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Abstract. These lecture notes review the theoretical problems associated with coarse-graining the
observed inhomogeneous structure of the universe at late epochs, of describing average cosmic
evolution in the presence of growing inhomogeneity, and of relating average quantities to physical
observables. In particular, a detailed discussion of the timescape scenario is presented. In this
scenario, dark energy is realized as a misidentification of gravitational energy gradients which
result from gradients in the kinetic energy of expansion of space, in the presence of density
and spatial curvature gradients that grow large with the growth of structure. The phenomenology
and observational tests of the timescape model are discussed in detail, with updated constraints
from Planck satellite data. In addition, recent results on the variation of the Hubble expansion on
<∼ 100h−1Mpc scales are discussed. The spherically averaged Hubble law is significantly more
uniform in the rest frame of the Local Group of galaxies than in the conventional rest frame assumed
for the Cosmic Microwave Background. This unexpected result supports a fundamental revision of
the notion of the cosmic rest frame, consistent with the expectations of the timescape scenario.
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1. INTRODUCTION

Present cosmological observations point to the need for a revolution in our physical
understanding. On one hand we have a very successful phenomenological description
of the universe based on the spatially homogeneous and isotropic Friedmann–Lemaître–
Robertson–Walker (FLRW) geometry. However, this success comes at the price of the
introduction of forms of mass–energy that have never been directly observed, and which
constitute most of the stuff in the Universe: 27% in the form of clumped nonbaryonic
dark matter, and 68% in the form of a smooth dark energy [1]. Unknowns of this
magnitude demand that we carefully re-examine the assumptions of our physical models
of the universe, and that we pay careful attention to all observations.

The universe was certainly homogeneous to a high degree at the epoch of last scatter-
ing, when the cosmic microwave background (CMB) radiation was laid down. However,
at the present epoch the matter distribution displays a complex hierarchical structure
with significant inhomogeneities up to scales of at least100h−1Mpc, whereh is the di-
mensionless parameter related to the Hubble constant byH0 = 100hkms−1 Mpc−1. The
present universe is dominated in volume by voids, with some 40% of the volume in voids
of a characteristic diameter∼30h−1Mpc [2]–[4] and populations of smaller minivoids
[5]. Galaxy clusters are grouped in sheets that surround thevoids, and filaments thread
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them, in a complex cosmic web [6].
A cosmological constant,Λ, as a source of dark energy might in itself not pose

a great theoretical puzzle, were it not for thecosmic coincidence problem: why is
the value ofΛ such that the universe decelerates for much of its history and only
begins to accelerate relatively recently? In addition, there is another cosmic coincidence,
which some cosmologists view as a smoking gun: the onset of cosmic acceleration also
coincides with the epoch in which the large nonlinear structures of the cosmic web begin
to dominate, as the map of the time history of universe [7] clearly reveals.

The possibility that the phenomenon of dark energy is actually accounting for the
average effects of inhomogeneous structures on the expansion history of the universe
has led to an upsurge of interest in the averaging problem in cosmology. This is a
foundational question since the physical ingredients of Einstein’s theory have never
been precisely specified on all scales. There are many unsolved problems relating to
the coarse-graining, fitting, and averaging of geometry. Inthese lectures I will discuss
these issues, with an emphasis on the timescape cosmology, which does at least provide a
phenomenologically viable alternative to the standard model. In the timescape scenario,
I have attempted to address the key issue of gravitational energy which I believe is
intimately related to solving the riddle of “dark energy”. It is my hope that if we pay
close attention to observations, and think more deeply about fundamental concepts in
light of new observations, that we might develop better statistical notions of gravitational
energy and entropy, which may be important not only for cosmology at large but also
for the foundations of gravitational physics.

2. THE FITTING PROBLEM: WHAT IS DUST?

2.1. On what scale are Einstein’s equations valid?

In the standard FLRW cosmology, fundamental observers are defined to be “comoving
with the dust” in geometries that are solutions to Einstein equations with a dust or perfect
fluid source. This poses two problems. Firstly, it involves an extrapolation of Einstein’s
field equations

Gµ
ν =

8πG

c4
T µ

ν (1)

far beyond the scales on which they have been tested. Generalrelativity is only well
tested for isolated systems – such as the solar system or binary pulsars – for which
T µ

ν = 0.
Secondly, the notion of what a “dust particle” is in cosmology is not rigorously de-

fined. The scale over which matter fields are coarse-grained to produce the energy–
momentum tensor on the r.h.s. of (1) is not prescribed, leaving an inherent ambiguity.
Traditionally, galaxies have been thought of as particles of dust. However, our obser-
vations show that galaxies themselves are not homogeneously distributed. The largest
typical nonlinear structures are voids of diameter30h−1Mpc [2]–[4], so that we must
coarse grain on scales at least a few times larger to obtain a notion of statistical ho-
mogeneity. This process of coarse-graining involves unexplored statistical aspects of
general relativity, which have barely been studied.
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There is no ambiguity in applying Einstein’s equations (1) to a fluid of particles with
well-defined properties, such as ions, atoms and molecules in the early phases of the
universe’s expansion. However, as soon as gravitational collapse occurs then particle
geodesics cross. Phase transitions occur, so the definitionof the particles in the fluid
approximation must change, giving rise to the following hierarchy of coarse-grained
‘particles’ in the epochs following last scattering:

1. Atomic, molecular, ionic or nuclear particles: applicable with
• dust equation of state within any expanding regions which have not yet under-

gone gravitational collapse;
• fluid equation of state within relevant collapsed objects (stars, white dwarfs,

neutron stars) for periods of time between phase transitions that alter the non-
gravitational particle interactions and the equation of state;

2. Collapsed objects such as stars and black holes coarse-grained as isolated objects;
3. Stellar systems coarse-grained as dust particles withingalaxies;
4. Galaxies coarse-grained as dust particles within clusters;
5. Clusters of galaxies coarse-grained as bound systems within expanding filaments

and walls;
6. Voids, walls and filaments combined as expanding regions of different densities in

a single smoothed out cosmological fluid.

2.2. Coarse–graining

Any coarse-graining procedure amounts to replacing the microphysics of a given
spacetime region by some collective degrees of freedom of those regions which are
sufficient to describe physics on scales larger than the coarse-graining scale. Einstein’s
equations were originally formulated with the intent that the energy-momentum tensor
on the r.h.s. of (1) should either describe fundamental fields, such as the Maxwell field, or
alternatively to the coarse-graining of the purely nongravitational interactions described
by such fields in the fluid approximation.

Up to step 3 in the hierarchy, there are no real problems of principle with coarse-
graining since we are coarse-graining only over matter degrees of freedom which appear
exclusively in the energy-momentum tensor. In 1917 when Einstein first applied general
relativity to cosmology [8], this was sufficient since it hadyet to be established that
nebulae were distant galaxies, and the prevailing view was that the density of the
universe was the density of the Milky Way. Decades later Einstein did consider the
fitting problem, when he built the Swiss cheese model in collaboration with Straus
[9]. However, this is a simple model which treats inhomogeneities as Schwarzschild
solutions placed in holes in a homogeneous isotropic FLRW background. It deals with an
idealized situation which is far simpler than the actual cosmic web, which astronomers
really only began to uncover in the 1980s.

The fundamental problem then, is that since the universe is composed of a hierarchy
of long-lived structures much larger than those of stars, wemust also coarse-grain over
the gravitational interactions within that hierarchy to arrive at a fluid description for
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cosmology. With such a coarse-graining, geometry no longerenters purely on the left
hand side of Einstein’s equations but in a coarse-grained sense can be hidden inside
effective fluid elements of a smoothed out energy-momentum tensor on the right hand
side of (1). We have a complex hierarchical fitting problem [10, 11] that must be solved
to relate the average geometry of the universe to the local geometry to which our clocks
and rulers are calibrated.

The fundamental quantities of interest as the sources of theright hand side of Ein-
stein’s equations are those of mass–energy, momentum and angular momentum. Effec-
tively, if we demand that equations (1) should also apply in acoarse-grained version on
cosmological scales, then it means that we are seeking collective mass–energy parame-
ters which average over the rotational kinetic energies of galaxies, binding energies of
galaxies and clusters, kinetic energies of galaxies in virialized clusters, regional spatial
curvature etc. Furthermore we must approach the problem more than just once, on a suc-
cession of scales. This necessarily involves the issue of quasilocal gravitational energy,
and more particularly statistical properties of the gravitational interactions of bound sys-
tems.

Since we are no longer dealing with a fixed spatial metric thisproblem is far more
complicated than any equivalent problem in Newtonian theory, and indeed it is largely
unexplored territory. The physical degrees of freedom which we must coarse grain
are contained in the curvature tensor and the sources of the field equations (1). In
principle coarse-graining the curvature tensor might involve steps other than simply
coarse-graining of the metric. However, if a metric description of gravity is assumed
at each level, then schematically the hierarchy of coarse-graining might be heuristically
described as

gstellar
µν → ggalaxy

µν → gcluster
µν → gwall

µν
...

gvoid
µν















→ guniverse
µν (2)

where the ellipsis denotes the fact that the metric of more than one type of wall or void
might possibly be relevant. In this scheme the lowest members are assumed to be well
modeled by exact solutions of Einstein’s field equations:gstellar

µν being a solution to the
vacuum field equations with a star or black hole source (givenby the Schwarzschild or
Kerr solution), andgvoid

µν being that of a region filled with low density ionic dust with
whatever symmetries are relevant.

Within the hierarchy (2) there are (at least) three steps that involve the coarse-graining
of gravitational degrees of freedom, which might be summarized as

• Galactic dynamics: gstellar
µν → ggalaxy

µν ;

• Cluster dynamics: ggalaxy
µν → gcluster

µν ;

• Cosmological dynamics: gcluster
µν →

{

gwall
µν ⊕·· ·⊕gvoid

µν

}

→ guniverse
µν .

The gravitational degrees of freedom that are coarse-grained in galactic and cluster
dynamics involve the gravitational binding energies of bound systems of different scales.
By contrast cosmological dynamics deals with the coarse-graining of expanding regions
of different densities, i.e., with the coarse-graining of the kinetic energy of expansion of
space.
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In the Newtonian cosmology [12] for particles of massm with positionsri = a(t)xi,
(xi =const), relative to an arbitrary centre, the Friedmann equation

ȧ2

a2
+

kc2

a2
=

8πGρ

3
(3)

is obtained from the Newtonian energy equation,T −U = −V , whereT = 1
2
mȧ2x2 is

the kinetic energy per particle,V = −4
3
πGρa2x2m is the potential energy per particle

andU = −1
2
kmc2x2 is the total energy per particle, wherek is a constant. Eq. (3), the

Hamiltonian constraint of the full Einstein equations for the standard cosmology, is thus
recognized to contain terms related to gravitational potential and binding energy,V , and
the kinetic energy of expansion,T , in the Newtonian limit.

As long as the universe is perfectly homogeneous then these quantities are the same
for all observers. However, once there is inhomogeneity, and in particular once there
are gradients in spatial curvature, then these concepts become entangled. On account of
the strong equivalence principle, spatial curvature cannot be defined at a point, and any
definition necessarily involves a regionalquasilocaldefinition. Gravitational binding
energy and the kinetic energy of expansion are thus quasilocal concepts tied to gradients
in spatial curvature.

2.3. Coarse–graining of bound systems

A statistical description of cosmological relativity involves both gravitational binding
energy and the kinetic energy of expansion. It happens that the coarse-graining of these
respective gravitational degrees of freedom relates to thescales at which the phenomena
of dark matter and dark energy are respectively observed. Itis therefore possible that
both phenomena are related to different aspects of the same problem, namely that the
standard model incorporates a rigidity of spatial curvature which is not demanded by
full general relativity.

Since the coarse-graining of gravitational binding energyand the kinetic energy of
expansion involve different physical questions, it may be prudent to investigate just one
problem at a time. The timescape scenario [13]–[16] has beendeveloped to deal with
the problem of the kinetic energy of expansion only: in the approach taken thus far all
coarse-grained regions are expanding ones. We will see in Sec. 5 that agreement with
observation is obtained only by incorporating a fraction ofnonbaryonic dark matter.
However, we must remain open-minded as to whether the parameter found corresponds
to actual new particles as in the standardΛ Cold Dark Matter (ΛCDM) model, or
whether is a simply a phenomenological parameter that accounts for the coarse-graining
of binding energy that we have not yet examined.

A piece of evidence in support of an alternative to conventional CDM is the remark-
able phenomenological success of Modified Newtonian Dynamics (MOND) [17, 18] at
the level of galactic dynamics. This empirical model works well at galactic levels, but
fails at the cluster level. While galactic and cluster dynamics both involve binding en-
ergy, the kinetic energy degrees of freedom of the two situations are different. Galactic
dynamics typically involves stars in rotationally supported structures, whereas cluster
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dynamics involves the less coherent motions of galaxies which move in the combined
potential but also interact with each other in random pairwise encounters. Whereas the
diameters of stars are very small (< 10−5 %) compared to their interparticle separations
in galaxies, the typical size of a galaxy is a more sizable fraction (0.5–15%) of typical
intergalactic distances in a virialized cluster.

Newtonian dynamics is used almost exclusively in the treatment of both galaxy
and cluster dynamics. The rationale for this is that fields are weak. However, even if
spacetime is close to a Minkowski background, an important question remains:which
Minkowski background? There is no global Minkowski background in the universe, and
even if space is close to Minkowski for small time intervals on a spatial 2-sphere encom-
passing a galaxy or galaxy cluster, then the question remains: how do we calibrate the
rulers and clocks on that 2-sphere relative to another similar 2-sphere elsewhere? Grav-
itational lensing calculations make use of a formula derived for the ideal Schwarzschild
geometry of an isolated point mass, which has an exact timelike Killing vector. Are
there pitfalls in applying such notions of mass to circumstances in which there are no
pure timelike Killing vectors, and no truly isolated masses? To my knowledge, these
questions have not been rigorously posed in general relativity, let alone answered.

Some attempts have been made to understand galaxy rotation curves with exact
dust solutions [19]–[21]. However, the applicability of these solutions as alternatives to
galactic dark matter has been debated [20, 22]. Furthermore, while new exact solutions
to Einstein’s equations may offer new insights into the possibilities offered by general
relativity, they do not directly address the problems posedby coarse-graining. They
are also limited by the additional restrictions that must beapplied to reduce Einstein’s
equations to a soluble form. For example, although galaxy clusters are often spherical
in shape the spherically symmetric dust Lemaître–Tolman–Bondi (LTB) solutions [23]–
[25] cannot be applied2 to virialized clusters, since galaxies in clusters do not collapse
inwards in coherent spherical shells. Even if the motion of individual galaxies is close
to radial, the phases of the galaxies relative to passage through the centre of the cluster
are completely uncorrelated. Individual galaxies will pass close to the core of the cluster
and emerge from the other side; but at any instant the number of galaxies moving out
from the centre might be comparable to the number falling in.

In my view the problems of coarse-graining of galaxies and clusters are difficult.
However, in view of the phenomenological successes of MOND at the galactic scale
[17, 18] we should be open to the possibility that simplifying principles remain to be
discovered.

2.4. Coarse–graining the cosmological fluid

The final step of coarse-graining involves qualitatively new fundamental questions. If
we require a single model to describe the evolution of the universe from last scattering
to the present day, then we must coarse grain on scales over which the notion of a

2 By contrast LTB models are clearly applicable to individualexpanding spherical voids [26] with ionic
or molecular sized dust.
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dust ‘particle’ has a meaning from last scattering up to the present. The description
of a galaxy composed of stars, or of a virialized galaxy cluster composed of galaxies
is only valid for those epochs after which the relevant ‘particles’ have formed and
are themselves relatively unchanging. Over cosmological timescales we do not have
well-defined invariant dust particles. The nature of galaxies and galaxy clusters changes
through growth by accretion of gas and by mergers.

To get around the problem of ill-defined particle-like building blocks, an appropriate
strategy is to coarse-grain the ‘dust’ on scales large enough that theaverageflow of mass
from one cell to another is negligible up to the present epoch. Although galaxy clusters
vary greatly in size and complexity, there are no common virialized structures larger than
clusters. Thus coarse-graining on scales larger than clusters necessarily means dealing
with fundamental objects that are themselvesexpanding, i.e., with entities that resemble
fluid elementsin hydrodynamics rather than point particles.

Another qualitative difference from the case of bound systems is that we have to deal
with expanding fluid elements that have vastly different densities at the present epoch,
and which evolve more or less independently. Although we canreceive signals from
anywhere within our particle horizon, the energy we receivein electromagnetic and
gravitational waves, or indeed in cosmic ray particles fromdistant galaxies, is negligible
in comparison with the rest-energy of the local density field. The region which has
contributed matter particles to define the local geometry ofour own galaxy is actually
very small. This bounding sphere, which Ellis and Stoeger [27] call thematter horizon,
is estimated by them to be of order2Mpc for the Milky Way using assumptions about
the growth of perturbations from the standard cosmology. This scale also coincides
roughly with the scale at which the Hubble flow is believed to begin in the immediate
neighbourhood of the Local Group of galaxies. It is one way ofrealizing the concept
of finite infinity, introduced qualitatively by Ellis in his first discussion of the fitting
problem [10].

For galaxy clusters some sort of finite infinity notion – whichwe will better define in
Sec. 5 – with a variable scale of order2–10Mpc depending on the size of cluster might
be useful for defining the minimum smoothing scale containing bound structures. By
combining such regions we arrive at the walls and filaments that contain most of the
mass of the universe. However, to this we must also add the voids which dominate the
volume of the universe at the present epoch. These are the regions in which structures
have never formed, and which still contain the same ionic, atomic and molecular dust
content that has existed since very early epochs, only greatly diluted by expansion.

If we set aside a few peculiar large wall structures [28], then the largesttypical
nonlinear structures are voids. Surveys indicate that voids with characteristic mean
effective radii3 of order (15± 3)h−1Mpc (or diameters of order30h−1Mpc), and a
typical density contrast ofδρ/ρ = −0.94± 0.02, make up 40% of the volume of the
nearby universe [2, 3]. A recent study [4] of the Sloan Digital Sky Survey Data Release
7 finds a median effective void radius of17h−1Mpc, with voids of effective radii in

3 Voids display a degree of ellipticity. Themean effective radiusof a void is that of a sphere with the same
volume as occupied by the void [2]–[4], which is typically larger than the maximal sphere enclosed by the
same void.
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the range10h−1Mpc to 30h−1Mpc occupying 62% of the survey volume. In addition
to these there are numerous smaller minivoids [5], which combined with the dominant
voids ensure that voids dominate the present epoch universeby volume.

2.4.1. Coarse-graining at the statistical homogeneity scale

Any minimal scale for the cosmological coarse-graining of the final smoothed density
distribution has to be substantially larger than the diameter of the largest typical struc-
tures. Void statistics [4] indicate an effective cutoff of60h−1Mpc for the largest mean
effective diameters of voids, i.e., twice the scale of the typical dominant void diameters.
Thus observationally, the relevant scale for coarse-graining appears to be of order two to
three times the dominant void diameter, e.g., of order100h−1Mpc. Although the scale of
transition to statistical homogeneity is debated [29, 30] recent results from the WiggleZ
survey suggest that the transition occurs in the range4 70h−1–100h−1Mpc [31].

A statistical homogeneity scale of∼100h−1Mpc also coincides roughly with the
Baryon Acoustic Oscillation (BAO) scale [32, 33],DBAO. Physically there is a good
reason for this coincidence. The BAO scale is that of the largest acoustic wave in the
plasma at last scattering. For scales larger than this the spectrum of initial density per-
turbations is roughly scale invariant with a density contrast δρB/ρB ∼10−5 in baryons,
andδρC/ρC ∼10−4 in cold dark matter. Below the BAO scale initial density contrasts
may be amplified by acoustic waves in the plasma, so the amplitude of initial density
contrasts is somewhat larger, particularly at the scales associated with the higher order
odd acoustic peaks. The BAO scale therefore provides a demarcation between the linear
and nonlinear regimes of the subsequent growth of structure.

At first, it might seem contradictory that the amplification of the primordial density
perturbations corresponding to the first acoustic peak should give a small enhancement
which in the standardΛCDM model can treated in the linear regime of perturbation the-
ory with good observational agreement, whereas higher order peaks give enhancements
which give rise to a nonlinear regime. However, it must also be remembered that pertur-
bations are nested, so that in some cases we get amplifications on top of amplifications.
Characteristic features will arise from the fact that at last scattering the odd acoustic
peaks corresponds to compression in gravitational potential wells and rarefaction in po-
tential peaks, whereas the even acoustic peaks correspond to rarefaction in potential
wells and compression in potential peaks. The odd peaks willthus produce increasing
amplifications of structure, while even peaks will somewhatundo the amplifications (but
not completely on account of baryon drag).

The fact that the diameter of the dominant voids atDvoid∼30h−1Mpc [2]–[4] is close
to one third ofDBAO is seen to be a consequence of these structures growing from the
additional amplification provided by the third acoustic peak5. Since voids are regions

4 This range represents the range of bias-corrected values listed for various redshift ranges in Table 4 of
ref. [31]. These estimates assume aΛCDM model and use data in the redshift range0.1 < z < 0.9.
5 This corrects statements made in Sec. V of ref. [15], where onaccount of a confusion about the role of
the odd and even acoustic peaks it was incorrectly suggestedthe second peak should provide a relevant
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which appear to expand at faster rates6 than walls, with density contrasts growing to
δρ/ρ→−1 at late times, the exact ratios of scales of the acoustic peaks at last scattering
are not preserved in the nonlinear regime today. In fact, a precise measurement of the
difference between the ratioDvoid/DBAO and 1/3 would provide useful constraints
on the variation of the Hubble parameter in the nonlinear regime. Since voids are the
dominant nonlinear structures in the cosmic web, the beginning of an emergence of a
notion of homogeneity at scales∼70h−1Mpc [31] may be related cutoff in the statistics
of void diameters at60h−1Mpc found by Panet al. [4], rather than a scale related to the
second acoustic peak. Since the even acoustic peaks represent deamplified initial density
contrasts, they are unlikely to have very clear-cut signatures in cosmic structure.

2.4.2. Variations on scales larger than the statistical homogeneity scale

In the standard cosmology it is often assumed that as the domainD of a spatial average
is made larger and larger at the present epoch, the density contrast〈δρ/ρ〉

D
will diminish

to small values which match those at the last scattering epoch. However, this assumes
constraints on the notion of statistical homogeneity over and above7 those required for
a universe that has evolved from an initial density perturbation spectrum that was close
to scale-invariant, as is consistent with the observed CMB anisotropies and primordial
inflation. Given initial nested density fluctuations on arbitrarily large spatial scales, then
if any arbitrarily large domainD evolves independently by close to FLRW evolution,
its density at the present epoch will always have evolved from a perturbation that was
within the initial spectrum, but not necessarily exactly the mean.

We can therefore crudely estimate the standard deviation ofthe density of cells on
scales larger than100h−1Mpc by assuming that each cell evolves as an independent
Friedman universe from a smooth perturbation at the epoch oflast scattering. (This
assumes that the backreaction contributions to be discussed in Sec. 3 do not dominate
the volume–average evolution.) Using the Friedmann equation with pressureless dust
only, for which

a2
0
H2

0
(ΩM0−1) = a2(t)H2(t)[ΩM (t)−1],

we obtain a present epoch density contrast

δρ0 ≃
(

H

H0

)2
δρt

(1+ z)2
. (4)

scale to voids and the third peak to clusters of galaxies. Thescale of rich clusters of galaxies is more likely
to result from the nonlinear evolution of the fifth peak amplification.
6 Here we refer to the rate as measured by any one observer. Calibrating the expansion rate with different
canonical clocks is an essential ingredient of the timescape cosmology which we will return to in Sec. 5
7 In particular, perturbations on different scales would need to compensate each other in such a way as to
maintain a homogeneous isotropic universe which is at present within 1% of being spatially flat overall.
In the standard model with FLRW evolution this is required tofit the overall angular scale of the acoustic
peaks in the CMB. We will see in Sec. 6.2 that in the timescape model the acoustic scale can be fit without
such a restriction on spatial curvature.
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Here the density contrast is relative to the critical density, so thatδρt = ΩM(t)− 1
etc, whereΩM is a density parameter for the isolated region only. Thus if we take
δρt ≃ 10−4 at last scattering (for a CDM density contrast), whenz ≃ 1090 and when
evolution is roughly matter-dominated withH ≃ 2/(3t) andt ≃ 380,000yr, we are led
to δρ0 ≃ 0.025/h2 ≃ 0.06 if h ≃ 0.65.

This crude estimate can be compared to the actual density variance determined from
large scale structure surveys [29, 30]. Sylos Labiniet al. [30] determined the variance
in the number density of luminous red galaxies (LRGs) in the SDSS-DR7 by dividing
the full sample of 53,066 galaxies in the redshift range10−4 < z < 0.3 into N equal
nonoverlapping volumes. Over the range4 ≤ N ≤ 15, they found a standard deviation
of order 8%, consistent with an earlier measurement of 7% by Hogg et al. [29] in a
smaller LRG sample. These values are very close to our order of magnitude estimate
of 6%, which has still not been corrected to include radiation at last-scattering, or the
effects of backreaction at late epochs.

Given a nearly scale–invariant spectrum of nested density perturbations, we expect
that the variance in density should not decrease appreciably if sample volumes are
increased at nearby redshifts. In principle, it should be possible to calculate the variance
as a function of scale, given the constraints from the CMB anisotropy spectrum at long
wavelengths. For spatial slices at higher redshifts, looking further back in time, the
variance would decrease in accord with (4) – provided that a sample of objects such
as LRGs can be found which does not exhibit strong evolutionary effects over the range
of redshifts in question.

In summary, in order to coarse-grain fluid cells in such a way that the size of a cell is
larger than the largest typical nonlinear structures, witha mass that does not change on
average from last scattering until today, observations show that we should coarse-grain
fluid cells at a scale of order70h−1–100h−1Mpc. This scale will be called the statistical
homogeneity scale (SHS). Such a scale marks the transition from a nonlinear regime in
which there is a very large variance inδρ/ρ, to a regime in which cosmological average
evolution with a single Hubble parameter becomes well defined. It does not mark a scale
at which average evolution necessarily becomes precisely FLRW, nor at which density
contrasts become completely negligible. Rather variations on spatial scales larger than
the SHS at the present epoch are bounded by a maximumδρ/ρ <∼ 0.1, as is consistent
with observations.

In this subsection we have presented a summary of observational results to be ac-
counted for in cosmological coarse-graining, without assuming any details about back-
reaction. There is one other observational puzzle which also requires mention: the
Sandage-de Vaucouleurs paradox8. This is the puzzle that in conventional ways of think-
ing, we should expect large statistical scatter in the peculiar velocities of galaxies below
the SHS, if they are indeed “particles of dust”. In fact, on scales of order20Mpc the
statistical scatter should be so large that no linear Hubblelaw can be extracted. Yet

8 In the literature this has been called the “Hubble–de Vaucouleurs paradox” [34, 35] and alternatively the
“Hubble–Sandage paradox” [36]. However, the paradox neverinvolved Hubble directly, but was originally
raised by Sandage and collaborators [37] in objection to de Vaucouleurs’ hierarchical cosmology [38]
before strong evidence for the cosmic web of voids, sheets and filaments had amassed.
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20Mpc is the very scale on which Hubble originally found his famous linear law. This
statistical quietness of the local Hubble flow is difficult toreconcile with conventional
understanding. In any FLRW universe which expands forever,peculiar velocities do de-
cay. However, theΛCDM parameters required for the velocity dispersion predicted by
structure formation to match the observed velocity dispersion, do not coincide with the
concordance parameters [39].

2.5. Approaches to coarse-graining

The problem of coarse-graining in general relativity in a bottom-up fashion is lit-
tle studied. In principle, it is a very interesting question, which should deal, e.g.,
at the galactic level with the problem of replacing the Weyl curvature of individual
Schwarzschild or Kerr solutions by a coarse-grained Ricci curvature for a dust fluid.
Higher levels of coarse-graining in the hierarchy (2) involve further physical questions.
Rather than dealing with multi-scale problems, the few existing studies simplify the hi-
erarchy (2) to a single step.

2.5.1. Covariant coarse-graining

Korzyński [40] has proposed a covariant coarse-graining procedure, which could
conceivably be applied to any step in the hierarchy (2) for which the starting point
is the metric of a known dust solution. Korzyński’s idea is to isometrically embed
the boundary of a comoving dust-filled domain – required to have S2 topology with
positive scalar curvature – into a three-dimensional Euclidean space, and to construct
a “fictitious” three-dimensional fluid velocity which induces the same infinitesimal
metric deformation on the embedded surface as the “true” dust flow does on the domain
boundary in the original spacetime. This velocity field is used to uniquely assign coarse-
grained expressions for the volume expansion and shear to the original domain. An
additional construction using the pushforward of the Arnowitt-Deser-Misner (ADM)
shift vector [41] is used to similarly obtain a coarse-grained vorticity. The coarse-grained
quantities are quasilocal functionals which depend only onthe geometry of the boundary
of the relevant domain. This formalism is at an early stage ofdevelopment, but could
conceivably provide new methods for attacking the fitting problem.

2.5.2. Discretized universes

The Lindquist–Wheeler model [42] is a lattice based approach, which has received
new interest recently [43]–[46]. The coarse-graining hierarchy (2) is replaced by the
simplified scheme

gSchwarzschild
µν → guniverse

µν (5)

with the proviso thatguniverse
µν does not represent a continuum metric in the usual sense.

Rather, by matching the spherical boundaries of radially expanding geodesics in the
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Schwarzschild geometries of a regular lattice of equal point masses, the Friedmann
equations are obtained [42, 43]. The matching is exact only at the points where the
radial spheres intersect and is approximate in the regions in which spheres overlap or
are excluded. A continuum cosmological geometry is thus realized only approximately.

This model is analogous to the Swiss cheese models [9] in the sense that the point
group symmetry of the lattice is a discretized version of a system with overall global
spatial homogeneity. Ray-tracing studies in the spatiallyflat Lindquist–Wheeler model
lead to results which are almost identical to that of the exact Einstein-de Sitter solution9.
While this demonstrates that the Lindquist–Wheeler does provide a consistent lattice
description of the FLRW models, it unfortunately does not give any indication of how
one should treat the problem of inhomogeneity, without discrete symmetries.

3. AVERAGING AND BACKREACTION

The terms “coarse-graining” and “averaging” are often usedinterchangeably in a loose
sense. However, whereas coarse-graining is generically a bottom-up process, averaging
is top-down: one is interested in the overall average dynamics and evolution, usually
without direct consideration of the details of the course-graining procedure. Whereas
coarse-graining is little studied, considerably more attention has been paid to averaging.
Several approaches have been pursued and are discussed in many reviews including,
e.g., those of Buchert [48, 49], van den Hoogen [50] and Clarksonet al. [51].

Cosmological averaging typically starts from the assumption that a well-defined av-
erage exists, with a number of assumed properties. If one assumes that the Einstein field
equations (1) are valid for some general inhomogeneous geometry,gµν , then given some
as yet unspecified averaging procedure denoted by angle brackets, the average of (1)
gives

〈Gµ
ν〉 = 〈gµλRλν〉− 1

2
δµ

ν〈gλρRλρ〉 =
8πG

c4
〈T µ

ν〉 . (6)

A number of choices are possible at this point since there is no a priori reason to assume
that〈Gµ

ν〉 is the Einstein tensor of an exact geometry.
In themacroscopic gravityapproach, Zalaletdinov [52]–[54] takes the average inverse

metric〈gµν〉 and the average Ricci tensor〈Rµν〉 as basic variables, so that

〈gµλ〉〈Rλν〉− 1
2
δµ

ν〈gλρ〉〈Rλρ〉+Cµ
ν =

8πG

c4
〈T µ

ν〉 , (7)

where the correlation functionsCµ
ν are defined by the difference of the left hand sides

of (7) and (6). Zalaletdinov provides additional mathematical structure to prescribe a
covariant averaging scheme, thereby defining properties ofthe correlation functions.

Alternatively one can consider the difference of the general inhomogeneous metric
and the averaged metric

gµν = ḡµν + δgµν , (8)

9 A different result was first claimed in an earlier study [43],but then corrected [46]. The review article
[47] was written before the corrected result [46] was found,and it cites the earlier incorrect result.
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whereḡµν ≡ 〈gµν〉, with inversēgλµ 6= 〈gλµ〉. One may now determine a connectionΓ̄λ
µν ,

curvature tensor̄Rµ
νλρ and Einstein tensor̄Gµ

ν based on the averaged metric,ḡµν , alone.
The differencesδΓλ

µν ≡ 〈Γλ
µν〉− Γ̄λ

µν , δRµ
νλρ ≡ 〈Rµ

νλρ〉− R̄µ
νλρ, δRµν ≡ 〈Rµν〉− R̄µν

etc, then represent thebackreactionof the averaged inhomogeneities on the average
geometry determined from̄gµν . Furthermore, the average Einstein field equations (6)
may be written

Ḡµ
ν + δGµ

ν =
8πG

c4
〈T µ

ν〉 . (9)

This expresses the fact that the Einstein tensor of the average metric is not in general
the average of the Einstein tensor of the original metric. The processes of averaging and
constructing the Einstein tensor do not commute.

Equation (6) and (9) are of course very similar, but may differ in both the definition
of the average represented by the angle brackets, and also inthe split of the background
averaged Einstein tensor and the correlation or backreaction terms. The manner in which
averaging schemes differ often relate to whether the effects of backreaction are assumed
to be weak or strong.

3.1. Weak backreaction: the Friedmann–Lemaître universe as the
average

The remarkable success of the standard cosmology, albeit with sources of dark matter
and dark energy which have not been directly observed, has understandably led most
researchers to assume that it must be correct, even if only inan average sense. As a
consequence, many researchers simply begin from the starting point that the FLRW
geometry must be the average, or very close to the average evolution.

One can then either assume that

• there is no backreaction on average evolution but inhomogeneities are sufficiently
large that they significantly affect the propagation of light, as in the Swiss cheese
[55, 56] and meatball [57] models; or

• backreaction is sufficiently small that the changes to average evolution can be
treated perturbatively about a homogeneous isotropic background, at least initially.

The second approach,weak backreaction, is of course intimately related to standard
cosmological perturbation theory. One assumes that the average geometrȳgµν of (8) is
exactly FLRW, and that the quantitiesδgµν can be treated as perturbative corrections.

The issue of whether backreaction is significant or insignificant in the perturbative
FLRW context is a matter of much debate, with different authors coming to different
conclusions, which may be traced to various differences in assumptions made. These
issues are discussed in many reviews, such as those of Clarkson et al. [51] and Kolb
[58], and will not be discussed in detail here. In my view thisdebate shows that there
are potential problems, which cannot be resolved by stayingwithin perturbation theory.

In fact, all researchers are well aware that there is a nonlinear regime in structure
formation, which is explored byN-body simulations in the standard cosmology. Since
there is as yet no rigorous procedure for coarse-graining the gravitational degrees of
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freedom which describe the small-scale structures, the perturbative approach can only
be valid given an implicit assumption that there is no new physics to be found when
coarse-graining the hierarchy (2).

Such an assumption underlies a typical argument against backreaction: if weassume
a FLRW geometry, and estimate the magnitude of the perturbations using typical ro-
tational and peculiar velocities of galaxies, then the corrections are small [59]. How-
ever, at late epochs galaxies and galaxy clusters are not homogeneously distributed, and
cannot be considered as randomly distributed gas particleson scales of tens of mega-
parsecs below the SHS. The dominant structures on these scales are voids of diameter
∼30h−1Mpc with density contrastsδρ/ρ∼−0.95 [2, 3]. Using galaxy peculiar veloc-
ities as an estimate ofδρ/ρ is therefore misplaced. There is no direct evidence that a
spatially homogeneous geometry is the correct one below theSHS.

It may thus simply be incorrect to assume that a FLRW model exactly describes the
average evolution of the universe at the largest scales for all times. Approaches which
do not make the restrictive assumption of average FLRW evolution are those withstrong
backreaction.

3.2. Strong backreaction: Spacetime and spatial averages

If Einstein’s equations for a single metric with a prescribed energy-momentum tensor
source are not the relevant equations for describing the average evolution of the universe
on cosmological scales, then new physical ingredients are required, either explicitly in
the averaging formalism itself, or else implicitly in relating the results of a particular
formalism to observations. After all, our measurements involve physical rulers and
clocks adapted to a local geometry, and this local geometry must somehow be matched
to the statistical geometry that describes average cosmic evolution.

Strong backreaction as a solution to the problem of dark energy elicits much confusion
in the community, as typified by the statement that dark energy is just an issue of
inhomogeneities, and that it is entirely solvedwithingeneral relativity. Even advocates of
strong backreaction might disagree with this statement, depending on what is meant by
“general relativity”. There is a widely held view, particularly among those not involved
in general relativity research, that it consists solely of completed old physics. However,
those better acquainted with general relativity know that even setting aside the regime of
quantum gravity, general relativity is not a final complete theory, but contains many open
and unsolved questions – in particular in relation to gravitational energy and entropy and
the averaging problem.

Strong backreaction does involve new physics, but in my viewthe new physics must
involve a natural extension of the principles of relativityinto regimes which Einstein did
not envisage when he wrote down his field equations in 1915. Whether one wishes to
call it “general relativity” or “cosmological relativity”or something else is therefore a
matter of taste. The essential point is that one is proposingnew rules for the geometrical
structure of spacetime on cosmological scales.

The cosmological spacetime is to be a statistical average geometry. Any process of
taking an average will in general break the general covariance of Einstein’s equations.
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There are differing approaches to this, which alternatively involve spacetime or spatial
averages. Many mathematical approaches exist, including Ricci flow [60]–[63], group
averaging of the FLRW isometry group [64], covariant frame-bundle averaging [65]
and constant mean (extrinsic) curvature (CMC) flows [66, 67]. Here I will just very
briefly outline the two approaches which have attracted the most attention, largely due
to Zalaletdinov and Buchert.

3.2.1. Zalaletdinov’s macroscopic gravity

Zalaletdinov has developed a theory calledmacroscopic gravitybased on spacetime
averages [52, 53, 54, 68]. His aim is to consistently averagethe Cartan equations
from first principles, in analogy to the averaging of the microscopic Maxwell–Lorentz
equations in electromagnetism. However, whereas electrodynamics is linear in the fields
on the fixed background of Minkowski spacetime, gravity demands an averaging of the
nonlinear geometry of spacetime itself and is considerablymore complicated.

Additional mathematical structures are required to average tensors in a covariant
manner on a given manifold,M. To this end Zalaletdinov introduces bilocal averaging
operators [52]–[54],Aµ

α(x,x′), with support at two pointsx ∈M andx′ ∈M, which
allow one to construct a bitensor extension,T

µ
ν(x,x′), of a tensorT µ

ν(x) according to

T
µ

ν(x,x′) = Aµ
α′(x,x′)T α′

β′(x′)Aβ′

ν(x
′,x) . (10)

The bitensor extension is then integrated over a 4-dimensional spacetime region,Σ ⊂
M, to obtain a regional average according to

T̄ µ
ν(x) =

1

VΣ

∫

Σ
d4x′

√

−g(x′)Tµ
ν(x,x′), (11)

whereVΣ ≡ ∫

Σ d4x
√

−g(x) is the spacetime volume of the regionΣ. The bitensor
transforms as a tensor at every point but is a scalar when integrated over a region for
the purpose of averaging.

Macroscopic gravity is a general covariant averaging formalism, rather than an ap-
proach which was specifically formulated with cosmology in mind. In order to make
contact with cosmology, additional assumptions have been made. For example, Paran-
jape and Singh considered a spatial averaging limit [69]. Other studies have made the
assumption, similar to the weak backreaction approach, that the average geometry is
FLRW [70]–[73]. In that case it was found that the macroscopic gravity correlation
terms take the form of a spatial curvature, even though a spatially flat FLRW geometry
was assumed for the average geometry [70].

In my view, although Zalaletdinov’s formalism is mathematically elegant, it has weak-
nesses as a physical theory. In particular, it has been designed to closely resemble general
relativity itself. Apart from the fact that it deals with twogeometric scales – a micro-
scopic one and a macroscopic one – there is no scale in the finaltheory. Cosmological
observations suggest a particular hierarchy of scales (2),which may involve physical
issues more complex than simply taking one step from a microscopic theory to a macro-
scopic theory of gravity. In particular, the coarse-graining of the gravitational degrees
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of freedom involving binding energy at one level and the kinetic energy of expansion
at another, may give rise to qualitatively new phenomena. Rather than seeking to mimic
the steps involved in coarse-graining matter degrees of freedom, we need to specify
macroscopic scales and physical principles relevant to coarse-graining in cosmology.

3.2.2. Buchert’s spatial averaging formalism

In the late 1990s, building on earlier work [60, 74, 75], Buchert developed an approach
[76, 77] for the spatial averaging of scalar quantities associated with the Einstein field
equations (1), with cosmological averages in a fully nonperturbative setting in mind at
the outset. He applied the3+1 ADM spacetime split [41], which is a natural approach
if the Einstein field equations (1) are to be viewed as evolution equations.

Rather than tackling the mathematically difficult problem of averaging tensors,
Buchert averaged scalar quantities in general inhomogeneous spacetimes with perfect
fluid energy–momentum sources. Such scalars include the density, ρ, expansion,θ,
and scalar shear,σ2 = 1

2
σαβσαβ etc. For an arbitrary manifold, one can always locally

choose ADM coordinates,

ds2 = −ω
0 ⊗ω

0 + gij(t,x)ω
i⊗ω

j, (12)

whereω
0 ≡N (t,x)cdt, andω

i ≡ dxi +N i(t,x)cdt define the ADM lapse function,N ,
and shift vector,N i. Such coordinates can only be chosen globally if one restricts the
evolution problem to that of irrotational flow, as Buchert does. In that case (12) may be
assumed to apply over globalt =const spatial hypersurfaces. For a dust source10 we can
then choose synchronous coordinates withN = 1 andN i = 0. With these choices, the
Einstein equations may be averaged on a domain,D, of the spatial hypersurfaces,Σ, to
give

3
˙̄a
2

ā2
= 8πG〈ρ〉− 1

2
c2〈R〉− 1

2
Q, (13)

3
¨̄a

ā
= −4πG〈ρ〉+Q, (14)

∂t〈ρ〉+3
˙̄a

ā
〈ρ〉 = 0, (15)

where an overdot denotes at–derivative, and

Q≡ 2

3

〈

(

θ−〈θ〉
)2
〉

−2〈σ2〉 =
2

3

(

〈θ2〉−〈θ〉2
)

−2〈σ2〉 , (16)

is the kinematic backreaction. In these equations angle brackets denote the spatial
volume average of a quantity, so that〈R〉≡

(

∫

D d3x
√

det 3gR(t,x)
)

/V(t) is the average

10 Extensions to perfect fluid [77] and other matter sources [78] have also been considered, as well as to
general hypersurfaces tilted with respect to the fluid flow [79]–[83].
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spatial curvature, for example, withV(t) ≡ ∫

D d3x
√

det 3g being the volume of the
domainD ⊂ Σ. Note thatā is not the scale factor of any given geometry, but rather
is defined in terms of the average volume according to

ā(t) ≡
[

V(t)/V(t0)
]1/3

. (17)

It follows that the Hubble parameter appearing in (13)–(15)is related to the volume-
average expansion scalar,θ, by

˙̄a

ā
= 1

3
〈θ〉. (18)

The condition
∂t

(

ā6Q
)

+ ā4c2∂t

(

ā2〈R〉
)

= 0, (19)

is required to ensure that (13) is the integral of (14). In Buchert’s scheme the non-
commutativity of averaging and time evolution is describedby the exact relation [74,
75, 76, 84]

∂t〈Ψ〉−〈∂tΨ〉 = 〈Ψθ〉−〈θ〉〈Ψ〉 (20)

for any scalar,Ψ.
Eq. (14) is suggestive since it implies that if the backreaction term is large enough

– e.g., for a large variance in expansion with small shear – then the volume average
acceleration,̄a−1¨̄a = 1

3
d
dt
〈θ〉+ 1

9
〈θ〉2, could be positive, even if the expansion of all re-

gions is locally decelerating. Although the fraction of thevolume occupied by the faster
expanding regions is initially tiny, this fraction may nonetheless become significant at
late epochs, skewing the average to give an illusion of acceleration during the transition
epoch to void domination. Whether this is observationally viable, however, depends cru-
cially on: (i) how large the variance in expansion rates can grow given realistic initial
constraints on density perturbations; and (ii) the operational interpretation of the Buchert
formalism. Since Buchert’s formalism is a statistical one,additional assumptions are re-
quired to relate solutions of the Buchert equations to cosmological observations. The
timescape cosmology, to be discussed in Secs. 4, 5, providessuch a scheme.

3.3. Notions of average spatial homogeneity

The relationship between average homogeneity and observations is crucial for the
interpretation any averaging scheme for inhomogeneous cosmology. The very near
isotropy of the CMB demonstrates that when photons travel tous from the surface of
last scattering, they traverse a geometry which to a very good approximation must be
isotropic in some average sense. If we assume a statistical Copernican principle, then we
must also expect some sort of average notion of spatial homogeneity. The hard question
is how to relate the observed averaged isotropy of the geometry on our past light cone to
an appropriate notion of average spatial homogeneity.

Most cosmologists’ physical intuition is guided largely bythe FLRW models, within
which average homogeneity can be characterized in (at least) three distinct ways:

(i) The notion of average spatial homogeneity is described by a class of ideal comov-
ing observers with synchronized clocks.
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(ii) The notion of average spatial homogeneity is describedby average surfaces of
constant spatial curvature (orthogonal to the geodesics ofthe ideal comoving
observers).

(iii) The expansion rate at which the ideal comoving observers separate within the
hypersurfaces of average spatial homogeneity is uniform.

While these notions coincide for the FLRW geometries, it is not generally the case once
spatial homogeneity is only approximate rather than exact,given that spatial curvature
is characterized by more than a single scalar.

Already in perturbation theory about FLRW models, one can specialize to spacetime
foliations which preserve one of the notions (i)–(iii) of average spatial homogeneity
more fundamentally than the other two. Among the foliationsdiscussed in the classic
work of Bardeen [85] we can recognize those of each type above: thecomoving hyper-
surfaces(and related synchronous gauge) take property (i) as more fundamental; the
minimal shear hypersurfaces11 (and related Newtonian gauge) are one type of foliation
for which property (ii) is more fundamental; and finally theuniform Hubble flow hyper-
surfacestake property (iii) as more fundamental.

Bičák, Katz and Lynden-Bell [86] have further analysed foliations of perturbed FLRW
models, with a view to enabling gauge choices in which the rotations and accelerations
of local inertial frames can be determined directly from local energy–momentum per-
turbationsδT µ

ν . They consider uniform Hubble flow hypersurfaces; uniform intrinsic
scalar curvature hypersurfaces; and minimal shear hypersurfaces. Theuniform intrinsic
scalar curvature hypersurfacesprovide a foliation in addition to those considered by
Bardeen, which also take property (ii) as more fundamental.Having chosen hypersur-
faces Bǐcák, Katz and Lynden-Bell further fix the gauge by adopting a condition similar
to the minimal shift distortion condition of Smarr and York [87]. For each choice of
hypersurface it then follows that the coordinates of local inertial frames are more or
less uniquely determined by the energy–momentum perturbations δT µ

ν . In this sense
these gauges might be seen as embodying Mach’s principle. They are substantially more
restrictive than the commonly used synchronous gauge or thegeneralized Lorenz–de
Donder gauge [86].

In the nonlinear regime, below the SHS, not all of the conditions (i)–(iii) can apply,
even if they apply in some average sense on scales larger thanthe SHS. The question is
should any of these notions applybelowthe SHS? The timescape scenario begins from
the premise that a notion of uniform Hubble flow can be appliedbelow the SHS, in a
way which takes Mach’s principle into the nonlinear regime,as we discuss in Sec. 4.

This will involve a reinterpretation of the Buchert formalism [76, 77], which grew
as a generalization of averaging in Newtonian cosmology [74, 75], and is based on an
ADM approach on constant time hypersurfaces of observers “comoving with the dust”.
Since the split of space and time is unique in Newtonian theory, from the Newtonian

11 For scalar perturbations this becomes a zero–shear condition, i.e.,Kij − 1
3
gijK = 0, whereKij is the

extrinsic curvature,gij the intrinsic metric, andK ≡Kℓ
ℓ. For general perturbations the hypersurfaces are

defined by
(

Kij − 1
3
gijK

)

|ij
= 0, where the bar denotes a covariant derivative with respect to the intrinsic

3–metric.
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viewpoint this is the only natural choice one can make. However, this is not the case in
general relativity.

If particles of dust were invariant from the time of last scattering until the present, then
there would be no physical ambiguity about the notion of “comoving with the dust”. In
such a case, a choice of constant time hypersurfaces with a synchronous gauge is well
motivated. However, as discussed in Sec. 2.2, in order to consistently deal with both the
particles of ionic dust in voids, and also with ‘particles’ of dust larger than galaxies, we
have to coarse-grain at the SHS over fluid elements which are themselves expanding.
This demands coarse-graining over the gravitational degrees of freedom relating to
spatial curvature, the kinetic energy of expansion, and gravitational binding energy.

We will adopt the viewpoint that the Buchert time coordinateis a collective degree
of freedom of spacetime regions when coarse-grained at the SHS, and that if we form
thin sandwiches from such regions in the time direction thenthey can be combined as
effective hypersurfaces on which the Buchert formalism canbe applied. However, new
physics applies within the coarse-grained cells, as we willdiscuss next.

4. TIMESCAPE SCENARIO: CONCEPTUAL FOUNDATIONS

In considering the averaging problem, it is inevitable thatat some level one must deal
with Mach’s principle, which may be stated [12, 86]:“Local inertial frames (LIFs) are
determined through the distributions of energy and momentum in the universe by some
weighted average of the apparent motions”. Mach’s principle strongly guided Einstein
in developing general relativity as a theory in which spacetime is a relational structure.
As Einstein stated in his first work on cosmology: “In a consistent theory of relativity
there can be no inertia relatively to ‘space’, but only an inertia of masses relatively to
one another” [8].

The refinement of the understanding of inertia that Einsteinleft us with in relation
to gravity, the Strong Equivalence Principle (SEP), only goes part-way in addressing
Mach’s principle. The SEP tells us that we can always remove the effects of gravity in a
LIF in the neighbourhood of a point. However, it says nothingabout the average effect
of gravity, and therefore nothing about the “weighted average of the apparent motions”
of the matter in the universe.

The question of what gravitational mass–energy is in general relativity is deeply
subtle. On account of the SEP we can always get rid of gravity in the neighbourhood of
a point, so any reasonable definition is necessarily quasilocal, involving integration over
a bounding surface. The subject of quasilocal gravitational energy has occupied many
mathematical relativists [88], and there is no universallyagreed definition. This may
reflect the fact that different notions of energy are applicable in different circumstances,
just as in thermodynamics we deal with internal energy, and various free energies.

Two of the most familiar gravitational masses are the ADM mass [41] which is defined
by an integral on a 2-sphere at spatial infinity for a general asymptotically flat spacetime,
and the Komar mass [89, 90]

M =
−c2

8πG

∫

S2
∞

∗dk (21)
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which is similarly defined for asymptotically flat spacetimes with an asymptotically
timelike Killing vector field,k. The Komar mass is identical to that appearing in the
Newtonian gravitational potential energy term,Φ = −GM/r, in an asymptotic expan-
sion, g00 = −(1 + 2Φ/c2 + . . .), at spatial infinity [90]. Most of the effort in the field
of quasilocal gravitational energy has focused on ways of defining general geometrical
energy quantities which reduce to familiar results in the case of isolated systems. Some
interesting examples12 include the definitions of Brown and York [91], and Epp [92].
With a few exceptions of quasilocal energies calculated in particular backgrounds, (e.g.,
[93]–[97]), very little has been done in a cosmological context, however.

For asymptotically flat geometries the average of the distribution of energy and mo-
mentum in the external universe is zero. In the actual universe the spacetime external
to any concentrated mass also contains matter so that its geometry does not have a time
symmetry but is necessarily dynamically evolving. In the timescape scenario it is pro-
posed that in place of spatial infinity in (21) the mass definition for the largest bound
structure should be made in reference tofinite infinity, a timelike surface within which
the average volume expansion is zero. In general there will be matter collapsing inwards
around any virialized regions, and thus the finite infinity surface will be expanding at the
boundary. (See Figure 1.) The density of a shell at the finite infinity surface defines the
critical density. In a universe which is on average underdense there must always be such
a transition zone between the overdense regions and the surrounding underdensity.

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

FIGURE 1. A schematic illustration of the notion of finite infinity,fi [13]: the boundary (dashed line)
to a region with average zero expansion inside, and positiveexpansion outside.

Accounting for the average effect of matter to address Mach’s principle effectively
means specifying an appropriate definition of an asymptoticregion, such as finite in-
finity, containing any local geometry. Local geometry should be determined by local
matter, and if matter on a bounding sphere obeys some symmetry principle then we
should look no further in determining the local standard of inertia. Since the very early
universe started out being very close to spatially homogeneous and isotropic and cannot
evolve arbitrarily far from from its initial conditions, itis proposed that such symmetries
can always be found at aregionalscale.

12 This subject has a long history going back to Einstein, and a huge cast of mathematical relativists have
made important contributions, which I will not attempt to summarize here. See ref. [88] for further details.

20



4.1. The cosmological equivalence principle

In the timescape scenario we restrict the geometry of expanding regions (the walls
and voids) in the final stages of coarse-graining (2) to an average over domains which
each obey thecosmological equivalence principle(CEP) [15]:

In cosmological averages it is always possible to choose a suitably defined spacetime
region, the cosmological inertial region (CIR), on whose boundary average motions
(timelike and null) can be described by geodesics in a geometry which is Minkowski up
to some time-dependent conformal transformation,

ds2
CIR

= a2(η)
[

−dη2 +dr2 + r2dΩ2
2
]

. (22)

A suitably defined region here refers to one which is smaller than the scalar curvature
scale within underdense voids, or alternatively is the finite infinity scale for systems
containing overdensities. Typically this could be of order2h−1–10h−1Mpc for finite
infinity regions bounding small groups or rich clusters of galaxies.

Since the average geometry is a time–dependent conformal scaling of Minkowski
space, the CEP reduces to the standard SEP ifa(η) is constant, or alternatively over very
short time intervals during which the time variation ofa(η) can be neglected. It is well–
known that for the exchange of photons between comoving observers in the background
(22), to leading order the observed redshift of one comovingobserver relative to another
yields the same local Hubble law, whether the exact relation, z + 1 = a0/a, is used
or alternatively the radial Doppler formula,z + 1 = [(c + v)/(c − v)]1/2, of special
relativity is used, before making a local approximation. For a small spacetime region
in a spatially homogeneous isotropic background this is a direct consequence of the
SEP: it is impossible to distinguish whether particles are moving radially in a flat space,
or alternatively are at rest in an expanding space.

The CEP makes the indistinguishability of radial motion from volume expansion
a feature of regional averages on scales up to2h−1–10h−1Mpc, while allowing for
inhomogeneity between this scale and the SHS. However, it disallows global coherent
anisotropic expansion of the sort typified by Bianchi models. Bianchi models single out
preferred directions in the global background universe, thereby imbuing spacetime with
absolute qualities that go beyond an essentially relational structure. To make general
relativity truly Machian such backgrounds need to be outlawed by principle, and the
CEP achieves this while still allowing inhomogeneity.

The CIR metric (22) is of course the spatially flat FLRW metric, which in the standard
cosmology is taken to be the geometry of the whole universe. In our case the whole
universe is inhomogeneous subject to the restriction that it is possible to always choose
(22) as a regional average in expanding regions.

4.2. Relative volume deceleration

To understand the physical implications of taking an average geometry (22) as the
relevant average reference geometry for the relative calibration of rulers and clocks in
the absence of global Killing vectors, let us construct a thought experiment analogy
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that I will call the semi-tethered lattice. Take a lattice of observers in Minkowski
space, initially moving isotropically away from each nearest neighbour at uniform initial
velocities. The lattice of observers are chosen to be equidistant along mutually oriented
x̂, ŷ andẑ axes. Suppose that the observers are each connected to six others by tethers
of negligible mass and identical tension along the mutuallyoriented spatial axes. The
tethers are not fixed but unwind freely from spools on which anarbitrarily long supply
of tether is wound. The tethers initially unreel at the same uniform rate, representing
a ‘recession velocity’. Each observer carries synchronized clocks, and at a prearranged
local proper time all observers apply brakes to each spool, the braking mechanisms
having been preprogrammed to deliver the same impulse as a function of local time.

Applying brakes in the semi-tethered lattice experiment isdirectly analogous to the
decelerating volume expansion of (22) due to some average homogeneous matter den-
sity, because it maintains the homogeneity and isotropy of space over a region as large
as the lattice. Work is done in applying the brakes, and energy can be extracted from this
– just as kinetic energy of expansion of the universe is converted to other forms by grav-
itational collapse. Since brakes are applied in unison, however, there isno net force on
any observer in the lattice, justifying theinertial frameinterpretation, even though each
observer has a nonzero 4-acceleration with respect to the global Minkowski frame. The
braking function may have an arbitrary time profile; provided it is applied uniformly
at every lattice site the clocks will remain synchronous in the comoving sense, as all
observers have undergone the same relative deceleration.

Whereas the Strong Equivalence Principle allows us to definelocal inertial frames,
related to each other by local Lorentz transformations acting at a point, the Cosmological
Equivalence Principle refers to acollectivesymmetry of the background. In defining the
averaging region of the CIR we are isolating just that part ofthe volume expansion which
is regionally homogeneous and isotropic.

Let us now consider two sets of disjoint semi-tethered lattices, with identical initial
local expansion velocities, in a background static Minkowski space. (See Fig. 2(a).)
Observers in the first congruence apply brakes in unison to decelerate homogeneously
and isotropically at one rate. Observers in the second congruence do so similarly, but at
a different rate. Suppose that when transformed to a global Minkowski frame, with time
t, that at each time step the magnitudes of the 4–decelerations satisfyα1(t) > α2(t) for
the respective congruences. By special relativity, since members of the first congruence
decelerate more than those of the second congruence, at any time t their proper times
satisfyτ1 < τ2. The members of the first congruence age less quickly than members of
the second congruence.

By the CEP, the case of volume expansion of two disjoint regions of different average
density in the actual universe is entirely analogous. The equivalence of the circumstance
rests on the fact that by the evidence of the CMB the expansionof the universe was
extremely uniform at the epoch of last scattering. At that time all regions had almost
the samedensity – with tiny fluctuations – and the same uniform Hubbleflow. At
late epochs, suppose that in the frame of any average cosmological observer there are
expanding regions ofdifferentdensity which have decelerated by different amounts by
a given time,t, according to that observer. Then by the CEP the local propertime of the
comoving observers in the denser region, which has decelerated more, will be less than
that of the equivalent observers in the less dense region which has decelerated less. (See
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FIGURE 2. Two equivalent situations:(a) in Minkowski space observers in separate semi–tethered
lattices, initially expanding at the same rate, apply brakes homogeneously and isotropically within their
respective regions but at different rates;(b) in the universe which is close to homogeneous and isotropic at
last-scattering comoving observers in separated regions initially move away from each other isotropically,
but experience different locally homogeneous isotropic decelerations as local density contrasts grow. In
both cases there is a relative deceleration of the observer congruences and those in the region which has
decelerated more will age less.

Fig. 2(b).) Consequently theproper time of the observers in the more dense CIR will be
less than that of those in the less dense CIR, by equivalence of the two situations.

The fact that a global Minkowski observer does not exist in the second case does not
invalidate the argument. The global Minkowski time is just acoordinate label. In the
cosmological case the only restriction is that the expansion of both average congruences
must remain homogeneous and isotropic in local regions of different average density in
the global averaget =const slice. Provided we can patch the regional frames together
suitably, then if regions in such a sliceare still expandingand have a significant density
contrast we can expect a significant clock rate variance.

This equivalence directly establishes the idea of agravitational energy cost for a
spatial curvature gradient, since the existence of expanding regions of different density
within an averaget =const slice implies a gradient in the average Ricci scalar curvature,
〈R〉, on one hand, while the fact that the local proper time varieson account of the
relative deceleration implies a gradient in gravitationalenergy on the other.

The variation of the normalization of asymptotic clocks dueto a relative volume
deceleration is a new physical effect. We are familiar with boosts in particular directions,
which give significant effects only for large relative velocities; e.g., as required to remain
stationary in strong gravitational fields. Since we only consider weak fields the relative
deceleration of the background is small. However, even if the relative deceleration is
typically of order10−10ms−2, cumulatively over the age of the universe it leads to
significant variation in the calibration of clocks, as we will discuss at the end of Sec. 5.2.
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4.3. Statistical cosmological geometry

The timescape scenario represents an extension of the concepts of general relativity in
the cosmological domain, as illustrated schematically in Fig. 3. In particular, it is recog-
nized that once gravitational degrees of freedom are coarse–grained then one is no longer
dealing with a simple solution of Einstein’s equations witha prescribed matter source.
Rather than cutting and pasting exact solutions of Einstein’s equations as one does in
the Swiss cheese [9] and meatball [57] models, we are dealingwith a new statistical
cosmological geometry in which the relative volume deceleration provides a physical
degree of freedom to normalize canonical clocks. The relative phenomenological lapse
function provides a measure of the relative kinetic energy of expansion of CIRs.

(a)

Local Inertial Frame

S.E.P.

Γ
local

Einstein geometry

(b)

Local Inertial Frame

Cosmological Inertial Region

S.E.P.

Γ

Γ

C.E.P.

cos

local

Cosmological geometry

FIGURE 3. (a) In general relativity the SEP allows one to relate a solutionof Einstein’s equations
with prescribed matter source to LIFs. The connection,Γlocal, allows one to parallely transport tensorial
quantities from one LIF to another.(b) In the timescape scenario there is (at least) one additionallayer
of geometrical structure. Local geometries with asymptotic regions bounded by CIRs are combined in
a cosmological average statistical geometry. The CEP allows one to relate a solution for the statistical
geometry to the regional geometry of a CIR. The statistical cosmological geometry should be equipped
with an appropriate connection,Γcos, to allow parallel transport from one CIR to another.

The Buchert formalism clearly deals with statistical quantities. However, although
Buchert and Carfora [98] realized early on that there will bedifferences between the
bare volume–average statistical parameters of the Buchertformalism and dressed pa-
rameters as determined by any particular observer, the relationship between observers
and the statistical averages requires additional inputs and assumptions. Likewise one
must specify what is understood by the phrase “comoving withthe dust” once the dust
approximation has broken down, as is the case for observers in gravitationally bound
structures in overdense regions.

The timescape scenario seeks to address these questions by implementing the CEP.
To date a rigorous geometrical framework for the statistical cosmological geometry has
not been implemented. A phenomenological working framework will be outlined in the
next section. Ultimately the geometrical framework shouldbe one in which the Hubble
parameter is to some extent a gauge choice – it corresponds tothe first derivatives of
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the metric of the statistical geometry encoded in the connection, Γcos. This is of course
obvious in the early universe in which the FLRW and statistical geometry are one and the
same, on account of global homogeneity and isotropy. How to develop an appropriate
framework at late times is less obvious; however, it seems likely that should involve the
notion ofscale invarianceof the statistical spatial 3-geometry.

5. TIMESCAPE SCENARIO: PHENOMENOLOGICAL MODEL

In order to deal with the evolution from the epoch of last scattering up to the present
day, we assume that dust can be coarse-grained at the∼100h−1Mpc scale of statistical
homogeneity over which mass flows can be neglected. We apply the Buchert formalism,
but interpret it in a different to Buchert [76, 77], who did not define the scale of
coarse-graining of the dust explicitly. We will assumed that the Buchert average itself is
performed over our present horizon volume, to describe average cosmic on the largest
scales accessible to our observations.

Prior to last scattering the universe is close to homogeneous, so that timescape model
is almost indistinguishable from the standard cosmology, being very close to a standard
matter plus radiation FLRW model with negligible spatial curvature. At late epochs,
the solutions to the Buchert equations will differ substantially from a FLRW model.
Assuming no dark energy, then it is the matter density and itsvariance which drives
the overall evolution of the universe. While the radiation fluid certainly responds to
density gradients, this only affects questions such as gravitational lensing, rather than
the average cosmological evolution described by the Buchert equations. We therefore
treat the radiation fluid as a component with a pressureP

R
= 1

3
ρ

R
which commutes

under the Buchert average,

∂t〈PR
〉−〈∂tPR

〉 = 〈P
R
θ〉−〈P

R
〉〈θ〉 = 0, (23)

throughout the evolution of the universe, rather than usingthe more detailed Buchert
formalism that applies to fluids with pressure [77]. The relevant Buchert equations are
then (13) with〈ρ〉 → 〈ρ

M
〉+ 〈ρ

R
〉, (14) with〈ρ〉 → 〈ρ

M
〉+2〈ρ

R
〉, (15) with〈ρ〉 → 〈ρ

M
〉,

(19), and

∂t〈ρR
〉+4

˙̄a

ā
〈ρ

R
〉 = 0. (24)

To obtain a phenomenologically realistic solution consistent with observations of
voids in the cosmic web [2]–[4] we assume that the present epoch horizon volume,
V = Viā

3, is a disjoint union of void and wall regions characterized by scale factorsav

andaw related to the volume-average scale factor by

ā3 = fviav
3 +fwiaw

3 (25)

wherefvi andfwi = 1− fvi represent the fraction of the initial volume,Vi, in void and
wall regions respectively at an early unspecified epoch. We may rewrite (25) as

fv(t)+fw(t) = 1, (26)
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wherefw(t) = fwiaw
3/ā3 is thewall volume fractionandfv(t) = fviav

3/ā3 is thevoid
volume fraction. Taking a derivative of (25) with respect to the Buchert timeparameter,
t, we find that the bare Hubble parameter is given by

H̄ ≡
˙̄a

ā
= fwHw +fvHv , (27)

whereHw ≡ ȧw/aw andHv ≡ ȧv/av are the Hubble parameters of the walls and voids
respectively as determined by the clocks of volume–averageobservers.

The voids are assumed to have negative spatial curvature characterized by〈R〉
v
≡

6kv/av
2 with kv < 0, while the wall regions [13] are on average spatially flat,〈R〉

w
= 0.

It then follows that

〈R〉 =
6kvfvi

2/3fv
1/3

ā2
(28)

We also assume that the kinematic backreaction vanishes separately within the voids and
walls13 but not in the combined average. One then finds that the kinematic backreaction
(16) reduces to a term depending on the relative expansion ofvoids and walls

Q = 6fv(1−fv)(Hv −Hw)2 =
2ḟv

2

3fv(1−fv)
. (29)

Since (15) and (24) are solved by〈ρ
M
〉 = ρ̄

M0
(ā/ā

0
)−3 and 〈ρ

R
〉 = ρ̄

R0
(ā/ā

0
)−4

respectively, where the subscript zero refers to quantities evaluated at the present epoch,
the remaining independent Buchert equations may then be written as

˙̄a
2

ā2
+

ḟv
2

9fv(1−fv)
− α2fv

1/3

ā2
=

8πG

3

(

ρ̄
M0

ā3
0

ā3
+ ρ̄

R0

ā4
0

ā4

)

, (30)

f̈v +
ḟv

2
(2fv −1)

2fv(1−fv)
+3

˙̄a

ā
ḟv −

3α2fv
1/3(1−fv)

2ā2
= 0, (31)

whereα2 ≡−kvfvi
2/3 > 0.

Equation (30) may also be conveniently written

Ω̄M +Ω̄R +Ω̄k +Ω̄
Q

= 1, (32)

13 For spherical voids this is reasonable since the average shear and vorticity are small. Shear and vorticity
may be significant within bound structures in the wall regions, but their contributions are of the opposite
sign in the Raychaudhuri equation and might be largely self–canceling, giving rise to second order effects.
The Buchert formalism neglects vorticity, and realistically this should be treated together with the effect
of nonzero shear. Since we smooth at the finite infinity scale we are neglecting the gravitational physics
associated with bound structures, where these effects are likely to be important. In the model presented
here is assumed that the variation of the kinetic energy of expansion can be quantified independently of
the gravitational physics within nonexpanding regions.
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where

Ω̄M ≡ 8πGρ̄
M0

ā3
0

3H̄
2
ā3

Ω̄R ≡ 8πGρ̄
R0

ā4
0

3H̄
2
ā4

, Ω̄k ≡
α2fv

1/3

ā2H̄
2 , Ω̄

Q
≡ −ḟv

2

9fv(1−fv)H̄
2 ,

(33)
are the volume–average orbaredensity parameters [62, 98] of matter, radiation, average
spatial curvature and kinematic backreaction respectively. It is straightforward to add a
cosmological constant term to the r.h.s. of (30), giving rise to a further density parameter
Ω̄Λ = Λ/(3H̄

2
), and in fact the equivalent solution with matter and a cosmological

constant (but no radiation) has been derived in [99, 100]. Since we are interested in
the possibility of a viable cosmology without dark energy, we setΩ̄Λ = 0.

5.1. Matching regional to statistical geometry

Thus far we have simply set out the Buchert equations for a particular ensemble of
wall and void regions, leading to differential equations which can be solved and possibly
interpreted in many ways14. Since the Buchert equations describe statistical averages,
the relationship of the statistical solutions to local geometry is crucial to the physical
interpretation of the Buchert formalism. Here I will outline the phenomenological im-
plementation of the principles of the timescape scenario discussed in Sec. 4.

The wall regions are a union of disjointfinite infinity regions [10, 13] encompassing
bound structures, with local average metric (22), which canbe rewritten as

ds2
fi = −c2dτ 2

w +aw
2(τw)

[

dη2
w +η2

wdΩ2
2
]

. (34)

in terms of the wall time,τw, related to the wall conformal time bycdτw = adηw.
Although each finite infinity region is distinct, since they each represent a region within
which the average density is critical, evolved from the sameinitial conditions, theτw

parameters can be taken to be synchronous.
The voids are characterized by regional negatively curved metrics of the form

ds2
Dv

= −c2dτ 2
v +av

2(τv)
[

dη2
v +sinh2(ηv)dΩ2

2
]

. (35)

Generally the voids will have different individual metrics(35). However, in the void
centres the regional geometry will rapidly approach that ofan empty Milne universe for
which the parametersτv can be assumed to be synchronous. One could potentially use
different curvature scales for dominant voids and minivoids to characterize the average
scalar curvature〈R〉. However, in the two–scale approximation of [13, 14] a single
negative curvature scale is assumed as a simplification.

14 Buchert and Carfora [101], and Wiegand and Buchert [102], have investigated a very similar model,
without radiation, which also allows the possibility of internal kinematic backreaction within the walls
and voids. They do not directly consider the issue of gravitational energy.
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Within the dust particles the metrics (34) and (35) are assumed to be patched together
with the condition of uniform quasilocal bare Hubble flow [13, 15]

H̄ =
1

aw

daw

dτw

=
1

av

dav

dτv

, (36)

discussed in Sec. 4.2. In particular, the regional Hubble parameters are also equal to the
bare Buchert Hubble parameter (27). The Buchert average parametersHw andHv refer
to expansion rates with respect to the volume–average time parametert, so that (36) may
be rewritten

H̄ = γ̄wHw = γ̄vHv (37)

where

γ̄w ≡ dt

dτw
, γ̄v ≡

dt

dτv
, (38)

are phenomenological lapse functions of volume–average time, t, relative to the time
parameters of isotropic wall and void–centre observers respectively. The ratio of the
relative Hubble rateshr = Hw/Hv < 1 is related to the wall lapse function by

γ̄w = 1+
(1−hr)fv

hr
, (39)

andγ̄v = hrγ̄w.
As we ourselves live in a bound structure and can be considered to be wall observers,

there is no further need to refer to the void time parameter,τv. We will henceforth drop
the subscript w from quantities defined in (38) and replaceτw → τ , γ̄w → γ̄.

We may rewritēΩ
Q

=−(1−fv)(1− γ̄)2/(fvγ̄
2), and combine it with the other density

parameters (33) to give

γ̄ =

√
1−fv

[√
1−fv +

√

fv(Ω̄−1)
]

1−fvΩ̄
, (40)

where
Ω̄ ≡ 1− Ω̄

Q
= Ω̄M +Ω̄R +Ω̄k , (41)

which satisfies̄Ω > 1 for the solutions of interest. Ast → 0, fv → 0, Ω̄
Q
→ 0, Ω̄ → 1

andγ̄ → 1; i.e., initially the void fraction and backreaction are negligible, and the wall
time and volume-average time parameters coincide.

Solutions of the Buchert equations are not directly relatedto any physical metric.
Since all cosmological information is obtained by a radial spherically symmetric null
cone average, given a solution of the Buchert equations we will retrofit a spherically
symmetric geometry relative to an isotropic observer who measures volume-average
time, according to

ds̄2 = −c2dt2 + ā2(t)dη̄2 +A(η̄, t)dΩ2
2. (42)

Here the area quantity,A(η̄, t), satisfies
∫ η̄

H

0 dη̄A(η̄, t) = ā2(t)Vi(η̄
H
)/(4π), η̄

H
being the

conformal distance to the particle horizon relative to an observer at̄η = 0. The metric
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(42) is spherically symmetric by construction, but is not a LTB solution since it is not an
exact solution of Einstein’s equations, but rather a phenomenological fit to the Buchert
average of the Einstein equations.

In terms of the wall time,τ , of finite infinity observers in walls the metric (42) is

ds̄2 = −γ̄2(τ)c2dτ 2 + ā2(τ)dη̄2 +A(η̄, τ)dΩ2
2 . (43)

This geometry, which has negative spatial curvature is not the locally measured geometry
at finite infinity, which is given instead by (34). Since (34) is not a statistical geometry,
we match (34) to (43) to obtain adressedstatistical geometry. The matching is achieved
in two steps. Firstly we conformally match radial null geodesics of (34) and (43), noting
that null geodesics are unaffected by an overall conformal scaling. This leads to a
relation

dηw =
fwi

1/3dη̄

γ̄ (1−fv)
1/3

(44)

along the geodesics. Secondly, we account for volume and area factors by takingηw in
(34) to be given by the integral of (44).

The wall geometry (34), which may also be written

ds2
fi = −c2dτ 2 +

(1−fv)
2/3 ā2

fwi
2/3

[

dη2
w +η2

wdΩ2
2
]

, (45)

on account of (25), is a local geometry only valid in spatially flat wall regions. We now
use (44) and its integral to extend this metric beyond the wall regions to obtain the
dressed statistical metric

ds2 = −c2dτ 2 +
ā2

γ̄2 dη̄2 +
ā2 (1−fv)

2/3

fwi
2/3

η2
w(η̄, τ)dΩ2

2

= −c2dτ 2 +a2(τ)
[

dη̄2 + r2
w(η̄, τ)dΩ2

2
]

(46)

wherea ≡ γ̄−1ā, and
rw ≡ γ̄ (1−fv)

1/3 fwi
−1/3ηw(η̄, τ). (47)

While (34) represents a local geometry only valid in spatially flat wall regions, the
dressed geometry (46) represents an average effective geometry extended to the cos-
mological scales, parametrized by the volume–average conformal time which satisfies
dη̄ = cdt/ā = cdτ/a. Since the geometry on cosmological scales does not have constant
Gaussian curvature the average metric (46), like (42), is spherically symmetric but not
homogeneous.

Wall observers who try to fit a FLRW model with ‘cosmic time’ synchronous to wall
time,τ , are then effectively fitting the dressed geometry (46), which is the closest thing
there is to a FLRW geometry adapted to the rulers and clocks ofwall observers. The
cosmological parameters we infer from taking averages on scales much larger than the
SHS will not then be the bare parametersH̄, Ω̄M , Ω̄k, andΩ̄

Q
, but instead thedressed

Hubble parameter

H ≡ 1

a

da

dτ
=

1

ā

dā

dτ
− 1

γ̄

dγ̄

dτ
= γ̄H̄ − dγ̄

dt
, (48)
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and thedressed matter density parameter

ΩM = γ̄3Ω̄M . (49)

There is similarly a dressed luminosity distance relation

dL = a0(1+ z)rw, (50)

wherea0 = ā0/γ̄0
, 1+ z ≡ a0/a = (ā0γ̄)/(ā γ̄

0
), and

rw = γ̄
0
(1−fv)

1/3
∫ t

0

t

cdt′

γ̄(t′)(1−fv(t′))1/3ā(t′)
, (51)

We can also define aneffective angular diameter distance, dA, and aneffective comoving
distance, D, to a redshiftz in the standard fashion

dA =
D

1+ z
=

dL

(1+ z)2
. (52)

5.2. Cosmological solutions and their timescape interpretation

We have recently obtained [103] full numerical solutions ofthe Buchert equations
for a matter plus radiation fluid, evolved forward from an early initial time when the
solutions are well approximated by series solutions. E.g.,we begin integrations after the
epoch of primordial nucleosynthesis, atH̄0t ≃ 5× 10−11 when the universe is about a
year old. HereH̄0 = H̄(t0) is the bare (volume-average) Hubble constant. Bare density
parameters (33) for typical solutions are shown in Fig. 4.

While numerical solutions are needed to smoothly match solutions from the radiation-
dominated epoch to later epochs, the full numerical solution15 possesses a tracking limit
with a simple analytic form [14, 16] which is very accurate atepochsz < 10. The
tracking corresponds to the walls expanding as an Einstein–de Sitter model,aw= aw0t,
and the voids as an empty Milne universe,av = av0t, in volume average time, so that
hr = 2/3. The solution to the Buchert equations is then given by

ā =
ā0(3H̄0t)

2/3

2+fv0

[

3fv0H̄0t+(1−fv0)(2+fv0)
]1/3

(53)

fv =
3fv0H̄0t

3fv0H̄0t+(1−fv0)(2+fv0)
. (54)

The density parameters (33) and other quantities for the tracking solution are all
found to have simple analytic forms in terms of the void fraction, fv. For example, the

15 The matter only solution,̄ΩR = 0, is also analytically soluble [14, 16]. However, the tracking limit is
reached to within 1% for redshiftsz <∼ 37. For larger redshiftsz >∼ 50 one needs to include radiation to
obtain accurate solutions. Thus the full numerical solution is actually required in that regime.
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FIGURE 4. Bare density parameters (33) for the full numerical solution, as a function of dressed
redshift z + 1 = γ̄ ā

0
/(γ̄ ā) (and bare redshift̄z + 1 = ā

0
/ā), for the dressed parametersH

0
=

61.7kms−1 Mpc−1, ΩM0
= 0.410. The vertical bar at1094.88 < z < 1100.46 corresponds to the epoch

of decoupling.

bare Hubble parameter, phenomenological lapse function, and dressed Hubble parameter
satisfyH̄ = (2+fv)/(3t), γ̄ = 1

2
(2+fv) andH = (4fv

2 +fv +4)/(6t) respectively. (For
further details, see ref. [16], Appendix B.) Parameters forthe full numerical solution
with radiation differ from those of the tracker solution by0.3% or less at late times.

In the tracker limit the timescape wall time is related to volume average time by

τ = 2
3
t+

4ΩM0

27fv0H̄0

ln

(

1+
9fv0H̄0t

4ΩM0

)

, (55)

whereΩM0 = 1
2
(1−fv0)(2+fv0) is the present epoch dressed matter density. In general

the two parameters will differ substantially at late epochs– in fact by some billions of
years – meaning that the age of the universe is observer–dependent. Nonetheless, we and
all the objects we observe are necessarily in regions of greater than critical density, where
the asymptotic time parameter is wall time,τ . Consequently this radical departure from
conventional assumptions does not lead to any immediate conflict with observation, on
account of our mass–biased view of the universe.

A present epoch large variation of clock rates, of order35%, is the cumulative effect
of an instantaneous relative volume deceleration between walls and voids which can be
defined as [15]

α

c
=

1
[

γ̄2−1
]1/2

dγ̄

dτ
=

d

dt

[

γ̄2 −1
]1/2

. (56)

This is the deceleration that would arise from treatingγ̄ as theγ–factor of a purely
transverse Lorentz boost. The phenomenological lapse function relates to an isotropic
regional volume deceleration, and is not associated with any particular spatial direction,
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which is why the transverse Lorentz boost formula is applied. For the late time tracker
solution

α

c
=

3(1−fv0)(2+fv0)fv(t)H̄(t)

2

√

3fv0H̄0t
[

15fv0H̄0t+4(1−fv0)(2+fv0)
]

. (57)
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FIGURE 5. The magnitude of the relative deceleration scale [15],α: (a) in terms of its absolute value
for redshiftsz < 0.25; (b) in terms of the dimensionless ratiosα/(cH̄) (solid curve) andα/(cH) (dashed
curve) for redshiftsz < 10. In panel (b) just the best fit valuefv0 = 0.695 is shown, whereas in panel (a)
the solid and dashed represent the best fit value and 1σ uncertainties from Table 1. The narrower range
of uncertainties obtained from the Planck data gives a smaller range of uncertainty inα as compared
to earlier work [15]. In panel(a) the horizontal dotted lines indicate the upper and lower bounds of the
empirical acceleration scale of MOND when normalized toH

0
= 61.7±3.0kms−1 Mpc−1.

The relative deceleration parameter is plotted in Fig. 5, inabsolute terms at small
redshifts,z < 0.25, and as a fraction ofcH̄ and cH over a larger range of redshifts.
Althoughα is larger in absolute terms at earlier times, the Hubble expansion is much
larger at early times, so that the ratioα/(cH̄) orα/(cH) is in fact small at large redshifts.
Using the parameter values from Table 1 in Sec. 6.2, we findα0 = 8.6+1.9

−1.5×10−11ms−2

at z = 0, which is well within the weak field regime. Intriguingly, this coincides with
the empirical acceleration scale of MOND,αmond = 1.2+0.3

−0.2 × 10−10h2
75ms−2 [104],

whereh75 = H0/(75kms−1 Mpc−1). For the values ofH0 given in Table 1,αmond =
8.1+3.0

−2.0×10−11ms−2. It has been often observed that the valueαmond is close tocH0 [18].
However,cH0 is actually one order of magnitude larger thanαmond, whereas hereα0 and
αmond agree precisely within the uncertainty. Furthermore,α is a relative deceleration
scale obtained fromderivativesof quantities related to the Hubble parameter, meaning
that one should not simply expect a numerical coincidence based on the value ofH0.
Since the physics of bound systems has not been investigatedin the timescape scenario,
it remains to be seen whether theα0 ≃ αmond coincidence has any deeper significance.
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5.3. Apparent acceleration and Hubble expansion variance

The gradient in gravitational energy and cumulative differences of clock rates between
wall observers and volume average observers has an important consequence for apparent
cosmic acceleration. A volume average isotropic observer,namely one whose local
geometry has the same spatial curvature as the volume average, would infer an effective
bare deceleration parameter̄q ≡ −¨̄a/(H̄

2
ā). Using the tracker solution approximation

q̄ = 2(1−fv)
2 /(2 + fv)

2, which is always positive, meaning that there is no actual
acceleration. However, a wall observer infers adressed deceleration parameter

q =
−1

H2a

d2a

dτ 2
=

−(1−fv)(8fv
3 +39fv

2 −12fv −8)
(

4+fv +4fv
2
)2 , (58)

where again we have used the tracker solution in the last step. At early times, when
fv → 0, both the bare and dressed deceleration parameters take theEinstein–de Sitter
valueq ≃ q̄ ≃ 1

2
. However, unlike the bare parameter which monotonically decreases to

zero, the dressed parameter becomes negative whenfv ≃ 0.59 andq̄ → 0− at late times.
The origin of apparent cosmic acceleration in the timescapescenario differs from that

envisaged in some other interpretations of the Buchert formalism, since|Ω̄
Q
| <∼ 0.042

at all times which means that the backreaction is never largeenough to makēq neg-
ative. Cosmic acceleration is recognized as an apparent effect which arises due to the
cumulative clock rate variance of wall observers relative to volume–average observers.
It becomes significant only when the voids begin to dominate the universe by volume,
which occurs at low redshifts. Since the epoch of onset of apparent acceleration is di-
rectly related to the void fraction,fv, this solves the cosmic coincidence problem.

In addition to apparent cosmic acceleration, another important apparent effect will
arise if one considers scales below the SHS. By any one set of clocks it will appear
that voids expand faster than wall regions. Thus a wall observer will see galaxies on
the far side of a dominant void of diameter∼30h−1Mpc to have a greater local Hubble
parameter than the dressed global averageH0, while galaxies within an ideal wall have
a local Hubble parameter lower thanH0. The local maximum Hubble parameter across
a void seen by a wall observer isHvw0 = 1

av

dav

dτ
= h−1

r H̄ ≃ 3
2
H̄. Furthermore, since the

bare Hubble parameter̄H provides a measure of the uniform quasilocal flow, it must
also be the minimum ‘local’ value within an ideal wall at any epoch. With a dressed
Hubble constantH0 = 61.7± 3.0kms−1 Mpc−1 (see Table 1), we can expect a local
Hubble expansion that varies between a minimum50.1± 1.7kms−1 Mpc−1 within our
local filament (towards the Virgo cluster), and a maximum75.2+2.0

−2.6 kms−1 Mpc−1 across
local voids. Averaging over many structures in spherical shells will reduce the variation,
as will be discussed in Sec. 7.
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6. TIMESCAPE SCENARIO: OBSERVATIONAL TESTS

There are three types of potential cosmological tests of thetimescape scenario:

(i) tests of the average expansion history on scales larger than the SHS, involving
quantities derived from luminosity and angular diameter distance measures;

(ii) tests of cosmological averages on scales larger than the SHS that include contri-
butions from the growth of structures (late epoch integrated Sachs–Wolfe effect,
cosmic shear, weak lensing, redshift space distortions etc);

(iii) tests of the local expansion history below the SHS.

Class (iii) deals with scales which are in the nonlinear regime of perturbation theory
in the standard model, and it is quite possible that this regime needs to be understood
before one can make progress with class (ii). Tests in class (i) will include equivalents
to every cosmological test of the standard FLRW model. We will consider class (i) tests
in Secs. 6.1–6.3, 6.6; tests which require the treatment of redshift space distortions and
therefore fall into class (ii) in Secs. 6.4, 6.5; and finally aclass (iii) test in Sec. 7.

6.1. Luminosity distances: supernovae, gamma ray bursts

The luminosity distance relations (50), (51) have been tested extensively with type
Ia supernovae (SneIa) data [105, 106] and with gamma–ray bursters [107]. In the case
of the supernovae, it turns out that the luminosity distanceis so close to that of the
standard model that the question of whether a better fit is provided by the timescape
model or by the spatially flatΛCDM model depends on the manner in which the data
is reduced [106]. In other words, the differences between the two models are at the
level of current systematic uncertainties in SneIa data reduction – supernovae being
standardizable candles, rather than perfect standard candles.

Two empirical methods commonly used to reduce SNeIa data arethe Multicolor Light
Curve Shape fitter MLCS2k2 [108], and the Spectral Adaptive Light curve Template
SALT/SALT-II methods [109, 110]. MLCS2k2 calibration usesa nearby training set of
SNeIa assuming a close to linear Hubble law, whereas SALT/SALT-II uses the whole
dataset to calibrate empirical light curve parameters. Since SneIa from beyond the range
in which the Hubble law is linear are used, a cosmological model must be assumed16.
We find that the timescape model provides a better fit to SneIa data than the standard
spatially flat ΛCDM model if the MLCS2k2 method is used, while conversely the
standard model provides a better fit if the SALT-II method is used [106]. However, the

16 In refs. [111, 112] it is incorrectly stated that in the SALT/SALT-II methods data is reduced “assuming
the Friedmann equation”. In fact, any cosmological model can be used in applying the SALT/SALT-
II method, and in ref. [106] we have applied it to the timescape model. However, it is true thatvery
oftendata is reduced using the standard cosmology with the Friedmann equation to produce tables of
apparent magnitudes and redshifts. Data reduced in this fashion cannot be used to test non-standard
cosmologies; one must perform a separate SALT/SALT-II datareduction for each nonstandard model
that one investigates.
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Bayesian evidence for these conclusions is not very strong.
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FIGURE 6. Confidence limits [106] for timescape model fits toz ≥ 0.033 cut samples of Gold07
(RV = 3.1) [113], SDSS-II (RV = 2.18) [114], MLCS17 (RV = 1.7) and MLCS31 (RV = 3.1) [115]. In
each case an overall normalization of the Hubble constant from the published dataset is assumed.

One important issue that arises in the timescape model is that the luminosity distance
relation (50), (51) only applies on scales larger than the SHS. In some SneIa compila-
tions data below this scale is included. Such data needs to beremoved when testing the
timescape model. It was found that even when such systematics are accounted for, there
are still marked differences in the cosmological parameters deduced17 depending on ad-
ditional assumptions made in data reduction, as is seen in Fig. 6 in which 4 different
implementations of MLCS2k2 are considered. There is a knowndegeneracy between
intrinsic colour variations in SneIa and reddening by dust in the host galaxy, determined
by the parameterRV . However, the differences seen between the different panels in
Fig. 6 involve more than simply the value of this parameter. Much remains to be done to
resolve these systematic issues.

In recent years correlations of empirical properties of gamma-ray bursters have been
used to determine Hubble diagrams at larger redshifts than those probed by SneIa [116]–
[119]. A recent analysis of 69 GRBs [107] found that the timescape model gave a better
fit than the spatially flatΛCDM model, but not by a margin that is statistically significant.
Further improvement in understanding of the systematic issues is required before GRB
can provide tight constraints.

17 It should be noted that in the MLCS method the value ofH
0

depends on an overall calibration of the
distance scale; e.g., from Cepheid distances. There is therefore a freedom to shift the contours along the
H

0
axis in Fig. 6 depending on that normalization. The relativevalue ofH

0
for different fits is more

important than the absolute values.
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6.2. Cosmic microwave background anisotropies

A complete analysis of the CMB anisotropy spectrum in the timescape cosmol-
ogy is highly nontrivial, since the standard model analysisincludes the late time in-
tegrated Sachs-Wolfe effect, which requires a from first principles reinvestigation in the
timescape model. While such an analysis has not yet been completed, we are nonetheless
able to compute the angular diameter distance of the sound horizon at any epoch, and
to independently compute the epochs of matter–radiation decoupling, photon–electron
decoupling and the baryon drag epoch, and substantial constraints on model parameters
[103] can already be made using the Planck data [1].

Since the early universe is extremely close to being spatially homogeneous and
isotropic, in the timescape model there is no change to physical processes at those
epochs, but rather in the calibration of parameters. In our case, there are two sets of
observers – wall observers such as ourselves, and the volumeaverage observers to whom
the average cosmological parameters (33) are most directlyrelated. Computations are
most readily performed from the point of view of the volume-average observers, if we
account for the fact that they determine a cooler CMB temperature than us at the present
epoch. There is a focusing and defocusing of light between walls and voids, and the
number density of CMB photons in the negatively curved voidsis less than in the walls.

The volume-average CMB temperature,T̄ , is related to wall temperature,T , by

T̄ = γ̄−1T , (59)

at any epoch. The difference is negligible at early times when γ̄ ≃ 1; however, at the
present epoch̄T0 = γ̄−1

0
2.275K is typically 35% lower than the temperature we measure.

The bare baryon number density is then given by

n̄
B

=
3H̄

2

0
Ω̄

B0

8πGm
p

(

T̄

T̄0

)3

, (60)

whereΩ̄
B0

is the present epoch bare baryon matter density parameter and m
p

is the
proton mass.

The standard analysis of early universe physics applies when calibrated in terms
of volume-average parameters. One very important consequence of this is that the
baryon–to–photon ratio,ηBγ , is recalibrated as compared to the standard cosmology,
and we can potentially obtain a fit with no primordial lithiumabundance anomaly
[120]. In particular, timescape fits have been performed [13, 103, 105] for the range
ηBγ = (5.1±0.5)×10−10 favoured by constraints from light element abundances alone18

[121, 122].

18 A higher value is assumed inΛCDM fits of CMB data, giving rise to the lithium abundance anomaly.
While there is an intrinsic tension in the light element databetween abundances of deuterium and lithium-
7 [122], for the range ofηBγ we adopt here all abundances fall within 2σ.
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FIGURE 7. Contours of (h, ΩM0
) parameter values for which the angular diameter of the sound horizon

at decoupling matches the angular scaleθ∗ = 0.0104139 [1] to within ±2%,±4% and±6% are shown in
blue (upper left to lower right). Contours of parameter values for which the present-day effective comoving
scale of the sound horizon at the baryon drag epoch matches the value98.88h−1Mpc [1] are shown in
red (lower left to upper right). In each case the baryon–to–photon ratio is assumed to be in the range
4.6 < 1010ηBγ < 5.6, for which there is no primordial lithium abundance anomaly[120].

The volume–average sound horizon scale at any epoch is givenby

D̄s =
ā(t)

ā0

c√
3

∫ xdec

0

dx

x2H̄
√

1+0.75x Ω̄
B0

/Ω̄γ0

, (61)

whereΩ̄γ0 = 2g−1
∗ Ω̄

R0
is the present epoch volume-average photon density parameter,

g∗ = 3.36 is the relative degeneracy factor of relativistic species,xdec = z̄
dec

+1≡ γ̄
0
(1+

z
dec

)/γ̄
dec

is the value of̄a/ā
0

at photon–electron decoupling, andΩ̄
B0

= ηBγmp
n̄γ0 is

fixed in terms ofm
p
, ηBγ and the present epoch volume–average photon density,n̄γ0.

We compute the comoving scale of the sound horizon at photon–electron decoupling,
D̄s(tdec), from (61), and its angular diameter distance,dAdec, from (50)–(52) using the
numerical solutions to (30), (31) at the same time as solvingthe Peebles equation to
determine the ionization fraction [103]. The angular scaleθ∗ = D̄s(tdec)/dAdec can then
be constrained to match the measured value [1] to any desiredaccuracy.

For BAO measurements, the relevant comoving size of the sound horizon is that at the
baryon drag epoch, which occurs att = tdrag whencτ

d
≃ 1, where

τ
d
(t) ≡

∫ t0

t

τ̇
o
dt

āR
=
∫ t0

t

σ
T
n̄

e
dt

āR
(62)

is the drag depth,τ
o

is the optical depth,σ
T

is the Thomson scattering cross-section,
n̄

e
= n̄

p
is the bare free electron density, andR ≡ 0.75ρB/ργ = 0.75(Ω̄

B0
ā)/(Ω̄γ0ā0

).
Since we are not yet able to constrain the BAO scale directly from galaxy clustering
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TABLE 1. Estimates of the cosmological parameters of the timescape model [103]
obtained from a±2% match to the angular scale,θ∗, of the sound horizon at decoupling;
and to a±6% match to the effective comoving scale,rdrag, of the sound horizon at
the baryon drag epoch, using recent values from the Planck satellite analysis [1]. A
tighter constraint is applied toθ∗ as it is purely geometrical, whereas the calibration of
rdrag involves additional uncertainty since the ratio of nonbaryonic to baryonic matter
densities may differ between the timescape andΛCDM models.

Parameter Range

Present void fraction fv0 0.695+0.041
−0.051

Bare Hubble constant H̄
0

50.1±1.7kms−1 Mpc−1

Dressed Hubble constant H
0

61.7±3.0kms−1 Mpc−1

Local maximum Hubble constant Hvw0 75.2+2.0
−2.6 kms−1 Mpc−1

Present phenomenological lapse function γ̄
0

1.348+0.021
−0.025

Dressed matter density parameter ΩM0
0.41+0.06

−0.05

Dressed baryon density parameter ΩB0
0.074+0.013

−0.011

Bare matter density parameter Ω̄M0
0.167+0.036

−0.037

Bare baryon density parameter Ω̄
B0

0.030+0.007
−0.005

Bare radiation density parameter Ω̄
R0

(

5.00+0.56
−0.48

)

×10−5

Bare curvature parameter Ω̄
k0

0.862+0.024
−0.032

Bare backreaction parameter Ω̄Q0
−0.0293+0.0033

−0.0036

Nonbaryonic/baryonic matter densities ratiōΩ
C0

/Ω̄
B0

4.6+2.5
−2.1

Age of universe (galaxy/wall observer) τ0 14.2±0.5Gyr
Age of universe (volume-average observer)t

0
17.5±0.6Gyr

Apparent acceleration onset redshift zacc 0.46+0.26
−0.25

statistics, we determinēDs(tdrag) at the same time as other numerical integrations, and
constrain it using Planck satellite estimates [1].

In Fig. 7 we display two sets of contours in the (H0, ΩM0) parameter space obtained
in ref. [103]: firstly, parameters which match the acoustic scale of the sound horizon
θ∗ = 0.0104139 [1] to within ±2%, ±4% or ±6%; and secondly parameters which
similarly match the present effective comoving scale of thesound horizon at the baryon
drag epoch as determined by the standardΛCDM model analysis of the Planck data,
namely19 98.88h−1Mpc [1].

The full numerical solutions [103] provide tighter constraints than earlier analyses
[105], leading to the parameters listed20 in Table 1. Particular parameters can be ruled
out on the basis that matter–radiation equality must occur before last scattering, so that
Ω̄M/Ω̄R > 1 at zdec. In particular, we can rule out a dressed matter density parameter

19 Since the Hubble constantH
0

= 67.11kms−1 Mpc−1 determined from the Planck satellite is a fit to
theΛCDM model, any effective present comoving scale must be given in unitsh−1Mpc, as the timescape
model will generally yield a different value forH

0
.

20 A recent phenomenologically motivated analysis [123] using a completely different approach produces
a void fraction which agrees with that found here.
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ΩM0 < 0.2 if H0 < 65kms−1 Mpc−1. If we compare Fig. 6 we see that the SneIa
data reduction methods used in the Gold07 [113] and SDSS-II [114] samples remain
consistent with the new constraints, whereas those of ref. [115] do not.

A detailed treatment of the acoustic peaks in the CMB data mayof course still
challenge the timescape cosmology, as it will certainly further tighten the constraints.
Work on this problem, which requires a revisiting of CMB dataanalysis from first
principles, is in progress.

6.3. The effective ‘equation of state’

A direct method for comparing the expansion history with those of homogeneous
models with dark energy, is to observe that for a standard spatially flat cosmology with
dark energy obeying an equation of statePD = w(z)ρD, the quantity

H0D

c
=
∫ z

0

dz′
[

ΩM0(1+ z′)3 +ΩD0 exp
(

3
∫ z′

0
(1+w(z′′))dz′′

1+z′′

)]1/2
, (63)

does not depend on the value of the Hubble constant,H0, but only directly onΩM0 =
1−ΩD0. Since the best-fit values ofH0 are potentially different for different models, a
comparison ofH0D/c curves as a function of redshift for the timescape model versus the
ΛCDM model gives a good indication of where the largest differences can be expected,
independently of the value ofH0. Such a comparison is made in Fig. 8.

As the redshift range changes the timescape model interpolates betweenΛCDM
models with different values of (ΩM0,ΩΛ0). If we consider the timescape model that is a
best fit to the Planck data, then for the largest redshifts50 <∼ z <∼ 1100, DTS is essentially
indistinguishable from theDΛCDM for model (i) with parameter values(ΩM0,ΩΛ0) =
(0.3175,0.6825) which best-fit the Planck data [1]. By contrast over the range2 <∼ z <∼ 6
a close fit is provided by model (ii) with(ΩM0,ΩΛ0) = (0.35,0.65). For the closest
redshifts,z < 1.5, DTS becomes indistinguishable fromDΛCDM for model (iii) with
(ΩM0,ΩΛ0) = (0.338,0.721). It is this feature which makes it difficult to distinguish the
timescape model from theΛCDM model on the basis of SneIa data alone. However,
with complementary tests over the full range of redshifts the expansion histories should
be distinguishable.

Fig. 8 shows just one value offv0. If we compare Fig. 2 of Ref. [16], we see that
with fv0 = 0.76, DTS similarly interpolates betweenΛCDM models with(ΩM0,ΩΛ0) =
(0.34,0.64) at low redshift and(ΩM0,ΩΛ0) = (0.25,0.75) at high redshift. I.e., as the
present epoch void fraction is increased the width of the range of equivalentΛCDM
ΩM0 values increases, as well as the overall values being less.

The shapes of theH0D/c curves depicted in Fig. 8 represent the actual observable
quantity one is measuring in tests that some researchers loosely refer to as ‘measuring
the equation of state’. For spatially flat dark energy models, with H0D/c given by (63),
one finds that the functionw(z) appearing in the fluid equation of statePD = w(z)ρD is
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FIGURE 8. The effective comoving distancec−1H0D(z) is plotted for the timescape model which best
fits Planck [1], withfv0 = 0.695 (solid line) [103]; and for various spatially flatΛCDM models (dashed
lines). The parameters for the dashed lines are (i)ΩM0

= 0.3175 (best-fitΛCDM model to Planck [1]); (ii)
ΩM0

= 0.35; (iii) ΩM0
= 0.388. Panel(a) shows the redshift rangez < 6, with an inset forz < 1.5, which

is the range tested by SneIa data. Panel(b) shows the rangez < 1100 to the surface of last scattering,
tested by Planck.

related to the first and second derivatives of (63) by

w(z) =
2
3
(1+ z)D′−1D′′ +1

ΩM0(1+ z)3H2
0
D′2c−2−1

(64)

where prime denotes a derivative with respect toz. Such a relation can be applied
to observed distance measurements, regardless of whether the underlying cosmology
has dark energy or not. Since it involves first and second derivatives of the observed
quantities, it is actually much more difficult to determine observationally than directly
fitting c−1H0D(z).

The equivalent of the equation of state,w(z), for the timescape model is plotted in
Fig. 9. The fact thatw(z) is undefined at a particular redshift and changes sign through
±∞ simply reflects the fact that in (64) we are dividing by a quantity which goes to
zero for the timescape model, even though the underlying curve of Fig. 8 is smooth. As
we are not dealing with a dark energy fluid in the timescape model, w(z) simply has no
physical meaning.

Nonetheless, phenomenologically the results do agree withthe usual inferences about
w(z) for fits of standard dark energy cosmologies to SneIa data. Inparticular, for low
redshifts the average value ofw(z) is close to -1, but it eventually it crosses ‘the phantom
divide’ tow(z) <−1. For fundamental homogeneous dark energy fluids,w <−1 signals
a violation of the dominant energy condition and with that a breakdown of standard
laws of physics. Here it is simply a consequence of an inappropriate parametrization of
the expansion history of a universe which does not evolve according to the Friedmann
equation.

The redshift at which ‘w = −1 is crossed’ in the timescape model depends on the
value of ΩM0 that is assumed in the FLRW style analysis. For the canonicalmodel
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FIGURE 9. The artificial equivalent of an equation of state constructed using the effective comoving
distance (64), plotted for the timescape tracker solution with best-fit valuefv0 = 0.695, and two different
values ofΩM0

: (a) the canonical dressed valueΩM0
= 1

2
(1− fv0)(2+ fv0) = 0.41; (b) ΩM0

= 0.3175.

of Fig. 9(a), withΩM0 = 0.41 one finds that ‘w = −1 is crossed’ atz = 0.29, with
ΩM0 = 0.388 ‘w = −1 is crossed’ atz = 0.40, and withΩM0 = 0.3175 (the ΛCDM
value from Planck [1] in Fig. 9(b)), ‘w = −1 is crossed’ atz = 1.15. For the same value
of fv0, taking a lower value ofΩM0 in a FLRW–style analysis leads tow(z) being closer
to w = −1 for a larger range of redshifts. Thus if a timescape model luminosity distance
relation is correct then one can easily be led to different conclusions about ‘dynamical
dark energy’ [124, 125] over the range of redshifts,z < 1.5, probed by SneIa, depending
on prior assumptions about the value ofΩM0 from other datasets.

What appears as anΩM0 dependent varyingw(z) from the FLRW perspective actu-
ally reflects the fact that the effective energy density assumed in the standard analysis is
not scaling as̄ΩM ∝ (1+ z)3, as would be the case for any homogeneous model. Con-
sequently the timescape model simply lies outside the classof models typically contem-
plated for dark energy diagnostics [126]–[128]. For example, theOm(z) diagnostic of
Sahni, Shafieloo and Starobinsky [128, 129] is designed to bea constant,ΩM0, at all
redshifts for a spatially flat FLRW model, but to differ for otherw(z) functions. One can
compute a formula for theOm(z) diagnostic [16], although this is not particularly use-
ful since the timescape model has a singularw(z) and lies outside the class of empirical
functions usually used to analyse the diagnostic. Existinganalyses can only be applied
in asymptotic limits such asz → 0, when [16]

Om(0) = 2
3
H ′|0 =

2(8f 3
v0−3f 2

v0 +4)(2+fv0)

(4f 2
v0 +fv0 +4)2

(65)

Forfv0 = 0.695+0.041
−0.051, Om(0) = 0.643+0.008

−0.004. In fact, this coincides with the intercept of
Fig. 3 in ref. [129], determined from SneIa, BAO and CMB data.
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6.4. The Alcock–Paczýnski test and baryon acoustic oscillations

The BAO scale provides a convenient standard ruler which canbe detected both in the
radial (z) and transverse directions (θ) leading to a determination of the quantity

F (z) ≡
∣

∣

∣

∣

∣

δz

δθ

∣

∣

∣

∣

∣

=
(1+ z)H(z)dA(z)

c
=

H(z)D(z)

c
(66)

related to the Alcock–Paczyński test21 [130]. The BAO scale has now been detected at
several redshifts in galaxy clustering statistics [131, 132] and the Lyman–α forest [133],
and provide a promising geometric test of the expansion history.
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FIGURE 10. (a) F (z) = c−1H(z)D(z); (b) H(z)/H
0
. In each we display curves for the timescape

model withfv0 = 0.695 (solid line), and comparison spatially flatΛCDM models (dashed lines): for the
3 values ofΩM0

shown in Fig. 8, and also the valueΩM0
= 0.27 used in the fits of [131]-[133]. In both

panels theΛCDM curves are arranged from bottom to top by the values ofΩM0
= 0.27, 0.3175, 0.35,

0.388.

In Fig. 10 we show the test functionF = HD/c and also the functionH(z)/H0
(with dressed Hubble parameter) for timescape andΛCDM examples, over the range
of redshifts tested to date [131]–[133]. In fact, at the effective redshifts tested in the
WiggleZ survey, forfv0 = 0.695 the timescape valuesF (0.21) = 0.246, F (0.41) =
0.496, F (0.60) = 0.776, F (0.78) = 1.067 all agree with the Alcock–Paczyński fits of
this quantity in Table 1 of ref. [131], within uncertainties. While this is encouraging, the
methods of analysis used for the BAO scale assume the standard model, both in applying
Fourier space techniques, and in treating redshift space distortions. These aspects of the
data analysis need to be revisited from first principles in the timescape model before we
can be completely confident in using constraints from these tests.

From Fig. 10(a) we see that the expectations forH(z)D(z)/c for the timescape and
ΛCDM models are very close for most of the redshift range currently considered. A

21 Alcock and Paczýnski [130] originally defined their test statistic asf
AP

= z−1F (z). SinceD(z) → 0
asz → 0, the original Alcock–Paczýnski test function is actually the derivativeF ′(z) in the limit z → 0,
rather thanF (z). As seen in Fig. 8 of ref. [16] this statistic has a greater power to discriminate between
the timescape andΛCDM models. However, taking a derivative with respect toz requires better quality
data, and for the time being one is limited to testing quantities such as (66) orD

V
= (zD2H−1)1/3.
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FIGURE 11. (a) The (in)homogeneity test functionB(z) = [c−1HD′]2−1 is plotted for the timescape
tracker solution withfv0 = 0.695 (solid line), and compared to equivalent curvesB = Ωk0

(c−1H
0
D)2

for two ΛCDM models: (i) ΩM0
= 0.32, Ω

Λ0
= 0.67, Ωk0

= 0.01; (ii) ΩM0
= 0.32, Ω

Λ0
= 0.69,

Ωk0
= −0.01. (b) The (in)homogeneity test functionC(z) is plotted for thefv0 = 0.695 tracker solution.

more discriminating test can in principle be obtained by dividing the curve of Fig. 10(a)
by that of Fig. 8 to produce the quantityH(z)/H0 shown in Fig. 10(b). The most notable
feature is that the slope ofH(z)/H0 is less than in theΛCDM cases, as is to be expected
for a model whose (dressed) deceleration parameter varies more slowly than forΛCDM.
Two different measurements are required to produce this information, however, both the
BAO measurement to determineH(z)D(z)/c, and luminosity distance measurements
to determineH0D(z)/c. In addition to examining the model–dependent issues in BAO
measurements, it also necessitates sorting out the systematics of SNeIa that currently
limit model comparison, as discussed in Sec. 6.1.

6.5. Test of (in)homogeneity

Clarkson, Bassett and Lu [134] have constructed a test statistic based on the obser-
vation that for homogeneous, isotropic models which obey the Friedmann equation, the
present epoch curvature parameter, a constant, may be written as

Ωk0 =
[c−1H(z)D′(z)]2−1

[c−1H0D(z)]2
(67)

for all z, irrespective of the dark energy model or any other model parameters. Conse-
quently, taking a further derivative, the quantity

C(z) ≡ 1+ c−2H2(DD′′−D′2)+ c−2HH ′DD′ (68)

must be zero for all redshifts for any FLRW geometry. A deviation of C(z) from zero,
or of (67) from a constant value, would therefore mean that the assumption of FLRW
evolution is violated.

The functions (67) and (68) are computed in ref. [16]. It is more feasible to fit (67)
than which involves one derivative less of redshift. In Fig.11 we show bothC(z), and
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also the functionB(z) = [c−1HD′]2 − 1 from the numerator of (67) for the timescape
model, as compared to twoΛCDM models with a small amount of spatial curvature.
A spatially flat FLRW model would haveB(z) ≡ 0. The timescapeB(z) function is
easily distinguishable from the FLRW cases. However, this requires better quality data
than is currently available. As noted in Sec. 6.4, present BAO data is able to constraint
H(z)D(z) but not yetH(z)D′(z). Therefore, while the Clarkson, Bassett and Lu test
[134] is a powerful one, it may be some time before it can be implemented.

6.6. Time drift of cosmological redshifts

As noted in Sec. 6.4, the combined measurements ofH0D(z)/c andH(z)D(z)/c
provide a means to determineH(z) which at present is subject to model dependencies
and many systematic uncertainties. A model independent determination ofH(z), which
is also needed to determine the quantityB(z) in the (in)homogeneity test of Sec. 6.5,
is provided by a measurement of the real time variation of theredshifts of distant
sources over a long time period [135]–[137]. Although extremely challenging, such a
measurement may be possible over a 20 year period by precision measurements of the
Lyman-α forest in the redshift range2 < z < 5 with the next generation of Extremely
Large Telescopes [138, 139].

In ref. [16] an analytic expression forH−1
0

dz
dτ

is determined, the derivative being with
respect to wall time for observers in galaxies. The resulting function is displayed in
Fig. 12 for the timescape model withfv0 = 0.695, and is compared to those of three
spatially flatΛCDM models. The timescape model curve is considerably flatter than
those of theΛCDM models. This is a consequence of the magnitude of the apparent
acceleration being considerably smaller in the timescape model, as compared to the
magnitude of the acceleration inΛCDM models. For cosmologies with no apparent
acceleration,H−1

0
dz
dτ

is always negative. If there is cosmic acceleration at late epochs,
real or apparent, thenH−1

0
dz
dτ

will become positive at low redshifts, though at a somewhat
larger redshift than of the onset of (apparent) acceleration. Forfv0 = 0.695, H−1

0
dz
dτ

> 0
for 0 < z < 0.946, but with a tiny amplitude compared to theΛCDM models.
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FIGURE 12. The functionH−1
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dτ for the timescape model withfv0 = 0.695 (solid line) is compared

to H−1
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dz
dτ for the three spatially flatΛCDM models shown in Fig. 8 (dashed lines).
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The very clear differences in redshift time drift for low redshiftsz <∼ 2 could lead to a
decisive test of the timescape model versusΛCDM models. Observationally, however, it
is expected that measurements will be best determined for sources in the Lymanα forest
in the range,2 <∼ z <∼ 5. At such redshifts the magnitude of the drift is somewhat more
pronounced in the case of theΛCDM models. For a source atz = 4, over a period
of δτ = 10 years we would haveδz = −7.2× 10−10 for the timescape model with
fv0 = 0.695 andH0 = 61.7kms−1 Mpc−1. By comparison, for a spatially flatΛCDM
model with H0 = 67.1kms−1 Mpc−1 and ΩM0 we haveδz = −9.3 × 10−10 for the
same source over 10 years. Different values of (H0, ΩM0) can produce degeneracies at
particular redshifts. However, a large sample of sources over the whole range2 <∼ z <∼ 5

should be able to constrain the shape of theH−1
0

dz
dτ

curve sufficiently to determineH(z)
in that range, and to distinguish the timescape andΛCDM cosmologies.

7. VARIATION OF THE HUBBLE EXPANSION

Potentially the most interesting tests of the timescape model are those below the SHS,
since here we should find variation of the Hubble expansion but with a scale–dependent
amplitude constrained by the uniform quasilocal Hubble flowcondition.

7.1. Problems and puzzles of bulk flows

Traditionally astronomers have almost always analysed thevariation of the Hubble
expansion in terms ofpeculiar velocities, namely as deviations from a linear Hubble law

vpec = cz−H0r (69)

wherer is an appropriate distance measure. Such a definition implicitly makes a strong
assumption about spacetime geometry: on the scales of interest spatial curvature can be
neglected and the redshift associated with the Hubble expansion can be treated in the
manner of a recession velocity as in special relativity. A linear Hubble law is observed
to hold out to redshiftsz∼0.1, though on very small scalesz <∼ 0.02 below the SHS the
Hubble flow enters into a ‘nonlinear regime’.

For some decades astronomers have sought the scale on which peculiar velocities
converge to the flow indicated by the CMB temperature dipole.The dipole is usu-
ally assumed to arise solely from a special relativistic boost, and in addition to the
known motion of our Sun with respect to the barycentre of the Local Group (LG) of
galaxies, this suggests that the LG itself is moving at635± 38kms−1 in a direction
(ℓ,b) = (276.4◦,29.3◦)± 3.2◦ in galactic coordinates. This direction defines acluster-
ing dipole, namely a direction in which it is expected we should find an overdensity
which gravitationally attracts the LG, galaxies between the LG and the overdensity and
galaxies on the other side of the overdensity.

There is noa priori reason why such Newtonian concepts of gravitational attraction
should persist on very large scales on which space is expanding. Nonetheless, even
though the very local Hubble flow on scales of tens of megaparsecs is nonlinear, a
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linear Newtonian approximation is assumed to apply at larger scales, and the amplitude
of the peculiar velocities of galaxies is estimated in a linearly perturbed FLRW model
according to [140, 141]

v(r) =
H0Ω

0.55
M0

4π

∫

d3
r
′ δm(r′)

(r′−r)

|r′−r|3 (70)

whereδm(r) = (ρ− ρ̄)/ρ̄ is the density contrast.
The search for convergence of bulk flows within this framework has a three decade

history summarized in refs. [142, 143]. Contrary to earlierinvestigations [144], Lavaux
et al. [142] failed to find convergence in the 2MASS survey on scales up to 120h−1Mpc:
less than half the amplitude was generated on scales40h−1Mpc, and whereas most of
the amplitude was generated within 120h−1Mpc the direction did not agree. Bilickiet
al. [143] analysed a larger sample in the 2MASS survey using a different methodology
and failed to find convergence within 150h−1Mpc. Some studies have found persistent
bulk flows extending to very large scales [145]–[148], and their consistency with the
ΛCDM model is much debated [149]–[151].

Recent attention has focused on the influence of the Shapley Concentration on our
local motion, as this is a particularly dense concentrationof galaxies in the clustering
dipole direction. However, Shapley is at a distance of138h−1Mpc, well beyond the SHS,
and an influence at our location would represent an unusuallylarge scale correlation.
A very recent study [152] using SneIa fails to find a significant turnover in peculiar
velocities on the other side of the Shapley Concentration, casting further doubt on the
attractor model.

7.2. Model independent analysis of Hubble expansion variation

In general relativity it is well-known that every exact dustsolution of the Einstein
equations which is not spatially homogeneous and isotropicexhibits differential expan-
sion of space. Furthermore, by the SEP the concept of a special relativistic boost applies
only in a LIF in the neighbourhood of a point, and a general expansion of space can-
not always be reduced to simple boosts. Consequently the conceptual framework we
have just described in Sec. 7.1 represents an extrapolationof Newtonian concepts into a
regime in which they cannot obviously be expected to be valid.

In the timescape scenario the greatest variations in spatial curvature occur below
the SHS, and a spatially flat geometry cannot be assumed to apply at every scale. In
recent work [153] we have analysed the variation of the Hubble expansion in a model
independent manner, with no geometrical assumptions. We simply assumed that a linear
average Hubble law exists in the leading approximation, andthen determined the best-fit
Hubble law in independent spherical shells, even in the regime of the nonlinear Hubble
flow. The conceptual picture behind such averages is illustrated in Fig. 13.

Null geodesics (indicated by arrowed lines converging on a centre in Fig. 13) which
traverse scales larger than the SHS experience an average expansion withcz/r defining
a Hubble constant equal to that determined in spherical shells whose inner boundary
is at least a few times larger than the largest typical nonlinear structures. Below the
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FIGURE 13. Schematic diagram of spherical averaging. The universe is described as ensemble of
filaments, walls and voids: expanding regions of different density which have decelerated by different
amounts and therefore experience different local expansion rates at the present epoch. If one averagescz/r
in spherical shells (dotted lines) about a point then once the shells are a few times larger than the typical
nonlinear structures [2]–[4], an average Hubble law with small statistical scatter is obtained, whereas there
are considerable deviations for shells on scales comparable to the typical nonlinear structures.

SHS null geodesics which traverse a single void will experience a higher expansion
rate than those that only traverse wall regions. We thus expect considerable variation
in the average values ofcz/r for sources in shells whose diameters are comparable to
the largest typical nonlinear structures. Since the largest typical nonlinear structures are
∼30h−1Mpc diameter voids [2]–[3], and since these occupy a greatervolume of space
than walls and filaments, we expect that a spherical average of cz/r should in general
produce larger than average values of the Hubble ‘constant’on scales below the SHS.
Furthermore, if the results of [31] are correct then an asymptotic average value ofH0
should emerge on70h−1–100h−1Mpc scales.

Finally, there is the question of the choice of cosmic rest frame. Since space is differ-
entially expanding below the SHS (as measured by one set of clocks), the expansion law
can be expected to differ from that of a spatially flat geometry with rigid expansion plus
local boosts. In the timescape scenario thefinite infinity scale defines the appropriate
notion of a rest frame (the CIR), and for bound systems this should be a scale on which
space is marginally expanding bounding a critical density volume. In addition to deter-
mining averages in the conventional CMB rest frame, we have also performed averages
in the rest frames of the Local Group and the Local Sheet22 (LS) [154].

In ref. [153] we analysed variation of the Hubble flow in the COMPOSITE sample
of 4,534 galaxies compiled by Watkins, Feldman and Hudson [145, 146]. Spherical
averages were computed in independent shells23 with a minimum width of12.5h−1Mpc.

22 Since our galaxy is in a thin filamentary sheet in a local environment dominated by voids [154], the
finite infinity scale should be relatively near. For rich clusters of galaxies the scale is larger.
23 In earlier work, Li and Schwarz [155] performed a similar analysis of a subset of 54 distances from the
Hubble Space Telescope (HST) Key project data, in the CMB rest frame only. With a very small sample
they divided it into an inner and outer shell, with a moving boundary, producing a correlated average.
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We minimized the sumχ2 =
∑

i

[

σ−1
i (ri− czi/H)

]2
with respect toH, wherezi, ri and

σi denote individual redshifts, distances and distance uncertainties (in unitsh−1Mpc)
respectively. This leads to a value of the Hubble constant inthesth shell,

Hs =

(

Ns
∑

i=1

(czi)
2

σ2
i

)(

Ns
∑

i=1

cziri

σ2
i

)−1

. (71)

Results for the fractional variation,δHs =
(

Hs − H̄0

)

/H̄0, are plotted in Fig. 14 in

the CMB and LG frames. HerēH0 is the asymptotic value of the Hubble constant,
determined from all the data in the sample beyondr > 156.25h−1Mpc. Results in the
LS frame values are very similar to the LG frame.

(a) (b)

FIGURE 14. Fractional variation in the Hubble flowδHs =
(

Hs − H̄
0

)

/H̄
0

in spherical shells as a
function of weighted mean shell distance:(a) CMB frame;(b) LG frame. In each case the filled data points
represent one choice of shells boundaries, and the open datapoints a second choice of shell boundaries.
Each filled (open) data point is thus correlated to the two nearest neighbour open (filled) data points.

We see that the spherically averaged Hubble law is significantly more uniform in the
LG frame than in the CMB frame. In the inner shells the Bayesian evidence in favour
of the LG frame expansion being more uniform is very very strong with lnB > 10
[153]. If the cosmic rest frame is defined as the one in which the Hubble expansion is
most uniform, with minimal statistical variations, then from our vantage point the LG
frame is much closer to having this character. Such a result is completely unexpected
and surprising from the viewpoint of the standard cosmology, but does accord with the
expectation of the timescape scenario that the local finite infinity scale should define the
standard of rest for observers within a bound system. The frame of minimum Hubble
expansion variance still remains to be determined, and thismay still differ somewhat
from the LG frame.

As discussed in ref. [153], if one performs a random boost on each data point, it
involves replacingczi → cz′i = czi +v cosφi, whereφi is the angle on the sky between the
data point and the boost direction. In a dataset with uniformsky coverage, terms linear
in the boost velocity will be roughly self-canceling insidethe sums in (71), leaving a
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leading order average difference

H ′
s−Hs∼

v2

2H0〈r2
i 〉

. (72)

The differences between panels (a) and (b) in Fig. 14 do indeed appear to have this
character. This suggests that the persistent large scale bulk flows seen in the standard
peculiar velocity framework may arise largely as a systematic error from choosing a
cosmic rest frame which has a significant boost with respect to the frame in which
statistical variations of the Hubble expansion are minimal.

An exception to the rule that|δHs| is smaller in the LG frame than in the CMB frame
does occur for shells roughly in the range40h−1 <∼ r <∼ 60h−1Mpc. It turns out that
there is also a LG frame dipole associated with structures inthis range. In ref. [153] in
addition to studying radial spherical variations we also investigated angular variations
by adapting a Gaussian window averaging method of McClure and Dyer [156]. This
established that a dipole is the strongest angular multipole feature in both frames, but
particularly in the LG frame, until one reaches distancesr >∼ 90h−1Mpc. We then fitted
a simple dipole Hubble law

cz

r
= Hd +β cosφ, (73)

in the same independent spherical shells used for the spherical averages. This gave a
dipole amplitude,β, shown in Fig. 15.
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FIGURE 15. The slopeβ of the linear dipole relationcz/r = Hd +β cosφ, plotted in the same shells
as Fig. 14 [153] in the CMB and LG rest frames.

The magnitudes of the dipoles in the two frames coincide in the shell with mean
radius r̄ = 30.2h−1Mpc, and also in the shell with̄r = 61.7h−1Mpc, but the dipoles
exhibit very different behaviour for the shells in between.In particular, the CMB frame
dipole magnitude reaches a minimum ofβ = (2.6±0.6)hkms−1 Mpc−1 (close to zero)
at r̄ = 44.5h−1Mpc, whereas for the LG frameβ = (14.9± 0.8)hkms−1 Mpc−1 in the
same shell. The CMB frame dipole then increases while the LG frame dipole decreases.
The dipole directions for independent shells within each frame are strongly consistent in
the range37.5h−1 ≤ r≤ 62.5h−1Mpc. Beyond̄r = 61.7h−1Mpc, the CMB frame dipole
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maintains statistically significant residual levels, while the LG frame dipole drops to a
level statistically consistent with zero around90h−1–100h−1Mpc24.

It therefore appears that the boost to the CMB frame is largely compensating for the
effect of structures in the range37.5h−1 ≤ r ≤ 62.5h−1Mpc, which are also responsible
for monopole variations of the Hubble ‘constant’ in the LG frame shown in Fig. 14.
The results are consistent with a foreground density gradient producing an anisotropy
in the distance–redshift relation which is almost, but not exactly, of the same nature
as the Doppler shift produced by a Lorentz boost. Rather thanthinking purely about
overdensities as in the attractor model, what is important below the SHS are the peculiar
foregrounds created by voids as well as by superclusters. Those directions in which
void–filled foregrounds are opposed to wall regions on the opposite side of the sky will
lead to the strongest density gradients. Relevant structures are identified in Sec. IIIC of
ref. [153].

7.3. Origin of the CMB dipole

It was further established in ref. [153] that the Gaussian window averaged sky map
of angular Hubble flow variation in the LG frame has a correlation coefficient of−0.92
with the map that would be produced by the residual CMB temperature dipole in the
LG rest frame. The correlation coefficient is insensitive tothe choice of the Gaussian
window smoothing angle in the range15◦ < σθ < 40◦.

The strong correlation of the two sky maps is consistent withthe hypothesis that
the CMB temperature dipole is only partly due to a Lorentz boost. The portion usually
attributed to the motion of the LG might be largely due to the differential expansion of
space produced by peculiar foregrounds below the SHS. In theLG frame the residual
temperature dipole isδT =±(5.77±0.36)mK. For theΛCDM model with Planck best-
fit parameters, this would be produced by an anisotropyδD = ∓(0.30±0.02)h−1Mpc
in the distance to the surface of last scattering. The value for the timescape model is
essentially the same. If produced by the differential expansion of foreground structures
within a mean distance of60h−1Mpc, this amounts to a 0.5% anisotropy on these scales,
which is entirely plausible25.

There is differential expansion of space below the SHS at alllocations, of a magnitude
bounded by the growth of structure from the initial perturbations at the surface of last
scattering. CMB photons which traverse large distances seean average of all of these
variations, producing an average distance to the last scattering surface. However, the
last stretch of the journey produces slight differences that depend on peculiar density
foregrounds. The same small residual anisotropies will apply to all cosmic distance
measurements on scales much greater than the SHS, but at a level smaller than the

24 Beyond this scale the quadrupole becomes as strong as the dipole, and one needs to fit higher mul-
tipoles. There is a hint of a small feature in the LG frame at scale corresponding to one BAO distance
beyond the nearest wall. However, significantly more data isrequired in the outer shells to verify this.
25 As is discussed in Sec. VIA of ref. [153] a multipole decomposition of the Hubble expansion should
be developed, in spherical shells, to determine whether thedipole converges to the required amplitude.
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uncertainties in many large scale measurements.
Although it might generally be expected that a differentialexpansion of space would

produce higher order multipole CMB anisotropies of a magnitude comparable to the
CMB dipole, these are in fact highly suppressed for off–centre observers in voids [157],
which represent a good first approximation for our actual local environment [154]. Ray
tracing in a simple LTB void with parameters matched to the LGframe Hubble dipole of
Fig. 15 gives a CMB quadrupole/dipole ratio of less than 0.1%[153]. Using the Szekeres
models [158, 159] one can perform ray tracing through exact solution geometries which
more closely mimic our peculiar foregrounds; while a higherquadrupole/dipole CMB
ratio of order 1% is found, this is still observationally viable [160].

The suggestion that a large fraction of the CMB dipole is not purely due to a boost
is, of course, a radical departure for observational cosmology. However, a number of
potential anomalies have been observed in the large angles multipoles of the CMB
anisotropy spectrum for a decade now, and their significancehas increased with the
release of the Planck data [161]. A study by Freemanet al. [162] found that of several
possible systematic errors, a 1–2% error in the CMB dipole subtraction stood out as the
one possible effect which could potentially resolve the power asymmetry anomaly.

As is discussed in ref. [153] a nonkinematic contribution tothe foreground Hubble
expansion may also explain why attempts to measure the effects of aberration and fre-
quency modulation in the Doppler boosting of the CMB spectrum yield a boost direc-
tion which moves across the sky when only large angle multipoles are considered [163].
Aberration and frequency modulation can also be readily tested in the radio spectrum.
Rubart and Schwarz [164] have recently found that the assumption of a kinematic origin
for the cosmic radio galaxy dipole is inconsistent at the 99.5% confidence level, using
the NRAO VLA Sky Survey data. The direction of the radio dipole is consistent with
that of the Hubble variance dipole we find in the LG frame.

8. CONCLUSION

Observations over the last few decades have revealed a universe much more com-
plex, varied and interesting than had been previously imagined. The observations are
at present well in advance of our theoretical understanding. The phenomenon of appar-
ent cosmic acceleration demands that we think more deeply about one of the central
unsolved problems of general relativity: the nature of gravitational mass–energy, which
cannot be localized on account of the equivalence principle. The standardΛCDM model
adds cold dark matter to make gravity stronger at some scalesand then adds dark energy
to make gravity weaker at larger scales, while keeping spacerigidly expanding. Both
phenomena may be indicative of a renormalization of the notion of gravitational mass in
a hierarchy of nonrigid spacetime structures.

The timescape scenario is a from–first–principles attempt to come to grips with the
essential physics of the fitting problem [10, 11], and to specify a physically viable
interpretation of the Buchert averaging scheme [48, 49, 76]without a smooth “dark
energy”. A phenomenological model has been developed [13, 16, 103], which had
remained observationally viable over the six years since its conception [13]. Much
work remains to be done. In particular, while the tests of Secs. 6.1–6.6 give a means
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of comparing average cosmological quantities with those oftheΛCDM model, the most
exciting developments are to be made by considering physicsbelow the SSH. This may
also inform the development of tests related to the average growth of structure.

It is below the SSH, where the structures are most inhomogeneous, that the most in-
teresting differences between the timescape scenario and the standard cosmology are to
be found. In theΛCDM model spacetime is spatially flat on these scales, while in the
timescape scenario its spatial curvature varies greatly. Arigorous mathematical descrip-
tion of the statistical geometry on these scales remains to be determined. However, to
develop such a description I believe we should not be guided simply by mathematical
elegance but by physical principles and observations.

The simple idea that the finite infinity scale should define thecosmic rest frame for
bound system observers led to the idea of testing the Hubble expansion variation in
the LG and LS frames, as well as in the CMB frame, with a result that was much
more definitive than we ourselves anticipated [153]. Since the analysis of Sec. 7 is
model–independent it is not a direct verification of the timescape scenario; but it is
consistent with the timescape model and it is extremely hardto reconcile with the
standard cosmology. As discussed in ref. [153], a change to our understanding of the
local Hubble expansion variation and its effect on the CMB dipole may have some
impact on many different aspects of observational cosmology, including not only CMB
anomalies but also SneIa systematics and the calibration ofthe distance scale.
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144. P. Erdŏgdu, O. Lahav, J. P. Huchra,et al., Mon. Not. R. Astr. Soc.373, 45 (2006).
145. R. Watkins, H.A. Feldman, and M.J. Hudson,Mon. Not. R. Astr. Soc.392, 743 (2009).
146. H.A. Feldman, R. Watkins, and M.J. Hudson,Mon. Not. R. Astr. Soc.407, 2328 (2010).
147. A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H.Ebeling,Astrophys. J.686, L49 (2008).
148. A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, A. Edge, and D. Kocevski,Astrophys. J.712, L81

(2010).
149. A. Nusser and M. Davis,Astrophys. J.736, 93 (2011).
150. Y.Z. Ma and D. Scott,Mon. Not. R. Astr. Soc.428, 2017 (2013).
151. S.J. Turnbull, M.J. Hudson, H.A. Feldman, M. Hicken, R.P. Kirshner, and R. Watkins,Mon. Not. R.

Astr. Soc.420, 447 (2012).
152. U. Feindt, M. Kerschhaggl, M. Kowalski,et al., Astron. Astrophys.560, A90 (2013).
153. D. L. Wiltshire, P. R. Smale, T. Mattsson and R. Watkins,Phys. Rev.D 88, 083529 (2013).
154. R.B. Tully, E.J. Shaya, I.D. Karachentsev, H. Courtois, D.D. Kocevski, L. Rizzi and A. Peel,

Astrophys. J.676, 184 (2008).
155. N. Li and D.J. Schwarz,Phys. Rev.D 78, 083531 (2008).
156. M.L. McClure and C.C. Dyer, New Astron.12, 533 (2007).
157. H. Alnes and M. Amarzguioui,Phys. Rev.D 74, 103520 (2006).
158. P. Szekeres, Commun. Math. Phys.41, 55 (1975).
159. K. Bolejko and J.S.B. Wyithe,J. Cosmol. Astropart. Phys.02 (2009) 020.
160. K. Bolejko, M.A. Nazer and D.L. Wiltshire, in preparation.
161. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan,et al., Astron. Astrophys.571, A23 (2014).
162. P.E. Freeman, C.R. Genovese, C.J. Miller, R.C. Nichol,and L. Wasserman,Astrophys. J.638, 1

(2006).
163. N. Aghanim, C. Armitage-Caplan, M. Arnaud,et al., Astron. Astrophys.571, A27 (2014).
164. M. Rubart and D.J. Schwarz,Astron. Astrophys.555, A117 (2013).

55


