is important to ensure sufficient pressure is 

generated to drive the bolus through the pharynx. A combination of the BoT retraction and 

posterior bolus propulsion contributes to passive posterior horizontal inversion of the epiglottis. 

Pharyngeal shortening reduces the distance the bolus has to travel whilst reducing intraluminal 

area. Afferent fibres of CN IX are closely connected to the pharyngeal branch of CN X to form 

the pharyngeal plexus. Motor efferents of the pharyngeal plexus initiate symmetrical 

pharyngeal narrowing and shortening through innervation of the palatoglossus, 
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palatopharyngeus, salpingopharyngeus, levator veli palatini and uvular muscles. The superior 

and middle pharyngeal constrictors contract sequentially during pharyngeal shortening to clear 

the tail of bolus through the pharynx. The duration of the shortening increases with bolus 

volume and the greatest average displacement of 22 mm occurs at the pharyngeal area between 

the vallecula and superior margin of the arytenoids (Kahrilas et al., 1992).  

 

There are several levels of airway protection, which again represent redundancies in the system 

to compensate for failures in the mechanism. The larynx is closed at four levels, typically 

described as an inferior reaction (bottom up response) within the supraglottic space (Vose & 

Humbert, 2018). These include true vocal fold adduction, approximation of false vocal folds, 

epiglottic deflection and anterior movement of the arytenoids to approximate with the base of 

the inverted epiglottis (Vose & Humbert, 2018). The onset of laryngeal closure through 

arytenoid medialisation is one of the first events of swallowing (Van Daele et al., 2005), 

however full adduction is not complete until after hyolaryngeal elevation. Two branches of CN 

X, namely the superior laryngeal nerve (SLN) and recurrent laryngeal nerve are critical to 

facilitate efficient LVC. The SLN conveys sensory afferents from the laryngopharynx, 

epiglottis, supraglottic laryngeal mucosa and aryepiglottic folds and the recurrent laryngeal 

nerve conveys subglottic sensation (Jean, 2001). LVC is considered complete at the moment 

of no visible airspace on VFSS, which represents contact between the arytenoids and the base 

of epiglottis with complete epiglottic deflection (Vose & Humbert, 2018). The upward 

response of true and false vocal fold adduction contributes to the expulsion of any materials in 

the laryngeal vestibule as an additional line of defence. Anterior tilting of the arytenoid 

cartilages by the aryepiglottic and lateral cricoarytenoid muscles cover up to half of the LVC. 

The inward rocking movement of arytenoid cartilages, and anterior superior laryngeal 

movement closes the laryngeal vestibule by meeting the thickened base of the epiglottis. The 
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corniculate and cuneiform cartilages within the arytenoids form additional protection as the 

bolus is re-directed to the lateral channels into the UES. Epiglottic deflection facilitates 

compression of the quadrangular membrane over the anterior glottis to protect the airway which 

also re-directs the bolus laterally. Finally, pharyngeal constriction manoeuvres the tip of the 

epiglottis to obtain full contact with arytenoid base (Vose & Humbert, 2018). Expiration 

immediately post-swallowing can be viewed as an additional level of airway protection to eject 

any residual bolus and prevent aspiration. 

 

The events of LVC onset and duration are highly associated with UES opening and duration 

(Steele et al., 2019). Hyolaryngeal excursion combined with pharyngeal shortening and the 

oropharyngeal pressures driving the bolus facilitates opening of the UES (Logemann, 1998). 

The UES consists of the cricopharyngeus muscle, the inferior pharyngeal constrictors and 

rostral oesophageal musculature (Williams et al., 2001). At rest, the UES is contracted through 

tonic activation of the cricopharyngeus muscle. During the pharyngeal motor response, the 

UES has the greatest tension immediately prior to relaxation through innervation of the SLN 

(CN X) (Perlman & Christensen, 2003). A combination of cricopharyngeus muscle relaxation 

and laryngeal excursion contributes to UES opening and results in a drop in pressure at the 

UES. UES opening occurs earlier and increases in response to larger bolus volumes (Cock et 

al., 2017). As the larynx returns to rest position and lowers, the UES contracts and closes 

(Logemann, 1998). 

 

2.1.4 The Oesophageal Phase 

Unlike the striated muscles involved in the oral and pharyngeal phases of swallowing, the 

oesophageal phase is comprised of both striated and smooth muscle fibres. Striated muscles of 

the superior oesophagus are controlled by cranial motor neurones; the lower thoracic 
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oesophagus smooth musculature is controlled by the autonomic nervous system (Jean, 2001). 

The UES forms the superior boundary of the oesophagus. After the bolus travels through the 

UES, it then returns to a contracted tonic state of closure signalling the onset of the oesophageal 

phase (Cock et al., 2017). The bolus travels distally through the oesophagus via sequential 

peristalsis to the lower oesophageal sphincter (LES) which delineates the border of the 

oesophagus leading into the stomach. The LES is a muscular sphincter which, like the UES, 

relaxes during opening, and tonically contracts at rest. Typical timing of this phase can vary 

from eight to 20 s dependent on the bolus and amplitude of response (Dodds et al., 1973).  

 

2.2 Neural Control of Swallowing 

Swallowing was once considered a purely reflexive motor task, namely brainstem driven via 

bulbar lower motor neurones. However, more recent research has suggested that swallowing 

relies on complex and widespread neural connections within the CNS including cortical 

modulation (de Lima et al., 2015; Flowers et al., 2017; Wilmskoetter et al., 2020). This input 

can be conceptualised as a reciprocal cycle of planning and modulation involving several 

cortical, subcortical and peripheral regions.  

 

2.2.1 Brainstem Control of Swallowing 

The brainstem is well-documented as key in the biomechanical response during voluntary and 

involuntary deglutition (Avivi-Arber et al., 2011; Doty, 1968; Flowers et al., 2011; Jean, 2001; 

Jean & Dallaporta, 2006). The construct of highly synchronised, bilateral central pattern 

generators (CPGs) have been proposed which consist of three sets of neurones: afferent 

neurones, efferent neurones and interneurons (Jean & Dallaporta, 2006; Miller, 2008). Afferent 

neurones transport bilateral sensory information from peripheral and subcortical input. The 

motor neurone efferents are activated in response to stimulation of the motor nerves. 
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Interneurons connect two groups of neurones within the medulla: the dorsal swallowing group 

(DSG) which includes the NTS and other neurones located in the dorsal medulla, and a ventral 

swallowing group (VSG), located in the ventrolateral medulla (Jean 2001). The DSG consists 

of bilaterally distributed generator neurones and adjacent reticular formation to initiate and 

shape the timing of sequential or rhythmic swallowing programs. The VSG contains switching 

neurons including the nucleus ambiguus (NA) which synapse on the bulbar motor nuclei to 

distribute and execute the swallowing motor program via motor neurones (Lang, 2009). These 

linear networks of neurones are organized based on the rostrocaudal anatomy of the swallowing 

tract to innervate sequential activation of NA to drive the bilateral muscles (Jean & Dallaporta, 

2006). Evidence to support the presence of a swallowing specific CPG can be observed as a 

human foetus can produce a primitive swallowing reflex at 12-weeks gestation in the absence 

of developed cortical and subcortical regions (Hooker, 1954).  

 

The swallowing CPG receives descending input from the cerebral cortex and subcortical areas 

as well as ascending peripheral input as summarised in Figure 2.3 (Lang, 2009). Sensory 

feedback from peripheral receptors of the pharynx, larynx, and oesophagus is essential for 

preparing the CPG and inducing the motor sequence (Lowell et al., 2008).  

 

  

https://www.nature.com/gimo/contents/pt1/abbreviations/gimo9_abbreviations.html#df3
https://www.nature.com/gimo/contents/pt1/abbreviations/gimo9_abbreviations.html#df11
https://www.nature.com/gimo/contents/pt1/abbreviations/gimo9_abbreviations.html#df3
https://www.nature.com/gimo/contents/pt1/abbreviations/gimo9_abbreviations.html#df11
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Figure 2.3 

Summary of Swallowing Afferent and Efferent Cortical, Brainstem and Peripheral 

Circuits 

 

  Note. DSG: dorsal swallowing group within NTS; VSG: ventral swallowing group in 

the ventrolateral medulla. The simplicity of the oesophageal circuit is noted with a 

direct synapse between the DSG and to the motor nuclei. NA: Nucleus Ambiguus, 

DMX: dorsal motor nucleus of CN X. Adapted from “Electrophysiologic 

characterization of the swallowing pattern generator in the brainstem,” by Jean, A., & 

Dallaporta, M., (2006). In R. Goyal, & R. Shaker (Eds.). GI motility online (para. 23). 

Nature. https://www.nature.com/gimo/contents/pt1/full/gimo9.html 
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The sensory nucleus of CN V spreads through the brainstem from midbrain to the medulla 

(Jean, 2001). The sensory nuclei of CN VII, IX and X are located at NTS. This integrated 

sensory feedback synapses at the sensory nucleus of the pons and the NTS within the medulla 

to adapt the pharyngeal response (Humbert et al., 2013). The motor nuclei of CN V and VII 

are located in the pons and the motor efferents of CN IX, X and XII originate from the motor 

nuclei located in NA (Perlman & Christensen, 2003). The geniohyoid is innervated by ansa 

cervicalis which consists of combined fibres of CN XII and anterior divisions of cervical spinal 

nerves 1 and 2. The extent of motor neurone participation and innervation of the peripheral 

musculature is dependent on afferent stimuli modulating the motor program generated by NTS. 

This motor program is transferred as part of the CPG circuits from the DSG to the VSG 

activating the key motor efferents of all motor nuclei involved in oropharyngeal swallowing 

(Jean & Dallaporta, 2006; Lang, 2009).  

 

Primitive reflexive swallowing, such as swallows occurring during sleep, is an example of a 

centrally generated, predictable patterned response in the absence of external feedback. In 

contrast, ingestive swallowing utilises extensive sensory input for efficient and precise motor 

output. Sensory afferents from the oral cavity, pharyngeal and laryngeal anatomical regions 

transmit crucial information to their respective primary sensory nuclei within NTS. Integration 

of tactile or chemical stimulation from peripheral afferents by NTS has demonstrated increased 

excitability of the swallowing motor cortex (Martin et al., 2001). Animal studies have 

demonstrated that the SLN (CN X) has direct innervation of NA to initiate a sequential 

pharyngeal motor response in the absence of cortical input (Lammers et al., 2020; Lang, 2009). 

Although the brainstem driven CPG response is crucial for deglutition, the role of cortical 

modulation has been demonstrated by the presence of dysphagic symptoms in the absence of 

brainstem or lower motor neurone damage (Travers, 2009; Wilmskoetter et al., 2020). 
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2.2.2 Cortical Regions Activated During Swallowing 

Understanding swallowing neural control was made possible by functional imaging, as well as 

clinical and animal studies utilising several methods to investigate central activation during 

swallowing. Recent advances in functional brain-imaging studies with healthy participants 

have proven critical in the evolving understanding of cortical involvement during different 

voluntary or automatic swallowing tasks (Humbert & Robbins, 2007).  

 

Ingestive swallowing requires input from several cortical and subcortical regions which begin 

during the oral-preparatory phase. Diffuse activation during deglutition makes it difficult to 

distinguish exact cortical regions responsible for initiation or modulation of specific feeding 

behaviours (Huckabee et al., 2003; Travers, 2009). Environmental cues, including visual and 

olfactory input, are integrated with cortically driven behavioural factors such as attention 

(frontal lobes), emotion (limbic system) and memory (temporal lobes). This input into the 

association cortices is processed across several cortical regions and travels within bilateral 

ascending and descending sensory, motor and interneuronal pathways to the CPG for 

programming and regulation of the swallowing response (Ebihara et al., 2014; Jean, 2001; 

Leopold & Kagel, 1997; Martin et al., 2001; Michou & Hamdy, 2009; Wilmskoetter et al., 

2020).  

 

Research utilising fMRI techniques in humans has reported activation of the primary motor 

cortex in up to 80% of participants during natural, subconscious saliva swallowing (Martin et 

al., 2001). A systematic review by Humbert and Robbins (2007) reflected these results and 

reported bilateral activation of both primary and sensory motor regions during automatic 

swallowing. Specifically, activation of the precentral gyrus (primary motor and premotor 
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cortices), insula and post central gyrus (primary somatosensory cortex) were most prevalent 

across the literature (Humbert & Robbins, 2007; Wilmskoetter et al., 2020). The premotor 

cortex, which medially houses the supplementary motor area, has widespread connections to 

the basal ganglia; these neural pathways are integral for development and refinement of 

voluntary motor programs (Martin et al., 2001). The insula contains the gustatory and olfactory 

cortices and has connections to the precentral gyrus to modulate motor functions (Tian & 

Zalesky, 2018). The insula also receives widespread cortical input from the frontal, parietal 

and temporal cortical regions associated with the primary motor and sensory cortices to mediate 

several sensory and motor aspects of the aerodigestive tract including swallowing and motor 

speech (Martin et al., 2001). Unlike the insula, which is reported to be active during both 

voluntary and involuntary swallowing, bilateral activation of the caudal anterior cingulate 

gyrus is more associated with voluntary saliva and bolus swallowing. This activation facilitates 

the completion of the targeted motor task through processing the sensory stimuli and generating 

the response (Martin et al., 2001).  

 

It is suggested that each progressive phase of swallowing is less dependent on cortical or basal 

ganglia modulation and becomes an increasingly brainstem-driven response (Jean, 2001; 

Leopold & Kagel, 1997). In both healthy and patient studies, bilateral cortical activation during 

swallowing has been reported (Humbert & Robbins, 2007; Martin et al., 2001); however, some 

evidence suggests the probability that one hemisphere is more dominant (Hamdy et al., 1999). 

This hemisphere dominance could present the potential for neural reorganisation of cortical 

control of swallowing in the event of cortical damage (Humbert & German, 2013; 

Wilmskoetter et al., 2020). This plasticity could be harnessed with targeted rehabilitation to 

promote more diffuse representation of swallowing across cortical regions to compensate and 

maintain function (Daniels et al., 2019; Humbert & German, 2013). 
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Subcortical structures are likely involved in initiation, monitoring and refinement of both 

voluntary and reflexive motor responses through processing of somatosensory feedback 

(Lowell et al., 2008). The basal ganglia has widespread cortical connections and processes 

somatosensory afferent information to influence the motor programs (Suntrup et al., 2012). 

Lesions involving the basal ganglia and internal capsule regions have a high incidence of 

dysphagia (> 75%) characterised by reduced efficiency of the motor response (Suntrup et al., 

2012; Wilmskoetter et al., 2020). In neurodegenerative diseases caused by dysfunction within 

these basal ganglia pathways, both voluntary and involuntary swallowing can be affected. More 

research is required to fully understand the role of structures such as the internal capsule, 

subthalamus, amygdala, hypothalamus, substantia nigra, putamen, globus pallidus and 

cerebellum during swallowing (Flowers et al., 2011; Humbert & Robbins, 2007; Leopold & 

Kagel, 1997). However, evidence has shown the interaction between cortical and subcortical 

regions is crucial for precise and efficient swallowing (Flowers et al., 2017; Leopold & Kagel, 

1997; Wilmskoetter et al., 2020).  
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Chapter 3. Assessment of Swallowing 

 

The complexity of the swallowing mechanism in healthy individuals has been described in 

Chapter 2. It is well reported that factors such as age, gender and swallowing condition produce 

different responses in amplitude and timing (Hiss et al., 2004; Logemann et al., 2000; Steele et 

al., 2019); therefore clear parameters of normal and disordered swallowing are inherently 

challenging to determine based on varied assessment techniques and methods of measurement. 

Accurate assessment and understanding of swallowing biomechanics is vital for differential 

diagnosis and targeted management of dysphagia. The accuracy of assessment is dependent on 

instrumentation and available tools to measure swallowing. Swallowing assessments are often 

limited by utilisation of unreliable measures, subjective variation and inconsistency of 

methods. Thus, misunderstanding of impairment can lead to misdiagnosis, inaccurate reporting 

and poorly targeted intervention. It is crucial for clinicians to consider the validity, reliability 

and feasibility of assessment methods for each patient.  

 

Validity is the extent to which an assessment accurately measures what it is intended to, 

whether as a diagnostic or screening tool. Swallowing assessment tools are considered to have 

higher validity if they have high sensitivity and specificity to correctly identify individuals who 

have dysphagia or are at risk of aspiration (Akobeng, 2007; Streiner, 2003). Sensitivity 

represents the proportion of people with the condition who receive a positive result. Specificity 

represents the proportion of people without the condition who receive a negative result. In 

swallowing screening and assessment, true validity is difficult to ascertain as the presence and 

parameters of impairment relies on comparison to imperfect and variable instrumental 

measurements (Giraldo‐Cadavid et al., 2017).  
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Reliability of swallowing assessments can include several parameters, but overall high 

reliability refers to consistent, stable and replicable results when measuring the same 

parameters under the same conditions. Test-retest reliability, intra-rater reliability and inter-

rater reliability are often reported in clinical research. Reliability is commonly quantified using 

the intraclass correlation coefficient (ICC). This method uses analysis of variance (ANOVA) 

and accommodates multiple raters and levels within the model to provide an estimate of 

variance (Downing, 2004; Weir, 2005). The ICC measures reliability as a ratio of variance 

between 0 and 1.0, values closer to 1.0 represent higher reliability (Weir, 2005). Generally, 

values > 0.8 are considered high, but this interpretation is dependent of the purpose of the 

assessment and consequences of the result (Downing, 2004). Reliability is affected by 

measurement acquisition referring to how the assessment has been administered, interpreted 

and extracted by the rater (Cook & Beckman, 2006). Test-retest reliability studies for measures 

of swallowing rarely separate these factors which could influence generalisability and clinical 

application. Inter-rater and intra-rater reliability should be clearly defined and reported 

(Downing, 2004).  

 

Feasibility of an assessment or screening method is important as it can be a significant barrier 

to implementation of a valid and reliable evidence-based swallowing evaluation (Daniels et al., 

2019). Feasibility regarding the cost, time taken, availability, discomfort, associated risks and 

general acceptability of that procedure for specific individuals is often influenced by clinician 

beliefs and service provision (Allen, 2019). The criteria and selection of the most appropriate 

assessment method depends on the clinician’s goal of intervention, this may be for screening, 

diagnostic, reviewing or monitoring purposes. The availability of expertise, technology and 

measurements reported also varies depending on the setting, for instance in research 
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laboratories compared to routine clinical practice in public healthcare settings (Martin-Harris 

et al., 2017). 

 

3.1 Observational and Behavioural Measures of Swallowing 

3.1.1 Clinical Evaluation of Swallowing 

There is widespread consensus that a detailed clinical bedside evaluation provides valuable 

information to identify individuals with dysphagia who may be at risk of aspiration (American 

Speech Language Hearing Association; Logemann, 1998). The clinical swallowing evaluation 

(CSE) typically includes non-instrumental, subjective measures of swallowing. This may 

include a detailed medical history, a comprehensive cranial nerve examination and oral trials 

(Logemann, 1998; McCullough & Martino, 2013). A thorough cranial nerve examination as 

part of the CSE provides valuable information regarding the function of cranial nerves integral 

for swallowing. Koch et al. (2017) validated their comprehensive cranial nerve examination 

and reported high sensitivity (0.89) and specificity (0.93) to identify swallowing impairment 

compared to instrumental assessment. However, standardised tools for completion of the CSE 

are limited in availability and infrequently utilised in clinical practice (McCullough et al., 

2000). McCullough and colleagues (2000) reported that methods and measures employed 

during the CSE vary widely across clinicians and have insufficient intra-rater and inter-rater 

reliability across many parameters which is independent of clinician experience. In patients 

with neurogenic dysphagia, CSE has highly variable sensitivity (27% to 85%) and specificity 

(63% to 88%) to identify dysphagia compared to instrumental imaging methods (Bours et al., 

2009). Further, CSE is problematic in terms of the inability to diagnose pharyngeal phase 

dysphagia or evaluate swallowing efficiency. In addition, it has consistently low sensitivity for 

identifying those at risk of aspiration across all patient populations (Coyle, 2015; McCullough 

& Martino, 2013; O'Horo et al., 2015). As the bolus cannot be directly visualised, an absent 
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cough response is not sufficient to rule out silent aspiration (Coyle, 2015). Clinical adjuncts to 

the CSE such as cough reflex testing could provide a clear protocol to identify patients with 

reduced sensorimotor integrity and risk of silent aspiration (Miles et al., 2013). The CSE 

provides valuable information to help the clinician hypothesise about possible impairments and 

guide the most appropriate instrumental assessment procedures (Coyle, 2015). Where possible, 

each aspect of the CSE should be integrated with instrumental assessment results to refine and 

formulate hypotheses regarding the pathophysiology of that patient and guide effective 

management (Daniels et al., 2019).  

 

3.1.2 Timed Water Swallowing Test 

To improve the replicability of subjective CSE, validated behavioural assessments of ingestion 

could be included to provide quantifiable assessment and monitoring of swallowing efficiency. 

Assessment of water swallowing is widely referenced in the literature as both a screening 

assessment and objective behavioural assessment of ingestion. In screening, qualitative 

judgements of the presence of overt signs of aspiration (including coughing or change in voice 

quality) are recorded. DePippo et al. (1992) evaluated the 3 oz water swallowing test as a 

screening tool in acute stroke patients; they reported high sensitivity of 94% and lower 

specificity of 26% in the detection of severe aspiration.  

 

In contrast to swallowing screening, the additional quantification of time to complete the task 

allows for several parameters of swallowing efficiency to be calculated. The Timed Water 

Swallowing test (TWST) is a quick, easy and inexpensive assessment requiring readily 

available material. The patient is instructed to drink a measured cup of water (typically 100 ml 

or 150 ml) “as quickly as is comfortably possible” (Hughes & Wiles, 1996, p. 110). The time 

taken and the number of swallows (observed movement of the thyroid cartilage) are 
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documented and three quantified swallowing parameters are subsequently calculated: average 

volume per swallow, swallowing capacity and average time per swallow (Hughes & Wiles, 

1996). The TWST has been reported as a valid and reliable measure of swallowing efficiency 

with established normative data for identification of patients with mild swallowing impairment 

(Hughes & Wiles, 1996; Nathadwarawala et al., 1992). Test-retest, intra-rater and inter-rater 

reliability were evaluated by six raters reviewing video recordings of neurological inpatients 

(n = 81) and healthy participants (n = 101) completing the TWST. A sensitivity of 96% and 

specificity of 69% were reported for the speed of swallowing measure (Nathadwarawala et al., 

1992). Although the bolus or swallowing biomechanics cannot be directly visualised during 

the assessment, the TWST has been validated with VFSS in dysphagic patients with a reported 

sensitivity of 85% and specificity of 50% (Wu et al., 2004). Hughes and Wiles (1996) also 

demonstrated that the TWST is effective in identifying dysphagia in motor neurone disease 

(MND) as the specified parameters significantly differed compared to healthy participants. 

This assessment cannot inform differential dysphagia diagnosis, but sufficient evidence 

suggests it is a sensitive screening and assessment tool to inform clinicians of patient 

performance during ingestion of fluids (Ismail et al., 2019; Lin et al., 2002; Wu et al., 2004). 

This is a valuable quantitative aspect of the clinical evaluation which can be repeated, 

compared to normative data, and used for monitoring function in neurodegenerative 

populations. 

 

3.1.3 Test of Masticating and Swallowing Solids  

The Test of Masticating and Swallowing Solids (TOMASS), much like the TWST, provides 

objective measurement of swallowing ingestion that can be used for identification of 

impairment. Evaluation of mastication has previously been based on subjective clinical 

observations of dentition, oral control and timing. Alternatively, mastication can be measured 
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using objective techniques such as bite force, electromyography and infra-red video recordings 

which require specialist equipment and expertise (Hennequin et al., 2005). Impaired 

mastication, reduced orolingual pressures and ability to swallow a solid bolus are common in 

aetiologies with lower motor neurone involvement; moreover, oral phase dysfunction 

impacting on the pharyngeal phase has been identified in individuals with dysphagia and 

reduced cognition, such as dementia (Goodrich & Walker, 2019; Leopold & Kagel, 1997).  

 

The TOMASS involves ingestion of a specified commercially available cracker. Patients are 

instructed to eat the portion of cracker “as quickly as is comfortably possible and when you 

have finished, say your name out loud” (Huckabee et al., 2017, p. 4). The time taken to finish 

the entire cracker, identified by the participant saying their name, is recorded. In addition, the 

number of discrete bites, masticatory cycles and observed swallows are collected. Extensive 

normative data are available from a series of studies accumulated by Huckabee and colleagues 

(2017). The authors reported high test-retest (ICC = 0.83 - 0.98) and inter-rater reliability (ICC 

> 0.98) with healthy participants and had high reliability when validated against instrumental 

measures of mastication (ICC = 0.99), respiration and thyrohyoid movement (ICC = 0.83). This 

is consistent with other literature validating objective measures of masticatory time and cycles 

against instrumental measures in healthy volunteers (Hennequin et al., 2005). Preliminary 

validation using surface electromyography (sEMG) measures of the masseter muscles also 

reported high correlation with masticatory cycles in patients with Parkinson’s disease (PD) 

(Athukorala et al., 2014). Further validation of this measure in other aetiologies would be 

beneficial. The TOMASS provides a standardised method to evaluate the efficiency of solid 

bolus ingestion compared to international normative data. 
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3.1.4 Patient Reported Outcome Measures 

Self-reported questionnaires can be valuable for the purpose of dysphagia screening and as 

adjuncts to clinical assessment. Several standardised patient reported measures are available 

for dysphagia screening, including the Eating Assessment Tool (EAT-10) and Sydney Swallow 

Questionnaire (McCullough & Martino, 2013). The EAT-10 is easily administered with ten 

items focused on the patient’s perspective of the presence and burden of dysphagia symptoms 

(Belafsky et al., 2008). A cut off score of three or more indicates the risk of dysphagia requiring 

further assessment. Although the EAT-10 was not developed as a stand-alone screening tool, 

it has been validated for detection of dysphagia across various aetiologies (Belafsky et al., 

2008; McCullough & Martino, 2013). Rofes et al. (2014a) validated the EAT-10 against VFSS 

instrumental assessment in patients referred with suspected dysphagia (n = 120), the authors 

reported 86% sensitivity and 68% specificity in detecting dysphagia compared to healthy 

controls (n = 14). The EAT-10 has now been validated in over 15 languages and multiple 

patient populations (Lechien et al., 2019). However, a recent evaluation of the psychometric 

properties of the EAT-10 identified weaknesses in the internal consistency and structural 

validity of the measure (Cordier et al., 2017). Therefore, this commonly utilised tool may not 

be sufficient as a stand-alone screening tool or outcome measure and should be interpreted in 

conjunction with other assessment methods. 

 

Quality of life (QoL) assessment is an important aspect of swallowing evaluation as the 

psychosocial impact of dysphagia is associated with reduced QoL, self-esteem and increased 

burden (Ekberg et al., 2002). Self-reported QoL questionnaires are valuable tools to quantify 

the impact of dysphagia. There are several standardised patient-reported QoL measures specific 

to swallowing, such as the MD Anderson Dysphagia Inventory, Swallowing Quality of Life 

Questionnaire (SWAL-QoL) and the Swallowing Disturbance Questionnaire (Keage et al., 
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2015). Many disease specific QoL questionnaires have also been developed for 

neurodegenerative diseases including PD, Multiple sclerosis, HD and MND. The SWAL-QoL 

consists of 44 questions divided into 10 domains (burden, eating duration, eating desire, food 

selection, communication, fear, mental health, social, sleep, and fatigue). Each question is 

scored on a five-point Likert scale and total scaled scores are calculated out of 100 (McHorney 

et al., 2002). The number of items which are used to represent each domain varies from two to 

five, therefore, domains such as social functioning are more weighted than food selection. 

Higher scores indicate better perceived QoL. The SWAL-QoL has been validated in several 

languages and can be self-administered or completed with a clinician. Clinical validity of the 

SWAL-QoL has been reported with significant correlations with VFSS oral transit time, total 

swallow duration and PAS in patients (n = 386) with dysphagia (McHorney et al., 2006). 

Evaluation of the SWAL-QoL test-retest, inter-rater and intra-rater reliability reported 

excellent internal consistency, reliability and stability (McHorney et al., 2002). It was also 

validated in patients with PD, those with identified dysphagia scored significantly lower 

compared to the non-dysphagic group (p = 0.02) (Plowman‐Prine et al., 2009). Compared to 

other self-reported swallowing questionnaires, the SWAL-QoL takes longer to complete 

(approximately 15 minutes) which requires the patient to have sustained attention, a good level 

of literacy and adequate self-awareness. The increased clinical burden to complete the SWAL-

QoL may limit the application of this tool into routine clinical practice (Keage et al., 2015). 

However, for research purposes, the SWAL-QoL has shown sufficient acceptability in terms 

of administration and sensitivity to detect change in neurodegenerative conditions and is 

frequently reported as a swallowing outcome measure (Athukorala et al., 2014; Ayres et al., 

2016; Leow et al., 2010). 
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3.2 Imaging of Swallowing Biomechanics 

Imaging techniques are essential for evaluation of swallowing, dysphagia diagnosis and 

treatment planning (Daniels et al., 2019; Inamoto & Saitoh, 2018). Clinicians and researchers 

rely on instrumental assessments to observe aspiration events, evaluate risk and understand the 

cause and effect of pathophysiology characterising the individual’s swallowing performance 

(Inamoto & Saitoh, 2018). Recent technical advances have aided the development of several 

imaging methods of swallowing anatomy at rest and during swallowing (Allen, 2019). Methods 

include videofluoroscopy, computed tomography (CT), magnetic resonance imaging (MRI), 

endoscopy, ultrasound (US) and manometry. The most common swallowing assessments are 

videofluoroscopic swallowing study (VFSS) and fibreoptic endoscopic evaluation of 

swallowing (FEES) techniques (Inamoto & Saitoh, 2018). 

 

3.2.1 Videofluoroscopy  

Videofluoroscopic swallowing study (VFSS) is the most common instrumental assessment of 

swallowing biomechanics (Frowen et al., 2008). VFSS involves radiographic evaluation of the 

oral, pharyngeal and oesophageal phases of swallowing. Images can be collected in the lateral 

and anterior-posterior view. A bolus is combined with barium sulfate contrast agent (20% to 

40% weight to volume ratio) to allow for visualisation through the aerodigestive tract (Martin-

Harris et al., 2017; Steele et al., 2019; Stokely et al., 2015). Patients with suspected dysphagia 

undergo VFSS for evaluation of swallowing safety and efficiency, particularly individuals with 

neurological conditions or sensory impairments (Allen, 2019). VFSS provides visualisation of 

key events across the phases of swallowing, these include the extent and timing of hyolaryngeal 

excursion, epiglottic deflection, residual in the vallecula, pyriform sinus or pharynx (Allen, 

2019; Martin-Harris et al., 2008). In addition to visualisation of swallowing biomechanics, the 

presence, timing and extent of ingested material entering the laryngeal vestibule (penetration) 
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or continuing below the level of the vocal folds into the trachea (aspiration) is evaluated during 

VFSS. The effectiveness of compensatory approaches such as diet modification or postural 

changes could also be evaluated during VFSS (Logemann, 1998).  

 

The clinical environment and artificial structure of VFSS provides only a snapshot of conscious 

or cued swallowing, which may not be representative of typical unrestricted feeding behaviours 

(Inamoto & Saitoh, 2018). Limitations of this technique include radiation exposure, poor 

temporal resolution of assessments, subsequent movement artefacts and expertise and 

equipment required (Allen, 2019; Leonard, 2019b). At present, instrumental assessment of 

swallowing often relies on subjective interpretation of non-standardised protocols (Benfield et 

al., 2020). To improve accuracy and reliability of interpretation, there is a need for consistent 

use and understanding of quantitative measures implemented in both clinical and research 

settings.  

 

3.2.1.1 Videofluoroscopic Spatial Measurements  

There are various protocols and software applications described in the literature to obtain 

spatial and temporal measures of swallowing using frame by frame analysis of the video clips 

(Baijens et al., 2013a; Kim & McCullough, 2008; Leonard & McKenzie, 2006; Logemann et 

al., 2000; Molfenter & Steele, 2014; Sia et al., 2012). Spatial measures such as hyoid excursion, 

UES distention and pharyngeal constriction are frequently measured in research due to their 

highly predictive properties for increased risk of aspiration and pharyngeal residual in 

dysphagic patients (Easterling & Shaker, 2013; Kendall & Leonard, 2001; Leonard et al., 2011; 

van der Kruis et al., 2011). There is, however, lack of consensus about consistent methods to 

quantify swallowing parameters during VFSS (Steele et al., 2020; van der Kruis et al., 2011). 

The reliability of swallowing measures varies dependent on the methods utilised. Poor inter-
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rater agreement in obtaining these measures raises questions about the validity of objective 

VFSS outcomes (Steele et al., 2020). Studies utilising semi-automatic computational analysis 

to measure pharyngeal constriction have reported the highest inter-rater reliability of all VFSS 

outcome measures (ICC = 0.92 - 0.99) (Leonard, 2019a; Schwertner et al., 2016). However, 

the trajectories analysed by this software did not provide kinematic measures to compare across 

assessments (Schwertner et al., 2016). Further, the stipulated coordinates to obtain this measure 

were visually inspected and adjusted by the raters which could inflate the high inter-rater 

reliability reported. This heterogeneity of methods to obtain the same quantitative 

measurements prevents direct comparison of raw data between studies (Sia et al., 2012). 

 

3.2.1.2 Videofluoroscopic Temporal Measurements 

VFSS can be conducted in continuous or pulsed modes. Thirty pulses per second is the standard 

and often referred to as continuous. Less than 30 pulses per second reduces the amount of 

radiation exposure but lowers the temporal resolution of the images (Mulheren et al., 2019). 

Given the speed of which oropharyngeal swallowing occurs, it is crucial that the screening rate 

is high to accurately visualise bolus flow and anatomical movement. Images should be captured 

at 30 frames per second (fps) to optimally identify timing events and calculate the relationship 

between events; < 15 fps is not sufficient to capture all temporal and spatial aspects of 

swallowing (Levine & Rubesin, 2017; Martin-Harris & Jones, 2008; Vose & Humbert, 2018), 

but 15 fps is most commonly used in clinical practice (Benfield et al., 2020). Although the 

optimal frame rate is 30 fps, this may be restricted to 25fps in some countries such as New 

Zealand due to mechanical restrictions within the radiological equipment. The difference 

between 30 fps and 25 fps equates to a difference of 0.01 s for each image captured. To what 

extent the difference in 5 fps would influence VFSS outcome measurements has not been 

evaluated; however, Mulheren and colleagues (2019) reported significant differences in bolus 
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transit times when comparing the same swallows of patients with acute stroke (n = 20) at 15 

fps and 30 fps. The authors noted a trend for longer bolus transit times for thin fluids and 

pudding boluses with 30 fps but no significant differences in PAS ratings or inter-rater 

reliability (ICC > 0.95) for both frame rates (Mulheren et al., 2019).  

 

Like the spatial measures obtained from VFSS, several methods exist for measurement of the 

temporal events within the literature. These methods include utilisation of anatomical reference 

points and biomechanical relationships, (Kahrilas et al., 1997) or a combination of swallowing 

response times compared to biomechanical events in response to bolus transport (Leonard, 

2019a). Clinical application of these frame by frame analyses of swallowing sequence timings 

are seldom used in clinical practice (Martin-Harris & Jones, 2008). The lowest inter-rater 

reliability in dysphagic patients (K = 0.22 and K = 0.30) was reported for visuoperceptual 

judgements such as ‘delayed’ pharyngeal reflex (Baijens et al., 2011). It is important to 

acknowledge these common inaccurate observations and subjective judgements such as 

‘delayed swallowing’ could affect differential diagnosis and evidence-based management 

(Baijens et al., 2011; Stoeckli et al., 2003).   

 

These methods of measuring timing and displacement aspects of swallowing often require 

specialist equipment, expertise and can be time consuming (Martin-Harris et al., 2017). The 

development and implementation of standardised reporting methods are required to quantify 

the level of impairment. One example of a descriptive tool to quantify dysfunction is the 

Modified Barium Swallow Impairment Profile (MBSImP™©) (Martin-Harris et al., 2008; 

Martin-Harris et al., 2017). This tool requires specific clinician training and competency 

standards to ensure validity and reliability as reported in the literature (Martin-Harris et al., 

2017). As certified programmes may be limited by training accessibility, ‘in house’ analysis 
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protocols are most frequently implemented in clinical practice (Benfield et al., 2020). The 

simplification of highly complex sensorimotor events using semi-objective ratings, as is 

involved in application of the MBSImP™©, may not be sufficient in order to measure change 

and does not quantify timing of events. For instance, judging LVC as ‘complete’, ‘incomplete’ 

or ‘none’ does not provide sufficient detail as a swallowing outcome measure (Frowen et al., 

2008). Further peer review would be beneficial to evaluate to what extent the MBSImP™© 

descriptions reflect functional outcomes. Despite these inevitable limitations, standardised 

tools provide a framework for shared terminology across settings to improve the quality of 

reporting outcomes and allow for more meaningful comparison between assessments (Martin-

Harris & Jones, 2008).  

 

3.2.1.3 The Penetration Aspiration Scale 

The most widely reported quantified measure of swallowing safety is the Penetration 

Aspiration Scale (PAS) (Rosenbek et al., 1996a). This eight-point scale provides a framework 

to rate the extent of airway invasion and biomechanical response in terms of attempted 

clearance during bolus trials, but fails to identify the pathophysiological cause of the invasion. 

PAS score of 1 or 2 are considered normal for healthy individuals (Allen et al., 2010; Garand 

et al., 2019; Humbert et al., 2018; Steele et al., 2019). Steele and Grace-Martin (2017) raised 

concerns about inconsistencies in the statistical application of the PAS as a research outcome 

and questioned the validity and sensitivity of each level. The authors called for a revision of 

infrequent levels such as PAS score of 6, to accommodate for clinically significant, sensitive 

changes between levels. Inappropriate use of statistical analysis of PAS results are common 

due to a lack of consensus regarding the statistical properties of the scale (Borders & Brates, 

2019). Although intra-rater and inter-rater reliability are infrequently reported (Borders & 

Brates, 2019), the PAS has good reliability compared to other VFSS measures and remains a 
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clinically familiar, valuable tool widely used in dysphagia research to quantify airway invasion 

on VFSS (Benfield et al., 2020; Garand et al., 2019; Stoeckli et al., 2003). 

 

3.2.2 Fibreoptic Endoscopic Evaluation of Swallowing 

FEES consists of a flexible laryngoscope inserted transnasally and positioned in the 

hypopharynx in order to visualise the pharynx and larynx at rest and during swallowing 

(Langmore, 2017). This portable procedure is ideal for bedside instrumental assessments and 

allows for visualisation of bolus spillage, LVC, airway protection and pharyngeal residual 

(Langmore & Murray, 2013). FEES does not include evaluation of the oral phase of swallowing 

and images are obstructed by pharyngeal closure and bolus transit during the height of the 

swallow (Langmore, 2006). Although no standardised protocol exists for presentation or types 

of bolus trials in clinical practice, Langmore (2001) has described comprehensive guidelines 

for FEES examination which have yet to be validated. Pharyngeal sensation, secretions and 

post-swallowing residual can be rated, and postural or dietary compensatory interventions may 

be trialled (Langmore & Murray, 2013). Additionally, visualisation of the larynx may be 

utilised for biofeedback during training of compensatory strategies to improve understanding 

and accurate performance of the exercise (Langmore, 2017). The patient is not exposed to 

radiation during FEES; thus, the examination can be extended for evaluation of fatigue during 

oral trials. Re-assessments and reviews at multiple time points are possible to evaluate any 

changes in bolus flow (Langmore & Murray, 2013). Standardised outcome measures such as 

the PAS (Colodny, 2002; Rosenbek et al., 1996b), the Yale Pharyngeal Residue Severity Scale 

(Neubauer et al., 2015) and the Dynamic Imaging Grade of Swallowing Toxicity (Hutcheson 

et al., 2017) have been validated for quantifiable evaluation of swallowing efficiency and safety 

during FEES. Measurements obtained via FEES are often based on subjective observations of 

bolus flow or binary ratings of inferred pharyngeal dysfunction; therefore, the application of 
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FEES to assess rehabilitative outcomes is limited as direct measurements of swallowing 

biomechanics such as hyolaryngeal excursion and UES opening cannot be obtained.  

 

3.2.3 Combined Assessment Techniques 

A combination of assessment techniques such as a nasal cannula to measure respiratory airflow 

during VFSS or FEES may be beneficial to measure several aspects of respiratory-swallowing 

biomechanics within one procedure allowing for accurate diagnosis and treatment planning 

(Daniels et al., 2019; Martin-Harris et al., 2005a). Another example of mixed procedures is 

VFSS combined with pharyngeal manometry. Compared to VFSS or manometry alone, this 

combined assessment procedure increases patient burden and requires specialist synchronised 

equipment and expertise. This dynamic assessment does, however, improve temporal 

resolution with manometry to provide the highest level of diagnostic accuracy through 

understanding of swallowing biomechanics (Nativ-Zeltzer et al., 2012; Pal et al., 2003).  

 

3.2.4 Pharyngeal Manometry 

Manometric measures of pharyngeal swallowing have been available for several decades; 

however, clinical application has been slow as some only consider this assessment appropriate 

for severely dysphagic patients (Allen, 2019; Jones et al., 2014). On the contrary, manometry 

can be a valuable tool for clarifying signs and symptoms of swallowing dysfunction observed 

on VFSS as part of differential diagnosis. In cases where VFSS may be limited by poor 

temporal resolution, manometry provides quantitative measurements of the pharyngeal phase 

of swallowing. Using manometry, objective assessment of amplitude and duration of 

pharyngeal pressures, UES resting pressure and relaxation during deglutition can be assessed. 

These measures represent the relative coordination and efficacy of pharyngeal phase of 

swallowing useful for differential diagnosis, monitoring or as an intervention outcome measure 
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(Massey, 2013). Despite the significant advantages of this assessment and potential to guide 

suitable rehabilitative intervention, the equipment is not commonly available for clinical use, 

leading to low referral or demand even for patients with suspected UES dysfunction (Jones et 

al., 2014).  

 

Evaluation of pharyngeal pressures during swallowing is conducted using low-resolution 

manometry (LRM) or high-resolution manometry (HRM). Both techniques utilise solid-state 

manometric catheters. LRM provides three sensors for measurement of pressure in the 

proximal pharynx, distal pharynx and UES regions. LRM has been used as a quantitative 

adjunct to fluoroscopic or endoscopic assessment of dysphagia in neurogenic populations such 

as stroke, MND, PD as well as other aetiologies (Butler et al., 2009; Winiker et al., 2019). LRM 

typically consists of three unidirectional sensors housed within a 2.1 mm catheter (Salassa et 

al., 1998). Massey (2013) commented that LRM equipment is cheaper than HRM, robust and 

is not limited by a maximum number of uses stipulated by the manufacturer. However, LRM 

sensors have limitations in terms of measuring only unidirectionally within the pharyngeal and 

UES lumen, and at fixed distances despite intra-swallow movement and anatomical variations 

across individuals (Castell & Castell, 1993).  

 

Even though the radial direction of the unidirectional sensors has little impact on registered 

pressures (Hernandez et al., 2018), the placement of the manometric catheter must be consistent 

for interpretation and comparison across sessions (Salassa, 1999). The catheter is inserted 

through the nares according to standardised methods described by Castell and Castell (1993) 

and catheter standards recommended by Salassa et al. (1998). The exact point of sensor 

placement within the aerodigestive tract will vary dependent on the individual anatomy 

(Salassa et al., 1998). The peak amplitude and durational measures are of interest for 
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interpretation of the biomechanical sequence of events. Patients with an impairment of 

pharyngeal sequencing can be identified by reduced peak-to-peak latency between Sensor 1 

and Sensor 2 peak waveforms representative of simultaneous or abnormal pharyngeal 

contraction (Huckabee et al., 2014). 

 

A primary limitation of LRM compared to HRM is the accurate placement of the three sensors 

particularly the lowermost sensor in the UES. HRM data has highlighted substantial UES intra-

swallow movement of up to 2 cm spanning across sensors (Massey, 2013; Pal et al., 2003). In 

addition, even when proximally secured, the manometric catheter ascends on average 0.5 cm 

during swallowing as a result of velopharyngeal closure and pharyngeal contraction (Pal et al., 

2003). Several studies have reported normative data citing catheter placement using the 

identification of an ‘M’ wave as described by Castell and colleagues (1993) (Butler et al., 2009; 

Gumbley et al., 2008; Lamvik et al., 2014). Although this ‘M’ wave has never been validated, 

the waveform configuration is thought to represent resting pressure in the proximal UES at 

baseline, hyolaryngeal excursion moves the UES onto the sensor increasing resting pressure 

immediately before relaxation of the cricopharyngeus. In individuals with significant 

hyolaryngeal displacement, the reporting of inferred sensor location without concurrent 

radiographic imaging may reduce validity of measures (Salassa et al., 1998). LRM 

demonstrates sensitive variation in healthy subjects according to bolus type and swallowing 

condition (Al-Toubi et al., 2015; Butler et al., 2009; Gumbley et al., 2008). The stability of 

LRM timing and amplitude measures has been evaluated; there are no significant effects of 

trial or session in healthy adults (Butler et al., 2009; Hernandez et al., 2018; Hiss & Huckabee, 

2005; Macrae et al., 2011). This level of temporal and amplitude sensitivity with high reliability 

allows for identification and diagnosis of abnormal swallowing biomechanics which directs 

treatment planning.  
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Whilst LRM is limited by three sensors, there have been advances in HRM technology which 

now houses 36 sensors. Advantages of HRM include quantitative measurement of the length 

of the pharynx and upper oesophagus; additionally, with an array of sensors, the UES can be 

measured despite natural movement during swallowing (Massey, 2013). HRM software 

provides averaged pressures across the sensors represented on contour plots with colour 

warmth depicting the pressure magnitude. These plots are visually intuitive for patient feedback 

and training, but representation of exact swallowing performance, sensor specificity and 

reliability for accurate diagnosis is questionable when using the colour plots alone (Massey, 

2013). HRM is increasing in prevalence as a valuable adjunct to evaluate swallowing 

biomechanics in healthy individuals (Lan et al., 2017; Takasaki et al., 2011) and patient 

populations. HRM has been used to evaluate swallowing in patients with neurogenic dysphagia 

secondary to stroke (Lan et al., 2015), PD (Suttrup & Warnecke, 2016), MND (Takasaki et al., 

2010) and a single case study in HD (Lee et al., 2012). Despite this increasing popularity, data 

collected from HRM catheters of up to 4.2 mm in diameter demonstrated higher pressure 

amplitudes and increased variability in healthy participants (Takasaki et al., 2008) compared 

to LRM normative data. In addition, higher resting UES pressures in patients with dysphagia 

and healthy participants (Xiang et al., 2013) have been reported as measured by HRM 

compared to LRM data. A recent systematic review by Winiker et al. (2019) highlighted 

inconsistencies in methodological implementation of HRM across research settings using 

either system-based software or customised external software which is not available for clinical 

application. This lack of agreement regarding the optimal methods of HRM analysis could 

impact the reliability and validity of HRM measures for consistent replication across studies. 

Other limitations which may increase the risk of measurement error have been highlighted, 
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these include general fragility of circumferential sensors and the incidence of baseline pressure 

drifts which can be affected by temperature (Lamvik et al., 2016; Massey, 2013).  

 

3.2.5 Ultrasound of Swallowing 

Ultrasound (US) evaluation of swallowing has been used in research for many decades to 

provide two-dimensional dynamic imaging of swallowing anatomy. US is a non-invasive 

method which can be applied to evaluate muscle morphology and swallowing biomechanics 

(Huckabee et al., 2015). US transducers emit high frequency sound waves ranging from 2.5 to 

10 MHz which enter the organic tissue and are reflected back and converted to electrical signals 

to represent relative distances of tissue boundaries to the transducer (Aldrich, 2007). As the 

sound waves cannot travel through bony structures such as the mandible and hyoid, a visible 

acoustic shadow is cast allowing for identification of anatomical markers (Chi‐Fishman, 2005).  

 

Research has utilised US to investigate the structure, displacement and timing of the tongue, 

submental muscles, larynx, pharynx, hyoid and UES (Chi‐Fishman, 2005). US imaging of the 

approximation of hyoid bone to mandible acoustic shadows has been used as a reliable and 

sensitive measure of hyolaryngeal excursion to identify significant differences between 

individuals with dysphagia and healthy controls (Hsiao et al., 2012; Huckabee et al., 2015; 

Macrae et al., 2012; Perry et al., 2016). Hsiao et al. (2012) and Chen et al. (2017) reported high 

reliability (ICC > 0.801 and ICC > 0.892 respectively) and strong correlations (r > 0.80) 

between US and VFSS measurement of hyolaryngeal excursion in dysphagic patients. 

Hammond (2019) has also reported significant correlations (p < 0.05) between US and VFSS 

measurements of hyoid excursion. These studies show valuable potential for the use of US but 

were limited by inadequate description of methods, for example, measurements were based on 

analysis of the ‘best’ images from three swallows; however, the final number of images 
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selected and how these were judged was not detailed (Chen et al., 2017). Hsiao and colleagues 

(2012) did not specify the criteria to select the frame of maximum hyoid excursion, and 

evaluation of inter-rater reliability was conducted on data from healthy participants which may 

not represent reliability of all measurements as part of the patient study (Hsiao et al., 2012; 

Huang et al., 2009). Further, the description of statistical analyses often failed not provide 

sufficient information to allow for replication or direct comparison across studies. Despite these 

methodological shortfalls, the sensitivity and specificity of US measurement of hyoid 

excursion as a predictor for patients who are at risk of aspiration has been reported as 84% and 

81% respectively (Lee et al., 2016). In addition, hyoid excursion of < 1.5 cm was proposed as 

an indicator of patients who may require non-oral feeding with reported specificity of 73% and 

sensitivity of 66% (Hsiao et al., 2012).  

 

Swallowing rehabilitation which aims to strengthen musculature integral to deglutition may 

target the submental and lingual muscles. US measurement of the cross-sectional area of the 

submental muscles in the coronal plane has been validated against MRI in healthy people 

(Macrae et al., 2013). Specifically, measures of the area of the left and right anterior belly of 

the digastric muscles were significantly correlated (p < 0.01) between US and MRI. Reliability 

of these rest measures of the submental muscles is better than the dynamic measures of hyoid 

excursion (Hammond, 2019; Macrae et al., 2012 ; Winiker, 2019). US measurement of these 

muscle groups can therefore be used to evaluate any hypertrophic changes as a result of therapy 

targeting isolated muscle strength (Huckabee et al., 2015); whether any changes in muscle mass 

results in changes to swallowing efficiency remains unclear.  

 

US measures of swallowing have been reported in healthy people as well as patients with 

neurogenic dysphagia including stroke, PD and MND. Limitations of US include the within-
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participant variability which is affected by the position of the transducer and participant posture 

(Chi‐Fishman, 2005). Any changes in head or neck positioning can produce artefact and change 

US measures but use of a fixed transducer does not appear to improve measurement accuracy. 

Perry et al. (2016) reported less variability of measurement of the submental muscles using a 

hand-held transducer compared to a fixed transducer. Several methods of image acquisition 

and analysis have been reported leading to increased variability between raters (Winiker et al. 

2020 in prep.). Further research is required for measurement refinement and development of 

normative data (Leonard, 2019a).  

 

US has not translated to clinical practice as other imaging methods have, such as VFSS; 

however, with the recent advances in cheaper and smaller ‘pocket-sized’ devices, research 

focusing on clinical application is emerging. Two recent studies have evaluated the reliability 

and validity of the ClariusTM ‘pocket-sized’ devices for measurement of several aspects of 

muscular morphology and anatomical displacement during swallowing (Hammond, 2019; 

Winiker, 2019; Winiker et al., 2020). In contrast to other literature, these studies reported poor 

to moderate (< 0.75) intra-rater and inter-rater reliability for measurements obtained online. 

Reliability improved when measurements were obtained offline. The authors hypothesise that 

these differences in acquisition and measurement may reflect environmental pressures, time 

constraints and technological difficulties impacting on the accuracy of image selection 

(Hammond 2019). Test-retest reliability with healthy subjects was reported as poor for hyoid 

excursion (ICC < 0.5) and slightly improved for area of submental muscles (ICC 0.62 to 0.79) 

the same pattern was found for intra-rater reliability ranging from ICC = 0.38 to 0.71 and inter-

rater reliability ranging from ICC = 0.32 to 0.70 (Winiker, 2019). Overall, US may provide 

less expensive, low risk, non-invasive, repeatable assessment that patients can complete in a 

natural position. US provides improved clarity of structural borders of the submental muscles 



58 

 

compared to other techniques (Macrae et al., 2013), however this has not been evaluated in 

individuals with dysphagia. Ongoing refinement of measures and technical advances are 

required for clinical application of US as a valuable tool for swallowing assessment, treatment 

evaluation and biofeedback. 

 

In summary, dysphagia diagnosis and management are only as good as the quality of available 

assessments. Each assessment technique has advantages and limitations as summarised in 

Table 3.1. A combination of behavioural and instrumental assessment techniques can increase 

the effectiveness in identifying patients with dysphagia. Current assessment techniques are 

implemented with inconsistent methodology and subjective interpretation which increases the 

risk of inaccurate diagnosis of underlying pathophysiology preventing appropriate treatment 

planning. Timely and accurate diagnosis to facilitate early targeted intervention for dysphagia 

is associated with reductions in the length of hospital admission, readmissions, incidence of 

pneumonia, health care costs and morbidity (Allen et al., 2020; Perry et al., 2019). 
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Table 3.1  

Comparison of Swallowing Assessment Techniques 

 CSE VFSS FEES Mano-

metry 

Ultra-

sound 

Non-invasive procedure ✓ ✓ x  ✓ 

Does not exposure the patient 

to radiation 

✓  ✓ ✓ ✓ 

Requires specialist equipment 

and expertise 

x ✓ ✓ ✓ ✓ 

Widely used in clinical practice ✓ ✓ ✓ x x 

Allows for visualisation of all 

phases of swallowing 

 ✓ x x x 

Procedure can be extended for 

rehabilitation and assessment 

of fatigue 

✓ x ✓ ✓ ✓ 

Direct visualisation of bolus 

transit during swallow 

x ✓ x x x 

Visualisation of pre-swallow 

aspiration/penetration 

x ✓ ✓ x x 

Visualisation of the extent of 

aspiration during swallow 

x ✓ x x x 

Visualisation of post-swallow 

residue 

x ✓ ✓ x x 

Excellent temporal resolution x x ✓ ✓  

Visualisation of swallowing 

biomechanics during swallow 

(e.g. hyoid movement, UES 

opening, epiglottic deflection) 

x ✓ x x ✓* 

Visualisation of muscle 

morphology 

x x x x ✓ 

Visualisation of secretion 

management, oedema and 

tissue integrity 

x x ✓ x x 

Visualisation of vocal fold 

mobility and glottic closure 

x x ✓ x x 

Assessment of sensorimotor 

response to the equipment, 

residue, or 

aspiration/penetration  

x x ✓ x x 

Assessment of amplitude and 

duration of pharyngeal 

pressures and UES relaxation 

during swallowing 

x x x ✓ x 

Validated metrics used for 

analysis 

x ✓ ✓ ✓ ✓ 

Note. Summary of clinical features / attributes of different swallowing assessment 

procedures. *Denotes that ultrasound allows for visualisation of some elements of 

biomechanics such as epiglottic deflection cannot be visualised with ultrasound. 
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Chapter 4. Huntington’s Disease 

 

As discussed in Chapter 2, swallowing is a complex sensorimotor task, requiring a highly 

coordinated sequence of activation throughout several cortical, subcortical and peripheral 

regions. Any disruption of this sequence or dysfunction in the neuromuscular pathways 

associated with deglutition can result in dysphagia (Dziewas et al., 2017a). Dysphagia is 

defined as the “difficulty or inability to move a bolus safely and effectively from the oral cavity 

to the oesophagus” (Ortega et al., 2017, p.576). Neurological disorders are the predominant 

cause of dysphagia (Buchholz & Robbins, 2003; Ertekin & Aydogdu, 2003; White et al., 2008). 

Several neurological disorders are associated with dysphagia; these include but are not limited 

to stroke, dementia, cerebrovascular disease, PD, cerebral palsy, intracranial lesions, multiple 

sclerosis, MND and Huntington’s disease (HD) (Clavé & Shaker, 2015; Daniels, 2006; 

Dziewas et al., 2017a; Sasegbon & Hamdy, 2017). Dysphagia symptoms are amongst the most 

prevalent in many neurodegenerative disease; however, HD appears underrepresented in the 

general dysphagia literature with a notable absence from systematic reviews evaluating 

susceptible neurodegenerative populations (Clavé & Shaker, 2015; Keage et al., 2015; Ortega 

et al., 2017; Takizawa et al., 2016).  

 

Huntington’s Disease (HD) is an autosomal-dominant neurodegenerative disease characterised 

by a triad of impairments, including motor, cognitive, and psychiatric disturbances (Bates et 

al., 2015b). The disease typically manifests during the fourth decade of life and is on average 

fatal 10-20 years from diagnosis (Bates et al., 2015b; Ghosh & Tabrizi, 2018; Novak & Tabrizi, 

2010). Prevalence of HD has increased since the advent of diagnostic genetic testing and is 

estimated as 10-14 per 100,000 (Baig et al., 2016; McColgan & Tabrizi, 2018).  
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4.1 Neurophysiology of Huntington’s Disease 

HD is caused by an unstable expanded cytosine-adenine-guanine (CAG) repeat sequence in 

exon 1 of the huntingtin gene. This expanded sequence encodes a mutant version of the 

huntingtin protein (htt), termed mutant huntingtin, which causes widespread molecular and 

cellular anomalies, resulting in neural and clinical deterioration (MacDonald et al., 1993; Ross 

et al., 2014). The htt protein is expressed in all mammalian cells throughout the CNS and 

skeletal muscles, but most commonly accumulated in the brain (Dayalu & Albin, 2015). This 

altered tertiary structure causes a number of molecular abnormalities which result in neuronal 

cell dysfunction and death causing cumulative atrophy of the basal ganglia and other cortical 

regions (Thu, Oorschot, Tippett, Nana, Hogg, et. al., 2010). 

 

Normal CAG allele repeat length is < 27, intermediate range is 27 to 35 and affected range is 

> 36. Those with a CAG repeat of 36 to 39 are considered to have incomplete penetrance and 

may develop HD later in life, or not at all (Rubinsztein et al., 1996). Due to the genetic 

dominance, those with a CAG of 40 or more have complete penetrance and will develop HD 

(Dayalu & Albin, 2015; McColgan & Tabrizi, 2018; Roos, 2010). Longer CAG repeats 

generally correlate to earlier symptom onset and faster disease progression as demonstrated in 

cases of Juvenile HD with typical CAG repeats > 55 (Bates et al., 2015b; Dayalu & Albin, 

2015; Roos, 2010). Despite the clear genetic cause of HD, there are significant variations in 

genotype and phenotype (The et al., 2004).  

 

4.1.1 Basal Ganglia and Cortical Pathology 

 Degeneration of the basal ganglia circuits are associated with the most prevalent movement 

disorders such as PD and HD (Pavese & Brooks, 2013). The basal ganglia are a group of highly 

interconnected grey matter structures consisting of the striatum, subthalamus and substantia 
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nigra. Deterioration of the striatum is the first and most prominent neurophysiological 

characteristic of HD (Estevez-Fraga et al., 2021), as demonstrated in Figure 4.1 (Albin, 1995).  

 

Figure 4.1 

Cross-sectional Area of the Forebrain: Comparison of a Normal Brain and an HD 

Brain 

 

Note. This image demonstrates significant atrophy of the basal ganglia and diffuse 

reduction in cortical volume in the HD affected brain. From Huntington's disease: 

Understanding a mutation. (2011) by Bay, J., Graves, A., Mora, H., Dragunow, M., 

Narayan, P., & Faull, R. LENScience Connect Senior Biology Seminar Series. 

Retrieved 1st September 2017, from https://www.lenscience.auckland.ac.nz 

/en/about/teaching-and-learning-resources/senior-biology-learning-resources/ 

huntingtons-disease-understanding-a-mutation/what-is-huntingtons-disease.html 

 

Several studies have reported significantly reduced bilateral volume of the striatum and 

associated cortical regions before manifestation of signs (Dayalu & Albin, 2015; Dominguez 

et al., 2016; Estevez-Fraga et al., 2021). The basal ganglia have extensive connections to the 
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cerebral cortex, thalamus and subcortical nuclei (including the brainstem nuclei) (Pavese & 

Brooks, 2013). The basal ganglia nuclei are involved in a variety of functions to facilitate, 

inhibit and control movements through modulation of the direct and indirect motor pathways 

(Bashir & Jankovic, 2018). As previously described in Chapter 2 (p. 36), basal ganglia 

dysfunction is associated with a high incidence of dysphagia (Suntrup et al., 2012; 

Wilmskoetter et al., 2020). Deglutition is an example of one such physiological function 

requiring basal ganglia modulation as part of the direct and indirect motor pathways. In HD, 

reduced activation of the indirect motor pathway, which attenuates and inhibits movements, 

results in loss of thalamo-cortical output which causes hyperkinetic choreic movements 

(Feinstein & Walker, 2018). In addition, the loss of striatal neurones within the direct motor 

pathway which facilitates voluntary movement results in hypokinetic movements (McColgan 

& Tabrizi, 2018). Further, the cortico-striatal neuronal deterioration impacts integration of 

afferent feedback between the motor cortex and adjacent cortical and subcortical regions 

(Bhatnagar, 2013; Waldvogel et al., 2014). This results in impairments of control, inhibition, 

and regulation of voluntary movements.  

 

Longitudinal imaging studies have identified degeneration of white matter microstructure in 

premanifest HD affecting sensorimotor regions and longer corticostriatal connections 

associated with observed clinical outcomes occurring first (Estevez-Fraga et al., 2021; 

McColgan et al., 2017). Over the disease progression, gross neuronal loss and widespread 

atrophy or thinning of the white matter neocortex and basal ganglia has been observed in HD 

(Dayalu & Albin, 2015; Dominguez et al., 2016; Thu et al., 2010). In manifest HD, an average 

of 30% neuronal loss of the prefrontal cortex and 40% to 55% neuronal loss of the motor cortex 

has been identified (Soloveva et al., 2018). These neuropathological changes therefore 
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contribute to the onset of dysphagia as several of these cortical regions are activated during 

swallowing as previously described in Chapter 2. 

 

4.2 Symptom manifestation in HD 

Diagnosis is confirmed with genetic testing, family history and presence of atypical movements 

as measured by an expert rater using the clinical Unified Huntington’s Disease Rating Scale 

(UHDRS) total motor score diagnostic confidence score (Huntington's Study Group; Kremer, 

1996; McColgan & Tabrizi, 2018; Reilmann et al., 2014; Ross et al., 2014).The UHDRS 

includes subjective ratings of four domains: motor function, cognitive function, abnormal 

behaviour and functional capacity; however, highly prevalent symptoms such as dysphagia are 

notably missing. The UHDRS is heavily dependent on rating of motor symptoms which may 

limit the clinical utility in patients with primarily cognitive symptoms. The total functional 

capacity score obtained via the UHDRS corresponds to the five stage Shoulson-Fahn Rating 

Scale. This subjective scale ranging from early to late stage HD is based on judgements of brief 

statements to characterise the level of dependence required for activities of daily living (ADLs) 

(Shoulson & Fahn, 1979). The UHDRS and Shoulson-Fahn Rating Scale are frequently used 

for disease stage classification in clinical trials (Borowsky & Sampaio, 2014). The UHDRS is 

designed to diagnose and monitor the rate and severity of HD progression (Huntington's Study 

Group; Kremer, 1996); however, it is frequently used as an outcome measure in treatment 

studies. As the UHDRS is likely not sensitive enough to identify changes post-treatment, 

Borowsky and colleagues (2014) suggested that intervention studies should include specific 

outcome measures to evaluate changes in cognitive, mood and motor function (Borowsky & 

Sampaio, 2014). 
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4.2.1 Signs and Symptoms of HD 

The stages of HD are summarised in Figure 4.2, these range from presymptomatic to advanced 

or late stage HD. Symptoms eventually progress resulting in a total loss of independence and 

individuals with late stage HD typically require 24 hour nursing care (McColgan & Tabrizi, 

2018). Cognitive dysfunction has been reported in premanifest HD through neuropsychological 

testing compared to healthy controls (Paulsen et al., 2014; Tabrizi et al., 2013). There are 

significant changes in verbal learning, attention, memory recall, motor planning, dual-tasking, 

sensory perception and processing prior to motor symptom onset (Harrington et al., 2014; 

Misiura et al., 2017; Paulsen et al., 2014; Paulsen et al., 2017; Reyes et al., 2021; Wild & 

Tabrizi, 2014). Specifically, changes in the Symbol Digit Modalities Test and Stroop Word 

Reading test are sensitive measures of cognition associated with different stages of premanifest 

and manifest HD (Estevez-Fraga et al., 2021; Tabrizi et al., 2013). This pattern of 

neurocognitive decline in premanifest and manifest HD has been reported to correlate with 

caudate atrophy (Dominguez et al., 2016). Non-motor skill learning is relatively unaffected in 

HD, however, increased cortical recruitment is required for attention, processing and 

organisation due to fronto-striatal pathway dysfunction (Pillon et al., 1993; Quinn et al., 2001). 

Impairments in motor skill learning, specifically new sequences, are evident in HD, but the 

ability to learn new motor mappings with integration of perceptual cues is spared (Gabrieli et 

al., 1997; Willingham et al., 1996). Behavioural or neuropsychiatric changes are also observed 

in all stages of HD (Roos, 2010). Depression, anxiety, apathy, irritability and obsessive-

compulsive behaviours are the most common disorders reported in HD (Dayalu & Albin, 2015; 

McColgan & Tabrizi, 2018). Preliminary imaging studies have identified significant 

correlations between apathy scores and disturbance in corticostriatal connectivity (De Paepe et 

al., 2019). 
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Figure 4.2 

 

Graphic Representation of the Clinical Stages and Associated Symptoms of 

Huntington’s Disease 

 

 

 

Note. Summary of the clinical stages of Huntington’s disease (x-axis), the associated 

functional capacity and common symptoms on the y-axis. Reprinted with permission 

from: “Huntington disease” by Ghosh, R., & Tabrizi, S. J. (2018). Handbook of Clinical 

Neurology, 147, 255-278. 

 

Motor impairments in HD impact on both voluntary and involuntary movements (Novak & 

Tabrizi, 2010). Hyperkinetic disorders are prominent and the most recognisable symptom in 

early HD characterised by involuntary choreic movements, impaired tandem gait, 

dysdiadochokinesis and instability in standing or walking (Bilney et al., 2003a; McColgan & 

Tabrizi, 2018; Reilmann et al., 2014; Reyes et al., 2018; Ross et al., 2014). Irregular, rapid and 
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unpredictable involuntary movements of the face and upper limbs are most common (Roos, 

2010). These hyperkinetic movements are often exacerbated by stress, fatigue, acute illness or 

anxiety (Novak & Tabrizi, 2010). Impairment of voluntary movement is more functionally 

disabling than chorea (Wild & Tabrizi, 2014), with impaired coordination or sequencing of 

rapidly altering movements (Quinn et al., 2001). As the disease progresses, increased rigidity, 

akinesia, hypokinesia and dystonia are more common (Dayalu & Albin, 2015; Reilmann et al., 

2014). Hypokinesia is universal in late stage HD, characterised by slow initiation and execution 

of movements (Louis et al., 1999; Roos, 2014). Dystonia or increased muscle tone is highly 

prevalent and leads to sustained involuntary contraction of the cervical neck musculature, 

shoulder rotation and trunk flexion (Roos, 2014). Bradykinesia in HD is not simply a slowness 

of movement, certain aspects of tasks take longer related to sequence complexity and accuracy 

demands (Gabrieli et al., 1997). Sensory processing and cortical demands impact on regulation 

of motor output, such that smoother transitions are evident in simple and well-learnt motor 

tasks (Lo et al., 2020; Purcell et al., 2019; Quinn et al., 2001). Deficits in postural stability and 

motor control have been identified in premanifest HD and manifest HD consistent with 

increased proprioceptive and cognitive task demands (Panzera et al., 2011; Porciuncula et al., 

2020). The observed irregular and imprecise amplitude of motor programs are not related to 

manifest disease stage (Gordon et al., 2000; Quinn et al., 2001), however, in premanifest HD, 

reduced precision of motor performance was significantly correlated to individuals closer to 

diagnosis compared to healthy controls (Rao et al., 2014). 

 

4.2.2 Signs and Symptoms of Swallowing Dysfunction in HD 

Impairments of deglutition and motor speech are inevitable as this gradual deterioration of 

motor control involves musculature of deglutition, speech and respiration (Chan et al., 2019; 

Kagel & Leopold, 1992; Pizzorni et al., 2020; Rusz et al., 2014). Corticobulbar symptoms at 
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any stage of HD can reveal coexistence of these mixed hyperkinetic and hypokinetic motor 

impairments (Kagel & Leopold, 1992).  

 

4.2.2.1 Prevalence of Dysphagia in HD  

Due to the pattern of impairment in HD and the diffuse decline of several cortical and 

subcortical regions, swallowing dysfunction has been suggested as a universal symptom (Kagel 

& Leopold, 1992; Schindler et al., 2020; Wild & Tabrizi, 2014). Mortality rates are reported to 

be as high as 59 - 66% following aspiration pneumonia or choking secondary to dysphagia in 

HD (Heemskerk & Roos, 2012; Lanska et al., 1988; Rodrigues et al., 2017; Roos, 2010; 

Solberg, 2018). Reported prevalence of dysphagia in HD varies across studies, dependent on 

methodology for selection of patients and assessment type. A review of the literature reveals 

between 35% and 100% of individuals with manifest HD have identified signs or symptoms of 

swallowing impairment (de Tommaso et al., 2015; Heemskerk et al., 2015; Keage et al., 2020; 

Mariscal et al., 2014; Schindler et al., 2020). Two recent studies have evaluated swallowing in 

patients with manifest HD using instrumental assessment techniques. Firstly, Schindler and 

colleagues (2020) completed FEES in a sample of 61 patients at various stages of HD. 

Examinations were rated by two experienced clinicians blinded to the participants’ clinical 

history. Swallowing dysfunction was observed in 35% of early stage, 94% of moderate stage 

and 100% of late stage HD. The high prevalence reported in this study may be magnified by 

use of the Dysphagia Outcome and Severity Scale (DOSS) to rate the presence of dysphagia. 

This scale includes subjective judgements such as independence during mealtimes, and do not 

capture the prevalence of dysfunctional swallowing biomechanics at each stage of HD. 

Similarly, Keage and colleagues (2020) reported oral and pharyngeal dysphagia in 77.6% (n = 

49) of participants (Keage et al., 2020); however, all individuals in this study were referred for 

VFSS due to overt signs of dysphagia introducing a selection bias.  
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VFSS and FEES have been increasingly utilised for assessment of swallowing in HD over the 

last ten years (Pizzorni et al., 2020). These instrumental examinations are described as 

‘feasible’ in the diagnosis of dysphagia in patients with HD, but Pizzoni and colleagues (2020) 

noted that the reliability and measurement accuracy of instrumental assessment methods has 

not been evaluated in HD. The European Huntington’s Disease Network recommend imaging 

for assessment of swallowing in HD as objective clinical measures, such as the TWST, were 

not sensitive enough to identify impairment compared to FEES (Pizzorni et al., 2020; Schradt 

et al., 2014). Despite the increased use of instrumental assessments reported in recent research, 

this has not translated to clinical practise (Pizzorni et al., 2020). There remain assumptions that 

VFSS and FEES are not practical for HD patients due to hyperkinetic motor symptoms and 

postural difficulties (de Tommaso et al., 2015). 

 

4.2.2.2 Swallowing Related Quality of Life 

The negative impact of dysphagia on QoL, participation and disease burden has been well 

documented in other neurological and degenerative conditions such as PD, Alzheimer’s 

disease, Multiple Sclerosis and Friedreich’s ataxia (Ekberg et al., 2002; Leow et al., 2010; 

Vogel et al., 2014). Mild or subtle dysphagic symptoms can have significant effects on 

psychosocial wellbeing of individuals with PD and their families (Miller et al., 2006). In HD, 

the complex contribution of cognitive impairment, behavioural dysfunction with altered motor 

control can significantly impact the individual’s perception of their dysphagic symptoms (Wild 

& Tabrizi, 2014). Dysphagia is associated with reduced QoL and increased caregiver burden 

in HD (Cubo et al., 2015; Mariscal et al., 2014). Additionally, recognition of the onset of 

swallowing symptoms can be very difficult for individuals with HD, particularly those who 

have previously witnessed swallowing decline of a relative or have a carer’s perspective of 
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dysphagia consequences (Heemskerk & Roos, 2011). People may be hyper-concerned and 

frightened by swallowing decline which can negatively impact QoL (Aziz et al., 2010; 

Hamilton et al., 2012). Many may have poor insight or deny issues and refuse referral to Speech 

and Language Therapy (SLT) for swallowing management. In these cases additional focus on 

education and counselling is required (Hamilton et al., 2012; Kagel & Leopold, 1992; Stewart, 

2012). Malnutrition and weight loss are commonly associated with both HD and swallowing 

related QoL (Heemskerk et al., 2014; Heemskerk et al., 2015). Despite higher than average 

caloric intake, weight loss is correlated with rate of disease progression and higher CAG repeats 

(Aziz et al., 2008; Roos, 2014). This sign is influenced by several variables including metabolic 

dysfunction, changes in appetite, self-feeding difficulties, impaired mastication and presence 

of dysphagia (Dayalu & Albin, 2015; Trejo et al., 2004). 

 

As the triad of contributing factors in HD are unique, disease specific QoL measures have been 

developed for patient reported outcomes. These include the Huntington’s Disease Dysphagia 

Scale (Heemskerk et al., 2014) and The Huntington’s Disease Health-Related Quality of Life 

questionnaire (HDQLIFE) which have been developed to identify dysphagic symptoms and 

evaluate the impact of speech and swallowing changes on QoL (Carlozzi et al., 2016). Neither 

of these HD specific questionnaires have been validated against instrumental assessment. 

These HD tools have not yet translated to routine clinical practice and other questionnaires 

such as the SWAL-QoL have been most commonly used as a swallowing QoL outcome 

measure in HD research (Manor et al., 2018; Reyes et al., 2015; Schradt et al., 2018; Schradt 

et al., 2016). A systematic review of dysphagia specific QoL tools described the SWAL-QoL 

as the most reliable and valid measure of swallowing related QoL in neurological disorders 

covering all World Health Organisation International Classification of Function, Disability and 

Health areas (Keage et al., 2015).   
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4.2.2.3 Correlation of Disease Pathology and Dysphagia 

Despite the high prevalence of dysphagia in HD and serious consequences associated with this 

symptom, the progression and understanding of swallowing dysfunction is relatively unknown 

(Pizzorni et al., 2020). Two systematic reviews have evaluated the literature of dysphagia in 

HD. The first by Heemskerk and Roos (2011) found five studies published between 1985 and 

2009 which described swallowing in HD (two of which were single case reports). The second 

systematic review included 24 studies evaluating swallowing in HD between 2009 and 2018; 

only ten of these were articles published in peer-reviewed journals. The authors acknowledge 

the cautious inclusion of grey literature in order to present all available and relevant 

information in this limited field of research (Pizzorni et al., 2020). 

 

Sparse literature exists using instrumental swallowing assessments to characterise HD 

biomechanics. A recent study identified a strong correlation (p < 0.001) between severity of 

dysphagia and disease progression (Schindler et al., 2020). A sample of 61 participants with 

manifest HD at various disease stages and 31 healthy control subjects underwent FEES. It was 

not stipulated if this patient cohort were randomly selected or identified due to swallowing 

concerns. Participants completed three trials of liquid, semisolid and solid boluses. Each 

swallowing trial was rated using the PAS to quantify swallowing safety and the five-point Yale 

Pharyngeal Residue Severity Rating Scale to judge the severity of post-swallow pharyngeal 

residual. Dysphagia severity was rated using the Dysphagia Outcome and Severity Scale 

(DOSS) based on level of nutrition, diet modification, independence and functional 

observations (O'Neil et al., 1999). Although these measures provided quantifiable data, results 

were obtained via ratings which were based largely on subjective judgements such as strength 

of cough. This study did not include any objective measurements of timing or swallowing 
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biomechanics. The two raters were blinded to the disease stage of participants, but the inter-

rater agreement was not specified. In addition, the worst ratings of swallowing safety and 

efficiency for each participant were selected for statistical analysis; therefore, the frequency of 

swallowing trials with airway invasion or residual according to bolus type was not specified. 

This study reported that motor impairment as quantified by the UHDRS total motor score could 

be a predictive factor to identify those at risk of dysphagia. It would be beneficial to further 

explore this correlation with objective measurements of swallowing biomechanics. 

Quantification of the amount of post-swallow pharyngeal residual observed at each disease 

stage was not provided. Dysphagia severity and PAS significantly worsened with disease 

progression (p < 0.001); however, as previously highlighted, the reported 100% prevalence of 

severe dysphagia in late stage HD was classified using subjective judgements as part of the 

DOSS.  

 

Another study retrospectively described the clinical characteristics of 49 individuals with HD 

using VFSS and clinical examination (Keage et al., 2020). VFSS were repeated in seven cases 

at highly variable time points, a mean of 652.57 days (SD 347.75, range 231 - 1115 days) after 

the initial assessment. The repeated VFSS also differed in terms of protocols and equipment 

(e.g. frames per second) which limited retrospective comparison. No timing or displacement 

measures were obtained from VFSS data, instead the Bethlehem Assessment Scale and PAS 

were used. The Bethlehem Assessment Scale is a standardised clinical tool in which 10 

anatomical swallowing domains are rated during VFSS using a four-point scale. Three bolus 

types were assessed during VFSS (thin fluids, puree and muffin textures), the protocol for each 

participant such as the number of trials of each texture was not stated. This study identified a 

diverse pattern of dysphagic symptoms across all disease stages; these findings are discussed 

below and summarised in Table 4.1. The repeated assessments indicated high individual 
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variability; therefore, no systematic progression of dysphagia could be identified in this cohort 

(Keage et al., 2020). Kagel and Leopold (1992) also evaluated swallowing across disease stages 

with VFSS and clinical evaluation. They reported increased rigidity and parkinsonism 

symptoms associated with late stage HD but did not specify the protocol and did not include 

any re-assessments as part of this longitudinal study. The authors report hyperkinetic or 

hypokinetic dysphagia sub-groups across all stages of the disease. The key characteristics 

observed across bolus types and volumes are summarised in Table 4.1. Other studies using 

non-instrumental assessments have reported significant correlations between dysphagia 

severity and CAG repeat, age, disease duration or motor impairment (de Tommaso et al., 2015; 

Mariscal et al., 2014). These studies utilised clinical dysphagia screening tools such as the 

EAT-10 and clinical observations were rated using the DOSS. These studies were not blinded 

and did not include any instrumental measures of swallowing biomechanics.  

 

The presence of swallowing dysfunction as an early symptom of the disease has further been 

evidenced in two preliminary MRI studies. Both of these studies represent grey literature from 

conference proceedings, however, were deemed relevant for inclusion in this literature review. 

Michou et al. (2017) reported deactivation of the frontal cortex at rest and during swallowing 

tasks in early HD with associated mild dysphagic symptoms compared to healthy controls. In 

addition, increased activation of the precentral cortex and anterior cingulate gyrus was 

reported. Another study identified atrophy of the cortical regions associated with deglutition in 

patients with moderate or severe dysphagia and HD, not related to disease stage (Schumann et 

al., 2018). Interestingly, atrophy in known regions of periodic deterioration in HD such as the 

striatum and thalamus were not significantly different from those HD patients with no or mild 

dysphagia (Schumann et al., 2018).  
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The stability of dysphagic symptoms across the stages of the disease is unclear, some studies 

report limited detectable deterioration between early and mid-stages, and significant changes 

associated with late stage disease (Monaco et al., 2014; Schindler et al., 2020), whilst others 

report wide variability with no detectable pattern of decline (Keage et al., 2020). Pizzorni et al. 

(2020) summarised clinical markers associated with risk of dysphagia in HD as high UHDRS 

motor score, cognitive impairment, dysphonia, dysarthria, impaired lingual movement and old 

age. More longitudinal studies with clear methodologies and objective outcome measures are 

required to identify the evolution of swallowing decline across disease stages and investigate 

the pattern of variability in HD. This will aid understanding of dysphagia progression and 

ensure targeted intervention (Keage et al., 2020). 

 

4.2.3 Pre-oral Phase Dysfunction  

Identified characteristics of dysphagia in HD are summarised in Table 4.1 below. Firstly, even 

in the absence of overt motor symptoms, cognitive and behavioural dysfunction alone may be 

sufficient to induce pre-oral dysfunction. Patients with diffuse cortical dysfunction may exhibit 

potentially dangerous mealtime behaviours which compromise the swallowing safety despite 

relatively intact oropharyngeal swallowing function as measured during controlled assessment 

(Leopold & Kagel, 1997). Tachyphagia and overfilling the oral cavity has been described in 

other basal ganglia diseases such as PD and progressive supranuclear palsy associated with 

rigid or bradykinetic motor symptoms resulting in slow and hesitant mastication (Leopold & 

Kagel, 1996). The rate of ingestion is influenced by many factors such as cultural norms, 

emotional state, psychosocial factors, in addition to oral sensory feedback regarding the 

temperature taste, palatability and bolus volume (Leopold & Kagel, 1997; Perlman & 

Christensen, 2003). In HD, tachyphagia is the most commonly reported symptom associated 

with both hyperkinetic disinhibited movements and hypokinetic movements with reduced oral 



75 

 

control and bolus manipulation (Kagel & Leopold, 1992; Pizzorni et al., 2020). Self-feeding is 

immediately observed as excessively rapid in HD combined with disorganised and irregular 

mastication. Tachyphagia is frequently reported with coughing and choking episodes which 

infers an increased risk of aspiration and asphyxiation (Leopold & Kagel, 1997). Kagel and 

Leopold (1992) reported 30.6% of patients with HD (n = 39) required supervision and 

assistance at mealtimes due to reduced self-feeding efficiency, impulsivity and inability to self-

monitor bolus size or pace of eating.  

 

Irritability and apathy can impair eating and drinking, with reduced initiation and motivation 

to eat or maintain good oral hygiene (Hunt & Walker, 1989; Kagel & Leopold, 1992). Poor 

oral hygiene, reduced attention, inability to self-feed, reflux disorder, medications and reduced 

mobility often magnify minor dysphagic symptoms (Hamakawa et al., 2004; Heemskerk & 

Roos, 2011) and increase the risk of aspiration pneumonia (Langmore et al., 1998). 
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Table 4.1 

Summary of Ingestive Swallowing Dysfunction Characteristics in Huntington’s Disease 

Sign or symptom of dysfunctional 

deglutition 

Implied biomechanical impairment Implied 

pathophysiology 

Reported by 

Pre-oral phase: 

• Tachyphagia (rapid eating) 

• Reduced inhibition and insight into volume 

and pace of oral intake 

• Impulsive eating 

• Increased appetite 

• Overfilling oral cavity 

• Halitosis 

• Hypoactive or hyperactive gag reflex 

• Involuntary abrupt movements of limbs, 

head, neck and face 

• Reduced hand to mouth self-feeding ability 

• Postural instability 

• Hyperextension of the head and trunk 

• Xerostomia  

• Increased sialorrhea 

• Impaired smell identification 

• Hyperkinetic choreic limb movement, 

• Cervical dystonia 

• Hypokinetic motor impairment 

• Cognitive impairment  

• Behavioural changes 

• Executive function impaired 

• Reduced inhibition from basal ganglia and 

subsequent uninhibited cortical modulation 

• Increased appetite part of metabolic 

dysfunction and impact of hyperkinetic 

disorder 

• Altered sensorimotor function of the 

glossopharyngeal nerve (CN IX) 

• Medication induced xerostomia 

• Unclear if increased saliva production or 

reduced oral sensory awareness 

• Olfactory processing impairment 

Cortico-striatal 

dysfunction, depletion 

of GABA 

neurotransmitter, 

disruption of the basal 

ganglia sensorimotor 

pathways.  

 

Disruption of afferent 

input and cortical 

modulation of CPG. 

 

 

Leopold & 

Kagel, 1985; 

Kagel et al., 

1992; 

Hunt & 

Walker, 1989; 

Hamakawa et 

al., 2004; 

Lee et al., 

2012; 

Wood et al., 

2008; Andrich 

et al., 2009; 

Heemskerk & 

Roos, 2011; 

Pizzorni et al., 

2020 

 

Oral phase: 

• Reduced mandibular range of movement 

• Rapid and inadequate mastication 

• Rapid transfer of bolus 

• Premature spillage 

• Rapid and unpredictable lingual movements  

• Impaired bolus formation 

• Segmented or delayed lingual transfer 

• Hypokinetic, rigid or bradykinetic muscles of 

mastication 

• Hyperkinetic, hypertonic, spasticity of 

muscles of mastication 

• Oral apraxia 

• Lingual chorea 

• Altered sensorimotor function of the 

trigeminal nerve (CN V), facial nerve (CN 

Cortico-striatal 

dysfunction, depletion 

of GABA 

neurotransmitter, 

disruption of the basal 

ganglia sensorimotor 

pathways.  

 

Leopold & 

Kagel, 1985; 

Kagel et al., 

1992; 

Hamakawa et 

al., 2004; 

Mochizuki et 

al., 1999; 

Roos, 2010; 
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• Impaired control of bolus 

• Anterior oral spillage 

• Decreased / ineffective mastication 

• Tongue protrusion / tongue thrust 

• Oral residue 

• Lingual searching 

• Buccolingual chorea 

• Premature liquid transfer 

• Decreased base of tongue to posterior 

pharyngeal wall 

• Incomplete velopharyngeal approximation 

and nasal redirection 

• Dysarthria* (hypertonic/spastic) 

• Hypernasality* 

VII), glossopharyngeal nerve (CN IX) and 

motor efferents of the hypoglossal nerve (CN 

XII) 

• Reduced coordination of oral phase sequence 

 

 

Disruption of afferent 

input and cortical 

modulation of CPG. 

 

Altered motor 

program from central 

to peripheral control. 

 

Abnormal innervation 

of sensory thresholds 

to initiate timely 

motor program for 

pharyngeal phase. 

 

Heemskerk & 

Roos, 2011;  

Roos, 2014; 

Manor et al., 

2016 & 2018; 

Reyes et al., 

2014; 

Keage et al., 

2020; 

Schindler et al., 

2020. 

 

Pharyngeal phase: 

• Decreased oral transit time 

• Coughing during/after swallowing 

• Choking on solid food 

• Aspiration and penetration 

• Repetitive swallows 

• Reduced anterior hyoid excursion 

• Incomplete epiglottic deflection 

• Extended laryngeal elevation 

• Difficulty with laryngeal descent 

• Excessive eructation (belching) 

• Aerophagia (swallowing excessive air) 

• Audible swallowing  

• Phonation during swallowing 

• Pharyngeal stasis 

• Inhalation during swallowing 

• Hyperkinetic, involuntary chorea movements 

of pharyngeal and laryngeal muscles 

• Hypokinetic, rigidity and bradykinesia of 

muscles of the aerodigestive tract 

• Impaired swallow initiation during both 

voluntary and involuntary swallowing  

• Imprecise and uncoordinated sequence of 

sensorimotor events  

• Impaired respiration and swallowing 

coordination 

• Involuntary respiratory movements 

• Altered sensorimotor function of the 

trigeminal nerve (CN V), facial nerve (CN 

VII), glossopharyngeal nerve (CN IX), vagus 

nerve (CN X) and motor efferents of the 

hypoglossal nerve (CN XII) 

Cortico-striatal 

dysfunction, depletion 

of GABA 

neurotransmitter, 

disruption of the basal 

ganglia sensorimotor 

pathways.  

 

Disruption of afferent 

input and cortical 

modulation of CPG. 

 

Altered motor 

program from central 

to peripheral control 

(e.g. ‘difficult 

laryngeal descent’) 

Leopold & 

Kagel, 1985; 

Kagel et al., 

1992; 

Hunt & 

Walker, 1989; 

Hamakawa et 

al., 2004; 

Lee et al., 

2012; 

Mochizuki et 

al., 1999; 

Yorkston et al., 

2004; 

Aziz et al., 

2010; 
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• Involuntary sniffing or grunting  

• Chorea of respiratory muscles 

• Laryngeal chorea with abrupt adduction / 

abduction of vocal folds during swallowing 

• Post-swallow residue in vallecula and 

pyriform sinus 

• Wet voice quality 

• Supra-cricopharyngeal residual 

• Cricopharyngeal dysfunction 

• Involuntary prosody / loudness variation*  

• Inhalation phonation* 

• Dysphonia* 

• Assumed reduced pharyngeal contraction or 

motility, reduced hyoid movement, 

incomplete epiglottic deflection results in 

impaired UES opening 

 

 

Abnormal innervation 

of sensory thresholds 

to initiate timely 

motor program for 

pharyngeal phase and 

oesophageal phase. 

 

Keage et al., 

2020; 

Heemskerk et 

al., 2015; 

Schradt et al., 

2016; 

Manor et al., 

2018; 

Pizzorni et al., 

2020; 

Schumann et 

al., 2018; 

Sussmuth et al., 

2012; 

Trender-

Gerhard et al., 

2016; 

Schindler et al., 

2020; 

Oesophageal phase: 

• Vomiting / regurgitation 

• Reduced oesophageal transit time 

• Early satiety  

• Impaired oesophageal emptying 

• High pressure and incomplete opening of 

lower oesophageal sphincter 

• Oesophageal dysmotility 

• Reflux  

• Reverse peristalsis 

• Hiatal hernia 

 

• Hyperkinetic movements impacting on 

posture 

• Hypokinetic, rigidity or bradykinesia of the 

upper oesophagus 

• Chorea of the diaphragm 

• Spasmodic contraction of the mid 

oesophagus 

 

Cortico-striatal 

dysfunction, 

disruption of the basal 

ganglia sensorimotor 

pathways.  

 

Altered excitation and 

inhibition of 

pharyngeal and 

oesophageal phases of 

swallowing from CPG 

motor program 

Leopold & 

Kagel, 1985; 

Kagel et al., 

1992; 

Hunt & 

Walker, 1989; 

Lee et al., 

2012; 

Andrich et al., 

2009. 

 

Note. Signs and symptoms of swallowing dysfunction. * indicates dysarthric symptoms relevant to swallowing function.
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4.2.4 Oral Phase Dysfunction 

A wide range of oral phase impairments have been reported in individuals with HD as 

summarised in Table 4.1. These abnormal behaviours are apparent during clinical observations, 

do not require instrumental visualisation and are likely to be influenced by a combination of 

motor and sensory dysfunction within the corticobulbar pathways (Steele & Miller, 2010). 

Involuntary and irregular tics or choreic movements of the head, neck and facial muscles 

particularly effect the oral phase of deglutition (Hamakawa et al., 2004; Lee et al., 2012; Roos, 

2010). In contrast, hypokinetic movements of the oral musculature severely impacts on 

efficiency and safety of the oral phase (Heemskerk & Roos, 2011; Schindler et al., 2020). 

 

In both hyperkinetic and hypokinetic disorders, tongue protrusion has been reported (Kagel & 

Leopold, 1992) and becomes increasingly impaired as HD progresses (Roos, 2014). Impaired 

lingual movement and protrusion was highly correlated with PAS score > 2 (sensitivity of > 

86%) as visualised on FEES (Schradt et al., 2016). Oral spillage is reported due to reduced 

coordination and inadequate labial seal (Kagel & Leopold, 1992). Keage and colleagues (2020) 

reported severe lingual dysfunction in 48.6% of patients and impaired mastication in 43.9% of 

patients across all stages of the disease. Subjective judgement of impaired lingual control and 

coordination is associated with reduced efficiency in forming a cohesive bolus, poor 

coordination of bolus transfer resulting in premature transfer with liquids and segmented 

transfer with solids (Heemskerk & Roos, 2011; Kagel & Leopold, 1992; Keage et al., 2020; 

Schindler et al., 2020). Poor oral clearance and voluntary initiation of swallowing results in 

oral residue with more solid textures (Keage et al., 2020). Poor oral coordination and control 

combined with tachyphagia leads to large pieces of insufficiently masticated food being 

swallowed which increases the risk of choking and risk of death by asphyxiation (Heemskerk 

& Roos, 2011; Kagel & Leopold, 1992; Leopold & Kagel, 1985). 
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There is no evidence that reduced oral control and spillage is due to muscle weakness in HD. 

Oral motor examination reported reduced diadochokinetic rates compared to normative range 

associated with incoordination in HD (Manor et al., 2016), but mandibular function is 

reportedly stable over time (Keage et al., 2020). Reyes et al. (2014) also measured submental 

muscle activity of HD patients with sEMG during saliva and water swallowing as well as 

expiratory muscle training tasks. There was no significant difference between the muscle 

activity of HD patients compared to healthy controls during swallowing and low resistance 

expiratory muscle tasks (25% resistance), decreased muscle activity was only apparent when 

increased effort was required with a resistance of 75% (Reyes et al., 2014).  

 

Keage et al. (2020) and Kagel and Leopold (1992) reported impaired sensory responses such 

as altered lingual tactile discrimination and lack of adaptation of swallowing biomechanics to 

different bolus volumes in HD. These abnormal ataxic-type behaviours may be reflective of 

errors in the sensorimotor afferent loops from peripheral oral cavity which impacts the cortical 

modulation and subsequent regulation of the motor response (Kagel & Leopold, 1992). 

Sensorimotor swallowing dysfunction in HD has been characterised by incoordination between 

oral and pharyngeal swallowing events observed on FEES (Schindler et al., 2020). This 

disturbance of muscle coordination and segmented unsmooth sequencing in HD has been 

termed ‘oropharyngeal dyssynergia’ (Manor et al., 2018).  

 

4.2.5 Pharyngeal Phase Dysfunction 

Impairments of almost every aspect of the pharyngeal phase of swallowing have been reported 

across the literature as summarised in Table 4.1. Pre-oral spillage and pharyngeal delay are 

frequently reported in HD, but all reports are based on subjective judgements of when normal 

swallowing should be initiated. On VFSS examination, Keage and colleagues (2020) reported 
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significantly delayed pharyngeal swallowing initiation in all participants (n = 49) with thin 

fluids, in 85.1% with a puree bolus and 82.9% with a muffin. The severity of this delay was 

judged by a clinician using a standardised rating scale, and all bolus consistencies reportedly 

reached the level of the valleculae before swallowing was initiated. The extent of delayed 

pharyngeal initiation significantly correlated with disease duration and the site of the bolus 

head at the point of initiation was more proximal as disease burden increased (p < 0.05) (Keage 

et al., 2020). Heemskerk et al. (2015) reported pre-swallow spilling in up to 45.2% of patients 

(n = 45) with a 10 ml liquid bolus. An endoscopic evaluation of swallowing in HD patients (n 

= 86) reported pre-swallow spillage correlated with higher PAS scores across all consistencies; 

in addition, pre-swallow spillage was associated with other sensorimotor impairments such as 

dysarthria, dysphonia, perceptually impaired voluntary cough initiation and cough strength 

judged by an unblinded rater (Schradt et al., 2016). Another study reported frequently delayed 

initiation of the pharyngeal phase observed on FEES, with pre-swallow spillage in 85% of 

patients (n = 14) and bolus reaching the vallecula in 50% of patients, as measured using a three-

point scale judged by one clinician as normal to abnormal (Manor et al., 2018). The authors 

also reported abnormal pharyngeal phase correlated with ‘weak’ volitional cough as 

subjectively judged by one clinician. No significant difference in pre-swallow spillage across 

disease stages has definitively been reported in studies using instrumental evaluation of 

swallowing in HD (Heemskerk et al., 2015; Pizzorni et al., 2020; Schradt et al., 2016).  

 

A frequently cited study from 1985 evaluated 12 patients with HD and dysphagia using a 

variety of clinical and instrumental methods (Leopold & Kagel, 1985). VFSS, pulmonary 

testing, endoscopy and oesophageal manometry were all utilised alongside clinical 

observations which included oral-motor examination. Dysphagia severity was judged by a 

clinician using an unweighted rating scale for all features which makes comparison between 
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studies problematic. Eleven patients had moderately advanced HD, one had late stage disease. 

On video evaluation, the authors report that poor bolus formation and propulsion of the oral 

phase resulted in delayed pharyngeal initiation and reduced pharyngeal stasis characterised by 

post-swallow pharyngeal residue at the level of the pyriform sinus. In addition to delayed 

pharyngeal initiation, nasal redirection was reported in two patients, impaired cricopharyngeus 

function was subjectively judged in two patients, five patients aspirated. The authors failed to 

specify frequency of aspiration or bolus type aspirated but concluded that choking was 

associated with attempts to swallow large unchewed bolus (Leopold & Kagel, 1985). Another 

study using VFSS reported delayed and incomplete velopharyngeal closure on all consistencies 

which significantly correlated with disease duration (p < 0.05) (Keage et al., 2020). Heemskerk 

and colleagues (2015) reviewed swallowing biomechanics in early, mid and late stage HD (n 

= 45), this grey literature has not been published in a peer-reviewed journal, but this is included 

as the only study to detail objective group VFSS timing measures with fluid and solid bolus 

consistencies. However, recordings were at 15 fps, which is likely insufficient for accurate 

timing measures of swallowing (Levine & Rubesin, 2017). The authors reported significantly 

shorter oral and total transit times compared to normative data across all consistencies. Kagel 

and Leopold (1992) also reported delayed and uncoordinated pharyngeal phase in 10 out of 30 

patients as observed via VFSS examination, however no further measures of swallowing 

initiation were detailed. 

 

Despite a clinical belief that penetration or aspiration only occurs in advanced stages of HD 

(Hamilton et al., 2012), many studies have reported penetration and aspiration across all stages 

of HD. Schumann and colleagues (2018) reported 80% of participants (n = 21) penetrated or 

aspirated on FEES. In contrast, Manor et al. (2018) reported pharyngeal residual with solid 

textures in 57% (n = 8) of cases, but much lower frequency of penetration and aspiration 14% 
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(n = 2) with FEES despite the relatively comparable group. Aspiration was observed using 

FEES in 10 of 23 HD patients across all disease stages with suspected dysphagia (Sussmuth et 

al., 2012). A study using VFSS identified increased penetration and aspiration on liquids 

associated with pharyngeal phase delay in early HD with mild motor symptoms (Trender-

Gerhard et al., 2016). Penetration and aspiration ratings significantly increased (p < 0.05) with 

stage of disease as measured by VFSS (Heemskerk et al., 2015). Post-swallow residual at the 

vallecula and pyriform sinus was observed in more than half of swallows with a 10 ml liquid 

bolus with increased risk of aspiration (p < 0.05) compared to solid texture (Heemskerk et al., 

2015). The authors of two studies have hypothesised that the temporal coordination of 

swallowing is impaired in HD (Heemskerk et al., 2015; Schindler et al., 2020). Keage and 

colleagues (2020) also reported penetration or aspiration with all bolus types, most common 

with fluids (30.6%) as observed on VFSS. Fifty-one percent of individuals had compromised 

airway (PAS score > 3) and 32.7% silently aspirated (PAS score of 8) on at least one 

consistency. However, it is not stated how many swallowing trials were completed with each 

bolus. Schindler and colleagues (2020) reported compromised swallowing safety across all 

stages of HD. FEES evaluation identified silent aspiration in 7.7% of early stage, 11.8% of 

moderate stage and 27.8% of late stage HD (Schindler et al., 2020). This study included 

multiple trials of three bolus consistencies, however, the incidence of aspiration according to 

bolus type was not stated. In contrast, no aspiration or penetration was noted on FEES in two 

case studies in early-mid stage HD, but oral spillage was noted and the authors claim laryngeal 

and pharyngeal sensitivity were present, as a small amount of pharyngeal residue cleared with 

additional swallows (Alves et al., 2016).  

 

Delayed laryngeal descent post swallow on VFSS and involuntary movements noted whilst the 

larynx was at maximum displacement were described in two case studies (Hamakawa et al., 
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2004; Mochizuki et al., 1999). A single case study detailed timing and displacement measures 

but did not state frame rate of VFSS (Hamakawa et al., 2004). Incomplete BoT to posterior 

pharyngeal wall approximation, reduced hyoid excursion and incomplete epiglottic deflection 

during swallowing were reported with subsequent residual in both vallecula and pyriform sinus. 

Penetration was observed with large sips due to head back postural instability and reduced 

orolingual control (Hamakawa et al., 2004). Another study reported uncoordinated pharyngeal 

response and pharyngeal residual in 27 out of 29 patients after the first swallow on VFSS 

(Kagel & Leopold, 1992). Residue was reported in the vallecula and pyriform sinus but was 

not specified by bolus type. This study also reported prolonged hyo-laryngeal excursion and 

swallowing latency > 4 s (Kagel & Leopold, 1992). Although coughing and choking were 

observed on VFSS in 16 patients, aspiration or penetration was only reported in four people, 

the authors hypothesise that observed abrupt and forced closure of the ventricular and true 

vocal folds (laryngeal chorea) appeared to redirect the bolus and “reactivate pharyngeal sensory 

receptors” (Kagel & Leopold, 1992, p. 113), resulting in low frequency of aspiration. The 

authors did not include any timing or displacement measures of VFSS; therefore, all of these 

observations were subjectively reported. Hypokinetic dysphagia was associated with increased 

aspiration of larger volumes, with assumed bradykinetic swallowing response with due to 

diminished sensory kinematic thresholds (Kagel & Leopold, 1992). 

 

Diffuse pharyngeal residue has been reported with all consistencies; several authors interpreted 

this sign as reduced pharyngeal stripping or reduced peristalsis (Hamakawa et al., 2004; Kagel 

& Leopold, 1992; Keage et al., 2020; Lee et al., 2012; Leopold & Kagel, 1985). However, 

Manor et al. (2018) hypothesised that pharyngeal phase impairment and resultant residue is 

likely reduced sensory input and impaired motor response not due to muscle weakness, as only 

some elements of motor dysfunction were noted. In addition, several studies have reported 
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abnormal respiratory-swallowing coordination in HD with associated episodes of aspiration or 

penetration (Kagel & Leopold, 1992; Manor et al., 2018; Yorkston et al., 2004), but the 

biomechanics of this abnormal coordination has not been fully explored in this disease. 

Leopold and Kagel (1985) reported 11 of 12 patients with HD had impaired respiration as 

measured by pulmonary flow-loop testing and seven had abrupt expiration cessation. All 

patients had observed signs of impaired respiration coordination including aerophagia, 

irregular sniffing, inhalation and phonation (Leopold & Kagel, 1985). Resumed respiration or 

phonation during swallowing is more common as the disease progresses (Kagel & Leopold, 

1992).  

 

Overall, oropharyngeal phase impairments in HD have similarities to corticospinal 

impairments described in limb literature: delayed initiation and coordination of movements due 

to impaired integration and processing of sensorimotor information (Gordon et al., 2000; Quinn 

et al., 2001). Reported impairments such as prolonged hyolaryngeal excursion could illustrate 

‘overshooting’ of the motor response using excessive and imprecise amplitude as described in 

the limb literature (Gordon et al., 2000). 

 

4.2.6 Oesophageal Phase Dysfunction 

Oesophageal phase impairments are relatively underreported and not well understood in the 

HD literature. Kagel and Leopold (1992) reported 11 of the 35 patients exhibited oesophageal 

symptoms on VFSS such as eructation and aerophagia (Kagel & Leopold, 1992). Seven 

patients showed evidence of gastro-oesophageal reflux (Kagel & Leopold, 1992). On VFSS, 

redirection of the bolus coincided with respiratory chorea and required multiple clearing 

swallows. The authors hypothesise that chorea of the oropharyngeal and respiratory muscles 

interrupted intrathoracic oesophageal mechanoreceptors reducing the efficacy of oesophageal 



86 

 

peristalsis and emptying. Vomiting, belching and regurgitation are commonly reported in HD 

(Kagel & Leopold, 1992; Leopold & Kagel, 1985). Leopold and colleagues (1985) reported 

five out of 12 patients with mid to late stage HD had impaired oesophageal motility as judged 

by a non-weighted rating scale. Seven people had diaphragmatic chorea on oesophageal 

manometry, five demonstrated LES dysfunction but no impairment of the UES was reported 

(Leopold & Kagel, 1985).  

 

A single case study utilised HRM to evaluate a patient presenting with HD and dysphagia (Lee 

et al., 2012). The authors reported normal UES relaxation, normal peristaltic pharyngeal 

pressures, but impaired pharyngeal transit due to irregular velopharyngeal approximation, and 

simultaneous contraction of the hypopharyngeal regions with impaired bolus transit through 

the UES. Spastic oesophageal motility was characterised by irregular and simultaneous 

contractions in 70% of 5 ml water swallows resulting in abnormal liquid transit as noted on the 

impedance contour (Lee et al., 2012). As this is the only report of pharyngeal and oesophageal 

evaluation of an individual with HD using HRM, it is difficult to generalise these findings. 

However, these interesting observations require further investigation to contribute to the 

knowledge of dysphagia characteristics in HD. A final retrospective study evaluated patients 

with HD (n = 68) using endoscopic gastrostomy instrumental assessment. This study revealed 

high prevalence of oesophagitis (32.4%), gastritis (33.8%) and pangastritis (20.6%), these 

symptoms significantly correlated with disease duration (p < 0.05) (Andrich et al., 2009). The 

authors noted that only 20 patients complained of gastro pain or reflux, despite the high 

prevalence of these features.  
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4.2.7 Awareness of Dysphagia in HD 

In summary, there is increased awareness and interest in the clinical significance of dysphagia 

in HD (Pizzorni et al., 2020). It has been highlighted as a key area of interest by the European 

Huntington’s Disease Network, with the establishment of ‘Dysphagia Standards of Care 

Speech and Language Therapy Working Group’ in 2018. As dysphagia in HD can compromise 

swallowing safety and efficiency from early in the disease, there is consensus that early 

detection and effective intervention can help to prevent choking and respiratory complications 

(Hamilton et al., 2012; Heemskerk & Roos, 2011; Heemskerk et al., 2015). Due to the lack of 

clear clinical markers, dysphagia in HD could be assumed as a distinct neuropathological 

symptom which requires further investigation with consistent and objective measurement 

techniques (Schumann et al., 2018).  



Chapter 5. Treatment Approaches in Huntington’s Disease 

Despite the identification of the clear genetic cause in 1993, no disease modifying treatments 

exist to prevent or slow the progression of HD (McColgan & Tabrizi, 2018). There have been 

great advances in treatment options over the last decade. These include huntingtin (htt) 

lowering therapies aimed to supress transcription of the htt mutant protein and neuronal 

regeneration studies (Robinson, 2020; Tabrizi et al., 2019; Wyant et al., 2017). A recent 

international review of management of HD recommended that evidence-based practice should 

include early intervention and a combination of both pharmacological and non-

pharmacological approaches (Bachoud-Levi et al., 2019).  

 

5.1 Pharmacological and Non-pharmacological Management 

Pharmacological management of HD is most commonly reported; however, evidence to 

support the effectiveness of these approaches is lacking and clinical decisions are often based 

on expert opinion or experience (Mason & Barker, 2016; McColgan & Tabrizi, 2018; Mestre 

et al., 2009; Wyant et al., 2017). Commonly prescribed antipsychotic or anti-choreic drugs such 

as tetrabenazine can have adverse effects including increased rigidity, sedation and dysphagia 

(Bachoud-Levi et al., 2019; Dayalu & Albin, 2015; Wyant et al., 2017).  

 

5.1.1 Principles of Rehabilitation in HD 

There is a time in premanifest HD when cortical deterioration is apparent, but significant 

neuronal reorganisation and increased neuroplasticity creates compensatory networks to 

maintain normal function (Andrews et al., 2015; Bilney et al., 2003a; Wild & Tabrizi, 2014). 

Neuroplasticity or brain plasticity is defined as the ability of the nervous system to modify 

activity through adaption and reorganisation of synaptic connections, structure, and function in 

response to intrinsic or extrinsic stimuli (Mateos-Aparicio & Rodríguez-Moreno, 2019). In the 
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context of neurological disease or damage, neuroplasticity also refers to the brain’s ability to 

adapt and rebuild neuronal pathways to improve or preserve function (Mateos-Aparicio & 

Rodríguez-Moreno, 2019). It has been hypothesised that neuroplasticity in HD results in altered 

neural activity in task-specific cortico-striatal pathways by recruiting additional non-task-

specific cortical regions (Andrews et al., 2015; Soloveva et al., 2018). This is consistent with 

imaging studies that report significant deterioration in cortical and subcortical regions in the 

absence of functionally detectable decline in cognitive or motor tasks (Andrews et al., 2015; 

Poudel et al., 2015). 

 

In recent years, there has been an increase in studies evaluating the systematic effects of 

rehabilitation and exercise for individuals with HD (Fritz; Petzinger; Quinn & Busse, 2017; 

Quinn et al., 2017; Quinn et al., 2020). A review of physiotherapy (PT) rehabilitation in PD 

and HD concluded that high intensity, repetitive, blocked practice with visual or verbal 

feedback may be the most effective rehabilitation strategy in these populations in targeting 

limb and trunk control as part of corticospinal intervention. Rehabilitation should focus on 

improving the speed and amplitude of the sequential movements for specific motor tasks 

(Quinn et al., 2013a). The most recent review provides clear clinical guidance to support PT 

intervention in HD (Quinn et al., 2020). Quinn and colleagues (2020) concluded that there is 

strong evidence to support PT intervention to improve fitness, motor function, and gait in 

persons with HD. The authors recommend that intensive task-specific rehabilitation for six to 

eight weeks may be beneficial for individuals with HD multiple times per year; however, the 

viability and financial implications of this intensive model on healthcare providers requires 

further consideration. Recommendations were made for further large-scale clinical trials to 

evaluate the effectiveness of certain aspects of PT intervention (Quinn et al., 2020). 
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Rehabilitation may be able to optimise the compensatory neuroplasticity present in early HD 

(Andrews et al., 2015; Cruickshank et al., 2015; Thompson et al., 2013). A window of 

opportunity has been proposed where neural reorganisation may be most amenable to 

intervention as represented in Figure 5.1 (Andrews et al., 2015; Bilney et al., 2003b). Early 

intervention may be the best preventative strategy as symptoms are mild or not evident, but 

degeneration in the brain is already present (Quinn & Busse, 2017; Ross & Tabrizi, 2011).   

Figure 5.1 

Proposed Model of Timing of Intervention to Enhance Neural Compensation and 

Preserve Function in HD 

 

Note. This hypothetical model proposed by Andrews and colleagues, (2015) is specific 

to cognitive intervention, but can be applied to any intervention to delay clinical decline 

and maintain function in HD. Reprinted with permission from “Cognitive interventions 

to enhance neural compensation in Huntington's disease”, by Andrews, S. C., 
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Domínguez, J. F., Mercieca, E. C., Georgiou-Karistianis, N., & Stout, J. C., 2015, 

Neurodegenerative Disease Management, 5(2), 155-164. 

 

Despite the neurodegenerative nature of the disease, HD may have rehabilitative potential as 

intervention could be implemented in premanifest gene-carriers to maintain function before 

symptoms appear. As impairments become more apparent, the goal of rehabilitation may not 

be to restore original functioning; however, task-specific rehabilitation may be 

‘neuroprotective’ by maximising function and exploiting plasticity of neural pathways (Quinn 

& Busse, 2017; Quinn et al., 2013a). The consensus is that rehabilitation should be 

implemented as early as possible to take advantage of the neuronal compensation which 

proceeds symptoms (Bartlett et al., 2019; Busse et al., 2017; Cruickshank et al., 2018; Khalil 

et al., 2013; Paulsen et al., 2014; Quinn & Busse, 2017; Quinn et al., 2020; Reilmann et al., 

2014; Ross & Tabrizi, 2011). 

 

5.1.2 Multi-disciplinary Intervention in HD 

Several prominent longitudinal studies of intensive multi-disciplinary team (MDT) 

rehabilitation in HD have reported beneficial outcomes (Bilney & Pearce, 2011; Fritz, 2017; 

Yomtoob et al., 2019). Despite the high prevalence of dysphagia and the significant 

consequences of this impairment, many of these rehabilitation interventions do not exclusively 

target swallowing impairment. Firstly, Zinzi and colleagues (2007; 2009) reported a landmark 

pilot study, retrospective case series and audit of 40 patients with early- to mid-HD who took 

part in three-week blocks of inpatient intervention repeated up to three times per year. Twenty-

five participants completed all three admissions. Treatment included PT, occupational therapy 

(OT) and SLT intervention of four to eight hours per day, six days per week (Zinzi et al., 2007). 

Treatment was well tolerated with no reported adverse effects. Immediately following 
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treatment, highly significant improvements were reported in motor performance and ADLs 

using validated outcome measures (p < 0.01). There was no evidence of generalisation between 

admissions, however, no motor decline was observed over two years which may be significant 

in this degenerative disease (Zinzi et al., 2007). A non-standardised written questionnaire was 

posted to all participants who had taken part on average 8.6 months post-treatment. Of note, 

91.1% (n = 34) of respondents were caregivers which may introduce a potential reporting bias. 

Significant improvements were reported in mood, apathy and social relationships (p < 0.05). 

Respondents also reported beneficial effects on gait, reduced falls and motor control. These 

improvements were reportedly maintained one to three months post-intervention in 71% of 

participants (Zinzi et al., 2009). 

 

Piira and colleagues (2013, 2014) reported the effects of an intensive residential rehabilitation 

programme after one and two years (Piira et al., 2013; Piira et al., 2014). These studies 

replicated the intervention protocol previously described within Zinzi et al., (2007) above. 

MDT intervention included muscle strengthening exercises aimed to maintain function. Thirty-

seven patients with early-mid HD took part in intervention; 31 completed all three admissions 

over one year. Measurements of ADLs and UHDRS ratings remained stable, and significant 

improvements in gait, balance, QoL, anxiety and depression were reported (Piira et al., 2013). 

van Walsem et al. (2018) reported a secondary analysis of the cognitive measures of this group 

following one-year of intervention. They reported significant decline in the Symbol Digit 

Modalities Test, but no other significant differences in the remaining seven neuropsychological 

measures, representing a stability of cognitive performance over longitudinal follow-up (van 

Walsem 2018). A two-year retrospective evaluation reported that six participants had ongoing 

improvements in QoL, anxiety and body mass index, but did not reach statistical significance. 

(Piira et al., 2014). Four out of six patients demonstrated non-significant improvements in 
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motor performance. Importantly, no decline in gait, balance, ADL performance or cognition 

was observed (Piira et al., 2014). Frich et al. (2014) investigated patient and caregiver 

perspectives of this intensive MDT rehabilitation programme with semi-structured interviews. 

Eleven patients out of 31 who completed the one-year intervention were invited to take part. It 

is not clear how the 11 participants were selected which may increase the risk of bias using 

motivated and well-supported patients and families. Results were similar to the Zinzi et al., 

(2009) with self-reported long-term improvements in balance, walking, social experiences and 

self-confidence post-treatment (Frich et al., 2014). 

 

Ciancarelli and colleagues (2013, 2014 & 2015) described a combined PT and OT neuromotor 

rehabilitation protocol. PT intervention aimed to maintain control during specific exercises and 

improve postural stability and proprioception. OT aimed to restore functional ability to perform 

ADLs with improved dexterity and general motor control. SLT intervention was not included 

in this MDT study. Thirty-four individuals completed an intensive neurorehabilitation 

programme during a three-week hospital admission. Intervention was at least four hours per 

day, six days a week. There were significant improvements in all validated clinical, functional 

and physiological outcome measures post-intervention (Ciancarelli et al., 2015). 

 

Another series of three studies described a randomised control trial (RCT) of patients with early 

to mid-stage HD (n = 22) who received either daily outpatient MDT intervention or usual care 

over nine months (Cruickshank et al., 2018; Cruickshank et al., 2015; Thompson et al., 2013). 

Training was individualised with one PT clinic session of group exercises and three self-

directed home sessions of muscle strengthening and fine motor exercises per week. In addition, 

one session of OT every two weeks focused on cognitive and executive function skills 

(Cruickshank et al., 2015). Each session lasted 60 minutes. There was high adherence to clinic-
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based group exercises (85%) and lower adherence to the home programme (56%). No adverse 

effects were reported but two people withdrew during treatment for unspecified reasons. 

Primary outcomes included the UHDRS, QoL questionnaires, a battery of neuropsychological 

tests and physical measures. Raters were blinded to intervention received. Significant 

improvements were reported in manual dexterity and lower limb muscle strength compared to 

the control group who significantly deteriorated. No significant differences in upper limb 

strength, balance or QoL scales were noted (Cruickshank et al., 2018). However, there was 

greater deterioration of stability in the control group and a moderate treatment effect was 

identified on UHDRS total motor scores and walking (Cruickshank et al., 2015). Cruickshank 

et al. (2015) also reported MRI outcomes of 15 participants who received the same 

methodological intervention protocol over nine months. It is unclear if this study evaluated the 

same group of patients described in the 2013 and 2018 studies. MRI studies pre- and post-

intervention indicated significantly increased volume in the right caudate and bilaterally in the 

dorsolateral prefrontal cortex following nine months of multidisciplinary rehabilitation. 

Further, this study identified a significant association between the grey matter volume increases 

in the dorsolateral prefrontal cortex and improved performance on verbal learning and memory. 

This provided evidence that outpatient rehabilitation may increase neurogenesis or alter 

neuronal morphology through environmental enrichment, termed ‘experience-dependent 

plasticity’ (Cruickshank et al., 2015). Of note, these studies evaluated the effectiveness of a 

less intensive outpatient rehabilitation protocol (4 to 5 hours per week) compared to other 

intensive inpatient MDT interventions (4 to 8 hours per day) (Ciancarelli et al., 2015; Piira et 

al., 2013; Zinzi et al., 2007). This less intensive task-specific rehabilitation resulted in fewer 

significant improvements but was still sufficient to maintain function across physiological 

measures. 
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More recently, two exploratory studies have evaluated the effects of outpatient MDT 

intervention in individuals with premanifest HD. Firstly, Bartlett and colleagues (2019) 

completed MDT intervention which included physical exercises (aerobic and resistance), 

computerised cognitive training, dual-task training, sleep hygiene and nutritional guidance and 

socialisation over nine months. Sixteen individuals with premanifest HD completed three 

training sessions per week. Although there was no control group, this MDT program was 

designed to provide a systematic rehabilitative approach with a training program split into six 

blocks to avoid overtraining (Bartlett et al., 2019). Outcome measures were acquired from sleep 

studies and MRI studies pre- and post- intervention. Immediate and delayed memory 

consolidation was also assessed using objective outcomes. The authors reported large and 

medium effect sizes for sleep quality (rapid eye movement latency d = 1.297) and total time 

asleep (d = 1.021) following intervention. MRI analysis found significantly reduced volume of 

the right nucleus accumbens post-therapy (p = 0.04). There were no significant differences in 

subcortical structures or memory outcomes, which may reflect the need for more intensive 

intervention to elicit neural and functional change. The second study evaluated the same MDT 

program as that described by Bartlett and colleagues (2019) in 17 individuals with premanifest 

HD over nine months. This study by Reyes and colleagues (2020) evaluated the effects of this 

MDT intervention on dual-task abilities. Assessment sessions pre- and post-intervention 

consisted of simultaneous completion of arithmetic and torque steadiness tasks. Participant 

performance during single and dual-tasks were compared. Significant improvements in one 

progressive subtraction test (p < 0.05) were reported post-therapy and significant 

improvements in dual-task performance. As this was exploratory work, no control group was 

included in this study; however, this preliminary data suggests that MDT intervention is well 

tolerated and may have beneficial effects on dual-task performance through reduction of 

cognitive and motor interference in individuals with premanifest HD (Reyes et al., 2020).  
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Several home-based rehabilitation programs using technology such as computerised cognitive 

training, computer games or videos have reported positive adherence and clinical outcomes 

(Busse et al., 2013; Busse et al., 2016; Kempnich et al., 2017; Khalil et al., 2013; Kloos et al., 

2013; Metzler-Baddeley et al., 2014; Sadeghi et al., 2017; Yhnell et al., 2020). Identified 

barriers to self-directed home rehabilitation included poor motivation, reduced caregiver 

support, frustration during the tasks and inability to implement the training into the daily 

routine (Yhnell et al., 2020). Low intensity rehabilitation (e.g. twice weekly) described in some 

of these home programs was identified as insufficient to obtain systematic improvements as 

measured by standardised outcomes Quinn et al. (2014), therefore daily rehabilitation was 

typically recommended. 

 

5.2 Treatment Approaches for Corticobulbar Symptoms  

Promising evidence exists to support implementation of intensive rehabilitation to target 

corticospinal and cognitive symptoms of HD. However, there is a paucity of evidence for 

treatment of corticobulbar symptoms in HD. A recent review of treatment options in HD 

concluded, “we recommend speech and swallow therapy before the onset of significant 

dysphagia” (Wyant et al., 2017, p. 33); however, referral rates for SLT are amongst the lowest 

of all ancillary services at 3.01% in HD (Yomtoob et al., 2019). 

 

5.2.1 Compensatory Management  

As evidence to support rehabilitation of corticobulbar symptoms in HD is lacking, SLT 

intervention typically includes ongoing assessment and monitoring (Hunt & Walker, 1989; 

Mariscal et al., 2014; Pizzorni et al., 2020). Historically, neurodegenerative dysphagia 

intervention comprised of compensatory strategies and advice to promote safe swallowing; this 

continues to be the primary management in HD (Clarke et al., 2018; Hamilton et al., 2012; 
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Hunt & Walker, 1989; Keage et al., 2020; Zimmerman et al., 2020). Treatment is aimed to 

minimize the impact of dysphagic symptoms, reduce the risk or impact of secondary 

complications, and educate individuals to facilitate more enjoyable mealtime experiences 

(Heemskerk & Roos, 2011; Stewart, 2012). However, these compensatory strategies can have 

significant negative effects on QoL and participation, as discussed further below (Clarke et al., 

2018).  

 

5.2.1.1 Diet Modification 

Diet and fluid modification aimed to alter bolus transport and optimise swallowing safety is 

the most common SLT intervention for dysphagia in HD (de Tommaso et al., 2015; Hamilton 

et al., 2012; Leopold & Kagel, 1985; Pizzorni et al., 2020). Although appropriate use of diet 

and fluid modification is assumed to reduce the risk of choking or aspiration, (Hamilton et al., 

2012) the effectiveness to improve swallowing safety and subsequent reduction in aspiration 

pneumonia has not been documented in HD. These recommendations are often made without 

instrumental assessment (de Tommaso et al., 2015), and may be inappropriately restrictive. 

Reduced palatability of thickened liquids and poor adherence to recommendations has 

correlated to increased risk of dehydration, malnutrition, urinary tract infections and decreased 

QoL (Beck et al., 2018; Espinosa-Val et al., 2020; Newman et al., 2016).  

 

5.2.1.2 Non-oral Feeding 

Non-oral or artificial enteral feeding approaches such as percutaneous endoscopic gastrostomy 

(PEG) may be recommended in late stage HD if oral intake is insufficient or there is a 

substantial risk of aspiration (Hamilton et al., 2012; Sarkar et al., 2017; Schradt et al., 2018; 

Sussmuth et al., 2012). Two preliminary studies have recently conducted retrospective chart 

reviews comparing clinical outcomes of patients with HD who did and did not have PEG 
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feeding. The first is a conference abstract which reviewed 148 patients with HD. This study 

reported that the group with PEG tubes lived longer (p = 0.02), however there were 

significantly higher prevalence of skin ulcers (p < 0.001) and rates of aspiration pneumonia 

from 35% to 77% in those with PEG (p < 0.001) (Dyke & Frank, 2019). Similar results were 

reported by Hamedani et al. (2020), this large cross-sectional study compared outcomes in HD 

inpatients (n = 1614) and MND inpatients (n = 7908) with gastrostomy placement. There were 

significantly poorer outcomes for the HD group, (p < 0.0001) with higher prevalence of sepsis, 

extended hospital stay and aspiration pneumonia rates increased from 20.5% in the MND group 

to 34.1% in the HD group (Hamedani et al., 2020). Despite this lack of evidence, non-oral 

feeding is recommended on a case by case basis in HD as well as other neurodegenerative 

diseases such as PD and MND (Stavroulakis & McDermott, 2016). Decisions about non-oral 

feeding should be carefully considered based on the individual’s beliefs and wishes as part of 

advanced care planning (Stavroulakis & McDermott, 2016).  

 

5.2.1.3 Postural Changes and Compensatory Manoeuvres  

The use of adapted utensils and customised chairs for postural modification have been reported 

in several studies (Hunt & Walker, 1989; Kagel & Leopold, 1992). Strategies included 

presentation of food below waist level, weighted cups, wrist weights and trunk stabilisation 

with ankle weights to reduce tachyphagia and premature oral transfer (Kagel & Leopold, 1992). 

Postural changes with adaptive seating reportedly improved clearance of residual after 

swallowing, but no instrumental measures were reported to verify this (Hunt & Walker, 1989). 

Another study evaluated the effect of a specialist chair which promoted “adapted position of 

the head” (Woisard et al., 2020, p. 180). This study included 56 patients with identified 

dysphagia (n = 12 with HD). Swallowing safety and hyoid movement was evaluated with 

VFSS. The examiners were blinded for this RCT, patients who utilised the chair for four weeks 
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(n = 26) had a measurable increase in hyoid excursion but no other differences were identified 

with PAS or self-reported QoL (Woisard et al., 2020).  

 

Altered head postures such as adoption of a chin tuck position prior to oral transfer are reported 

to be effective strategies in HD (Giddens et al., 2010). This is based on assumptions that a chin 

down posture could improve BoT to posterior pharyngeal wall approximation and increase the 

vallecula space to improve swallowing safety (Welch et al., 1993). Neither of these 

assumptions have been confirmed in other populations. Two preliminary studies have 

evaluated chin tuck posture during swallowing in HD. Heemskerk et al. (2015) subjectively 

rated swallowing features during chin down posture compared to neutral head posture during 

10 ml bolus swallows on VFSS. Fourteen out of 45 patients (31%) were unable to adopt an 

adequate chin tuck position. The authors reported no significant differences observed in pre-

swallow spillage, aspiration or post-swallow residue between the two postures. The second 

study described chin tuck and diet modification as ‘effective’ to prevent aspiration in HD as 

measured with FEES (Schradt et al., 2018). This grey literature conference abstract described 

by Pizzorni and colleagues (2020) does not include sufficient detail to allow for replication or 

critical appraisal of these findings. These compensatory strategies should be trialled with 

instrumental guidance (Daniels et al., 2019), and may be contraindicated in cases where oral 

control, spillage and dysmotility may be exacerbated. 

 

The clinical guidelines for management of dysphagia in HD recommends the implementation 

of cued cough post-swallow and additional clearing swallows during mealtimes to reduce risk 

of aspiration (Hamilton et al., 2012). No specific studies have evaluated the effectiveness of 

these techniques in HD. In other neurogenic aetiologies voluntary airway closure such as 

supraglottic or super-supraglottic swallowing manoeuvres may be implemented to improve 
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airway protection (Logemann, 1998). Whilst preliminary evidence suggests the supraglottic 

swallowing manoeuvre may have a beneficial effect on swallowing biomechanics in healthy 

older individuals (Seong et al., 2018), further evidence is required to evaluate the effectiveness 

of this technique in neurogenic dysphagia. 

 

5.2.1.4 Sensory Stimulation 

Strategies to enhance sensory input to the CPG may be implemented as another compensatory 

intervention to improve swallowing efficiency in patients with neurogenic dysphagia (Pelletier 

& Lawless, 2003). Kagel and Leopold (1992) reported the use of thermal or gustatory enhanced 

stimuli (iced lemon chips) before and after oral trials during VFSS as part of a number of 

compensatory strategies with HD patients. The authors reported improved swallowing safety 

and efficiency, but the specific effect of this additional sensory stimulation has not been 

explored in HD. In other neurogenic groups, significant improvements in swallowing outcomes 

have been reported using cold (Cui et al., 2020; Michou et al., 2012), sour (Cola et al., 2012; 

Logemann et al., 1995; Pelletier & Lawless, 2003) or carbonated boluses (Bülow et al., 2003; 

Sdravou et al., 2012). In contrast, the use of thermal-tactile stimulation (Logemann, 1983; 

Regan et al., 2010; Rosenbek et al., 1996b) and neuromuscular electrical stimulation techniques 

have also been reported to enhance sensory input to the CPG and improve the swallowing 

response (Mistry et al., 2012; Rofes et al., 2014b). The effectiveness and specificity of these 

techniques in treatment of dysphagia is developing and several inconsistent or conflicting 

results have been reported in the literature (Baijens et al., 2013b; Bath et al., 2016; Jayasekeran 

et al., 2010; Rofes et al., 2014b). In addition, evaluation of these techniques has not yet 

extended to neurodegenerative conditions such as HD. 
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5.2.2 Dysphagia Rehabilitation1 

There is a lack of evidence evaluating the efficacy of rehabilitation targeting corticobulbar 

symptoms in HD, therefore this section will include evidence in other neurological aetiologies. 

The lack of rehabilitative approaches for dysarthria and dysphagia treatment in HD may be due 

to a historical clinical fear of detrimental treatment effects including “the possibility of 

inducing further weakness with strengthening attempts” (Giddens, 2010, p. 3). Importantly, 

there is insufficient evidence to suggest that intensive rehabilitation of corticobulbar symptoms 

in other neurodegenerative populations is contraindicated (Athukorala et al., 2014; El Sharkawi 

et al., 2002; Plowman, 2015; Troche et al., 2011). 

 

5.2.2.1 Strength-based Approaches in HD 

Very few studies have systematically evaluated traditional strength-based dysphagia training 

in HD. Those that have are limited to expiratory muscle strength training (EMST), oromotor 

exercises and Mendelsohn-Masako combined manoeuvres. Firstly, in the pioneering HD 

intervention study, Leopold and Kagel (1985) provided an overview of their dysphagia 

intervention, however the duration and content of therapy sessions was not specified to allow 

for replication. Intervention included a modified Valsalva manoeuvre (forced exhalation 

against a pinched nose) and compensatory strategies (diet modification, adaptive utensils, 

optimum positioning). An unspecified number of the patients with severe dysphagia required 

non-oral feeding to maintain nutrition and hydration via nasogastric tube until the 

“compensatory techniques could be instituted and a pureed diet could be safely tolerated” 

(Leopold & Kagel, 1985, p.59). Patients were also taught the ‘chew-swallow-cough-swallow’ 

technique. The authors reported that eight out of 12 patients returned to a normal diet. The 

 
1 Portions of this section of the literature review have been published as part of: Burnip, E., Wallace, E., 

Gozdzikowska, K., & Huckabee, M. L. (2019). A systematic review of rehabilitation for corticobulbar symptoms 

in adults with Huntington’s Disease. Journal of Huntington's Disease, 9, 1-12. 
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“more severely demented patients required more sessions” (Leopold & Kagel, 1985, p.60) and 

greater ongoing supervision post-therapy to target more severe cognitive and motor sequencing 

deficits; however, this additional therapy was not defined. This study design was vulnerable to 

several identified biases. Blinding of raters was not possible, outcome measures were not 

validated, or consistently repeated post-therapy. In addition, data analysis of quantitative 

outcome measures was not conducted. 

 

Giddens et al. (2010) evaluated a home program of SLT intervention over two years with a 

descriptive case series (n = 13 early stage and n = 1 late stage HD). The authors reported 

swallowing screening and referrals for baseline VFSS where appropriate, but no further 

information was provided regarding how many participants underwent VFSS or the findings. 

Treatment consisted of oral motor labial and lingual resistance training, respiratory (glottal 

adduction) and phonatory exercises completed twice daily at home, a minimum of four times 

per week. The participant with late stage disease withdrew due to perceived weakness, however 

this was not measured. Improvements in oromotor outcomes such as increased phonation time, 

improved labial range of movement and reduced vowel distortion were reported in all other 

participants, but the length of treatment and time of follow-up were not specified. A further 

pilot study, reported within the same manuscript, evaluated the same home program over 30 

days in five individuals with mild dysarthria secondary to HD. Outcome measures included 

cranial nerve examination, speech diadochokinetic rates and maximum phonation time 

measured by unblinded raters. The number of participants that fully adhered to the exercise 

program was not reported in either study. Again, descriptive improvements in oromotor tasks 

and perceived improvements in resonance and vocal control were described for all participants. 

‘Elimination’ of dysphagia was reported in two case studies, although no swallowing outcome 

measures were included. In addition, two participants began anti-choreic drug treatment mid-
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study. These studies had a high risk of selection and reporting bias, however, the perceived 

functional oromotor improvements justifies further research using objective swallowing 

outcomes to measure any effect of rehabilitation. 

 

EMST is another strengthening intervention which involves exhaling into a device with a one-

way valve set at a resistance threshold of between 60% and 80% of the individual’s maximum 

expiratory pressure. Although EMST aims to strengthen expiratory cough, the training requires 

recruitment of the oropharyngeal and laryngeal musculature integral to swallowing which can 

indirectly improve swallowing biomechanics (Kim & Sapienza, 2005). In healthy adults, 

EMST has been shown to specifically increase activation of the submental muscles as measured 

with sEMG (Burkhead et al., 2007). Reyes et al. (2015) evaluated EMST and inspiratory 

muscle training in 18 patients with mid-stage HD. Nine patients were randomised to complete 

expiratory and inspiratory muscle training and nine received a fixed resistance placebo 

exercise. Exercises were completed six times per week for four months. Spirometry indices, 

maximum inspiratory and expiratory pressure, TWST, gait, dyspnoea and swallowing QoL 

measures were completed pre- and post-intervention. Respiratory outcome measures and 

swallowing QoL improved in the intervention group. Treatment had a small positive effect on 

swallowing time as measured by the TWST, however no other measures of swallowing 

biomechanics were included (Reyes et al., 2015). In addition, a small positive effect was 

demonstrated in the control group, which was also reported in Jones et al. (2016). Jones et al. 

(2016) completed another pilot study of 20 participants with early HD who were randomly 

allocated to training or placebo groups. Intervention consisted of inspiratory muscle training 

with 50% resistance, twice per day for six weeks. Swallowing was not evaluated in this study. 

Adherence to the therapy protocol was reported as good (70% ± 26.35%). There were no 

significant differences in inspiratory muscle strength, peak cough flow or sit to stand results in 
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response to training. Interestingly, both the training and placebo breathing exercises increased 

peak cough flow and inspiratory sniff nasal pressure post-intervention, which could indicate 

increased respiratory efficiency with breathing tasks without the need for strengthening or 

resistance training (Jones et al., 2016).  

 

In addition to these two studies in HD, preliminary research evaluating EMST in other 

neurodegenerative populations such as PD and MND has shown treatment effects on 

swallowing safety and efficiency (Plowman et al., 2019; Troche et al., 2010; Van Hooren et 

al., 2014). An initial pilot study by Plowman and colleagues (2016) evaluated EMST in patients 

with MND (n = 15). Training consisted of 50% maximum expiratory pressure representing a 

moderate training load, five days per week for eight weeks. Seventy-nine percent of patients 

completed the protocol. Of the six objective measures of swallowing biomechanics from VFSS, 

a significant treatment effect of increased maximum hyoid displacement was reported, but no 

other differences in swallowing outcomes were observed (Plowman, 2016). A further double 

blinded RCT evaluated the same protocol in a larger MND cohort (n = 48). There were no 

significant improvements in swallowing function observed on VFSS. There was, however, 

significant deterioration in the sham group post-therapy. As this deterioration was not observed 

in the intervention group, this result could be clinically significant.  

 

Additionally, Troche and colleagues (2010) completed a blinded RCT of EMST in patients 

with PD (n = 60). In contrast to the previous studies, this treatment was five days per week 

over four weeks set at 75% of the participant’s maximum expiratory pressure. Despite the 

reduction in intervention duration, a moderate positive treatment effect (d = 0.55) was reported 

for PAS ratings. There were no significant differences in VFSS hyolaryngeal timing and 
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displacement measures post-treatment. Of note, the hyolaryngeal measures were obtained 

during 10 separate 5 ml liquid bolus trials, whilst the PAS ratings were judged during 3 oz 

sequential swallowing. It was not clearly defined how the sequential swallowing task was rated 

using PAS, for instance if the best, worst or all swallows were included in analysis. In addition, 

the average PAS scores were subject to statistical analysis. This method of analysis with this 

categorical outcome has been criticised and may have affect the validity of results (Steele & 

Grace-Martin, 2017). The intervention group had a mean PAS of 2 pre- and post- therapy which 

falls within the normal limits of swallowing (Garand et al., 2019; Humbert et al., 2018; Steele 

et al., 2019). The discrepancy in treatment effects may indicate a ceiling effect where 

swallowing biomechanics may not significantly change in a group with relatively mild 

dysphagia. Self-reported QoL as measured by the SWAL-QoL significantly improved (p < 

0.05) for both the intervention and sham groups. As observed in the previous study (Plowman 

et al., 2016), this study in PD also reported significant deterioration in the sham group which 

was not observed in the intervention group (Troche et al., 2010). This study, however, did not 

include any follow-up assessments to evaluate any maintenance effects. These studies suggest 

promising beneficial effects of intensive strength training in neurodegenerative populations; 

which has historically been presumed to be detrimental.  

The Mendelsohn manoeuvre is a voluntary prolonged hold of laryngeal elevation at the height 

of swallowing. This technique has traditionally been described to increase laryngeal elevation, 

maximum hyoid excursion and prolong UES opening to improve efficiency of bolus transport 

into the oesophagus (McCullough & Kim, 2013). Transient changes in biomechanics have been 

reported in healthy participants during this manoeuvre (Hoffman et al., 2012; Inamoto et al., 

2018). Additionally, the Masako or tongue-hold manoeuvre is a task-specific strengthening 

exercise which requires the patient to hold their tongue anteriorly between the teeth during dry 

swallows. This task aims to increase activation and anterior movement of the posterior 
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pharyngeal wall resulting in improved approximation with BoT during swallowing (Fujiu & 

Logemann, 1996; Logemann, 1998). Preliminary evidence in dysphagic patients (n = 3 

following head and neck cancer) suggests that this exercise can increase pharyngeal pressures 

during swallowing (Lazarus et al., 2002); however, this increase was not replicated in healthy 

participants (Doeltgen et al., 2009; Hammer et al., 2014).  

 

One study in HD included the use of the Mendelsohn manoeuvre with the Masako (Heemskerk, 

2016). Thirty patients received dysphagia intervention which included the Masako and 

Mendelsohn manoeuvres, although further details of dosage were not specified. One patient 

received a video from her VFSS as biofeedback to aid task performance. Heemskerk (2016) 

reported that ‘most’ patients could complete the tasks and reported treatment benefits, although 

no objective outcome measures were reported. The authors concluded that from patient self-

report, these swallowing manoeuvres may be beneficial for people with HD. This grey 

literature requires more description of methods, training protocol and swallowing outcome 

measures before any assumptions of effectiveness can be made. The use of these manoeuvres 

with elderly or neurodegenerative populations has been limited due to concerns about fatigue 

of musculature and difficulties completing the task at every meal particularly when cognition 

is affected (McCullough & Martino, 2013).  

 

5.2.2.2 Other Strength-based Training Approaches 

Although there are no data relative to HD, there are other strength training approaches reported 

in the swallowing literature. These include lingual strengthening exercises against resistance 

using the Iowa Oral Performance Instrument (IOPI), the Shaker or ‘head-lift’ exercise, chin 

tuck against resistance and effortful swallowing. Each of these approaches have preliminary 

evidence to suggest changes in oropharyngeal musculature resulting in measurable 
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improvements in swallowing safety and efficiency (Hind et al., 2001; Hiss & Huckabee, 2005; 

Huckabee & Steele, 2006; Kim & Park, 2019; Robbins et al., 2007; Shaker et al., 2002; Watts, 

2013; Wheeler-Hegland et al., 2008). 

 

Strength-based approaches dominate the swallowing rehabilitation literature at present which 

likely reflects the lack of diagnostic specificity of current assessment techniques for 

swallowing (Huckabee & Macrae, 2014). For instance, visualisation of reduced movement of 

anatomical structures and post-swallow residual on FEES or VFSS may lead the clinician to 

assume weakness when the underlying biomechanical dysfunction is unknown. As the 

underlying motor deficit in HD is not primary weakness, strength-based rehabilitation is 

unlikely to improve swallowing dysfunction and could, at worst, exacerbate the impairment. A 

transition towards skill-based swallowing rehabilitation is developing in the literature 

(Zimmerman et al., 2020), this alternative approach may be beneficial in HD to maximise 

neuroplasticity and facilitate functional behavioural change as described in the corticospinal 

literature (Quinn & Busse, 2017; Quinn et al., 2013a). Zimmerman et al. (2020) proposes that 

skill-based rehabilitation approaches should be embedded within strength-based approaches to 

facilitate neural modulation and elicit long term swallowing recovery.  

 

5.2.2.3 Skill-based Dysphagia Training 

In the context of swallowing, skill training includes the ability to “voluntarily modulate the 

timing, and coordination of multiple muscles and anatomical structures involved in deglutition 

to acquire skill in specific aspects of swallowing biomechanics at a central level” (Huckabee 

& Burnip, 2018, p.147). There is increasing evidence to support the potential for voluntary 

modification of both oral and pharyngeal parameters of swallowing biomechanics (Lamvik et 

al., 2015; Wheeler-Hegland et al., 2008). Exercises to consciously modify swallowing are 
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associated with increased activation of several neural regions which may promote neural 

plasticity (Malandraki et al., 2011; Peck et al., 2010; Svensson et al., 2003). Figure 5.2 

represents the process of skill-based dysphagia training and how, unlike other approaches, the 

principles of skill acquisition and motor learning are embedded within this framework.  
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Figure 5.2 

Proposed Model of Skill-based Swallowing Training 

 

Note. This framework incorporates the principles of motor learning and skill acquisition 

to facilitate neuroplasticity and cortical modulation of swallowing biomechanics. 

Reprinted with permission from: “Still Rethinking Rehab: Motor Learning Treatment 

Approaches for Dysphagia,” by Huckabee, M. L., & Burnip, E., 2018, Perspectives of 

the ASHA Special Interest Groups, 3(13), 146-156, doi:10.1044/2018  

 

Skill-based training protocols include salient, high-intensity, swallowing tasks. Biofeedback is 

utilised to increase the precision and accuracy of the motor behaviour (Krakauer, 2006; 

Zimmerman et al., 2020). The use of biofeedback in skill training has been suggested to 

https://doi:10.1044/2018_PERS-SIG13-2018-0006
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facilitate intrinsic learning of more complex motor sequences and aid skill retention in healthy 

individuals (Wilkinson et al., 2015) and in HD (Gordon et al., 2000; Willingham et al., 1996). 

Exercises which facilitated sensorimotor integration using biofeedback allowed patients with 

HD to modify the coordination and timing of the motor task to improve the overall motor 

sequence (Gordon et al., 2000; Quinn et al., 2001). One commonly utilised method to provide 

biofeedback is sEMG. The use of sEMG biofeedback within challenging swallowing tasks can 

aid volitional control improve the motor skill (Azola et al., 2017). Several studies have 

described the training of strength-based effortful swallowing tasks using sEMG as a 

biofeedback modality (Crary et al., 2004; Huckabee & Cannito, 1999). sEMG of the submental 

muscles during swallowing rehabilitation is acceptable, non-invasive, salient representation of 

a complex internal mechanism (Archer et al., 2020; Macrae et al., 2014).  

 

5.2.2.4 Swallowing Intervention Incorporating Skill-based Principles 

The implementation of skill-based dysphagia intervention has developed over the last few 

years. The earliest incorporation of skill-based approach combined with strength training was 

The McNeil Dysphagia Therapy Program (MDTP) (Crary et al., 2012). This systematic 

exercise protocol, based on the principles of motor learning, consists of a hierarchical 

presentation of tasks which includes increasingly challenging bolus volume, consistency and 

eating rate. Lan et al. (2012) described normalisation of swallowing biomechanics in eight 

patients with chronic dysphagia who completed 15 sessions of MDTP, 1 hr per day over three 

weeks of therapy. Dysphagia was secondary to oropharyngeal cancer treatment (n = 5), 

unspecified neurological disease (n = 1) or these causes combined (n = 2). Although MDTP is 

task-specific, the focus is on progressive strengthening and coordination using “effortful type” 

swallowing and is not aimed at specific biomechanical deficits. This study compared patients’ 

temporal coordination of swallowing as measured by lingual-palatal and pharyngeal 
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manometry to a healthy control group. Post-therapy, there were significant improvements in 

pharyngeal manometric parameters with the greatest treatment effect observed with thin fluids. 

These investigators suggested that increased speed of pharyngeal swallowing initiation 

reflected improved efficiency, coordination and neuromotor reorganisation of swallowing 

control (Lan et al., 2012). All participants increase functional oral intake post-therapy (p < 

0.05) as 4 out of 7 patients returned to full oral intake. Although improved swallowing safety 

is inferred, there were no instrumental outcomes to evaluate this and no follow-up period to 

measure skill-retention.  

 

Crary, et al. (2012) also evaluated the MDTP in nine patients with chronic dysphagia (n = 6 

from oropharyngeal cancer treatment, n = 2 from unspecified neurological disease and n = 1 

combined causes). It is unclear if this sample included the same patients as the last study. The 

same protocol was implemented as described above. Functional and instrumental measures of 

swallowing biomechanics were utilised pre- and post-therapy and analysed by a blinded 

assessor. In addition to Lan and colleagues (2012), this study incorporated VFSS outcome 

measures, sEMG of the submental muscles and included a three-month follow-up assessment. 

All patients significantly improved in functional outcomes immediately post-therapy with no 

reported de-training effects at three-month follow-up. Positive changes in swallowing 

biomechanics measured by VFSS were also reported, but these were not significant across all 

bolus consistencies. Again, 4 out of 7 patients returned to oral intake and at three months their 

feeding tubes were removed. This study provides preliminary evidence that MDTP elicits 

measurable change in swallowing biomechanics with evidence that these treatment effects were 

maintained after three months. A later study evaluating the effects of MDTP on swallowing 

biomechanics also reported positive clinical outcomes (Sia et al., 2015). Eight patients with the 

same aetiology as described in Lan et al., (2012) demonstrated positive changes in swallowing 
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biomechanics as measured via VFSS, specifically, hyoid and laryngeal excursion, duration and 

velocity increased. Five out of six patients returned to full oral intake post-therapy. Again, the 

authors hypothesised that these changes in swallowing biomechanics following rehabilitation 

resulted in more efficient and safer swallowing (Sia et al., 2015). This study focussed on 

objective measurements of hyolaryngeal excursion. Other elements of swallowing 

biomechanics, such as pharyngeal constriction ratio or UES opening could have been measured 

on VFSS to fully evaluate the treatment effect on safety and efficacy of swallowing. These 

MDTP studies are limited by small sample sizes in patients with mixed aetiologies. It would 

be beneficial to further evaluate the effectiveness of MDTP in specific neurogenic conditions 

with larger control trials. 

 

Two recent single case studies have presented preliminary positive effects with a patient with 

PD and a patient following anoxic brain injury (Curtis et al., 2020a; Curtis et al., 2020b). Of 

note, both of these patients had cognitive impairment and previous intensive strength training 

(Masako manoeuvre and EMST) had resulted in negligible improvements. Treatment consisted 

of four sessions of respiratory-swallowing coordination training over four weeks. These 

sessions aimed to increase the frequency of an optimal “exhale-swallow-exhale” coordination 

pattern. Patients completed 70 swallows per session, optimal and suboptimal respiratory-

swallowing coordination patterns were elicited during the first half of the session, then the 

second half included swallowing trials at optimal and suboptimal lung volume range. The PD 

patient also completed four sessions of additional voluntary cough skill training. This consisted 

of 80 voluntary cough trials, the patient was cued to vary their cough strength utilising a peak 

flow meter for biofeedback (Curtis et al., 2020a). These studies described mixed skill and 

strength training approaches aimed to improve respiratory-swallowing coordination and cough 

strength. For the patient with severe dysphagia secondary to PD, large effect sizes were 
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reported immediately following training with improvements in optimal respiratory–swallowing 

coordination and generalised improvements in swallowing safety with reduced post-swallow 

pharyngeal residual and PAS ratings as observed via FEES. This improvement in dysphagia 

severity was maintained two months post-therapy (Curtis et al., 2020a). The second case study 

reported improved frequency of optimal respiratory-swallowing patterns from 45% pre-therapy 

to 90% post-therapy which was maintained at three months follow up (Curtis et al., 2020b). 

Again, improvements in swallowing safety, efficiency, overall dysphagia severity were 

observed immediately post-therapy and were maintained at one-month follow-up. There were 

no direct timing or displacement measures of swallowing biomechanics included. Both studies 

used multiple baseline single-subject study designs, however, comparison is limited as 

different training protocols and follow-up periods were implemented. Both studies integrated 

several aspects of motor learning within the training, however, four sessions of respiratory-

swallowing training over four weeks with no prescribed home practice between sessions 

represents a far lower intensity compared to other skill-based training protocols described in 

this section.  

 

Martin-Harris et al. (2015) described a skill-based respiratory-swallowing training protocol. 

This novel protocol used respiratory-swallowing patterns as a biofeedback modality to train 

task-specific optimal coordination of respiration and swallowing. Thirty participants with 

chronic dysphagia following head and neck cancer completed one-hour training sessions, twice 

per week for a period of four weeks. A hierarchy of identification, acquisition and mastery 

motor skill acquisition tasks were stipulated with a minimum of 80% accuracy of the target 

response to progress to the next stage. Post-therapy, all patients implemented optimal 

respiratory-swallowing coordination patterns (p < 0.001). These optimal patterns were 

mastered by all patients within eight sessions. These changes correlated with significant 
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improvements in swallowing biomechanics as measured on VFSS and were maintained at one-

month follow-up. The effectiveness of this respiratory-swallowing coordination training has 

yet to be evaluated in neurogenic dysphagia. 

 

Another study has evaluated a combined strength and skill-based approach to lingual training 

(Steele et al., 2013). Six patients with oropharyngeal dysphagia secondary to acquired brain 

injuries completed at least two sessions of lingual training per week for 11 - 12 weeks. Each 

session included six blocks of 10 tongue pressure tasks using the IOPI (as previously 

described). The first two blocks elicited maximum anterior and posterior isometric tongue 

pressures. The subsequent four blocks required submaximal pressures in order to ‘hit’ a 

randomly selected target. Finally, a generalisation task including six cued saliva swallows with 

the IOPI held anteriorly was included. The sub-maximal task set targets at 20 - 90% of the 

patient’s maximum isometric pressure capacity. Functional improvements were reported in 

reduced aspiration on thin fluids in five of the six patients. However, compared to pre-

treatment, there was a deterioration in bolus clearance in the valleculae and pyriform sinuses 

as measured on VFSS. The extent to which lingual resistance training directly impacted on 

aspiration remains unclear, the authors hypothesised that this apparent improvement in 

swallowing safety may be attributed some spontaneous recovery of chronic dysphagia in 

response to targeted intervention. No follow-up assessments were conducted to measure any 

de-training effects. Although this programme contained a ‘skill component’, the task was not 

specific to swallowing with subsequent mixed outcomes observed in terms of swallowing 

efficiency and safety.  

 

Although functional outcomes from these studies were generally positive; it is difficult to 

attribute these changes in swallowing to one element of the mixed skill and strength training 
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protocols. Preliminary studies have emerged focussed only on skilled submaximal swallowing 

performance without associated strengthening targets. Four proof of concept studies have 

evaluated a skill-based swallowing training in isolation using sEMG as a biofeedback modality. 

Athukorala and colleagues (2014) utilised a custom-made task-specific software (Biofeedback 

in Strength and Skill Training: BiSSkiT) to project the activity of the submental muscles via 

sEMG to a visual display. (Athukorala et al., 2014). Ten patients with dysphagia secondary to 

PD underwent two weeks of daily treatment. The treatment protocol consisted of 100 

swallowing trials across 10 blocks, each separated with a 90 s break. This training required 

individuals to volitionally control the timing and amplitude of their swallowing in order to ‘hit’ 

a target box with the sEMG waveform. Notably, the treatment did not require maximal effort, 

as the target area utilised 20 - 70% of the participant’s calibrated swallowing amplitude. This 

high intensity training also introduced a task specific challenge by adapting the size of the 

target in response to participants’ successive performance. Functional parameters of 

swallowing as measured by the TWST, temporal sEMG measures and patient-reported 

swallowing related QoL all improved following treatment. Three patients changed medication 

regimes during this time which may have contributed to the observed changes. There were no 

improvements in measures from the TOMASS. The observed improvements were maintained 

two weeks after the cessation of treatment. This study did not include instrumental assessment 

to validate the positive findings; therefore, further research including VFSS would allow for 

visualisation of the safety and efficiency of swallowing biomechanics with different bolus 

types. In addition, a longer follow up period would be beneficial to evaluate skill retention in 

this neurodegenerative disease.  

 

A second exploratory study utilised the same BiSSKiT software with sEMG biofeedback as 

part of swallowing rehabilitation in a patient with multiple systems atrophy (Perry et al., 2018). 
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Therapy consisted of one clinical session using the BiSSkiT software per week for six weeks, 

with additional daily home practice utilising a video guided audio-visual swallowing target 

(total 60 cued swallows at home per week). Despite the reduced intensity of this training 

protocol, there were substantial improvements in self-reported swallowing related QoL and 

swallowing biomechanics rated using FEES post-therapy. The unblinded authors reported pre-

swallow spillage and aspiration were eliminated and post-swallow residual improved post-

therapy. This case study, whilst promising, cannot be generalised until it is replicated with a 

larger patient cohort including a follow-up period. In addition, instrumental outcomes were 

subjectively judged as present or absent, therefore quantitative measurements of swallowing 

biomechanics would be more sensitive to represent any treatment effects.  

 

A third feasibility study is a conference presentation which evaluated another skill-based 

training software with sEMG biofeedback (SilverFit Rephagia Training) in an outpatient clinic 

with seven mixed stage HD patients. Training consisted of three sessions of 45 min treatment. 

The number of swallowing trials per session was not reported. Six patients had sufficient 

attention and motivation during all sessions. This study included no swallowing outcome 

measures; patient feedback was described as ‘positive’ when asked by the clinician which could 

introduce a reporting bias. This study reported preliminary evidence that sEMG biofeedback is 

feasible with these patients (Kerkdijk et al., 2018), although further research including a larger 

sample size and objective outcome measures is required. 

 

Finally, Stepp et al. (2011) evaluated a novel skill-based training using sEMG as biofeedback. 

This study placed sEMG electrodes bilaterally on the anterior neck muscles intended to 

measure activation of the thyrohyoid, sternohyoid and omohyoid muscles. Participants were 

not specifically required to complete swallowing events to modulate the muscle activity during 
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biofeedback, therefore task specificity was not optimised. Six healthy participants completed 

one training session consisting of 70 trials separated into 10 blocks with specified breaks 

between blocks. One patient with severe oropharyngeal dysphagia following brainstem stroke 

completed a total of six sessions over three weeks. The task required participants to volitionally 

control the amplitude of the waveform to control the actions of the video game characters 

moving across the screen. Healthy participants demonstrated higher target accuracy after one 

session compared to the dysphagic patient. After five further sessions, the patient’s accuracy 

significantly improved. The authors also reported qualitative improvements in the patient’s 

secretion management and perceived speed of volitional swallowing post-treatment. This study 

did not include any objective measures of swallowing biomechanics. However, these 

preliminary studies demonstrate potential benefits of sEMG biofeedback to facilitate motor 

learning in dysphagia rehabilitation. Of note, only one of these studies was in HD and two 

others in neurodegenerative diseases. 

 

Other modalities of biofeedback have also been reported as part of a skill-based dysphagia 

training. Huckabee et al. (2014) utilised pharyngeal manometry as a biofeedback modality, 

allowing patients to visualise and modulate their pharyngeal pressure sequence during 

swallowing. Sixteen patients with varied aetiologies were identified using VFSS and 

pharyngeal manometry. Patients underwent intensive one-hour sessions, twice daily for a 

minimum of one week. Therapy utilised manometric biofeedback to increase the temporal 

distance between the peak pharyngeal waveforms during swallowing, thus approximating 

sequencing of pressure observed in healthy controls. Average latency between peak pressures 

increased from 15 ms to 137 ms after one week of treatment. This improvement correlated with 

a decrease in average swallowing duration and a functional improvement in oral intake with 11 

out of 16 patients eventually returning to normal diet. Again, changes in swallowing 
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biomechanics were not validated with post-therapy VFSS to visualise swallowing safety and 

efficiency. The number of treatment sessions was not specified, however four of the five 

patients who were unable to continue intensive treatment for more than one week did not return 

to full oral intake. Further evaluations with a consistent treatment protocol and follow up period 

would be beneficial to aid generalisation of this promising skill-training. 

 

5.2.3 Summary 

Historically, SLT management of HD has focused on compensatory approaches such as diet 

modification, increased supervision and postural changes (Kagel & Leopold, 1992; Leopold & 

Kagel, 1985). Although a lack of high-quality evidence exists to justify the effectiveness of 

swallowing rehabilitation in HD, there is evidence from corticospinal literature that 

rehabilitation has significant functional benefits which may be replicated for treatment of 

dysphagia.  

 

In HD, corticobulbar deficits are not characterised by muscle weakness (Kagel & Leopold, 

1992; Manor et al., 2018); therefore, skill-based training, focusing on precision of 

neuromuscular connections is an appropriate rehabilitation approach. Preliminary studies in 

other neurodegenerative diseases have reported promising results following skill-based 

dysphagia rehabilitation (Athukorala et al., 2014; Curtis et al., 2020a; Kerkdijk et al., 2018; 

Perry et al., 2018; Troche et al., 2011). Utilisation of a skill-based approach could maximise 

the early neuroplasticity documented in HD to promote neural modulation through progressive 

and challenging error-based learning (Bastian, 2008; Jensen et al., 2005; Zimmerman et al., 

2020). As hypothesised in Figure 5.1 (p.88), intervention to optimise the early stage neural re-

organisation in HD could maintain function and improve QoL (Andrews et al, 2015). Current 

skill-based literature in neurodegenerative dysphagia is limited by a lack of quantitative 
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measures of swallowing safety and efficiency. To address these gaps in our knowledge, detailed 

and replicable skill-based protocols need to be evaluated using quantitative outcome measures 

from instrumental assessments such as VFSS, and neural imaging studies such as MRI. Well-

designed treatment studies will provide valuable insight to the neural and biomechanical 

changes attributed to swallowing skill-training in HD.  
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Chapter 6. Research Objectives and Hypotheses 
 

6.1 Test-Retest Study: Research Objectives and Hypotheses  

Research Question: Literature describing dysphagia associated with HD has used a range of 

instrumental and clinical measures of swallowing, as described in Chapters 4 and 5. Currently, 

available research consists predominantly of small cohorts or single case studies using non-

standardised assessment measures (Burnip et al., 2019; Heemskerk & Roos, 2011; Pizzorni et 

al., 2020). The lack of objective measurements of swallowing in this population limits 

comparison and critical analysis of treatment studies aimed at determining the effectiveness of 

intervention. There exists a need for further understanding of the reliability of existing methods 

to evaluate and monitor swallowing in patients with HD. Therefore, the question remains: 

Which objective swallowing outcome measures have acceptable reliability and stability 

following a test-retest protocol in individuals with HD?  

 

Primary Objectives: 

• To evaluate and quantify the test-retest reliability of swallowing outcome measures 

over time in a cohort of individuals with HD. 

• To evaluate and quantify the variability of swallowing outcome measures by calculating 

the estimated change across sessions in a test-retest protocol. 

 

Hypotheses: 

1. There will be no significant change in any parameters of clinical outcome measures 

derived from standardised assessments of deglutition over three assessment sessions.  

2. Variability will be higher in this patient population compared to available data in 

healthy adults (Macrae et al., 2011); this variability within and across sessions will be 

quantified as estimated percent change.  
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Significance: Reliability and validity of each selected outcome measure has previously been 

reported in healthy people or other aetiologies such as MND and stroke as discussed in Chapter 

3 of the literature review. This evaluation of measurement reliability and variability lays the 

foundation for subsequent research evaluating dysphagia intervention and will inform clinical 

application of these swallowing outcomes for this neurodegenerative disease. By first 

systematically evaluating the measurement characteristics of these objective outcomes, 

measurement error and expected variability for this patient population can be quantified and 

considered when evaluating treatment effects or planning future studies. Evidence to quantify 

the estimated variability of swallowing outcomes in healthy participants is only available for 

LRM outcome measures (Macrae et al., 2011), therefore our results will be compared to this 

maximum estimated change. This study is clinically significant by contributing to research and 

understanding of dysphagia in this population using several objective methods of swallowing 

evaluation.  

 

Proposed Study: Participants with a diagnosis of HD and dysphagia will complete three 

assessment sessions over one week. No other treatment or changes in medication regimes will 

occur over this week. Estimated percent change, intra-rater, inter-rater, and test-retest reliability 

of all outcome measures will be calculated across sessions as described in Chapter 7.  

 

6.2 Treatment Study: Research Objectives and Hypotheses 

Research Question: Dysphagia management in HD is primarily based on compensatory 

approaches (Heemskerk & Roos, 2011; Kagel & Leopold, 1992) and two recent reviews have 

highlighted that literature investigating rehabilitative interventions to maintain or improve this 

highly prevalent symptom were lacking (Burnip et al., 2019; Pizzorni et al., 2020). As 

summarised in Chapter 5, preliminary research has shown beneficial effects of skill-based 
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approaches to dysphagia rehabilitation in other neurodegenerative aetiologies. There is, 

however, a lack of pre-existing data on which to base the hypotheses of this treatment study. 

This study has therefore included a wide range of swallowing outcome measures (as 

summarised in Table 6.1) to fully explore which aspects of swallowing may be more amenable 

to change following skill-based swallowing training in HD. Therefore, the following research 

questions exist:  

• Feasibility: Is daily skill-based swallowing training feasible without any adverse effects 

such as perceived deterioration in swallowing function in individuals with HD? 

• Physiological Impact: Is skill-based swallowing training effective in maintaining or 

improving swallowing safety or biomechanics in individuals with HD?  

• Patient Reported QoL: Is skill-based swallowing training effective in maintaining or 

improving patient reported swallowing QoL in individuals with HD?  

• Maintenance: Will the effects of the skill-based swallowing training be retained 

following two weeks of non-treatment? 

 

Primary Objectives: 

• To determine the impact of a two-week skill based swallowing training on functional 

and instrumental swallowing outcomes detailed in Table 6.1.  

• To determine if any changes in swallowing outcome measures were maintained two 

week post-training.  

 

Hypotheses: 

1. Intensive skill-based intervention will significantly improve swallowing safety and 

efficiency in individuals with dysphagia associated with HD. This will be measured by 

a significant improvement in one or more clinical measures of deglutition as indicated 
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in Table 6.1. This intervention aims to improve the overall safety and efficiency of the 

swallowing motor response. This improved efficiency may be reflected differently in 

timing or displacement measures of swallowing biomechanics, therefore the direction 

of change for each outcome cannot be specified. Functional outcome measures such as 

swallowing capacity and volume acquired using the TWST would be expected to 

significantly improve (closer to normative values). As previously discussed in Sections 

4.2.3 to 4.2.6 some studies have reported altered bolus transit times or reduced hyoid 

movement in individuals with HD, but there is insufficient information to be able to 

clearly define the direction of change anticipated as this will be dependent on the group 

characteristics. 

2. There will be no significant deterioration in functional swallowing as measured by the 

clinical and instrumental outcome measures listed in Table 6.1 after a two-week 

retention period post-therapy.  

3. The rate of change will be significantly greater during the treatment period compared 

to the baseline control period. The rate of change will be calculated across assessments 

for all swallowing outcome measures detailed in Table 6.1. 

4. Swallowing biomechanics will be executed with significantly less variability post-

therapy. This will be indicated by a significant reduction in within-session variability 

of one or more of the swallowing outcome measures detailed in Table 6.1 when 

comparing across baseline, treatment and maintenance time points. 
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Table 6.1 

Summary of Swallowing Outcome Measures 

 Assessment Outcome measures Hypothesised 

direction of 

change 

pre/post-

treatment 

1 Timed Water Swallowing 

Test (TWST) 

 

Swallow volume (mls/swallow) 

Swallow capacity (mls/sec)  

Time per swallow (s/swallows) 

↑ 

↑ 

↓ 

2 Test of Masticating and 

Swallowing Solids 

(TOMASS) 

Number of bites 

Number of masticatory cycles 

Number of swallows 

Total time (s) 

~ 

~ 

~ 

↓ 

3 Videofluoroscopy 

swallowing study with low-

resolution manometry 

(Manofluoroscopy) 

 

Oral transit time (s) 

Pharyngeal transit time (s) 

Total transit time (s) 

Timing of supraglottic closure (s) 

Duration of UES opening (s) 

Duration of aryepiglottic closure (s) 

Maximum UES distension (mm) 

Hyoid displacement (mm) 

Pharyngeal constriction ratio 

Peak amplitude of sensor 1(mmHg) 

Peak amplitude of sensor 2 (mmHg) 

Duration between peak amplitudes of 

sensor 1 and sensor 2 (s) 

Minimum pressure of sensor 3 

(mmHg) 

Duration of UES opening (s)  

Penetration-Aspiration Scale 

 

~ 

~ 

~ 

↑ 

↑ 

↑ 

~ 

~ 

↓ 

~ 

~ 

↓ 

 

~ 

 

↑ 

↓ 

 

4 Ultrasound Hyoid displacement (percent change 

hyoid-mandible approximation) 

Hyoid rest 

Hyoid maximum displacement 

Cross sectional area of the submental 

muscles: left and right anterior belly of 

the digastric muscles, and geniohyoid+ 

muscles (mm2) 

 

↑ 

 

* 

* 

~ 



125 

 

5 Swallowing Quality of Life 

Questionnaire (SWAL-

QoL) 

Oral symptoms 

Pharyngeal symptoms 

Secretions  

Total impact 

~ 

↑ 

↑ 

↑ 

 

 

Note. * Represents outcome measures only evaluated in the test-retest study.  

~ Represents outcome measures where the direction of change is dependent on initial 

results and a definitive hypothesis cannot be determined (i.e. the baseline number of 

bites as measured by the TOMASS may be higher or lower than normative data in 

patients with HD, the oral transit time has been reported as shorter and longer than 

matched norms in HD associated with tachyphagia observed with hyperkinetic motor 

symptoms or delayed initiation observed with hypokinetic motor impairments) or the 

outcome is not expected to change with this skill-based therapy. 

 

Significance: This treatment study will contribute to developing research focused on skill-

based dysphagia training. The feasibility and effectiveness of dysphagia rehabilitation in HD 

is poorly understood at present; however, any changes in swallowing biomechanics in this 

neurodegenerative disease could be clinically significant. If intensive rehabilitation is effective 

in improving the safety and efficiency of swallowing, this could reduce the risk of aspiration 

and subsequent respiratory complications. Increased conscious control or awareness of eating 

and drinking as a result of dysphagia rehabilitation could improve pre-oral phase impairments 

such as reduced insight or tachyphagia in HD. An understanding of which features of 

swallowing may be amenable to treatment in HD would be beneficial to guide future research 

designs. If treatment effects are maintained after cessation of treatment, this could provide 

evidence that swallowing function can be maintained and rehabilitation could slow symptom 

progression in this neurodegenerative disease.  
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Proposed Study: For this exploratory research, a within-subjects A-B-A study design will 

compare swallowing outcome measures pre- and post- a two week no treatment period to assess 

baseline performance. The same measures will then be compared pre- and post- two weeks of 

daily skill-based dysphagia rehabilitation to evaluate treatment effect. This design will compare 

swallowing outcome measures pre- and post- an additional two-week period of no treatment 

post-therapy to evaluate maintenance of treatment effects. This treatment study aims to 

evaluate three types of changes, namely the average change in raw data pre- and post-training 

in the swallowing outcome measures listed in Table 6.1, the average change in variability of 

these outcomes and the difference in the pattern of change between baseline, treatment and 

maintenance time periods to evaluate any treatment effect in individuals with HD. 
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Chapter 7: Methods of Test-Retest Reliability Study and Treatment Study 
 

7.1 Test-retest Reliability Study Design 

To evaluate reliability and variability of swallowing outcome measurement, a within-subject, 

repeated measures study design was utilised. Participants were assessed on three occasions 

over one week (Monday / Wednesday / Friday). To ensure consistency, session times and 

assessment protocols were consistent within subjects. Medication regimes were unchanged 

during the study as reported by each participant. 

 

7.2 Treatment Study Design 

The treatment study utilised an A-B-A design as summarised in Figure 7.1. This included two 

phases of ‘no-treatment’ as controls in order to monitor participant’s baseline prior to 

intervention and assess the maintenance of any treatment effects. Swallowing outcome 

measures were taken during four assessment sessions, all separated by two weeks. Assessment 

1 and 2 were separated by two weeks of no intervention which represented the lead in period. 

The treatment period was two weeks between Assessment 2 and 3 consisted of daily skill-based 

dysphagia therapy. Assessment 3 and 4 were then separated by two weeks of no treatment 

which denoted the maintenance period. 

 

Figure 7.1 

Timeline of Assessment and Treatment 
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7.3 Participants and Recruitment  

The inclusion and exclusion criteria for both the test-retest and the treatment studies were 

identical. Participants were included if they were > 30 years, (to ensure participants did not 

have juvenile disease) with a diagnosis of HD through clinical symptoms confirmed by a 

neurologist and the presence of ≥ 36 CAG repeats on genetic testing. Participants were judged 

by the referring medical professional (General Practitioner or HD Coordinator) to have 

adequate cognitive-communication function to provide informed consent; this was ensured by 

having the referrer submit a ‘Capacity to Consent’ form (see Appendix D). Once this form was 

received from the referring professional and with consent, the primary investigator contacted 

the participant to provide further details about the projects and asked if they were interested in 

a screening appointment.  

 

Participants were screened to exclude those who were not suitable for these studies. Firstly, the 

presence of dysphagia was screened using the validated EAT-10questionnaire. This ten-item 

self-reported tool is a valid and reliable short screening assessment for dysphagia that 

incorporates both physiological and psycho-social domains of swallowing (Belafsky et al., 

2008). This questionnaire was completed with the investigator during the initial screening 

appointment. Participants rated their symptoms on a five-point scale, providing a total score 

out of 40. A score of three or higher is indicative of swallowing problems in patient populations. 

In a similar neurodegenerative disease (MND), EAT-10 screening sensitivity of 88% and 

specificity of 57% was reported for predicting dysphagia in those who demonstrated 

penetration or aspiration on instrumental assessment (Belafsky et al., 2008; Plowman et al., 

2016). Participants were included if they scored ≥ 3 indicating swallowing impairment as 

perceived by the individual, and oral intake was their main source of nutrition and hydration.  
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Secondly, the Montreal Cognitive Assessment (MoCA) was completed during the screening 

appointment. The MoCA is the most sensitive cognitive screening tool for individuals with HD 

(Mickes et al., 2010). The purpose of the MoCA was to quantify baseline level of cognition as 

part of the participant demographic information and was not repeated or recorded as an 

outcome measure. The assessment consisted of questions and activities, scored out of 30; a 

score of > 26 indicated normal cognition (Nasreddine et al., 2005). Begetietal et al. (2013) 

reported that mild cognitive impairments were found across all stages of HD. Thus, 

investigators were cautious to impose a specific cut-off based on the MoCA as patients may be 

limited by other factors such as motor impairment affecting dexterity or communication in later 

stages of HD. The main inclusion criteria for both studies was ‘adequate’ cognition to provide 

informed consent. In other neurodegenerative aetiologies, a score of ≥ 17 on the MoCA was 

identified as sensitive cut-off to detect between mild cognitive impairment and dementia 

(Trzepacz et al., 2015). MoCA performance during screening provided information regarding 

the participant’s ability to follow verbal instructions, attention, visual-spatial abilities and 

processing time. Therefore, participants were excluded if they lacked sufficient cognition to 

attempt all sections of the MoCA.  

 

Demographic information was collected prior to the initial assessment session. Participants and 

their families provided information regarding their medication and number of years they have 

been symptomatic. Participants were asked not to change their medication regime or take part 

in any other research trials during this research programme. When available, the stage of the 

disease was quantified using the Unified Huntington’s Disease Rating Scale (UHDRS), an 

internationally recognised clinical rating scale used in many studies to measure four key 

domains: motor impairment, cognition, functional ability and behavioural impairment 

(Mariscal et al., 2014). Where this information was not available, disease staging was judged 
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with the referring professional using the Shoulson-Fahn staging scale (Shoulson & Fahn, 

1979). All disease stages were included if they met the inclusion criteria.  

 

Potential participants were given a full explanation of the protocols and the corresponding 

information sheet (see Appendix B and C) by the primary researcher. They were informed that 

they could withdraw from the study at any time. Participants were given the opportunity to ask 

questions and talk to their family before they agreed to take part.  

 

7.4 Ethical Considerations 

The test-retest study received national Health and Disability Ethics Committee approval: 

18/CEN/20/AM01. The treatment study received national Health and Disability Ethics 

Committee approval in December 2107. An amendment was submitted in August 2018 to 

extend data collection to include home visits and improve recruitment and accessibility of 

intervention. This was approved in October 2018 (17/NTB/214/AM02). All participants 

provided informed consent and demonstrated capacity to follow verbal instructions. 

 

7.5 Procedures 

All data collection for the test-retest study was completed by the same investigator in a 

specialised university swallowing research laboratory using the same equipment and 

procedures for all participants. The order of assessments remained consistent for all participants 

across all three sessions. For the treatment study, participants from Christchurch attended all 

assessment sessions at the Rose Centre for Stroke Recovery and Research. Auckland 

participants attended VFSS appointments as part of an outpatient radiology clinic at North 

Shore Hospital; all other assessment procedures either took place in a clinical room during the 
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hospital visit or at the participant’s home within two hours of the VFSS. All procedures were 

carried out by the same two researchers who had trained as Speech and Language Therapists. 

 

7.6 Materials and Instrumentation 

7.6.1 Assessment Instrumentation 

The protocol for each swallowing assessment was consistent for all participants across both 

studies; however, the treatment study equipment varied between Christchurch and Auckland 

localities due to resource availability. In Christchurch, videofluoroscopic data were recorded 

at 25 fps with low dose continuous screening using a GE Healthcare – OEC FluoroStar 7900 

series scanner. Videos were exported directly from the FluoroStar to a USB device. 

Manometric data were collected using a bridge amplifier connected to an 8 - channel PowerLab 

system (Quad Bridge Amp FE224; PowerLab 8/35, ADInstruments Pty Ltd, Bella Vista, NSW, 

Australia) with a maximum sampling rate of 100 kHz using four inputs. A Gaeltec manometric 

catheter, (Model CTS3, Gaeltec, Hackensack, NJ, USA) 100 cm long and 2.1 mm in diameter 

contained three uni-directional, posteriorly oriented sensors as per standardised catheter 

recommendations (Salassa et al., 1998). Sensor 1 and 2 were distributed 20 mm apart. Sensors 

2 and 3 were separated by 30 mm. These data were analysed offline using commercially 

available software (ADI LabChart Pro software version 8.1.13). VFSS data were transferred in 

real time to the computer using a SVID2USB2 USB 2.0 S-Video/Composite video Capture 

Cable to USB device and visualized in LabChart using the Video Capture module. Manometric 

and VFSS data were synchronized in LabChart using a custom-made foot pedal trigger which 

allowed researchers to close an electronic circuit to begin simultaneous VFSS recording on the 

FluoroStar and video capture on LabChart. Synchronization was confirmed using a visual 

indication of the trigger completing the circuit on Channel 4 of LabChart software.  
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High-resolution US images were collected using a Sonosite X-PORTE Ultrasound system 

(FUJIFILM SonoSite, Inc, Bothell, USA). Assessment utilised both the curvilinear transducer 

(C60xp 5-2 MHz, with custom exam settings based on abdominal exam type, depth: 7cm - 30 

cm) and the linear transducer (HFL50xp 15-6 MHz, with custom exam settings based on 

musculoskeletal exam type, depth: 4cm - 6 cm) as pictured in Figure 9. Images were visualised 

on a 19 inch (48.2 cm) monitor. 

 

Figure 7.2 

Visual Representation of the Sonosite X-PORTE Ultrasound Transducers 

 

 

In Auckland, LRM data were not collected as the equipment was not available. VFSS data were 

captured using a Toshiba Ultimax Fluoroscopy unit in low dose continuous screening mode. 

Digital images were recorded at 30 fps using a Medi-capture USB 170 recorder (USB 170 

Medicap). These videos were saved on a password protected USB device to comply with 

hospital confidentiality standards and then de-identified when downloaded for analysis.  
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US images were collected using the portable ClariusTM curvilinear (C3; frequency range: 2 - 6 

MHz, abdominal exam type, depth: 3 - 30 cm) and linear (L7; frequency range: 4 - 13 MHz, 

breast exam type, depth: 1 - 7 cm) transducers pictured in Figure 7.3 (Clarius, Burnaby, British 

Columbia, Canada). The transducers connected wirelessly to the ClariusTM application 

software installed on an iPad. Videos were visualised and recorded on the iPad 9.7 inch (25 

cm) display at 20 fps. Saved recordings were exported when connected to WIFI to the secure 

ClariusTM online cloud. After each assessment session, the investigator downloaded the 

recordings directly from the cloud for subsequent analyses. 

 

Figure 7.3 

Visual Representation of the ClariusTM Curvilinear and Linear Transducers 

 

 

7.6.2 Intervention Instrumentation 

The training protocol utilised a portable sEMG Verity Medical Myotrac Simplex Plus device 

(v1.4-4, NeuroTrac® Simplex, Verity Ltd., UK). Three snap-style 10 mm silver chloride 



134 

 

electrodes, backed with nickel plated brass snaps implanted within a single use self-adhesive 

foam patch (50.8 mm diameter, T3402 sEMG Round TriodeTM Electrode, Thought Technology 

Ltd., Canada) were adhered to the participant’s skin. The three electrodes (two recording and 

one ground) were equidistant. These signals were transmitted via Bluetooth to a HP laptop 

computer (48 cm display) and the custom designed Biofeedback in Strength and Skill Training 

(BiSSkiT) software (Huckabee, Sella, Jones & Han). One participant completed the training in 

the laboratory setting on a desktop computer (56 cm display). Participant data files were saved 

using non-identifiable study code and exported as a Microsoft Excel Comma Separated Values 

File (.csv). 

 

7.7 Assessment Sessions 

Assessment sessions for both studies consisted of four assessment procedures; two participants 

underwent additional MRI during the treatment study. The Swallowing Quality of Life 

Questionnaire (SWAL-QoL) was completed during each assessment as part of the treatment 

study only. All assessment sessions were conducted by the same two investigators who were 

trained Speech and Language Therapists and researchers within the same laboratory. The 

primary investigator had six years of clinical experience including dysphagia assessment and 

diagnosis. The second investigator had four years of experience in dysphagia assessment and 

diagnosis. Investigators were trained and completed competencies in all instrumental 

procedures for at least twelve months before data collection. Assessment protocols were 

developed and refined during group meetings prior to data collection. No formal assessment of 

rater calibration, agreement, or minimal level of reliability of measurements was conducted 

prior to data analysis. All swallowing outcome measures are summarised in Table 6.1 (p. 124). 
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7.7.1 Timed Water Swallowing Test  

As discussed in Chapter 3, the TWST assessed the participant’s functional ability to consume 

liquid (Hughes & Wiles, 1996). The TWST requires participants to drink 150 mls of room 

temperature water “as quickly as is comfortably possible”. Each participant was video recorded 

using a video camera or iPad positioned under the chin and to the side to visualise movement 

of the thyroid cartilage. The investigator recorded the time taken in seconds for the patient to 

consume the water from the moment the cup touched their lips until the larynx returned to rest 

after the final swallow (Hughes & Wiles, 1996). The number of swallows were also recorded. 

In the reliability study, these outcomes were recorded by the investigator during the assessment. 

To allow for blinding of session during the treatment study, data were not extracted online. 

Each recording across participants and assessments was assigned a randomised number by a 

third researcher. The investigator then reviewed these video recordings offline to quantify 

number of swallows and time taken for the patient to consume the water. Three quantitative 

parameters were obtained from these data: swallowing capacity (mls / s), average volume per 

swallow (mls / number of swallows) and average time per swallow (total time in seconds / 

number of swallows). Video recordings were used for offline intra-rater and inter-rater 

measurements in both studies. All participants were able and willing to attempt the task in all 

assessment sessions. The TWST was discontinued if the task was judged by the researcher to 

be unsafe, such as significant evidence of coughing or vocal changes during the assessment. If 

this occurred, any remaining water was measured and subtracted from the 150 mls for 

subsequent analysis. 

 

7.7.2 The Test of Masticating and Swallowing Solids (TOMASS) 

The TOMASS is a valid, reliable measure of masticatory and swallowing efficiency of a solid 

bolus, with published normative data (Huckabee et al., 2017). Participants were asked to eat 
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one Arnott’s SALADATM cracker “as quickly as is comfortably possible” and say their name 

when they finished. A video recording was taken as described in the TWST above. For the 

reliability study, the number of discrete bites, swallows, masticatory cycles and the time taken 

for a participant to consume a cracker were collected by the investigator during the assessment. 

For the treatment study, each video was assigned a randomised number during blinding and 

reviewed by the investigator offline to extract the same four outcomes. As some participants 

avoided harder textures or typically had ‘soft’ diets, the assessment was deferred if it was 

deemed unsafe by the researcher based on diet history, discussion with the participant or 

observed behaviour. 

 

7.7.3 Videofluoroscopy and Manometry (Manofluoroscopy) 

Videofluoroscopic Swallowing Studies (VFSS) were a key instrumental tool to evaluate bolus 

transit and any changes in swallowing biomechanics during this treatment study. Participants 

in Christchurch who completed the test-retest study and treatment study underwent 

videofluoroscopy in conjunction with LRM (manofluoroscopy). Participants in Auckland did 

not undergo manometric assessment as this equipment was not available in this location. 

Identical assessment protocols were completed for VFSS measurements without the 

manometric catheter in situ.  

 

Participants were seated in a high-backed chair or personalised wheelchair with head rest 

support to avoid neck hyperextension associated with choreic movements. In the lateral view, 

the participant was seated comfortably within the videofluoroscopy planes. The target 

radiographic field included the lips anteriorly, the cervical spine posteriorly, the posterior nasal 

spine superiorly and the cervical oesophagus inferiorly in the lateral view (Leonard, 2019a). A 

radio-opaque coin, 20 mm in diameter, was placed under the participant’s chin using medical 
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tape and used for post-hoc calibration measurement of spatial parameters. A Gaeltec 

manometric catheter contained three uni-directional, posteriorly oriented sensors as per 

standardised catheter recommendations (Salassa et al., 1998). Nasal anaesthetic was not used 

as this may impact on swallowing magnitude during dry and liquid swallows (Guiu Hernandez 

et al., 2018). The ovoid catheter was inserted through the nares and into the pharynx; it was 

guided into the proximal oesophagus by the participant swallowing water through a straw. 

Correct placement was indicated by typical ‘M waves’ visible at Sensor 3 during swallowing 

events (Castell & Castell, 1993). Additionally, accurate placement was evaluated 

radiographically and unidirectional markers on the catheter were checked when the catheter 

was securely taped in position to ensure posterior orientation during the study. When correctly 

placed, Sensor 1 was situated in the proximal pharynx, Sensor 2 in the distal pharynx and 

Sensor 3 in the proximal aspect of the UES. The number of unidirectional markers was also 

noted when placement was confirmed for each participant to ensure consistency across 

sessions. Figure 7.4 provides an example of one swallowing event captured with LRM and 

simultaneous VFSS. 
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Figure 7.4 

Example of LRM Data Collection with Simultaneous VFSS Reviewed Using ADI 

LabChart Pro Software 

 

 

Each participant was positioned according to a standardized protocol of VFSS and asked to 

hold a 1 ml bolus to acquire a baseline ‘hold position’ as a reference for subsequent calculations 

(Leonard, 2019a). The following conditions were administered: three dry/saliva swallows, 

three 5 ml water boluses (International Dysphagia Diet Standardisation Initiative (IDDSI) 

Level 0) and three 5 ml liquidised boluses (Watties® apple puree; IDDSI Level 3) (Cichero et 

al., 2017). This bolus volume was selected for consistency of swallowing response across US, 

VFSS and LRM assessments and to allow for comparison of reliability and measures across 

studies. Previous research in HD reported that larger volumes such as 20 ml required multiple 

oral intake events making comparison between trials problematic (Hamakawa et al., 2004). 

Compared to a much smaller bolus (1 ml or 3 ml), 5 ml has been shown to be an adequate size 

to evaluate swallowing safety and biomechanics in HD (Hamakawa et al., 2004; Woisard et 
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al., 2020). Boluses were prepared with X-Opaque HD Barium Sulfate powder (30% w/y 

concentration) and mixed immediately prior to presentation to ensure equal distribution of 

barium sulfate. All 5 ml boluses were measured using a 5 ml or 10 ml syringe. Water boluses 

were offered in a 20 ml plastic medicine cup and puree boluses via a plastic spoon. Participants 

were encouraged to self-feed where possible for consistency of responses; however, hand over 

hand assistance was provided if requested. Dry swallows were elicited using a verbal and visual 

countdown to minimise radiographic screening time. Participants verbally indicated when they 

had sufficient saliva for a dry swallow. The investigator standing more than one metre away 

counted “three, two, one swallow” and screening began. Screening was stopped when the 

larynx returned to rest position after the swallowing event. Each VFSS trial was limited to a 

maximum 30 s of screening as pre-determined by the hardware set-up. The time between 

swallowing trials varied from 30 to 60 s. This was dependent on the time to replenish saliva 

for dry swallows and time taken for the previous video to be saved. Each trial was labelled on 

LabChart as ‘Dry’, ‘Water’ or ‘Puree’. All manofluoroscopy measurements were digitally 

recorded for subsequent analysis in the test-retest study. These digital recordings were coded 

by a third researcher for blinded data extraction during the treatment study. 

 

7.7.3.1 Videofluoroscopic Measurement Techniques 

All videofluoroscopic data were exported from the Fluorostar using a USB flash drive 

(Christchurch) or Medi-capture USB 170 (Auckland) recorder. For the treatment study, each 

data file was assigned a randomised number by a third researcher during the blinding process. 

QuickTime Player (Version 7.7.9, Apple Inc.) was used to review the videos frame-by-frame 

and select images. A Microsoft® Surface Pro 3, 12 inch tablet computer with 2160 x 1440 

multi-touch screen was used with the Microsoft® Surface stylus pen for accurate two-

dimensional measurement of the area of the pharynx in the measurement software. 



140 

 

Measurements were obtained using ImageJ (U.S. National Institutes of Health, Bethesda, 

Maryland, USA) and GNU Image Manipulation Program (2.10.10) software. All 

measurements obtained via manofluoroscopy are summarised in Table 6.1 (p.119). A total of 

six timing measurements were calculated for each water and puree swallowing event. To 

extract the data, each video was opened in QuickTime player, the ‘Movie Inspector’ window 

within QuickTime Player was also opened to provide accurate timing information in 

milliseconds. The investigator scrolled through each video to identify the target swallowing 

event. If videos contained multiple swallows for one bolus, the swallow which was judged by 

the investigator to contain the largest bolus volume was selected for measurement; this was 

typically the first swallow. If it was unclear which contained the largest bolus, then the first 

swallow was selected. All measurements were made using the techniques described by Leonard 

(2019a), and defined as:  

• Oral transit time: time from the head of the bolus passing the posterior nasal spine 

during initiation of the swallowing event (B1) to the time the bolus head reached the 

base of the vallecula (BV1).  

• Pharyngeal transit time: time from the bolus head exiting the vallecula space (BV2) to 

the time the bolus tail cleared through the UES (BP2). 

• Total transit time: oral and pharyngeal transit time combined.  

• Timing of supraglottic closure: time of the maximum completion of supraglottic 

closure; the moment the arytenoid cartridges made maximum contact with the inferior 

aspect of the deflected epiglottis (AEclose) minus the timing of the bolus head when it 

entered the UES (BP1).  

• Duration of aryepiglottic closure: timing of the maximum completion of supraglottic 

closure (AEclose) to the time the epiglottis returned to the upright rest position (EM).  
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• UES opening duration: time the bolus head first entered the UES (BP1) to the time the 

tail of the bolus exited the UES (BP2).  

 

Swallowing gestures included hyoid displacement, pharyngeal constriction ratio (PCR) and 

UES distention. Hyoid displacement was calculated using still images acquired from each trial 

video. The same computer was used to acquire screenshots during image selection to ensure 

number of pixels and orientation of images were consistent. Using QuickTime Player, the 

investigator scrolled frame-by-frame to identify the image of maximum anterior and superior 

hyoid displacement during the swallowing event. The image was saved as ‘hyoid max’. The 

rest position was obtained using the 1 ml bolus hold video, again the video was reviewed to 

select the frame representing the ‘hyoid rest’ position. Both the rest and maximum images were 

opened in GNU Image Manipulation Program software. Using the drawing tool (1 pixel at 

100%), a line was drawn from inferior anterior border of cervical spine 2 (C2) to the superior 

anterior border of cervical spine 4 (C4). The anterior, inferior portion of the hyoid was also 

drawn in the two images. The images were then overlaid, and the opacity of the hyoid max 

image was reduced to 50% to allow for alignment of cervical vertebra using the C2 to C4 lines 

so that a single vertebral column is visible. This overlaid image was exported as a high-quality 

JPEG to ImageJ software. A radio-opaque coin was used for calibration and the distance 

between the most anterior, inferior portion of the hyoid was measured between the rest and 

maximum positions. An example of this measurement is depicted in Figure 7.5. 

 

Figure 7.5 

Representation of Hyoid Displacement Measurement from VFSS  
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(a)                                                                                (b) 

 

Note. Image 7.5a depicts two overlaid images of the hyoid at rest and hyoid at 

maximum displacement during swallowing. Image 7.5b demonstrates 

measurement of the distance between the hyoid at rest and hyoid at maximum 

displacement during swallowing. 

 

This 1 ml bolus hold was initially collected as a still image for the first five participants 

included in the test-test study; however, a difference in formatting was identified between still 

images and video files saved with the Fluorostar device. The still images required adjustment 

using GNU Image Manipulation Program software to ensure images were the same size and 

could be overlaid. For consistency of methods, to remove additional steps of image processing 

and to allow for quicker comparison of data, video files were recorded for all trials including 

the 1 ml bolus hold from participant six onwards. Pharyngeal constriction ration (PCR) was 

calculated using the 1 ml bolus hold screenshot to measure the two-dimensional area of the 
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pharynx at rest. The ‘rest’ image was transferred onto a Microsoft® Surface tablet and opened 

in ImageJ software. The radio-opaque coin was used for calibration, then a Microsoft® Surface 

stylus pen was utilised for best accuracy as the pharynx was outlined. The investigator started 

drawing from the posterior nasal spine tracing across to the centre of the tubercle of the atlas. 

The posterior pharyngeal wall was followed inferiorly to the visible portion of the pyriform 

sinus. The investigator then traced over the arytenoid cartilage across to the internal surface of 

the epiglottis at the point of connection to the thyroepiglottic ligament. It was then traced 

around the epiglottis structure, into the valleculae where visible, around the BoT and around 

the soft palate if visible. If the contour of the soft palate was not visible, the line was connected 

directly to the starting point at the posterior nasal spine. Care was taken not to pass anteriorly 

to the posterior nasal spine as this would not be included in the area of the pharynx. Once the 

investigator was satisfied with the outlined pharynx, the area was measured in mm2. An 

example of this measurement is provided in Figure 7.6. 
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Figure 7.6  

Measurement of the Two-dimensional Area of the Pharynx at Rest 

 

This method varied slightly from that described by Leonard (2019a). The authors described 

drawing around the shadow of the arytenoid cartilages, not entering the laryngeal vestibule but 

drawing horizontally to meet the laryngeal surface of the epiglottis. During investigator training 

sessions and consensus meetings, there was no clear rule of an anatomical point to meet on the 

laryngeal surface of the epiglottis. Therefore, for consistency, the decision was made to identify 

a specific part of the internal surface of the epiglottis as described above. The second part of 

PCR measurement required an image of the pharynx at maximal constriction. This was 

typically seen at the point of maximum hyoid excursion; however, the investigator reviewed 

each video frame-by-frame for accurate image selection. Any residual bolus visible at the time 

of maximal pharyngeal constriction was measured. The selected image was transferred to the 

Microsoft® Surface tablet, the image was calibrated, and the visible residue was outlined to 
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obtain an area in mm2 shown in Figure 7.7. PCR was calculated using the pharyngeal area at 

rest compared to any visible air or bolus contrast during maximum constriction: PCR = area at 

maximum constriction / area in rest position. If no visible residue was present, then the PCR 

was 0. Values of greater than 25 mm2 indicate incomplete pharyngeal constriction and up to six 

times higher risk of aspiration (Kendall & Leonard, 2001). 

 

Figure 7.7  

Measurement of the Visible Residual Present During Maximum Pharyngeal 

Constriction 

 

Finally, UES distension was measured at the point the UES achieved maximum opening. 

Frame-by-frame scrolling helped the investigator to identify the location of the UES and the 

videoframe of maximum opening. The screenshot of the selected frame for a swallowing event 

with a bolus was opened in ImageJ. The radio-opaque coin was used to calibrate for each 
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swallow. A line was drawn between the narrowest visible point of the UES lumen as 

represented in Figure 7.8. This was typically identified between cervical spine 4 and 6. The 

length of this line was recorded in mm. 

 

Figure 7.8 

Measurement of the Maximum UES Distention (mm) 

 

 

In the treatment study, one additional measure of swallowing safety was extracted for each 

bolus trial as measured via VFSS. The Penetration-Aspiration Scale is a valid and reliable 1-8 

scale which provides quantification of events of material entering the airway and any attempts 

to eject from the airway as observed on videofluoroscopy (Rosenbek et al., 1996a). Each 

swallowing trial with a bolus was reviewed frame-by frame by the investigator and assigned a 

PAS rating. Each rating for each bolus trial was included in the analysis. The criteria for this 

rating is summarised in Table 7.1. 
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Table 7.1 

Penetration-Aspiration Scale Rating Criteria Stipulated by Rosenbek et al. (1996a) 

Score Description of Each Point of the Penetration-Aspiration Scale 

1 Material does not enter the airway 

2 Material enters the airway, remains above the vocal folds, and is ejected from the 

airway 

3 Material enters the airway, remains above the vocal folds, and is not ejected from 

the airway 

4 Material enters the airway, contacts the vocal folds, and is ejected from the airway 

5 Material enters the airway, contacts the vocal folds, and is not ejected from the 

airway 

6 Material enters the airway, passes below the vocal folds and is ejected into the 

larynx or out of the airway 

7 Material enters the airway, passes below the vocal folds, and is not ejected from the 

trachea despite effort 

8 Material enters the airway, passes below the vocal folds, and no effort is made to 

eject 

 

7.7.3.2 Manometric Measurement Techniques 

Each trial was identified by an associated text comment ‘Dry1’, ‘Dry2’, ‘Dry3’, ‘Water1’, 

‘Water2’, ‘Water3’, ‘Puree1’, ‘Puree2’, or ‘Puree3’ added by the investigator during data 

collection. The corresponding FluoroStar recordings were reviewed simultaneously to ensure 

the correct swallowing event had been marked for analysis. All manometric data were extracted 

using LabChart software. An example of the LabChart data collection window during one 

swallow with corresponding waveforms at each sensor is presented in Figure 7.9.  
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Figure 7.9  

LabChart Data Collection Window During a Puree Swallow with VFSS Hold Image 

Representing Position of the Three Sensors 

 

The peak waveforms for Sensor 1 and Sensor 2 were highlighted; the maximum pressure 

(mmHg) was recorded for each sensor and timing between peaks was recorded in milliseconds. 

The duration of the UES opening was extracted at Sensor 3. The clearest distinguishable peaks 

before and after the nadir pressure were highlighted as a characteristic ‘M’ wave representing 

the movement and relaxation of the UES during the swallowing event. The timing between 

these peaks at Sensor 3 and the lowest pressure between these peaks were recorded.  

 

7.7.4 Submental Ultrasonography  

US measures were taken using a Sonosite X-PORTE device for all assessments in Christchurch 

and the portable ClariusTM handheld devices connected to an iPad for participants in Auckland. 

Seven of the 28 Auckland assessments occurred in the participant’s home. Both investigators 
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completed at least six months of training to practise image acquisition, selection and 

measurement. Data collection was completed by the same two investigators for both studies. 

Participants were seated comfortably in a chair or wheelchair with their head in a neutral 

position. The handheld transducers allowed the researcher to move with the participant in the 

event of unintentional movement. A curvilinear transducer was coated with a generous amount 

of aquasonic transmission gel and placed under the chin in a mid-sagittal plane to image 

hyolaryngeal excursion. The investigator scanned to ensure the acoustic shadow of the 

mandible was visible anteriorly and the acoustic shadow of the hyoid was visible posteriorly 

within the scanning window (Figure 7.10). On the Sonosite device, the depth was set at 7.7 cm. 

Using the ClariusTM device, the depth was between 6.8 cm and 8.8 cm. Manual adjustments 

such as depth, gain and brightness were made by the investigator during the assessments to aid 

image quality. 

Figure 7.10  

Sagittal Sonogram Using a Sonosite X-PORTE Device with Curvilinear Transducer 

 

Acoustic shadow of 

the mandible 

Acoustic shadow of 

the hyoid 

Geniohyoid 
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Note. Image of the acoustic shadow of the mandible anteriorly, the acoustic shadow of 

the hyoid posteriorly and the geniohyoid muscles from the midline depicting the target 

window during ultrasonic assessment of hyoid excursion. 

 

This position was maintained during each swallowing trial. Participants performed three 

dry/saliva swallows, three 5 ml water bolus trials (IDDSI Level 0) and three 5 ml liquidised 

bolus trials (Watties® apple puree; IDDSI Level 3). Dry swallows were initiated by instructing 

the participant to “swallow whenever you are ready”. All 5 ml boluses were measured using 5 

ml syringes. Measured water and puree boluses were then transferred to a 20 ml plastic 

medicine cup or to a plastic spoon for ingestion. Participants were encouraged to self-feed 

where possible for consistency of responses; however, hand over hand assistance was provided 

if requested. For bolus swallows, the participant was required to hold the bolus in the oral 

cavity for up to 5 s to allow the investigator to locate the target anatomical reference points in 

the scanning window. After each trial, scanning was discontinued, and the preceding 30 s of 

video was automatically saved. The investigator saved each video with the corresponding trial 

name ‘Dry1’, ‘Dry2’, ‘Dry3’, ‘Water1’, ‘Water2’, ‘Water3’, ‘Puree1’, ‘Puree2’, or ‘Puree3’. 

During the assessment and after each trial, the investigator scrolled through the moving image 

to choose the frame with maximum hyoid displacement, defined as the shortest distance 

between the two acoustic shadows. The time taken for measurement between trials was 

typically 1 to 2 minutes depending on how clear the images were to select and measure. The 

hyoid-at-rest image was selected after the swallowing event to represent the most natural 

position of the hyoid with no bolus. Participants with involuntary lingual chorea, tongue 

pumping movements or other extraneous movements were given verbal prompts to relax after 

the swallow and the investigator continued to scan until the best possible rest position was 

recorded. All measurements were obtained following a standardised protocol as described by 
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(Winiker, 2019). Once the target frame was identified, the line measurement tool was selected 

on the Sonosite X-PORTE Ultrasound device or ClariusTM software on the iPad. Firstly, a line 

of best fit was drawn along the anterior border of the shadow of the hyoid. A second line was 

then drawn with one calliper placed on the posterior border of the onset of the shadow of the 

mandible and one calliper placed at the point of the inferior border of the geniohyoid meeting 

the line of best fit. The length of this second line in mm was recorded (Figure 7.11). These 

measurements were taken at rest and maximum excursion and subsequent percentage change 

was calculated.  

 

Figure 7.11 

Images Acquired Using a Sonosite X-PORTE Device with Curvilinear Transducer 

      (a)                                                                                 (b) 

 

Note. Examples of US measurement of hyoid excursion at rest (a) and maximum 

displacement (b). 

 

Finally, a linear transducer was placed in the coronal plane to measure the cross-sectional area 

of two paired submental muscles, specifically the geniohyoid and anterior belly of digastric 
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muscles, in a rest position with no bolus. The investigator scanned at a depth of 4 to 5 cm with 

an even pressure anteriorly to posteriorly to find the largest and clearest boundaries for each 

muscle. The freehand measurement tool within the Sonosite X-PORTE or ClariusTM software 

was utilised to trace around outside of each muscle and provided measurement of the surface 

area in mm2. In the case of the geniohyoid muscles, the right and left geniohyoid muscles meet 

at midline and the boundary depicting the borders of the geniohyoid and mylohyoid muscles 

were typically unclear. Therefore, a single measure referred to as ‘geniohyoid+’ was taken of 

both muscles together with the superior borders of the mylohyoid muscles included within the 

surface area of the geniohyoid measurement (Winiker, 2019). One measurement of the paired 

geniohyoid+ muscles, left anterior belly of the digastric and right anterior belly of the digastric 

area in mm2 were recorded in each assessment session. Examples of these measurements are 

shown in Figures 7.12 and 7.13. The US protocol, such as bolus order, was kept consistent 

across all assessment sessions for both studies.  

 Figure 7.12 

Sonographic Measurement of Geniohyoid+ Muscles Taken in the Coronal View Using 

the Sonosite X-PORTE Device with Linear Transducer 
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Figure 7.13  

Sonographic Measurement of the Left and Right Anterior Belly of the Digastric Muscles 

Taken in the Coronal View Using the Sonosite X-PORTE Device Linear Transducer 

 

7.7.5 Swallowing Quality of Life Questionnaire (SWAL-QoL)  

This questionnaire provided information pertaining to the participant’s perception of their 

swallowing and related QoL factors. It consisted of 44 questions with 10 subsections. Each 

item was equally weighted, answered with a five-point Likert scale. An overall score out of 

100 indicated patient-centred QoL, with decreasing score indicating lowered QoL. Items 

measuring the severity of dysphagia symptoms were used to calculate four parameters: ‘oral 

symptoms’, ‘pharyngeal symptoms’, ‘secretion symptoms ’ and ‘total symptoms’ scaled scores 

(McHorney et al., 2002). Participants were asked to complete this questionnaire during 

assessment sessions or complete the questionnaire at home and bring it to the assessment 

sessions. Participants were given the choice to complete it independently or with support. There 

are several patient-reported QoL measures specific to swallowing, however, the SWAL-QoL 

has been reported as the most reliable and valid measure of swallowing related QoL covering 
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all World Health Organisation International Classification of Functioning areas (Keage et al., 

2015). The SWAL-QoL has been utilised in similar projects to evaluate the effectiveness of 

this skill-based dysphagia training, therefore for replication consistency and comparison across 

aetiologies, this tool was chosen. 

 

The order and timing of all assessment procedures summarised in Table 6.1 (Chapter 6, p. 119) 

were kept as consistent as possible, however this was not possible with assessments completed 

during home visits. This occurred in Auckland due to allocated VFSS timing slots in instances 

where more than one participant was assessed in the same radiology clinic. The timing and 

order of assessments differed as the first participant completed the SWAL-QoL, TWST, 

TOMASS and US before the VFSS outpatient appointment, the second participant required 

home assessments later that day and the third participant completed these assessments after 

their VFSS appointment. This discrepancy could have introduced a potential order effect within 

this cohort. The investigator identified participants who required home assessments based on 

their VFSS appointment times alone. These appointments were allocated by blinded hospital 

radiology administrators who were not involved in this study which therefore reduced detection 

bias. 

 

7.7.6 Magnetic Resonance Imaging (MRI) 

MRI studies were completed on one participant with HD pre- and post-treatment. These 

assessments were part of a concurrent pilot study collecting data regarding cortical changes of 

patients of various aetiologies under the same protocol. The participant with HD was selected 

by the timing and location of their participation in the treatment. MRI with diffusion tensor 

imaging (DTI) utilised standard diffusion protocol with volumetric structural scans and lasted 

for 30 minutes. All scans were completed at Pacific Radiology at St George’s Hospital using a 
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Siemens MAGNETOM Skyra Maximize 3T scanner (Siemens Healthcare GmbH©). Scans 

were scheduled on Saturdays two weeks apart, immediately pre- and post- the ten treatment 

sessions.  

 

Twenty-one white matter tracts were identified as regions of interest. These regions detailed in 

Table 7.2 and Figure 7.14, were evaluated using two measures: fractional anisotropy (FA), a 

quantitative measure of the variation of diffusion water in the cortical regions, and mean 

diffusivity (MD) which provided an indication of the extent of this water diffusion.  

 

Table 7.2  

Regions of Interest for DTI analysis 

Corresponding 

Number 

White Matter Region 

1 Genu of corpus callosum 

2 Body of corpus callosum 

3 Splenium of corpus callosum 

4 Anterior limb of the internal capsule (Right) 

5 Anterior limb of the internal capsule (Left) 

6 Posterior limb of the internal capsule (Right) 

7 Posterior limb of the internal capsule (Left) 

8 Retrolenticular part of internal capsule (Right) 

9 Retrolenticular part of internal capsule (Left) 

10 Anterior corona radiata (Right) 

11 Anterior corona radiata (Left) 

12 Superior corona radiata (Right) 

13 Superior corona radiata (Left) 

14 Posterior corona radiata (Right)  

15 Posterior corona radiata (Left)  

16 External capsule (Right) 

17 External capsule (Left) 

18 Cingulum (Right) 

19 Cingulum (Left) 

20 Superior Longitudinal Fasciculus (Right) 

21 Superior Longitudinal Fasciculus (Left) 
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Diffusion-weighted images were pre-processed then statistically analysed by Dr Nadia Borlese 

according to the following specified methods: “Image pre-processing and statistical analyses 

were performed using tract-based spatial statistics (TBSS) in FSL 5.0.11 (FMRIB, Oxford, 

UK), run within Matlab (R2014a) environment (The MathWorks Inc., Natick, Massachusetts, 

United States). Diffusion-weighted images were motion- and eddy current distortion–

corrected. The diffusion tensor was then calculated at each voxel using DTIFIT, producing FA 

MD images. All FA images were aligned to every other one to identify the “most 

representative” target subject image. This image was then affine-aligned into MNI152 standard 

space, and every image transformed into 1x1x1mm MNI152 space by combining the nonlinear 

transform to the target FA image with the affine transform from that target to MNI152 space. 

All MD images were transformed into MNI152 standardized space as well.” 
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Figure 7.14 

White Matter Template of 21 Regions of Interest 

     (a)                                                          (b)                     

 

 

 

 

 

 

 

 

           (c) 

 

Note. The corresponding list of regions as detailed Table 7.2. Regions identified in the 

coronal plane (a), horizontal plane (b) and sagittal plane (c). Images provided by Pacific 

Radiology Group (Christchurch) DTI report.  
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7.8 Rehabilitation Protocol 

Participants received intervention at a specialised university swallowing laboratory or in their 

own homes. The treatment protocol within sessions was kept consistent across all participants. 

The rehabilitative intervention protocol consisted of ten sessions of one-hour daily treatment 

(five days per week) over two weeks. Ideally, these sessions were scheduled Monday to Friday 

during both weeks, leaving a two-day break over the weekend. However, if participants were 

not able to fulfil this optimal schedule, the treatment days were adapted to include weekends 

to ensure all participants completed ten sessions during the two weeks between pre-treatment 

and post-treatment assessment sessions.  

 

Treatment utilised sEMG hardware and the custom designed Biofeedback in Strength and Skill 

Training (BiSSkiT) software as detailed in ‘Materials and Instrumentation’ (Section 7.6.2). 

Participants were seated comfortably facing the computer or laptop screen. Investigators 

ensured that the participant was comfortable to sit for an hour (for instance, had recently been 

to the toilet) and had a full glass of water or preferred drink within reach. Male participants 

were asked to be clean shaven for all sessions to ensure adequate sEMG to skin contact. The 

investigator cleaned the area under the chin with an alcohol wipe and waited at least 20 s for 

the skin to dry. sEMG electrodes on a small self-adhesive patch were firmly adhered under the 

participant’s chin over the submental muscles (geniohyoid, mylohyoid and anterior belly of the 

digastric muscles) as depicted in Figure 7.15. The two active electrodes were placed in an 

anterior to posterior alignment centrally between the spine of the mandible and the superior 

edge of the thyroid as identified through palpation. The ground electrode was placed laterally 

over the mandible. The sEMG signal derived from this placement represents collective 

activation of the floor of mouth muscles during swallowing. The patch and electrodes were 

also secured with medical tape to keep the patch stable with adequate skin contact. The sEMG 
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electrodes were attached to a Verity Medical Myotrac Simplex Plus device. For those 

participants with significant involuntary limb movements, the device was placed behind the 

participant to minimise interference from accidental contact with the sEMG cables. The sEMG 

signal was monitored throughout the session by the investigator; electrical interference from 

the environment such as WIFI modems, laptop chargers and electrical wheelchair chargers 

were switched off during the session. sEMG resting measurement of < 10 μV was considered 

optimal and a measurement of > 10 μV required troubleshooting before the session began.  

 

Figure 7.15 

Example of Optimal SEMG Electrode Placement for Intervention 

 

 

The sEMG signal was transferred via Bluetooth to the BiSSkiT software installed on the laptop 

or desktop computer. The software was designed to incorporate skill training approaches to 

improve participants’ conscious control and precision over swallowing. Visual feedback is 

provided as a time by amplitude waveform representing the movement or contraction of the 

submental muscles. An explanation was given to the participant that peak waveforms could 

appear during any movements of the jaw or submental muscles, but our focus was on 
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swallowing events. During the first session, the display of the sEMG signal was set using a 

calibration sequence, firstly any artefact that elevated the sEMG baseline from zero was 

corrected by removing DC offset. The participant then completed five effortful swallows over 

150 s. Participants were instructed to complete an “effortful swallow” during each 30 second 

screen. If the investigator judged that the participants were struggling to complete this task, 

additional instructions such as “imagine you are swallowing a big pill” or “like you are 

swallowing a big piece of toast” were given and visually modelled. Each calibration swallow 

representing an “effortful swallow” was identified and marked by right-clicking on the peak of 

the corresponding waveform. The BiSSkiT software sets the maximal amplitude on the vertical 

axis as 100% of the averaged five calibration trials. The ‘target’ box is randomly placed on the 

screen, between 30% and 70% of the participants’ average maximal amplitude during the five 

effortful swallows. If, after beginning the treatment, the investigator judged that the calibration 

did not reliably reflect the participant’s effortful swallowing magnitude, then re-calibration was 

completed. This was indicated in cases where the amplitude of the sEMG waveform 

consistently over-shot the screen range during normal swallowing trials. Calibration values 

were stored with the file; therefore, re-calibration was not stipulated for each session. 

 

 Following calibration, the treatment task commenced. Each 30 second trial required the 

participant to dry swallow such that the peak of the waveform fell within the centre of the 

target. Figure 7.16 provides an example of a swallowing trial.  
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Figure 7.16  

Screenshot of a Swallowing Event Hitting the Target Box During one 30 Second Trial 

 

 

The accuracy and precision of the participant’s swallowing skill was targeted as the participant 

was required to consciously modify the timing and amplitude of their swallowing during each 

trial, based on feedback from a previous trial. The investigator sat to the side of the participant 

to observe laryngeal movement and identify each swallowing event by right-clicking the mouse 

on the corresponding peaked waveform. Participants received immediate visual feedback to 

inform them of the success of their performance. The task was made more difficult as the 

participant’s accuracy improved the target box decreased by 10% following three consecutive 

successful ‘hits’. The box also increased in size by 10% following three consecutive ‘misses’ 

to reduce task difficulty. This adaptation of the BiSSkiT software to increase the challenge of 

the task with intensity of training, aimed to develop the participants’ conscious control of 

swallowing amplitude and timing. The session ‘hit’ rate was displayed as a percentage 

summary of each session. The investigator reviewed all trials after each session to ensure 

accurate marking of the targeted swallowing event.  
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Participants completed 80 swallowing trials per session. The number of repetitions was based 

on the principles of motor learning (Zimmerman et al., 2020), and in line with concurrent 

treatment studies within the same research laboratory. There were 10 trials per block, and eight 

blocks per session, as represented in Figure 7.17. Each block of ten trials was separated by a 

100 second rest period, during this break, participants were encouraged to take sips of water.  

 

Figure 7.17  

Summary of the Format of one Skill-based Training Session Consisting of 80 

Swallowing Trails 

 

 

 

On completion of the 10 treatment sessions, the investigator exported session summaries from 

BiSSkiT software to an Excel worksheet. These data were not were not statistically scrutinised 
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as task performance was not a primary outcome in this research, instead, objective measures of 

swallowing biomechanics were used to evaluate effectiveness of this intervention. For single 

case study descriptive analysis, three measurements of task performance were discussed as an 

indication of skill acquisition; these included: amplitude error (μV from the centre of the 

target), timing error (seconds from the centre of the target) and total error (mm from the centre 

of the target). 

 

7.9 Data Storage and Extraction 

All raw assessment and treatment data were stored under a unique identifying research number 

on a password protected hard drive at the Rose Centre for Stroke Recovery and Research at St. 

George’s Medical Centre or a password protected Waitematā District Health Board USB flash 

drive. The raw research data and subsequent extracted data were kept in a locked cabinet at the 

Rose Centre. As per University of Canterbury regulations, the data and materials will be deleted 

after ten years.  

 

Patient demographics for both studies were extracted and analysed descriptively. For the 

reliability study, the TWST, TOMASS and US data were extracted online. The 

manofluoroscopic data were coded and extracted offline. For the treatment study, SWAL-QoL 

data were extracted into Microsoft Excel with pre-set formulae to obtain scores for each of the 

four parameters (McHorney et al., 2002). The remaining assessment data files were organised 

by unique participant identifiers. Each data file for TWST, TOMASS, US, VFSS and LRM 

were assigned a random number by a third researcher who was not involved in this research 

study to ensure the investigator was blinded to participant and timing of assessment. In contrast 

to the reliability study, all data were extracted offline for the treatment study by the same raters. 

After all data had been extracted, the investigator unblinded the data files and set up the .csv 
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files for analysis in R. Both studies saved de-identified video recordings for all swallowing 

assessments for subsequent intra-rater and inter-rater reliability analysis.  

 

7.10 Data Analysis 

Data were de-identified and analysed using RStudio (version 1.1.453) statistical analysis 

software and the lme4 package (Bates et al., 2015a).  

 

7.10.1 Intra- and Inter-rater Reliability Analysis 

For both studies, intra-rater and inter-rater reliability was calculated using a random 20% of 

sessions for each outcome measure rated by two blinded raters. Due to the sample being 

selected at random, each observation was considered independent from each other and was 

given an observation number. Two independent raters individually measured the selected 

observations of the TWST, TOMASS, VFSS and US. One rater measured the data twice to 

obtain two ratings for intra-rater measures a minimum of two weeks apart. The second rater 

was a trained Speech and Language Therapist (SLT) and researcher with more than four years’ 

experience in dysphagia assessment and diagnosis. Both raters independently extracted data 

and completed measurements in the research laboratory using software and techniques 

previously described. Measurements extracted online by the researcher during the test-retest 

study assessment sessions were then analysed offline for intra-rater analysis.  

 

In both studies, LRM inter-rater measurements were completed by another rater. Due to timing 

and availability of additional raters, the two studies used different raters. Both raters were 

experienced SLTs, completing their manometric competencies with three to six months of 

training, which included interpretation and extraction of data with the specific equipment used 

in this study. Another researcher completed inter-rater measurements of US data for the 
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treatment study. This person was a trained SLT and researcher with several years of experience 

in US measurement of swallowing and developed the guidebook to explicitly describe how to 

make these specific measurements. All raters underwent informal training, practical 

measurement sessions and were familiar with the measures prior to data collection. This 

training took place in combination with another methodological study in the same research 

setting using US and VFSS procedures. Any questions were discussed with the laboratory 

supervisors in group meetings using other examples until consensus and learning objectives 

were reached.  

Presence of a potential systematic rater or rating effect was tested by comparing the full model 

containing ‘rater’ or ‘rating’ as a fixed factor to the simplified model excluding them. A p-

value ≤ .05 was considered significant. One ICC was calculated for both intra- and inter-rater 

reliability, regardless of multiple bolus types. Therefore, bolus was included in the model as a 

fixed effect in order to account for variability in the measures with more than one bolus. Intra-

rater and inter-rater reliability were calculated using intraclass correlation coefficients ICC 

(3,1) and ICC (2,1) respectively derived from linear mixed effects models analysis. The model 

for intra-rater reliability included rating and bolus as a fixed effect and observation number as 

a random intercept, calculated as:  

𝐼𝐶𝐶 (3,1) =  
between observation variance

between observation variance + residual variance
 

 

For inter-rater reliability, rater and observation number were included in the model as random 

intercepts and bolus was included in the model as fixed effect. Inter-rater reliability was then 

calculated as: 

𝐼𝐶𝐶 (2,1) =  
between rater variance

between rater variance + between observation variance +  residual variance
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A bootstrap distribution was calculated similar to the test-retest reliability ICC above. The 

residuals and random effects for each model were tested for normality and heteroskedasticity. 

 

Intra-rater and inter-rater reliability of PAS scores were assessed using the Cohen’s Kappa 

coefficient (K) analysis. This analysis was considered superior to overall percent agreement as 

it incorporates the expected frequency of agreements that could occur by chance (Munoz & 

Bangdiwala, 1997). A Kappa 0.0 – 0.20 had no agreement, 0.21 – 0.39 was considered 

‘minimal’, 0.4 – 0.59 was ‘weak’, 0.6 – 0.79 was ‘moderate’, 0.80 – 0.90 was ‘strong’ and > 

0.90 was considered ‘almost perfect’ agreement (McHugh, 2012). Kappa was calculated using 

this formula: 

𝐾 =  
∑a − ∑ef

N −  ∑ef
 

 

The results of the test-retest reliability study aimed to inform the most appropriate and reliable 

outcome measures to include in the treatment study. This allowed identification of any changes 

attributable to treatment effect or a decline in function related to the progressive disease 

process. Table 6.1 (Chapter 6, p. 119) provides a summary of proposed outcome measures. 
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7.10.2 Test-retest Reliability Statistical Analysis 

Test-retest reliability was evaluated for each outcome measure using Type 3 intraclass 

correlation coefficient ICC (3,1) derived from linear mixed effects models analysis. The model 

included ‘session’ as a fixed effect and ‘participant’ as a random intercept. In order to have one 

ICC per measure, for each measure including more than one bolus type, the variability of the 

measure due to bolus was taken into account by including ‘bolus’ in the model as a fixed effect. 

The ICC was calculated as: 

𝐼𝐶𝐶 (3,1) =  
between participant variance

between participant variance + residual variance
  

 

A bootstrap distribution was calculated from which the 95% confidence intervals for each ICC 

were obtained. ICC values of < 0.5 indicated ‘poor’, 0.5 – 0.75 indicated ‘moderate’, 0.75 – 

0.9 indicated ‘good’ and > 0.9 indicated ‘excellent’ agreement (Koo, 2016). The residuals and 

random effects for each model were also tested for normality and heteroskedasticity. The 

standard deviation (SD) of between participants (participant’s random intercept SD) and within 

participant variance (residual SD) were extracted from the model and reported.  

 

7.10.3 Estimated Change Across Sessions Analysis 

Mixed effects models were used to calculate estimated change of each measure across 

assessment sessions. ‘Session’ was introduced in the model as a fixed effect and participant 

intercept as a random effect. The estimated percentage of change was calculated from the 

output of the model as follows:  

(
estimated difference between session A and B

estimated mean for session A
)  × 100 
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(
estimated difference between session A and C

estimated mean for session A
)  × 100 

 

(
estimated difference between session B and C

estimated mean for session B
)  × 100 

 

The estimated percentage of change was utilized for clinical interpretation and to allow for 

comparison across measures with different units and different numerical meanings. The range 

for each measure is defined in parenthesis, from the smallest change to largest change based 

on 95% confidence intervals across sessions. For interpretation of results summarised in Table 

8.4 (p.185), the direction of percent change could have been positive or negative across 

sessions. The residuals and random effects for each model were tested for normality and 

heteroskedasticity. 

 

7.10.4 Treatment Study: Analysis of Treatment Session Effect 

Means and standard deviation (SD) of all outcome measures were calculated across all 

participants and plotted using scatter plots. Firstly, a likelihood ratio test was conducted using 

linear mixed effects models analysis. Presence of a session effect was tested by comparing the 

full models containing ‘session’ as a fixed factor to the simplified model excluding ‘session’. 

As this is exploratory research, the threshold of p ≤ .07 was used to select which analyses 

should be continued using the full model. The selection of a more lenient p-value for the initial 

likelihood ratio interpretation prior to data analysis was justified in this study by the small 

sample size with larger standard errors and multiple comparisons which reduced the risk of 

Type I error (Noymer, 2008). If the session effect was p ≤ .07, analysis using the full model 

was continued. If there was no session effect, the reduced model was used. A chi-square p-
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value ≤ .05 was considered significant for interpretation of the full model. Corrections for 

multiple comparisons were not required as all hypothesis driven comparisons were selected a 

priori (Baguley, 2012). The residuals and random effects for each model were tested for 

normality and visually inspected to identify any heteroskedastic patterns. If the assumptions of 

normality were not met, non-parametric Friedman’s rank sum test of differences were 

performed (Hollander, Wolfe & Chicken 2013). Again, a chi-square value p-value ≤ .05 was 

considered significant and a p-value of ≤ .07 was discussed. If there was a significant session 

effect, further pairwise analysis using the Wilcoxon Test was completed.  

 

7.10.5 Rate of Change Analysis 

Data for each outcome measure were set up to calculate the rate of change prior to analysis. 

Data were sorted by participant and bolus to subtract corresponding data from each session. 

This subset of data were extracted using subtracted data frames and compared. The subtracted 

sessions were identified a priori: 

Treatment rate of change – Baseline rate of change: 

(𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 3 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 2) −  (𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 2 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 1) 

Maintenance rate of change – Baseline rate of change: 

(𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 4 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 3) −  (𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 2 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 1) 

Maintenance rate of change - Treatment rate of change: 

(𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 4 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 3) −  (𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 3 − 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 2) 

Means and SD of all subtracted data were calculated across all participants and plotted using 

scatter plots. Again, mixed models were utilised to evaluate any difference in the rate of change 

observed between baseline, treatment and maintenance periods. The full model containing 

‘session’ as a fixed factor was compared to the simplified model excluding ‘session’. A chi-

square p-value ≤ .05 was considered significant. As above, discussion occurred at p ≤ .07 to 
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allow for identification of treatment effect close to significant. If the session effect was p ≤ .07, 

analysis using the full model was continued. If there was no session effect, the reduced model 

was used. Again, p-value corrections were not required as the comparisons were selected as a 

priori tests of specific hypotheses prior to analysis (Baguley, 2012). The residuals and random 

effects for each model were tested for normality and visually inspected to identify any 

heteroskedastic patterns. If assumptions were violated, the same non-parametric analyses were 

applied as described in ‘analysis of treatment effect’ above.  

 

7.10.6 Variability of Performance Analysis 

As the reliability study identified high variance in participant performance within sessions, the 

within session variability was compared between assessment sessions. The SD of each 

assessment which included multiple trials per session were compared. This analysis used SD 

of outcome measures as the dependent variable to evaluate any session effect on within 

participant variability. As in the initial analysis of session effect (described in Section 7.10.3), 

mixed models were compared with and without ‘session’ as a fixed effect to identify any 

session effect. A chi-square p-value ≤ .05 was considered significant and a p-value of ≤ .07 

was discussed as previously stipulated in this exploratory research. If there was a significant 

session effect, analysis using the full model was completed. If there was no session effect, the 

reduced model was used. The normality and homoskedasticity of residuals and random effects 

were checked, and identical non-parametric analysis methods were used as described in 

‘analysis of treatment effect’ above.  

 

7.10.7 Descriptive Analyses 

As this was exploratory work to evaluate the feasibility and effectiveness of this novel skill-

based dysphagia training, a single case study was analysed descriptively. This participant was 
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selected as they completed MRI pre- and post- intervention. Whilst the statistical group 

analysis was the basis of the results, this additional descriptive case provided individual results 

in conjunction with MRI data to identify any patient characteristics which may inform future 

research into the effectiveness of this intervention. This approach addressed the limitations of 

group-level analysis with this heterogeneous population to accurately observe the effect of 

treatment for that individual (Harrington & Velicer, 2015). 

 

7.10.8  Penetration-Aspiration Scale Analysis 

Descriptive statistics including frequency analysis were used to evaluate PAS scores across 

assessment sessions. As these ordinal data cannot be considered as interval or continuous 

(Steele & Grace-Martin, 2017), statistical analysis was not appropriate for this outcome 

measure. PAS scores across all trials were included in analysis. The use of frequency 

distributions were recommended by Steele and Grace-Martin (2017) as an appropriate method 

to accurately represent the categorical data. Alternative methods such as summing PAS scores 

across the fixed trials, selecting the worst score of the three trials or summarising the mean and 

median PAS scores all have disadvantages; these methods may not provide a true 

representation of the patient’s airway protection and could increase bias towards impairment 

during repeated measures. 
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Chapter 8: Results of Patient Studies 
 

8.1 Test-Retest Study Results 

8.1.1 Patient Demographics 

Ten participants were identified and recruited via the regional HD Service Coordinator to take 

part in the test retest reliability study. Nine participants completed all three assessment sessions 

which included six male and three female participants with a mean age of 44.6 (SD = 12.14). 

Participant 9 was unable to attend all three sessions as stipulated in the protocol due to 

transportation issues; their data were not included in the analysis. Participant demographics are 

summarized in Table 8.1. The number of years since manifestation of symptoms ranged from 

2 – 13 years (mean 8.6 years). EAT-10 scores ranged from 4 – 33 (x̄ = 11.9). An EAT-10 score 

of ≥ 3 out of 40 indicates swallowing impairment (Belafsky et al., 2008). Cognitive screening 

scores derived from the MoCA ranged from 17 – 27 (x̄ = 21.6). A MoCA score of ≥ 26 out of 

30 indicates normal cognition (Nasreddine et al., 2005). Overall classification of the disease 

stage of participants was judged using the Shoulson-Fahn Staging Scale in consultation with 

HD Service Coordinator and ranged from early (Stage II) – late stage (Stage IV) (Shoulson & 

Fahn, 1979).  
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Table 8.1  

Summary of Participant Demographics for the Test-retest Study 

Participant Gender Age 

Years 

since 

onset of 

symptoms 

Shoulson- 

Fahn 

Stage 

EAT-10 

score 

Montreal 

Cognitive 

Assessment  

1 M 41 10 III 13 22 

2 F 43 13 IV 18 17 

3 M 37 11 III 7 18 

4 F 30 9 II 5 27* 

5 M 57 5 III 11 22 

6 M 32 2 II 7 20 

7 M 68 10 III 14 24 

8 F 43 9 IV 7 22 

9 F 52 13 IV 33 22 

10 M 50 4 II 4 25 

Note. Participant 9 was excluded from analysis as she did not complete all assessment    

sessions. *Denotes scores within the range of normal.  

 

8.1.2 Test-Retest Study Inter-rater and Intra-rater Reliability 

ICC (3,1) and (2,1) results are summarized in Table 8.2. The TWST and TOMASS measures 

showed good to excellent inter-rater and intra-rater reliability in 13 of the 14 measures. Eleven 

of these were > 0.9. US inter-rater reliability was moderate to good (> 0.5 to < 0.9) across 6 

out of 7 measures. 
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Table 8.2 

Summary of Inter-rater and Intra-rater Reliability for all Outcome Measures 

Assessment Outcome Measure Intra-Rater 

Reliability ICC 

(3,1) 

Inter-Rater 

Reliability ICC 

(2,1) 

Timed Water 

Swallow Test 

Swallowing capacity 

(ml per second) 

0.99 (0.94, 1.0) 1.0 (0.99, 1.0) 

Swallowing volume  

(ml per swallow) 

0.98 (0.83, 1.0) 0.99 (0.94, 1.0) 

Swallowing time (s per 

swallow) 

0.76 (0.11, 0.97) 0.90 (0.39, 0.98) 

Timed Test of 

Masticating and 

Swallowing Solids 

 

 

Number of bites 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 

Number of swallows 1.0 (1.0, 1.0) 0.68 (0.0, 0.95) 

Number of chews 0.95 (0.72, 0.99) 0.77 (0.12, 0.96) 

 

Time taken (s) 1.0 (0.99, 1.0) 0.94 (0.65, 0.99) 

Ultrasound Hyoid rest (mm) 0.88 (0.56, 1.0) R 0.84 (0.74, 0.91) R 

Hyoid maximum (mm) 0.48 (0.14, 1.0) R 0.46 (0.23, 0.69) R 

Percentage change (%) 0.91 (0.64, 1.0) R 0.60 (0.41, 0.75) R 

Area of geniohyoid + 

(mm2) 

0.77 (0.20, 0.97) 0.62 (0.07, 0.95) R 

Area of left anterior 

belly of digastric (mm2) 

0.86 (0.36, 0.98) 0.76 (0.22, 0.98) R 

Area of right anterior 

belly of digastric (mm2) 

0.95 (0.74, 0.99) 0.88, (0.40, 0.98) 

Videofluorscopic 

Swallowing Studies 

Oral transit time (s) 1.00 (1.0, 1.0) 0.19 (0.00, 0.50) 

Pharyngeal transit time 

(s) 

0.94 (0. 73, 1.0) BR 0.22 (0.00, 0.55) BR 

Total transit time (s) 1.0 (0.97, 1.0) 0.44 (0.11, 0.70) 

Timing of supraglottic 

closure (s) 

1.0(0.97, 1.0) 0.23 (0, 0.56) 

Duration of 

aryepiglottic closure (s) 

0.99 (0.96, 1.0) R 0.93 (0.86, 0.97) R 

UES duration open (s) 1.0 (0.96, 1.0) B 0.51 (0.23, 0.73) 

UES distension (mm) 1.0 (0.96, 1.0) 0.73 (0.50, 0.87) 

Pharyngeal constriction 

ratio (PCR) 

1.0 (0.98, 1.0) 0.59 (0.32, 0.79) 
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Hyoid excursion (mm) 1.0 (0.97, 1.0) B 0.65 (0.48, 0.81) B 

Low Resolution 

Manometry 

Sensor 1 peak upper 

pharynx (mmHg) 

1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 

Sensor 2 peak mid 

pharynx (mmHg) 

0.99 (0.93, 1.0) 1.0 (1.0, 1.0) 

Peak to peak time (s) 1.0 (0.97, 1.0) 0.91 (0.87, 0.94) 

UES minimum pressure 

(mmHg) 

1.0 (0.97, 1.0) 1.0 (0.99, 1.0) 

UES open duration (s) 0.99 (0.95, 1.0) 0.96 (0.93, 0.97) 

Note. Outcome measures with a bolus effect are indicated with B and a rater or rating 

effect with R. 

 

Intra-rater reliability of a random 20% sample of US sessions was measured using two 

methods. First, the selected still images were remeasured as an assessment of measurement 

reliability. Second, the investigator scrolled through saved video files to reselect the maximum 

approximation and rest position of the hyoid to measure. The latter method measured the 

reliability of both image selection and measurement. Interestingly, the ICC was good to 

excellent (> 0.75) for 5 out of 6 measures using both methods of measurement. As anticipated, 

remeasurement from preselected still images had higher intra-rater reliability (x̄ ICC = 0.87) 

compared to remeasurement from video files (x̄ ICC = 0.80). 

 

VFSS measures of timing had the lowest inter-rater reliability; 4 of the 7 measures had poor 

reliability (< 0.5). The duration of aryepiglottic closure had excellent intra-rater and inter-rater 

reliability (> 0.9). VFSS spatial and displacement measures had moderate to good intra-rater 

and inter-rater reliability (> 0.5 to < 0.9). LRM demonstrated the highest intra-rater and inter-

rater reliability with excellent reliability across all measures (> 0.9). 
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8.1.3 Test-retest Reliability 

Intraclass correlation coefficient (ICC 3,1) results are reported for all measures in Table 8.3. 

SD between and within participants is also reported for replicability of results. Data were 

checked for normality and heteroskedasticity of residuals to ensure model assumptions for ICC 

were met. All data met the assumptions except oral transit time which should be interpreted 

with caution. 
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Table 8.3 

Summary of Test-retest Reliability for Swallowing Outcome Measures  

Assessment Outcome measure ICC (3,1) 

95% CI within 

pts 

SD between / 

within 

participants 

Timed Water 

Swallow Test 

Swallowing capacity 

(ml per second) 

0.96 

(0.87, 0.99) 

10.72 / 2.15 

 

Swallowing volume 

(ml per swallow) 

0.92 

(0.76, 0.98) 

9.02 / 2.60 

Swallowing time (s 

per swallow) 

0.88 

(0.64, 0.96) 

1.49 / 0.56 

Timed Test of 

Masticating and 

Swallowing 

Solids 

Number of bites 0.39 

(0.0, 0.76) 

0.70 / 0.88 

Number of chews 0.79 

(0.42, 0.93) 

11.83 / 6.10 

Number of swallows 0.83 

(0.49, 0.95) 

0.88 / 0.40 

Time taken (s) 0.70 

(0.26, 0.90) 

20.87 / 13.57 

Ultrasound Hyoid rest (mm) 0.74 

(0.44, 0.87) 

4.51 / 2.66 

Hyoid maximum 

(mm) 

0.40B 

(0.14, 0.62) 

2.1 / 2.66 

Percentage change 

(%) 

0.44 

(0.17, 0.64) 

5.65 / 6.39 

Area of geniohyoid+ 

(mm2) 

0.69 

(0.22, 0.90) 

55.34 / 37.31 

Area of left anterior 

belly of digastric 

(mm2) 

0.91 

(0.75, 0.97) 

 

19.53 / 6.07 

Area of right anterior 

belly of digastric 

(mm2) 

0.76 

(0.42, 0.92) 

 

19.63 / 11.09 

Videofluorscopic 

Swallowing 

Studies 

Oral Transit Time (s) 0.22 B 

(0.03, 0.45) 

0.18 / 0.34 

Pharyngeal Transit 

Time (s) 

0.79 

(0.00, 0.90) 

0.03 / 0.30 

Total Transit Time 

(s) 

0.21 B 

(0.04, 0.43) 

0.21 / 0.4 

Timing of 

supraglottic closure 

(s) 

0.52 

(0.22, 0.72) 

0.06 / 0.06 

Duration of 

aryepiglottic closure 

(s) 

0.50 B 

(0.20, 0.71) 

0.29 / 0.29 

UES Duration Open 

(s) 

0.16 B 

(0.01, 0.35) 

0.03 / 0.09 
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UES Distension 

(mm) 

0.68 

(0.37, 0.83) 

1.71 / 1.18 

Pharyngeal 

Constriction Ratio 

0.13 

(0.02, 0.30) 

0.00 / 0.05 

Hyoid excursion 

(mm) 

0.40 BS 

(0.13, 0.62) 

4.19 / 5.67 

Low Resolution 

Manometry 

Sensor 1 peak upper 

pharynx (mmHg) 

0.41 

(0.13, 0.63) 

45.11 / 54.25 

Sensor 2 peak mid 

pharynx (mmHg) 

0.36 

(0.12, 0.57) 

45.25 / 59.61 

Peak to peak time (s) 0.32 BS 

(0.09, 0.53) 

0.06 / 0.08 

UES minimum 

pressure (mmHg) 

0.27 

(0.06, 0.49) 

4.08 / 6.71 

UES open duration 

(s) 

0.36 

(0.11, 0.58) 

0.11 / 0.15 

 

Note. Outcome measures with a bolus effect are indicated with B and session effect 

indicated with S. Standard deviation (SD)of between participant variance contributed to 

ICC model. 

 

Good to excellent reliability (> 0.75) was seen in 5 out of the 7 TWST and TOMASS 

assessment parameters. Moderate to excellent reliability (0.69 - 0.91) was found in 4 of the 6 

US measures. Measurements of hyoid displacement had poor reliability (< 0.50). VFSS 

measures ranged from poor to moderate reliability (< 0.5 to < 0.75). All manometric measures 

produced poor test-retest reliability (< 0.5).  

 

Bolus effects on reliability were observed in 5 of the 9 VFSS outcomes, one US and one LRM 

outcome. The effect of bolus was included in the model and contributed to variability. Session 

effects were identified in two measures: hyoid excursion measured by VFSS (p < 0.001) was  

-2.9 mm less in Session B and -2.7 mm less in Session C compared to Session A. The second 

session effect was found in manometric peak to peak latency (p = 0.002) as Session B was          

-0.0067 s less than Session A and Session C was -0.047 s less than Session A.  
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8.1.4 Estimated Change Across Sessions 

Results of estimated percentage of change across sessions for all outcome measures are 

summarised in Table 8.4. The range of change is included in parenthesis; this represents the 

minimum percent change to maximum percent change across sessions. The direction of change 

across sessions can be positive or negative as the change may increase or decrease. Session 

effects were noted for the TOMASS number of swallows. Two parameters of US measurement 

also had session effects which significantly increased values of hyoid excursion by + 1.47 mm 

(p = 0.04) from Session A to Session B. In contrast, decreased values were noted for hyoid 

excursion, UES distension and oral transit time as measured by VFSS where a session effect 

was noted (p < 0.05). Four out of 5 VFSS session effects were seen with liquid bolus. 

Significant session effects were noted for dry and puree bolus types for 3 out of 5 LRM 

outcome measures. For dry swallowing trials, the minimum pressure at Sensor 3 significantly 

increased (p < 0.05) across all sessions (3.26 mmHg, 6.01 mmHg, 2.75 mmHg). Highly 

significant session effects (p < 0.001) were noted for both timing measures during dry swallows 

with decreased duration of UES opening up to 0.14 s from Session A to B.  
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Table 8.4 

Summary of Variability (average percent change across sessions) for Swallowing 

Outcome Measures  

Outcome 

measure 

Bolus % Change 

Session A - Session B 

(Range) 

% Change 

Session A – Session C 

(Range) 

% Change 

Session B – Session C 

(Range) 

 

Timed Water Swallow Test 

Swallowing 

capacity (ml 

per second) 

NA -6.82% 

(10.72 to -24.27) 

-9.12% 

(8.33 to -26.66) 

-2.57% 

(16.25 to -21.29) 

Swallowing 

volume (ml 

per swallow) 

NA -8.33% 

(4.86 to -21.52) 

-7.78% 

(5.41 to -20.97) 

 

0.6% 

(-13.79 to 14.99) 

 

Swallowing 

time (s per 

swallow) 

NA 0% 

(-19.77 to -19.77) 

 

0.39% 

(-19.77 to 20.16) 

3.54% 

(-22.51 to 29.58) 

 

Timed Test of Masticating and Swallowing Solids 

Number of 

bites 

NA -6.61% 

(17.72 to -30.93) 

-3.3% 

(21.02 to -27.63) 

0.39% 

(-19.77 to 20.16) 

Number of 

chews 

NA 0% 

(-13.68 to -13.68) 

-5.41% 

(8.24 to -19.1) 

-5.41% 

(8.24 to -19.1) 

Number of 

swallows 

NA -24.1% S 

(-10.79 to -37.41) 

-15.83% S 

(-2.52 to -29.14) 

10.43% 

(-7.11 to 27.96) 

Time taken 

(s) 

NA -15.1% 

(1.21 to -31.4) 

-14.66% 

(1.65 to -30.97) 

0.51% 

(-18.69 to 19.72) 

 

Ultrasound 

Hyoid rest 

(mm) 

 

Dry 1.36% 

(-1.48 to 4.15) 
 

1.79% 

(-1.05 to 4.58) 
 

0.43% 

(-2.37 to 3.2) 
 

Liquid -0.83% 

(1.98 to -3.63) 

-1.84% 

(0.97 to -4.64) 

-1.02% 

(1.81 to -3.85) 

Puree -0.57% 

(2.17 to -3.3) 

0.26% 

( -2.49 to 3) 

0.81% 

(-1.94 to 3.59) 

Hyoid 

maximum 

(mm) 

 

Dry 3.97% S 

(0.3 to 7.61) 

1.81% 

( -1.89 to 5.45) 

-2.08% 

(1.45 to -5.63) 

Liquid 0.27% 

(-3.52 to 4.06) 
 

-2.72% 

(1.1 to -6.51) 

-2.98% 

(0.86 to -6.78) 

Puree -0.71% 

(2.98 to -4.42) 
 

-1.93% 

(1.79 to -5.64) 

-1.2% 

(2.54 to -4.97) 

Hyoid 

percentage 

change (%) 

Dry -10.41% 

(3.03 to -23.85) 

-1.73% 

(11.72 to -15.17) 

9.69% 

( -5.41 to 24.85) 

Liquid -5.43% 

(7.41 to -18.3) 

1.09% 

( -11.78 to 13.97) 

6.93% 

( -6.81 to 20.63) 
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Puree -0.24% 

(15.08 to -15.65) 

6.3% 

( -9.07 to 21.63) 

6.56% 

( -8.92 to 22.09) 

Area of 

geniohyoid+  

(mm2) 

NA 12.05% 

(-3.06 to 28.03) 

1.98% 

( -13.12 to 17.97) 

-8.98% 

(4.89 to -22.84) 

Area of LAB 

(mm2) 

NA 3.13% 

(-4.46 to 10.97) 

-5.75% 

(2.08 to -13.34) 

-8.61% S 

( -1.15 to -16.09) 

Area of 

RAB (mm2) 

NA 10.55% 

(-2.47 to 24.1) 

5.77% 

(-7.25 to 19.32) 
 

-4.32% 

(7.73 to -16.36) 

 

Videofluoroscopic Swallowing Studies 

Oral transit 

time (s) 

 

Liquid -12.5% 

(16.67 to -37.5) 

-4.17% 

(25 to -33.33) 

9.52% 

(-23.81 to 42.86) 

Puree 15% 

( -40 to 67.5) 

12.5% 

(-42.5 to 70) 

0% 

(48.89 to -51.11) 

Pharyngeal 

transit time 

(s) 

Liquid -34.33% 

(-1.49 to -67.16) 

-16.42% 

(16.42 to -49.25) 

26.67% 

(-24.44 to 75.56) 

Puree 1.69% 

(-11.86 to 15.25) 

0% 

(13.56 to -15.25) 

-1.67% 

(11.67 to -16.67) 

Total transit 

time (s) 

Liquid -18.39% S 

(-2.3 to -34.48) 

-4.6% 

(12.64 to -20.69) 

18.31% 

(-1.41 to 36.62) 

Puree 7.41% 

(-13.89 to 29.63) 

6.48% 

(-15.74 to 29.63) 

-0.86% 

(19.83 to -21.55) 

Timing of 

supraglottic 

closure (s) 

 

Liquid -200% 

(400 to -900) 

0% 

(600 to -700) 

-200% 

(500 to -800) 

Puree 0% 

(-200 to 200) 

0% 

(-200 to 200) 

0% 

(-200 to 200) 

Duration of 

aryepiglottic 

closure (s) 

 

Liquid -9.28% 

(9.28 to -26.8) 

 

-20.62% 

(-2.06 to -39.18) 

-12.36% 

(6.74 to -32.58) 

Puree 0% 

(-11.54 to 12.82) 

3.85% 

(-8.97 to 15.38) 

2.53% 

(-8.86 to 15.19) 

UES 

duration 

open (s) 

 

Liquid -14.29% 

(2.86 to -28.57) 

0% 

(-14.29 to -14.29) 

16.13% 

(-3.23 to 32.26) 

Puree 7.69% 

(-2.56 to 17.95) 

10.26% 

(-2.56 to 20.51) 

0% 

(-9.52 to 11.9) 

UES 

distension 

(mm) 

Liquid -18% S 

(-7.66 to -28.22) 

-9.49% 

(0 to -19.22) 

10.24% 

(-1.04 to 21.22) 

Puree -9.14% 

( -0.13 to -18.28) 

-6.89% 

(2.12 to -15.89) 

2.62% 

(-7.14 to 12.24) 

Pharyngeal 

constriction 

ratio 

Liquid -25% 

(25 to -50) 

50% 

(0 to 100) 

50% 

(25 to 100) 

Puree 20% 

(-20 to 80) 

20% 

(-20 to 80) 

0% 

(-33.33 to -33.33) 

Hyoid 

excursion 

(mm) 

Dry -5.51% 

(6.03 to -17.16) 

-8.29% 

(3.67 to -20.2) 

-2.94% 

(10.21 to -15.98) 

Liquid -13.39% S 

(-0.63 to -26.12) 

-20.68% S 

(-7.48 to -33.93) 

-8.42% 

(6.36 to -23.28) 
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Puree -14.65% S 

(-4.07 to -25.22) 
 

-9.11% 

(1.67 to -19.81) 

6.48% 

(-6.05 to 19.11) 

 

Low Resolution Manometry 

Sensor 1 

max peak 

(mmHg) 

Dry -2.86% 

(10.03 to -15.75) 

9.98% 

(-2.91 to 22.86) 

13.22% 

(-0.05 to 26.48) 

Liquid 9.53% 

(-19.66 to 38.72) 

37.62% 

(8.43 to 66.8) 

25.65% 

(-1.01 to 52.29) 

Puree 23.4% 

(-3.36 to 50.16) 

34.78% 

(8.02 to 61.53) 

9.22% 

(-12.46 to 30.9) 

Sensor 2 

max peak 

(mmHg) 

Dry -9.18% 

(6.38 to -24.74) 

-18.97% 

(-3.41 to -34.53) 

-10.78% 

(6.35 to -27.91) 

Liquid 2.04% 

(-22.01 to 26.09) 

-4.14% 

(19.91 to -28.19) 

-6.05% 

(17.52 to -29.62) 

Puree 4.49% 

(19.71 to 28.69) 

-4.15% 

(20.05 to -28.36) 

-8.28% 

(14.89 to -31.44) 

Peak to peak 

timing (s) 

Dry -55.56% S 

(-33.33 to -77.78) 

-38.89% S 

(-16.67 to -55.56) 

50% 

(0 to 100) 

Liquid -22.22% 

(0 to -50) 

-11.11% 

(11.11 to 38.89) 

14.29% 

(21.43 to 42.86) 

Puree -15.79% 

(5.26 to -36.84) 

-21.05% S 

(0 to -42.11) 

-6.25% 

(18.75 to -31.25) 

UES min 

(mmHg) 

 

Dry -20.88% S 

(-4.16 to -37.22) 

-38.5% S 

(-22.17 to -54.52) 

-22.27% S 

(-2.51 to 42.11) 

Liquid -23.51% 

(6.61 to -54.42) 

-25.02% 

(3.45 to -53.56) 

-1.97% 

(36.37 to -39.38) 

Puree -17.88% 

(6.67 to -43.08) 

-9.82% 

(13.04 to -32.67) 

9.81% 

(-2.86 to 14.29) 

UES open 

duration (s) 

Dry -16.67% S 

(-9.52 to -23.81) 

-11.9% S 

(-4.76 to -19.05) 

5.71% 

(-2.86 to 14.29) 

Liquid -10.34% 

(1.15 to -22.99) 

-9.2% 

(2.3 to -20.69) 

1.28% 

(-11.54 to 14.1) 

Puree -9.88% S 

(0 to -18.52) 

-3.7% 

(4.94 to -12.35) 

6.85% 

(-2.74 to 16.44) 

 

Note. Outcome measures with a session effect are indicated with S. Range represents 

change across sessions based on 95% confidence intervals. LAB: Left anterior belly of 

the digastric muscles, RAB: right anterior belly of the digastric muscles. 

 

The TWST and TOMASS measures demonstrated relatively low variability across sessions. 

Measures acquired from the TWST varied up to 9.12%, whilst measures from the TOMASS 

varied up to 24.1%. US measures had low variability across sessions (0.27% to 12.05%). Hyoid 



183 

 

rest was least variable with puree bolus trials (0.57% to 0.81%). Area of the geniohyoid+ 

muscles at rest was the most variable US measure (8.98% to 12.05%).  

 

Five of the six VFSS timing measures varied up to 34.33%. Pharyngeal transit time was the 

least variable with puree bolus (0% to 1.69%) and the most variable with liquid bolus (6.42% 

to 34.33%). The timing of supraglottic closure skewed the data as it varied 200% from Session 

A to B and B to C, specifically 0.01 s to -0.01 s. This reflects an estimated change of 0.02 s 

across all three sessions. The greatest variability was observed between Session A and B on 6 

out of 12 timing measurements. Spatial and displacement measures varied across sessions from 

0% to 50%. Hyoid excursion with dry swallows had the lowest percent change (2.94% to 

8.29%) and UES distension had the lowest variability with a puree bolus (2.62% to 9.14%). 

PCR had the highest variability with liquid bolus types (25% to 50%). For LRM data, peak to 

peak timing measurements of dry swallows (38.89% to 55.56%), were most variable. Whilst 

UES opening duration had the lowest variability with liquid bolus (1.28% from Session B to 

C). The maximum estimated change of peak amplitude (Sensor 1 and Sensor 2 of LRM) was 

> 12% in 12 out of 18 measures. 

 

8.2 Treatment Study Results 

8.2.1 Patient Demographics 

The treatment study utilised a convenience sample of consenting participants. As summarised 

in Figure 8.1, a total of 29 people were referred by health professionals which included 13 

referrals in Christchurch and 16 in Auckland. Referrals for people who resided more than 90 

minutes from the hospital were excluded as travel for assessments and home visits was not 

possible. Of note, five of six participants who were eligible but declined to take part in the 

treatment study had previously completed the test-retest study.  
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In total, twelve participants completed ten treatment sessions and four assessment sessions as 

per the study protocol time scales. Eleven participants completed the treatment sessions in their 

home environment, and one in the University research laboratory private clinic room. For 

Christchurch participants, the timing, setting, and order of assessments was consistent. In 

Auckland, all seven participants completed one assessment session with portable assessments 

in their home environment; four of these sessions were assessment 3 post-therapy and three 

were assessment 4 maintenance sessions. This was due to hospital radiology appointment 

allocations, technical problems with the equipment and travel time between appointments. 

Home-based assessment sessions included TWST, TOMASS, SWAL-QoL and US 

assessments; the order of assessments and protocols were consistent across different 

environments excluding VFSS. Four participants completed the SWAL-QoL with staff in their 

respective care settings. The questionnaire was returned incomplete on two occasions and could 

not be included in analyses.  
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Figure 8.1 

Flow-chart Diagram to Summarise Participant Recruitment for the Treatment Study 

 

Participant demographics are summarized in Table 8.5. Of the twelve participants, seven were 

male and five female with a mean age of 51.7 (SD = 15.96). The number of years since 

manifestation of symptoms ranged from 2 – 27 years (x̄ = 10.58 years). Cognitive screening 

scores ranged from 17 – 27 (x̄ = 21.42). EAT-10 scores ranged from 5 – 23 (x̄ = 11.92). Overall 

classification of the disease stage of participants was judged using the Shoulson-Fahn Staging 

Scale in consultation with HD Service Coordinator, ranging from early (Stage II) – late stage 
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(Stage IV) (Shoulson & Fahn, 1979). Three participants who lived in care home facilities were 

on soft diets and five avoided specific textures. All participants completed the TWST and one 

person chose not to complete the TOMASS due to a lack of dentures.  

 

Table 8.5  

Summary of Participant Demographics for the Treatment Study 

Participant Gender Age Years 

since 

onset of 

symptoms 

Shoulson- 

Fahn 

Stage 

EAT-10 

score 

Montreal 

Cognitive 

Assessment  

1 M 41 10 III 13 22 

2 F 43 13 IV 18 17 

3 M 37 11 III 7 18 

4 F 30 9 II 5 27* 

5 F 43 9 IV 7 22 

6 M 66 10 IV 18 19 

7 M 40 7 II 14 25 

8 F 71 27 III 6 21 

9 F 41 4 III 9 23 

10 M 81 5 III 10 21 

11 M 58 2 II 13 21 

12 M 63 20 IV 23 21 

Note. *Denotes scores within the range of normal. 

 

The optimum treatment schedule was five sessions per week Monday to Friday over two weeks 

with a two-day break. This was not possible in eight participants and the session was re-

arranged to take place one day during the weekend. VFSS appointments in Auckland were 
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allocated on Fridays only; therefore, the Friday of the second week of treatment was required 

to be an assessment session. Other reasons that prohibited optimum scheduling included other 

medical appointments, funeral attendance and investigator illness.  

 

8.2.2 Treatment Study Intra-rater and Inter-rater Reliability 

Although rater-reliability was investigated as part of the previous test-retest reliability study, it 

was necessary to evaluate intra-rater and inter-rater reliability of this specific cohort in order 

to reliably interpret the treatment study results. ICC (3,1) and (2,1) results based on 95% 

confidence interval are summarized in Table 8.6. The TWST and TOMASS measures were 

derived with good to excellent intra-rater and inter-rater reliability in 10 of the 14 measures: 

six of these were > 0.90. US intra-rater and inter-rater reliability was moderate to good (> 0.5 

to < 0.9) across all measures. This analysis included image selection and measurement from 

each video. Data from inter-rater reliability measurement of the area of submental muscles did 

not meet model assumptions and should be interpreted with caution.  

 

Table 8.6 

Summary of Inter-rater and Intra-rater Reliability for all Outcome Measures 

Assessment Outcome Measure Intra-rater 

Reliability  

ICC (3,1)  

Inter-rater 

Reliability  

ICC (2,1)  

Timed Water 

Swallow Test 

Swallowing capacity 

(mls per second) 

0.99 (0.95, 1.0) 0.98 (0.91, 1.0) 

Swallowing volume 

(mls per swallow) 

0.98 (0.92, 1.0) 0.99 (0.93, 0.99) 

Swallowing time (s per 

swallow) 

0.86 (0.53, 0.96) 0.86 (0.49, 0.96) 

Timed Test of 

Masticating and 

Swallowing Solids 

 

 

Number of bites 0.96 (0.89, 1.0) 0.96 (0.57, 1.0) 

Number of chews 0.65 (0.00, 0.98) 0.74 (0.00, 0.98) 

Number of swallows 0.32 (0.00, 0.96) 0.29 (0.0, 0.92) 

Time taken (s) 0.76, (0.20, 0.99) 0.75 (0.00, 0.98) 
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Ultrasound Percentage change (%) 0.88 (0.83, 0.92) 0.69 (0.67, 0.79) 

Area of geniohyoid+ 

(mm2) 

0.83 (0.45, 0.95) 0.80 (0.00, 0.99)  

Area of left anterior 

belly of digastric (mm2) 

0.91 (0.67, 0.98) 0.87 (0.22, 0.99) 

 

Area of right anterior 

belly of digastric (mm2) 

0.53 (0.00, 0.86) 0.81 (0.00, 0.99) 

 

Videofluorscopic 

Swallowing Studies 

Oral transit time (s) 0.85 (0.77, 0.91) BR 0.77 (0.60, 0.87) BR 

Pharyngeal transit time 

(s) 

0.75 (0.63, 0.85) 0.62 (0.46, 0.77) 

Total transit time (s) 0.92 (0.88, 0.96) BR 0.89 (0.79, 0.95) BR 

Timing of supraglottic 

closure (s) 

0.66 (0.50, 0.79) BR 0.34 (0.12, 0.57) BR 

Aryepiglottic closure 

duration (s) 

0.85 (0.78, 0.91) B 0.29 (0.05, 0.45) BR 

UES duration open (s) 0.54 (0.36, 0.70) 0.49 (0.28, 0.67) R 

UES distension (mm) 0.61 (0.43, 0.75) R 0.47 (0.24, 0.67) R 

Pharyngeal constriction 

ratio 

0.76 (0.64, 0.85) 0.65 (0.47, 0.79) R 

Hyoid excursion (mm) 0.88 (0.83, 0.93) 0.59 (0.44, 0.72) 

Low Resolution 

Manometry 

Sensor 1 peak upper 

pharynx (mmHg) 

1.0 (1.0, 1.0) 1.0 (0.99, 1.0) 

Sensor 2 peak mid 

pharynx (mmHg) 

0.87 (0.80, 0.93) 0.87 (0.79, 0.93) 

Peak to peak time (s) 0.95 (0.92, 0.98) 0.95 (0.91, 0.98)  

UES minimum pressure 

(mmHg) 

1.0 (1.0, 1.0) 1.0 (0.99, 1.0) 

UES open duration (s) 0.99 (0.98, 0.99) 0.94 (0.89, 0.97) 

Note. Outcome measures with a bolus effect are indicated with B and a rater or rating 

effect with R. 

 

Good to excellent intra-rater reliability (> 0.75, > 0.9) was observed in 6 out of 9 VFSS 

measurements. Of the timing measures, total transit time had the highest intra-rater reliability 

(ICC = 0.92) and UES duration opening had the lowest intra-rater reliability (ICC = 0.54). 

Inter-rater reliability of VFSS measurements were lower across all parameters. Five of the 9 
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measures were extracted with moderate to good reliability (ICC = 0.5 – 0.9). Again, total transit 

time had the highest reliability (ICC = 0.89). Aryepiglottic closure duration had the lowest 

inter-rater reliability (ICC = 0.29); however, the data violated the model assumptions and 

should be interpreted with caution. Low resolution manometry demonstrated the highest intra-

rater and inter-rater reliability with excellent reliability across all measures (> 0.9). Intra-rater 

reliability of Penetration-Aspiration Scale (PAS) ratings was ‘strong’ k = 0.84 (95% absolute 

agreement); however inter-rater reliability was ‘minimal’ k = 0.38 (78% absolute agreement). 

The most common difference in score was between PAS = 2 and PAS = 4, which the second 

rater scored higher on 8 out of 13 disagreements. 

 

8.2.3 Session Effect Analysis 

The mean and SD of each outcome measure across participants are summarised in Appendix 

E. Presence of a session effect was tested by comparing models with and without ‘session’ as 

a fixed factor. Results of this initial likelihood ratio session effect analysis are presented in 

Table 8.7. A significant session effect was found in the ‘secretion symptoms’ parameter of the 

SWAL-QoL (p = 0.05). ‘Pharyngeal symptoms’ and ‘total’ parameters were close to statistical 

significance (p = 0.07); therefore, further analyses were completed using the reduced model. 

Results of the analysis including ‘session’ as a fixed effect are summarised in Table 8.8. There 

was a significant treatment effect (between Assessment 2 and 3) with an increase in self-

reported QoL scores across all three parameters of the SWAL-QoL (p < 0.05). 
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Table 8.7 

Results of Initial Analysis of Session Effect for Parametric Data  

Assessment Outcome Measure Bolus Chi-Squared 

(df) 

p - value 

SWAL - QoL Oral symptoms NA χ² (3) = 3.28 0.35 

Pharyngeal 

symptoms 

NA χ² (3) = 6.96 0.07 

Secretion symptoms NA χ² (3) = 7.89 0.05* 

Total NA χ² (3) = 7.16 0.07 

Timed Test of 

Masticating and 

Swallowing 

Solids 

 

 

Number of bites NA χ² (3) = 0.47 0.93 

Number of swallows NA χ² (3) = 2.96 0.40 

Time taken (s) NA χ² (3) = 6.91 0.07 

Ultrasound Percentage change 

(%) 

Dry 

Liquid 

Puree 

χ² (3) = 4.60 

χ² (3) = 4.02 

χ² (3) = 7.38 

0.20 

0.26 

0.06 

Area of geniohyoid+ 

(mm2) 

NA χ² (3) = 2.01 0.57 

Area of left anterior 

belly of digastric 

(mm2) 

NA χ² (3) = 2.43 0.49 

Area of right 

anterior belly of 

digastric (mm2) 

NA χ² (3) = 5.46 0.14 

Videofluorscopic 

Swallowing 

Studies 

Pharyngeal transit 

time (s) 

Liquid χ² (3) = 4.00 0.26 

Total transit time (s) Liquid 

Puree 

χ² (3) = 7.39 

χ² (3) = 2.34 

0.06 

0.51 

Timing of 

supraglottic closure 

(s) 

Liquid 

Puree 

χ² (3) = 1.74 

χ² (3) = 3.80 

0.63 

0.28 

Duration of 

aryepiglottic closure 

(s) 

Puree χ² (3) = 5.95 0.11 

UES duration open 

(s) 

Liquid 

Puree 

χ² (3) = 3.54 

χ² (3) = 6.61 

0.32 

0.09 

UES distension 

(mm) 

Liquid 

Puree 

χ² (3) = 5.74 

χ² (3) = 9.27 

0.13 

0.03* 

Pharyngeal 

constriction ratio 

Liquid 

Puree 

χ² (3) = 3.21 

χ² (3) = 8.76 

0.36 

0.03* 
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Hyoid excursion 

(mm) 

Dry 

Liquid 

Puree 

χ² (3) = 7.35 

χ² (3) = 3.87 

χ² (3) = 3.21 

0.06 

0.28 

0.36 

Low Resolution 

Manometry 

Sensor 1 peak upper 

pharynx (mmHg) 

Dry 

Liquid 

Puree 

χ² (3) = 10.74 

χ² (3) = 8.37 

χ² (3) = 2.22 

0.01* 

0.04* 

0.53 

Sensor 2 peak mid 

pharynx (mmHg) 

Dry 

Liquid 

Puree 

χ² (3) = 6.76 

χ² (3) = 4.0 

χ² (3) = 3.08 

0.08 

0.26 

0.38 

Peak to peak time 

(s) 

Dry 

Liquid 

Puree 

χ² (3) = 5.41 

χ² (3) = 5.21 

χ² (3) = 11.14 

0.14 

0.16 

0.01* 

UES minimum 

pressure (mmHg) 

Dry 

Liquid 

Puree 

χ² (3) = 16.50 

χ² (3) = 1.98 

χ² (3) = 0.45 

< 0.001* 

0.58 

0.93 

UES open duration 

(s) 

Dry 

Liquid 

Puree 

χ² (3) = 1.51 

χ² (3) = 8.27 

χ² (3) = 9.84 

0.68 

0.04* 

0.02* 
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Table 8.8  

Results of the Post-hoc Analysis of Session Effect Including ‘Session’ as a Fixed Effect 

Outcome 

measure 

Bolus Sessions 

Compared 

Estimated 

Change 

95% CI p - value 

SWAL-QoL 

(Pharyngeal 

symptoms) 

NA II-I 

III-II 

IV-III 

-1.73 

8.12 

-2.17 

[-10.33, 6.87] 

[-0.77, 17.00] 

[-2.17, 6.72] 

0.61 

0.03* 

0.54 

SWAL-QoL 

(Secretion 

symptoms) 

NA II-I 

III-II 

IV-III 

-14.09 

13.83 

0.75 

[-30.06, 1.89] 

[-2.67, 30.33] 

[-15.75, 17.25] 

0.03* 

0.04* 

0.91 

SWAL-QoL 

(Total 

symptoms) 

NA II-I 

III-II 

IV-III 

-1.41 

7.66 

-2.60 

[-9.24, 6.42] 

[-0.43, 15.75] 

[-10.69, 5.50] 

0.65 

0.02* 

0.42 

TOMASS 

(Time) 

NA II-I 

III-II 

IV-III 

6.45 

2.63 

-14.93 

[-9.51, 22.52] 

[-13.33, 18.60] 

[-30.89, 1.03] 

0.31 

0.67 

0.02* 

Ultrasound 

(% Change) 

Puree II-I 

III-II 

IV-III 

-0.95 

-2.52 

0.84 

[-4.59, 2.68] 

[-6.15, 1.12] 

[-2.80, 4.47] 

0.50 

0.08 

0.56 

VFSS 

(Total transit 

time) 

Liquid II-I 

III-II 

IV-III 

-0.13 

0.09 

-0.03 

[-0.23, -0.001] 

[-0.03, 0.22] 

[-0.15, 0.08] 

0.01* 

0.05* 

0.46 

VFSS 

(UES 

distension) 

Puree II-I 

III-II 

IV-III 

0.06 

-0.58 

0.64 

[-0.55, 0.66] 

[-1.18, 0.03] 

[0.04, 1.24] 

0.81 

0.02* 

0.007** 

VFSS 

(PCR) 

Puree II-I 

III-II 

IV-III 

0.03 

0.003 

-0.03 

[-0.01, 0.06] 

[-0.03, 0.04] 

[-0.06, 0.00] 

0.05* 

0.82 

0.05* 

VFSS (Hyoid 

Excursion) 

Dry II-I 

III-II 

IV-III 

-3.56 

0.33 

0.41 

[-7.33, 0.22] 

[-3.45, 4.10] 

[-3.42, 4.25] 

0.02* 

0.83 

0.78 

LRM 

(Sensor 1 

maximum 

pressure) 

Dry 

 

 

Liquid 

 

II-I 

III-II 

IV-III 

II-I 

III-II 

IV-III 

18.31 

3.48 

-26.29 

24.32 

-5.55 

-25.37 

[-6.63, 43.25] 

[-21.46, 28.42] 

[-50.89, -1.68] 

[-7.40, 56.05] 

[-37.28, 26.17] 

[-25.37, 6.36] 

0.06 

0.72 

0.007* 

0.06 

0.66 

0.05* 

LRM 

(Peak to peak 

time) 

Puree II-I 

III-II 

IV-III 

0.04 

0.05 

-0.07 

[-0.03, 0.12] 

[-0.02, 0.12] 

[-0.14, 0.00] 

0.13 

0.07 

0.02* 

LRM 

(Sensor 3 

Minimum 

pressure) 

Dry II-I 

III-II 

IV-III 

-7.41 

1.74 

-2.76 

[-13.09, -1.72] 

[-3.94, 7.42] 

[-8.97, 2.75] 

0.001** 

0.43 

0.21 

LRM (UES 

duration 

open) 

Liquid 

 

 

Puree 

II-I 

III-II 

IV-III 

II-I 

0.11 

-0.03 

-0.16 

0.12 

[-0.07, 0.29] 

[-0.21, 0.15] 

[-0.16, 0.03] 

[-0.07, 0.30] 

0.13 

0.65 

0.03* 

0.11 
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III-II 

IV-III 

-0.10 

-0.13 

[-0.29, 0.09] 

[-0.32, 0.06] 

0.18 

0.09 

 Note. CIs: confidence intervals 

 

All parameters of the TWST violated model assumptions of normality and homoscedasticity; 

therefore, non-parametric analyses were completed and summarised in Table 8.9. There were 

no significant session effects on capacity, volume or time as measured with the TWST (p > 

0.05). Similarly, none of the TOMASS outcome measures reached significance (p > 0.05). 

However, the TOMASS timing measure was sufficiently close to significant to complete the 

post-hoc analysis (p = 0.07). There was a significant reduction in time taken between post-

treatment (Assessment 3) and maintenance (Assessment 4). 

 

All US outcome measures met model assumptions. There were no significant effects of session 

on initial analysis (p > 0.05). Hyoid excursion (percentage change) with puree bolus reduced 

during treatment; this did not reach statistical significance. Four of out the eight VFSS outcome 

measures were analysed using the reduced model to evaluate session effects. One out of the six 

timing measurements had a significant session effect. There was a significant decrease in total 

transit time with liquids during baseline (between Assessment 1 and 2), and a significant 

increase in total transit time with liquids during treatment (between Assessments 2 and 3). 

Displacement measurement of UES distension with puree bolus trials had a significant 

treatment effect, reducing from 6.95 mm (SD 1.47) to 6.35 mm (SD1.26) between Assessments 

2 and 3. In contrast, there was then a significant increase of during the maintenance period 

(between Assessment 3 and 4). There was a significant session effect of PCR with puree trials 

only, with an increase during baseline and a decrease during maintenance. Unlike US outcome 

measurement of hyoid excursion, there was a significant session effect as measured via VFSS: 
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hyoid excursion during dry swallowing trials decreased during the baseline period (between 

Assessment 1 and 2).  

 

Four of the five LRM outcome measures showed a significant session effect (p > 0.05). 

Pharyngeal pressure measured at Sensor 1 in the upper pharynx significantly decreased during 

the maintenance period (between Assessment 3 and 4) during dry and liquid bolus trials. This 

outcome measure was noted to have the highest variation in data as represented in the largest 

95% CIs. In contrast, minimum pressure at Sensor 3 during dry swallowing trials significantly 

decreased during baseline treatment (p = 0.001) but increased during the treatment phase (p = 

0.21). Both LRM timing measurements had significant session effects: peak to peak latency 

between Sensor 1 and 2 peak waveforms was significantly shorter with puree trials during the 

maintenance period. The duration of UES opening was also significantly decreased during the 

maintenance period; this effect was only found with liquid bolus trials. 

 

Outcome measures summarised in Table 8.9. did not meet the assumptions of normality and 

homoscedasticity were subsequently analysed with non-parametric Friedman rank sum test. 

None of these swallowing outcomes had a significant session effect (p > 0.05). 
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Table 8.9 

Results of Friedman Rank Sum Tests to Analyse Session Effect for Non-parametric Data  

Assessment Outcome 

Measure 

Medians 

(Assessments 

1, 2, 3, 4) 

Friedman 

Chi-

Squared 

(df) 

p - value 

Timed Water 

Swallow Test 

Swallowing 

capacity (ml per 

second) 

5.78, 4.63, 3.66, 5.23 2.64 (3) 0.45 

Swallowing 

volume (ml per 

swallow) 

14.32, 12.18, 12.02, 10.77 6.83 (3) 0.08 

Swallowing time 

(s per swallow) 

2.74, 2.48, 2.44, 2.61 1.32 (3) 0.72 

Timed Test of 

Masticating and 

Swallowing 

Solids 

Number of 

masticatory 

cycles 

40, 37, 39, 36 4.95 (3) 0.18 

Videofluorscopic 

Swallowing 

Studies 

Oral transit time 

(s) 

Liquid: 0.2, 0.16, 0.2, 0.16 

Puree: 0.23, 0.34, 0.36, 0.29 

5.29 (3) 

0.7 (3) 

0.15 

0.87 

Pharyngeal 

transit time (s) 

Puree: 0.53, 0.52, 0.48, 0.51 2.70 (3) 0.44 

Duration of 

aryepiglottic 

closure (s) 

Liquid: 0.69, 0.88, 0.72, 0.74 6.4 (3) 0.09 

 

8.2.3.1 Penetration-Aspiration Scale 

VFSS videos were sufficiently clear to allow for PAS judgement in 35 out of 36 videos during 

puree bolus trials for each assessment session. For liquid bolus trials 33 out of 36 trials were 

scored from Assessment 1, all trials were analysed during Assessment 3, and 35 were scored 

for both Assessments 2 and 4. From the eight-point scale, only scores of 1, 2 or 4 were recorded 

in this cohort. Results are summarised in Figure 8.2. PAS 1 was recorded more frequently post-

therapy with liquid bolus trials (n = 26). There were fewer occurrences of PAS 2 post-therapy 

(n = 7) compared to pre-therapy (n = 10). PAS 4 occurred in n = 3 trials in post-therapy 

compared to n = 2 at baseline. PAS judgement of puree swallowing trials had little variability 
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across all four assessment sessions as 96% of all trials were judged as PAS 1. The greatest 

number of PAS 2 occurrences were observed post-therapy (n = 3). 

 

Figure 8.2 

Results of Penetration-Aspiration Scale According to Assessment Session and Bolus 

 

Note. Columns within the blue box represent pre-therapy and columns within the orange 

box represent post-therapy. Liq: Liquid bolus trials, Pur: Puree bolus trials. Pale 

coloured columns represent liquid bolus data across assessment sessions and strong 

coloured columns highlight puree bolus data across assessment sessions. Of the 8-point 

PAS, only scores of 1,2 and 4 occurred. 
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8.2.4 Rate of Change Analysis 

None of the outcome measures in this data analysis met the model assumptions of normality 

and homoscedasticity. Therefore, non-parametric tests were utilised. Table 8.10 provides the 

summary of all data calculated using Friedman rank sum tests. 

 

Table 8.10 

Summary of Rate of Change Results Completed Using Friedman’s Rank Sum Tests 

Assessment Outcome 

Measure 

Bolus Medians 

(Assessments  

2 – 1/ 3 – 2/ 4 – 3) 

Friedman 

Chi-

Squared 

(df) 

p - 

value 

SWAL - 

QoL 

Oral symptoms NA 0.0 / 4.17 / -8.33 3.20 (2) 0.20 

Pharyngeal 

symptoms 

NA -3.57 / 7.14 / -7.11 4.29 (2) 0.12 

Secretion 

symptoms 

NA -12.5 / 18.75 / 0.00 7.09 (2) 0.03* 

Total NA 0.0 / 5.36 / 0.90 0.89 (2) 0.64 

TWST Swallowing 

capacity (ml per 

second) 

NA 0.0 / -1.01 / 0.0 2.74 (2) 0.25 

Swallowing 

volume (ml per 

swallow) 

NA 0.16 / -0.45 / 0.17 0.50 (2) 0.78 

Swallowing time 

(s per swallow) 

NA 0.02 / 0.0 / -0.22 

 

0.50 (2) 0.78 

TOMASS 

 

Number of bites NA 0 / 0 / 0 0.42 (2) 0.81 

Number of 

masticatory 

cycles 

NA -2 / 2 / -3 3.62 (2) 0.16 

Number of 

swallows 

NA 0 / 0 / 0 2.36 (2) 0.31 

Time taken (s) NA 1 / 2 / -11 3.45 (2) 0.18 

US Percentage 

change (%) 

Dry  

Liquid  

Puree 

3.41 / -2.47 / 3.90 

-2.37 / - 1.34 / 0.48 

-0.45 / -3.40 / 0.97 

 

2.17 (2) 

1.17 (2) 

1.50 (2) 

0.34 

0.56 

0.47 

Area of 

geniohyoid+ 

(mm2) 

NA -19.95 / 22.79 / -7.22 4.67 (2) 0.09 



198 

 

Area of left 

anterior belly of 

digastric (mm2) 

NA 3.22 / 14.13 / -2.19 5.17 (2) 0.08 

Area of right 

anterior belly of 

digastric (mm2) 

NA -14.48 / 8.92 / 4.49 3.17 (2) 0.21 

VFSS Oral transit time 

(s) 

Liquid  

Puree 

-0.12 / 0.06 / -0.02 

0.09 / 0.02 / -0.08 

 

10.36 (2) 

0.67 (2) 

0.006* 

0.72 

Pharyngeal transit 

time (s) 

Liquid  

Puree 

0.01 / 0.04 / -0.03 

-0.002 / -0.04 / 0.05 

 

2.43 (2) 

2.68 (2) 

0.30 

0.26 

Total transit time 

(s) 

Liquid  

Puree 

-0.05 / 0.07 / -0.05 

0.11 / -0.07 / -0.10 

8.73 (2) 

0.67 (2) 

 0.01* 

0.72 

Timing of 

supraglottic 

closure (s) 

Liquid  

Puree 

0.01 / 0.02 / -0.00 

0.00 / 0.00 / 0.00 

0.67 (2) 

0.17 (2) 

0.72 

0.92 

Duration of 

aryepiglottic 

closure (s) 

Liquid  

Puree 

0.21 / -0.08 / -0.02 

-0.03 / 0.02 / -0.02 

 

1.50 (2) 

4.50 (2) 

0.47 

0.11 

UES duration 

open (s) 

Liquid  

Puree 

0.01 / 0.01 / -0.03 

-0.02 / -0.03 / 0.04 

3.11 (2) 

0.17 (2) 

0.21 

0.92 

UES distension 

(mm) 

Liquid  

Puree 

0.59 / 0.03 / -0.27 

0.25 / -0.27 / 0.76 

2.40 (2) 

1.50 (2) 

0.30 

0.47 

Pharyngeal 

constriction ratio 

Liquid  

Puree 

-0.01 / 0.03 / -0.00 

0.01 / 0.00 / -0.01 

0.20 (2) 

3.82 (2) 

0.90 

0.15 

Hyoid excursion 

(mm) 

Dry 

Liquid  

Puree 

-3.59 / 1.22 / 0.58 

-0.66 / 2.74 / 1.30 

-1.32 / -0.31 / 2.99 

 

3.50 (2) 

2.00 (2) 

2.17 (2) 

0.17 

0.37 

0.34 

LRM Sensor 1 peak 

upper pharynx 

(mmHg) 

Dry 

Liquid  

Puree 

12.95 / 4.75 / -30.61 

0.38 / -2.19 / -29.44 

8.55 / -18.28 / 0.72 

3.50 (2) 

2.00 (2) 

0.00 (2) 

0.17 

0.37 

1 

Sensor 2 peak 

mid pharynx 

(mmHg) 

Dry 

Liquid  

Puree 

13.63 / -34.13 / 49.54 

4.84 / -60.92 / 48.47 

45.65 / -22.23 /-20.51 

1.50 (2) 

0.50 (2) 

1.50 (2) 

0.47 

0.78 

0.47 

Peak to peak time 

(s) 

Dry 

Liquid  

Puree 

0.02 / 0.01 / -0.03 

0.02 / 0.05 / -0.06 

0.02 / 0.05 / -0.03 

3.50 (2) 

0.50 (2) 

3.50 (2) 

0.17 

0.78 

0.17 

UES minimum 

pressure (mmHg) 

Dry 

Liquid  

Puree 

-9.94 / 2.46 / -1.01 

-0.25 / 0.46 / -1.09 

3.55 / 1.05 / 0.88 

1.50 (2) 

0.00 (2) 

1.50 (2) 

0.47 

1 

0.47 
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UES open 

duration (s) 

Dry 

Liquid  

Puree 

-0.05 / 0.02 / -0.05 

0.11 / -0.03 / -0.18 

0.13 / -0.06 / -0.19 

0.00 (2) 

0.50 (2) 

0.50 (2) 

1 

0.78 

0.78 

 

There were no significant differences in the rate of change across baseline, treatment and 

maintenance periods on oral, pharyngeal or total parameters of the SWAL-QoL. The secretion 

symptoms subsection had a significantly different rate of change across assessment sessions (p 

< 0.05) and was subsequently analysed with Wilcoxon. The increased rate of change between 

baseline and treatment was significant (V = 2, p = 0.02*), and between baseline and 

maintenance change (V = 41, p = 0.03*). The direction of change in secretion scores is 

summarised in Figure 8.3. 

 

Figure 8.3  

Representation of the Distribution of SWAL-QoL Secretion Score Rate of Change 

Across Time Periods 

 

Note. Boxplot graph includes median, maximum and minimum change and inter 

quartile range.  
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Oral transit time measured by VFSS had significantly different rates of change between 

baseline and treatment time periods with liquid bolus trials (V = 9, p = 0.03). There was no 

significant change between treatment to maintenance time periods (V = 53, p = 0.08), or 

between baseline and maintenance (V = 19, p = 0.24). The distribution of the data represented 

in these results are summarised in Figure 8.4.  

 

Figure 8.4 

Summary of Oral Transit Time Rate of Change Across Time Periods  

 

Note. Boxplot graph scaled to include outliers denotes the median, maximum and 

minimum change and inter quartile range of each time period. 

 

The rate of change was significantly different for total transit time on liquid bolus during 

treatment compared to baseline periods: (V = 11, p = 0.05) and between treatment and 



201 

 

maintenance (V = 58, p = 0.02). There was no significant difference between baseline and 

maintenance (V = 28, p = 0.70). Total transit time rate of change increased during treatment 

and a decreased during maintenance time periods. This distribution of total transit time data is 

represented in Figure 8.5. 

 

Figure 8.5  

Summary of Total Transit Time Rate of Change Across Time Periods 

 

Note. Boxplot graph scaled to include outliers denotes the median, maximum and 

minimum change and inter quartile range of each time period. 

 

8.2.5 Variability Within Sessions 

To evaluate variability within sessions, the SD was calculated for each outcome measure which 

included more than one swallowing trial. This new data set represented the within-subject 

variability compared across sessions. All data met the model assumptions of normality and 
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homoscedasticity. Variability analysis results are summarised in Table 8.11. There were no 

significant differences between the variability (SD) of any swallowing outcome measures as 

measured via US of VFSS (p > 0.05). One out of five LRM swallowing outcomes had 

significantly lower variability of UES minimum pressure across puree bolus trials in pre-

therapy Assessment 2 compared to baseline Assessment 1 (- 4.96 mmHg (95% CI [ - 9.08, - 

0.84], p = 0.01). 

 

Table 8.11 

Variability Within Sessions of Outcome Measures with Multiple Trials 

Assessment Outcome Measure Bolus Chi-Squared 

(df) 

p - value 

Ultrasound Percentage change 

(%) 

Dry  

Liquid  

Puree 

χ² (3) = 1.79 

χ² (3) = 1.73 

χ² (3) = 4.81 

0.62 

0.63 

0.19 

Videofluorscopic 

Swallowing 

Studies 

Oral transit time (s) Liquid 

Puree 

χ² (3) = 0.23 

χ² (3) = 1.48 

0.97 

0.69 

Pharyngeal transit 

time (s) 

Liquid 

Puree 

χ² (3) = 2.04 

χ² (3) = 2.85 

0.56 

0.41 

Total transit time (s) Liquid 

Puree 

χ² (3) = 1.87 

χ² (3) = 1.90 

0.60 

0.59 

Timing of 

supraglottic closure 

(s) 

Liquid 

Puree 

χ² (3) = 2.92 

χ² (3) = 3.05 

0.40 

0.38 

Duration of 

aryepiglottic closure 

(s) 

Liquid 

Puree 

χ² (3) = 5.45 

χ² (3) = 1.07 

0.14 

0.78 

UES duration open 

(s) 

Liquid 

Puree 

χ² (3) = 0.30 

χ² (3) = 1.75 

0.96 

0.63 

UES distension 

(mm) 

Liquid 

Puree  

χ² (3) = 1.06 

χ² (3) = 2.26 

0.79 

0.52 
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Pharyngeal 

constriction ratio 

(PCR) 

Liquid 

Puree 

χ² (3) = 3.87 

χ² (3) = 3.03 

0.28 

0.39 

Hyoid excursion 

(mm) 

Dry  

Liquid  

Puree 

χ² (3) = 1.87 

χ² (3) = 6.15 

χ² (3) = 3.05 

0.60 

0.10 

0.38 

Low Resolution 

Manometry 

Sensor 1 peak upper 

pharynx (mmHg) 

Dry  

Liquid  

Puree 

χ² (3) = 2.18 

χ² (3) = 4.06 

χ² (3) = 2.04 

 0.54 

 0.26 

0.56 

Sensor 2 peak mid 

pharynx (mmHg) 

Dry  

Liquid  

Puree 

χ² (3) = 0.88 

χ² (3) = 3.76 

χ² (3) = 2.97 

0.83 

0.29 

0.40 

Peak to peak time 

(s) 

Dry  

Liquid  

Puree 

χ² (3) = 3.58 

χ² (3) = 3.12 

χ² (3) = 2.04 

0.31 

0.37 

0.57 

UES minimum 

pressure (mmHg) 

Dry  

Liquid  

Puree 

χ² (3) = 3.30 

χ² (3) = 1.94 

χ² (3) = 12.68 

0.35 

0.59 

0.005* 

UES open duration 

(s) 

Dry  

Liquid  

Puree 

χ² (3) = 2.34 

χ² (3) = 0.24 

χ² (3) = 0.36 

0.51 

0.97 

0.95 

 

 

8.2.6 Treatment Study: Case Study 

Participant 4, a 30-year-old female, completed all assessments and treatment sessions within 

the specialist University research laboratory setting. She presented with Stage II HD (early to 

mid-stage), a MoCA score of 27 indicated cognition within normal limits. She could travel 

independently but required some assistance to plan the journey. She was unable to obtain 

employment predominantly due to motor impairments largely characterised by hyperkinetic 

movements. This included excessive tongue pumping and involuntary choreic movements of 
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her face, tongue and limbs. Her self-reported dysphagic symptoms (EAT-10 = 5) included 

increased incidents of coughing and choking episodes over the last 12 months during mealtimes 

plus the sensation of food and tablets ‘sticking in my throat’. Frequent burping and reported 

aerophagia were noted during all sessions.  

 

8.2.6.1 Task Performance 

Participant 4 was able to complete the task despite notable oral choreic movements and tongue 

pumping. Participant 4’s performance improved across the ten treatment sessions. Timing error 

decreased from 2.69 s to 2.25 s, amplitude error decreased from 42.70 μV to 19.02 μV and total 

error decreased from 103.52 mm to 38.3 mm from week 1 to week 2 of therapy.  

  

8.2.6.2 Treatment Effect 

As reflected in the group analysis, there were improvements in self-reported swallowing related 

QoL for this participant. Figure 8.6 depicts Participant 4’s the SWAL-QoL scores pre- and 

post-therapy. An increase in score reflected an increase in perceived QoL for that parameter.  
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Figure 8.6  

Individual SWAL-QoL Scaled Scores Pre- and Post-therapy 

 

 

 

 

 

 

 

 

 

 

There were no notable differences in the performance of Participant 4 during the TWST or 

TOMASS assessments. Participant 4 completed the TWST with 30 swallows in 15 s pre-

therapy and 16 s post-therapy. This then reduced to 24 swallows in 15 s in the final maintenance 

assessment which represented a small increase in volume and capacity during the post-therapy 

no-treatment phase. Participant 4 completed the TOMASS with the same number of bites (3) 

and swallows (2) across all assessments. The number of masticatory cycles increased from 35 

pre-therapy to 38 post-therapy, but the time taken to complete the task reduced from 58 s pre-

therapy to 51 s post-therapy. The measures of the submental muscles at rest via US were 

consistent in this case study. US measurement of hyoid excursion (percent change) decreased 

by 4% across all bolus types. In contrast, VFSS measurement of hyoid excursion represented 

in Figure 8.7, increased over the treatment period, but did not represent any clear trend over 

assessment sessions.  

 

0

10

20

30

40

50

60

70

80

90

100

Oral Pharyn Secretion Total

Sc
al

ed
 S

co
re

SWAL-QoL Parameter

Participant 4 SWAL-QoL Scores

Pre

Post



206 

 

Figure 8.7  

Participant 4 Hyoid Excursion Measured via VFSS Across Assessment Sessions 

 

 

 

A significant treatment effect of UES distension was found on analysis of the group data; 

however, this significant reduction was not seen in Participant 4, who had an increase post-

treatment (7.85 mm to 8.39 mm). Of the six timing measures obtained via VFSS, Participant 4 

had longer oral transit times post-therapy (0.46 s to 0.56 s), which was reflected in the longer 

total transit time (0.9 to 1.00) and was significantly different as part of the group analysis. The 

duration of aryepiglottic closure was shorter in Participant 4 (1.02 s pre-therapy to 0.56 s post-

therapy).  

 

There were no identified trends in manometric measures of pharyngeal pressures for Participant 

4 pre- and post-therapy; however, changes in manometric timing measures were noted. Peak 

to peak latency increased in from 0.08 s pre-therapy to 0.15 s post-therapy, and the duration of 

UES opening reduced across all assessment sessions, as presented in Figure 8.8. 
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Figure 8.8  

Participant 4 UES Duration Opening Time (s) Across all Assessments as Measured 

with LRM 

 

 

 

8.2.6.3 Variability Within Sessions 

Group analysis of variability within sessions elicited no significant treatment effects. On further 

evaluation of individual variability, there were no identified trends in hyoid excursion 

measured by US for Participant 4. There were, however, differences noted for VFSS 

measurements of hyoid excursion. As depicted in Figure 8.9, variability of hyoid excursion 

measured with VFSS increased for Participant 4. There were no other trends noted in 

manometric variability. 

 

  

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 1 2 3 4

U
ES

 D
u

ra
ti

o
n

 O
p

en
 (

se
cs

)

Assessment Session

Participant 4 Duration of UES Opening on 
Manometry

Dry

Liq

Pur



208 

 

Figure 8.9  

Summary of Changes in VFSS Hyoid Excursion Variability Across all Assessment 

Sessions for Participant 4  

  

 

 

 

 

 

 

 

 

8.2.6.4 MRI Analysis 

On pre-treatment evaluation, Participant 4 showed widespread cortical atrophy and fractional 

anisotropy (FA) values > 2 SD outside of the normal range were observed in 8 of the 21 regions 

of interest. One region, the splenium of the corpus callosum moved within the normal range 

post-treatment. Nineteen of the 21 regions of interest fell > 2 SD outside of the normal range 

as quantified by mean diffusivity (MD) values pre-treatment. Post-treatment, two regions 

reduced to move within normal range; these included the body of the corpus callosum and right 

cingulum. Differences in FA and MD pre-treatment and post-treatment are depicted in Figure 

8.10. 
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Figure 8.10  

Differences in Fractional Anisotropy (FA) and Mean Diffusivity (MD) Between Pre-

treatment and Post-treatment.  

Pre-treatment  Post-treatment   

  

  

Note. Error bars represent 2 SD from the mean of the normative control data. This 

Figure was produced by Dr Nadia Borlese as part of the MRI report. 

 

This results chapter quantifies the test-retest reliability and variability of multiple swallowing 

outcomes measured via behavioural and instrumental assessments. The results of the treatment 

study including the descriptive case study presented limited evidence to suggest clinically 

significant treatment effects following the skill-based dysphagia training.  
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Chapter 9: Discussion 

 

There is a tendency for patients with HD, and other neurodegenerative disorders, not to be 

referred for instrumental swallowing assessment such as VFSS (Pizzorni et al., 2020). Despite 

the high prevalence of dysphagia, there is a lack of instrumental assessment data available to 

quantitatively measure swallowing features in HD (Pizzorni et al., 2020). This is the first 

research programme to evaluate test-retest reliability of swallowing measures in individuals 

with HD and apply these findings to the investigation of the feasibility and effectiveness of a 

novel skill-based swallowing training protocol with this patient population.  

 

9.1 Test-retest Reliability of Swallowing Outcome Measures in HD 

Assessment of swallowing is limited by inconsistent implementation of assessment methods 

which can lead to inaccurate interpretation and prevent comparisons between outcomes of 

intervention studies. The majority of existing dysphagia literature in HD relies on bedside 

clinical examination, which is difficult to reliability quantify (Pizzorni et al., 2020). Further, to 

trust the accuracy of swallowing outcomes, it is integral to evaluate and report the reliability 

of assessment methods. This test-retest study quantifies the reliability and variability of a wide 

range of swallowing outcome measures across sessions in patients with HD. In addition, careful 

evaluation of this reliability of standardised assessment methods can be applied to power 

calculations for subsequent intervention studies. This is important to ensure that any significant 

differences in outcomes can be more confidently attributed to treatment effects and not 

measurement error. 
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9.1.1 Reliability and Variability of Behavioural Outcome Measures 

Swallowing outcome measures obtained from behavioural assessments, such as the TWST and 

TOMASS, are accessible, replicable and objective measures of liquid and solid bolus ingestion. 

These behavioural assessments demonstrated low estimated change across sessions (defined as 

variability) and good to excellent test-retest, intra-rater and inter-rater reliability in this patient 

group. This reliability in HD is relatively consistent with other literature (Huckabee et al., 2017; 

Hughes & Wiles, 1996; Nathadwarawala et al., 1992); there were however, certain parameters 

of the TWST and TOMASS which demonstrated lower reliability in our HD patient population 

compared to normative data (Huckabee et al., 2017; Hughes & Wiles, 1996). Of the three 

TWST measures, time per swallow had the lowest reliability. As this measurement required 

additional rater observations (number of swallows and time taken) to obtain the results, these 

combined elements may be difficult to reliably judge in patients with HD. In contrast, this 

timing measure of the TWST was the least variable across sessions. The variability in 

swallowing capacity and volume between the first assessment and subsequent sessions is 

comparable to differences reported by Hughes and colleagues (1996) in healthy subjects.  

 

Oral phase outcomes of the TOMASS such as number of bites and number of masticatory 

cycles resulted in the poorest test-retest reliability. This may be indicative of motor sequencing 

impairments, irregular motor patterns and self-feeding difficulties associated with basal ganglia 

dysfunction in HD. Despite moderate to good reliability, the number of swallows and total time 

of the TOMASS were most variable across sessions. Of note, the estimated change for both of 

these outcomes decreased between the first and subsequent assessments which is consistent 

with trial and session effects reported by Huckabee and colleagues (2017). The reduction in 

time taken to complete the TOMASS in this HD group may reflect participant familiarity with 

the task as low variability (< 1%) was recorded between the second and third assessments. This 
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session effect and reduced variability of performance must be considered during re-assessment 

post-intervention to ensure these habitual improvements are not attributed to treatment effects. 

 

9.1.2 Huntington’s Disease Characteristics Which Influence Reliability of Swallowing 

Measures 

9.1.2.1 Influence of Motor Impairments  

There are several elements of HD pathophysiology which can impact on the reliability of 

measurement. Individual HD characteristics such as trunk hyperextension, involuntary 

movements of the head and limbs, and lingual chorea may have had an adverse effect on 

reliability of instrumental outcomes. Symptoms such as lingual chorea and tongue pumping 

were important to note as they have been correlated with increased risk of aspiration (Schradt 

et al., 2018). Although choreic movements were observed both at rest and during dynamic 

movements, the reliable identification and selection of volitional swallowing events was more 

affected by these atypical motor behaviours. This was evidenced as dynamic swallowing 

measures such as hyoid excursion measured with VFSS and US had poorer test-retest reliability 

compared to measures of anatomical structures at rest. Measures such as the cross-sectional 

area of the submental muscles measured via US which did not require the participant to 

swallow, and did not require visualisation of moving anatomical features, demonstrated the 

highest reliability and lowest variability in this HD cohort. 

 

Difficulty in controlling for involuntary head movement during VFSS, has likely contributed 

to poor reliability and increased variability observed. It is important to consider that 

measurement of hyoid excursion obtained via VFSS may not reflect the true trajectory or 

displacement of the hyoid bone if the head is rotated out of the optimum plane. In contrast, the 

handheld US devices provided flexibly for the investigator to follow the participant’s choreic 
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head movements to ensure the anatomical reference points were captured within the optimum 

frame, consistent with previous evaluation of handheld devices (Perry et al., 2016). Although 

no patient studies investigating US assessment of swallowing have previously included 

individuals with HD, the test-retest reliability in our HD cohort reflected relatively comparable 

patterns of reliability to previous research (poor for hyoid excursion, moderate to excellent for 

cross-sectional area of the submental muscles) (Shimizu et al., 2016; Winiker, 2019).  

 

The test-retest study included individuals at different stages of HD; it is difficult to define the 

influence of mixed hyperkinetic or hypokinetic motor impairments which could have 

influenced the reliability and variability of results. Test-retest reliability data from the spinal 

literature has reported significantly reduced reliability when assessing individuals with early 

HD compared to later stages (Quinn et al., 2013b). This may suggest that the highly variable 

between-participant motor responses associated with different stages of HD have likely 

contributed to lower reliability demonstrated in our study. Evidence suggests that individuals 

with HD are unable to consistently adapt or regulate their swallowing response based on 

sensory stimuli (Kagel & Leopold, 1992). Therefore, increased variability during bolus trials 

may represent the disrupted cortical and striatal feedback loops in HD. Swallowing 

biomechanics in HD may be irregular and poorly coordinated, characteristic of ataxic-type 

movement patterns, which are more variable during voluntary bolus trials. Inconsistent and 

uncoordinated swallowing biomechanics with involuntary movements both within and 

between subjects is likely to contribute to the reduced reliability of VFSS and LRM measures. 

 

9.1.2.2 Combined Influence of Motor and Cognitive Impairments 

In addition to the motor impairments which impact data acquisition, the increased cognitive 

demands of the assessment procedure could have influenced individual performance. 
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Combined assessment procedures such as manofluoroscopy placed high task demands on the 

participants to swallow on cue with a catheter placed, whilst coordinating self-feeding and 

maintaining an optimum position. During complex psychometric tasks which placed similar 

demands on dual motor and cognitive processing, patients with HD have demonstrated reduced 

task performance and compensatory recruitment of additional cortical regions (Andrews et al., 

2015; Soloveva et al., 2018). Perhaps the additional processing demands during self-feeding 

contributed to inconsistency of ingestive swallowing modulation and programming. This could 

explain the difference in variability of hyoid excursion comparing measurements obtained via 

VFSS and US. The more cognitively demanding VFSS procedure had higher variability of the 

motor response compared to lower demand US. The distinction between reliability of US rest 

measures and displacement measures may also suggest that increased involuntary or irregular 

motor responses were associated with increased task and processing demands (Novak & 

Tabrizi, 2010). Previous research evaluated the variability of these US measures in healthy 

participants; the maximum variability across sessions was 6% for hyoid displacement (Perry et 

al., 2016). The variability of hyoid displacement with HD patients was comparatively higher 

than that reported in healthy participants, consistent with the irregular motor response observed 

in other results. Hyoid percentage change across subjects varies in healthy participants; Macrae 

et al (2012) reported a range of 17% to 44% in hyoid displacement from five swallows in five 

healthy participants. As these studies in healthy participants reported high within-subject and 

between-subject variability, one would expect this variability to be higher in this complex and 

changeable patient cohort.  

 

In addition, LRM measures indicated that sequencing of the pharyngeal response had high 

variability and low reliability across sessions in this HD group. Variability of LRM within and 

across sessions has been previously evaluated in healthy participants (Macrae et al., 2011). In 
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this cohort of 20 healthy people, Macrae et al. (2011) reported a maximum 12% estimated 

change of peak or nadir pressures (mmHg) at Sensors 1, 2, and 3 across sessions. Our test-

retest study exceeded this 12% estimated variability in 12 out of 18 LRM measures in 

individuals with HD. The highest variability at Sensor 1 was during liquid bolus swallows. As 

Sensor 1 is located in the proximal pharynx around BoT perhaps this high variation with bolus 

swallows is consistent with the VFSS findings above. It may reflect disorganised or abnormal 

initiation of the pharyngeal motor programme in response to bolus stimulus, compared to self-

cued initiation of the dry swallows. There could also be an influence of lingual chorea or 

involuntary movements of oropharyngeal muscles during bolus preparation. Although one may 

have expected to see more lingual struggle during initiation of dry swallows at Sensor 1, the 

introduction of the liquid bolus resulted in a more variable response. This is also consistent 

with several reports that thin liquid is the most difficult bolus consistency for those with HD to 

control (Leopold & Kagel, 1985; Trender-Gerhard et al., 2016). In contrast, the duration 

between peak pressures at Sensor 1 and Sensor 2 demonstrated higher variability with dry 

swallows across all sessions. Whilst this could have highlighted poor reliability of this 

measurement, these results may also suggest altered biomechanics and specifically 

incoordination of swallowing timing with a more tense, conscious, cortically driven pharyngeal 

response. As all individuals in this group were able to eat relatively normal diet, we are unlikely 

to have captured more severe dysphagia. The variable biomechanics may indicate an early 

maladaptive response to maintain function and compensate for corticostriatal pathway 

disruption as suggested in the corticospinal HD literature (Klöppel et al., 2009). However, 

further research is needed to investigate how these early changes manifest in corticobulbar 

symptoms such as dysphagia.  
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9.1.2.3 Influence of Measurement Error 

The test-retest reliability of these specific assessment methods is not clearly documented in the 

literature; however, the low reliability of instrumental assessment measurements in HD patients 

may suggest the individual’s inconsistent motor responses were likely to influence 

measurement reliability. Additionally, the precision and technical aspects of manofluoroscopy 

combined with this challenging disease may have increased the risk of measurement error. 

Literature exists regarding normative data and variability of LRM (Butler et al., 2009; Lamvik 

et al., 2014; Macrae et al., 2011); however, the test-retest reliability of this assessment 

procedure has not been clearly defined. Despite following specified protocols described in 

other studies (Butler et al., 2009; Lamvik et al., 2014; Macrae et al., 2011; Salassa et al., 1998), 

this study demonstrated poor test-retest reliability in HD across all LRM parameters. The 

number of unidirectional markers was noted for each participant to ensure consistency of 

insertion depth across sessions, and catheter placement was confirmed radiologically. 

However, consistency of sensor positioning is an identified limitation of LRM (Huckabee et 

al., 2015), as the exact location of the sensors during swallowing could have differed across 

the three sessions.  

 

There are several methods available to measure displacement and timing of swallowing from 

VFSS (van der Kruis et al., 2011). This study utilized the widely recognized Leonard and 

Kendall (2019) protocol which included several standardised timing and displacement 

swallowing measures. This resource provides descriptions and instructions to obtain the 

measurements from VFSS (Leonard, 2019a). Each measurement has respective inter-rater 

reliability data for healthy individuals and patients with dysphagia. Test-retest reliability of 

quantitative swallowing outcomes obtained via VFSS has seldom been reported in the 

literature. One study reported test-retest reliability of several methods to evaluate VFSS in 40 
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patients with head and neck cancer (Frowen et al., 2008); however, reliability was only 

evaluated across three swallows per bolus and did not include multiple sessions across time 

points as in our HD study. Frowen and colleagues (2008) reported inadequate test-retest 

reliability (ICC < 0.75) for 6 out of 7 timing measures of VFSS and poor to excellent reliability 

of displacement measures (ICC = 0.48 – 0.89). Both timing and displacement measures in our 

study had a mixture of poor to moderate reliability in HD. Of note, individual variability across 

different days in our test-retest study is likely to be higher with HD patients compared to one 

assessment session with head and neck cancer patients.  

 

The VFSS data had highest variability between the first and second assessments on 6 of the 12 

timing measurements. As difference between sessions was not reflected in the LRM data 

acquired on the same swallows during combined manofluoroscopy, this suggests that 

swallowing measures obtained by VFSS are more subject to variability in subsequent sessions 

compared to LRM measures. This could be due to a number of factors including the number of 

subjective judgements and measurement steps required by the raters to obtain the VFSS data. 

Test-retest variability of measures has not been reported using this VFSS protocol, however 

Kendall (2002) reported that the swallowing sequence of events in healthy adults (n = 60) 

differed across test-retest assessments with 30.5% of participants altering from the normal 

sequence of measures used in our study. The authors also observed higher variability of events 

during smaller bolus swallows (e.g. 1 ml and 3 ml compared to 20 ml). They hypothesised that 

larger bolus volumes resulted in faster bolus transit times and reduced behavioural variability 

in healthy individuals (Kendall, 2002). A difference in variability in bolus types was also noted 

with our VFSS data, however, Kendall et al.’s (2002) theory contrasts with our findings which 

included only 5 ml bolus trials. We found that pharyngeal transit time was less variable with 

higher viscosity puree swallows compared to liquid swallows. This trend was reflected in 6 out 
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of the 9 other timing and displacement measures. Hyoid excursion had the lowest variability 

with dry swallows, which again is the opposite of the expected contribution of large bolus 

volumes suggested by Kendall (2002). This increased variability in HD during liquid bolus 

swallows could be another example of imprecise or irregular motor patterns in response to a 

rapid bolus stimulus. 

 

9.1.2.4 Influence of Rater Judgement 

Evaluation of intra-rater and inter-rater reliability provides a foundation for interpreting the 

reliability of outcomes. There is, however, poor reporting of reliability across the literature and 

huge variation dependent on method and rater training. There are several sources of variation 

which may exist between raters (Molfenter & Steele, 2014), however studies seldom specify 

how the process of rater reliability was completed to allow for replication (Baijens et al., 2013a; 

Humbert et al., 2018; Leonard & McKenzie, 2006). Leonard and Kendall (2019) reported all 

timing and displacement measures derived from VFSS had excellent inter-rater reliability (ICC 

> 0.92) (Leonard, 2019a). Despite following the identical measurement protocol, inter-rater 

reliability was lower for the same measures in both HD studies. As the descriptions often 

included examples of normal swallowing, accurate replication was limited in patients with 

atypical swallowing behaviours. This may indicate inadequate description of the measurement 

protocol. Further evaluation and examples of these methods implemented with different 

aetiologies would improve rater understanding and measuring reliability. 

 

Heemskerk et al. (2015) is the only study to detail timing measures of a group of HD patients 

and did not report inter-rater or intra-rater reliability results. Kagel and Leopold (1992) 

compared a similar spread of HD disease stages as in our studies and reported hyoid movement 

based on the average of 5 selected swallows with a 5 ml bolus. The authors only reported intra-
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rater reliability (0.85 to 0.89), but the method was not described. Another study evaluating 

VFSS in HD report higher inter-rater reliability with subjective rating scales to judge the 

presence or absence of a swallowing symptom but failed to specify whether these ratings were 

made individually, or part of consensus (Keage et al., 2020). Subjectivity of rater judgements 

combined with rater experience could influence measurement reliability. This was evident for 

PAS ratings where differences in judgements of PAS 2 or PAS 4 were the predominant 

disagreements in the treatment study. Although the clinically significant judgement of presence 

of aspiration or penetration using the PAS is widely reported across the dysphagia literature, 

the reliability or absolute agreement between raters is often omitted. Despite several months of 

training and consensus meetings to review similar videos, this disagreement was still 

highlighted. Additional training resources with clear examples for interpretation of each level 

would be beneficial. 

 

Our reliability included image selection from videos prior to measurement. The videos in this 

complex patient population often included extraneous movements and multiple swallows 

introducing additional judgements for raters to make prior to the measurement. Perhaps the 

inclusion of consensus discussions, exclusion of non-optimal videos, pre-selected images and 

analysis software may have increased our inter-rater reliability. Our protocol, however, 

maintained strict confidentiality between raters so the 20% sample was not discussed. The 

image selection and measurement instructions may have been differently interpreted by 

individual raters which represents true inter-rater reliability in this HD cohort. Studies reporting 

good to excellent inter-rater reliability of hyoid displacement reported re-assessment of pre-

selected images (Sia et al., 2012) or exclusion of data if structural elements were not clearly 

visible which could introduce a selection bias (McCullough & Kim, 2013). A recent 

methodological study retrospectively evaluated VFSS images of dysphagic patients using four 
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methods to judge pharyngeal residue (Steele et al., 2020). The authors reported excellent 

reliability for all but one measure, similar to those reported by Leonard (2019a); however, it 

was highlighted that inter-rater reliability began by “resolving any differences across raters in 

selection of the swallow rest frame for the initial swallow” (Steele et al., 2020, p.1411). This 

process removed differences in frame selection, and by definition, removed levels of inter-rater 

variability. Unsurprisingly, the utilisation of semi-automated computational analysis to identify 

key points of frame by frame coordinates for VFSS has the highest reported rater reliability 

(Logemann et al., 2000; McKenzie & Leonard, 2019; Schwertner et al., 2016). Similarly, our 

LRM data was analysed by identifying target peak waveforms within the LabChart analysis 

software to extract data from the recordings. Excellent intra-rater and inter-rater reliability was 

demonstrated across all measures and across both studies which is consistent with other studies 

using LRM (Gumbley et al., 2008; Lamvik et al., 2015; Lan et al., 2012). Of note, LRM 

measures had poor test-retest reliability despite the excellent rater agreement which reflects the 

impact of within-subject variation in performance on reliability of this measure. 

 

9.1.2.5 Influence of Data Acquisition During the Session or Offline 

Recent research has suggested that test-retest reliability was lower when measurements were 

obtained online during the session (Hammond, 2019; Winiker, 2019). This is consistent with 

our findings in HD as US measurements obtained offline during the test-retest study were more 

reliable compared to online measurements obtained during the session. Inter-rater reliability of 

US was comparable to swallowing outcome measures in other neurodegenerative diseases such 

as PD (Hsiao et al., 2012; Oh et al., 2016; Shimizu et al., 2016). Evidence to suggest offline 

measurement increases reliability of US measures was further demonstrated as several US 

measures had a significant rating or rater effect using online data extraction as part of the test-

retest study; however, there were no identified rater effects in the treatment study when the 
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measurements were obtained offline. The improved reliability in offline data extraction and 

measurement may reflect reduced environmental pressures, time constraints and improved 

technological environment for visualisation and accurate image selection. Additionally, inter-

rater reliability was higher for the treatment study across all US measures which may reflect 

the additional experience of the second rater at the time of the final study. 

 

9.1.3 Methodological Reliability Study Summary 

Accurate and reliable assessment of swallowing biomechanics is crucial to diagnose and select 

appropriate interventions in individuals with HD. Objective assessments allow clinicians to 

quantify treatment effects and monitor natural changes across the course of the disease. 

Evaluation of reliability is a critical step in interpreting outcomes and evaluating any treatment 

effects. Lower reliability affects the accuracy of swallowing outcomes and interpretation of 

results. Despite the reduced reliability of instrumental measures in this population, the use of 

standardised measurement techniques can provide objective information to compare across 

studies. The results of this test-retest study can aid clinicians and researchers to critically 

evaluate the reliability of swallowing outcomes to extract clinically significant changes during 

review or following treatment. Although reliability of swallowing measures is problematic in 

this population, this is the first study to measure the average change (variability) across sessions 

of multiple swallowing outcome measures in HD patients. This information can be used to 

design future research, interpret clinically significant changes and is integral to distinguish 

typical patient behaviour from changes likely to be attributed to a treatment effect.  

 

9.2 Treatment Study Discussion 

This is the largest treatment study to evaluate skill-based dysphagia training secondary to 

neurodegenerative disease. In addition, it is the largest swallowing intervention study in HD to 
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include instrumental measures of swallowing biomechanics following specified protocols. This 

research builds on the findings of previous studies using the same skill-based training 

programme (Athukorala et al., 2014; Perry et al., 2018) and demonstrates that high intensity 

swallowing rehabilitation is safe, well-tolerated and feasible for people with neurodegenerative 

conditions. All participants completed all sessions and assessments. This excellent retention 

rate and adherence is higher than that reported in other treatment studies (Cruickshank et al., 

2015; Easterling, 2013; Jones et al., 2016; Plowman, 2016). All participants in this treatment 

study complied with the intensity of the training protocol. Although task performance was not 

an identified outcome measure, all participants engaged in sessions and completed all 80 trials 

per session. This repetitive practice and focussed attempts to improve the accuracy of temporal 

and amplitude aspects of the motor response was the target of this skill-based swallowing 

training. This study provides evidence in support of the feasibility of daily home-based 

rehabilitation for treatment of dysphagia in HD as previously highlighted in other 

neurodegenerative diseases (Plowman et al., 2019).  

 

9.2.1 Self-reported Quality of Life: Session Effects 

There were significant improvements during treatment in self-reported swallowing QoL. The 

only parameter that did not change was specific to oral phase impairment. Oral phase 

impairment reported in the SWAL-QoL, such as difficulties with labial closure or mastication, 

were not directly targeted with this intervention. This skill-based training aimed to increase the 

conscious control of dry swallowing initiation. Additionally, symptoms included in the oral 

phase parameters such as drooling were not reported as significant issues in this cohort. These 

symptoms are often associated with cognitive impairment (Leopold & Kagel, 1997) and 

therefore were relatively mild in this group as part of the inclusion criteria. If the symptom was 

not present in this group pre-therapy, it would not be sensitive to improve with intervention. 
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These SWAL-QoL results are similar to the EMST RCT in HD which reported a moderate 

positive effect on swallowing QoL in the HD group and a small positive effect on the control 

group. Our results are also consistent with improved QoL following skill-based dysphagia 

therapy in individuals with PD (Athukorala et al., 2014; Curtis et al., 2020a). The participants 

of these treatment studies were unable to be blinded to the timing of their SWAL-QoL ratings, 

and in our study, the questionnaire was given directly to the investigators. Although 

participants were unlikely to remember their responses from the previous assessments, there 

may be a risk of reporting bias or a participation effect as noted in Reyes et al. (2015), as their 

participants reported positive improvements following both active and sham intervention. 

 

9.2.2 Behavioural Aspects of Swallowing: Session Effects 

Individuals reported perceived functional improvements in drinking fluids which was not 

reflected in the behavioural deglutitive outcomes. There were no significant differences in the 

group data across assessment time points for any behavioural outcome measures. Although this 

implies an absence of treatment effects, there was some noted reduction or elimination of overt 

signs of aspiration when the TWST was completed post-therapy. Assuming that the treatment 

did not change laryngeal sensitivity, this could indicate an improvement in swallowing safety 

during sequential water swallowing which was not picked up by other parameters of the TWST 

or the VFSS outcomes measures. Additionally, other studies have reported the TWST as a 

sufficiently sensitive assessment to highlight change in HD after four months of intensive 

training (Reyes et al., 2015). Although non-significant increases in the time taken to complete 

the TOMASS were observed during the baseline and treatment time periods, this was the only 

outcome which significantly reduced during the maintenance period. These behavioural 

swallowing outcomes demonstrated low variability and high reliability in the test-retest study; 

however, as none of the other behavioural measures changed, this decrease in TOMASS time 
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is unlikely to reflect a delayed treatment effect. This treatment study showed no significant 

reduction in functional ability to complete these ingestion tasks across the six weeks; however, 

no significant deterioration was observed during the baseline control period which suggests 

this group was relatively stable. Therefore, despite patient perceptions, there is no evidence to 

suggest this treatment protocol had any effect on behavioural ingestion of liquids or solids.  

 

9.2.3 Timing Outcomes: Session Effects 

The differences in reliability of these assessment methods was evaluated in the test-retest study 

and likely contribute to the conflicting hyoid excursion results. Quantitative VFSS outcome 

measures have never been conducted to evaluate treatment effects in HD; is it therefore difficult 

to compare our results to other intervention studies. Oral and pharyngeal bolus transit times 

were longer post-therapy which resulted in a significant treatment effect on total transit times 

with liquid bolus only. Interestingly, puree bolus transit times were shorter post-therapy across 

all timing measures, but this difference did not reach significance. This is the opposite of longer 

swallowing times with thicker textures reported in healthy participants (Steele et al., 2019). As 

rapid swallowing and shorter oral transit times have been previously reported in HD with liquid 

bolus swallows (Hamakawa et al., 2004; Heemskerk et al., 2015), the potential of treatment to 

improve bolus transit times in HD could be of clinical significance worthy of further 

investigation. However, the timing measures for liquid swallows in this study appear unstable 

and significantly declined during the baseline period of no-treatment then significantly 

increased during treatment. Whilst this significant improvement may indicate more 

consciously controlled motor programmes for thin liquid swallowing in HD, it is difficult to 

determine clinical significance from these results. These VFSS timing measures demonstrated 

poor reliability and as this observation was only with liquid bolus it is more likely to represent 



225 

 

variability of the outcome measure instead of a significant treatment effect on swallowing 

biomechanics. 

 

Additionally, no significant treatment effects were identified immediately post-treatment from 

manometric results which suggests that this treatment protocol did not induce changes as 

measured by LRM. In contrast, significant changes were observed in the final assessment 

session two weeks after cessation of treatment. Average peak to peak duration with puree 

swallows, pressures in the hypopharynx during dry and liquid swallows and UES opening 

duration all significantly decreased and moved towards normative data (Lamvik et al., 2014), 

consistent with a less effortful motor response (Hiss & Huckabee, 2005). Pharyngeal pressure 

peak to peak sequencing was shorter in this HD group compared to normative data (average 

150 ms and 239 ms, respectively) (Huckabee et al., 2014); however, this pharyngeal mis-

sequencing was not as impaired as patients with acute neurogenic dysphagia described by 

Huckabee and colleagues (2014). Mis-sequencing was unlikely to change over two weeks of 

this skill-based treatment which did not provide specific biofeedback to visualise pharyngeal 

sequencing. As the LRM results demonstrated high variability between sessions as reported in 

the test-retest study, we are unable to conclude that significant differences identified during the 

maintenance period suggested any evidence of a delayed treatment effect. As other studies have 

reported significant effects of catheter location and condition of swallowing (Hiss & Huckabee, 

2005), the differences specifically seen during the final assessment period may indicate 

measurement error or a difference in catheter placement during this session.  

  

9.2.4 Peripheral Displacement Outcomes: Session Effects 

The second treatment effect included a significant reduction in UES distension which was not 

maintained post-therapy. Again, one could hypothesise that this represents improved efficiency 
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of the swallowing motor programme not to ‘overshoot’ the UES opening in response to a puree 

bolus (Gordon et al., 2000). However, as no other treatment effects were observed in 

swallowing biomechanics, perhaps this is more reflective of a measurement error. Further, as 

this submaximal skill training did not aim to increase muscle bulk through peripheral muscle 

strengthening, the absence of change in the cross-sectional area of the submental muscles as 

measured by US was expected.  

 

Evaluation of hyoid excursion provided an interesting comparison between US and VFSS 

measurements. Although no significant treatment effects were identified, the outcomes were 

contradictory between the two assessment techniques. There was a significant decrease in 

hyoid excursion during dry swallows measured via VFSS during the baseline period. This 

decrease during a time of no treatment could indicate a natural decline which was halted 

through intervention and maintained post-therapy. As this decline was not noted for the other 

bolus types, perhaps this indicates task generalisation and improvement in dry swallowing 

biomechanics which are not included in the other VFSS measures. Alternatively, with 

consideration of the test-retest study results and low reliability of many VFSS outcome 

measures, we are unable to assume that this one significant anomaly has any clinical 

significance in this treatment study.  

 

Despite the two significant treatment effects, there was an overall lack of evidence to suggest 

this training protocol changed swallowing safety or biomechanics in this HD cohort. However, 

other studies have reported functional improvements in swallowing post-therapy which were 

not reflected in instrumental outcomes (Cabib et al., 2020; Sdravou et al., 2012; Steele et al., 

2013). In strength training RCT studies in MND and PD (Plowman‐Prine et al., 2009; Troche 

et al., 2010), there were no significant improvements in VFSS measures after four to eight 



227 

 

weeks of intervention; however, both studies reported significant deterioration in the control 

groups. The baseline period is our HD study was designed to be a within-subject control group. 

As there was a lack of significant decline across baseline and treatment periods is suggests 

stability of swallowing in this patient group. We are therefore unable to conclude that treatment 

prevented further deterioration of swallowing in this neurodegenerative group.  

 

9.2.5 Swallowing Safety: Session Effects 

This is the first treatment study to compare PAS ratings pre- and post-swallowing rehabilitation 

intervention in HD. Of note, 97.85% of swallowing events over all four assessment sessions 

were scored as either PAS 1 or 2 in this study. This is comparative to normative PAS ratings 

reported in healthy adults (Humbert et al., 2018; Steele et al., 2019). PAS > 2 was only observed 

in liquid bolus swallows. Deeper penetration reaching the level of the vocal folds before 

clearing was not observed immediately pre-therapy but occurred on three occasions post-

therapy, which could indicate deterioration in swallowing safety.  

 

Two studies have reported penetration or aspiration from VFSS in relatively large HD cohorts. 

Heemskerk (2015) reported 12.1% of patients with HD (n = 45) either penetrated or aspirated 

on 5 ml thick liquid bolus at one time point; however, the PAS was not used to quantify the 

laryngeal response during VFSS and cannot be compared to our data. In another study, no 

timing or displacement measures were obtained from VFSS data with HD patients (n = 49), 

however PAS ratings were reported (Keage et al., 2020). No treatments were implemented, but 

seven patients underwent repeat VFSS at highly varied time points (x̄ = 652.57 days, range 

231–1115 days). Keage and colleagues (2020) reported high variability of PAS ratings with 

individuals ranging from PAS score of 8 to PAS score of 1 and PAS score of 1 to PAS score 

of 7 across time points. These findings highlight concerns regarding the sensitivity and 
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reliability of this outcome in individuals with HD. Although our patient cohort had longer 

symptomatic disease duration (x̄ = 10.58 years) compared to Keage and colleagues (2020), (x̄ 

= 7.76 years), our patient sample had functionally intact or relatively mild swallowing 

dysfunction resulting in fewer incidents of aspiration or penetration. Neither of these studies 

reported the protocols of how swallowing safety was analysed (i.e. how many trials were 

scored, how many trials of each bolus, how the PAS was obtained). Furthermore, both studies 

reported the mean PAS ratings which are unsuitable for this rating scale and limits comparison 

between studies (Borders & Brates, 2019). Due to the relatively normal incidents of penetration 

observed across this small sample, this rating scale may not be sensitive to change (Steele & 

Grace-Martin, 2017). We therefore cannot conclude that this treatment protocol had any effect 

on swallowing safety.  

 

9.2.6 Neural Connectivity: Treatment Effect  

The single case study provided the first preliminary MRI data to explore the effect of skill-

based dysphagia therapy on neural connectivity compared to a healthy control. As this did not 

include baseline or maintenance effects, results cannot be generalised. However, in this 

neurodegenerative disease where cortical atrophy is present before motor symptoms, any 

changes identified on MRI may be clinically significant. Despite the diffuse neural 

degeneration reported for Participant 4, functional changes in swallowing were observed in the 

descriptive case study post-treatment. This skill-based dysphagia training which aimed to 

increased cortical connectivity and downflow resulted in significant improvements to the right 

cingulum and two regions of the corpus callosum. These regions are highly connected to the 

cingulate gyrus which has been associated with voluntary swallowing tasks (Martin et al., 

2001), and show increased activation in mildly dysphagic HD patients (Michou et al., 2017). 

In addition, the right cingulum has been identified to strongly relate to cognitive abilities 
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(Bathelt et al., 2019) which may indicate increased cognitive processing and attention during 

motor learning tasks consistent with improved conscious control to adapt the motor response. 

The changes in two of the three regions of the corpus callosum could suggest improved 

interconnections between the two cerebral hemispheres, specifically BA 44 (Broca’s area) 

which is critical for motor planning (Seikel et al., 2020). Although the three quantifiable 

improvements to bilateral white matter integrity in HD indicates the presence of neuroplasticity 

in response to intensive rehabilitation (Soloveva et al., 2018), it is important to recognise that 

16 other regions of interest did not significantly change post-therapy. As reflected in other 

outcome measures, the changes in this small sample are interesting, provide important 

preliminary data to support further research, but do not represent any clear clinical significance 

following this treatment protocol. 

 

Our results may also reflect findings that HD patients with severe dysphagia had cortical 

atrophy in associated deglutitive regions, not regions specifically associated with HD 

pathophysiology (Schumann et al., 2018). Further, other studies have reported quantifiable 

neural changes within the motor cortex in response to swallowing rehabilitation which did not 

translate to observed treatment effects in VFSS measures of swallowing biomechanics (Cabib 

et al., 2020). In HD, the general striatal and cortical damage and deterioration may be well 

established, but the occurrence and severity of dysphagia does not clearly correlate with disease 

severity or other clinical features. Perhaps pre-morbid organisation and tomography, not 

disease stage, influences susceptibility to neuroplasticity through rehabilitation as suggested in 

recovery of swallowing post-stroke (Wilmskoetter et al., 2020). This may explain why some 

participants demonstrated functional improvement whilst others did not, and presents an 

interesting area requiring further research in neurodegenerative populations like HD. 
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9.2.7 Rate of Change 

Guidelines for optimum study design in HD research suggest a treatment effect should be 

considered as percentage reductions (20%) in the mean rate of change compared to healthy 

controls (Frost et al., 2017). Whilst we were unable to compare our results to healthy controls 

due to the adoption of different bolus presentation protocols, it was hypothesised that the 

greatest rate of change would be observed during the treatment phase compared to baseline. 

One parameter of the SWAL-QoL demonstrated significantly higher rate of change during the 

treatment phase. This observation relating to the participants’ perception of having thick or 

excess secretions may indicate generalisation of the daily task to repeatedly complete dry 

swallows during sessions. Highly significant differences in the rate of change for oral transit 

time measured by VFSS contributed to significant differences in total transit time during the 

treatment period. The mean rate of change (18.39%) for oral transit time was higher than the 

maximum variability (12.5%) reported in the test-retest reliability study. As indicated with the 

transit time treatment effects, these data provide preliminary evidence that skill-based 

treatment may alter the timing of swallowing initiation and transit in this group. However, from 

observation of these results in boxplots (Figures 8.4 and 8.5, p.198-201), the means do not 

appear significantly different. These results, therefore, should be interpreted with caution. The 

results and R-coding were re-checked by the statistician familiar with this data set. There are 

no obvious explanations for this, and further replication of this research should investigate this 

anomaly. Additionally, these were the only identified parameters to change, so it is difficult to 

conclude that the treatment has a clinically significant difference in the trajectory of change in 

this neurodegenerative disease.  
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9.2.8 Variability of Outcomes 

An alternative means of analysing the data to investigate any treatment effect was to evaluate 

changes in variability across sessions. Variability in the precision and force of movements has 

been correlated with functional capacity and motor performance suggesting that variability is 

a key feature of the motor deficits in HD (Gordon et al., 2000). Unfortunately, this hypothesis 

was not supported by the data. Variability of UES minimum pressure as measured by LRM 

significantly reduced during the non-treatment baseline period only. Resting pressure of UES 

is highly variable dependent on motor neurone activation from NA, additionally head and neck 

postures can change UES pressures (Massey, 2013). Although significant, this UES variability 

falls within the 95% confidence intervals observed in test-retest estimated change for the same 

measure. This could reflect positioning differences across sessions, the familiarity and relaxed 

approach for the second assessment session; however, no other sensors had significantly 

reduced pressures during this time period. This result was not clinically significant and likely 

reflected natural variability of this measure in this population. Improved or reduced variability 

during the treatment phase may have suggested a more consistent motor program as 

hypothesised from the corticospinal literature. There were no other differences in variability 

across other measures, therefore there was no evidence that this skill-based training protocol 

induced any change in the variability of swallowing biomechanics as measured by several 

swallowing outcomes.  

 

9.3 Limitations and Future Research 

As both studies in this programme of research utilised a wide range of swallowing assessments 

in this heterogeneous population, there are several methodological limitations to acknowledge. 

Firstly, the EAT-10 screening questionnaire was utilised for participant inclusion; subsequent 

concerns have been raised regarding the psychometric properties of this tool (Cordier et al., 
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2017). As this was one of the key identifiers of dysphagia in conjunction with reports from the 

referring professional, this could explain the relatively mild differences in this group’s 

swallowing biomechanics measured by instrumental assessments making functional 

improvement more difficult to measure. As noted by Plowman and colleagues (2019), the 

inclusion of participants with near-normal swallowing safety also limited the ability to measure 

the impact of treatment. Implementation of a higher EAT-10 cut off point may be beneficial in 

future studies to improve sensitivity and specificity, maximise enrolment of participants with 

impaired swallowing and avoid potential ceiling effects (Schlickewei et al., 2020). The SWAL-

QoL results may also be limited by the reliability of patient responses. The observed treatment 

effect may reflect a participation effect consistent with other studies where improvements were 

reported in both treatment and placebo groups (Reyes et al., 2015; Troche et al., 2010). Future 

studies could utilise disease specific screening such as the HD Dysphagia Scale (Heemskerk et 

al., 2014), a self-reported questionnaire to measure the presence and severity of dysphagia to 

identify patients with swallowing dysfunction. In addition, swallowing function quantified and 

compared to normative data during screening with the TWST and TOMASS as part of the 

inclusion criteria could identify and include patients with more severe dysphagia.  

 

Conflicting results have raised questions as to which parameters of swallowing biomechanics 

are more susceptible to change following this treatment. Additionally, these conflicting results 

may highlight shortfalls with the methods selected, with inadequate sensitivity to change or 

elements of systematic measurement error. This issue of inconsistency across swallowing 

outcomes has been highlighted in other areas such as head and neck cancer treatment. Nund 

and colleagues, (2019) suggested that the vast number of methods available to measure 

swallowing results in a lack of consistency in measurement of swallowing outcomes. There is 

a need to develop international consensus for a set of core swallowing outcome measures 
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sensitive enough to capture treatment effects with good reliability and validity (Nund et al., 

2019). 

 

The treatment study compiled group data using two different US systems which varied in terms 

of image quality. The test-retest reliability study only evaluated one of these devices which 

limited transferability between studies. Although previous studies reported technical 

difficulties with the ClariusTM US devices (Hammond, 2019; Winiker, 2019), there were no 

significant technical issues in this study. Difficulties with visualisation of VFSS videos and 

maintaining consistent positioning during data collection was challenging for both the 

participants and the investigators. The use of a radio-opaque coin provided some visual 

indication of involuntary head rotation or tilt out of optimal position in these studies. This could 

reduce the reliability of measurements and increase the possibility of measurement error. 

Future studies may benefit from a three-dimensional radio-opaque ball to improve calibration 

reliability during VFSS data extraction (Kahrilas et al., 1993). As previously mentioned, the 

instrumental measures of swallowing biomechanics included several steps of data acquisition 

and extraction, which provided more opportunity for measurement error and rater error. The 

poor inter-rater reliability of VFSS outcomes may limit the capacity to observe change in this 

cohort. Although both raters followed the identical instructions, there was room for rater/rating 

bias which may not have been present in Leonard and Kendall’s work. Further investigation is 

required to evaluate the sensitivity of alternative methods of VFSS measurement described 

across the literature (Baijens et al., 2013aSteele, 2020 #1104; Kim & McCullough, 2008; 

Leonard & McKenzie, 2006; Logemann et al., 2000; Molfenter & Steele, 2014; Sia et al., 2012) 

in this patient population. In addition, the use of semi-automatic computational software may 

increase reliability of measures (Leonard, 2019a; Schwertner et al., 2016). Further group data 

would be beneficial to fully understand neural changes in response to skill-based swallowing 
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training, as a valuable and interesting adjunct to swallowing outcome measures in a larger 

patient cohort.  

 

This study was limited by the lack of objective classification of participant genotype and 

phenotype. Information such as individual CAG repeat score and symptom trajectory from the 

UHDRS total motor score were unavailable for collection in these studies. This key information 

could be used to quantify disease progression, dependence for ADLs and pathological burden 

using the standardised age-CAG product (Ross et al., 2014), disease burden score (Penney Jr 

et al., 1997) and UHDRS total functional capacity score (Huntington's Study Group; Kremer, 

1996). This information should be included in future studies to allow for more detailed 

interpretation of dysphagic characteristics associated with disease.   

 

It is acknowledged that this study was limited by the small sample size which can restrict the 

overall power of the analysis. This small number could also increase the possibility of Type I 

or Type II errors using multiple statistical tests affecting the interpretation of meaningful 

results. However, this is considered proof of concept research for intervention in this patient 

group and will provide valuable feasibility information and data for power calculation to inform 

subsequent research trials. The feasibility of a treatment study with enough power to detect 

change in HD is challenging (Frost et al., 2017). Difficulties with recruitment of HD 

participants for rehabilitation research has been acknowledged in many studies, where several 

sites and research groups have been utilised for maximum participant inclusion (Busse et al., 

2017). The sample size of 12 in our treatment study is comparable to many rehabilitation 

studies from the HD corticospinal literature (Bohlen et al., 2013; Frese et al., 2017; Quinn et 

al., 2020). Due to the small sample size and heterogeneity of participants, further evaluation of 

these swallowing outcomes measures with specified patient groups at various disease stages 
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would be beneficial. This feasibility study did not include a matched healthy control group; 

however, the selected swallowing measures all have normative data available. HD participants 

included in both studies produced high residual variance for several swallowing outcome 

measures. Interpretation of the reliability of these measures was difficult in a small sample as 

this between-participant variance contributed to the ICC results. The assumptions for statistical 

analyses were not met for some of the reliability measures, therefore results should be 

interpreted with caution. Other studies have highlighted factors such as high variability of data, 

inconsistent patterns of behaviour over time and complexity of the experimental design which 

resulted in less consistent conclusions (Harrington & Velicer, 2015). Overall, future research 

should include participants at various disease stages with brain imaging to understand how 

dysphagia intervention may enhance neural plasticity (Andrews et al., 2015). A matched 

control group would be optimal in the next phase of clinical research to identify any treatment 

effects (Plowman et al., 2019), although the number required may be very difficult to recruit 

in this rare genetic disease. 

 

Perhaps the number of sessions over two weeks was insufficient to elicit significant changes in 

swallowing biomechanics in HD. Other studies have reported significant treatment effects after 

two weeks of skill-based swallowing rehabilitation (Athukorala et al., 2014) and sensorimotor 

rehabilitation in other neurodegenerative diseases (Burciu et al., 2013). In addition less 

intensive systematic rehabilitation protocols have demonstrated beneficial effects, for instance 

three sessions per weeks over nine months (Bartlett et al., 2019; Cruickshank et al., 2015; Reyes 

et al., 2020); however, as this skill-based dysphagia intervention is based in the principles of 

motor learning, the high intensity, repetitive practice is likely to be necessary in order to 

influence neural re-organisation and modulation of swallowing (Kleim & Jones, 2008; 

Krakauer, 2006; Zimmerman et al., 2020). Although the optimal dose of swallowing 
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rehabilitation has yet to be identified across the literature, most MDT programmes 

demonstrating significant changes in functional outcomes in HD involved a minimum of three 

weeks intensive rehabilitation (Ciancarelli et al., 2013; Mirek et al., 2018; Piira et al., 2014; 

Reyes et al., 2015; Zinzi et al., 2007). Future research should aim to replicate this skill-based 

dysphagia rehabilitation with a larger sample size over at least three weeks to investigate any 

treatment effects. It is possible that the optimum dose of treatment in HD is not feasible for 

individuals or fiscally viable for health care systems, therefore post-rehabilitation follow-up is 

required to provide evidence of any maintenance effects. 

 

9.4 Conclusion 

Swallowing dysfunction in neurodegenerative disease contributes to the leading cause of death 

and compensatory approaches such as diet modification and non-oral feeding are frequently 

prescribed despite poor evidence and adherence (Espinosa-Val et al., 2020). Rehabilitative 

approaches for swallowing continue to be a largely unexplored area, particularly in HD. These 

methodological and treatment studies present the first attempt to fill substantial gaps in the 

literature regarding reliable measurement of swallowing characteristics and swallowing 

rehabilitation approaches for individuals with HD. This research has reported the reliability of 

standardised swallowing outcome measures to aid selection and interpretation for future 

intervention studies. Of note, reliability of dynamic swallowing biomechanics was affected by 

the complex, multi-step measurement techniques as well as the highly variable swallowing 

characteristics within and across individuals with HD.  

This exploratory treatment study did not provide evidence that this skill-based training altered 

swallowing biomechanics in HD. It did, however, provide sufficient evidence to support the 

feasibility and acceptability of intensive swallowing rehabilitation using sEMG biofeedback. 

This novel training protocol demonstrated behavioural and self-reported improvements in QoL 
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with no evidence of detrimental effects or functional deterioration. Due to the diverse patient 

cohort, these findings are not clearly generalised to allow clinicians to identify which HD 

patients may benefit from swallowing rehabilitation. Perhaps swallowing biomechanics in HD 

are less amenable to change through rehabilitation. This research, however, provides reason 

enough to further explore treatment approaches with altered protocols and larger groups to 

address the current limitations and allow for generalisation of findings. 

 

These studies lay the foundation for future research investigating swallowing rehabilitation in 

neurodegenerative conditions. Clinicians and researchers are encouraged to use this 

information to objectively measure and monitor dysphagia characteristics in patients with HD. 

Replication of this and other skill-based treatment approaches with a larger sample size will 

further develop our understanding of specific dysphagia characteristics associated with HD 

stages, and investigate the long-term treatment effect of skill-based training on HD dysphagia 

progression.  
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Appendix B – Test-Retest Study Participant Information Sheet and Consent Form 

  

 

 

PARTICIPANT INFORMATION SHEET 

Department of Communication Disorders 

Email: emma.burnip@pg.canterbury.ac.nz 

7th December 2017 

Study title: Reliability of swallowing outcome measures in Huntington's Disease:  

A test-retest pilot study 

Lead investigator: Emma Burnip  Contact phone number: 03 365 2385 

Locality: Canterbury    Ethics Committee ref:  

 

 

You are invited to take part in an assessment study for swallowing difficulties in Huntington’s Disease.  

Whether or not you take part is your choice.  If you don’t want to take part, you don’t have to give a 

reason, and it won’t affect the care you receive.  If you do want to take part now, but change your mind 

later, you can pull out of the study at any time.   

 

This Participant Information Sheet will help you decide if you’d like to take part.  It sets out why we 

are doing the study, what your participation would involve, what the benefits and risks to you might be, 

and what would happen after the study ends.  We will go through this information with you and answer 

any questions you may have.    You do not have to decide today whether or not you will participate in 

this study. Before you decide you may want to talk about the study with other people, such as family, 

whānau, friends, or healthcare providers.  Feel free to do this. 

If you agree to take part in this study, you will be asked to sign the Consent Form on the last page of 

this document.  You will be given a copy of both the Participant Information Sheet and the Consent 

Form to keep. 

 

This document is 6 pages long, including the Consent Form.  Please make sure you have read and 

understood all the pages. 

 

WHAT IS THE PURPOSE OF THE STUDY? 

 

• I am Emma Burnip, a Speech-Language Therapist and PhD student. I am researching the most 

reliable assessments to use with people with Huntington’s Disease (HD).  
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• At the moment, there are no options to treat people with swallowing problems caused by HD. 

We want to find out which are the best assessments to measure swallowing in order to test 

new interventions to help keep swallowing safer for longer. 

• All volunteers will complete three assessment sessions over one week. We will compare 

measures of swallowing between these sessions to see if there are any differences. 

• This will help us to analyse which measurements are most reliable and stable. 

• This study is being funded by the University of Canterbury Rose Centre for Stroke Recovery 

and Research as part of my PhD project. 

 

WHAT WILL MY PARTICIPATION IN THE STUDY INVOLVE? 

• You can join this study if you are 30 years or older and have been diagnosed with Huntington’s 

disease. You must have noticed some changes in how you are swallowing but still be eating 

and drinking.  

• You cannot take part if you have another condition that affects your swallowing, if you are 

pregnant, or if you have had a facial trauma. 

• If you choose to take part in this research, you will complete three assessment sessions over 

one week (Monday / Wednesday / Friday).  

• If you sign the consent form, there will be a short questionnaire about swallowing to ensure 

that you can take part in this study. We will also request general information such as your age, 

weight, height and stage of HD. You will be asked to do a short assessment of thinking skills 

with the researcher, this will be recorded once as part of the general information before we 

start the study. 
 

In assessment sessions you will:  

• Fill in a questionnaire about your swallowing. 

• Eat a cracker and drink some water. 

• Have the muscles under your chin measured with an ultrasound device when you swallow. 

Ultrasound is a safe procedure which uses high frequency sound waves (like those that a bat 

uses to navigate dark caves) to produce an image of your swallowing muscles. 

• Have the pressures in your throat measured when you swallow - a small catheter the size of a 

piece of spaghetti will be inserted into your nose which you will swallow down. 

• Have an x-ray study of your swallowing.  

One part of the assessment session will need to be video-taped. This video will only be used by the 

researcher to analyse your chewing and swallowing. 

 

• All assessment sessions will be carried out at the UC Rose Centre located in at St George’s 

Medical Centre.  
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WHAT ARE THE POSSIBLE BENEFITS AND RISKS OF THIS STUDY? 

• Some of the assessments have low risks that you should be aware of. The researchers with 

you during the study are trained Speech Therapists and are able to manage these risks. 

• There is a slight risk that during assessment you may get food or fluid in your lungs, however, 

the risk here is no more than when you eat and drink at home.  

• The x-ray of your swallowing will involve exposure to radiation. The level of radiation required 

for this assessment is very low (it is about half of the radiation exposure you would have on a 

long haul flight) and is not likely to cause any negative effects. Please inform the researcher if 

you think you may be pregnant, as this radiation exposure is not recommended for the 

developing baby. 

• You may find that placement of the catheter to measure throat pressures is uncomfortable. 

There is a small risk of a nose bleed or fainting during this assessment. We will work with you 

to ensure that you are comfortable during assessments and alter them if needed.  

• We encourage you to involve your family or support network in any/all appointments.  

• These assessments will give us very detailed and helpful measurements of your swallowing.  

 

WHO PAYS FOR THE STUDY? 

• For participating in this research, we will offer you petrol vouchers to cover travel costs (based 

on the IRD Mileage Rate of $0.73 per km).  

• You do not need to pay any other costs to take part in this study. 

• The study is funded by the University of Canterbury Rose Centre for Stroke Recovery and 

Research as part of my PhD project. 

 

WHAT IF SOMETHING GOES WRONG? 

If you were injured in this study, which is unlikely, you would be eligible to apply for compensation 

from ACC just as you would be if you were injured in an accident at work or at home. This does not 

mean that your claim will automatically be accepted. You will have to lodge a claim with ACC, which 

may take some time to assess. If your claim is accepted, you will receive funding to assist in your 

recovery. If you have private health or life insurance, you may wish to check with your insurer that 

taking part in this study won’t affect your cover. 

 

If you have private health or life insurance, you may wish to check with your insurer that taking part 

in this study won’t affect your cover. 

 

WHAT ARE MY RIGHTS? 

• Whether or not you take part is your choice. If you do not want to take part, you do not have 

to give a reason. This will not affect your future care or intervention.  

• You will be told of any new information about adverse or beneficial effects related to the study 

that becomes available during the study that may have an impact on their health. 
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WHAT HAPPENS AFTER THE STUDY OR IF I CHANGE MY MIND? 

• Nothing that could identify you will be stored with your results. All hard-copy data will be kept 

in a locked filing cabinet at the Rose Centre for Stroke Recovery and Research or stored on a 

password protected computer. The only people who will have access to the data are the 

researchers and their supervisor. Data will be kept for 10 years following which time it will be 

destroyed. 

• Results from this project will be included in my PhD thesis and may be published in a peer-

reviewed journal. A thesis is public and will be available through the UC Library, but your 

identity will not be made public.  

• If you do want to take part now, but change your mind later, you can pull out of the study at 

any time.  

• You may ask for your data to be returned to you or destroyed at any time up to the point when 

analysis of raw data begins. 

• Please use the consent form to indicate if you would like to receive a summary of the results. 

Please be aware that there may be a delay between data collection and completing the final 

report in early 2020.  

• If you agree to participate in the study, you are asked to complete the consent form and return 

to the researcher. 

WHO DO I CONTACT FOR MORE INFORMATION OR IF I HAVE CONCERNS? 

If you have any questions, concerns or complaints about the study at any stage, you can contact:  

Name: Emma Burnip, PhD Candidate,  

 Department of Communication Disorders, University of Canterbury 

Telephone number: 03 365 2385 Email: emma.burnip@pg.canterbury.ac.nz 

Name: Professor Maggie-Lee Huckabee, PhD Supervisor,  

Department of Communication Disorders, University of Canterbury  

Telephone number: 03 369 5124 Email:  maggie-lee.huckabee@canterbury.ac.nz.  

If you want to talk to someone who isn’t involved with the study, you can contact an independent health 

and disability advocate on: 

Telephone number: 0800 555 050 

Fax:  0800 2 SUPPORT (0800 2787 7678)  Email:  advocacy@hdc.org.nz 

 

For Maori Heath support please contact : 

Name: Catherine Grant, Administrator for He Kamaka Waiora (Māori Health Team) 

Telephone number: 09 486 8324 ext 2324 Email: catherine.grant@cdhb.health.nz 

 

You can also contact the health and disability ethics committee (HDEC) that approved this study on: 

Phone: 0800 4 ETHICS Email: hdecs@moh.govt.nz  

mailto:emma.burnip@pg.canterbury.ac.nz
mailto:maggie-lee.huckabee@canterbury.ac.nz
mailto:advocacy@hdc.org.nz
mailto:catherine.grant@cdhb.health.nz
mailto:hdecs@moh.govt.nz
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CONSENT FORM 

Department of Communication Disorders 

Telephone: +64 3 364 2307 

Email: emma.burnip@pg.canterbury.ac.nz 

7th December 2017 

Reliability of swallowing outcome measures in Huntington's Disease: 

A test-retest pilot study 

If you need an INTERPRETER, please tell us. 

Please tick to indicate you consent to the following (Add or delete as appropriate) 

 

I have read, or have had read to me in my first language, and I understand 

the Participant Information Sheet.   
Yes  No  

I have been given sufficient time to consider whether or not to participate 

in this study. 
Yes  No  

I have had the opportunity to use a legal representative, whanau/ family 

support or a friend to help me ask questions and understand the study. 
Yes  No  

I am satisfied with the answers I have been given regarding the study and 

I have a copy of this consent form and information sheet. 
Yes  No  

I understand that taking part in this study is voluntary (my choice) and 

that I may withdraw from the study at any time without this affecting my 

medical care. 

Yes  No  

I consent to the research staff collecting and processing my information, 

including information about my health. 
Yes  No  

If I decide to withdraw from the study, I agree that the information 

collected about me up to the point when I withdraw may continue to be 

processed. 

Yes  No  

I consent to my GP or current provider being informed about my 

participation in the study and of any significant abnormal results obtained 

during the study. 

Yes  No  
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I understand that there may be risks associated with the assessment in 

the event of myself or my partner becoming pregnant. I undertake to 

inform my partner of the risks and to take responsibility for the 

prevention of pregnancy. 

Yes  No  

I agree to an approved auditor appointed by the New Zealand Health and 

Disability Ethic Committees, or any relevant regulatory authority or their 

approved representative reviewing my relevant medical records for the 

sole purpose of checking the accuracy of the information recorded for the 

study. 

Yes  No  

I understand that my participation in this study is confidential and that no 

material, which could identify me personally, will be used in any reports 

on this study. 

Yes  No  

I understand the compensation provisions in case of injury during the 

study. 
Yes  No  

I know who to contact if I have any questions about the study in general. Yes  No  

I understand my responsibilities as a study participant. Yes  No  

I wish to receive a summary of the results from the study. Yes  No  

If yes to the above- email: _________________________________________ 

 

Declaration by participant: 

I hereby consent to take part in this study. 

Participant’s name: 

Signature: Date: 

 

Declaration by member of research team: 

I have given a verbal explanation of the research project to the participant, and have answered the 

participant’s questions about it.   

I believe that the participant understands the study and has given informed consent to participate. 

 

Researcher’s name: 

Signature: Date: 
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Appendix C – Treatment Study Participant Information Sheet and Consent Form 

 

  

 

 

 

PARTICIPANT INFORMATION SHEET 

Department of Communication Disorders 

Email: emma.burnip@pg.canterbury.ac.nz 

6th December 2017 

 

Study title: Skill-based swallowing training for patients with Huntington’s Disease 

Lead investigator: Emma Burnip  Contact phone number: 03 369 2385 

Locality: Canterbury    Ethics Committee ref: 17/NTB/214 

 

You are invited to take part in a study on an intervention for swallowing difficulties in 

Huntington’s Disease.  Whether or not you take part is your choice.  If you don’t want to take 

part, you don’t have to give a reason, and it won’t affect the care you receive.  If you do want 

to take part now, but change your mind later, you can pull out of the study at any time.   

 

This Participant Information Sheet will help you decide if you’d like to take part.  It sets out 

why we are doing the study, what your participation would involve, what the benefits and risks 

to you might be, and what would happen after the study ends.  We will go through this 

information with you and answer any questions you may have.    You do not have to decide 

today whether or not you will participate in this study. Before you decide you may want to talk 

about the study with other people, such as family, whānau, friends, or healthcare providers.  

Feel free to do this. 

If you agree to take part in this study, you will be asked to sign the Consent Form on the last 

page of this document.  You will be given a copy of both the Participant Information Sheet and 

the Consent Form to keep. 

 

This document is 6 pages long, including the Consent Form.  Please make sure you have read 

and understood all the pages. 

 

WHAT IS THE PURPOSE OF THE STUDY? 

• I am Emma Burnip, a Speech-Language Therapist and PhD student. With a fellow PhD 

student, Paige Thomas, we are researching a skill-based swallowing therapy.  
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• At the moment, there are no options to treat people with swallowing problems caused 

by HD.  

• We want to find out whether this new intervention can help swallowing and quality of 

life in people with HD. 

• This intervention uses ideas of skill training and biofeedback to see if people with HD 

can control their own swallowing when they can visualise it on a screen.  

• All volunteers will receive the intervention. We will compare measures of swallowing 

before and after therapy to see if there are any changes. 

• This study is being funded by the University of Canterbury Rose Centre for Stroke 

Recovery and Research as part of my PhD project. 

• This study has been approved by Northern B HDEC. 

 

WHAT WILL MY PARTICIPATION IN THE STUDY INVOLVE? 

• You can join this study if you are 30 years or older and have been diagnosed with 

Huntington’s disease. You must have noticed some changes in how you are 

swallowing but still be eating and drinking.  

• You cannot take part if you have another condition that affects your swallowing, if you 

are pregnant, or if you have had a facial trauma. 

• If you choose to take part in this research, you will complete 4 assessment sessions 

and 10 intervention sessions over 6 weeks.  

• If you sign the consent form, there will be a short questionnaire about swallowing to 

ensure that you can take part in this study. We will also request general information 

such as your age, weight, height and stage of HD. You will be asked to do a short 

assessment of thinking skills, this will be recorded once as part of the general 

information before we start the study. 
 

In assessment sessions you will:  

• Fill in a questionnaire about your swallowing. 

• Eat a cracker and drink some water. 

• Have the muscles under your chin measured with an ultrasound device when you 

swallow. Ultrasound is a safe procedure which uses high frequency sound waves (like 

those that a bat uses to navigate dark caves) to produce an image of your swallowing 

muscles. 

If you are able to travel to the clinic you may also: 

• Have the pressures in your throat measured when you swallow - a small catheter the 

size of a piece of spaghetti will be inserted into your nose which you will swallow down. 

• Have an x-ray study of your swallowing.  

One part of the assessment session will need to be video-taped. This video will only be used 

by the researcher to analyse your chewing and swallowing. 

 

In the intervention sessions: 

• A small sticky patch will be placed over the muscles under your chin. This patch will 

be used to measure the activity of your muscles when you swallow. Your swallowing 

muscle activity will be displayed on a computer screen (see image).  
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• There will be a target box on the 

screen, your task will be to 

swallow so that the peak of the 

line lands in this box.  

• Each intervention session will 

last one hour including rest 

periods.  

• Intervention sessions will be five 

days per week for two weeks.  

• If you are in Christchurch and are able to travel, intervention and assessment sessions 

will be carried out at the UC Rose Centre located in at St George’s Medical Centre.  

• If you are not in Christchurch or are unable to travel to the Rose Centre, intervention 

sessions and aspects of the assessment may be completed in your home. 

 

WHAT ARE THE POSSIBLE BENEFITS AND RISKS OF THIS STUDY? 

• There are no known risks of this intervention, but, there are risks that you should be 

aware of in the assessment sessions. The researchers with you during the study are 

trained Speech Therapists and are able to manage these risks. 

• There is a slight risk that during assessment you may get food or fluid in your lungs, 

however, the risk here is no more than when you eat and drink at home.  

• The x-ray of your swallowing will involve exposure to radiation. The level of radiation 

required for this assessment is very low (it is about half of the radiation exposure you 

would have on a long haul flight) and is not likely to cause any negative effects. Please 

inform the researcher if you think you may be pregnant, as this radiation exposure is 

not recommended for the developing baby. 

• You may find that placement of the catheter to measure throat pressures is 

uncomfortable. There is a small risk of a nose bleed or fainting during this assessment. 

We will work with you to ensure that you are comfortable during assessments and alter 

them if needed.  

• We encourage you to involve your family or support network in any/all appointments.  

• These assessments will give us very detailed measurements of your swallowing. This 

means we can detect any changes as a result of the intervention. 

 

WHO PAYS FOR THE STUDY? 

• For participating in this research, we will offer you petrol vouchers to cover travel costs 

(based on the IRD Mileage Rate of $0.73 per km).  

• You do not need to pay any other costs to take part in this study. 

• The study is funded by the University of Canterbury Rose Centre for Stroke Recovery 

and Research as part of my PhD project. We have applied for a project grant from the 

Neurological Foundation of New Zealand. We are expecting to hear the outcome of 

this application in December 2018. 
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WHAT IF SOMETHING GOES WRONG? 

If you were injured in this study, which is unlikely, you would be eligible to apply for 

compensation from ACC just as you would be if you were injured in an accident at work or at 

home. This does not mean that your claim will automatically be accepted. You will have to 

lodge a claim with ACC, which may take some time to assess. If your claim is accepted, you 

will receive funding to assist in your recovery. If you have private health or life insurance, you 

may wish to check with your insurer that taking part in this study won’t affect your cover. 

 

If you have private health or life insurance, you may wish to check with your insurer that 

taking part in this study won’t affect your cover. 

 

WHAT ARE MY RIGHTS? 

• Whether or not you take part is your choice. If you do not want to take part, you do not 

have to give a reason. This will not affect your future care or intervention.  

• You will be told of any new information about adverse or beneficial effects related to 

the study that becomes available during the study that may have an impact on your 

health. 

• If you find the intervention helpful, there may be an option to access the intervention 

at home after the study. This is dependent on the equipment that is available at that 

time. Please talk to the researcher at any time if you would like to discuss this option.  

 

WHAT HAPPENS AFTER THE STUDY OR IF I CHANGE MY MIND? 

• Nothing that could identify you will be stored with your results. All hard-copy data will 

be kept in a locked filing cabinet at the Rose Centre for Stroke Recovery and Research 

or stored on a password protected computer. The only people who will have access to 

the data are the researchers and their supervisor. Data will be kept for 10 years 

following which time it will be destroyed. 

• Results from this project will be included in my PhD thesis and may be published in a 

peer-reviewed journal. A thesis is public and will be available through the UC Library, 

but your identity will not be made public.  

• If you do want to take part now, but change your mind later, you can pull out of the 

study at any time.  

• You may ask for your data to be returned to you or destroyed at any time up to the 

point when analysis of raw data begins. 

• Please use the consent form to indicate if you would like to receive a summary of the 

results. Please be aware that there may be a delay between data collection and 

completing the final report in early 2020.  

• If you agree to participate in the study, you are asked to complete the consent form 

and return to the researcher. 
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WHO DO I CONTACT FOR MORE INFORMATION OR IF I HAVE CONCERNS? 

If you have any questions, concerns or complaints about the study at any stage, you can 

contact:  

 

Name: Emma Burnip, PhD Candidate,  

 Department of Communication Disorders, University of Canterbury 

Telephone number: 03 369 2385 Email: emma.burnip@pg.canterbury.ac.nz 

 

Name: Professor Maggie-Lee Huckabee, PhD Supervisor,  

Department of Communication Disorders, University of Canterbury  

Telephone number: 03 369 5124 Email:  maggie-lee.huckabee@canterbury.ac.nz.  

 

If you want to talk to someone who isn’t involved with the study, you can contact an 

independent health and disability advocate on: 

 

Telephone number: 0800 555 050 

Fax:  0800 2 SUPPORT (0800 2787 7678)  Email:  advocacy@hdc.org.nz 

 

For Maori Heath support please contact : 

Name: Catherine Grant, Administrator for He Kamaka Waiora (Māori Health Team) 

Telephone number: 09 486 8324 ext 2324 Email: catherine.grant@cdhb.health.nz 

 

You can also contact the health and disability ethics committee (HDEC) that approved this 

study on: 

Phone: 0800 4 ETHICS Email: hdecs@moh.govt.nz 

 

 

 

 

 

 

 

mailto:emma.burnip@pg.canterbury.ac.nz
mailto:maggie-lee.huckabee@canterbury.ac.nz
mailto:advocacy@hdc.org.nz
mailto:catherine.grant@cdhb.health.nz
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CONSENT FORM 

Department of Communication Disorders 

Telephone: +64 3 364 2307 

Email: emma.burnip@pg.canterbury.ac.nz 

6th December 2017 

Skill-based swallowing training for patients with Huntington's Disease 

 

If you need an INTERPRETER, please tell us. 

Please tick to indicate you consent to the following (Add or delete as appropriate) 

 

I have read, or have had read to me in my first language, and I understand 

the Participant Information Sheet.   
Yes  No  

I have been given sufficient time to consider whether or not to participate 

in this study. 
Yes  No  

I have had the opportunity to use a legal representative, whanau/ family 

support or a friend to help me ask questions and understand the study. 
Yes  No  

I am satisfied with the answers I have been given regarding the study and 

I have a copy of this consent form and information sheet. 
Yes  No  

I understand that taking part in this study is voluntary (my choice) and 

that I may withdraw from the study at any time without this affecting my 

medical care. 

Yes  No  

I consent to the research staff collecting and processing my information, 

including information about my health. 
Yes  No  

If I decide to withdraw from the study, I agree that the information 

collected about me up to the point when I withdraw may continue to be 

processed. 

Yes  No  

I consent to my GP or current provider being informed about my 

participation in the study and of any significant abnormal results obtained 

during the study. 

Yes  No  
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I understand that there may be risks associated with the assessment in 

the event of myself or my partner becoming pregnant. I undertake to 

inform my partner of the risks and to take responsibility for the 

prevention of pregnancy. 

Yes  No  

I agree to an approved auditor appointed by the New Zealand Health and 

Disability Ethic Committees, or any relevant regulatory authority or their 

approved representative reviewing my relevant medical records for the 

sole purpose of checking the accuracy of the information recorded for the 

study. 

Yes  No  

I understand that my participation in this study is confidential and that no 

material, which could identify me personally, will be used in any reports 

on this study. 

Yes  No  

I understand the compensation provisions in case of injury during the 

study. 
Yes  No  

I know who to contact if I have any questions about the study in general. Yes  No  

I understand my responsibilities as a study participant. Yes  No  

I wish to receive a summary of the results from the study. Yes  No  

If yes to the above- email: _________________________________________ 

 

Declaration by participant: 

I hereby consent to take part in this study. 

Participant’s name: 

Signature: Date: 

 

Declaration by member of research team: 

I have given a verbal explanation of the research project to the participant, and have answered the 

participant’s questions about it.   

I believe that the participant understands the study and has given informed consent to participate. 

 

Researcher’s name: 

Signature: Date: 
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Appendix D – Capacity to Consent Form for Test-Retest and Treatment Studies 

 

 

Swallowing Rehabilitation Clinics 

 

Capacity to Consent Form  Date: 
 
PATIENT DETAILS: 

Surname:     First Names: 

Date of Birth:     NHI number: 

Contact Phone:    Sex: M / F 

Address: 

GP DETAILS: 

Name:      Contact Phone: 

Address: 

 

Information requested: 

 
Please provide an indication as to whether the above patient has the capacity to provide 
informed consent for a research study. 
 
Requirements:  

- To be able to read and understand the information sheet and consent form.  
- To be able to answer questions about their swallowing and general health.  
- To be able to understand and follow instructions about swallowing tasks as part of 

assessment and training. 
 
Please tick the appropriate option below: 
 

In my opinion, the above patient DOES have capacity to provide informed consent 
 
In my opinion, the above patient DOES NOT have capacity to provide informed consent 
 

Signature: 
 
Name :  
 
Position: 
 
Contact Number: 
 
Date: 
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Appendix E – Treatment Study Descriptives: Mean and Standard Deviation of Results 

Figure E.1  

Bar Graph Representing the Means and Standard Deviation (SD) of Swallowing 

Quality of Life (SWAL-QoL) Questionnaire Descriptive Data  

 

Table E.1  

Means and SD of the Timed Water Swallowing Test (TWST) and Timed Test of 

Masticating and Swallowing Solids (TOMASS) 

Assessment Outcome 

Measure 

Mean (+/- 1SD) 

Ax 1                   Ax 2                   Ax 3                 Ax 4 

TWST Capacity (mls) 8.55 (8.5) 8.66 (8.7) 7.18 (6.77) 8.41 (8.96) 

Volume (mls) 16.9 (11.9) 17 (11.8) 14.2 (7.36) 14.7 (9.03) 

Time (s) 2.81 (1.38) 2.91 (1.41) 3.01 (1.68) 2.82 (1.68) 

TOMASS Number of bites 3.09 (1.22) 3.27 (1.95) 3.45 (2.81) 3.18 (2.6) 

Number of 

masticatory 

cycles 

48.7 (22.4) 51.2 (30.3) 52.8 (31.6) 47.2 (28.0) 

Number of 

swallows 

 

2.36 (1.36) 2.09 (1.04) 2.64 (1.03) 2.64 (0.67) 

Time taken (s) 73.3 (21.7) 79.7 (34.6) 82.4 (39.6) 67.4 (36.3) 
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Table E.2  

Mean and SD of US Measurement of Hyoid Excursion (Percentage Change)  

Hyoid Excursion 

(% change) 

Mean (+/- 1SD) 

Assessment 1    Assessment 2    Assessment 3   Assessment 4 

Dry 20.6 (9.39) 24.0 (8.59) 21.5 (8.03) 23.0 (8.55) 

Liquid 25.7 (8.64) 24.1 (6.92) 23.7 (8.48) 23.6 (7.99) 

Puree 26.5 (9.57) 25.6 (7.43) 23.0 (8.33) 24.1 (9.13) 

 

Figure E.2  

Mean and SD of US Measurements of the Cross-sectional Area of the Submental 

Muscles: Geniohyoid, Left Anterior Belly of the Digastric (LAB) and Right Anterior 

Belly of the Digastric (RAB). 
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Figure E.3 

Mean and SD of VFSS Measurement of Oral Transit Time  

 

 

Figure E.4 

Mean and SD of VFSS Measurement of Pharyngeal Transit Time  
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Figure E.5 

Mean and SD of VFSS Measurement of Total Transit Time  

 

 

 

Figure E.6 

Mean and SD of VFSS Measurement of Timing of Supraglottic Closure  
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Figure E.7 

Mean and SD of VFSS Measurement of Duration of Aryepiglottic Closure 

 

 

 

Figure E.8 

Mean and SD of VFSS Measurement of Duration of UES Opening  
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Table E.3   

Mean and SD of VFSS Measurement of Hyoid Excursion (mm) 

Hyoid excursion 

(mm) 

Mean (+/- 1SD) 

Assessment 1    Assessment 2    Assessment 3   Assessment 4 

Dry 21.9 (8.44) 18.0 (7.34) 18.5 (7.33) 18.8 (6.62) 

Liquid 22.2 (6.69) 21.7 (7.62) 23.8 (8.89) 23.9 (7.00) 

Puree 24.1 (6.91) 22.8 (6.26) 21.3 (8.00) 23.5 (8.60) 

 

 

Table E.4  

Mean and SD of VFSS Displacement Measurements: UES Distension (mm) and 

Pharyngeal Constriction Ratio 

UES Distension 

(mm) 

Mean (+/- 1SD) 

Assessment 1    Assessment 2    Assessment 3   Assessment 4 

Liquid 6.04 (1.26) 6.68 (1.42) 6.72 (2.02) 6.07 (1.37) 

Puree 6.96 (1.23) 6.95 (1.47) 6.35 (1.26) 7.01 (1.52) 

Pharyngeal Constriction Ratio 

Liquid 0.079 (0.07) 0.057 (0.08) 0.076 (0.07) 0.058 (0.06) 

Puree 0.072 (0.09) 0.100 (0.08) 0.105 (0.09) 0.074 (0.07) 
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Figure E.9  

Mean and SD of Manometric Distal Pharyngeal Pressures (mmHg) at  

Sensor 1  

 

 

Figure E.10  

Mean and SD of Manometric Proximal Pharyngeal Pressures (mmHg) at 

Sensor 2 
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Table E.5  

Low Resolution Manometry Descriptive Data 

 

Peak to peak 

timing (seconds) 

Mean (+/- 1SD) 

Assessment 1    Assessment 2    Assessment 3   Assessment 4 

Dry 0.17 (0.05) 0.14 (0.12) 0.15 (0.07) 0.12 (0.12) 

Liquid 0.15 (0.06) 0.16 (0.07) 0.20 (0.10) 0.17 (0.17) 

Puree 0.12 (0.07) 0.16 (0.10) 0.21 (0.05) 0.15 (0.15) 

Sensor 3 minimum pressure (mmHg) 

Dry -6.26 (7.89) -13.6 (6.3) -11.9 (5.07) -14.7 (9.75) 

Liquid -9.34 (8.03) -12.7 (5.21) -11.7 (6.56) -11.7 (11.3) 

Puree -12.3 (7.72) -13.5 (7.72) -11.1 (8.01) -12.1 (8.15) 

UES Duration open (seconds) 

Dry 0.78 (0.19) 0.76 (0.18) 0.79 (0.14) 0.73 (0.19) 

Liquid 0.83 (0.20) 0.94 (0.28) 0.91 (0.25) 0.75 (0.16) 

Puree 0.84 (0.13) 0.96 (0.26) 0.86 (0.23) 0.73 (0.19) 

 

Note. Mean and SD of manometric timing measures (s) and minimal pressure (mmHg) at 

Sensor 3 representing UES relaxation. 
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Appendix F – Treatment Study Summary of Effect Sizes 

 
Table F.1  

 

Summary of Effect Sizes for Significant Results Pre-therapy (Assessment 2) to Post-

therapy (Assessment 3) 

 
Outcome measure Pre-therapy (Ax 2) 

Mean (SD) 

Post-therapy (Ax 3) 

Mean (SD) 

Cohen’s d # 

SWAL-QoL 

(Pharyngeal) 

53 (18.9) 60 (18.4) 0.36 

SWAL-QoL 

(Secretion) 

53.1 (27.2) 66.2 (21.3) 0.51* 

SWAL-QoL (Total) 58.2 (21.3) 64.3 (18.7) 0.29 

VFSS Total Transit 

Time (Liquid 

bolus) (s) 

0.698 (0.129) 0.801 (0.189) 0.62* 

VFSS UES 

Distension (Puree 

bolus) (mm) 

6.95 (1.47) 6.35 (1.26) 0.43 

 

Note. For data with significant treatment effect (p < 0.05) Cohen’s d was used to 

calculate the effect size of therapy. Cohen’s d was calculated using the difference in 

means between pre- to post-therapy, divided by the pooled SD of the means across both 

assessments. # Cohen’s d corrected with hedge’s g for small sample sizes (Lakens, 

2013): negligible effect if d < 0.2, small effect if 0.2 ≤ d < 0.5, medium effect if 0.5 

≤ d < 0.8, and large effect if d ≥ 0.8. *Total transit time and Secretion had moderate 

effect sizes. These results are included in the Appendix as this analysis was not 

identified a priori and was completed post hoc to further interpret the treatment study 

results. 

 


