

Lexical knowledge and speech recognition in adverse listening conditions

Megan J. McAuliffe^{1,2}, Annalise R. Fletcher², Sarah E. Kerr² & Donal G. Sinex² ¹Department of Communication Disorders & ²NZILBB, University of Canterbury

BACKGROUND

- Listeners exploit their knowledge of the statistical properties of language (word frequency, phoneme probability) when comprehending degraded speech [1,2].
- Linguistic experience may contribute to a listener's ability to identify words, even among people who share the same native language [3,4].
- Limited study of how long-term language knowledge influences native ability resolve an listeners' to ambiguous speech signal at different levels of noise disruption.
- Aim: Determine if cognitive factors, vocabulary knowledge, and statistical properties of language are predictive of a listener's ability to identify words at different levels of noise disruption.

METHOD

Participants

- 103 young healthy listeners (mean = 21 yrs, sd = 3 yrs, range = 18 to 34 yrs), 58 females and 45 males.
- English speakers with normal hearing and no history of speech, language, neurological problems.

Experimental Speech Stimuli:

- 128 semantically anomalous phrases. Spoken by eight healthy native speakers — 4 females, 4 males (21 to 42 yrs).
- Mixed with noise shaped to match the talker's average spectrum presented at -5, -2, +1 and +4 dB SNR.

METHOD cont.

<u>Listening experiment</u>

- Listeners presented with 128 phrases and asked to repeat what they thought they heard. Encouraged to guess if unsure.
- Thirty-two phrases presented from each noise condition, four phrases included from each speaker — all phrases counterbalanced and randomized.

Data Analysis

- Phrase responses recorded and transcribed by two research assistants.
- Any disagreements resolved by a 3rd consensus rater.

Listener-Based Variables

- Collected from each listener established behavioural tests.
- Variables include: Working memory (Reading Span Test [5] & WAIS-IV [6]), receptive vocabulary (Peabody Picture Vocabulary Test, PPVT, [7]), nonverbal IQ [6] and processing speed [6].

Lexical Variables

• Lexical variables (i) Lexical frequency; (ii) phonological Levenshtein distance (PLD); and (iii) phonotactic probability.

Statistical Analysis

- Binomial mixed effects models with word accuracy (correct/incorrect) as dependent variable.
- effects: SNR, vocabulary Fixed knowledge, working memory capacity, processing speed, non-verbal IQ, word phonological neighborhood frequency, density (i.e. PLD), and phonotactic probability.

RESULTS

Figure 1: Variation in listener accuracy across the four SNR conditions.

- No ceiling or floor effects in listener performance.
- Overall, vocabulary and working memory had significant effects on word recognition, when controlling for intelligence.
- Lexical factors and SNR had the largest effects on word recognition.

Table 1: Effect of vocabulary knowledge, cognitive factors, and lexical cues on accurate word recognition

word recognition.			
Fixed Effect	b	SE	p
SNR dB	0.381	0.005	<.001
Vocabulary score	0.046	0.023	.044
Working memory	0.059	0.022	.006
Non-verbal intell.	0.012	0.024	.613
Processing speed	0.038	0.021	.070
PLD	0.376	0.050	<.001
Phonotactic prob.	0.068	0.051	.177
Word frequency	0.305	0.052	<.001

<u>Note</u>: PLD = phonological Levenshtein distance

RESULTS cont.

Table 2: Model coefficients at each SNR.

Fixed Effect	-5 dB SNR	-2 dB SNR	+1 dB SNR	+4 dB SNR
Vocabulary	0.007	0.053	0.077	0.034
WM	0.044	0.055	0.087	0.050
NVI	-0.007	0.012	0.024	0.013
Proc. speed	0.071	0.034	0.036	0.018
PLD	0.402	0.406	0.375	0.343
Phon. prob.	0.051	0.067	0.050	0.081
Word freq.	0.293	0.295	0.329	0.392

Note: WM = working memory, NVI = non-verbal intelligence, proc. = processing, PLD = phonological Levenshtein distance

 Across SNRs, listener-based and lexical variables varied in the strength of their effects on word identification accuracy.

DISCUSSION

- Lexical variables and SNR had the largest influence on word identification accuracy.
- Vocabulary and working memory had robust but relatively subtle effects on word identification accuracy — with effects greatest at moderate levels of signal degradation.
- Examination of these same effects in the ageing population would be of interest.

- Cutler, A., Garcia Lecumberri, M. L., & Cooke, M. (2008). Consonant identification in noise by native and non-native listeners Effects of local context. The Journal of the Acoustical Society of America, 124(2), 1264-1268.
- 2. Janse, E., & Jesse, A. (2014). Working memory affects older adults' use of context in spoken-word recognition. The Quarterly Journal of Experimental Psychology, 67(9), 1842-1862 Bent, T., Baese-Berk, M., Borrie, S. A., & McKee, M. (2016). Individual differences in the perception of regional, nonnative
- and disordered speech varieties a. The Journal of the Acoustical Society of America, 140(5), 3775-3786.
- McAuliffe, M. J., Gibson, E. M., Kerr, S. E., Anderson, T., & LaShell, P. J. (2013). Vocabulary influences older and young isteners' processing of dysarthric speech. The Journal of the Acoustical Society of America, 134(2), 1358-1368.
- Tompkins, C. A., Bloise, C. G., Timko, M. L., & Baumgaertner, A. (1994). Working memory and inference revision in brain damaged and normally aging adults. Journal of speech, language, and hearing research, 37(4), 896-912.
- interpretative manual. San Antonio, TX: NCS Pearson

Wechsler, D., Coalson, D., & Raiford, S. (2008). WAIS-IV. Wechsler Adult Intelligence Scale: Fourth Edition. Technical and 7. Dunn, D. M., & Dunn, L. M. (2007). Peabody picture vocabulary test: Manual: Pearson

Royal Society of New Zealand Marsden Grant UOC1303 and both speaker and listener participants. We also wish to thank research assistants involved on the project – Amanda Lee, Michelle Bishell, Morgana Mountfort-Davies, Emma Hoekstra, Lara Sweetapple,