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Abstract. These lecture notes review the theoretical problems assacwith coarse-graining the
observed inhomogeneous structure of the universe at latehepof describing average cosmic
evolution in the presence of growing inhomogeneity, ancetdting average quantities to physical
observables. In particular, a detailed discussion of thedcape scenario is presented. In this
scenario, dark energy is realized as a misidentificationra¥itational energy gradients which
result from gradients in the kinetic energy of expansion pdc®, in the presence of density
and spatial curvature gradients that grow large with thevtjraf structure. The phenomenology
and observational tests of the timescape model are distuss#etail, with updated constraints
from Planck satellite data. In addition, recent resultstenvariation of the Hubble expansion on
< 100h~*Mpc scales are discussed. The spherically averaged Hudlésl significantly more
uniform in the rest frame of the Local Group of galaxies thathie conventional rest frame assumed
for the Cosmic Microwave Background. This unexpected tesipports a fundamental revision of
the notion of the cosmic rest frame, consistent with the etgi®ns of the timescape scenario.
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1. INTRODUCTION

Present cosmological observations point to the need fovauton in our physical
understanding. On one hand we have a very successful pheotobgeal description
of the universe based on the spatially homogeneous andsotriedmann—Lemaitre—
Robertson—-Walker (FLRW) geometry. However, this successes at the price of the
introduction of forms of mass—energy that have never berexettly observed, and which
constitute most of the stuff in the Universe: 27% in the foritlamped nonbaryonic
dark matter, and 68% in the form of a smooth dark energy [1]kridmwns of this
magnitude demand that we carefully re-examine the assangtif our physical models
of the universe, and that we pay careful attention to all olad®ns.

The universe was certainly homogeneous to a high degree apthch of last scatter-
ing, when the cosmic microwave background (CMB) radiati@s Vaid down. However,
at the present epoch the matter distribution displays a teiperarchical structure
with significant inhomogeneities up to scales of at ldasth—Mpc, whereh is the di-
mensionless parameter related to the Hubble constaft by 1002 kms™*Mpc™". The
present universe is dominated in volume by voids, with so@% df the volume in voids
of a characteristic diameter30h~'Mpc [2]-[4] and populations of smaller minivoids
[5]. Galaxy clusters are grouped in sheets that surroungdtuss, and filaments thread
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them, in a complex cosmic web [6].

A cosmological constant), as a source of dark energy might in itself not pose
a great theoretical puzzle, were it not for thesmic coincidence problemvhy is
the value of A such that the universe decelerates for much of its histod; arly
begins to accelerate relatively recently? In additiongh&another cosmic coincidence,
which some cosmologists view as a smoking gun: the onsetsvhimoacceleration also
coincides with the epoch in which the large nonlinear strreg of the cosmic web begin
to dominate, as the map of the time history of universe [7dijereveals.

The possibility that the phenomenon of dark energy is alstwlcounting for the
average effects of inhomogeneous structures on the exppahitory of the universe
has led to an upsurge of interest in the averaging problenogmology. This is a
foundational question since the physical ingredients ofstgin’s theory have never
been precisely specified on all scales. There are many wet@roblems relating to
the coarse-graining, fitting, and averaging of geometryhtse lectures | will discuss
these issues, with an emphasis on the timescape cosmollaigi, eoes at least provide a
phenomenologically viable alternative to the standardehdd the timescape scenario,
| have attempted to address the key issue of gravitatioreiggrwhich | believe is
intimately related to solving the riddle of “dark energyt.i$ my hope that if we pay
close attention to observations, and think more deeply alumadamental concepts in
light of new observations, that we might develop betteistiatl notions of gravitational
energy and entropy, which may be important not only for cdsgyat large but also
for the foundations of gravitational physics.

2. THE FITTING PROBLEM: WHAT IS DUST?

2.1. On what scale are Einstein’s equations valid?

In the standard FLRW cosmology, fundamental observersedneati to be “comoving
with the dust” in geometries that are solutions to Einsteuregions with a dust or perfect
fluid source. This poses two problems. Firstly, it involveseatrapolation of Einstein’s
field equations
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far beyond the scales on which they have been tested. Gee&atity is only well
tested for isolated systems — such as the solar system awylpoésars — for which
", = 0.

Secondly, the notion of what a “dust particle” is in cosmaglag) not rigorously de-
fined. The scale over which matter fields are coarse-graiogutdduce the energy—
momentum tensor on the r.h.s. of (1) is not prescribed, tepan inherent ambiguity.
Traditionally, galaxies have been thought of as particledust. However, our obser-
vations show that galaxies themselves are not homogenedissitibuted. The largest
typical nonlinear structures are voids of diameier.~'Mpc [2]-[4], so that we must
coarse grain on scales at least a few times larger to obtaotiannof statistical ho-
mogeneity. This process of coarse-graining involves uloegd statistical aspects of
general relativity, which have barely been studied.
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There is no ambiguity in applying Einstein’s equations (latfluid of particles with
well-defined properties, such as ions, atoms and molecolései early phases of the
universe’s expansion. However, as soon as gravitationkdps® occurs then particle
geodesics cross. Phase transitions occur, so the defimtitdre particles in the fluid
approximation must change, giving rise to the followingrarehy of coarse-grained
‘particles’ in the epochs following last scattering:

1. Atomic, molecular, ionic or nuclear particles: applieabwith
« dust equation of state within any expanding regions whicke imt yet under-
gone gravitational collapse;

- fluid equation of state within relevant collapsed objectaré white dwarfs,
neutron stars) for periods of time between phase transitiat alter the non-
gravitational particle interactions and the equation afest

Collapsed objects such as stars and black holes coasegdas isolated objects;
Stellar systems coarse-grained as dust particles wgtiaxies;

Galaxies coarse-grained as dust particles within alsiste

Clusters of galaxies coarse-grained as bound systerhsweitpanding filaments
and walls;

Voids, walls and filaments combined as expanding regibdgdferent densities in
a single smoothed out cosmological fluid.
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2.2. Coarse—graining

Any coarse-graining procedure amounts to replacing theaplgsics of a given
spacetime region by some collective degrees of freedom asfetliegions which are
sufficient to describe physics on scales larger than theseegnaining scale. Einstein’s
equations were originally formulated with the intent tHas £nergy-momentum tensor
onther.h.s. of (1) should either describe fundamentaldjeddch as the Maxwell field, or
alternatively to the coarse-graining of the purely nongedional interactions described
by such fields in the fluid approximation.

Up to step 3 in the hierarchy, there are no real problems ofcjpie with coarse-
graining since we are coarse-graining only over matterekyof freedom which appear
exclusively in the energy-momentum tensor. In 1917 whestégin first applied general
relativity to cosmology [8], this was sufficient since it hgdt to be established that
nebulae were distant galaxies, and the prevailing view \kas the density of the
universe was the density of the Milky Way. Decades later teinsdid consider the
fitting problem, when he built the Swiss cheese model in bollation with Straus
[9]. However, this is a simple model which treats inhomogjee® as Schwarzschild
solutions placed in holes in a homogeneous isotropic FLREYdpraund. It deals with an
idealized situation which is far simpler than the actualhsizsweb, which astronomers
really only began to uncover in the 1980s.

The fundamental problem then, is that since the universengposed of a hierarchy
of long-lived structures much larger than those of starspwst also coarse-grain over
the gravitational interactions within that hierarchy teia at a fluid description for



cosmology. With such a coarse-graining, geometry no loegégrs purely on the left

hand side of Einstein’s equations but in a coarse-grainadesean be hidden inside
effective fluid elements of a smoothed out energy-momentmadr on the right hand
side of (1). We have a complex hierarchical fitting problei@, [11] that must be solved
to relate the average geometry of the universe to the locahgéy to which our clocks

and rulers are calibrated.

The fundamental quantities of interest as the sources ofighé hand side of Ein-
stein’s equations are those of mass—energy, momentum guathamomentum. Effec-
tively, if we demand that equations (1) should also apply @oarse-grained version on
cosmological scales, then it means that we are seekingctioenass—energy parame-
ters which average over the rotational kinetic energiesatdxdes, binding energies of
galaxies and clusters, kinetic energies of galaxies imNzed clusters, regional spatial
curvature etc. Furthermore we must approach the problera than just once, on a suc-
cession of scales. This necessarily involves the issueasilpecal gravitational energy,
and more particularly statistical properties of the gi@uiinal interactions of bound sys-
tems.

Since we are no longer dealing with a fixed spatial metric phablem is far more
complicated than any equivalent problem in Newtonian theamd indeed it is largely
unexplored territory. The physical degrees of freedom Wwhiwe must coarse grain
are contained in the curvature tensor and the sources of gl dquations (1). In
principle coarse-graining the curvature tensor might imecsteps other than simply
coarse-graining of the metric. However, if a metric degdaip of gravity is assumed
at each level, then schematically the hierarchy of coarastgg might be heuristically
described as ol | - N
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where the ellipsis denotes the fact that the metric of maaia tine type of wall or void
might possibly be relevant. In this scheme the lowest mesaer assumed to be well
modeled by exact solutions of Einstein’s field equaticngpar being a solution to the
vacuum field equations with a star or black hole source (gnsethe Schwarzschild or
Kerr solution), ancb;‘;‘d being that of a region filled with low density ionic dust with
whatever symmetries are relevant.

Within the hierarchy (2) there are (at least) three stepsnkialve the coarse-graining

of gravitational degrees of freedom, which might be sumeearias

- Galactic dynamicsgitfllar _ gﬁilaxy;

« Cluster dynamiCSgiilaxy . gzgstor;

» Cosmological dynamicgy;,*'™ — {gy:" @---@ gy} — g™,

The gravitational degrees of freedom that are coarse-gplain galactic and cluster
dynamics involve the gravitational binding energies oftaystems of different scales.
By contrast cosmological dynamics deals with the coara@grg of expanding regions
of different densities, i.e., with the coarse-graininghaf kinetic energy of expansion of
space.



In the Newtonian cosmology [12] for particles of masswith positionsr’ = a(t)x,
(z* =const), relative to an arbitrary centre, the Friedmann egua
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is obtained from the Newtonian energy equation; U = —V, whereT = %ma%ﬁ is
the kinetic energy per particlé] = —%WGpazxzm is the potential energy per particle
andU = —1kmc?s? is the total energy per particle, whetds a constant. Eq. (3), the
Hamiltonian constraint of the full Einstein equations floe standard cosmology, is thus
recognized to contain terms related to gravitational pieseand binding energyl/, and
the kinetic energy of expansioffi, in the Newtonian limit.

As long as the universe is perfectly homogeneous then thesgities are the same
for all observers. However, once there is inhomogeneitg, iarparticular once there
are gradients in spatial curvature, then these conceptsrieentangled. On account of
the strong equivalence principle, spatial curvature cabealefined at a point, and any
definition necessarily involves a regiomgliasilocaldefinition. Gravitational binding
energy and the kinetic energy of expansion are thus quasitoacepts tied to gradients
in spatial curvature.

2.3. Coarse—graining of bound systems

A statistical description of cosmological relativity irves both gravitational binding
energy and the kinetic energy of expansion. It happenstieatdarse-graining of these
respective gravitational degrees of freedom relates tedhkes at which the phenomena
of dark matter and dark energy are respectively observasd.thterefore possible that
both phenomena are related to different aspects of the sembéem, namely that the
standard model incorporates a rigidity of spatial cunatwhich is not demanded by
full general relativity.

Since the coarse-graining of gravitational binding eneagyg the kinetic energy of
expansion involve different physical questions, it may helpnt to investigate just one
problem at a time. The timescape scenario [13]-[16] has degaloped to deal with
the problem of the kinetic energy of expansion only: in thprapch taken thus far all
coarse-grained regions are expanding ones. We will seeanSSthat agreement with
observation is obtained only by incorporating a fractiomnohbaryonic dark matter.
However, we must remain open-minded as to whether the ps&eafoeind corresponds
to actual new particles as in the standardCold Dark Matter ACDM) model, or
whether is a simply a phenomenological parameter that axtsdor the coarse-graining
of binding energy that we have not yet examined.

A piece of evidence in support of an alternative to conver@icCcDM is the remark-
able phenomenological success of Modified Newtonian DyoaifNlOND) [17, 18] at
the level of galactic dynamics. This empirical model worksllvat galactic levels, but
fails at the cluster level. While galactic and cluster dyi@noth involve binding en-
ergy, the kinetic energy degrees of freedom of the two sduoatare different. Galactic
dynamics typically involves stars in rotationally supgakistructures, whereas cluster

5



dynamics involves the less coherent motions of galaxieghvhiove in the combined
potential but also interact with each other in random paenrncounters. Whereas the
diameters of stars are very sma#l {0~°%) compared to their interparticle separations
in galaxies, the typical size of a galaxy is a more sizabletioa (0.5—15%) of typical
intergalactic distances in a virialized cluster.

Newtonian dynamics is used almost exclusively in the treatnof both galaxy
and cluster dynamics. The rationale for this is that fields\aeak. However, even if
spacetime is close to a Minkowski background, an importaestjon remainswhich
Minkowski background? There is no global Minkowski backgrd in the universe, and
even if space is close to Minkowski for small time intervatsaospatial 2-sphere encom-
passing a galaxy or galaxy cluster, then the question resnhow do we calibrate the
rulers and clocks on that 2-sphere relative to another air@ilsphere elsewhere? Grav-
itational lensing calculations make use of a formula detiice the ideal Schwarzschild
geometry of an isolated point mass, which has an exact tdilling vector. Are
there pitfalls in applying such notions of mass to circumsés in which there are no
pure timelike Killing vectors, and no truly isolated massdd® my knowledge, these
guestions have not been rigorously posed in general rityatet alone answered.

Some attempts have been made to understand galaxy rotatigascwith exact
dust solutions [19]-[21]. However, the applicability okfe solutions as alternatives to
galactic dark matter has been debated [20, 22]. Furthermuniée new exact solutions
to Einstein’s equations may offer new insights into the pmkses offered by general
relativity, they do not directly address the problems polgdoarse-graining. They
are also limited by the additional restrictions that mustpplied to reduce Einstein’s
equations to a soluble form. For example, although galaxgtets are often spherical
in shape the spherically symmetric dust Lemaitre—TolmameB(LTB) solutions [23]—
[25] cannot be appliedto virialized clusters, since galaxies in clusters do ndtapse
inwards in coherent spherical shells. Even if the motiomaividual galaxies is close
to radial, the phases of the galaxies relative to passagadhrthe centre of the cluster
are completely uncorrelated. Individual galaxies willpakse to the core of the cluster
and emerge from the other side; but at any instant the nunflgalaxies moving out
from the centre might be comparable to the number falling in.

In my view the problems of coarse-graining of galaxies andgstelrs are difficult.
However, in view of the phenomenological successes of MOMNIhe galactic scale
[17, 18] we should be open to the possibility that simplifyjorinciples remain to be
discovered.

2.4. Coarse—graining the cosmological fluid

The final step of coarse-graining involves qualitativelwriendamental questions. If
we require a single model to describe the evolution of theamse from last scattering
to the present day, then we must coarse grain on scales oveh Wte notion of a

2 By contrast LTB models are clearly applicable to individembanding spherical voids [26] with ionic
or molecular sized dust.



dust ‘particle’ has a meaning from last scattering up to thes@nt. The description
of a galaxy composed of stars, or of a virialized galaxy dusbmposed of galaxies
is only valid for those epochs after which the relevant ‘jgtet’ have formed and
are themselves relatively unchanging. Over cosmologioadcales we do not have
well-defined invariant dust particles. The nature of gadaxind galaxy clusters changes
through growth by accretion of gas and by mergers.

To get around the problem of ill-defined particle-like birnigl blocks, an appropriate
strategy is to coarse-grain the ‘dust’ on scales large eémthag theaverageflow of mass
from one cell to another is negligible up to the present epAtthough galaxy clusters
vary greatly in size and complexity, there are no commomalaed structures larger than
clusters. Thus coarse-graining on scales larger thanecBiaecessarily means dealing
with fundamental objects that are themselgggandingi.e., with entities that resemble
fluid elementsn hydrodynamics rather than point particles.

Another qualitative difference from the case of bound systes that we have to deal
with expanding fluid elements that have vastly differentdiliggs at the present epoch,
and which evolve more or less independently. Although we reaeive signals from
anywhere within our particle horizon, the energy we receaivelectromagnetic and
gravitational waves, or indeed in cosmic ray particles fdistant galaxies, is negligible
in comparison with the rest-energy of the local density fiflide region which has
contributed matter particles to define the local geometrguwfown galaxy is actually
very small. This bounding sphere, which Ellis and Stoeg@} ¢2ll thematter horizon
is estimated by them to be of ordeMpc for the Milky Way using assumptions about
the growth of perturbations from the standard cosmologys Bale also coincides
roughly with the scale at which the Hubble flow is believed égib in the immediate
neighbourhood of the Local Group of galaxies. It is one wayeaflizing the concept
of finite infinity, introduced qualitatively by Ellis in his first discussiohtbe fitting
problem [10].

For galaxy clusters some sort of finite infinity notion — whigl will better define in
Sec. 5 — with a variable scale of ordef10 Mpc depending on the size of cluster might
be useful for defining the minimum smoothing scale contgrbound structures. By
combining such regions we arrive at the walls and filameras ¢bntain most of the
mass of the universe. However, to this we must also add thliswehich dominate the
volume of the universe at the present epoch. These are tlenseg which structures
have never formed, and which still contain the same ionmmat and molecular dust
content that has existed since very early epochs, onlylgraited by expansion.

If we set aside a few peculiar large wall structures [28]nthiee largestypical
nonlinear structures are voids. Surveys indicate thatsvevith characteristic mean
effective radif of order (15 + 3)h~'Mpc (or diameters of ordes0~ 'Mpc), and a
typical density contrast ofp/p = —0.94 +0.02, make up 40% of the volume of the
nearby universe [2, 3]. A recent study [4] of the Sloan Digky Survey Data Release
7 finds a median effective void radius of »~*Mpc, with voids of effective radii in

3 \oids display a degree of ellipticity. Thmean effective radiusf a void is that of a sphere with the same
volume as occupied by the void [2]-[4], which is typicallydar than the maximal sphere enclosed by the
same void.



the rangel0 2~ 'Mpc to 30 h~*Mpc occupying 62% of the survey volume. In addition
to these there are numerous smaller minivoids [5], whichlmasd with the dominant
voids ensure that voids dominate the present epoch unilsgréelume.

2.4.1. Coarse-graining at the statistical homogeneitylesca

Any minimal scale for the cosmological coarse-grainingeftinal smoothed density
distribution has to be substantially larger than the diamet the largest typical struc-
tures. Void statistics [4] indicate an effective cutoff@fr—Mpc for the largest mean
effective diameters of voids, i.e., twice the scale of th@dgl dominant void diameters.
Thus observationally, the relevant scale for coarse-grgiappears to be of order two to
three times the dominant void diameter, e.g., of oidér,~*Mpc. Although the scale of
transition to statistical homogeneity is debated [29, 88pnt results from the WiggleZ
survey suggest that the transition occurs in the ramgé—'-100~~'Mpc [31].

A statistical homogeneity scale ef 100h~'Mpc also coincides roughly with the
Baryon Acoustic Oscillation (BAO) scale [32, 33]);,,- Physically there is a good
reason for this coincidence. The BAO scale is that of theelstrgcoustic wave in the
plasma at last scattering. For scales larger than this thetrsjm of initial density per-
turbations is roughly scale invariant with a density cositéa,, /p,; ~107° in baryons,
anddp,/p.~10~*in cold dark matter. Below the BAO scale initial density aasts
may be amplified by acoustic waves in the plasma, so the amdpliof initial density
contrasts is somewhat larger, particularly at the scalescéated with the higher order
odd acoustic peaks. The BAO scale therefore provides a adatiam between the linear
and nonlinear regimes of the subsequent growth of structure

At first, it might seem contradictory that the amplificatiohtloe primordial density
perturbations corresponding to the first acoustic peakldhgve a small enhancement
which in the standard CDM model can treated in the linear regime of perturbatian th
ory with good observational agreement, whereas higher @aeks give enhancements
which give rise to a nonlinear regime. However, it must alsedmembered that pertur-
bations are nested, so that in some cases we get amplifisatiotop of amplifications.
Characteristic features will arise from the fact that at Emattering the odd acoustic
peaks corresponds to compression in gravitational patemélls and rarefaction in po-
tential peaks, whereas the even acoustic peaks correspamdefaction in potential
wells and compression in potential peaks. The odd peakshull produce increasing
amplifications of structure, while even peaks will somewlrato the amplifications (but
not completely on account of baryon drag).

The fact that the diameter of the dominant void®at,, ~ 30~ 'Mpc [2]-[4] is close
to one third ofD;;, , is seen to be a consequence of these structures growing tiom t
additional amplification provided by the third acoustic lpe&Since voids are regions

4 This range represents the range of bias-corrected vaktes fior various redshift ranges in Table 4 of

ref. [31]. These estimates assum&@DM model and use data in the redshift rafige< z < 0.9.

5 This corrects statements made in Sec. V of ref. [15], wheraamount of a confusion about the role of

the odd and even acoustic peaks it was incorrectly suggéstesecond peak should provide a relevant



which appear to expand at faster r&tédsan walls, with density contrasts growing to
op/p — —1 at late times, the exact ratios of scales of the acousticypetdlst scattering
are not preserved in the nonlinear regime today. In facteaipe measurement of the
difference between the rati®_.,/D;,, and1/3 would provide useful constraints
on the variation of the Hubble parameter in the nonlineaimmeg Since voids are the
dominant nonlinear structures in the cosmic web, the béggnaf an emergence of a
notion of homogeneity at scales70 2~ 'Mpc [31] may be related cutoff in the statistics
of void diameters at0 »~*Mpc found by Paret al. [4], rather than a scale related to the
second acoustic peak. Since the even acoustic peaks nefaesenplified initial density
contrasts, they are unlikely to have very clear-cut sigmstin cosmic structure.

2.4.2. Variations on scales larger than the statistical logeneity scale

In the standard cosmology it is often assumed that as theiddPnaf a spatial average
is made larger and larger at the present epoch, the densitsast(é p/ p) , will diminish
to small values which match those at the last scatteringhegdowever, this assumes
constraints on the notion of statistical homogeneity ovet abové those required for
a universe that has evolved from an initial density perttiobespectrum that was close
to scale-invariant, as is consistent with the observed CKiBadropies and primordial
inflation. Given initial nested density fluctuations on &duilly large spatial scales, then
if any arbitrarily large domairD evolves independently by close to FLRW evolution,
its density at the present epoch will always have evolveohfeoperturbation that was
within the initial spectrum, but not necessarily exactlg thean.

We can therefore crudely estimate the standard deviatidheoflensity of cells on
scales larger tham00~~'Mpc by assuming that each cell evolves as an independent
Friedman universe from a smooth perturbation at the epodastfscattering. (This
assumes that the backreaction contributions to be disgdussgec. 3 do not dominate
the volume—average evolution.) Using the Friedmann eguatith pressureless dust
only, for which

QRH (2= 1) = @ () H(£)[2, (1) — 1,

we obtain a present epoch density contrast

Spg = (E) O (4)

H,) (1+2)?

scale to voids and the third peak to clusters of galaxiessthke of rich clusters of galaxies is more likely
to result from the nonlinear evolution of the fifth peak arfipdition.

6 Here we refer to the rate as measured by any one observesr&iy the expansion rate with different
canonical clocks is an essential ingredient of the timescagmology which we will return to in Sec. 5

7 In particular, perturbations on different scales wouldchecompensate each other in such a way as to
maintain a homogeneous isotropic universe which is at ptegithin 1% of being spatially flat overall.

In the standard model with FLRW evolution this is requireditthe overall angular scale of the acoustic
peaks in the CMB. We will see in Sec. 6.2 that in the timescapeéatthe acoustic scale can be fit without
such a restriction on spatial curvature.



Here the density contrast is relative to the critical densib thatép, = Q,,(t) — 1
etc, where(,, is a density parameter for the isolated region only. Thus é&f take
dp; ~ 10~* at last scattering (for a CDM density contrast), wher 1090 and when
evolution is roughly matter-dominated wifth ~ 2/(3t) and¢ ~ 380,000yr, we are led
to dp, ~ 0.025/h* ~ 0.06 if h ~ 0.65.

This crude estimate can be compared to the actual densigneardetermined from
large scale structure surveys [29, 30]. Sylos Lakeinal. [30] determined the variance
in the number density of luminous red galaxies (LRGS) in tB&S-DR7 by dividing
the full sample of 53,066 galaxies in the redshift range* < » < 0.3 into N equal
nonoverlapping volumes. Over the range. N < 15, they found a standard deviation
of order 8%, consistent with an earlier measurement of 7% bgd-et al. [29] in a
smaller LRG sample. These values are very close to our ofderagnitude estimate
of 6%, which has still not been corrected to include radra@ last-scattering, or the
effects of backreaction at late epochs.

Given a nearly scale—invariant spectrum of nested densitiugbations, we expect
that the variance in density should not decrease apprgciblsample volumes are
increased at nearby redshifts. In principle, it should b&spgale to calculate the variance
as a function of scale, given the constraints from the CMBamnopy spectrum at long
wavelengths. For spatial slices at higher redshifts, logKurther back in time, the
variance would decrease in accord with (4) — provided thamapse of objects such
as LRGs can be found which does not exhibit strong evolutioetects over the range
of redshifts in question.

In summary, in order to coarse-grain fluid cells in such a vy the size of a cell is
larger than the largest typical nonlinear structures, &ithass that does not change on
average from last scattering until today, observationsvghat we should coarse-grain
fluid cells at a scale of ordg0 h~'-100 A~ 'Mpc. This scale will be called the statistical
homogeneity scale (SHS). Such a scale marks the transittond nonlinear regime in
which there is a very large variancedp/p, to a regime in which cosmological average
evolution with a single Hubble parameter becomes well ddfi@loes not mark a scale
at which average evolution necessarily becomes precidd®\E nor at which density
contrasts become completely negligible. Rather variatmm spatial scales larger than
the SHS at the present epoch are bounded by a maxiipym< 0.1, as is consistent
with observations.

In this subsection we have presented a summary of obsemahtiesults to be ac-
counted for in cosmological coarse-graining, without assig any details about back-
reaction. There is one other observational puzzle which edguires mention: the
Sandage-de Vaucouleurs parafidis is the puzzle that in conventional ways of think-
ing, we should expect large statistical scatter in the pacuélocities of galaxies below
the SHS, if they are indeed “particles of dust”. In fact, oales of order20 Mpc the
statistical scatter should be so large that no linear Hulahlecan be extracted. Yet

8 In the literature this has been called the “Hubble—de Valexos paradox” [34, 35] and alternatively the
“Hubble-Sandage paradox” [36]. However, the paradox nieveived Hubble directly, but was originally

raised by Sandage and collaborators [37] in objection to alecWuleurs’ hierarchical cosmology [38]
before strong evidence for the cosmic web of voids, sheetsimments had amassed.
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20Mpc is the very scale on which Hubble originally found his faus linear law. This
statistical quietness of the local Hubble flow is difficultreconcile with conventional
understanding. In any FLRW universe which expands forg@emuliar velocities do de-
cay. However, thé\CDM parameters required for the velocity dispersion priedidy
structure formation to match the observed velocity dispersio not coincide with the
concordance parameters [39].

2.5. Approaches to coarse-graining

The problem of coarse-graining in general relativity in dttm-up fashion is lit-
tle studied. In principle, it is a very interesting questiavhich should deal, e.g.,
at the galactic level with the problem of replacing the Weytvature of individual
Schwarzschild or Kerr solutions by a coarse-grained Riacvature for a dust fluid.
Higher levels of coarse-graining in the hierarchy (2) imeolurther physical questions.
Rather than dealing with multi-scale problems, the fewtexgsstudies simplify the hi-
erarchy (2) to a single step.

2.5.1. Covariant coarse-graining

Korzyhski [40] has proposed a covariant coarse-graining praeeduhich could
conceivably be applied to any step in the hierarchy (2) foictvhithe starting point
is the metric of a known dust solution. Korzski's idea is to isometrically embed
the boundary of a comoving dust-filled domain — required teeh%? topology with
positive scalar curvature — into a three-dimensional Eeeln space, and to construct
a “fictitious” three-dimensional fluid velocity which indes the same infinitesimal
metric deformation on the embedded surface as the “true’fthws does on the domain
boundary in the original spacetime. This velocity field isdio uniquely assign coarse-
grained expressions for the volume expansion and shearetortginal domain. An
additional construction using the pushforward of the Aritb@eser-Misner (ADM)
shift vector [41] is used to similarly obtain a coarse-geginorticity. The coarse-grained
quantities are quasilocal functionals which depend onlthergeometry of the boundary
of the relevant domain. This formalism is at an early stagdeselopment, but could
conceivably provide new methods for attacking the fittinglgpem.

2.5.2. Discretized universes

The Lindquist-Wheeler model [42] is a lattice based apgrpadich has received
new interest recently [43]-[46]. The coarse-graining diehny (2) is replaced by the

simplified scheme
Schwarzschild universe
— (5)

uv v
with the proviso thayzﬁive“e does not represent a continuum metric in the usual sense.
Rather, by matching the spherical boundaries of radiallyaeding geodesics in the

11



Schwarzschild geometries of a regular lattice of equal fpoiasses, the Friedmann
equations are obtained [42, 43]. The matching is exact onthe points where the
radial spheres intersect and is approximate in the regiomghich spheres overlap or
are excluded. A continuum cosmological geometry is thuzezhonly approximately.

This model is analogous to the Swiss cheese models [9] inghgesthat the point
group symmetry of the lattice is a discretized version of steay with overall global
spatial homogeneity. Ray-tracing studies in the spatitdlyLindquist-Wheeler model
lead to results which are almost identical to that of the ekatstein-de Sitter solutidn
While this demonstrates that the Lindquist—-Wheeler doesige a consistent lattice
description of the FLRW models, it unfortunately does neegany indication of how
one should treat the problem of inhomogeneity, withoutrdisecsymmetries.

3. AVERAGING AND BACKREACTION

The terms “coarse-graining” and “averaging” are often uséetchangeably in a loose
sense. However, whereas coarse-graining is genericalytarb-up process, averaging
is top-down: one is interested in the overall average dyosrand evolution, usually
without direct consideration of the details of the coursagfing procedure. Whereas
coarse-graining is little studied, considerably morerdite has been paid to averaging.
Several approaches have been pursued and are discussedyirravigws including,
e.g., those of Buchert [48, 49], van den Hoogen [50] and Glamkt al. [51].

Cosmological averaging typically starts from the assuampthat a well-defined av-
erage exists, with a number of assumed properties. If ongraessthat the Einstein field
equations (1) are valid for some general inhomogeneous gegm,, , then given some
as yet unspecified averaging procedure denoted by anglkdisathe average of (1)
gives

(6] = (g Ras) = 307, Ray) = " (T ©

A number of choices are possible at this point since there &priori reason to assume
that(G*,) is the Einstein tensor of an exact geometry.

In themacroscopic gravitgpproach, Zalaletdinov [52]-[54] takes the average irvers
metric (¢*) and the average Ricci tens@k,,,) as basic variables, so that

(9) () — 0 ) )+ 0% = S ), @)

where the correlation functions*, are defined by the difference of the left hand sides
of (7) and (6). Zalaletdinov provides additional mathemeltstructure to prescribe a
covariant averaging scheme, thereby defining propertigseoforrelation functions.

Alternatively one can consider the difference of the geneteomogeneous metric
and the averaged metric

g“l/:g“l/—i_ég“V’ (8)

9 A different result was first claimed in an earlier study [48]t then corrected [46]. The review article
[47] was written before the corrected result [46] was fouard it cites the earlier incorrect result.
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whereg,,, = (g,,), With inverseg* # (¢**). One may now determine a connectiot),,
curvature tensoﬁ’”Mp and Einstein tensai*, based on the averaged metyg,, alone.
The differencesT™,, = (I,,) —T*,,, 0R",, = (R, ) — R',,,, 0Ru = (Ru) — Ry

: . vAp v,
etc, then represent theackreactionof the averaged inhomogeneities on the average
geometry determined from,,. Furthermore, the average Einstein field equations (6)

may be written

G, o6, = T ©

This expresses the fact that the Einstein tensor of the geareetric is not in general
the average of the Einstein tensor of the original metri@ plocesses of averaging and
constructing the Einstein tensor do not commute.

Equation (6) and (9) are of course very similar, but may diifieboth the definition
of the average represented by the angle brackets, and afs® $plit of the background
averaged Einstein tensor and the correlation or backmeatirms. The manner in which
averaging schemes differ often relate to whether the effefdvackreaction are assumed
to be weak or strong.

3.1. Weak backreaction: the Friedmann—Lemalitre universe athe
average

The remarkable success of the standard cosmology, allibisairces of dark matter
and dark energy which have not been directly observed, hdsrstandably led most
researchers to assume that it must be correct, even if ordy iaverage sense. As a
consequence, many researchers simply begin from thengtgrtint that the FLRW
geometry must be the average, or very close to the averagjgievo

One can then either assume that

- there is no backreaction on average evolution but inhomaitesa are sufficiently
large that they significantly affect the propagation of tighs in the Swiss cheese
[55, 56] and meatball [57] models; or

 backreaction is sufficiently small that the changes to @emvolution can be
treated perturbatively about a homogeneous isotropicgrackd, at least initially.

The second approactveak backreactions of course intimately related to standard
cosmological perturbation theory. One assumes that thegegeometry,, of (8) is
exactly FLRW, and that the quantitiég,,, can be treated as perturbative corrections.

The issue of whether backreaction is significant or insigaift in the perturbative
FLRW context is a matter of much debate, with different atghmoming to different
conclusions, which may be traced to various differencessgumptions made. These
issues are discussed in many reviews, such as those of Qteeksl. [51] and Kolb
[58], and will not be discussed in detail here. In my view ttiebate shows that there
are potential problems, which cannot be resolved by stayitign perturbation theory.

In fact, all researchers are well aware that there is a neatinegime in structure
formation, which is explored by-body simulations in the standard cosmology. Since
there is as yet no rigorous procedure for coarse-grainieggthvitational degrees of
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freedom which describe the small-scale structures, thihettive approach can only
be valid given an implicit assumption that there is no newsgnts/to be found when
coarse-graining the hierarchy (2).

Such an assumption underlies a typical argument againktdssation: if weassume
a FLRW geometry, and estimate the magnitude of the periorizmtsing typical ro-
tational and peculiar velocities of galaxies, then the exdrons are small [59]. How-
ever, at late epochs galaxies and galaxy clusters are natgwmeously distributed, and
cannot be considered as randomly distributed gas paruciescales of tens of mega-
parsecs below the SHS. The dominant structures on thesessara voids of diameter
~30h~*Mpc with density contrast8p/p~ —0.95 [2, 3]. Using galaxy peculiar veloc-
ities as an estimate @ip/p is therefore misplaced. There is no direct evidence that a
spatially homogeneous geometry is the correct one beloBH®

It may thus simply be incorrect to assume that a FLRW modettékdescribes the
average evolution of the universe at the largest scaledlIftimes. Approaches which
do not make the restrictive assumption of average FLRW ¢eolare those witlstrong
backreaction

3.2. Strong backreaction: Spacetime and spatial averages

If Einstein’s equations for a single metric with a prescdlemergy-momentum tensor
source are not the relevant equations for describing theageevolution of the universe
on cosmological scales, then new physical ingredientseaeired, either explicitly in
the averaging formalism itself, or else implicitly in refeg the results of a particular
formalism to observations. After all, our measurement®olwe physical rulers and
clocks adapted to a local geometry, and this local geometist somehow be matched
to the statistical geometry that describes average cosroiateon.

Strong backreaction as a solution to the problem of darkggredicits much confusion
in the community, as typified by the statement that dark gnégust an issue of
inhomogeneities, and that it is entirely solweithin general relativity. Even advocates of
strong backreaction might disagree with this statememeéing on what is meant by
“general relativity”. There is a widely held view, partieuly among those not involved
in general relativity research, that it consists solelyamhpleted old physics. However,
those better acquainted with general relativity know thanesetting aside the regime of
quantum gravity, general relativity is not a final complétedry, but contains many open
and unsolved questions —in particular in relation to gediohal energy and entropy and
the averaging problem.

Strong backreaction does involve new physics, but in my \lewnew physics must
involve a natural extension of the principles of relativityo regimes which Einstein did
not envisage when he wrote down his field equations in 1915%tkén one wishes to
call it “general relativity” or “cosmological relativitybr something else is therefore a
matter of taste. The essential point is that one is proposmgrules for the geometrical
structure of spacetime on cosmological scales.

The cosmological spacetime is to be a statistical averagmegey. Any process of
taking an average will in general break the general coveeai Einstein’s equations.
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There are differing approaches to this, which alternagiualolve spacetime or spatial
averages. Many mathematical approaches exist, includiogy fow [60]-[63], group
averaging of the FLRW isometry group [64], covariant frabumdle averaging [65]
and constant mean (extrinsic) curvature (CMC) flows [66, 6¥re | will just very
briefly outline the two approaches which have attracted tbstrattention, largely due
to Zalaletdinov and Buchert.

3.2.1. Zalaletdinov's macroscopic gravity

Zalaletdinov has developed a theory calladcroscopic gravitypased on spacetime
averages [52, 53, 54, 68]. His aim is to consistently averthgeCartan equations
from first principles, in analogy to the averaging of the ragmopic Maxwell-Lorentz
equations in electromagnetism. However, whereas elegtendics is linear in the fields
on the fixed background of Minkowski spacetime, gravity dedsan averaging of the
nonlinear geometry of spacetime itself and is consideratadye complicated.

Additional mathematical structures are required to awerapsors in a covariant
manner on a given manifoldy1. To this end Zalaletdinov introduces bilocal averaging
operators [52]-[54]4*,(x,2"), with support at two points € M andz’ € M, which
allow one to construct a bitensor extensiai, (x,z’), of a tensofl'*,(x) according to

T, (z,2') = A" o (2,2 T 5 (') AY (2, ). (10)

The bitensor extension is then integrated over a 4-dimeasgpacetime region, C
M, to obtain a regional average according to

T (x) = VLE/Zd%/\/—g(x’)T“V(x,x'), (11)

where Vs = [,,d*z/—g(x) is the spacetime volume of the regidéh The bitensor
transforms as a tensor at every point but is a scalar whegratedl over a region for
the purpose of averaging.

Macroscopic gravity is a general covariant averaging fdismg rather than an ap-
proach which was specifically formulated with cosmology imdn In order to make
contact with cosmology, additional assumptions have beatemFor example, Paran-
jape and Singh considered a spatial averaging limit [69%eDstudies have made the
assumption, similar to the weak backreaction approacli,ttieaaverage geometry is
FLRW [70]-[73]. In that case it was found that the macroscagravity correlation
terms take the form of a spatial curvature, even though aatlyaflat FLRW geometry
was assumed for the average geometry [70].

In my view, although Zalaletdinov’s formalism is mathenoatly elegant, it has weak-
nesses as a physical theory. In particular, it has beenrtkbig closely resemble general
relativity itself. Apart from the fact that it deals with twgeometric scales — a micro-
scopic one and a macroscopic one — there is no scale in theHemly. Cosmological
observations suggest a particular hierarchy of scalesMah may involve physical
issues more complex than simply taking one step from a naogs theory to a macro-
scopic theory of gravity. In particular, the coarse-gnagnof the gravitational degrees
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of freedom involving binding energy at one level and the kmenergy of expansion
at another, may give rise to qualitatively new phenomenghdtdhan seeking to mimic
the steps involved in coarse-graining matter degrees efltnm, we need to specify
macroscopic scales and physical principles relevant toseegraining in cosmology.

3.2.2. Buchert’s spatial averaging formalism

In the late 1990s, building on earlier work [60, 74, 75], Betldeveloped an approach
[76, 77] for the spatial averaging of scalar quantities aeisged with the Einstein field
equations (1), with cosmological averages in a fully nohypbative setting in mind at
the outset. He applied tie+ 1 ADM spacetime split [41], which is a natural approach
if the Einstein field equations (1) are to be viewed as evoluéiquations.

Rather than tackling the mathematically difficult problerh averaging tensors,
Buchert averaged scalar quantities in general inhomogenggacetimes with perfect
fluid energy—momentum sources. Such scalars include thsitden, expansiong,
and scalar sheas? = $0,30*° etc. For an arbitrary manifold, one can always locally
choose ADM coordinates,

ds? = —w0®w0+gij(t,x) W' @, (12)

wherew’ = N (¢,x) cdt, andw’ = dz’ + N (t,x) cdt define the ADM lapse functiony/,
and shift vector\/?. Such coordinates can only be chosen globally if one résttie
evolution problem to that of irrotational flow, as Bucheredoln that case (12) may be
assumed to apply over globak const spatial hypersurfaces. For a dust sddnve can
then choose synchronous coordinates with= 1 and A* = 0. With these choices, the
Einstein equations may be averaged on a donjrof the spatial hypersurfaces, to
give

35 = 81G(p) — %cz (R)— %Q, (13)
3% = —AnG{p)+ Q, (14)
0up)+32(p) =0, (15)

where an overdot denoteg-aderivative, and

2

= 2((6-)") ~200%) = (18 - 01?) - 200", (16)

is the kinematic backreactianin these equations angle brackets denote the spatial
volume average of a quantity, so tH&) = (J"D d3x+/det 3gR(t,x)) /V(t) is the average

10 Extensions to perfect fluid [77] and other matter source}lia8e also been considered, as well as to
general hypersurfaces tilted with respect to the fluid flog]ff83].
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spatial curvature, for example, with(t) = [,d3x\/det?g being the volume of the
domainD C . Note thata is not the scale factor of any given geometry, but rather
is defined in terms of the average volume according to

a(t)= [V vty (17)

It follows that the Hubble parameter appearing in (13)—({$5)lated to the volume-
average expansion scalérby

= L), (18)

Q|

The condition

0, (a°Q) +a'c*9, (a*(R)) =0, (19)
is required to ensure that (13) is the integral of (14). In lBar€s scheme the non-
commutativity of averaging and time evolution is descrilbgdthe exact relation [74,
75, 76, 84]

O (W) — (9, ¥) = () — (0)(V) (20)
for any scalary.

Eq. (14) is suggestive since it implies that if the backneacterm is large enough

— e.g., for a large variance in expansion with small shearen the volume average
accelerationga = £ % (¢) + £ (¢)%, could be positive, even if the expansion of all re-
gions is locally decelerating. Although the fraction of tlidume occupied by the faster
expanding regions is initially tiny, this fraction may ndheless become significant at
late epochs, skewing the average to give an illusion of acagbn during the transition
epoch to void domination. Whether this is observationakbiyple, however, depends cru-
cially on: (i) how large the variance in expansion rates cawggiven realistic initial
constraints on density perturbations; and (ii) the openatliinterpretation of the Buchert
formalism. Since Buchert’s formalism is a statistical caglitional assumptions are re-
quired to relate solutions of the Buchert equations to cdsgical observations. The
timescape cosmology, to be discussed in Secs. 4, 5, prostiddsa scheme.

3.3. Notions of average spatial homogeneity

The relationship between average homogeneity and obs®rgas crucial for the
interpretation any averaging scheme for inhomogeneousa@ogy. The very near
isotropy of the CMB demonstrates that when photons travelstérom the surface of
last scattering, they traverse a geometry which to a veryl gggproximation must be
isotropic in some average sense. If we assume a statistpar@ican principle, then we
must also expect some sort of average notion of spatial henety. The hard question
is how to relate the observed averaged isotropy of the gegrmetour past light cone to
an appropriate notion of average spatial homogeneity.

Most cosmologists’ physical intuition is guided largely tine FLRW models, within
which average homogeneity can be characterized in (aj ldmse distinct ways:

(i) The notion of average spatial homogeneity is described tlass of ideal comov-
ing observers with synchronized clocks.
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(i) The notion of average spatial homogeneity is describgdaverage surfaces of
constant spatial curvature (orthogonal to the geodesicthefideal comoving
observers).

(iif) The expansion rate at which the ideal comoving obsenaeparate within the
hypersurfaces of average spatial homogeneity is uniform.

While these notions coincide for the FLRW geometries, itasgenerally the case once
spatial homogeneity is only approximate rather than exaegn that spatial curvature
is characterized by more than a single scalar.

Already in perturbation theory about FLRW models, one castisize to spacetime
foliations which preserve one of the notions (i)—(iii) ofesmge spatial homogeneity
more fundamentally than the other two. Among the foliatidiscussed in the classic
work of Bardeen [85] we can recognize those of each type altbgeomoving hyper-
surfaces(and related synchronous gauge) take property (i) as maorgafuental; the
minimal shear hypersurfac€sand related Newtonian gauge) are one type of foliation
for which property (ii) is more fundamental; and finally tineiform Hubble flow hyper-
surfacedake property (iii) as more fundamental.

Bicak, Katz and Lynden-Bell [86] have further analysed fabia$ of perturbed FLRW
models, with a view to enabling gauge choices in which thatiats and accelerations
of local inertial frames can be determined directly fromdioenergy—momentum per-
turbationsé7T*,. They consider uniform Hubble flow hypersurfaces; uniforrinsic
scalar curvature hypersurfaces; and minimal shear hygacgs. Thauniform intrinsic
scalar curvature hypersurfacgwovide a foliation in addition to those considered by
Bardeen, which also take property (ii) as more fundamehtaling chosen hypersur-
faces Btak, Katz and Lynden-Bell further fix the gauge by adoptingmdition similar
to the minimal shift distortion condition of Smarr and Yoi&7]. For each choice of
hypersurface it then follows that the coordinates of loc&riial frames are more or
less uniquely determined by the energy—momentum periorsd7”,. In this sense
these gauges might be seen as embodying Mach'’s principdy.dre substantially more
restrictive than the commonly used synchronous gauge ogeheralized Lorenz—de
Donder gauge [86].

In the nonlinear regime, below the SHS, not all of the condsi (i)—(iii) can apply,
even if they apply in some average sense on scales largetitb&@HS. The question is
should any of these notions apgiglowthe SHS? The timescape scenario begins from
the premise that a notion of uniform Hubble flow can be apptielbw the SHS, in a
way which takes Mach'’s principle into the nonlinear regim&we discuss in Sec. 4.

This will involve a reinterpretation of the Buchert fornst [76, 77], which grew
as a generalization of averaging in Newtonian cosmology T84, and is based on an
ADM approach on constant time hypersurfaces of observenstwing with the dust”.
Since the split of space and time is unique in Newtonian t)doom the Newtonian

11 For scalar perturbations this becomes a zero—shear aomdit.,C;; — 4 ¢;;K = 0, wherek;; is the
extrinsic curvatureg;; the intrinsic metric, andC = K,. For general perturbations the hypersurfaces are
defined by(KC;; — £¢:;K) =0 where the bar denotes a covariant derivative with respebgtintrinsic
3—metric.
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viewpoint this is the only natural choice one can make. Harewis is not the case in
general relativity.

If particles of dust were invariant from the time of last $eahg until the present, then
there would be no physical ambiguity about the notion of “ooing with the dust”. In
such a case, a choice of constant time hypersurfaces withchgynous gauge is well
motivated. However, as discussed in Sec. 2.2, in order tsistamtly deal with both the
particles of ionic dust in voids, and also with ‘particle$’dust larger than galaxies, we
have to coarse-grain at the SHS over fluid elements whichhemgelves expanding.
This demands coarse-graining over the gravitational @sgod freedom relating to
spatial curvature, the kinetic energy of expansion, andigitgonal binding energy.

We will adopt the viewpoint that the Buchert time coordinate collective degree
of freedom of spacetime regions when coarse-grained atit® 8nd that if we form
thin sandwiches from such regions in the time direction ey can be combined as
effective hypersurfaces on which the Buchert formalismlsampplied. However, new
physics applies within the coarse-grained cells, as wedigltuss next.

4. TIMESCAPE SCENARIO: CONCEPTUAL FOUNDATIONS

In considering the averaging problem, it is inevitable #asome level one must deal
with Mach’s principle, which may be stated [12, 8@8]ocal inertial frames (LIFs) are
determined through the distributions of energy and mommartuthe universe by some
weighted average of the apparent motionsfach’s principle strongly guided Einstein
in developing general relativity as a theory in which spaeetis a relational structure.
As Einstein stated in his first work on cosmology: “In a cotesis theory of relativity
there can be no inertia relatively to ‘space’, but only arrtiaeof masses relatively to
one another” [8].

The refinement of the understanding of inertia that Eindifinus with in relation
to gravity, the Strong Equivalence Principle (SEP), onlggpart-way in addressing
Mach’s principle. The SEP tells us that we can always remigeffects of gravity in a
LIF in the neighbourhood of a point. However, it says nothatgut the average effect
of gravity, and therefore nothing about the “weighted ageraf the apparent motions”
of the matter in the universe.

The question of what gravitational mass—energy is in geémetativity is deeply
subtle. On account of the SEP we can always get rid of grawitige neighbourhood of
a point, so any reasonable definition is necessarily quaajlmvolving integration over
a bounding surface. The subject of quasilocal gravitatienargy has occupied many
mathematical relativists [88], and there is no universallyeed definition. This may
reflect the fact that different notions of energy are appliean different circumstances,
just as in thermodynamics we deal with internal energy, amtbus free energies.

Two of the most familiar gravitational masses are the ADM #1144 which is defined
by an integral on a 2-sphere at spatial infinity for a geneswtrgptotically flat spacetime,
and the Komar mass [89, 90] ,

—C

~ 871G 52,

*dk (21)
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which is similarly defined for asymptotically flat spacetsneith an asymptotically
timelike Killing vector field,k. The Komar mass is identical to that appearing in the
Newtonian gravitational potential energy terin—= —G M /r, in an asymptotic expan-
sion, g,, = —(1+2®/c* +...), at spatial infinity [90]. Most of the effort in the field
of quasilocal gravitational energy has focused on ways bhitg general geometrical
energy quantities which reduce to familiar results in theeoaf isolated systems. Some
interesting examplé$include the definitions of Brown and York [91], and Epp [92].
With a few exceptions of quasilocal energies calculatecamigular backgrounds, (e.g.,
[93]-[97]), very little has been done in a cosmological extthowever.

For asymptotically flat geometries the average of the thstion of energy and mo-
mentum in the external universe is zero. In the actual useséine spacetime external
to any concentrated mass also contains matter so that itlseggodoes not have a time
symmetry but is necessarily dynamically evolving. In thredscape scenario it is pro-
posed that in place of spatial infinity in (21) the mass definifor the largest bound
structure should be made in referencdinite infinity, a timelike surface within which
the average volume expansion is zero. In general there avithatter collapsing inwards
around any virialized regions, and thus the finite infinityface will be expanding at the
boundary. (See Figure 1.) The density of a shell at the finfiaity surface defines the
critical density. In a universe which is on average undesde¢here must always be such
a transition zone between the overdense regions and theusding underdensity.

Finite infinity <6>=0 6>0

FIGURE 1. A schematic illustration of the notion of finite infinitfi,[13]: the boundary (dashed line)
to a region with average zero expansion inside, and pogikipansion outside.

Accounting for the average effect of matter to address Maphnciple effectively
means specifying an appropriate definition of an asymptetion, such as finite in-
finity, containing any local geometry. Local geometry shibbhé determined by local
matter, and if matter on a bounding sphere obeys some symmmeticiple then we
should look no further in determining the local standardnefriia. Since the very early
universe started out being very close to spatially homogesiand isotropic and cannot
evolve arbitrarily far from from its initial conditions, i proposed that such symmetries
can always be found atragionalscale.

12 This subject has a long history going back to Einstein, andgelrast of mathematical relativists have
made important contributions, which | will not attempt tarsmarize here. See ref. [88] for further details.
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4.1. The cosmological equivalence principle

In the timescape scenario we restrict the geometry of expgrégions (the walls
and voids) in the final stages of coarse-graining (2) to amageeover domains which
each obey theosmological equivalence princip{f€EP) [15]:

In cosmological averages it is always possible to choosetaldy defined spacetime
region, the cosmological inertial region (CIR), on whoseubdary average motions
(timelike and null) can be described by geodesics in a gegymadtich is Minkowski up
to some time-dependent conformal transformation

ds? = a*(n) [—dn? +dr® +1%d0,°] . (22)
A suitably defined region here refers to one which is smaliantthe scalar curvature
scale within underdense voids, or alternatively is the dimitfinity scale for systems
containing overdensities. Typically this could be of or@ér!—-10h~'Mpc for finite
infinity regions bounding small groups or rich clusters dbgées.

Since the average geometry is a time—dependent conforralhgof Minkowski
space, the CEP reduces to the standard SE Jfis constant, or alternatively over very
short time intervals during which the time variationadf)) can be neglected. It is well-
known that for the exchange of photons between comovingeéein the background
(22), to leading order the observed redshift of one comoulvggrver relative to another
yields the same local Hubble law, whether the exact relationl = q,/a, is used
or alternatively the radial Doppler formula,+ 1 = [(c 4+ v)/(c —v)]"/2, of special
relativity is used, before making a local approximationr Resmall spacetime region
in a spatially homogeneous isotropic background this isractliconsequence of the
SEP: it is impossible to distinguish whether particles aowimg radially in a flat space,
or alternatively are at rest in an expanding space.

The CEP makes the indistinguishability of radial motionnfracvolume expansion
a feature of regional averages on scales ug/o'-10h~'Mpc, while allowing for
inhomogeneity between this scale and the SHS. Howeversatldivs global coherent
anisotropic expansion of the sort typified by Bianchi modBlanchi models single out
preferred directions in the global background universexghy imbuing spacetime with
absolute qualities that go beyond an essentially relatistmacture. To make general
relativity truly Machian such backgrounds need to be outldwy principle, and the
CEP achieves this while still allowing inhomogeneity.

The CIR metric (22) is of course the spatially flat FLRW metwaich in the standard
cosmology is taken to be the geometry of the whole univers@ur case the whole
universe is inhomogeneous subject to the restriction thepiossible to always choose
(22) as a regional average in expanding regions.

4.2. Relative volume deceleration

To understand the physical implications of taking an averggometry (22) as the
relevant average reference geometry for the relative redidn of rulers and clocks in
the absence of global Killing vectors, let us construct auffid experiment analogy
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that | will call the semi-tethered latticeTake a lattice of observers in Minkowski
space, initially moving isotropically away from each nesreeighbour at uniform initial
velocities. The lattice of observers are chosen to be espaiali along mutually oriented
z, y andz axes. Suppose that the observers are each connected thesig by tethers
of negligible mass and identical tension along the mutuatignted spatial axes. The
tethers are not fixed but unwind freely from spools on whictagbitrarily long supply
of tether is wound. The tethers initially unreel at the samigoum rate, representing
a ‘recession velocity’. Each observer carries synchrahaecks, and at a prearranged
local proper time all observers apply brakes to each spbelbraking mechanisms
having been preprogrammed to deliver the same impulse ax#duo of local time.

Applying brakes in the semi-tethered lattice experimemtiisctly analogous to the
decelerating volume expansion of (22) due to some averag@dgeneous matter den-
sity, because it maintains the homogeneity and isotroppafes over a region as large
as the lattice. Work is done in applying the brakes, and grzag be extracted from this
— just as kinetic energy of expansion of the universe is caededo other forms by grav-
itational collapse. Since brakes are applied in unison.gvew there is10 net force on
any observer in the latticgustifying theinertial frameinterpretation, even though each
observer has a nonzero 4-acceleration with respect to thmlgMinkowski frame. The
braking function may have an arbitrary time profile; prowddeis applied uniformly
at every lattice site the clocks will remain synchronoushea tomoving sense, as all
observers have undergone the same relative deceleration.

Whereas the Strong Equivalence Principle allows us to dédiced inertial frames,
related to each other by local Lorentz transformationsigcit a point, the Cosmological
Equivalence Principle refers tocallectivesymmetry of the background. In defining the
averaging region of the CIR we are isolating just that patihefvolume expansion which
is regionally homogeneous and isotropic.

Let us now consider two sets of disjoint semi-tethereddestj with identical initial
local expansion velocities, in a background static Minkaevwspace. (See Fig. 2(a).)
Observers in the first congruence apply brakes in unisond¢elerte homogeneously
and isotropically at one rate. Observers in the second cemge do so similarly, but at
a different rate. Suppose that when transformed to a glolr@dwski frame, with time
t, that at each time step the magnitudes of the 4—decelesagaisfya (t) > . (t) for
the respective congruences. By special relativity, sineebyers of the first congruence
decelerate more than those of the second congruence, anay their proper times
satisfyr, < 7,. The members of the first congruence age less quickly thanb@enof
the second congruence.

By the CEP, the case of volume expansion of two disjoint negjaf different average
density in the actual universe is entirely analogous. Thevatence of the circumstance
rests on the fact that by the evidence of the CMB the exparsidhe universe was
extremely uniform at the epoch of last scattering. At thatetiall regions had almost
the samedensity — with tiny fluctuations — and the same uniform Hubibdbev. At
late epochs, suppose that in the frame of any average cogital@bserver there are
expanding regions dlifferentdensity which have decelerated by different amounts by
a given time¢, according to that observer. Then by the CEP the local prioperof the
comoving observers in the denser region, which has detetenaore, will be less than
that of the equivalent observers in the less dense regiothwias decelerated less. (See
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FIGURE 2. Two equivalent situationga) in Minkowski space observers in separate semi-tethered
lattices, initially expanding at the same rate, apply bsakemogeneously and isotropically within their
respective regions but at different ratéls); in the universe which is close to homogeneous and isotrapic a
last-scattering comoving observers in separated regnitiely move away from each other isotropically,
but experience different locally homogeneous isotropitetiErations as local density contrasts grow. In
both cases there is a relative deceleration of the obseovgraences and those in the region which has
decelerated more will age less.

Fig. 2(b).) Consequently theroper time of the observers in the more dense CIR will be
less than that of those in the less dense,®§Requivalence of the two situations.

The fact that a global Minkowski observer does not exist exgacond case does not
invalidate the argument. The global Minkowski time is justaordinate label. In the
cosmological case the only restriction is that the expansfdoth average congruences
must remain homogeneous and isotropic in local regionsfte#rdnt average density in
the global average =const slice. Provided we can patch the regional frames heget
suitably, then if regions in such a slieee still expandingand have a significant density
contrast we can expect a significant clock rate variance.

This equivalence directly establishes the idea ajravitational energy cost for a
spatial curvature gradiensince the existence of expanding regions of differentithens
within an average =const slice implies a gradient in the average Ricci scalavature,
(R), on one hand, while the fact that the local proper time vasiesiccount of the
relative deceleration implies a gradient in gravitatioerargy on the other.

The variation of the normalization of asymptotic clocks daea relative volume
deceleration is a new physical effect. We are familiar widb$ts in particular directions,
which give significant effects only for large relative velegs; e.g., as required to remain
stationary in strong gravitational fields. Since we onlysider weak fields the relative
deceleration of the background is small. However, evendfréiative deceleration is
typically of order10~°ms~2, cumulatively over the age of the universe it leads to
significant variation in the calibration of clocks, as welwikcuss at the end of Sec. 5.2.
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4.3. Statistical cosmological geometry

The timescape scenario represents an extension of theptsruégeneral relativity in
the cosmological domain, as illustrated schematicallyign 8. In particular, it is recog-
nized that once gravitational degrees of freedom are cegramed then one is no longer
dealing with a simple solution of Einstein’s equations watprescribed matter source.
Rather than cutting and pasting exact solutions of Einsteiguations as one does in
the Swiss cheese [9] and meatball [57] models, we are dewlitiga new statistical
cosmological geometry in which the relative volume de@len provides a physical
degree of freedom to normalize canonical clocks. The kegihenomenological lapse
function provides a measure of the relative kinetic eneffggxpansion of CIRs.

Local Inertial Frame

Local Inertial Frame

FIGURE 3. (a) In general relativity the SEP allows one to relate a solutbitinstein’s equations
with prescribed matter source to LIFs. The connectiQp,,;, allows one to parallely transport tensorial
guantities from one LIF to anothéib) In the timescape scenario there is (at least) one additlagaf

of geometrical structure. Local geometries with asymptoggions bounded by CIRs are combined in
a cosmological average statistical geometry. The CEP allowe to relate a solution for the statistical
geometry to the regional geometry of a CIR. The statisticahwological geometry should be equipped
with an appropriate connectioR,,, to allow parallel transport from one CIR to another.

The Buchert formalism clearly deals with statistical quizeg. However, although
Buchert and Carfora [98] realized early on that there willdifterences between the
bare volume—average statistical parameters of the Bubbrenalism and dressed pa-
rameters as determined by any particular observer, theaeship between observers
and the statistical averages requires additional inputisaassumptions. Likewise one
must specify what is understood by the phrase “comoving thighdust” once the dust
approximation has broken down, as is the case for obsemeaygavitationally bound
structures in overdense regions.

The timescape scenario seeks to address these questiompleynienting the CEP.
To date a rigorous geometrical framework for the statistoamological geometry has
not been implemented. A phenomenological working framé&wal be outlined in the
next section. Ultimately the geometrical framework shdagdone in which the Hubble
parameter is to some extent a gauge choice — it corresporttie fost derivatives of
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the metric of the statistical geometry encoded in the camored... This is of course
obvious in the early universe in which the FLRW and stat@dgeometry are one and the
same, on account of global homogeneity and isotropy. Howet@lkbp an appropriate
framework at late times is less obvious; however, it seekedyiithat should involve the
notion ofscale invariancef the statistical spatial 3-geometry.

5. TIMESCAPE SCENARIO: PHENOMENOLOGICAL MODEL

In order to deal with the evolution from the epoch of last sétg up to the present
day, we assume that dust can be coarse-grained at the»~*Mpc scale of statistical
homogeneity over which mass flows can be neglected. We dppBuchert formalism,
but interpret it in a different to Buchert [76, 77], who didtndefine the scale of
coarse-graining of the dust explicitly. We will assumed tha Buchert average itself is
performed over our present horizon volume, to describeaaeecosmic on the largest
scales accessible to our observations.

Prior to last scattering the universe is close to homogesesmithat timescape model
is almost indistinguishable from the standard cosmologindpvery close to a standard
matter plus radiation FLRW model with negligible spatiah@aiture. At late epochs,
the solutions to the Buchert equations will differ subgtyt from a FLRW model.
Assuming no dark energy, then it is the matter density angatsance which drives
the overall evolution of the universe. While the radiatiomdl certainly responds to
density gradients, this only affects questions such astgtanal lensing, rather than
the average cosmological evolution described by the Badwgrations. We therefore
treat the radiation fluid as a component with a presdgre= %pR which commutes
under the Buchert average,

at<PR> - <atPR> = <PR9> - <PR><9> =0, (23)

throughout the evolution of the universe, rather than usigmore detailed Buchert
formalism that applies to fluids with pressure [77]. The vatg Buchert equations are

then (13) with(p) — (p,,) + (py), (14) With (p) — (p,,) +2{py.), (15) with (p) — (p,,),
(19), and

0pa) +4% () =0 @4

To obtain a phenomenologically realistic solution comsistwith observations of
voids in the cosmic web [2]-[4] we assume that the presentleporizon volume,
Y = Va3, is a disjoint union of void and wall regions characterizgdsbale factors:,
anda,, related to the volume-average scale factor by

a'g = fvia'vg + fwiaw3 (25)

where f,; and f,; = 1 — f.; represent the fraction of the initial volumg,, in void and
wall regions respectively at an early unspecified epoch. \&4 mewrite (25) as

So@) + fult) =1, (26)

25



where f, () = fuiay/a® is thewall volume fractiomand f, (t) = f.;a.®/a® is thevoid
volume fractionTaking a derivative of (25) with respect to the Buchert tipagameter,
t, we find that the bare Hubble parameter is given by

A=2= f Hot f H,, 27)
a

where H,, = d,/a,and H, = d,/a, are the Hubble parameters of the walls and voids
respectively as determined by the clocks of volume—avepagervers.
The voids are assumed to have negative spatial curvaturaatbezed by(R)

<

0.

6k, /a> with k, < 0, while the wall regions [13] are on average spatially fl&) =
It then follows that 25 5 13
6kv vi v
(R) = b 28)

We also assume that the kinematic backreaction vanishasadely within the voids and
walls'® but not in the combined average. One then finds that the kitielrackreaction
(16) reduces to a term depending on the relative expansivoid$ and walls
2,
Q=6f(1—f,)(H,—Hy) = ———. (29)
( ) ( ) 3fv(1 - fv)

Since (15) and (24) are solved Hy,) = 5, (a/a,)~* and (p,) = p, (a/a,)~"
respectively, where the subscript zero refers to quas@@luated at the present epoch,
the remaining independent Buchert equations may then lieewas

=2 . 2 92, 1/3 _3 4

a fv a’fy G [ a . a
@ 9f(1—f,)  a ~ 73 (pMoa_g _'_pROC—L_Z) ; (30)

.92 .
. fv (va_l) a . 3a2fvl/3<1_fv)
YT AT A - =0, 31
f - 2fV(1_fv) +3af 2a2 0 ( )
wherea? = —k, f 23 > 0.
Equation (30) may also be conveniently written

Dy +Qp+92,+ 05 =1, (32)

13 For spherical voids this is reasonable since the average ahd vorticity are small. Shear and vorticity
may be significant within bound structures in the wall regidout their contributions are of the opposite
sign in the Raychaudhuri equation and might be largely salieeling, giving rise to second order effects.
The Buchert formalism neglects vorticity, and realistic#his should be treated together with the effect
of nonzero shear. Since we smooth at the finite infinity scaee neglecting the gravitational physics
associated with bound structures, where these effectékelg to be important. In the model presented
here is assumed that the variation of the kinetic energy p&egion can be quantified independently of
the gravitational physics within nonexpanding regions.
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where

2, 1/3 4 2
2 fv,g ) QQ %7
a’H 9f.(1—f,)H
(33)
are the volume—average loaredensity parameters [62, 98] of matter, radiation, average
spatial curvature and kinematic backreaction respegtiltels straightforward to add a
cosmological constant term to the r.h.s. of (30), giving tsa further density parameter

Q, = A/(3H%), and in fact the equivalent solution with matter and a cosgickl
constant (but no radiation) has been derived in [99, 10Gjc&Swe are interested in
the possibility of a viable cosmology without dark energg, set2, = 0.

a 87Gp, 0 a 87G P n
Y 3Ees TosHa

0, =

5.1. Matching regional to statistical geometry

Thus far we have simply set out the Buchert equations for acpdar ensemble of
wall and void regions, leading to differential equationgetican be solved and possibly
interpreted in many way4 Since the Buchert equations describe statistical average
the relationship of the statistical solutions to local getnyis crucial to the physical
interpretation of the Buchert formalism. Here | will ou#inhe phenomenological im-
plementation of the principles of the timescape scenadoudised in Sec. 4.

The wall regions are a union of disjoifihite infinityregions [10, 13] encompassing
bound structures, with local average metric (22), whichlmanewritten as

ds?i = —c2d7? + a2 (1) [dnﬁ, + ni,dQQﬂ . (34)

in terms of the wall time,,, related to the wall conformal time bydr, = adn,.
Although each finite infinity region is distinct, since theach represent a region within
which the average density is critical, evolved from the samitéal conditions, ther,,
parameters can be taken to be synchronous.

The voids are characterized by regional negatively curvettios of the form

ds%v = —c2dr? +al(7y) [dng +sinh2(77v)d§222} : (35)
Generally the voids will have different individual metri¢35). However, in the void
centres the regional geometry will rapidly approach thatroémpty Milne universe for
which the parameters, can be assumed to be synchronous. One could potentially use
different curvature scales for dominant voids and minigdimlcharacterize the average
scalar curvaturéR). However, in the two—scale approximation of [13, 14] a singl
negative curvature scale is assumed as a simplification.

14 Buchert and Carfora [101], and Wiegand and Buchert [102]jehiavestigated a very similar model,
without radiation, which also allows the possibility ofénhal kinematic backreaction within the walls
and voids. They do not directly consider the issue of gréuital energy.
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Within the dust particles the metrics (34) and (35) are asslim be patched together
with the condition of uniform quasilocal bare Hubble flow [15]

_ 1 da 1 da
H=——"T=—-—" 36

awdry  aydr,’ (36)
discussed in Sec. 4.2. In particular, the regional Hubbtarpaters are also equal to the
bare Buchert Hubble parameter (27). The Buchert averagansersH,, and H, refer
to expansion rates with respect to the volume—average taraneter, so that (36) may
be rewritten B

H= WWHW = rVVHV (37)

where

dt _ dt

Tw = av Vv = d—TV’
are phenomenological lapse functions of volume—average, ti, relative to the time

parameters of isotropic wall and void—centre observergeas/ely. The ratio of the
relative Hubble rates, = H,,/H, < 1 is related to the wall lapse function by

A=h)fe
h, ’

(38)

Vo =1+ (39)
andy, = h,7,,.

As we ourselves live in a bound structure and can be consideree wall observers,
there is no further need to refer to the void time parametekVe will henceforth drop
the subscript w from quantities defined in (38) and replace> 7, 7, — 7.

We may rewrité2 , = —(1— f,)(1—%)?/(f,7*), and combine it with the other density

parameters (33) to give
1—£.0 ’

= (40)
where B B B B B
Qzl—QQ:QM+QR+Qk, (41)

which satisfies2 > 1 for the solutions of interest. As— 0, f, — 0, 2, — 0,2 —1
andy — 1; i.e., initially the void fraction and backreaction are hgiple, and the wall
time and volume-average time parameters coincide.

Solutions of the Buchert equations are not directly reldtedny physical metric.
Since all cosmological information is obtained by a radferically symmetric null
cone average, given a solution of the Buchert equations Weethofit a spherically
symmetric geometry relative to an isotropic observer wh@sunees volume-average
time, according to

ds® = —c*dt? +a*(t) din® + A(n,t) dQ, 2. (42)

Here the area quantityl(7,t), satisfiesfg” dn A(7,t) = a*(t)W(7,, )/ (4), 7, being the
conformal distance to the particle horizon relative to asesbeer at; = 0. The metric
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(42) is spherically symmetric by construction, but is noff@Lsolution since it is not an
exact solution of Einstein’s equations, but rather a phesrmiogical fit to the Buchert
average of the Einstein equations.

In terms of the wall timer, of finite infinity observers in walls the metric (42) is

ds® = —4%(7) *dr® + a*(7) di® + A(7, 7) A€, . (43)

This geometry, which has negative spatial curvature ishelidcally measured geometry
at finite infinity, which is given instead by (34). Since (34)not a statistical geometry,
we match (34) to (43) to obtaindressedstatistical geometry. The matching is achieved
in two steps. Firstly we conformally match radial null gesids of (34) and (43), noting
that null geodesics are unaffected by an overall conforroalirsy. This leads to a
relation

dpy = 2 (44)
7

along the geodesics. Secondly, we account for volume aradfaceors by taking,, in
(34) to be given by the integral of (44).
The wall geometry (34), which may also be written
11— fv 2/3 C_LZ

dsf; = ety U5 ; _2)/3 LU (45)
on account of (25), is a local geometry only valid in spayifltht wall regions. We now
use (44) and its integral to extend this metric beyond thd vegjions to obtain the
dressed statistical metric

~2 —2 1— Y 2/3
ds* = —cdr*+ % dip® + G2 (f 2{3) 2 (7,7)dQ,>
Y wi
= —cAdr*+ad*(1) [dﬁ2 +72(7,7) dQQﬂ (46)
wherea = 77 1a, and
rw =7 (L= ) ™ (7). 47

While (34) represents a local geometry only valid in sphtiflat wall regions, the
dressed geometry (46) represents an average effectiveegigoextended to the cos-
mological scales, parametrized by the volume—averageoomiad time which satisfies
dn = cdt/a = cdr/a. Since the geometry on cosmological scales does not hagterin
Gaussian curvature the average metric (46), like (42), esgally symmetric but not
homogeneous.

Wall observers who try to fit a FLRW model with ‘cosmic time’rashronous to walll
time, 7, are then effectively fitting the dressed geometry (46) civlis the closest thing
there is to a FLRW geometry adapted to the rulers and clockegatifobservers. The
cosmological parameters we infer from taking averages atesenuch larger than the
SHS will not then be the bare parametéfs(, , ©2,, andQ,, but instead thelressed
Hubble parameter

~1lda 1da 1dy _ - d¥
H_adT_ddT 7d7_7H t’ (48)
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and thedressed matter density parameter
Q,,=7Q,,. (49)
There is similarly a dressed luminosity distance relation
d; = ay(1+2)ry, (50)
wherea, = a,/7,, 1 +2z=a,/a = (a,7)/(a?,), and

s [t cdt/
Tw =7, (1 fv) /t ’7(15/)(1 _ fv<t/))1/3a(t/) ’ (51)

We can also define affective angular diameter distaneg,, and areffective comoving
distance D, to a redshift: in the standard fashion
D d,

=1 (1+2)2

(52)

5.2. Cosmological solutions and their timescape interpration

We have recently obtained [103] full numerical solutiongtiué Buchert equations
for a matter plus radiation fluid, evolved forward from anlganitial time when the
solutions are well approximated by series solutions. g .begin integrations after the
epoch of primordial nucleosynthesis, At ~ 5 x 107! when the universe is about a
year old. Herel{, = H (t,) is the bare (volume-average) Hubble constant. Bare density
parameters (33) for typical solutions are shown in Fig. 4.

While numerical solutions are needed to smoothly matchiswisifrom the radiation-
dominated epoch to later epochs, the full numerical sakiftipossesses a tracking limit
with a simple analytic form [14, 16] which is very accurateepiochsz < 10. The
tracking corresponds to the walls expanding as an Einsleiitter modelg,, = a.t,
and the voids as an empty Milne universe= a.ot, in volume average time, so that
h, = 2/3. The solution to the Buchert equations is then given by

e n2/3
_ GBH)T [3fV0H0t+ (1= fv)(2+ fio)

1/3
2+fv0 }

(53)
3fvoH,t
3fv0ﬁ0t+ (1 — fv0><2 + fv(]) .

The density parameters (33) and other quantities for thekitig solution are all
found to have simple analytic forms in terms of the void fiatt f,. For example, the

e (54)

15 The matter only solutior@R = 0, is also analytically soluble [14, 16]. However, the tranckiimit is
reached to within 1% for redshifts< 37. For larger redshifts > 50 one needs to include radiation to
obtain accurate solutions. Thus the full numerical sofuttoactually required in that regime.
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FIGURE 4. Bare density parameters (33) for the full numerical sohitias a function of dressed
redshift = + 1 = 5a,/(ya) (and bare redshift 4+ 1 = a,/a), for the dressed parametef$, =
61.7kms'Mpc~!, Q, = 0.410. The vertical bar at094.88 < z < 1100.46 corresponds to the epoch
of decoupling.

MO

bare Hubble parameter, phenomenological lapse functmhdeessed Hubble parameter
satisfyH = (2+ f,)/(3t), 7= 1(2+ f.) andH = (4,> + f, +4)/(6t) respectively. (For
further details, see ref. [16], Appendix B.) Parameterstfiar full numerical solution
with radiation differ from those of the tracker solution ®3% or less at late times.

In the tracker limit the timescape wall time is related townk average time by

40 H
T:§t+7Mgln<1+M>, (55)
27 fwH, 48, 10

whereQ, ;o = (1 — fuw)(2+ fw) is the present epoch dressed matter density. In general
the two parameters will differ substantially at late epoehn fact by some billions of
years — meaning that the age of the universe is observerrdept Nonetheless, we and
all the objects we observe are necessarily in regions ofgrtean critical density, where
the asymptotic time parameter is wall time,Consequently this radical departure from
conventional assumptions does not lead to any immediatiictomith observation, on
account of our mass—biased view of the universe.

A present epoch large variation of clock rates, of orléo, is the cumulative effect
of an instantaneous relative volume deceleration betwesis and voids which can be
defined as [15]

Q@ 1 dy d r_ 1/2
c 52— 1] e - al Y (56)

This is the deceleration that would arise from treatings they—factor of a purely
transverse Lorentz boost. The phenomenological lapsdifumizlates to an isotropic
regional volume deceleration, and is not associated wigtparticular spatial direction,
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which is why the transverse Lorentz boost formula is applieat the late time tracker

solution B
& 2\/3fv(]f:[0t [15fvoﬁ0t+4<1 —fv())(z—.—fv(])}
10 m/2
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FIGURE 5. The magnitude of the relative deceleration scale [&5]a) in terms of its absolute value
for redshiftsz < 0.25; (b) in terms of the dimensionless ratiag(cH) (solid curve) andv/(cH) (dashed
curve) for redshifte < 10. In panel (b) just the best fit valug, = 0.695 is shown, whereas in panel (a)
the solid and dashed represent the best fit value anantertainties from Table 1. The narrower range
of uncertainties obtained from the Planck data gives a smadinge of uncertainty inc as compared
to earlier work [15]. In pane{a) the horizontal dotted lines indicate the upper and lowembiswof the
empirical acceleration scale of MOND when normalizedfp= 61.7 4 3.0 kms ! Mpc!.

The relative deceleration parameter is plotted in Fig. 5absolute terms at small
redshifts,z < 0.25, and as a fraction of 7 andcH over a larger range of redshifts.
Although « is larger in absolute terms at earlier times, the Hubble esioa is much
larger at early times, so that the ratig(cH ) or o/ (cH ) is in fact small at large redshifts.
Using the parameter values from Table 1 in Sec. 6.2, wedijnd 8.67}2 x 10~ !'ms2
at z = 0, which is well within the weak field regime. Intriguingly,ighcoincides with
the empirical acceleration scale of MONB,,,nq = 1.2703 x 10712, ms~2 [104],
wherehrs = H, /(75 kms ! Mpc™!). For the values off, given in Table 1,amona =
8.173:0 x 10~"'ms2. It has been often observed that the valjg,q is close ta-H,, [18].
However,cH, is actually one order of magnitude larger than,.q, whereas here, and
amond @gree precisely within the uncertainty. Furthermares a relative deceleration
scale obtained frorderivativesof quantities related to the Hubble parameter, meaning
that one should not simply expect a numerical coincidensedan the value off,.
Since the physics of bound systems has not been investigeiieel timescape scenario,
it remains to be seen whether the~ «,,,,4 coincidence has any deeper significance.
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5.3. Apparent acceleration and Hubble expansion variance

The gradient in gravitational energy and cumulative déferes of clock rates between
wall observers and volume average observers has an impootasequence for apparent
cosmic acceleration. A volume average isotropic obsemamely one whose local
geometry has the same spatial curvature as the volume a&yaevagld infer an effective
bare deceleration parametér= —a/ (Hza). Using the tracker solution approximation
g=2(1—f.)*/(2+ f.)% which is always positive, meaning that there is no actual
acceleration. However, a wall observer inferdrassed deceleration parameter

_ 1 d%a - (1-£)(8£°+39f° —12f, - 8)
H?q dr2 (4—|—fv—|—4fv2)2

q : (58)

where again we have used the tracker solution in the last steparly times, when
fv — 0, both the bare and dressed deceleration parameters tak#ntein—de Sitter
valueq ~ g ~ 1. However, unlike the bare parameter which monotonicaltyreases to
zero, the dressed parameter becomes negative yheri).59 andg — 0~ at late times.

The origin of apparent cosmic acceleration in the timessapaario differs from that
envisaged in some other interpretations of the Buchert &tism, since|QQ| <0.042
at all times which means that the backreaction is never largrigh to make neg-
ative. Cosmic acceleration is recognized as an apparestteffhich arises due to the
cumulative clock rate variance of wall observers relatvedlume—average observers.
It becomes significant only when the voids begin to dominlageuniverse by volume,
which occurs at low redshifts. Since the epoch of onset oaepy acceleration is di-
rectly related to the void fractiory,,, this solves the cosmic coincidence problem.

In addition to apparent cosmic acceleration, another itapbrapparent effect will
arise if one considers scales below the SHS. By any one sdockcit will appear
that voids expand faster than wall regions. Thus a wall olesewill see galaxies on
the far side of a dominant void of diametei30 »~'Mpc to have a greater local Hubble
parameter than the dressed global averdgewhile galaxies within an ideal wall have
a local Hubble parameter lower thaf). The local maximum Hubble parameter across

a void seen by a wall observer I,,c = L 9% = h ' H ~ 3[. Furthermore, since the

ay dr
bare Hubble parametdd provides a measure of the uniform quasilocal flow, it must
also be the minimum ‘local’ value within an ideal wall at angyoeh. With a dressed
Hubble constant/, = 61.7+ 3.0kms 'Mpc™' (see Table 1), we can expect a local
Hubble expansion that varies between a minindiini & 1.7kms~' Mpc~* within our
local filament (towards the Virgo cluster), and a maximim®2 3 kms ' Mpc~! across
local voids. Averaging over many structures in sphericallsiwill reduce the variation,
as will be discussed in Sec. 7.
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6. TIMESCAPE SCENARIO: OBSERVATIONAL TESTS

There are three types of potential cosmological tests dfithescape scenario:

(i) tests of the average expansion history on scales latger the SHS, involving
guantities derived from luminosity and angular diametstatice measures;

(ii) tests of cosmological averages on scales larger tharStiS that include contri-
butions from the growth of structures (late epoch integt&8achs—\Wolfe effect,
cosmic shear, weak lensing, redshift space distortions etc

(iii) tests of the local expansion history below the SHS.

Class (iii) deals with scales which are in the nonlinear megiof perturbation theory
in the standard model, and it is quite possible that thismegaeeds to be understood
before one can make progress with class (ii). Tests in clpgsl(include equivalents
to every cosmological test of the standard FLRW model. Weasihsider class (i) tests
in Secs. 6.1-6.3, 6.6; tests which require the treatmeradshift space distortions and
therefore fall into class (i) in Secs. 6.4, 6.5; and finallglass (iii) test in Sec. 7.

6.1. Luminosity distances: supernovae, gamma ray bursts

The luminosity distance relations (50), (51) have beeretksiktensively with type
la supernovae (Snela) data [105, 106] and with gamma-—rastdysr[107]. In the case
of the supernovae, it turns out that the luminosity distaiscgeo close to that of the
standard model that the question of whether a better fit igiged by the timescape
model or by the spatially flaACDM model depends on the manner in which the data
is reduced [106]. In other words, the differences betweenttfo models are at the
level of current systematic uncertainties in Snela dataigeon — supernovae being
standardizable candles, rather than perfect standardesand

Two empirical methods commonly used to reduce SNela dathamdulticolor Light
Curve Shape fitter MLCS2k2 [108], and the Spectral Adaptiight_curve Template
SALT/SALT-1l methods [109, 110]. MLCS2k2 calibration usasiearby training set of
SNela assuming a close to linear Hubble law, whereas SALITSAuses the whole
dataset to calibrate empirical light curve parameteré&8nela from beyond the range
in which the Hubble law is linear are used, a cosmological @hatust be assumé&t
We find that the timescape model provides a better fit to Snatia than the standard
spatially flat ACDM model if the MLCS2k2 method is used, while conversely the
standard model provides a better fit if the SALT-Il methodssdi[106]. However, the

16 |n refs. [111, 112] it is incorrectly stated that in the SAGHLT-1l methods data is reduced “assuming
the Friedmann equation”. In fact, any cosmological model ba used in applying the SALT/SALT-

Il method, and in ref. [106] we have applied it to the timescapodel. However, it is true thatery
oftendata is reduced using the standard cosmology with the Faednequation to produce tables of
apparent magnitudes and redshifts. Data reduced in thisofagannot be used to test non-standard
cosmologies; one must perform a separate SALT/SALT-II dathuction for each nonstandard model
that one investigates.
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Bayesian evidence for these conclusions is not very strong.
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FIGURE 6. Confidence limits [106] for timescape model fits 20> 0.033 cut samples of Gold07
(R, =3.1) [113], SDSS-Il ®,, = 2.18) [114], MLCS17 R, = 1.7) and MLCS31 &, = 3.1) [115]. In
each case an overall normalization of the Hubble constant the published dataset is assumed.

One important issue that arises in the timescape modeltisht@auminosity distance
relation (50), (51) only applies on scales larger than th& SH some Snela compila-
tions data below this scale is included. Such data needsitenbe@ved when testing the
timescape model. It was found that even when such systesraagaccounted for, there
are still marked differences in the cosmological paransededucet! depending on ad-
ditional assumptions made in data reduction, as is seengin6An which 4 different
implementations of MLCS2k2 are considered. There is a kndegeneracy between
intrinsic colour variations in Snela and reddening by dashe host galaxy, determined
by the parameter?,,. However, the differences seen between the different panel
Fig. 6 involve more than simply the value of this parametarcMremains to be done to
resolve these systematic issues.

In recent years correlations of empirical properties of geray bursters have been
used to determine Hubble diagrams at larger redshifts ti@setprobed by Snela [116]—
[119]. A recent analysis of 69 GRBs [107] found that the tinzgse model gave a better
fit than the spatially flah CDM model, but not by a margin that is statistically signifita
Further improvement in understanding of the systematiteisss required before GRB
can provide tight constraints.

171t should be noted that in the MLCS method the valugfgfdepends on an overall calibration of the
distance scale; e.g., from Cepheid distances. There isftrera freedom to shift the contours along the
H, axis in Fig. 6 depending on that normalization. The relatisie of H for different fits is more
important than the absolute values.
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6.2. Cosmic microwave background anisotropies

A complete analysis of the CMB anisotropy spectrum in theesoape cosmol-
ogy is highly nontrivial, since the standard model analys@dudes the late time in-
tegrated Sachs-Wolfe effect, which requires a from firgti@ples reinvestigation in the
timescape model. While such an analysis has not yet beenletadpwe are nonetheless
able to compute the angular diameter distance of the sounzincat any epoch, and
to independently compute the epochs of matter—radiaticouj@ing, photon—electron
decoupling and the baryon drag epoch, and substantialraomtston model parameters
[103] can already be made using the Planck data [1].

Since the early universe is extremely close to being spatredmogeneous and
isotropic, in the timescape model there is no change to palygirocesses at those
epochs, but rather in the calibration of parameters. In asecthere are two sets of
observers —wall observers such as ourselves, and the vakemage observers to whom
the average cosmological parameters (33) are most dinedtlyed. Computations are
most readily performed from the point of view of the volumesiaage observers, if we
account for the fact that they determine a cooler CMB tentpegdhan us at the present
epoch. There is a focusing and defocusing of light betwedisvaad voids, and the
number density of CMB photons in the negatively curved vagdsss than in the walls.

The volume-average CMB temperaturg,is related to wall temperaturé, by

T=~7'T, (59)

at any epoch. The difference is negligible at early timeswhe- 1; however, at the
present epocfiy = n‘yo‘12.275 K is typically 35% lower than the temperature we measure.
The bare baryon number density is then given by

_ 92 _ — .3
3H T
- 0 Bo -
s = 87TGTTLP (Tg) ’ (60)

where(,, is the present epoch bare baryon matter density paramedemaris the
proton mass.

The standard analysis of early universe physics applienvdadibrated in terms
of volume-average parameters. One very important consequef this is that the
baryon—to—photon ratio;B,Y, is recalibrated as compared to the standard cosmology,
and we can potentially obtain a fit with no primordial lithiuabundance anomaly
[120]. In particular, timescape fits have been performed I8, 105] for the range
Np, = (5.1£0.5) x 10~ favoured by constraints from light element abundancese4ton
[121, 122].

18 A higher value is assumed ikCDM fits of CMB data, giving rise to the lithium abundance aradyn
While there is an intrinsic tension in the light element da#tween abundances of deuterium and lithium-
7 [122], for the range 01le7 we adopt here all abundances fall within.2
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FIGURE7. Contoursoff, 2, ) parameter values for which the angular diameter of thedbonzon

at decoupling matches the angular scale- 0.0104139 [1] to within +2%, +4% and+6% are shown in
blue (upper left to lower right). Contours of parameter ealtor which the present-day effective comoving
scale of the sound horizon at the baryon drag epoch matchesthe98.88 h~Mpc [1] are shown in
red (lower left to upper right). In each case the baryon-totgn ratio is assumed to be in the range
4.6 < 10101737 < 5.6, for which there is no primordial lithium abundance anoniaB0].

The volume—average sound horizon scale at any epoch is gwen

Tdec d:L’

s = (61)
a \f/ 22H\140.752Q,,/Q.

WhereQ = 2¢.'Q,,, is the present epoch volume-average photon density pazamet
=3. 36 |s the relatlve degeneracy factor of relativistic specigs,= z,,. +1=7,(1+

dcc)/% is the value ofi/a, at photon—electron decoupling, afd, = Npy My T 1S
fixed in terms ofm, g and the present epoch volume—-average photon dens(;ty

We compute the comovmg scale of the sound horizon at phal@etron decoupllng,
D,(t4ec), from (61), and its angular diameter distandg,_., from (50)—(52) using the
numerical solutions to (30), (31) at the same time as soltegPeebles equation to
determine the ionization fraction [103]. The angular séale: D(t4e.)/d , .. Can then
be constrained to match the measured value [1] to any dest@dacy.

For BAO measurements, the relevant comoving size of thedsbarizon is that at the
baryon drag epoch, which occurstat t4,,, Whencr, ~ 1, where

to 7 dt to o, n dt
Td(t :/ — = —

t aR t aR
is the drag depthz, is the optical depthg,. is the Thomson scattering cross-section,

n, = n, is the bare free electron density, aRd= 0.75p,/p, = 0.75(Q,,a) /(2 L08o)-
Since we are not yet able to constrain the BAO scale dlreodmfgalaxy clusterlng

(62)
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TABLE 1. Estimates of the cosmological parameters of the timescamehj103]
obtained from at-2% match to the angular scalg,, of the sound horizon at decoupling;
and to a£6% maitch to the effective comoving scale,.,, of the sound horizon at
the baryon drag epoch, using recent values from the Plartelitmanalysis [1]. A
tighter constraint is applied #. as it is purely geometrical, whereas the calibration of
Tdrag iINVOlves additional uncertainty since the ratio of nonlarig to baryonic matter
densities may differ between the timescape A@DM models.

Parameter Range

Present void fraction fvo 0.69570 03]

Bare Hubble constant H, 50.14+1.7kms ' Mpc—!
Dressed Hubble constant H, 61.74+3.0kms ' Mpc—?!
Local maximum Hubble constant Howo 75275 0kms ! Mpc!

Present phenomenological lapse function 7 1.34810-021

Dressed matter density parameter Qis0 0.4119-08
. 0.013

Dressed baryon density parameter Qg 0.07479:013

; O 0.036
Bare matter density parameter (}Mo 0.16710 039
Bare baryon density parameter Qs 0.03010 907
Bare radiation density parameter Q. (5.0010:39) x 107°
Bare curvature parameter Q. 0.86270:522
Bare backreaction parameter Qg0 —0.029370 033
Nonbaryonic/baryonic matter densities ratid), /Q,, 4.6723
Age of universe (galaxy/wall observer) To 14.24+0.5Gyr
Age of universe (volume-average observery, 17.54+0.6 Gyr
Apparent acceleration onset redshift Zace 0.4610-38

statistics, we determin@s(tdmg) at the same time as other numerical integrations, and
constrain it using Planck satellite estimates [1].

In Fig. 7 we display two sets of contours in thi | (2, ,,) parameter space obtained
in ref. [103]: firstly, parameters which match the acoustals of the sound horizon
0, = 0.0104139 [1] to within +2%, +4% or +6%; and secondly parameters which
similarly match the present effective comoving scale ofstend horizon at the baryon
drag epoch as determined by the standa@DM model analysis of the Planck data,
namely® 98.88 h~'Mpc [1].

The full numerical solutions [103] provide tighter congtita than earlier analyses
[105], leading to the parameters list&éh Table 1. Particular parameters can be ruled
out on the basis that matter—radiation equality must ocetorb last scattering, so that
QM/QR > 1 at zgee. In particular, we can rule out a dressed matter densitynpeter

19 Since the Hubble constaif, = 67.11 kms'Mpc~! determined from the Planck satellite is a fit to
the ACDM model, any effective present comoving scale must bengiveinits 4~ *Mpc, as the timescape
model will generally yield a different value fd{,,.

20 A recent phenomenologically motivated analysis [123] gsirtompletely different approach produces
a void fraction which agrees with that found here.
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Q0 < 0.2 if Hy < 65kms'Mpc™'. If we compare Fig. 6 we see that the Snela
data reduction methods used in the Gold07 [113] and SDSE4][samples remain
consistent with the new constraints, whereas those of¥&b][do not.

A detailed treatment of the acoustic peaks in the CMB data ofagourse still
challenge the timescape cosmology, as it will certainlyHer tighten the constraints.
Work on this problem, which requires a revisiting of CMB dataalysis from first
principles, is in progress.

6.3. The effective ‘equation of state’
A direct method for comparing the expansion history withsth@f homogeneous

models with dark energy, is to observe that for a standartiadiyeflat cosmology with
dark energy obeying an equation of st&te = w(z)p,,, the quantity

HD_/ dz/ (63)

: M)}W’

Qo142 +QDOeXp(3f T

does not depend on the value of the Hubble constdptpbut only directly onf2,,, =
1-Q,,. Since the best-fit values ¢f, are potentially different for different models, a
comparison ofi, D/c curves as a function of redshift for the timescape modeusttse
ACDM model gives a good indication of where the largest déiferes can be expected,
independently of the value df,. Such a comparison is made in Fig. 8.

As the redshift range changes the timescape model intégsolzetweerA\CDM
models with different values ofY, .2, ,). If we consider the timescape model that is a
best fit to the Planck data, then for the largest redshifts ~ < 1100, D, is essentially
indistinguishable from the), ., for model (i) with parameter valueg?, . €,,) =
(0.3175,0. 6825) which best-fit the Planck data [1]. By contrast over the rahgez <6
a close fit is provided by model (i) with<2,,,,Q,,) = (0.35,0.65). For the closest
redshifts,z < 1.5, D becomes |nd|st|ngwshable from, ,,, for model (iii) with
(Q2,70,824) = (0.338,0.721). It is this feature which makes it difficult to distinguisreth
tlmescape model from th&CDM model on the basis of Snela data alone. However,
with complementary tests over the full range of redshifes¢kpansion histories should
be distinguishable.

Fig. 8 shows just one value df,. If we compare Fig. 2 of Ref. [16], we see that
with f.o = 0.76, D similarly interpolates betweehCDM models with(©2,,,,€2, ) =
(0.34,0.64) at Iow redshlft and2,,,,€2,,) = (0.25,0.75) at high redshift. l.e., as the
present epoch void fraction is mcreased the width of thgeanf equivalent\CDM
Q,,, values increases, as well as the overall values being less.

The shapes of thél/ D /c curves depicted in Fig. 8 represent the actual observable
quantity one is measuring in tests that some researchessljorefer to as ‘measuring
the equation of state’. For spatially flat dark energy madeith 1 D /c given by (63),
one finds that the functiow(z) appearing in the fluid equation of statg = w(z)p,, is
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FIGURE 8. The effective comoving distanee ! H,D(z) is plotted for the timescape model which best
fits Planck [1], withf,o = 0.695 (solid line) [103]; and for various spatially fl&tCDM models (dashed
lines). The parameters for the dashed lines ai€ (j) = 0.3175 (best-fitACDM model to Planck [1]); (ii)
2,0 = 0.35; (i) 2, = 0.388. Pane(a) shows the redshift range< 6, with an inset forz < 1.5, which

is the range tested by Snela data. Pgbglshows the range < 1100 to the surface of last scattering,
tested by Planck.

related to the first and second derivatives of (63) by

2(14+2)D'D"+1
w(z) =52
Qupo(1+2)3H2ZD?c 2~ 1

where prime denotes a derivative with respectztdSuch a relation can be applied
to observed distance measurements, regardless of whathemderlying cosmology

has dark energy or not. Since it involves first and second/akires of the observed

quantities, it is actually much more difficult to determinaservationally than directly

fitting ¢ "' H,D(z).

The equivalent of the equation of state(z), for the timescape model is plotted in
Fig. 9. The fact thatv(z) is undefined at a particular redshift and changes sign ttroug
+oo simply reflects the fact that in (64) we are dividing by a gitgnwhich goes to
zero for the timescape model, even though the underlyingeonir Fig. 8 is smooth. As
we are not dealing with a dark energy fluid in the timescapeehad ) simply has no
physical meaning.

Nonetheless, phenomenologically the results do agreethetbsual inferences about
w(z) for fits of standard dark energy cosmologies to Snela datpatticular, for low
redshifts the average valuewf:) is close to -1, but it eventually it crosses ‘the phantom
divide’tow(z) < —1. For fundamental homogeneous dark energy fluids,—1 signals
a violation of the dominant energy condition and with thatraakdown of standard
laws of physics. Here it is simply a consequence of an ingpfate parametrization of
the expansion history of a universe which does not evolverdatg to the Friedmann
equation.

The redshift at whichw = —1 is crossed’ in the timescape model depends on the
value of 2, , that is assumed in the FLRW style analysis. For the canomnalel

(64)
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FIGURE 9. The artificial equivalent of an equation of state constrdietsing the effective comoving
distance (64), plotted for the timescape tracker solutidh best-fit valuef,o = 0.695, and two different
values of2, : (a) the canonical dressed val(g,, = 3 (1 — fv0)(2+ fvo) = 0.41; (b) 2, ,, = 0.3175.

of Fig. 9(a), with2,,, = 0.41 one finds that# = —1 is crossed’ atz = 0.29, with
Q,,0=0.388 ‘w = —1 is crossed’ at: = 0.40, and withQ,,, = 0.3175 (the ACDM
value from Planck [1] in Fig. 9(b))x = —1 is crossed’ at = 1.15. For the same value
of f.0, taking a lower value of?,,, in a FLRW-style analysis leads to( z) being closer
tow = —1 for a larger range of redshifts. Thus if a timescape modeirosity distance
relation is correct then one can easily be led to differemctusions about ‘dynamical
dark energy’ [124, 125] over the range of redshifts; 1.5, probed by Snela, depending
on prior assumptions about the valueyf,, from other datasets.

What appears as dn,,, dependent varying(z) from the FLRW perspective actu-
ally reflects the fact that the effective energy density amsdiin the standard analysis is
not scaling as2,, o< (1 +z)3, as would be the case for any homogeneous model. Con-
sequently the timescape model simply lies outside the ofas®dels typically contem-
plated for dark energy diagnostics [126]-[128]. For exanfiieOm/(z) diagnostic of
Sahni, Shafieloo and Starobinsky [128, 129] is designed ta benstant(2,,, at all
redshifts for a spatially flat FLRW model, but to differ fohetrw(z) functions. One can
compute a formula for th&m(z) diagnostic [16], although this is not particularly use-
ful since the timescape model has a singulér) and lies outside the class of empirical
functions usually used to analyse the diagnostic. Exisdimglyses can only be applied
in asymptotic limits such as— 0, when [16]

2(8 v3o -3 v20 +4)(2+ fvo)
(415 + foo+4)?

For f.o = 0.69570:041, Om(0) = 0.64370:9%%. In fact, this coincides with the intercept of
Fig. 3 inref. [129], determined from Snela, BAO and CMB data.

Om(0) =2 H'|, =

(65)
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6.4. The Alcock—Paczfiski test and baryon acoustic oscillations

The BAO scale provides a convenient standard ruler whictbeatetected both in the
radial (z) and transverse direction®)(eading to a determination of the quantity

5z
5

_ (L+2)H(z)d,(:) _ H(z)D(:) 6)

C C

F(z)=

related to the Alcock—Pacagki test! [130]. The BAO scale has now been detected at
several redshifts in galaxy clustering statistics [13R]E5d the Lymane forest [133],
and provide a promising geometric test of the expansiootyist

71 H(z) D(2) Ic P H@)/ H
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FIGURE 10. (a) F(z) = ¢ 'H(z)D(z); (b) H(z)/H,. In each we display curves for the timescape
model with f,o = 0.695 (solid line), and comparison spatially lACDM models (dashed lines): for the
3 values of2,  shown in Fig. 8, and also the valdg, ,, = 0.27 used in the fits of [131]-[133]. In both
panels theACDM curves are arranged from bottom to top by the valueQ gf = 0.27, 0.3175, 0.35,
0.388.

In Fig. 10 we show the test functioR = HD/c and also the functiodd (z)/H,,
(with dressed Hubble parameter) for timescape AGMDM examples, over the range
of redshifts tested to date [131]-[133]. In fact, at the @ffee redshifts tested in the
WiggleZ survey, forf,o = 0.695 the timescape valueB'(0.21) = 0.246, F'(0.41) =
0.496, F(0.60) = 0.776, F'(0.78) = 1.067 all agree with the Alcock—Pacagki fits of
this quantity in Table 1 of ref. [131], within uncertaintié¥hile this is encouraging, the
methods of analysis used for the BAO scale assume the stamaatel, both in applying
Fourier space techniques, and in treating redshift spatertions. These aspects of the
data analysis need to be revisited from first principles ettmescape model before we
can be completely confident in using constraints from thesest

From Fig. 10(a) we see that the expectationsHqr)D(z)/c for the timescape and
ACDM models are very close for most of the redshift range culyeconsidered. A

21 Alcock and Pacziyski [130] originally defined their test statistic #isp, = 27 1F(2). SinceD(z) — 0
asz — 0, the original Alcock—Pac#yski test function is actually the derivativé(z) in the limit z — 0,
rather thanF'(z). As seen in Fig. 8 of ref. [16] this statistic has a greater @ow discriminate between
the timescape andCDM models. However, taking a derivative with respect teequires better quality

data, and for the time being one is limited to testing quistisuch as (66) ab,, = (:D?H ~1)1/3.
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FIGURE 11. (a) The (in)homogeneity test functidd(z) = [c~ 1 H D’]?> — 1 is plotted for the timescape
tracker solution with,o = 0.695 (solid line), and compared to equivalent cunies- 0, (¢~ ' H,D)?
for two ACDM models: (i) ©2,,, = 0.32, Q,, = 0.67, , , = 0.01; (i) Q,,, =032, Q,, = 0.69,
Q,, = —0.01. (b) The (in)homogeneity test functiak(z) is plotted for thef,, = 0.695 tracker solution.

more discriminating test can in principle be obtained byding the curve of Fig. 10(a)

by that of Fig. 8 to produce the quantify(z) / H, shown in Fig. 10(b). The most notable
feature is that the slope &f () /H,, is less than in th CDM cases, as is to be expected
for a model whose (dressed) deceleration parameter vadesstowly than foACDM.

Two different measurements are required to produce thisnmdtion, however, both the
BAO measurement to determié(z)D(z)/c, and luminosity distance measurements
to determinef{,D(z)/c. In addition to examining the model-dependent issues in BAO
measurements, it also necessitates sorting out the sytsteroSNela that currently
limit model comparison, as discussed in Sec. 6.1.

6.5. Test of (in)homogeneity

Clarkson, Bassett and Lu [134] have constructed a teststabiased on the obser-
vation that for homogeneous, isotropic models which obeyRtedmann equation, the
present epoch curvature parameter, a constant, may bemait

[c'H(2)D'(2)])*—1

Y0 =" H, Do) (67)

for all z, irrespective of the dark energy model or any other modedipaters. Conse-
guently, taking a further derivative, the quantity

C(z)=1+c?H*(DD"—~D"*)+c*HH'DD' (68)

must be zero for all redshifts for any FLRW geometry. A dewiaiof C(z) from zero,
or of (67) from a constant value, would therefore mean thatassumption of FLRW
evolution is violated.

The functions (67) and (68) are computed in ref. [16]. It isrenfeasible to fit (67)
than which involves one derivative less of redshift. In Fi@.we show bott€(z), and
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also the function3(z) = [c"'HD'> — 1 from the numerator of (67) for the timescape
model, as compared to twdCDM models with a small amount of spatial curvature.
A spatially flat FLRW model would hav#(z) = 0. The timescapé3(z) function is
easily distinguishable from the FLRW cases. However, thiglires better quality data
than is currently available. As noted in Sec. 6.4, preserDBlata is able to constraint
H(z)D(z) but not yetH (z)D’(z). Therefore, while the Clarkson, Bassett and Lu test
[134] is a powerful one, it may be some time before it can bdémented.

6.6. Time drift of cosmological redshifts

As noted in Sec. 6.4, the combined measurementd @(z)/c and H(z)D(z)/c
provide a means to determiié(z) which at present is subject to model dependencies
and many systematic uncertainties. A model independeatrd@tation ofH (z), which
is also needed to determine the quanffty) in the (in)homogeneity test of Sec. 6.5,
is provided by a measurement of the real time variation of ridshifts of distant
sources over a long time period [135]-[137]. Although extedy challenging, such a
measurement may be possible over a 20 year period by precrmasurements of the
Lyman- forest in the redshift rang2 < z < 5 with the next generation of Extremely
Large Telescopes [138, 139].

In ref. [16] an analytic expression fdfo‘1% is determined, the derivative being with
respect to wall time for observers in galaxies. The resglfumction is displayed in
Fig. 12 for the timescape model with, = 0.695, and is compared to those of three
spatially flat ACDM models. The timescape model curve is considerably flaittzn
those of theACDM models. This is a consequence of the magnitude of therappa
acceleration being considerably smaller in the timescapdeh as compared to the
magnitude of the acceleration IRCDM models. For cosmologies with no apparent

accelerationHo—lj—j is always negative. If there is cosmic acceleration at |latechs,

real or apparent, theﬁo‘lg—j will become positive at low redshifts, though at a somewhat

larger redshift than of the onset of (apparent) accelarakor f,, = 0.695, Ho‘lj—j >0
for 0 < z < 0.946, but with a tiny amplitude compared to tA€€DM models.
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FIGURE 12. The functionHO*‘di—j for the timescape model witfi,o = 0.695 (solid line) is compared
to HO—1 g—j for the three spatially flahCDM models shown in Fig. 8 (dashed lines).
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The very clear differences in redshift time drift for low sifts > < 2 could lead to a
decisive test of the timescape model verACGDOM models. Observationally, however, it
is expected that measurements will be best determined focss in the Lymam forest
in the range2 < z < 5. At such redshifts the magnitude of the drift is somewhateanor
pronounced in the case of theCDM models. For a source at= 4, over a period
of 67 = 10 years we would havéz = —7.2 x 1071° for the timescape model with
fvo =0.695 and H, = 61.7kms~*Mpc~'. By comparison, for a spatially flatCDM
model with H, = 67.1kms*Mpc™' and Q2,,, we havedz = —9.3 x 107 for the
same source over 10 years. Different valuesidf, (2,,,) can produce degeneracies at
particular redshifts. However, a large sample of sources the whole rangé <z <5

should be able to constrain the shape ofH(gelG1 curve sufficiently to determing (z)
in that range, and to distinguish the timescape &G®M cosmologies.

7. VARIATION OF THE HUBBLE EXPANSION

Potentially the most interesting tests of the timescapeeahait those below the SHS,
since here we should find variation of the Hubble expansidnith a scale—dependent
amplitude constrained by the uniform quasilocal Hubble fbmmdition.

7.1. Problems and puzzles of bulk flows

Traditionally astronomers have almost always analysed/éhiation of the Hubble
expansion in terms gfeculiar velocitiesnamely as deviations from a linear Hubble law

Vpee = €2 — Hr (69)

wherer is an appropriate distance measure. Such a definition iitiplitakes a strong
assumption about spacetime geometry: on the scales oésttgpatial curvature can be
neglected and the redshift associated with the Hubble exparcan be treated in the
manner of a recession velocity as in special relativity.reéir Hubble law is observed
to hold out to redshifts ~ 0.1, though on very small scales< 0.02 below the SHS the
Hubble flow enters into a ‘nonlinear regime’.

For some decades astronomers have sought the scale on veughap velocities
converge to the flow indicated by the CMB temperature dipdlee dipole is usu-
ally assumed to arise solely from a special relativisticdtpand in addition to the
known motion of our Sun with respect to the barycentre of tbedl Group (LG) of
galaxies, this suggests that the LG itself is movingai + 38kms™! in a direction
(£,b) = (276.4°,29.3°) + 3.2° in galactic coordinates. This direction defineslaster-
ing dipole namely a direction in which it is expected we should find arrdensity
which gravitationally attracts the LG, galaxies betweeanltks and the overdensity and
galaxies on the other side of the overdensity.

There is naa priori reason why such Newtonian concepts of gravitational ditmac
should persist on very large scales on which space is expgnblionetheless, even
though the very local Hubble flow on scales of tens of mega&garss nonlinear, a
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linear Newtonian approximation is assumed to apply at lasgales, and the amplitude
of the peculiar velocities of galaxies is estimated in adieperturbed FLRW model
according to [140, 141]

HOQ(]]\/[%S 3./ / (I‘/—I‘)

whered,,(r) = (p— p)/p is the density contrast.

The search for convergence of bulk flows within this framdwaas a three decade
history summarized in refs. [142, 143]. Contrary to eaiilwestigations [144], Lavaux
et al. [142] failed to find convergence in the 2MASS survey on safeto 120~ Mpc:
less than half the amplitude was generated on saalés'Mpc, and whereas most of
the amplitude was generated within Z20Mpc the direction did not agree. Bilickit
al. [143] analysed a larger sample in the 2MASS survey usindfareint methodology
and failed to find convergence within 160'Mpc. Some studies have found persistent
bulk flows extending to very large scales [145]-[148], aneirtizonsistency with the
ACDM model is much debated [149]-[151].

Recent attention has focused on the influence of the Shamagdbtration on our
local motion, as this is a particularly dense concentratibgalaxies in the clustering
dipole direction. However, Shapley is at a distance3sfh~Mpc, well beyond the SHS,
and an influence at our location would represent an unuslatje scale correlation.
A very recent study [152] using Snela fails to find a significanmnover in peculiar
velocities on the other side of the Shapley Concentratiastiteg further doubt on the
attractor model.

7.2. Model independent analysis of Hubble expansion variain

In general relativity it is well-known that every exact dgstiution of the Einstein
equations which is not spatially homogeneous and isotrextgits differential expan-
sion of space. Furthermore, by the SEP the concept of a $pelatvistic boost applies
only in a LIF in the neighbourhood of a point, and a generala@sgon of space can-
not always be reduced to simple boosts. Consequently theeptual framework we
have just described in Sec. 7.1 represents an extrapolatidawtonian concepts into a
regime in which they cannot obviously be expected to be valid

In the timescape scenario the greatest variations in $patraature occur below
the SHS, and a spatially flat geometry cannot be assumed tp appvery scale. In
recent work [153] we have analysed the variation of the Helglxpansion in a model
independent manner, with no geometrical assumptions. iMelgiassumed that a linear
average Hubble law exists in the leading approximation thed determined the best-fit
Hubble law in independent spherical shells, even in themegf the nonlinear Hubble
flow. The conceptual picture behind such averages is itestrin Fig. 13.

Null geodesics (indicated by arrowed lines converging oerare in Fig. 13) which
traverse scales larger than the SHS experience an avenpaeston withcz /r defining
a Hubble constant equal to that determined in sphericalssilose inner boundary
is at least a few times larger than the largest typical nealirstructures. Below the
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FIGURE 13. Schematic diagram of spherical averaging. The universeessribed as ensemble of
filaments, walls and voids: expanding regions of differesgity which have decelerated by different
amounts and therefore experience different local expamaies at the present epoch. If one averaggs

in spherical shells (dotted lines) about a point then oneesttells are a few times larger than the typical
nonlinear structures [2]-[4], an average Hubble law witlaBstatistical scatter is obtained, whereas there
are considerable deviations for shells on scales compataltthe typical nonlinear structures.

SHS null geodesics which traverse a single void will expergea higher expansion
rate than those that only traverse wall regions. We thusaxpmnsiderable variation
in the average values et /r for sources in shells whose diameters are comparable to
the largest typical nonlinear structures. Since the larygscal nonlinear structures are
~30h~'Mpc diameter voids [2]-[3], and since these occupy a greatieime of space
than walls and filaments, we expect that a spherical averfige/e should in general
produce larger than average values of the Hubble ‘constemscales below the SHS.
Furthermore, if the results of [31] are correct then an adptipaverage value off
should emerge ofi0 h~1-100 ~h~*Mpc scales.

Finally, there is the question of the choice of cosmic restie. Since space is differ-
entially expanding below the SHS (as measured by one sebck<), the expansion law
can be expected to differ from that of a spatially flat geogneith rigid expansion plus
local boosts. In the timescape scenario finge infinity scale defines the appropriate
notion of a rest frame (the CIR), and for bound systems thosilshbe a scale on which
space is marginally expanding bounding a critical densityme. In addition to deter-
mining averages in the conventional CMB rest frame, we hé&s@@erformed averages
in the rest frames of the Local Group and the Local SR¢eB) [154].

In ref. [153] we analysed variation of the Hubble flow in the @ROSITE sample
of 4,534 galaxies compiled by Watkins, Feldman and Hudsd®,[146]. Spherical
averages were computed in independent sHellgh a minimum width ofi2.5 2~ 'Mpc.

22 Since our galaxy is in a thin filamentary sheet in a local envinent dominated by voids [154], the
finite infinity scale should be relatively near. For rich ¢rs of galaxies the scale is larger.

23 In earlier work, Li and Schwarz [155] performed a similar gsis of a subset of 54 distances from the
Hubble Space Telescope (HST) Key project data, in the CMBfrase only. With a very small sample

they divided it into an inner and outer shell, with a movingibdary, producing a correlated average.
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L 2

We minimized the sumy? =3, [a;l(ri — czi/H)} with respect taH, wherez;, r; and
o; denote individual redshifts, distances and distance tmiogies (in unitsh~'Mpc)
respectively. This leads to a value of the Hubble constatitarth shell,

-1

(390 (s @

i—1 i i=1 i

Results for the fractional variation,, = (Hs —HO) /HO, are plotted in Fig. 14 in

the CMB and LG frames. Heré&l is the asymptotic value of the Hubble constant,
determined from all the data in the sample beyond 156.25 h~'Mpc. Results in the
LS frame values are very similar to the LG frame.

‘ ‘ ‘ ‘ ‘ CMB‘frame ‘ ‘ ‘ ‘ ‘ LG fr‘ame
0.20} } 0.20}
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FIGURE 14. Fractional variation in the Hubble flowH, = (HS —HO) /H0 in spherical shells as a
function of weighted mean shell distan¢a) CMB frame;(b) LG frame. In each case the filled data points
represent one choice of shells boundaries, and the opepdiats a second choice of shell boundaries.
Each filled (open) data point is thus correlated to the twaestaeighbour open (filled) data points.

We see that the spherically averaged Hubble law is significamore uniform in the
LG frame than in the CMB frame. In the inner shells the Bayesadence in favour
of the LG frame expansion being more uniform is very very regravith In B > 10
[153]. If the cosmic rest frame is defined as the one in whiehHlabble expansion is
most uniform, with minimal statistical variations, thern our vantage point the LG
frame is much closer to having this character. Such a reswompletely unexpected
and surprising from the viewpoint of the standard cosmalbgy does accord with the
expectation of the timescape scenario that the local finfieity scale should define the
standard of rest for observers within a bound system. Thadraf minimum Hubble
expansion variance still remains to be determined, andntiaig still differ somewhat
from the LG frame.

As discussed in ref. [153], if one performs a random boost achelata point, it
involves replacingz; — cz = cz; +v cos ¢;, whereg; is the angle on the sky between the
data point and the boost direction. In a dataset with unifskgncoverage, terms linear
in the boost velocity will be roughly self-canceling insittee sums in (71), leaving a
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leading order average difference

2

v
H —H,~
2Ho<ri2>

. (72)

The differences between panels (a) and (b) in Fig. 14 do thdgpear to have this
character. This suggests that the persistent large sciddltws seen in the standard
peculiar velocity framework may arise largely as a syst&rator from choosing a
cosmic rest frame which has a significant boost with resped¢hé frame in which
statistical variations of the Hubble expansion are minimal

An exception to the rule thad /| is smaller in the LG frame than in the CMB frame
does occur for shells roughly in the rangehr—! <r <60~ *Mpc. It turns out that
there is also a LG frame dipole associated with structuréisisnrange. In ref. [153] in
addition to studying radial spherical variations we alsgestigated angular variations
by adapting a Gaussian window averaging method of McCluceRyer [156]. This
established that a dipole is the strongest angular mudtifesdture in both frames, but
particularly in the LG frame, until one reaches distancgs90 4~ Mpc. We then fitted

a simple dipole Hubble law
(674

7:Hd+ﬁcos¢, (73)

in the same independent spherical shells used for the sphanerages. This gave a
dipole amplitude, shown in Fig. 15.
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FIGURE 15. The slopeg of the linear dipole relationz/r = Hy + [Scos¢, plotted in the same shells
as Fig. 14 [153] in the CMB and LG rest frames.

The magnitudes of the dipoles in the two frames coincide eghell with mean
radius7 = 30.2h~'Mpc, and also in the shell with = 61.7 2~ Mpc, but the dipoles
exhibit very different behaviour for the shells in betwebmparticular, the CMB frame
dipole magnitude reaches a minimuma# (2.6 +0.6)hkms *Mpc™! (close to zero)
at7 = 44.5h~'Mpc, whereas for the LG framé = (14.940.8)hkms *Mpc~! in the
same shell. The CMB frame dipole then increases while thera@é dipole decreases.
The dipole directions for independent shells within eaalmie are strongly consistent in
therange37.5h~! <r <62.5h~*Mpc. Beyond: = 61.7 h~'Mpc, the CMB frame dipole
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maintains statistically significant residual levels, wehihe LG frame dipole drops to a
level statistically consistent with zero aroup@h—'—100 h~*Mpc?“.

It therefore appears that the boost to the CMB frame is lgrgeinpensating for the
effect of structures in the rang&.5 1~ <r < 62.5h~Mpc, which are also responsible
for monopole variations of the Hubble ‘constant’ in the L@rfre shown in Fig. 14.
The results are consistent with a foreground density gnagieoducing an anisotropy
in the distance—redshift relation which is almost, but ndaaotly, of the same nature
as the Doppler shift produced by a Lorentz boost. Rather thisking purely about
overdensities as in the attractor model, what is importative the SHS are the peculiar
foregrounds created by voids as well as by superclustersserdirections in which
void—filled foregrounds are opposed to wall regions on thgosfie side of the sky will
lead to the strongest density gradients. Relevant stregtane identified in Sec. Il1C of
ref. [153].

7.3. Origin of the CMB dipole

It was further established in ref. [153] that the Gaussiamdew averaged sky map
of angular Hubble flow variation in the LG frame has a corielatoefficient of—0.92
with the map that would be produced by the residual CMB teatpee dipole in the
LG rest frame. The correlation coefficient is insensitivehe choice of the Gaussian
window smoothing angle in the rangé° < o, < 40°.

The strong correlation of the two sky maps is consistent whth hypothesis that
the CMB temperature dipole is only partly due to a Lorentzdbodhe portion usually
attributed to the motion of the LG might be largely due to tifeecential expansion of
space produced by peculiar foregrounds below the SHS. Ih@&&ame the residual
temperature dipole i§7" = +(5.77 £ 0.36) mK. For theACDM model with Planck best-
fit parameters, this would be produced by an anisotd@py= F(0.30 +0.02) h~'Mpc
in the distance to the surface of last scattering. The vatuehie timescape model is
essentially the same. If produced by the differential espamof foreground structures
within a mean distance 6f) »~*Mpc, this amounts to a 0.5% anisotropy on these scales,
which is entirely plausibfé.

There is differential expansion of space below the SHS é&beditions, of a magnitude
bounded by the growth of structure from the initial pertuidyas at the surface of last
scattering. CMB photons which traverse large distancessem/erage of all of these
variations, producing an average distance to the lastesgajtsurface. However, the
last stretch of the journey produces slight differences degpend on peculiar density
foregrounds. The same small residual anisotropies willyapp all cosmic distance
measurements on scales much greater than the SHS, but atlasealler than the

24 Beyond this scale the quadrupole becomes as strong as thie,cmd one needs to fit higher mul-
tipoles. There is a hint of a small feature in the LG frame alescorresponding to one BAO distance
beyond the nearest wall. However, significantly more datagsired in the outer shells to verify this.

25 As is discussed in Sec. VIA of ref. [153] a multipole deconifios of the Hubble expansion should
be developed, in spherical shells, to determine whethediffe converges to the required amplitude.
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uncertainties in many large scale measurements.

Although it might generally be expected that a differentigbansion of space would
produce higher order multipole CMB anisotropies of a magietcomparable to the
CMB dipole, these are in fact highly suppressed for off-@eabservers in voids [157],
which represent a good first approximation for our actuahllenvironment [154]. Ray
tracing in a simple LTB void with parameters matched to thefia@e Hubble dipole of
Fig. 15 gives a CMB quadrupole/dipole ratio of less than 0[198]. Using the Szekeres
models [158, 159] one can perform ray tracing through ex@ati®sn geometries which
more closely mimic our peculiar foregrounds; while a highgeadrupole/dipole CMB
ratio of order 1% is found, this is still observationally bia [160].

The suggestion that a large fraction of the CMB dipole is noefy due to a boost
is, of course, a radical departure for observational cosgylHowever, a number of
potential anomalies have been observed in the large anglégpates of the CMB
anisotropy spectrum for a decade now, and their significdmaseincreased with the
release of the Planck data [161]. A study by Freermgal. [162] found that of several
possible systematic errors, a 1-2% error in the CMB dipalgraation stood out as the
one possible effect which could potentially resolve the @oasymmetry anomaly.

As is discussed in ref. [153] a nonkinematic contributiorthie foreground Hubble
expansion may also explain why attempts to measure thetetbé@aberration and fre-
guency modulation in the Doppler boosting of the CMB speutgield a boost direc-
tion which moves across the sky when only large angle muégare considered [163].
Aberration and frequency modulation can also be readitietes the radio spectrum.
Rubart and Schwarz [164] have recently found that the assamgf a kinematic origin
for the cosmic radio galaxy dipole is inconsistent at the&s9®confidence level, using
the NRAO VLA Sky Survey data. The direction of the radio dgp@ consistent with
that of the Hubble variance dipole we find in the LG frame.

8. CONCLUSION

Observations over the last few decades have revealed arsmiweuch more com-
plex, varied and interesting than had been previously imeyi The observations are
at present well in advance of our theoretical understandihg phenomenon of appar-
ent cosmic acceleration demands that we think more deepmlytaine of the central
unsolved problems of general relativity: the nature of geanal mass—energy, which
cannot be localized on account of the equivalence princile standard CDM model
adds cold dark matter to make gravity stronger at some saatéthen adds dark energy
to make gravity weaker at larger scales, while keeping spga#ly expanding. Both
phenomena may be indicative of a renormalization of theonaif gravitational mass in
a hierarchy of nonrigid spacetime structures.

The timescape scenario is a from—first—principles attemgbime to grips with the
essential physics of the fitting problem [10, 11], and to #ge& physically viable
interpretation of the Buchert averaging scheme [48, 49,wijout a smooth “dark
energy”. A phenomenological model has been developed [63,1Q3], which had
remained observationally viable over the six years sinsec@nception [13]. Much
work remains to be done. In particular, while the tests ofsSécl-6.6 give a means
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of comparing average cosmological quantities with thogse@ACDM model, the most
exciting developments are to be made by considering phisicsv the SSH. This may
also inform the development of tests related to the averemetly of structure.

It is below the SSH, where the structures are most inhomagenehat the most in-
teresting differences between the timescape scenaricharstandard cosmology are to
be found. In theACDM model spacetime is spatially flat on these scales, whilkbé
timescape scenario its spatial curvature varies greatlig@dxous mathematical descrip-
tion of the statistical geometry on these scales remaing tdebermined. However, to
develop such a description | believe we should not be guidedlg by mathematical
elegance but by physical principles and observations.

The simple idea that the finite infinity scale should definedb&mic rest frame for
bound system observers led to the idea of testing the Hubdgansion variation in
the LG and LS frames, as well as in the CMB frame, with a redt tvas much
more definitive than we ourselves anticipated [153]. Siree dnalysis of Sec. 7 is
model-independent it is not a direct verification of the teepe scenario; but it is
consistent with the timescape model and it is extremely hardeconcile with the
standard cosmology. As discussed in ref. [153], a changeitaiederstanding of the
local Hubble expansion variation and its effect on the CMBotk may have some
impact on many different aspects of observational cosnyplagluding not only CMB
anomalies but also Snela systematics and the calibratithreafistance scale.
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