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Abstract

Accurate and timely predictions of grape yield are required by the wine industry for logistics

planning, crop management, and wine marketing strategies. The Grape Yield Analyser

project is an interdisciplinary collaboration aiming to predict grape yield in a timely and

efficient manner. A Bayesian growth model assuming a double sigmoidal curve has been

developed by ellis to predict grape yield. The model requires measurements of grape bunch

mass at different times during the growing season. Such measurements require substantial

trained staff and are also time-consuming and destructive. Hence, there is increasing research

into the use of sensors in the industry. Since most sensors do not directly measure the mass

of grape bunches, it can be difficult to obtain precise measurements of the grape bunch

weights.

In this thesis, we provide the modelling framework for incorporating sensor-based

measurements into the existing growth model. We assume the sensors produce measurements

of grape bunch mass with known uncertainties. We present models which can incorporate

uncertainties in continuous response variables and produce accurate (unbiased) and precise

(minimal variability) predictions. MCMC algorithms are provided to estimate the proposed

models for the two situations: (i) when the uncertainty is reported in the form of a parametric

distribution, and (ii) when the uncertainty is reported in the form of a sample of values

representing a nonparametric distribution.

We use simulation studies to evaluate the resulting model. In the first situation, our

Bayesian model which incorporates uncertainty assuming a normal error distribution can

perform well when the uncertainty is smaller than 80% of the population variation. In the

second situation, when we have a sample of values representing a nonparametric distribution

instead of a precise measurement, a näıve analysis can still produce accurate and precise

measurements, given that the sample mean is an unbiased estimator of the actual value

and for a large enough sample size. The models in this thesis can be applied to regression
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problems in other fields, such as chemistry, medicine and physics, when there are continuous

response variables reported with uncertainties.



Acknowledgements

First and foremost, I would like to thank the Lord, my God and Saviour Jesus Christ.

Without you I would not have been able to get to this point. Thank you for always providing

for me and being with me in the joys and difficult moments of doing this thesis. You are my

good Shepherd and truest friend. Words cannot express everything you have done for me.

Thank you to my supervisors Elena and Daniel. Thank you for teaching me how

to do research, sharing your knowledge and experiences with me and training me to work

independently. Thanks also for your understanding, encouragement, sense of humour, and

for being a sounding board for my worries. It has been a privilege to learn from both of you.

To the staff in the School of Mathematics, thank you for your kindness, and the

postgraduate students for the peer support and company, which really helped my mental

well-being and made my load feel less heavy.

To Ian Platt, thank you for kindly and patiently explaining to me how the microwave

sensor works and providing me with more information about the project. Thank you to Mike

Trought and Linlin Yang, who collected the 2017/2018 grape bunch mass data used in this

thesis.

Thank you to my parents for supporting me and sharing in my joys and pains the

past year. Thank you to my brother Gordon for being a really good listener, proofreading

my thesis and supporting me, particularly towards the end. Thank you to my dog Maddie-

Mikayla. Thank you to my dear friends for their support, love and kindness. To my church

family, thank you for the encouragement in the faith, care, prayers and understanding.

Finally, thank you to MBIE and New Zealand Winegrower for funding this research

and to Lincoln Agritech Ltd for the opportunity to work on this project.

iv



Contents

1 Introduction 1

2 Background theory 5

2.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Measurement uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Methods to deal with measurement error . . . . . . . . . . . . . . . . . . . . 12

3 Parametric error model 14

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Bayesian inference for a normal sample in the absence of measurement uncer-

tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Bayesian model for a univariate normal sample of measurements with uncer-

tainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 MCMC algorithm: Gibbs sampler . . . . . . . . . . . . . . . . . . . . 18

3.4 Simulation study: a sample of values with normal error . . . . . . . . . . . . 21

3.5 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 MCMC algorithm: Gibbs sampler . . . . . . . . . . . . . . . . . . . . 30

3.6 Simulation study: simple linear regression with normal error . . . . . . . . . 32

v



vi Contents

3.7 Example: double sigmoidal growth model . . . . . . . . . . . . . . . . . . . . 34

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Nonparametric model 55

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 A single data point (n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Multiple data points (n > 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 MCMC algorithm: Gibbs sampler . . . . . . . . . . . . . . . . . . . . 60

4.4 Preliminary study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Simulation study: a sample of values with a nonparametric error distribution 63

4.6 Example: double sigmoidal growth model . . . . . . . . . . . . . . . . . . . . 69

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion and Discussion 77

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.4 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 83

Appendix A Gibbs sampler for a sample of values with a normal error in R 87



Contents vii

Appendix B Gibbs sampler for a simple linear regression with a normal

error in R 90

Appendix C Gibbs sampler for the Bayesian nonparametric model in R 94

Appendix D Metropolis-Hastings algorithm for the double sigmoidal curve

for measurements with uncertainty (normal error) in R 97



List of Figures

3.1 Directed acyclic graph for the Bayesian model for a normal sample. . . . . . 16

3.2 Directed acyclic graph of the assumed relationships for the Bayesian model

for a univariate sample of values with measurement uncertainty. . . . . . . . 17

3.3 Simulated data for the simple linear regression, where y are the actual values

and m are the measurements with uncertainty. The uncertainty is 50% of

the population variation. The red line is the true regression line. The line

segments show the magnitude and direction of the error in the measurements.

Data was generated following the model specified in Equation 3.17—3.22 with

n = 100, α = 0, β = 1, τ = 10−2 and ui = 5−2. . . . . . . . . . . . . . . . . 31

3.4 Simple linear regression comparison of the three models and the posterior

predictive envelopes when the uncertainty is 50% of the population variation.

The posterior predictive means are shown by the solid lines. The envelopes

represent the 95% credible interval of the posterior predictive distributions.

The settings used are α = 0, β = 2, τ = 10−2 and u = 5−2. . . . . . . . . . . 37

3.5 Simple linear regression estimate of the posterior predictive distribution at

x = 200 for the three models and posterior predictive means and 95% credible

intervals. The uncertainty is 50% of the population variance. The settings

used are α = 0, β = 2, τ = 10−2 and u = 5−2. . . . . . . . . . . . . . . . . . 38

viii



List of Figures ix

3.6 Simple linear regression comparison of the three models and the posterior

predictive envelopes when the uncertainty is the same size as the popula-

tion variation. The posterior predictive means are shown by the solid lines.

The envelopes represent the 95% credible interval of the posterior predictive

distributions. The settings used are α = 0, β = 2, τ = 10−2 and u = 10−2. . 39

3.7 Simple linear regression estimate of the posterior predictive distribution at

x = 200 for the three models and posterior predictive mean and 95% credible

intervals. The uncertainty is the same size as the population variance. The

settings used are α = 0, β = 2, τ = 10−2 and u = 10−2. . . . . . . . . . . . . 40

3.8 Scatterplot of the 2018 grape bunch mass data with actual values, y and

simulated measurements with uncertainty m using a setting of u = 0.1−2.

Jitter has been applied to the points to reduce overplotting. The bunch masses

are plotted on the log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Scatterplot of the 2018 grape bunch mass data with actual values, y, simu-

lated measurements with uncertainty m using a setting of u = 0.1−2 which is

approximately 20% of the original values (based on 1.96*se, where se is 10%).

The bunch masses have been back transformed to be on the original scale in

grams. Jitter has been applied to the points to reduce overplotting. . . . . . 45

3.10 Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 10% of the original values.

The solid lines are the means of the posterior predictive distributions. The

envelopes show the 95% credible interval of the posterior predictive distribu-

tions. The grape bunch masses are plotted on the log scale. . . . . . . . . . . 46

3.11 Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 10% of the original values.

The solid lines are the means of the posterior predictive distributions. The

envelopes show the 95% credible interval of the posterior predictive distributions. 47



x List of Figures

3.12 Double sigmoidal curve comparison of the estimated posterior predictive dis-

tribution at day 120 for the three models. This was for simulated uncertainty

of 20% of the original values. Below the densities plot are the posterior pre-

dictive means and 95% credible intervals. . . . . . . . . . . . . . . . . . . . . 48

3.13 Double sigmoidal curve comparison of the three models and the posterior pre-

dictive envelopes for simulated uncertainty of 50% of the actual values. This

is approximately 2 times the actual values, y (based on 1.96*se, where se

is 50%). The solid lines are the means of the posterior predictive distribu-

tions. The envelopes show the 95% credible interval of the posterior predictive

distributions. The grape bunch masses are plotted on the log scale. . . . . . 49

3.14 Double sigmoidal curve comparison of the three models and the posterior pre-

dictive envelopes for simulated uncertainty of 50% of the actual values. This

is approximately 2 times the actual values, y (based on 1.96*se, where se

is 50%). The solid lines are the means of the posterior predictive distribu-

tions. The envelopes show the 95% credible interval of the posterior predictive

distributions. Bunch masses are on the original scale in grams (g). . . . . . . 50

3.15 Double sigmoidal curve comparison of the estimated posterior predictive dis-

tribution at day 120 for the three models. This was for simulated uncertainty

of 100% of the original values. Below the densities plot are the posterior

predictive means and 95% credible intervals. . . . . . . . . . . . . . . . . . . 51

4.1 Illustrating the simulated sample of values, d observed instead of a single

precisely measured observation y as a (a) density plot (obtained using kernel

density estimation in R) and (b) as a frequency histogram. The true value

of y is represented by the vertical dashed line. Data is generated from dk ∼

N(y = 200, u = 5−2) for k = 1, . . . , K where K = 100. . . . . . . . . . . . . . 56

4.2 Directed acyclic graph for the Bayesian nonparametric model. . . . . . . . . 59

4.3 Probability density function of the Gamma(α = 1, 600, β = 40, 000) prior. . 63



List of Figures xi

4.4 Illustrating the nonparametric distributions using boxplots and half violin

plots. These are simulated observed samples. True values of y are shown by

the red line segments. The sample means are shown by the green line seg-

ments. The true population mean is represented by the horizontal dashed line.

The samples were generated following the data-generating mechanism given

by Equation 4.11 and Equation 4.12. The settings used are: µ = 200, τ = 5−2,

ui = 2−2, n = 200 and K = 100. Only the first 10 samples were plotted be-

cause it would be difficult to display all n = 200 in a single plot. . . . . . . 64

4.5 Cumulative mean error of the posterior mean of the (a) mean, (b) precision

and (c) variance using our model and a Gamma(α = 0.01, β = 0.01) prior for

the precision. This was for the case of n = 100 and K = 100. . . . . . . . . . 65

4.6 Cumulative mean error of the variance when a vague τ ∼ Gamma(0.1, 0.1)

prior is used. The true variance is 25. The cumulative mean error converges

to approximately -4 all cases, including when n = 200 and K = 10, 000. . . . 66

4.7 Cumulative mean error of the variance using an informative τ ∼ Gamma(α =

1, 600, β = 40, 000) prior with mean 4 and standard deviation 0.001. The

cumulative mean error of the variance converges to approximately -0.08. . . . 67

4.8 Scatterplot of the 2018 grape bunch mass data with corresponding simulated

nonparametric data (a sample of values for each data point) distribution dis-

played as boxplots. The uncertainty is set to ui = 0.1−2. The colours of the

boxplots correspond to the original data points. The plot is only showing three

out of 14 days of data because it is difficult to clearly display the simulated

data for all days in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 72



xii List of Figures

4.9 Illustrating the distributions of the simulated data and displaying the 2018

grape bunch mass data for a single day (day 41). The simulated samples

are displayed as half violin plots (kernel density estimation i.e. smoother

applied). Uncertainty was set to ui = 0.1−2. The colours of the distributions

representing each sample correspond to the colours of the original data points.

Data is only displayed for a single day as it is difficult to clearly display the

simulated data for all days in the dataset. . . . . . . . . . . . . . . . . . . . 73

4.10 Double sigmoidal curve comparing the naive analysis and precise measure-

ments. The 2018 bunch mass data are represented by the black points and

the simulated data are represented by the blue points. The setting used for

the uncertainty is ui = 0.5−2. The grape bunch masses are plotted on the log

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Double sigmoidal curve comparing the naive analysis and precise measure-

ments fitted with 2018 bunch mass data represented by the black points and

simulated samples representing nonparametric distributions are represented

by the blue points. The uncertainty used here is ui = 0.5−2. . . . . . . . . . 75

4.12 Double sigmoidal curve with simulated nonparametric data using the setting

ui = 0.5−2 comparing naive analysis and precise measurements and their

estimated posterior predictive distribution at day 120. Below the plot of the

densities are the posterior predicted means and 95% credible intervals. . . . . 76



List of Figures xiii

5.1 An illustration of the two different data-generating processes for the sample

of values situation in Chapter 3 (left) and Chapter 4 (right). Both (a) and

(b) have the same true values shown in red, however the measured data that

is observed shown in blue differs between the two plots. In (a) the filled red

circles are the true values and the blue circles are the measured (observed)

values. In (b) the red lines are the true values, the densities show the distri-

butions of the samples observed, the green lines represent the means of each

sample. In both (a) and (b) the horizontal dashed line represents the true

population mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Tables

3.1 Data structure for sample of measurements with stated uncertainty . . . . . 17

3.2 Estimates of performance measures for the mean and variance with Monte

Carlo standard errors are reported in parentheses and obtained using the R

package rsimsum. This is for the case of µ = 200, τ = 5−2 and ui = 2−2. . . 25

3.3 Estimates of performance measures for the mean of the posterior predictive

distribution for different data-generating mechanisms. Monte Carlo standard

errors are reported in parentheses and obtained using the R package rsimsum. 25

3.4 Performance of the parameter estimates α, β, and σ2 for the Bayesian linear

model with a comparison against the Bayesian naive analysis and the Bayesian

linear model with precise measurements. The true values used are: α = 0, β =

1, σ2 = 10−2 and ui = 5−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Comparing the performance of the estimated posterior predictive distribution

at x = 100 of the three different models and for different data-generating

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Prior distributions used for the double sigmoidal growth models . . . . . . . 41

4.1 Estimates of performance measures for the mean and variance for the three

different approaches. The data-generating process was: n = 200 and K = 100.

For the nonparametric model we compared the use of an informative prior for

the precision Gamma(α = 1, 600, β = 40, 000) and a vague prior for the

precision Gamma(α = 0.01, β = 0.01). Monte Carlo standard errors are

reported in parentheses and obtained using the R package rsimsum. . . . . . 68

xiv



List of Tables xv

4.2 Simulation study results comparing performance estimates of the posterior

predictive distribution for the four different models: (1) a Bayesian non-

parametric model with a vague prior for τ , (2) a Bayesian nonparametric

model with an informative prior for τ , (3) a Bayesian naive analysis and (4)

a Bayesian analysis with precise measurements. . . . . . . . . . . . . . . . . 69

4.3 Assessing the performance of the naive analysis, where we let yi = di, consid-

ering data-generating mechanisms, K= 3, 20, 30 and 50 for estimates of the

mean and variance. Monte Carlo standard errors are reported in parentheses

and obtained using the R package rsimsum. The setting of n = 200 is used

for the data-generating process. A total of 300 simulations were performed. . 70



List of symbols

Some commonly used symbols in this thesis are as follows:

x a vector of values for a single predictor variable

y a vector of the true values of the response variable

m a vector of the measured values of the response

u a vector of the reported values of the uncertainty in the

measured response

n the number of observations

K the sample size

d the observed sample of values instead of a single precise

measurement of the response

D the list of n samples observed instead of n precise mea-

surements

xvi



Chapter 1

Introduction

Grape yield prediction is an essential part of the wine industry. Accurate and timely

predictions of grape yield are required by both grape growers and winemakers. Predictions of

grape yield at harvest time assist grape growers in crop management practices and logistic

planning. Planning includes the number of workers, capacity of trucks and tank space

required (Tan et al., 2019; Ellis et al., 2020). Excessive yield can slow the development

of fruit and result in losses in revenue for grape growers as they are required to pre-sell

their crops to winemakers (Martin et al., 2003). For winemakers, accurate predictions are

required for planning, including the amount of machinery required and ordering supplies

such as bottles, labels and packaging (Tan et al., 2019). Accurate yield estimation can also

support wine marketing strategies (Liu et al., 2017). Ellis et al. (2020) have developed a

modelling framework for a Bayesian double sigmoidal curve to model grape bunch growth

in order to predict yield. The double sigmoidal curve is a nonlinear regression that models

how the grape bunch mass changes over time. It requires measurements of individual grape

bunch mass at different points of time during the growing season.

Traditional yield estimation procedures involve manually cutting off bunches and

are destructive and labour-intensive. The in-field measurements are time-consuming, have

a high manual labour cost and can be prone to error (Tan et al., 2019). Research and
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development is currently being conducted into sensors that indirectly measure the mass of

the grape bunches. The Precision Grape Yield Analyser project funded by the New Zealand

Ministry of Business, Innovation and Employment (MBIE) from the 2016 Endeavour fund

and New Zealand Winegrowers is a five-year research programme focussing on developing

sensor-based equipment and grape yield forecasting models to automate and improve the

prediction of grape yield. The project is lead by Lincoln Agritech, in collaboration with

the University of Canterbury, Plant and Food Research, Lincoln University and CSIRO.

It is a multi-disciplinary project, including viticulture experts, grape phenology experts, a

statistical modelling team, a team developing an optical sensor and another team developing

a microwave sensor. The microwave sensor team and optical sensor team are developing a

range of sensors both with the aim of measuring grape bunch mass and counting the number

of grape bunches to ultimately produce yield predictions.

The optical sensor being developed takes photographic images. Image processing

techniques are then applied to the images to identify grape bunches. However, one of the

biggest issues faced when optical sensors are used is the leaves can obscure the grape bunches

during the growing season, making it difficult to identify them (Eccleston et al., 2019; Parr

et al., 2020). A microwave sensor, more specifically a synthetic-aperture-radar (SAR), is

being developed to detect grape bunches on vines (Eccleston et al., 2018). The microwave

sensor can penetrate leaves to detect grape bunches by adjusting the wavelength of the sensor

(Eccleston et al., 2018). There are challenges to measuring grape bunches using microwave

sensors, as the grape bunches are embedded in a complex microwave scattering environment

containing leaves, stems and supporting wires (Eccleston et al., 2018). The microwave sensor

estimates the bunch mass by measuring a proxy of biomass, and their performance is carefully

calibrated and assessed. However, there is noise from the leaves and other sources.

Since the sensors do not directly measure the grape bunch mass and we did not have

clarity on the final form of the output from the sensor as they were still under development,

we assume that the sensors produce measurements of individual grape bunch masses with

known uncertainty. We also assume that the size of the uncertainty cannot be ignored. The
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current regression model described in Ellis et al. (2020) is valid for precisely measured grape

bunches. However, additional statistical methodology is required to incorporate the data

with known uncertainty into the double sigmoidal growth curve.

The aim of this thesis is to develop a modelling framework for incorporating sensor

data with the reported uncertainty into the Bayesian double sigmoidal grape growth model

developed by Ellis et al. (2020) to predict grape yield at harvest time.

Having models to incorporate sensor data with reported uncertainty will help enable

the integration of the sensors with the grape yield prediction model and will be a step

towards the development of a tool for automating yield predictions for the wine industry. If

the sensor can be successfully coupled with the grape yield prediction model while making

accurate and precise predictions, it could mean that sensors can be relied solely upon in the

future to provide data for predictions of yield. Automation of yield prediction can reduce the

manual labour effort required, reduce costs and enable data collection without the destructive

sampling of grapes. Furthermore, if additional sensor data can be included into the current

grape yield prediction model, it could improve the accuracy and precision of predictions by

providing more data on grape growth.

The algorithms developed here can be applied to any regression problems where a

continuous response variable is measured with uncertainty. Such situations are not limited

to viticulture. Data with uncertainties frequently arise in physics, chemistry and medicine.

An overview of what lies ahead

In this thesis, we will start by explaining why it is important to account for reported

(or known) uncertainty in measurements. We will then look at incorporating this uncertainty

when it is reported in the form of a parametric distribution in Chapter 3, and in the form

of non-parametric distribution in Chapter 4. For each situation, we propose a Bayesian

framework to incorporate the specific form of uncertainty into a regression model. We
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conduct simulation studies to evaluate our models, and to compare our Bayesian models for

incorporating uncertainty with a naive analysis where the uncertainty is ignored, and with

their precisely measured counterparts, respectively. We illustrate our models for the double

sigmoidal growth model. Finally, we conclude by discussing the advantages and drawbacks

of the suggested methods, and outlining the scope of future work.

As a guide to what follows, we would like to highlight the two different assumed

data-generating processes of the sensor in this thesis. The assumption made in Chapter 3

is that we are given measured values and their reported uncertainty. We assume that the

measured data arise from a normal distribution with a mean equal to the actual value and

precision equal to the uncertainty. The assumption made in Chapter 4 is that we observe

a sample of values instead of a precise measurement of the actual value. In this situation,

assume that there is no bias in the sensor and we treat the sample nonparametrically (we

do not apply any distributional assumptions).



Chapter 2

Background theory

2.1 Bayesian inference

The model we propose to extend in this thesis has been developed within a Bayesian

framework. Therefore, we begin with a brief outline of the basic Bayesian model and MCMC

algorithms mentioned in this research.

In Bayesian inference, parameters have a distribution instead of a fixed value in

frequentist statistics. It requires a likelihood model which describes how the data arises.

It also requires a prior distribution for the parameters, which summarises the information

about the parameters before the data is observed. In Bayesian inference, the likelihood

model and the prior distribution can be combined using Bayes’ theorem to get the posterior

distribution:

p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

(2.1)

∝ p(y | θ)p(θ) (2.2)

where p(y | θ) is the likelihood and p(θ) is the prior distribution. The denominator in

Equation 2.1 is a normalising constant that ensures that the posterior distribution is a proper

5
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probability distribution. In many situations, the integral in Equation 2.1 is high dimensional

and difficult to evaluate analytically. Because of this, Markov chain Monte Carlo (MCMC)

algorithms which are numerical algorithms to sample from the posterior distribution are

often used. (Gelman et al., 2014).

For predictive inferences which are inferences made about an unknown observable

(Gelman et al., 2014), we can use the posterior predictive distribution for a new (future

observation), which is defined as follows

p(ỹ | y) =

∫
p(ỹ | θ)p(θ | y)dθ

where ỹ is a new value of y.

Two popular MCMC algorithms are the Metropolis-Hastings algorithm and its special

case, the Gibbs sampler. We briefly describe both algorithms below.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm was introduced by Hastings (1970). It is a very

useful tool in Bayesian inference as it allows us to estimate the posterior distribution when

only the unnormalised posterior density in Equation 2.2 is known. The algorithm proceeds

as follows:

Step 1. Start with an arbitrary initial value θ = θ0.

Step 2. Sample a proposed value θ∗ from a proposal distribution J(θ∗ | θ) conditional on the

current value.

Step 3. Evaluate the Metropolis-Hastings acceptance ratio:

R =
p(y | θ∗)p(θ∗)/J(θ∗ | θ)
p(y | θ)p(θ)/J(θ | θ∗)

.
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Step 4. Accept the proposed value with probability min(R, 1).

Repeat steps 2, 3 and 4 until the sampling process converges to the desired joint distribution

(Gelman et al., 2014).

Gibbs sampler

The Gibbs sampler was invented by Geman and Geman (1984). It requires the full

conditional distributions (also called the full conditional posterior distributions). The full

conditional distributions, are the posterior distribution for a block of parameters with all

other parameters held constant. The full conditional distributions can be derived from the

joint posterior distribution. If the full conditional distributions can be analytically derived,

and we are directly sample from them, then the Gibbs sampler algorithm proceeds as follows

Step 1. Assign each component of θ = (θ1, . . . , θJ) an arbitrary initial value.

Step 2. Alternately sample from the conditional posterior distribution of each component

given not only the data, but all the other components of θ using the most recently

sample values of all the other components.

Repeat step 2 until the sampling process converges to the desired joint distribution (Gelman

et al., 2014).

The Gibbs sampler is more efficient than the Metropolis-Hastings algorithm because

every draw is accepted.

Gibbs sampler and Metropolis-Hastings algorithm as building blocks

Often the Gibbs sampler and the Metropolis-Hastings algorithm is used in various

combinations to sample from complicated distributions (Gelman et al., 2014). The Gibbs
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sampler is one of the simplest MCMC algorithms and is the preferred choice for conditionally

conjugate models when we can directly sample from each of the full conditional distributions

(Gelman et al., 2014). The Metropolis-Hastings algorithm can be used for models that

are not conditionally conjugate, which can mean greater flexibility in model specification

(Gelman et al., 2014).

Posterior summaries

Once we obtain a sample as an estimate of the posterior distribution, for example,

using MCMC algorithms, we can summarise the estimated posterior using sample statistics

such as means and quantiles (Gelman et al., 2014; Ellis et al., 2020). In this thesis, we use the

mean of the posterior distribution as a point estimate. For interval estimation, in Bayesian

inference, the notion of credible intervals is used instead of confidence intervals. There

are two types of credible intervals: the central posterior interval and the highest posterior

density (HPD) interval. The central posterior interval corresponds “to the range of values

above and below which lies exactly 100(α/2)% of the posterior probability” (Gelman et al.,

2014, p. 33). The highest posterior density interval is the shortest interval that contains

95% probability (Christensen et al., 2011).

2.2 Measurement uncertainty

In metrology, the scientific study of measurements, “measurement is the process of

determining the value of a physical quantity” in an experimental manner with the help

called measuring instruments (Rabinovich, 2005, p. 1). A measurable quantity, also called a

measurand, can be defined as a property of phenomena, bodies, or substances that can be de-

scribed qualitatively and expressed quantitatively (Rabinovich, 2005). When measurements

are undertaken for scientific purposes, there is always uncertainty in the measurements. Mea-

surement uncertainty is defined as the expression of the statistical dispersion of the values
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attributed to a measured quantity (JCGM, 2008). In this thesis, we also refer to this mea-

surement uncertainty as stated uncertainty. In contrast, measurement error is defined as the

difference between a measured value of a quantity and its true value (Rabinovich, 2005).

The standard uncertainty is defined as the uncertainty characterised numerically by

the standard deviation (Kirkup and Frenkel, 2006). Kirkup and Frenkel (2006) explain that

from this standard deviation, it is common practice to obtain a ± numerical value referred

as the “expanded” uncertainty in the GUM (Guide to the Expression of Uncertainty in

Measurement). This value describes the range of values that is very likely to include the

true value of the measurand (Kirkup and Frenkel, 2006). The number following the ± is

normally about twice the standard deviation of the measurand. This has some parallels with

the frequentist 95% confidence interval (Kirkup and Frenkel, 2006). In contrast, a standard

uncertainty should be stated without the ± symbol and without any sign, for example the

standard uncertainty for the measured mass of a grape bunch could be u = 20 grams.

The uncertainty about an estimation or prediction can be characterised through either

Bayesian credible intervals or frequentist estimates of confidence interval limits.

2.3 Simulation studies

Simulation studies are “computer experiments that involve generating data by pseudo-

random sampling” (Morris et al., 2019). They are a useful tool for statistical research,

particularly for evaluating new methods and comparing the performance of different methods

(Morris et al., 2019). Simulation studies are used to obtain empirical results about the

performance of statistical methods in certain scenarios as opposed to more general analytic

results which may cover a wide range of scenarios but may not always be possible to obtain

(Morris et al., 2019). One of the first steps after determining the aim of the simulation study

is to determine the data-generating mechanism. Morris et al. (2019) explains that the data-

generating mechanism “denotes how random numbers are used to generate a dataset”. The

settings used for the data-generating mechanism usually refer to the values set for parameters
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in the data-generating model. Simulation studies can also use unrealistic or extreme settings

for data-generating mechanisms which can allow us to identify settings where the method

may fail (Morris et al., 2019).

Performance measures

When simulation studies are used to evaluate methods, they are “typically motivated

by frequentist theory and use frequentist properties of methods, even if the methods are

Bayesian” (Morris et al., 2019). Desirable properties of estimators used in this thesis in-

clude unbiasedness and efficiency (Morris et al., 2019). Performance measures are numerical

quantities used to assess the performance of a method (Morris et al., 2019). Common per-

formance measures include, bias, mean squared error (MSE), coverage, and credible interval

length or confidence interval length. Since simulation studies are empirical experiments, the

performance measures are estimated and are thus subject to error. Therefore, Morris et al.

(2019) have the view that estimates of uncertainty should be presented and they suggest to

do this by reporting the Monte Carlo standard error.

The performance measures used in this thesis to evaluate our models are described

below with formulae from Morris et al. (2019). The conceptual estimand and its true value is

denoted by θ. An estimand could be, for example a parameter of the data-generating model.

In addition, nsim is the number of simulations and i = 1, . . . , nsim indexes the repetitions of

the simulations, and θ̂i is the estimator obtained in simulation i (Morris et al., 2019).

Bias is defined as E[θ̂] − θ, where E[θ̂] is the expected value of the estimator and θ

is the true value of the parameter. In a simulation study, the bias can be estimated by the

mean error (ME) given by:

1

nsim

nsim∑
i=1

θ̂i − θ.
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The Monte Carlo standard error of the mean error can be obtained using√√√√ 1

nsim(nsim − 1)

nsim∑
i=1

(θ̂i − θ̄)2.

The mean squared error (MSE) is defined as E[(θ̂ − θ)2]. It is a combination of the

bias and variance. The estimate of the MSE is

1

nsim

nsim∑
i=1

(θ̂i − θ)2

The Monte Carlo standard error of the MSE can be obtained using√√√√∑nsim

i=1

[
(θi − θ)2 − M̂

]2
nsim(nsim − 1)

. (2.3)

The coverage of the estimator is defined as

Pr(θ̂low ≤ θ ≤ θ̂high),

and can be estimated using

1

nsim

nsim∑
i=1

I(θ̂low,i ≤ θ ≤ θ̂high,i),

where θ̂low,i and θ̂high,i are the estimated posterior 2.5% quantile and 97.5 % quantile for

the parameter of interest in simulation i. The Monte Carlo standard error of the estimated

coverage can be obtained by √
̂Coverage× (1− ̂Coverage)

nsim
.

We will also look at the efficiency of the estimators. A more efficient estimator has a smaller

variance. To assess the efficiency, we will look at the coverage rates of the 95% credible

interval and the average lengths of the 95% credible interval. We will use 95% confidence

intervals when a frequentist approach is used.
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2.4 Methods to deal with measurement error

It was challenging to do a literature review on methods for dealing with uncertainty in

response variables since uncertainty is specific to each field. However, there is a large body

of literature in statistics in the field called measurement error and exposure uncertainty.

Within this field are methods for dealing with measurement error and theories pertaining to

the consequences of ignoring measurement error. The problems it deals with are commonly

known as measurement error modelling or errors-in-variables (Carroll et al., 2006).

The focus in the field of measurement error is primarily on measurement error in

predictor variables, sometimes referred to as exposure variables in epidemiology. Carroll

et al. (2006) writes extensively about how to deal with measurement error in predictors for

linear and nonlinear models using frequentist methods with a chapter dedicated to Bayesian

methods. They include methods for dealing with response error, however their focus is on

binary response variables for logistic regression, rather than a continuous response variable

which is of interest in this thesis. They include a section on Bayesian methods for dealing

with measurement error, however they do not describe how to deal with measurement error

in the response variable. Carroll et al. (1995) state that generally, in the field of measurement

error, there has been more focus on methods for dealing with measurement error in predictors

because they are known to cause biases in estimated regression coefficients. Furthermore,

(Abrevaya and Hausman (2004) state that “classical measurement error (that is, additive

error uncorrelated with the covariates) in the dependent variable is generally ignored in

regression analysis because it simply gets absorbed into the error residual”. Gustafson (2003)

describes Bayesian methods for dealing with measurement error, however his focus is on

predictors measured with error. He explains that his reason for focusing on measurement

error in explanatory variables instead of response is because there is no systematic bias

in the regression coefficients and it only affects inferential uncertainty, but he does not

go into further detail (Gustafson, 2003). However, in this thesis, we are concerned with

inferential uncertainty because we are interested in prediction. Predictive inferences depend
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on the estimated coefficients. If the estimated coefficients or parameters of the model have

greater variance (or uncertainty) then this will mean that the predictions will have greater

uncertainty. We are concerned with the effect that models that adjust for uncertainty have on

prediction, instead of coefficients of the model, since grape growers and winemakers require

predictions of grape yield.

Buonaccorsi (2010) and McElreath (2015) both describe how to deal with measure-

ment error in continuous response variables. Buonaccorsi (2010) describes how to deal with

uncertainty in the response using frequentist methods-weighted regression. McElreath (2020)

presents Bayesian approaches to dealing with measurement error in the response. He treats

the true values of the response, y as parameters, the same way that missing values are dealt

with in a Bayesian framework. He demonstrates his model on an example dataset in Stan

(a software package for Bayesian modelling) (Stan Development Team, 2015). Carroll et al.

(1995) describes this approach for predictor variables.

Throughout this thesis, we refer to a model or estimation procedure where we ignore

uncertainty as a naive analysis or naive estimation. This term comes from Gustafson (2003)

and Buonaccorsi (2010).



Chapter 3

Parametric error model

3.1 Overview

In this chapter, we will introduce a standard Bayesian model for a normal likelihood

with conjugate priors. We will then extend it to account for data reported in the form of

measurements with uncertainty, first a simple one-sample problem, then to a simple regres-

sion models and then to the double sigmoidal growth model. We derive MCMC algorithms

for the parameter estimation and demonstrate their performance. Using simulation studies,

we compare our proposed approach with the naive approach, which ignores uncertainty and

also with the situation where we have precise measurements. We discuss how the normal

distributed response error can be generalised further to other parametric error distributions.

3.2 Bayesian inference for a normal sample in the ab-

sence of measurement uncertainty

Let y = (y1, . . . , yn) be a random sample of n independent and identically distributed

observations from a normal population, N(µ, τ), with mean, µ and precision, τ . The precision

14
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is defined as the inverse of the variance, σ2, that is τ = 1/σ2. Our goal is to estimate the

underlying population parameters, µ and τ and make predictive inferences regarding y. The

likelihood model is

yi | µ, τ ∼ N(µ, τ). (3.1)

with probability density function

p(yi | µ, τ) =

√
τ

2π
exp
(
− τ

2
(yi − µ)2

)
.

If we assume independent priors

p(µ, τ) = p(µ)p(τ)

and utilise conditional conjugacy then we can derive the full conditional posterior distribu-

tions and use a Gibbs sampler. Thus, we specify a normal prior for the mean

µ ∼ N(µ0, τ0) (3.2)

and a gamma prior for the precision, with shape parameter α and rate parameter β

τ ∼ Gamma(α, β). (3.3)

Using Bayes’ theorem, the joint posterior distribution of µ and τ given y is

p(µ, τ | y) ∝
n∏
i=1

p(yi | µ, τ)p(µ)p(τ). (3.4)

For the Gibbs sampler, the full conditional posterior distributions for µ and τ with

conditionally conjugate priors are standard results. See, for example, Christensen et al.

(2011) for derivations and more details (pp. 120-121). The full conditional posterior distri-

bution for the mean, p(µ | τ,y) is a normal distribution

µ | τ,y ∼ N

(
τnȳ + τ0µ0

nτ + τ0
, nτ + τ0

)
. (3.5)

The full conditional posterior distribution for the precision, p(τ | y, µ) is a gamma distribu-

tion

τ | µ,y ∼ Gamma

(
α +

n

2
, β +

1

2

n∑
i=1

(yi − µ)2

)
. (3.6)
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The directed acyclic graph (DAG) for the model is shown in Figure 3.1. It follows

the usual convention where a square represents fixed or observed quantities, for example our

observed data. A circle represents the unknowns or parameters to be inferred. The arrows

show that the value of the parameter located at the end of an arrow is assumed to depend

on the value of the parameter at its beginning (Scaccia and Green, 2003).

µ τ

yi

µ0 τ0 α β

i = 1, . . . , n

Figure 3.1. Directed acyclic graph for the Bayesian model for a normal sample.

3.3 Bayesian model for a univariate normal sample of

measurements with uncertainty

Assume that instead of observing y = (y1, . . . , yn) directly, we observe m = (m1, . . . ,mn),

with respective stated uncertainty u = (u1, . . . , un). The generic set-up is described in Table

3.1. We assume that mi is generated from a normal distribution with mean yi and precision

ui as follows

mi | yi, ui ∼ N(yi, ui) for all i = 1, . . . , n. (3.7)

We can treat y as parameters, and m and u as data (see the DAG in Figure 3.2).

The probability density function of mi given yi and ui is then

p(mi | yi, ui) =

√
ui
2π

exp
(
− ui

2
(mi − yi)2

)
.



3.3. Bayesian model for a univariate normal sample of measurements with uncertainty 17

We refer to Equation 3.7 as a normal error distribution. The term error distribution

is used by McElreath (2020). Equation 3.7 is also called a classical measurement error model

where mi is an unbiased measure of yi (Carroll et al., 2006). This is a probabilistic model

for how the measurements m are observed.

Table 3.1: Data structure for sample of measurements with stated uncertainty

Observation True value

(unobserved)

Measured value

(observed)

Uncertainty

1 y1 m1 u1
...

...
...

...

i yi mi ui
...

...
...

...

n yn mn un

µ τ

yi

mi ui

µ0 τ0 α β

i = 1, . . . , n

Figure 3.2. Directed acyclic graph of the assumed relationships for the Bayesian model for

a univariate sample of values with measurement uncertainty.

The joint posterior distribution of the parameters µ, τ and y given m and u can be
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derived using Bayes’ theorem

p(µ, τ,y |m,u) ∝ p(m | y,u)p(y | µ, τ)p(µ)p(τ) (3.8)

∝
n∏
i=1

p(mi | yi, ui)
n∏
i=1

p(yi | µ, τ)p(µ)p(τ). (3.9)

For our multiparameter model here, the parameters of interest are µ and τ . We are not

as interested in the parameters y and treat them as “nuisance parameters” a term used

by Gelman et al. (2014). The aim of our Bayesian model is to obtain marginal posterior

distributions of µ and τ . Once we have the joint posterior distribution, we can obtain the

marginal posterior distributions of µ and τ by integrating over parameters y.

3.3.1 MCMC algorithm: Gibbs sampler

Because the marginal posterior distributions cannot be derived analytically we will

use a numerical algorithm, the Gibbs sampler here, to approximate those distributions.

We already have the full conditional distributions for µ and τ from Section 2.1,

therefore we only require the full conditional distribution for the parameters y = (y1, . . . , yn).

Since we assume that each yi is independent of each other and the Gibbs sampler samples

each parameter separately with all the other parameters held constant, we can sample each

yi one at a time. Thus, instead of deriving the full conditional distribution p(y |m,u, µ, τ),

we can derive the full conditional distribution for each yi of p(yi | mi, ui, µ, τ). The full

conditional posterior distribution for yi of p(yi | mi, ui, µ, τ) can be derived as follows

p(yi | mi, ui, µ, τ) ∝ p(mi | yi, ui)p(yi | µ, τ)p(µ)p(τ)

∝ p(mi | yi, ui)p(yi | µ, τ)

=

√
ui
2π

exp
(
− ui

2
(mi − yi)2

)√ τ

2π
exp
(
− τ

2
(yi − µ)2

)
∝ exp

(
− ui

2
(mi − yi)2

)
exp
(
− τ

2
(yi − µ)2

)
= exp

(
− ui

2
(mi − yi)2 −

τ

2
(yi − µ)2

)
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= exp

{
− ui

2

[
m2
i − 2miyi + y2i

]
− τ

2

[
y2i − 2yiµ+ µ2

]}
= exp

{
− uim

2
i

2
+ uimiyi −

uiy
2
i

2
− τy2i

2
+ τyiµ−

τµ2

2

}
∝ exp

{
uimiyi −

uiy
2
i

2
− τy2i

2
+ τyiµ

}
= exp

(
−
(ui

2
+
τ

2

)
y2i + (uimi + τµ)yi

)
= exp

{
− ui + τ

2

(
y2i −

2(uimi + τµ)

ui + τ
yi

)}
∝ exp

{
− ui + τ

2

(
yi −

uimi + τµ

ui + τ

)2}
.

The result is a normal distribution

yi | mi, ui, µ, τ ∼ N

(
uimi + τµ

ui + τ
, ui + τ

)
for all i. (3.10)

Now we have the full conditional distributions we require for our Gibbs sampler.

Pseudo-code for the Gibbs sampler

Step 0. Set the arbitrary initial values for the parameters. E.g. µ(0) = m, τ (0) = 1/s2m and

y
(0)
i = m for i = 1, . . . , n. Where m is the sample mean and s2m is the sample variance

of m.

Step 1. Sample each yi from a normal distribution with mean,

uimi + τµ

ui + τ

and precision, ui + τ , given the current values of µ and τ .

Step 2. Sample one value of µ from a normal distribution with mean,

τnȳ + τ0µ0

nτ + τ0

and precision, nτ + τ0, given the current values of y and τ .

Step 3. Sample one value of τ from a gamma distribution with shape parameter, α+ n
2

and

rate parameter, β + 1
2

∑n
i=1(yi − µ)2, given the current values of µ and y.
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Repeat steps 1, 2 and 3 until convergence.

An implementation in R of this Gibbs sampler can be found in Appendix A.

A total of 5,000 iterations were used for the Gibbs sampler, with a burn-in of 500

iterations. Our final posterior sample had size 4,500. Convergence was visually assessed.

Naive analysis

For comparison, we will look at a naive analysis, which ignores the uncertainty in the

measurements, using both a Bayesian and frequentist approach.

Model 2: Bayesian naive analysis

The Bayesian naive analysis ignores the uncertainty in measurements. Here we ignore

the mechanism generating the uncertainty and treat yi = mi. A two step Gibbs sampler is

used based on Equation 3.5 and Equation 3.6.

A total of 2,000 iterations were used for the Gibbs sampler, with a burn-in of 500

iterations. Our final posterior sample had size 1,500. Convergence was visually assessed.

Model 3: Frequentist naive analysis

For the frequentist naive analysis which ignores the uncertainty in measurements, the

estimator for the population mean is the sample mean of m:

µ̂ = m =

∑n
i=1mi

n
(3.11)

with 95% confidence interval for the mean given by(
µ̂− 1.96

s√
n
, µ̂+ 1.96

s√
n

)
(3.12)
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where s is the standard deviation of the sample, m.

The estimate of the population variance is the sample variance of m:

σ̂2 =

∑n
i=1(mi −m)2

n− 1
. (3.13)

Assuming that m comes from a normal population, the 95% confidence interval for

the variance is given by (
(n− 1)σ̂2

χ2
0.025, n−1

,
(n− 1)σ̂2

χ2
0.975, n−1

)
(3.14)

where χ2
0.025, n−1 and χ2

0.975, n−1 are the 97.5% and 2.5% percentiles of the Chi-squared distri-

bution, respectively with degrees of freedom, n− 1.

The 95% prediction interval, that is for a new value of y, is given by(
µ̂− 1.96s

(
1

n
+ 1
)
, µ̂+ 1.96s

(
1

n
+ 1

))
. (3.15)

3.4 Simulation study: a sample of values with normal

error

To see how well the model works and assess the importance of accounting for mea-

surement error, we will compare our three model: (1) a Bayesian model which incorporates

uncertainty (described by the DAG in Figure 3.2), (2) the Bayesian naive analysis and (3)

the frequentist naive analysis and we will also compare them against the situation where

we have precise measurements. For this simulation study, we examined the special case all

observation having the same size uncertainty, ui = u, instead of having measurement specific

uncertainty. For the Bayesian models, vague priors were chosen. This was to ensure that the

data would provide the majority of the information, so that the results could be compared

with frequentist results. The priors for the mean, µ and precision τ are specified as follows:

µ ∼ N(µ0 = 0, τ0 = 10−4)
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τ ∼ Gamma(α = 0.001, β = 0.001).

Data are simulated on n = 100 observations, where each yi is generated using

yi ∼ N(µ τ)

and each mi is generated using

mi ∼ N(yi, ui).

We consider different values of µ, τ and ui. For our cases, the precision τ and uncertainty, ui

have been written to emphasise the standard deviation. For example, τ = 10−2 means that

the standard deviation is 10. We introduce some additional notation to describe our cases,

where we let

γ =
SD(m|y)

SD(y)
(3.16)

following a similar convention to Gustafson (2003), where γ describes the magnitude of the

uncertainty expressed as a fraction of the variability in the response variable y itself. For

example γ = 0.1 can be interpreted as the uncertainty is 10% of the variability in y. Or it

can be viewed as yielding 10% imprecision in the measurement of y (Gustafson, 2003). We

specifically considered six scenarios, starting with the case:

1. µ = 200, τ = 5−2 and ui = 2−2 (In this case, γ = 0.4; the uncertainty is 40% of the

variability in y)

Then, we look at the effect of increasing the size of the uncertainty on prediction, so we chose

a population standard deviation of 10 and uncertainty in terms of the standard deviation

ranging from 2 to 15. We also sought to identify settings that would cause the method to

fail.

2. Uncertainty is 20% of the variability in y: µ = 200, τ = 10−2 and ui = 2−2

3. Uncertainty is 50% of the variability in y: µ = 200, τ = 10−2 and ui = 5−2
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4. Uncertainty is 80% of the variability in y: µ = 200, τ = 10−2 and ui = 8−2

5. Uncertainty is the same size as the variability in y: µ = 200, τ = 10−2 and ui = 10−2

6. Uncertainty is 1.5 times the variability in y: µ = 200, τ = 10−2 and ui = 15−2

We conduct 2,000 simulations. Performance is assessed by the bias (ME), MSE, cov-

erage percentage of the 95% credible interval (or 95% confidence interval for the frequentist

naive analysis) and average 95% credible interval length of the estimators. We include the

Monte Carlo standard error to report the uncertainty in the performance measures. For

the Bayesian models, to estimate the population mean, we use the mean of the marginal

posterior distribution of the mean p(µ |m,u) and we use the 95% credible interval to assess

the coverage. Our estimate of the population variance is calculated as 1/mean(p(τ | m,u).

To assess the coverage of the variance, we calculate the 95% credible interval as follows: the

lower limit for the 95% credible is calculated as

1/lower limit of the 95% CI for τ

and the upper limit is calculated as

1/upper limit of the 95% CI for τ.

Data were simulated in R using the 32-bit Mersenne Twister for random number

generation (R Core Team, 2020). For reproducibility, an input seed was used so that all

models were applied to the same 2,000 datasets.

Table 3.2 compares the three models with the situation when precise measurements

are made and their performance estimating the population mean, µ and variance, σ2. All

three models produce unbiased and efficient estimators of the population mean. All models

exhibit bias close to 0, and coverage rates of the 95% credible interval or confidence interval

close to 95%. Therefore, if we want to estimate the population mean, we can simply use

a naive analysis and ignore the uncertainty in the data. When it comes to estimating the

variance of the population, the Bayesian model for incorporating uncertainty gives unbiased
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and the most efficient estimates of the population variance out of the three models. The bias

is close to 0, MSE is low, and coverage rates of the 95% credible interval are close to 95%.

In contrast, both the Bayesian and frequentist naive analysis, result in a positive bias and

undercoverage in the estimate of the variance. From Morris et al. (2019) undercoverage is

to be expected if the bias is not equal to 0.

Table 3.3 shows the performance of three models in terms of predictive inferences

for different cases of µ, τ and ui. All four models produce unbiased estimates in terms of

prediction. The Bayesian and frequentist naive analyses have correct coverage when the

uncertainty is 20% of the population variation. However, we observe overcoverage when the

uncertainty is 40%, 50%, 80%, 100% and 1.5 times the population variation. The Bayesian

model incorporating uncertainty performs well in terms of coverage for uncertainty that is

up to 80% of the population variation. However, it starts to exhibit undercoverage when

the uncertainty is the same as the population variation and also when it is 1.5 times the

population variation.

The simulation study reveals that the Bayesian model which incorporates uncertainty

produces unbiased and efficient predictions, up to a point where the uncertainty is 80% of the

population variation. When the uncertainty is greater than 80% of the population variation,

we start to observe undercoverage; this means that may convey a false sense of precision (the

real precision is lower than what is declared).

The posterior predictive distribution depends on the posterior mean and posterior

variance. A larger population variance will result in wider 95% credible intervals. If the

estimated variance is larger, then the posterior prediction will have a greater variance and

the credible interval of the posterior prediction distribution will be wider. For the grape

yield analyser project, this means that if the estimated population variance is larger, it will

mean that the predictions have greater uncertainty. We can see from Table 3.2 and Table

3.3 that the positive bias in the estimated variance from the Bayesian and frequentist naive

analyses correspond to posterior predictive distributions with larger average 95% credible

intervals, and larger average 95% prediction intervals, respectively.
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Table 3.2: Estimates of performance measures for the mean and variance with Monte Carlo

standard errors are reported in parentheses and obtained using the R package rsimsum.

This is for the case of µ = 200, τ = 5−2 and ui = 2−2.

Parameter Performance

measure

Bayesian model

incorporating

uncertainty

Bayesian naive

analysis

Frequentist

naive analysis

Precise

measurements

µ

Bias -0.015 (0.012) -0.014 (0.012) -0.009 (0.012) -0.018 (0.011)

MSE 0.284 (0.009) 0.284 (0.009) 0.284 (0.009) 0.251 (0.008)

Coverage (%) 95.4 (0.5) 95.2 (0.5) 95.2 (0.5) 94.4 (0.5)

Average 95%

credible interval

length

2.123 2.121 2.102 1.968

σ2

Bias -0.284 (0.092) 3.906 (0.092) 3.906 (0.092) -0.142 (0.079)

MSE 16.881 (0.534) 32.061 (1.005) 32.022 (1.002) 12.505 (0.406)

Coverage (%) 95.8 (0.5) 80.2 (0.9) 80.6 (0.9) 94.9 (0.5)

Average 95%

credible interval

length

16.657 16.668 16.725 14.334

Table 3.3: Estimates of performance measures for the mean of the posterior predictive

distribution for different data-generating mechanisms. Monte Carlo standard errors are

reported in parentheses and obtained using the R package rsimsum.

Performance

measure

Bayesian

model

incorporating

uncertainty

Bayesian naive

analysis

Frequentist

naive analysis

Precise

measurements

Data-generating mechanism: µ = 200, τ = 5−2 and ui = 2−2

Bias -0.0241 (0.013) -0.169 (0.013) -0.168 (0.012) -0.074 (0.012)

MSE 24.851 (0.759) 25.333 (0.823) 24.523 (0.771) 25.048 (0.840)

Coverage (%) 95.8 (0.4) 96.2 (0.4) 96.3 (0.4) 95.0 (0.5)
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Performance

measure

Bayesian

model

incorporating

uncertainty

Bayesian naive

analysis

Frequentist

naive analysis

Precise

measurements

Average 95%

credible interval

length

19.761 21.291 21.233 19.744

Data-generating mechanism: µ = 200, τ = 10−2 and ui = 2−2

Bias -0.062 (0.024) -0.352 (0.024) -0.341 (0.023) -0.159 (0.024)

MSE 99.308 (0.017) 101.305 (3.287) 98.078 (3.085) 100.196 (3.360)

Coverage (%) 95.9 (0.4) 95.3 (0.5) 95.2 (0.5) 95.0 (0.5)

Average 95%

credible interval

length

39.484 40.292 40.184 39.488

Data-generating mechanism: µ = 200, τ = 10−2 and ui = 5−2

Bias -0.060 (0.026) -0.348 (0.026) -0.334 (0.025) -0.159 (0.024)

MSE 99.483 (3.040) 101.390 (3.297) 98.126 (3.083) 100.196 (3.360)

Coverage (%) 95.7 (0.5) 96.8 (0.4) 97.2 (0.4) 95.0 (0.5)

Average 95%

credible interval

length

39.521 44.217 44.098 39.488

Data-generating mechanism: µ = 200, τ = 10−2 and ui = 8−2

Bias -0.061 (0.029) -0.348 (0.030) -0.326 (0.028) -0.159 (0.024)

MSE 99.833 (3.048) 101.671 (3.312) 98.353 (3.087) 100.196 (3.360)

Coverage (%) 95.3 (0.5) 98.6 (0.3) 98.8 (0.3) 95.0 (0.5)

Average 95%

credible interval

length

39.446 50.688 50.551 39.488
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Performance

measure

Bayesian

model

incorporating

uncertainty

Bayesian naive

analysis

Frequentist

naive analysis

Precise

measurements

Data-generating mechanism: µ = 200, τ = 10−2 and ui = 10−2

Bias -0.064 (0.032) -0.350 (0.033) -0.321 (0.031) -0.159 (0.024)

MSE 100.149 (3.056) 101.970 (3.326) 98.604 (3.093) 100.196 (3.360)

Coverage (%) 94.4 (0.5) 99.2 (0.2) 99.4 (0.2) 95.0 (0.5)

Average 95%

credible interval

length

39.129 55.996 55.845 39.488

Data-generating mechanism: µ = 200, τ = 10−2 and ui = 15−2

Bias -0.071 (0.042) -0.362 (0.042) -0.309 (0.040) -0.159 (0.024)

MSE 101.569 (3.094) 103.107 (3.371) 99.578 (3.120) 100.196 (3.360)

Coverage (%) 85.4 (0.8) 100 (0.0) 99.9 (0.1) 95.0 (0.5)

Average 95%

credible interval

length

34.907 71.418 71.225 39.488

Note. For the frequentist naive analysis, instead of the coverage of the 95% credible interval

for the posterior predictive distribution, we report the coverage of the 95% prediction interval.

Similarly, instead of the average length of the 95% credible interval, report the average length

of the 95% prediction interval.
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3.5 Simple linear regression

We now extend our model for a sample of values measured with uncertainty to the

situation of a simple linear regression model. The full Bayesian model specification is

yi ∼ N(µi, τ) (3.17)

µi = α + βxi (3.18)

mi | yi, ui ∼ N(yi, ui) (3.19)

α ∼ N(µα, τα) (3.20)

β ∼ N(µβ, τβ) (3.21)

τ ∼ Gamma(a, b) (3.22)

where α is the intercept, β is the slope and τ is the precision (describing the error about the

line). We assume a normal error distribution in Equation 3.19 for our measurements where

each measurement mi is generated from a normal distribution with mean yi and uncertainty

defined by the precision of ui.

We choose conditionally conjugate priors for convenience so that we can use a Gibbs

sampler and analytically derive the full conditional distributions of α, β and τ . We also

assume independent priors as follows,

p(α, β, τ) = p(α)p(β)p(τ).

Therefore, the joint posterior distribution of α, β, and y can be written using Bayes’ theorem

as

p(α, β, τ,y |m,u,x) ∝ p(m | y,u)p(y | x, α, β, τ)p(α)p(β)p(τ) (3.23)

∝
n∏
i=1

p(mi | yi, ui)
n∏
i=1

p(yi | xi, α, β, τ)p(α)p(β)p(τ). (3.24)

There is no analytical closed-form solution to the joint posterior distribution p(α, β, τ,y |

m,u,x). Therefore, we will use a Gibbs sampler to obtain samples from the joint posterior.

The full conditional distributions for α, β, τ and yi are provided below:
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Full conditional distribution for α:

α | β, τ,y,x ∼ N

(
τ
∑n

i=1(yi − βxi) + ταµα
nτ + τα

, nτ + τα

)
(3.25)

Full conditional distribution for β:

β | α, τ,y,x ∼ N

(
τ
∑n

i=1 xi(yi − α) + τβµβ
τ
∑n

i=1 x
2
i + τβ

, τ

n∑
i=1

x2i + τβ

)
(3.26)

Full conditional distribution for τ :

τ | α, β,y,x ∼ Gamma

(
a+

n

2
, b+

1

2

n∑
i=1

(
yi − (α + βxi)

)2)
(3.27)

Full conditional distribution for yi:

Starting with Equation 3.24, the derivation is as follows

p(yi | α, β, τ,mi, ui, xi) ∝ p(mi | yi, ui)p(yi | xi, α, β, τ)p(α)p(β)p(τ)

∝ p(mi | yi, ui)p(yi | xi, α, β, τ) (3.28)

=

√
ui
2π

exp

(
− ui

2
(mi − yi)2

)√
τ

2π
exp
(
yi − (α + βxi)

)2
∝ exp

(
− ui

2
(mi − yi)2

)
exp
(
yi − (α + βxi)

)2
= exp

(
− ui

2

(
mi − 2miyi + y2i

))
exp
(
− τ

2

(
y2i − 2yi(α + βxi) + (α + βxi)

2
))

= exp

{
− ui

2
m2
i + uimiyi −

uiy
2
i

2
− τy2i

2
+ τyi(α + βxi)−

τ(α + βxi)
2

2

}
∝ exp

{
uimiyi −

uiy
2
i

2
− τy2i

2
+ τyi(α + βxi)

}
= exp

(
−
(ui

2
+
τ

2

)
y2i +

(
uimi + τ(α + βxi)

)
yi

)
= exp

{
−
(ui + τ

2

)(
y2i −

2
(
uimi + τ(α + βxi)

)
ui + τ

yi

)}
∝ exp

{
−
(
ui + τ

2

)(
yi −

uimi + τ(α + βxi)

ui + τ

)2}
which is a normal distribution

yi | α, β, τ,mi, ui, xi ∼ N

(
uimi + τ(α + βxi)

ui + τ
, ui + τ

)
for all i. (3.29)
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3.5.1 MCMC algorithm: Gibbs sampler

Pseudo-code for the Gibbs sampler

Step 0. Set the arbitrary initial values for the parameters, α, β, τ and y.

Step 1. Sample each yi from a normal distribution with mean,

uimi + τ(α + βxi)

ui + τ

and precision, ui + τ given the current values of α, β and τ .

Step 2. Sample one value of α from a normal distribution with mean,

τ
∑n

i=1(yi − βxi) + ταµα
nτ + τα

and precision, nτ + τα given the current values of β, τ and y.

Step 3. Sample one value of β from a normal distribution with mean,

τ
∑n

i=1 xi(yi − α) + τβµβ
τ
∑n

i=1 x
2
i + τβ

and precision,
∑n

i=1 x
2
i + τβ, given the current values of α, τ and y.

Step 4. Sample one value of τ from a gamma distribution with shape parameter, a+ n
2

and

rate parameter, b+ 1
2

∑n
i=1

(
yi − (α + βxi)

)2
given the current values of α, β and y.

Repeat steps 1, 2, 3 and 4 until convergence.

An implementation in R of this Gibbs sampler can be found in Appendix B.

The number of iterations used for the Gibbs sampler was 5,000 with a burn-in period

of 500 iterations. Convergence was visually assessed.
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Figure 3.3. Simulated data for the simple linear regression, where y are the actual values

and m are the measurements with uncertainty. The uncertainty is 50% of the population

variation. The red line is the true regression line. The line segments show the magnitude

and direction of the error in the measurements. Data was generated following the model

specified in Equation 3.17—3.22 with n = 100, α = 0, β = 1, τ = 10−2 and ui = 5−2.
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3.6 Simulation study: simple linear regression with

normal error

We conduct a simulation study to evaluate how well the model estimates the true

population parameters, that is the intercept, slope and variance. Additionally we evaluate

how well it performs in terms of predictive inferences. The data is generated according to

the model following Equation 3.17—Equation 3.22. We chose uninformative priors for our

model as follows

α ∼ N(µα − 0, τα = 10−4) (3.30)

β ∼ N(µβ = 0, τβ = 10−4) (3.31)

τ ∼ Gamma(a = 0.01, b = 0.01). (3.32)

For our data-generating process, we used n = 100 observations and our x values were

equally spaced from 0 to 100. Again we consider the same size known uncertainty for all

observations i.e. ui = u. We chose the following settings for our simulations:

1. α = 0, β = 1, σ2 = 10−2 and ui = 5−2 (uncertainty is 50% of the error about the line)

2. α = 0, β = 1, σ2 = 10−2 and ui = 8−2 (uncertainty is 80% of the error about the line)

3. α = 0, β = 1, σ2 = 10−2 and ui = 10−2 (uncertainty is the same size as the error about

the line)

A total of 2,000 simulations were performed. We report the bias (ME), MSE, coverage

rates of the 95% credible intervals and the average 95% credible interval lengths. To estimate

α and β, we use the posterior mean and 95% credible intervals of the marginal posterior

distributions of α and β, respectively. To estimate the variance, we do this in the same

way described in the simulation study for a sample of values measured with uncertainty in
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Section 3.4. Data were simulated in R (R Core Team, 2020). For reproducibility, an input

seed was used so that all models were applied to the same 2,000 datasets.

Table 3.4 shows that the Bayesian model which incorporates uncertainty estimates all

population parameters well, under the setting where the uncertainty is 50% of the population

variation. The estimates are unbiased for the intercept, slope and variance, with good

coverage and are the most efficient estimators. The naive analysis gives unbiased estimates

of the intercept, α and slope, β with correct coverage. However, when using the naive

analysis there is a positive bias in the estimate of the variance and also undercoverage of the

95% credible interval.

Table 3.5 summarises the performance of the posterior predictive distribution at

x = 100 for three models under different data-generating mechanisms. All three models

produce unbiased predictions. The Bayesian model which incorporates uncertainty performs

reasonably well when the uncertainty is 50% and 80% of the population variation. There

may be slight undercoverage, but the average 95% credible length is very similar to the

results from the Bayesian model with precise measurements. However, when the uncer-

tainty is the same size as the population variation, the Bayesian model which incorporates

uncertainty shows undercoverage, with a coverage percentage of 93.6% of the 95% credible

interval. Figure 3.6 suggests there is undercoverage in the prediction, where the envelope

for the Bayesian model incorporating uncertainty is more narrow than the Bayesian model

using precise measurements. The naive analysis results in overcoverage of the 95% credible

interval with a corresponding longer average 95% credible interval length under all settings

in Table 3.5. This means that it produces a conservative prediction.

Figure 3.5 and Figure 3.7 show the estimated posterior predictive distribution at

x = 200, and the posterior predicted mean and 95% credible interval for one simulation

and for two different cases: when the uncertainty is 50% of the population variation and

100% of the population variation, respectively. In Figure 3.5 the Bayesian model which

incorporates uncertainty has a shorter 95% credible interval for the posterior predictive

distribution and is a similar length to the Bayesian model using precise measurements. The
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naive analysis has a longer 95% credible interval for the prediction than the Bayesian model

which incorporates uncertainty. In Figure 3.7, we observe the Bayesian model incorporating

uncertainty has the shortest 95% credible interval for the prediction. The 95% credible

interval for the Bayesian model which incorporates uncertainty is shorter than the 95%

credible interval for the Bayesian model with precise measurements. This appears to be

undercoverage which occurs for the Bayesian model which incorporates uncertainty from

the results of our simulation studies in Table 3.5. The naive analysis results in a 95%

credible interval for the prediction that is longer than the interval for the Bayesian model

with precise measurements, which suggests that the 95% credible interval for the prediction

exhibits overcoverage.

3.7 Example: double sigmoidal growth model

In this section, we extend our model for incorporating measurement uncertainty to

the double sigmoidal growth curve. We use 2018 bunch mass data used in Ellis et al. (2020)

collected by Mike Trought and Linlin Yang from Rowley Crescent in Marlborough, and

simulate data with measurement uncertainty based on the real bunch masses in R (R Core

Team, 2020). The data was collected over the period from December 2017 to March 2018.

The response variable is the individual grape bunch mass and the predictor is the number

of days since 1 December 2017. The mass is measured in grams (g). There were 14 days of

data collected and a total of 448 observations. A scatterplot of the data is shown in Figure

3.9.

For reproducibility, we set the random number seed in R when generating the mea-

surements with uncertainty for the double sigmoidal curve. We compare our model with a

naive analysis and with the precisely measured (original data) in terms of prediction and

analyse the results.

We extend previous work by Ellis et al. (2020), which assumes a double sigmoidal

growth model for the grape bunch growth. The model contains a total of seven parameters;
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Table 3.4: Performance of the parameter estimates α, β, and σ2 for the Bayesian linear

model with a comparison against the Bayesian naive analysis and the Bayesian linear

model with precise measurements. The true values used are: α = 0, β = 1, σ2 = 10−2 and

ui = 5−2.

Parameter Performance

measure

Bayesian model

incorporating

uncertainty

Naive analysis Precise

measurements

α

Bias 0.031 (0.049) 0.028 (0.049) 0.015 (0.044)

MSE 4.768 (0.149) 4.764 (0.148) 3.798 (0.120)

Coverage (%) 95.0 (0.5) 95.4 (0.5) 95.1 (0.5)

Average 95%

credible interval

length

8.723 8.754 7.818

β

Bias -0.001 (0.001) -0.001 (0.001) -0.001 (0.001)

MSE 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)

Coverage (%) 94.9 (0.5) 94.9 (0.5) 95.1 (0.5)

Average 95%

credible interval

length

0.126 0.126 0.113

σ2

Bias -1.631 (0.400) 24.659 (0.398) -0.583 (0.318)

MSE 321.237 (9.936) 924.999 (24.176) 203.015 (6.550)

Coverage (%) 95.7 (0.5) 63.7 (1.1) 94.9 (0.5)

Average 95%

credible interval

length

72.066 72.468 57.789
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Table 3.5: Comparing the performance of the estimated posterior predictive distribution at

x = 100 of the three different models and for different data-generating processes.

Bayesian model

incorporating

uncertainty

Naive analysis Precise

measurements

Data-generating mechanism: α = 0, β = 1, σ2 = 10−2 and ui = 5−2

Bias -0.008 (0.026) -0.104 (0.051) -0.116 (0.035)

MSE 104.331 (3.314) 105.249 (3.476) 97.335 (3.001)

Coverage (%) 94.4 (0.5) 97.3 (0.4) 95.3 (0.5)

Average 95% credible

interval length

39.501 44.858 39.640

Data-generating mechanism: α = 0, β = 1, σ2 = 10−2 and ui = 8−2

Bias 0.000 (0.030) -0.098 (0.058) -0.116 (0.035)

MSE 104.749 (3.334) 106.799 (3.517) 97.335 (3.001)

Coverage (%) 94.3 (0.5) 98.7 (0.3) 95.3 (0.5)

Average 95% credible

interval length

39.438 51.421 39.640

Data-generating mechanism: α = 0, β = 1, σ2 = 10−2 and ui = 10−2

Bias 0.005 (0.032) -0.093 (0.064) -0.116 (0.035)

MSE 105.088 (3.349) 108.239 (3.557) 97.335 (3.001)

Coverage (%) 93.6 (0.5) 99.4 (0.2) 95.3 (0.5)

Average 95% credible

interval length

39.109 56.805 39.640
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Figure 3.4. Simple linear regression comparison of the three models and the posterior

predictive envelopes when the uncertainty is 50% of the population variation. The

posterior predictive means are shown by the solid lines. The envelopes represent the 95%

credible interval of the posterior predictive distributions. The settings used are

α = 0, β = 2, τ = 10−2 and u = 5−2.
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Figure 3.5. Simple linear regression estimate of the posterior predictive distribution at

x = 200 for the three models and posterior predictive means and 95% credible intervals.

The uncertainty is 50% of the population variance. The settings used are

α = 0, β = 2, τ = 10−2 and u = 5−2.
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Figure 3.6. Simple linear regression comparison of the three models and the posterior

predictive envelopes when the uncertainty is the same size as the population variation. The

posterior predictive means are shown by the solid lines. The envelopes represent the 95%

credible interval of the posterior predictive distributions. The settings used are

α = 0, β = 2, τ = 10−2 and u = 10−2.
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Figure 3.7. Simple linear regression estimate of the posterior predictive distribution at

x = 200 for the three models and posterior predictive mean and 95% credible intervals.

The uncertainty is the same size as the population variance. The settings used are

α = 0, β = 2, τ = 10−2 and u = 10−2.
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six coefficients for the double sigmoidal curve model and the precision parameter. For more

details and explanations of all the parameters, see Ellis et al. (2020). The model is specified

within a Bayesian framework. Here yi denotes the individual grape bunch masses and ti

denotes the number of days since 1 December 2017. The logged individual grape bunch

masses are assumed to come from a normal distribution

log(yi) ∼ N(µi, τ)

with mean

µi = f(xi, α0, α1, β0, β1, γ0, γ1) =
α0

1 + e−γ0(ti−β0)
+

α1

1 + e−γ1(ti−β1)
(3.33)

and precision τ .

The prior distributions used are given in Table 3.6. For more details on the prior

distributions see Ellis et al. (2020).

Table 3.6: Prior distributions used for the double sigmoidal growth models

Coefficient Prior

α0 N(4.09, 0.11)

∆α TN(0.69, 1, 0)

β0 N(40, 0.02)

∆β TN(30, 0.11, 0)

γ0 TN(0.3, 44.44, 0)

γ1 TN(0.3, 44.44, 0)

τ Gamma(4, 1)

Note. TN stands for the trun-

cated normal distribution.

A Metropolis-Hastings sampler has been implemented in R by Ellis et al. (2020) to

generate samples from the posterior distribution.
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If we are to incorporate uncertainty, we can assume that each measurement mi is

generated from a normal distribution with mean log(yi) and precision, ui,

mi ∼ N(log(yi), ui) (3.34)

Note that the generated measurements mi will also in turn be on a log scale. We can assume

any error distribution but we choose a normal error distribution here as it allows us to

analytically derive the full conditional distributions. Then we can replace µi in Equation

3.18 with Equation 3.28. If we make the same assumption as we did for the linear regression,

that each yi is independent and identically distributed, then instead of Equation 3.29 our

full conditional distribution for the parameter yi would become

log(yi) | α0, α1, β0, β1, γ0, γ1, τ,mi, ui ∼ N

(
uimi + τµi
ui + τ

, ui + τ

)
for all i. (3.35)

where

µi =
α0

1 + e−γ0(ti−β0)
+

α1

1 + e−γ1(ti−β1)

is from Equation 3.33. Therefore, we can use a Gibbs step to directly sample from the full

conditional distribution for y = (y1, . . . yn), as an additional step in the Metropolis-Hastings

sampler written by Ellis et al. (2020).

Additional Gibbs step for the Metropolis-Hastings sampler

Sample each yi from a normal distribution with mean

uimi + τµi
ui + τ

where,

µi =
α0

1 + e−γ0(ti−β0)
+

α1

1 + e−γ1(ti−β1)

and precision ui + τ , using the current value of all the other parameters.

The Metropolis-Hastings algorithm implemented in R is included in Appendix D.
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A total of 1,200,000 iterations were used for the Metropolis-Hastings sampler with a

burn-in period of 20,000 iterations. The remaining sample was thinned to yield a posterior

sample of size 5,000. Convergence was visually assessed.

We report the 95% highest posterior density interval using the hdi() function from

the HDInterval package in R.

We investigated two cases of ui: when ui = 0.1 and ui = 0.5. The case where

the uncertainty is ui = 0.5 can be interpreted as approximately mi ± 100%. This could

happen when two grape bunches are identified as one grape bunch, which can occur when

the wavelength used for the microwave sensor is larger than the distance between two grape

bunches. Additionally, there is noise from the leaves and from other unknown sources, which

can add to the size of the uncertainty.

Figure 3.11 shows that the posterior predictive envelope is smaller for the Bayesian

model incorporating uncertainty than the naive analysis. Figure 3.14 shows that the differ-

ence between the posterior predictive envelopes is much more apparent when the uncertainty

is larger. The naive analysis exhibits the widest 95% HPD interval, and is much larger than

the case of the Bayesian model using precise measurements of mass. Figure 3.12 shows that

the posterior predicted mean for both the Bayesian model which incorporates uncertainty

and the Bayesian naive analysis is relatively close to the mean predicted value when pre-

cise measurements are used. The Bayesian model which incorporates uncertainty has the

smallest 95% HPD interval, which means that it is more precise. The Bayesian naive anal-

ysis produces the widest 95% HPD interval, which means there is more uncertainty in the

prediction.

Figure 3.15 shows that the Bayesian naive analysis has the widest 95% HPD interval

for the prediction. However the Bayesian model which incorporates uncertainty has a nar-

rower 95% HPD interval for the prediction than the Bayesian model using precise measure-

ments. This is possible undercoverage exhibited by the Bayesian model which incorporates

uncertainty. In conclusion, by using the Bayesian model which incorporates uncertainty,
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we can still obtain accurate and precise estimates, however caution may need to be taken

when the uncertainty becomes large e.g. ui = 0.5 as there may be undercoverage for the

prediction.

Figure 3.8. Scatterplot of the 2018 grape bunch mass data with actual values, y and

simulated measurements with uncertainty m using a setting of u = 0.1−2. Jitter has been

applied to the points to reduce overplotting. The bunch masses are plotted on the log scale.
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Figure 3.9. Scatterplot of the 2018 grape bunch mass data with actual values, y, simulated

measurements with uncertainty m using a setting of u = 0.1−2 which is approximately 20%

of the original values (based on 1.96*se, where se is 10%). The bunch masses have been

back transformed to be on the original scale in grams. Jitter has been applied to the points

to reduce overplotting.
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Figure 3.10. Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 10% of the original values. The solid lines

are the means of the posterior predictive distributions. The envelopes show the 95%

credible interval of the posterior predictive distributions. The grape bunch masses are

plotted on the log scale.
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Figure 3.11. Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 10% of the original values. The solid lines

are the means of the posterior predictive distributions. The envelopes show the 95%

credible interval of the posterior predictive distributions.
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Figure 3.12. Double sigmoidal curve comparison of the estimated posterior predictive

distribution at day 120 for the three models. This was for simulated uncertainty of 20% of

the original values. Below the densities plot are the posterior predictive means and 95%

credible intervals.
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Figure 3.13. Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 50% of the actual values. This is

approximately 2 times the actual values, y (based on 1.96*se, where se is 50%). The solid

lines are the means of the posterior predictive distributions. The envelopes show the 95%

credible interval of the posterior predictive distributions. The grape bunch masses are

plotted on the log scale.
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Figure 3.14. Double sigmoidal curve comparison of the three models and the posterior

predictive envelopes for simulated uncertainty of 50% of the actual values. This is

approximately 2 times the actual values, y (based on 1.96*se, where se is 50%). The solid

lines are the means of the posterior predictive distributions. The envelopes show the 95%

credible interval of the posterior predictive distributions. Bunch masses are on the original

scale in grams (g).
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Figure 3.15. Double sigmoidal curve comparison of the estimated posterior predictive

distribution at day 120 for the three models. This was for simulated uncertainty of 100% of

the original values. Below the densities plot are the posterior predictive means and 95%

credible intervals.
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3.8 Discussion

In the examples above, we were able to use a Gibbs sampler due to the convenience of

the assumed distribution and the resulting conjugacy. This may not always be possible, if the

distribution p(m | y), follows another parametric distribution, for example a t-distribution

or triangular distribution. In which case, a Metropolis-Hastings algorithm may be used

instead of a Gibbs step. The Metropolis- Hastings acceptance ratio, R would be as follows

R =
p(m | y∗,u)p(y∗ | θ)/Jt(y∗ | yt−1)

p(m | yt−1,u)p(yt−1 | θ)/Jt(yt−1 | y∗)
(3.36)

where θ is the parameter vector, Jt(·) is the proposal (or jumping) distribution, y∗ is the

proposed value of y, and yt−1 is the value of y at the previous iteration. Unfortunately, unlike

the Gibbs sampler which accepts every proposal, Metropolis-Hastings algorithm only accepts

some proposal values. Thus, it generally requires longer runs and is more computationally

intensive.

We have provided a framework for incorporating uncertainty given measured values

m and stated uncertainty u for single predictor models. However, Ellis et al. (2020) discuss

that other variables could affect grape growth such as temperature, the amount of solar

radiation and characteristics of the land. If there are multiple predictors and a normal

likelihood is assumed then the only part of the model that would change is µi in Equation

3.18. For example, if there are three predictors, then Equation 3.18 could be modified to

become µi = α+ β0xi + β1xi + β2xi. McElreath (2020) provide an example of a model with

two predictors where there is measurement error in the response and one predictor variable

in Stan.

There are several other advantages to our Bayesian model which incorporates un-

certainty. Even when a vague prior is used, we can still estimate population parameters

and produce accurate and precise predictions for uncertainty that is smaller than 80% of

the population variation. Our Bayesian model which incorporates uncertainty also allows

for measurement specific uncertainty, i.e. if the size of the uncertainty is different for each



3.8. Discussion 53

observation. Our Bayesian model which incorporates uncertainty can still produces accurate

and precise (small variance) predictions. However, our simulation studies show that caution

should be taken when the uncertainty becomes large, for instance when it is 80% of the

population variation, then the Bayesian model which incorporates uncertainty can result in

undercoverage in the prediction (posterior predictive distribution).

We have found that if a normal error model is assumed, then it is important to in-

corporate uncertainty. The Bayesian model which incorporates uncertainty always produces

more precise predictions, then the naive analysis which ignores uncertainty. This is true for

the sample of values, simple linear regression and double sigmoidal curve.

In a practical sense, we are more interested in the prediction and the uncertainty

(variability) of the prediction from the model, rather than the estimated population mean.

Which is why we focus our simulation studies on varying the settings of the uncertainty and

population variance on the posterior predictive distribution, rather than the estimation of the

population mean and variance. From frequentist statistics theory, the (nominal) prediction

interval is always larger than the confidence interval for the mean. For a larger vineyard,

it might be possible to use the estimated mean, as the 95% credible interval for the mean

and for the posterior predictive distribution may be very similar. For smaller vineyards, we

might be more interested in the predicted predictive distribution.

A desirable solution is one that can produce timely estimates of grape yield. In the

case where p(mi | yi, ui) is assumed to have a normal distribution, we have shown that a

Gibbs sampler can be used. The Gibbs sampler is computationally efficient, which means

that the algorithm will not hinder the timeliness of the predictions.

The Bayesian model incorporating uncertainty always gives a more precise prediction

(narrower credible interval) when the uncertainty is approximately less than 80% of the

population variation. For practical purposes for the Grape Yield Analyser project, it is up

to the grape growers and winemakers, whether it is worth using the Bayesian model which

incorporates uncertainty. How “small” the difference in prediction intervals is between the
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Bayesian model which incorporates uncertainty and naive analysis is and whether it is worth

incorporating uncertainty, is to be determined by the grape growers and winemakers and

how much additional uncertainty they are willing to tolerate.



Chapter 4

Nonparametric model

4.1 Overview

In this chapter we consider the situation where the sensor output is a sample of values

representing a nonparametric distribution instead of a single precisely measured value. First,

we develop a Bayesian model first for the simplest case of a single data point, then extending

the model to a sample of values. We evaluate our Bayesian nonparametric model by first

conducting a preliminary study to assess how well it estimates the true parameter values of

the mean and variance in terms of bias. Then we conduct a full simulation study and compare

the results with a Bayesian naive analysis and a Bayesian model with precisely measured

values. Finally, we illustrate our recommended model of a Bayesian naive analysis, for a

double sigmoidal growth model and discuss our results.

4.2 A single data point (n = 1)

We will start with the simplest case of a single data point. Consider a normal likeli-

hood model, p(y | µ) with unknown mean µ and known precision τ . Let p(µ) be the prior

55
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for the mean. Suppose that y is not observed directly but a sample of K equally possible

values, d = {d1, . . . , dK} is observed instead. For a single observation, we can define this as

the random variable D with a discrete uniform distribution

f(d | y) = P (D = d | y) =


1
K

if d ∈ {d1, . . . , dK}

0 otherwise.

(4.1)

The likelihood of observing the sample of K values d is

f(d | y) = P (d1 | y)× . . .× P (dK | y) =

(
1

K

)K
.

If we treat both µ and y as parameters, Bayes’ theorem provides the joint posterior

distribution as

p(µ, y | d) =
f(d | y)p(y | µ)p(µ)

p(d)
=

f(d | y)p(y | µ)p(µ)∫ ∫
f(d | y)p(y | µ)p(µ)dµdy

=

(
1
K

)K
p(y | µ)p(µ)(

1
K

)K ∫ ∫
p(y | µ)p(µ)dµdy

(a) Density plot (b) Histogram

Figure 4.1. Illustrating the simulated sample of values, d observed instead of a single

precisely measured observation y as a (a) density plot (obtained using kernel density

estimation in R) and (b) as a frequency histogram. The true value of y is represented by

the vertical dashed line. Data is generated from dk ∼ N(y = 200, u = 5−2) for k = 1, . . . , K

where K = 100.
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=
p(y | µ)p(µ)∫ ∫
p(y | µ)p(µ)dµdy

for all y ∈ d.

Since we assume that y can only take values d1, . . . , dK (otherwise p(y) is zero), the joint

posterior distribution becomes

p(µ, y | d) =
p(y | µ)p(µ)∑K

k=1

∫
p(dk | µ)p(µ)dµ

for all y ∈ {d1, . . . , dK}. (4.2)

There is no closed-form analytical solution to the joint posterior and the marginal posterior

distributions. However, it is possible to analytically derive the full conditional distributions

for a Gibbs sampler. For the full conditional distribution p(y | d, µ), using Bayes’ theorem

we have

p(y | d, µ) =
f(d | y)p(y | µ)

p(d, µ)

=
f(d | y)p(y | µ)∑K
k=1 f(d | y)p(dk | µ)

=

(
1
K

)K
p(y | µ)(

1
K

)K∑K
k=1 p(dk | µ)

=
p(y | µ)∑K
k=1 p(dk | µ)

for all y ∈ {d1, . . . , dK} and 0 otherwise. (4.3)

Given d and µ, we can sample y directly from a discrete uniform distribution on the set

{d1, . . . , dK} with probability

p(y = di | µ,d) =
p(di | µ)∑K
k=1 p(dk | µ)

(4.4)

where p(di | µ) is a normal probability density function.

The full conditional distribution for µ for a single y is

µ | y ∼ N

(
y + µ0τ0
τ + τ0

, τ + τ0

)
. (4.5)

Now we have both full conditional distributions required for the Gibbs sampler to

sample from the joint posterior p(µ, y | d). To obtain the marginal posterior of our parameter

of interest µ, p(µ | d) we would simply take the posterior sample and look at the values of

µ and ignore the values of y.
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4.3 Multiple data points (n > 1)

Suppose that we now have a vector, y = (y1, . . . yn) from a normal population with

unknown mean, µ and precision, τ :

yi ∼ N(µ, τ).

We observe a sample of K values, di = {di1, . . . , diK} instead of each yi. Let dik be kth value

in the sample for the ith value of y, where k = 1, . . . , K, and K is the size of the sample. In

total we observe a list of n samples, D = {d1, . . . ,dn}, instead of the vector y.

For our Bayesian nonparametric model, let us assume that we have a sample of equally

likely observations di for each yi. The likelihood for a single observation dik given the true

value of the observation, yi is given by

f(di|yi) = P (di | yi) =


1
K

if di ∈ {di1, . . . , diK}

0 otherwise.

(4.6)

Therefore, the joint likelihood for the sample of values di becomes

p(di|yi) = p(di1, . . . , diK | yi)

= P (di1 | yi)× . . .× P (diK | yi) =

(
1

K

)K
. (4.7)

If we assume independent priors

p(µ, τ) = p(µ)p(τ)

then we can write the joint posterior distribution for µ, τ and y using Bayes’ theorem as

p(µ, τ,y | D) ∝
n∏
i=1

p(di | yi)
n∏
i=1

p(yi|µ, τ)p(µ)p(τ). (4.8)

The DAG for the Bayesian nonparametric model is shown in Figure 4.2.



4.3. Multiple data points (n > 1) 59

µ τ

yi

dik

µ0 τ0 α β

k = 1, . . . , K

i = 1, . . . , n

Figure 4.2. Directed acyclic graph for the Bayesian nonparametric model.

We specify conditionally conjugate priors; a normal prior for µ and a gamma prior

for τ as follows

µ ∼ N(µ, τ0)

τ ∼ Gamma(α β).

so that the full conditional distributions for µ and τ can be analytically derived and so we

can use a Gibbs sampler.

For the Gibbs sampler, we have the full conditional distribution for µ and τ in Chapter

3 (Equation 3.5 and 3.6, respectively). Since we assume that each yi is independent of each

other, we can derive the full conditional posterior distribution for each yi separately as we

treat the other parameters as constants. The full conditional distribution for each yi can be

derived as follows

p(yi | di, µ, τ) =
p(di | yi)p(yi | µ, τ)∑K
k=1 p(di | yi)p(dik | µ, τ)
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=
( 1
K

)Kp(yi | µ, τ)

( 1
K

)K
∑K

k=1 p(dik | µ, τ)

=
p(yi | µ, τ)∑K
k=1 p(dik | µ, τ)

for all yi ∈ {di1, . . . , diK}.

Since the likelihood of observing yi given µ and τ , is a normal probability density given by

p(yi | µ, τ) =

√
τ

2π
exp
(
− τ

2
(yi − µ)2

)
(4.9)

the full conditional distribution for yi is

p(yi | di, µ, τ) =

√
τ
2π

exp
(
− τ

2
(yi − µ)2

)∑K
k=1

√
τ
2π

exp
(
− τ

2
(dik − µ)2

) for all yi ∈ {di1, . . . , diK}. (4.10)

This means that the full conditional distribution, p(yi | di, µ, τ) is the likelihood and we can

sample for each yi in a Gibbs step.

4.3.1 MCMC algorithm: Gibbs sampler

Pseudo-code for the Gibbs sampler

Step 0. Set the arbitrary initial values for the parameters. E.g. µ(0) = D, τ (0) = 1/s2D and

y
(0)
i = di for i = 1, . . . , n. Where D is the mean of all the values in the list D and s2D

is the variance of all the values in the list D.

Step 1. Sample each yi from

p(yi | di, µ, τ) =

√
τ
2π

exp
(
− τ

2
(yi − µ)2

)∑K
k=1

√
τ
2π

exp
(
− τ

2
(dik − µ)2

) ,
using the current value of the other parameters µ and τ .

Step 2. Sample one value of µ from a normal distribution with mean,

τnȳ + τ0µ0

nτ + τ0

and precision, nτ + τ0, using the current values of the other parameters y and τ .
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Step 3. Sample one value of τ from a gamma distribution with shape parameter, α+ n
2

and

rate parameter, β + 1
2

∑n
i=1(yi − µ)2, using the current values of the other parameters

µ and y.

Repeat steps 1, 2 and 3 until convergence.

An implementation of this Gibbs sampler in R can be found in Appendix C.

A total of 10,000 iterations were used for the Gibbs sampler with a burn-in period of

1,000 iterations. Convergence was visually assessed.

4.4 Preliminary study

Before doing a full simulation study, we wanted to determine how well the model

would perform in terms of bias in the estimation of the mean and variance. This is because

bias in the estimate of the mean and variance will mean that the model will produce less

accurate or precise predictions. We examined the behaviour of the cumulative mean of the

mean and variance. We varied n, the number of observations and K, the sample of values

for each observation. Data was generated according to the following model:

yi ∼ N(µ, τ) for i = 1, . . . , n (4.11)

dik ∼ N(yi, ui) for k = 1, . . . , K. (4.12)

The uncertainty was the same for all measurements i.e. ui = u. The following settings were

used: µ = 200, τ = 5−2 and ui = 2−2. With these settings, we looked at the following

combinations of n and K: {n = 100, K = 100}, {n = 200, K = 100}, {n = 100, K =

10, 000} and {n = 200, K = 10, 000}. To estimate the mean, we used the mean of the

estimated marginal posterior of the mean. The variance estimate was calculated as 1 over

the posterior mean of the precision, σ̂2 = 1/mean(τ̂).

Figure 4.5 shows the cumulative mean error of the estimated mean converges to zero

as the number of iterations becomes larger, which means that we get an unbiased estimate
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of the population mean. However, the cumulative mean error of the precision converged to

approximately 0.0099 after 300 iterations. The corresponding mean error of the variance

converged to approximately -4.4 after 300 iterations. Thus, we conclude that when we use

the setting n = 100, K = 100 for our Bayesian nonparametric model, we can obtain unbiased

estimates of the population mean. However, we get a large positive bias in the estimate of

the precision of approximately 0.01 when we use a noninformative Gamma(α = 0.1, β = 0.1)

prior (with a corresponding mean of 1 and variance of 10) for the precision.

We wanted to see if the reason why the precision was overestimated (and therefore,

the variance was underestimated) was because the sample size K of each observation used

was small, and we were not sampling from the tails of the distribution for each yi. However,

even when we used the setting {n = 200, K = 10, 000} the cumulative mean error of the

variance converged to approximately -4, illustrated in Figure 4.6. Increasing both n and K to

n = 200 andK = 10, 000 also did not lead to an unbiased estimate of the population variance.

Therefore, we conclude that the Bayesian nonparametric model tends to underestimate the

population variance.

To see if using a more informative prior for the precision could improve the estimate

of the population precision, we tried a gamma prior with mean, α/β = 0.04 and standard

deviation,
√
α/β2 = 0.001 to see if this would give us an unbiased estimate of the precision.

Solving for α and β, we obtained the parameters of the prior distribution for τ which is a

gamma distribution parameterised as Gamma(α = 1, 600, β = 40, 000).

Figure 4.7 shows that the cumulative mean error of the posterior mean of the precision

converged to approximately -0.08 for a true variance of 25. Thus, we were able to obtain an

acceptably small amount of bias in the estimate of the precision.
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Figure 4.3. Probability density function of the Gamma(α = 1, 600, β = 40, 000) prior.

4.5 Simulation study: a sample of values with a non-

parametric error distribution

The aim of this simulation study was to evaluate our model and compare the perfor-

mance of our Bayesian nonparametric model with a Bayesian naive analysis and the Bayesian

model where we have precise measurements. We evaluate the performance of the models in

terms of estimation of the population parameters, µ and τ , and their performance in terms

of prediction. For the Bayesian naive analysis, we take the mean of each sample. We use

the Bayesian model with precise measurements as a comparison for our other two models.

Data was generated from the following model:

yi ∼ N(µ, τ) for i = 1, . . . , n

dik ∼ N(yi, ui) for k = 1, . . . , K.

The same sized uncertainty was used where ui = u. The settings used were: n = 200,

K = 100, µ = 200, τ = 5−2 and ui = 2−2. For all models, a vague prior was specified for the

mean as follows

µ ∼ N(µ0 = 0, τ0 = 10−5).
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Figure 4.4. Illustrating the nonparametric distributions using boxplots and half violin

plots. These are simulated observed samples. True values of y are shown by the red line

segments. The sample means are shown by the green line segments. The true population

mean is represented by the horizontal dashed line. The samples were generated following

the data-generating mechanism given by Equation 4.11 and Equation 4.12. The settings

used are: µ = 200, τ = 5−2, ui = 2−2, n = 200 and K = 100. Only the first 10 samples

were plotted because it would be difficult to display all n = 200 in a single plot.

For the Bayesian nonparametric model, we compared the results from using a vague prior

for the precision

τ ∼ Gamma(α = 0.01, β = 0.01)

which has mean of 0 and variance 100. And an informative Gamma prior, from the prelimi-

nary study of:

τ ∼ Gamma(α = 1, 600, β = 40, 000).

For the Bayesian naive analysis and Bayesian model with precise measurements, only the

vague prior for the precision was used.
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(a) Mean (b) Precision

(c) Variance

Figure 4.5. Cumulative mean error of the posterior mean of the (a) mean, (b) precision and

(c) variance using our model and a Gamma(α = 0.01, β = 0.01) prior for the precision.

This was for the case of n = 100 and K = 100.

A total of 2,000 simulations were performed, unless otherwise stated in table captions.

For the Bayesian nonparametric model we summarise the results when using a Gamma(α =

1, 600, β = 40, 000) and Gamma(α = 0.1, β = 0.1) prior for the precision. We report the

ME (bias), MSE, coverage of the 95% credible interval and average credible interval width.

Table 4.1 summarises the performance of the models in terms of their ability to recover the

true population parameters, µ and σ2. The nonparametric model leads to unbiased estimates

of the population mean for both the informative and vague prior for the precision, for the

values n = 200 and K = 100. The mean squared errors are small and coverage rates close to

95% for the 95% credible interval. However, when we assess the estimation of the variance,
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(a) Variance for n = 200,K = 100 (b) Variance for n = 100,K = 10, 000

(c) Variance for n = 200,K = 10, 000

Figure 4.6. Cumulative mean error of the variance when a vague τ ∼ Gamma(0.1, 0.1)

prior is used. The true variance is 25. The cumulative mean error converges to

approximately -4 all cases, including when n = 200 and K = 10, 000.

the Bayesian nonparametric model with an informative prior gives an unbiased estimate

of the variance but there is overcoverage of the true population variance. The Bayesian

nonparametric model with a vague prior for the precision resulted in a biased estimate of

the variance of -4.043 and undercoverage of 70. The undercoverage is due to the bias in the

estimate of the variance.
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(a) Variance for n = 100,K = 100 (b) Variance for n = 200,K = 100

(c) Variance for n = 100,K = 10, 000 (d) Variance for n = 200,K = 10, 000

Figure 4.7. Cumulative mean error of the variance using an informative

τ ∼ Gamma(α = 1, 600, β = 40, 000) prior with mean 4 and standard deviation 0.001. The

cumulative mean error of the variance converges to approximately -0.08.

Table 4.2 summarises the performance of the models in terms of prediction. Both the

Bayesian nonparametric model with an informative prior for the precision and the Bayesian

naive analysis perform well in terms of bias and coverage. The average 95% credible inter-

val width close to that of the precise measurements. However, the naive analysis has the

advantage of not requiring knowledge of the population precision and still demonstrating

satisfactory performance across all performance measures.
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We also looked at the effect of varying the sample size K, to see if the naive approach

would not perform as well for certain scenarios. Table 4.3 shows the naive analysis does not

perform well when K = 3 as we observe a positive bias and undercoverage of the variance.

However, the naive analysis appears to perform well for sample sizes K = 20, 30 and 50.

Table 4.1: Estimates of performance measures for the mean and variance for the three

different approaches. The data-generating process was: n=200 and K=100. For the

nonparametric model we compared the use of an informative prior for the precision

Gamma(α=1, 600, β=40, 000) and a vague prior for the precision

Gamma(α=0.01, β=0.01). Monte Carlo standard errors are reported in parentheses and

obtained using the R package rsimsum.

Parameter Performance

measure

Bayesian nonparametric model Naive

analysis

Precise mea-

surements

Vague prior

for τ

Informative

prior for τ

Vague prior

for τ

Vague prior

for τ

µ

Bias -0.001 (0.009) -0.001 (0.008) -0.001 (0.008) -0.001 (0.008)

MSE 0.121 (0.004) 0.121 (0.004) 0.121 (0.004) 0.121 (0.004)

Coverage (%) 95.6 (0.5) 96.9 (0.4) 95.4 (0.5) 95.7 (0.5)

Average 95%

credible

interval

length

1.389 1.486 1.391 1.390

σ2

Bias -4.045 (0.056) -0.001 (0.008) -0.023 (0.056) -0.062 (0.056)

MSE 22.585 (0.465) 0.043 (0.001) 6.240 (0.195) 6.214 (0.193)

Coverage (%) 70.6 (1.0) 100 (0.0) 94.8 (0.5) 95.1 (0.5)

Average 95%

credible

interval

length

9.963 2.377 9.995 9.980
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Table 4.2: Simulation study results comparing performance estimates of the posterior

predictive distribution for the four different models: (1) a Bayesian nonparametric model

with a vague prior for τ , (2) a Bayesian nonparametric model with an informative prior for

τ , (3) a Bayesian naive analysis and (4) a Bayesian analysis with precise measurements.

Performance

measure

Bayesian

nonparametric

model with

vague prior for τ

Bayesian

nonparametric

model with

informative

prior for τ

Näıve analysis

with vague prior

for τ

Precise

measurements

with vague prior

for τ

Bias -0.045 (0.008) -0.005 (0.009) 0.077 (0.008) 0.003 (0.009)

MSE 25.654 (0.785) 25.902 (0.855) 24.799 (0.803) 23.989 (0.761)

Coverage 91.3 (0.6) 94.1 (0.5) 95.1 (0.5) 95.5 (0.5)

Average 95%

credible interval

length

18.027 19.497 19.655 19.619

4.6 Example: double sigmoidal growth model

Since we have shown that we can obtain accurate estimates using a naive analysis for

the case of a sample of values, we will use this approach for the double sigmoidal growth

model and analyse the results.

We use the 2018 grape bunch mass data described in Section 3.7 collected over the

2017/2018 growing period. However, this time we simulate data with uncertainty, where we

observe a sample of values with variability within the sample, instead of precisely measured

observation. We simulated data using the true grape bunch mass data. The data is generated

as follows:

dik ∼ N(log(yi), ui) for k = 1, . . . , K.
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Table 4.3: Assessing the performance of the naive analysis, where we let yi = di,

considering data-generating mechanisms, K= 3, 20, 30 and 50 for estimates of the mean

and variance. Monte Carlo standard errors are reported in parentheses and obtained using

the R package rsimsum. The setting of n = 200 is used for the data-generating process. A

total of 300 simulations were performed.

Parameter Performance

measure

K= 3 K = 20 K= 30 K = 50

µ

Bias -0.0239

(0.0203)

-0.0227

(0.0199)

-0.0206

(0.0199)

-0.0193

(0.0199)

MSE 0.1238

(0.0108)

0.1190

(0.0099)

0.1188

(0.0098)

0.1182

(0.0098)

Coverage (%) 95.7 (1.2) 94.7 (1.3) 94.3 (1.3) 94.7 (1.3)

Average 95%

credible interval

length

1.428 1.395 1.393 1.393

σ2

Bias 1.2870

(0.1516)

0.1770

(0.1440)

0.0795

(0.1451)

0.0113

(0.1443)

MSE 8.5279

(0.7175)

6.2278

(0.4759)

6.3034

(0.4832)

6.2252

(0.4684)

Coverage (%) 91.0 (1.7) 96.0 (1.1) 95.3 (1.2) 96.0 (1.1)

Average 95%

credible interval

length

10.515 10.069 10.036 10.008

First we take the natural logarithm of the actual grape bunch mass yi to obtain, log(yi).

For each log(yi), we generate K values from a normal distribution with mean log(yi) and

precision ui. The uncertainty ui was the same for all measurements. We analyse the results

using the setting where the uncertainty is 50% of the true values: K = 100 and ui = 0.5.

This was because, we thought that if the model will work for the case where the uncertainty

is 50% of the true values, it will work for the cases where the uncertainty is smaller than
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50%.

The simulated data represented as box plots for three out the total 14 days of data

collected is shown in Figure 4.8. Figure 4.9 represents the simulated data as half violin plots,

using kernel density estimation (a smoother) to show the distributions of the data.

The results show that the naive analysis leads to predictions that are very close to

their precisely measured counterpart, when there is the same prior information. When the

uncertainty is 50% of the true values, the 95% posterior predictive envelopes in Figure 4.11

are very similar for both the Bayesian naive analysis and the Bayesian model with precisely

measured grape bunch masses. The estimated posterior predictive distributions are very

similar for both models, and we see that the 95% posterior predictive intervals (HDI) are

very similar for both models; (97.47, 391.66) and (98.93, 397.40) respectively. This means

that the Bayesian naive analysis can produce accurate and precise estimates in the face of

considerably large uncertainty of 50% of the actual values.

4.7 Discussion

In our investigation, we found that in the situation that we had a sample of values

representing a nonparametric distribution instead of a precise measurement, the Bayesian

näıve analysis had the best performance. It produced the best estimates of the population

parameters and gave the most accurate and precise predictions. If the mean of the sensor

measurement, di is an unbiased estimate of the true grape bunch mass yi, then it does not

matter how large the uncertainty is, you can still obtain accurate and precise (small variance)

predictions. Figure 4.3 is from exploratory data analysis of the simulated data and illustrates

that the sample means are quite close to the true values of yi. An advantage of the naive

analysis is that we can have different sample sizes, K, for each observation, as long as the

sample mean is an unbiased and sufficient estimator.

Furthermore, the naive analysis is still expected to work even if the sample di does
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Figure 4.8. Scatterplot of the 2018 grape bunch mass data with corresponding simulated

nonparametric data (a sample of values for each data point) distribution displayed as

boxplots. The uncertainty is set to ui = 0.1−2. The colours of the boxplots correspond to

the original data points. The plot is only showing three out of 14 days of data because it is

difficult to clearly display the simulated data for all days in the dataset.

not come from a normal population; as long as the sample size is large enough that the

central limit theorem can be applied. According to the central limit theorem, the sampling

distribution of the mean is approximately a normal distribution for large enough K (where

K here is our sample size) even if the original variables themselves do not come from a

normal population. The naive analysis works under particular conditions. For the naive

analysis to work, the sample mean needs to be an unbiased estimator of the actual value yi

. If the sample mean is a biased estimator of the actual value, then the model will result

in inaccurate predictions. This could be checked, for example, as part of calibration of the

sensor; checking that the mean of the observed sample is equal or very close to the actual

grape bunch mass.

A possible explanation as to why the Bayesian nonparametric model does not work
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Figure 4.9. Illustrating the distributions of the simulated data and displaying the 2018

grape bunch mass data for a single day (day 41). The simulated samples are displayed as

half violin plots (kernel density estimation i.e. smoother applied). Uncertainty was set to

ui = 0.1−2. The colours of the distributions representing each sample correspond to the

colours of the original data points. Data is only displayed for a single day as it is difficult

to clearly display the simulated data for all days in the dataset.

so well, could be because of the problem of identifiability. That is, the model is unable to

uniquely identify the parameters τ and ui. Gustafson (2003) states that parameter identi-

fiability is often an issue for models which account for mismeasurement in variables, “since

a great deal must be known about the mismeasurement process in order to obtain a fully

identified model” (p. 152). However, the advantage of Bayesian models is that we can often

deal with the issue of non-identifiability by using an informative prior given we have knowl-

edge of the parameter. This is what we have done here. However, a danger is that unless

the guess is correct, the model will be somewhat misspecified (Gustafson, 2003).
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Figure 4.10. Double sigmoidal curve comparing the naive analysis and precise

measurements. The 2018 bunch mass data are represented by the black points and the

simulated data are represented by the blue points. The setting used for the uncertainty is

ui = 0.5−2. The grape bunch masses are plotted on the log scale.
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Figure 4.11. Double sigmoidal curve comparing the naive analysis and precise

measurements fitted with 2018 bunch mass data represented by the black points and

simulated samples representing nonparametric distributions are represented by the blue

points. The uncertainty used here is ui = 0.5−2.
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Figure 4.12. Double sigmoidal curve with simulated nonparametric data using the setting

ui = 0.5−2 comparing naive analysis and precise measurements and their estimated

posterior predictive distribution at day 120. Below the plot of the densities are the

posterior predicted means and 95% credible intervals.



Chapter 5

Conclusion and Discussion

5.1 Summary

The aim of this study was to investigate methods to account for stated uncertainty

in response variables with the ultimate goal of applying the methods to a Bayesian double

sigmoidal growth model used to predict grape yield. We considered both the situation where

the measurements are reported with uncertainty assuming a normal error distribution, and

the situation of having a sample of values representing a nonparametric distribution, instead

of a precisely measured observation. Additionally, we studied the impact of ignoring un-

certainty in a continuous response variable on the inference of population parameters and

for prediction. We constructed MCMC algorithms to incorporate continuous measurements

with uncertainty in the response variable and implemented them in R. We conducted simula-

tion studies to assess the performance of our models and compare them with a naive analysis

and their precisely measured counterparts.

We found that if the true data-generating process which generates the measurements

with uncertainty from the true values of y is purely random and normal, then the Bayesian

model which incorporates uncertainty can produce accurate and precise (minimal variability)

77
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predictions. This was when the uncertainty was the same for all measurements. However,

the model starts to deteriorate when the uncertainty approximately larger than 80% of the

population variation.

On the other hand, if we have a sample of values instead of a precisely measured

data point, and we make no assumptions about the distribution of the data, then the naive

analysis produces the best estimators given that the mean of each sample is an unbiased

estimate of the actual value.

5.2 Discussion

The reason, when we are given measurements m and their stated uncertainty u,

the naive analysis performs poorly (we observe overcoverage of the population variance and

posterior predictive distribution), however a naive analysis performs well when we observe

a sample of values instead of a precisely measured value is due to the two different assumed

data-generating mechanisms. In Chapter 3 our model for observing our measurements is

mi | yi, ui ∼ N(yi, ui). We only observe one mi for each yi. The variance of the vector m

would be expected to be larger than the vector y. This is the reason why the naive analysis

results in wider prediction intervals. However, in Chapter 4, we observe a sample of values

instead of a precisely measured value. The data-generating mechanism for generating our

observed sample is dik ∼ N(yi, ui). So the expected value of our sample di = (di1, . . . , diK)

would be E[di] = yi. Figure 5.1 illustrates these two different assumptions for the simple

situation of a sample of values.

5.2.1 Contributions

Our Bayesian models for incorporating uncertainty in the response (assuming normal

error) and our study into the implications of ignoring the uncertainty contribute to the

field of measurement error. Within the field of measurement error, our focus has been on
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(a) Data-generating process for the models in

Chapter 3

(b) Data-generating process for the models in

Chapter 4

Figure 5.1. An illustration of the two different data-generating processes for the sample of

values situation in Chapter 3 (left) and Chapter 4 (right). Both (a) and (b) have the same

true values shown in red, however the measured data that is observed shown in blue differs

between the two plots. In (a) the filled red circles are the true values and the blue circles

are the measured (observed) values. In (b) the red lines are the true values, the densities

show the distributions of the samples observed, the green lines represent the means of each

sample. In both (a) and (b) the horizontal dashed line represents the true population mean.

Bayesian approaches that deal with response variable error assuming a classical measurement

error model with a focus on performance in terms of predictive inference compared with

an emphasis on estimating population parameters in the work by Gustafson (2003) and

Carroll et al. (2006). We investigated the implications of ignoring uncertainty (the naive

analysis) in the response variable in a Bayesian framework. We explored in detail how

large the uncertainty can be before the model breaks down when the model describing

the relationship between m and y is a normal distribution, which appears to be 80% of

the population variation. We specify MCMC algorithms, specifically Gibbs samplers to

implement our models that are straightforward to implement and are not computationally

intensive. We have investigated the impact of the naive analysis on predictive inference.

When the generation of the data with uncertainty is described by a probabilistic model,
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ignoring the error can lead to an overestimation of the population variance and less precise

predictions. We found the full conditional distribution can be analytically derived when the

distribution assumed for p(m | y) is normal and the likelihood for the model, p(y | θ) is

normal. We also investigated the impact of a naive analysis when there is uncertainty in the

response. Our simulation studies showed that a naive analysis results in an unbiased estimate

of the population mean, however there is a positive bias in the estimate of the population

variance and our predictions also have greater uncertainty. This agrees with Gustafson

(2003) where he states that in the context of a simple linear regression with variables x and

y, adding noise to y “does not shift the estimated regression relationship in a systematic

manner, though it does increase the inferential uncertainty about the (x, y) relationship”

(Gustafson, 2003, p. 4).

5.2.2 Implications

Our findings have implications for the development of sensors which measure the

mass of grape bunches for grape yield prediction. If there is systematic error in the sensor

output then the model will result in inaccurate predictions. We recommend that this should

be considered in the development of sensors. Another implication is that if the true data

generating process of the sensor is a normal random error, then the uncertainty cannot be too

large or our Bayesian model which incorporates uncertainty will result in undercoverage of

the predictions. From our simulation studies, we found that when the data generating process

is a normal random error and the uncertainty is larger than 80% of the population variation,

then performance of our Bayesian model which incorporates uncertainty deteriorates and

we observe undercoverage. This could be a used as a guideline for the development of the

sensor. However, if the sensor produces a sample of values for the mass of a single grape

bunch, and the mean of the sample is an unbiased estimate of the true bunch mass, then we

can just use the mean of the sample and it does not matter how large the uncertainty is; the

model can still produce accurate and precise predictions.
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Our recommendation for those who are wanting to incorporate sensor data with

uncertainty into a regression model is to think carefully about the data-generating mechanism

and choose a model based on the most realistic mechanism for generating the observed

data. The two mechanisms presented in this thesis are: i) a random measurement error

in Chapter 3 and ii) a distribution of values whose mean is relatively close to the actual

value in Chapter 4. The recommended model from Chapter 3 is the Bayesian model which

incorporates uncertainty presented and the recommended model from Chapter 4 is the naive

analysis which takes the mean of each observed sample. Both these recommended models

produce the most accurate (unbiased) and precise (minimal variance) predictions.

The modelling framework developed here is a step towards the integration of sensor

data with the grape yield growth model described in Ellis et al. (2020) and on the way to a

fully developed tool that can help NZ grape growers and winemakers. Having tool for the

wine industry to predict grape yield early on in the season to help with optimising human

resources and equipment during the harvest (Henry et al., 2019). The ability to use sensors

instead of manually measuring grape bunches could mean there is less destructive sampling

of grape bunches. In the long term, the use of sensors can improve profitability of vineyards

and wineries. Being able to incorporate additional data in the form of measurements with

uncertainties can be beneficial to the grape yield prediction model or other crop growth

models as more data can improve the accuracy of the predictions (Liu et al., 2019).

The modelling framework described here could be useful for other fields such as hor-

ticulture or agriculture where sensors are being developed to measure fruit e.g. apples and

kiwifruit. They could also be useful in in other areas of research where sensors are used to

take measurements on a continuous scale, such as in medicine or chemistry.

The models described here can be used in any field where there is measurement

uncertainty in a continuous outcome variable. Some examples of variables on a continuous

scale are height, income and dietary intake. We hope that the models described here will

be useful for practitioners seeking to fit regression models with uncertainty in a continuous

outcome variable.
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5.2.3 Limitations

Simulation studies are experiments which are a useful tool in statistics allowing us

to obtain empirical results about the performance of statistical methods in certain scenarios

(Morris et al. (2019)). Since we only assess the resilience of our models under a finite number

of situations, we cannot make complete generalisations. Thus, for the case that a normal

error distribution is assumed it is difficult to recommend an exact threshold where the size

of the uncertainty in the measurement would cause the model’s performance to deteriorate.

We did not explore the effects of model misspecification and its impact on parameter

estimation and thus prediction. For example, if the model describing the relationship between

mi and yi was another parametric distribution such as a t-distribution. For the Bayesian

nonparameteric model, we could investigate its performance when, for example, the data-

generating process is a mixture of normal distributions.

In Section 3.7, when we applied our approach to incorporating uncertainty for the

double sigmoidal growth model, we simulated measurements with uncertainty and analysed

the data. We provided a possible explanation that the reason in Figure 3.14 the envelope

for the model incorporating uncertainty is more narrow than the precise measurements is

because of undercoverage of the model. We suspected this is highly likely, because this

phenomenon was observed in the results for our simulation studies for the situation of a

sample of measurements of uncertainty and the simple linear regression case. However,

we did not conduct a simulation study to assess the performance of our model for the

double sigmoidal growth curve, due considerations of computation cost, so we cannot make

a definitive statement about whether there is undercoverage.
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5.2.4 Future directions

The development of models which incorporate aggregated data with uncertainty

would be the next step. This will enable the incorporation of sensor data where the combined

mass of grape bunches on an interval has been measured.

Another possible area for further research could include a detailed exploration of other

parametric error distributions, such as a t-distribution or triangular distribution, and an

evaluation of their performance in terms of estimating population parameters and predictive

inferences.

Future work could explore the implications of model misspecification. That is, how

well would the model estimate the true parameters if the true data-generating process differed

from the model. For example, if the true relationship between the measured value mi and

the true value yi is a t-distribution, but the model assumes a normal distribution. We have

considered the special case where the size of the uncertainty is the same for all measurements,

that is ui = u. Further research could explore impacts and adjustments for of measurement

specific uncertainty. It could involve seeing if logging the response is an adequate solution

since typically in regression models taking the log of the response reduces heteroscedasticity.

In Chapter 4, the performance of the model when the simulated data comes from a mixture

of normal distributions or another distribution, e.g. a t-distribution or uniform distribution

could be explored in detail.

We have shown in Chapter 3 when applying our Bayesian model which incorporates

uncertainty to a double sigmoidal curve, that for a single simulation, when the uncertainty

is 50% of the actual grape bunch weight, then our model appears to show undercoverage

in its prediction, when we compared the 95% posterior predictive envelopes to the Bayesian

model with precise measurements. Future work could include conducting simulation studies

to evaluate our model by generating data by repeated sampling with replacement of the

dataset to further assess the impact of uncertainty on the performance of our model.
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Appendix A

Gibbs sampler for a sample of values

with a normal error in R

This appendix provides an implementation of the Gibbs sampler in R to sample

from the posterior distribution for a sample of values measured with uncertainty under the

assumption of a normal error.

We will start by simulating some data for the Gibbs sampler.

# Setting the random number seed for reproducible results

set.seed(10)

n = 100

true_mu <- 200

true_sd <- 5

true_tau <- 1/((true_sd)^2)

u_sd = 2

u <- 1/(u_sd^2)

y <- rnorm(n, mean = true_mu, sd = true_sd)

m <- rnorm(n, mean = y, sd = u_sd)

# Prior parameters
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tau_0 <- 1/10000

mu_0 <- 0

The Gibbs sampler code starts here.

# Set the number of iterations for the Gibbs sampler

N <- 5000

# Initialising an empty matrix to store results

posterior_store <- matrix(numeric(0), nrow = N, ncol = 4)

colnames(posterior_store) <- c("mu", "tau", "y_1", "y_2")

# Initial values

mu <- mean(m)

tau <- 1/var(m)

y <- rep(200, times = n)

for (i in 1:N){

# Sample the vector of y values

y <- rnorm(n, mean = ((u * m) + (tau * mu))/(u + tau),

sd = 1 / sqrt(u + tau))

# Sample mu from its full conditional distribution

mu <- rnorm(1, mean = (tau*n*mean(y) + tau_0*mu_0)/(tau*n+tau_0),

sd = 1/sqrt(tau*n + tau_0))

# Sample tau from its full conditional distribution

tau <- rgamma(1, shape = 0.001 + n/2, rate = 0.001 + 0.5*sum((y-mu)^2))

posterior_store[i,] <- c(mu, tau, y[1], y[2])

}

# Checking for convergence

plot(mcmcr::as.mcmc(posterior_store[,c(1,2)]))

plot(mcmcr::as.mcmc(posterior_store[,c(3,4)]))

# Discard burn-in period
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posterior_sample <- posterior_store[-c(1:500),]

# Checking for convergence

plot(mcmcr::as.mcmc(posterior_sample[,c(1,2)]))

plot(mcmcr::as.mcmc(posterior_sample[,c(3,4)]))

# Check posterior means

posterior_means <- apply(posterior_sample, 2, mean)

posterior_means



Appendix B

Gibbs sampler for a simple linear

regression with a normal error in R

This appendix provides an implementation of the Gibbs sampler in R to sample from

the posterior distribution for simple linear regression with values measured with uncertainty

under the assumption of a normal error.

We will start by simulating some data for the Gibbs sampler.

# Setting the random number seed for reproducible results

set.seed(10)

n <- 100

x <- seq(from = 10, to = 200, length.out = n)

alpha_true = 0

beta_true = 2

sd_true = 10

y <- rnorm(n = length(x), mean = alpha_true + beta_true * x,

sd = sd_true)

u_sd <- 5

u_tau <- 1/(u_sd)^2 # uncertainty defined by the precision
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m <- rnorm(n, mean = y, sd = u_sd)

# Vague priors for mu and tau

mu_alpha <- mu_beta <- 0

tau_alpha <- tau_beta <- 1 / 10000

a <- 0.001 ; b <- 0.001

The Gibbs sampler code starts here.

# Initial values for the Gibbs sampler using estimates from

# frequentist linear regression

alpha_initial <- summary(lm(m~x))$coef[1]

beta_initial <- summary(lm(m~x))$coef[2]

tau_initial <- 1 / (summary(lm(m~x))$sigma)^2

alpha <- alpha_initial

beta <- beta_initial

tau <- tau_initial

y <- rep(mean(m), n)

number_of_iterations <- 2000

# Initialising an empty matrix to store results

number_columns <- 5

posterior_result <- matrix(data = numeric(number_columns),

nrow = number_of_iterations,

ncol = number_columns,

byrow = TRUE)

colnames(posterior_result) <- c("alpha", "beta", "tau", "y_1", "y_n")

for (i in 1:number_of_iterations){

# Sample the vector of y values

y <-rnorm(n, mean = ((u_tau) * m + (tau*(alpha + beta * x))) /

(u_tau + tau),
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sd = 1/sqrt(u_tau + tau))

z <- y - (beta * x)

alpha <- rnorm(n = 1,

mean = ((tau * sum(z)) + (tau_alpha * mu_alpha)) /

((n * tau) + tau_alpha),

sd = sqrt(1/((n * tau) + tau_alpha))

)

# Sample beta from its full conditional distribution

w <- y - alpha

beta <- rnorm(n = 1,

mean = (tau * sum (x * w) + (tau_beta * mu_beta)) /

(tau * sum (x ^ 2) + tau_beta),

sd = sqrt(1/(tau * sum (x ^ 2) + tau_beta)))

# Sample tau from its full conditional distribution

shape_input <- a + (n / 2)

rate_input <- b + (1 / 2)*sum((y - alpha - (beta * x))^2)

tau <- rgamma(n = 1, shape = shape_input, rate = rate_input)

posterior_result[i,] <- c(alpha, beta, tau, y[1], y[n])

}

# Discard burn-in period of 500 iterations

posterior_sample <- as.data.frame(posterior_result[-c(1:500),])

# Check for convergence

plot(mcmcr::as.mcmc(posterior_sample))

# Analyse results

# Posterior means

posterior_means <- sapply(posterior_sample, mean)

posterior_means

# Posterior standard deviations
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posterior_sds <- sapply(posterior_sample, sd)

posterior_sds

# 95% Credible intervals

credible_intervals <- sapply(posterior_sample, function(x){

quantile(x, probs = c(0.025, 0.975))

})

credible_intervals



Appendix C

Gibbs sampler for the Bayesian

nonparametric model in R

This appendix provides an implementation of the Gibbs sampler in R to sample from

the posterior distribution for the Bayesian nonparametric model described in Section 4.3.

We start by simulating some data for the Gibbs sampler.

# Setting the random number seed for reproducible results

set.seed(10)

# Using a true population mean of 200 and sd of 5 (precision of 0.4)

n <- 500

mean_true <- 200

sd_true <- 5

precision_true <- 1/(sd_true)^2

mu_prior_mean <- 0

mu_prior_precision <- 10^-5

y_true_vector <-rnorm(n, mean = mean_true, sd = sd_true)

uncertainty <- 2

# Let there be K values in each sample
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K <- 1000

# Create the list of samples

data_list <- lapply(y_true_vector, function(y_value){

sample_values <- rnorm(K, mean = y_value, sd = uncertainty)

return(sample_values)

})

names_list <- sapply(i <-1:n, function(number){

return(paste0("sample_", number))

})

names(data_list) <- names_list

The Gibbs sampler code starts here.

# Set the number of iterations for the Gibbs sampler

number_of_iterations <- 10000

# Initialising an empty matrix to store the results

posterior_store <- matrix(numeric(0),

nrow = number_of_iterations,

ncol = 4)

colnames(posterior_store) <- c("mu", "tau", "y_1", "y_2")

# Initial values:

mu <- mean(unlist(data_list, use.names = FALSE))

y <- sapply(data_list, mean)

tau <- 1/var(unlist(data_list, use.names=FALSE))

for (i in 1:number_of_iterations){

# 1. Sampling from p(y_i|d_i, mu, tau) which is the

# equal to the normalised likelihood for a single y_i.

# For each sample, get the likelihood for each value

# in the sample then sample from the likelihood

y <- vapply(data_list, function(mass_sample){

probabilities <- dnorm(mass_sample, mean = mu,
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sd = 1/sqrt(tau))

y_single_bunch <-sample(mass_sample,

size = 1, prob = probabilities)

}, FUN.VALUE = numeric(length = 1))

# 2. Sample mu from its full conditional distribution

mu <- rnorm(1, mean = (tau*n*mean(y) +

mu_prior_mean*mu_prior_precision)/

(tau*n+mu_prior_precision),

sd = 1/sqrt(tau*n + mu_prior_precision))

# 3. Sample tau from its full conditional distribution

tau <- rgamma(1, shape = 0.001 + n/2,

rate = 0.001 + 0.5*sum((y-mu)^2))

posterior_store[i, ] <- c(mu, tau, y[1], y[2])

}

# Checking for convergence

plot(mcmcr::as.mcmc(posterior_store[ ,1:2]))

plot(mcmcr::as.mcmc(posterior_store[ ,3:4]))

# Discard burn-in period of 1000 iterations

posterior_sample <- posterior_store[-(1:1000),]

# Make the burn-in 1000 iterations

plot(mcmcr::as.mcmc(posterior_sample[ ,1:2]))

plot(mcmcr::as.mcmc(posterior_sample[ ,3:4]))

summary(posterior_store[-(1:1000),])



Appendix D

Metropolis-Hastings algorithm for the

double sigmoidal curve for

measurements with uncertainty

(normal error) in R

This appendix provides the Metropolis-Hastings algorithm in R for the double sig-

moidal curve with an added Gibbs step for measurements with uncertainty. This has been

adapted from previous work by Elena Moltchanova who kindly provided her algorithm for

me to use.

# Date: 1 March 2020

# Author: Elena Moltchanova and Marina Chen

# MCMC sampler for the double logistic growth curve

# with reparametrised priors

library(ggplot2)

library(dplyr)
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Appendix D. Metropolis-Hastings algorithm for the double sigmoidal curve for

measurements with uncertainty (normal error) in R

# Auxiliary functions -----------------------------------------------------

# Expit

expit <- function(x){1/(1+exp(-x))}

# Log-likelihood

loglik <- function(x,y,a0,da,b0,db,g0,g1,tau){

mu <- a0*expit(g0*(x-b0))+da*expit(g1*(x-b0-db))

LL <- sum(dnorm(y,mu,1/sqrt(tau),log=T))

return(LL)

}

# Sum of squared errors

ss <- function(x,y,a0,da,b0,db,g0,g1){

mu <- a0*expit(g0*(x-b0))+da*expit(g1*(x-b0-db))

SS <- sum((y-mu)^2)

return(SS)

}

# MH sampler -----------------------------------------------------

MH <- function(x, m, u_tau, ID,n,ITER,

mu.a0, sd.a0, mu.da, sd.da ,

mu.b0, sd.b0, mu.db, sd.db,

mu.g0, mu.g1, a.tau, b.tau,

sd.g0, sd.g1

){

# NB. ID must be numeric

# Here, N is the number of vineyards

N <- max(ID)

mon.a0 <- mon.da <- mon.b0 <- mon.db <-

mon.g0 <- mon.g1 <- mon.tt <- numeric(ITER)

# Initialising

a0 <- rep(mu.a0,N)

da <- rep(mu.da,N)

b0 <- rep(mu.b0,N)

db <- rep(mu.db,N)
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g0 <- rep(mu.g0,N)

g1 <- rep(mu.g1,N)

tau <- rep(a.tau/b.tau,N)

y <- rep(mean(m), n)

# Here, x is the date, y is the bunch weight and n is the number of bunches

# Metropolis-Hastings sampler

for(iter in 1:ITER){print(iter)

# Gibbs step for sampling y

mu <- a0*expit(g0*(x-b0))+da*expit(g1*(x-b0-db))

y <-rnorm(n, mean = ((u_tau) * m + (tau * mu))/(u_tau + tau),

sd = 1/sqrt(u_tau + tau))

# Sampling a0n (and a1n as a result)

a0n <- rnorm(N,a0,.005);

logR <- loglik(x,y,a0n,da,b0,db,g0,g1,tau)-

loglik(x,y,a0 ,da,b0,db,g0,g1,tau)+

sum(dnorm(a0n,mu.a0,sd.a0,log=T))-

sum(dnorm(a0 ,mu.a0,sd.a0,log=T))

logU <- log(runif(1,0,1))

if(logR>logU){a0 <- a0n}

# Sampling delta.a (and a1n as the result)

dan <- exp(rnorm(N,log(da),.01));

logR <- loglik(x,y,a0,dan,b0,db,g0,g1,tau)-

loglik(x,y,a0,da,b0,db,g0,g1,tau)+

sum(dnorm(dan,mu.da,sd.da,log=T))-

sum(dnorm(da ,mu.da,sd.da,log=T))-

sum((dnorm(log(dan),log(da ),.05,log=T)-log(dan)))+

sum((dnorm(log(da ),log(dan),.05,log=T)-log(da )))

logU <- log(runif(1,0,1))

if(logR>logU){da <- dan}
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measurements with uncertainty (normal error) in R

# Sampling b0n (and b1n as the result)

b0n <- rnorm(N,b0,.05)

logR <- loglik(x,y,a0,da,b0n,db,g0,g1,tau)-

loglik(x,y,a0,da,b0 ,db ,g0,g1,tau)+

sum(dnorm(b0n,mu.b0,sd.b0,log=T))-

sum(dnorm(b0 ,mu.b0,sd.b0,log=T))

logU <- log(runif(1,0,1))

if(logR>logU){b0 <- b0n}

# Sampling db (and b1n as the result)

dbn <- exp(rnorm(N,log(db),.005))

logR <- loglik(x,y,a0,da,b0,dbn,g0,g1,tau)-

loglik(x,y,a0,da,b0,db ,g0,g1,tau)+

sum(dnorm(dbn,mu.db,sd.db,log=T))-

sum(dnorm(db ,mu.db,sd.db,log=T))-

sum((dnorm(log(dbn),log(db ),.025,log=T)-log(dbn)))+

sum((dnorm(log(db ),log(dbn),.025,log=T)-log(db )))

logU <- log(runif(1,0,1))

if(logR>logU){db <- dbn}

# Sampling g0 (NB. proposal is not symmetric)

g0n <- exp(rnorm(N,log(g0),.01))

logR <- loglik(x,y,a0,da,b0,db,g0n,g1,tau)-

loglik(x,y,a0,da,b0,db,g0 ,g1,tau)+

sum(dnorm(g0n,mu.g0,sd.g0,log=T))-

sum(dnorm(g0 ,mu.g0,sd.g0,log=T))-

sum((dnorm(log(g0n),log(g0 ),.05,log=T)-log(g0n)))+

sum((dnorm(log(g0 ),log(g0n),.05,log=T)-log(g0 )))

logU <- log(runif(1,0,1))
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if(logR>logU){g0 <- g0n}

# Sampling g1 (NB. proposal is not symmetric)

g1n <- exp(rnorm(N,log(g1),.05))

logR <- loglik(x,y,a0,da,b0,db,g0,g1n,tau)-

loglik(x,y,a0,da,b0,db,g0,g1 ,tau)+

sum(dnorm(g1n,mu.g1,sd.g1,log=T))-

sum(dnorm(g1 ,mu.g1,sd.g1,log=T))-

sum((dnorm(log(g1n),log(g1 ),.2,log=T)-log(g1n)))+

sum((dnorm(log(g1 ),log(g1n),.2,log=T)-log(g1 )))

logU <- log(runif(1,0,1))

if(logR>logU){g1 <- g1n}

# Sampling tau (Gibbs step)

tau <- rgamma(N,a.tau+n/2,b.tau+.5*ss(x,y,a0,da,b0,db,g0,g1))

mon.a0[iter] <- a0; mon.b0[iter] <- b0;

mon.g0[iter] <- g0; mon.g1[iter] <- g1;

mon.da[iter] <- da; mon.db[iter] <- db;

mon.tt[iter] <- tau

} # end of iterations

return(data.frame(mon.a0=mon.a0, mon.da=mon.da,

mon.b0=mon.b0, mon.db=mon.db,

mon.g0=mon.g0, mon.g1=mon.g1, mon.tt=mon.tt))

} # end of MH function

# Additional arguments for the MH sampler --------------------

ITER <- 1200000

ID <- 1
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measurements with uncertainty (normal error) in R

# Prior parameters

mu.a0 <- 4.09

sd.a0 <- sqrt(1/0.11)

mu.da <- 0.69

sd.da <- 1

mu.b0 <- 40

sd.b0 <- 1/sqrt(0.02)

mu.db <- 30

sd.db <- 1/sqrt(0.11)

mu.g0 <- 0.3

mu.g1 <- 0.3

a.tau <- 4

b.tau <- 1

sd.g0 <- 1/sqrt(44.44)

sd.g1 <- 1/sqrt(44.44)

# Run algorithm ---------------------------------------

posterior_result <- MH(x, y, u_tau, ID, n, ITER,

mu.a0, sd.a0, mu.da, sd.da ,

mu.b0, sd.b0, mu.db, sd.db,

mu.g0, mu.g1, a.tau, b.tau,

sd.g0, sd.g1)

# Discarding burn-in period of 20,000 iterations

posterior_sample <- posterior_result[-(1:20000),]

# Thinning the sample

posterior_sample <- posterior_sample[seq(1, nrow(posterior_sample),

length.out = 5000),]

# Checking posterior means

sapply(posterior_sample, mean)

# Obtain posterior predictive means and 95% credible intervals ----------

x_values <- seq(0, 120, by = 1)

post_pred_y_result <- lapply(x_values, function(x){
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post_pred_sample <- rnorm(10000,

mean = posterior_sample$mon.a0*expit(

posterior_sample$mon.g0*(

x-posterior_sample$mon.b0))+

posterior_sample$mon.da*expit(

posterior_sample$mon.g1*(

x-posterior_sample$mon.b0-

posterior_sample$mon.db)),

sd = 1/sqrt(posterior_sample$mon.tt))

return(c(mean(post_pred_sample), quantile(post_pred_sample,

probs = c(0.025, 0.975))))

})

post_pred_y_data_inc_unc <- as.data.frame(do.call(rbind, post_pred_y_result))

colnames(post_pred_y_data_inc_unc) <- c("mean", "lower_limit", "upper_limit")

post_pred_y_data_inc_unc <- cbind(data.frame(x = x_values),

post_pred_y_data_inc_unc)
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