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ABSTRACT. Phylogenetic diversity (PD) is a measure of the extent to which 
different subsets of taxa span an evolutionary tree, and provides a quantita­
t.ive tool for studying biodiversity conservation. Recently, it was shown that 
the problem of finding subsets of taxa of given size to maximize PD can be 
efficiently solved by a greedy algorithm. In this paper, we extend this earlier 
work, beginning with a more explicit description of the underlying combinato­
rial structure of the problem and its connection t.o greedoid theory. Next we 
show I.hat an extension of the PD optimizat.ion problem to a phylogeographic 
setting is NP-hard, although a special case has a polynomial-time solution 
based on the greedy algorithm. We also show how the greedy algorithm can 
be used to solve some special cases of the PD optimization problem when t.he 
sets that are restricted to are ecologically 'viable'. Finally, we show that three 
measures related to PD fail to be optimized by a greedy algorithm. 

1. INTRODUCTION 

A central question in conservation biology is how to measure, predict, and pre­
serve biodiversity as species face extinction. One unifying approach to this question 
is to measure the 'biodiversity' of a collection of species in terms of the evolutionary 
diversity that those species span in a 'tree of life'-a measure often referred to as 
'phylogenetic diversity' (PD) [2, 7, 8, 12]. Loosely speaking, if T is a (phyloge­
net.ic) tree whose leaf labels comprise a set X of species, and whose edges have 
non-negative real-valued lengths, then for a subset Y of X, the PD score of Y is 
the sum of the lengths of the edges of the minimal subtree of T that connects Y (in 
the case that T is rooted, the root vertex must also be connected). Depending on 
how the edge lengths are assigned, PD can measure either the genetic diversity or 
the total evolutionary time spanned by the subset of species. Phylogenetic diversity 
is also relevant to other problems in bioinformatics such as prioritizing species for 
sequencing in genomics [18]. 
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In the PD optimization problem, we wish to find a subset of X of given size 
(perhaps also containing a given subset of species) that has maximal PD score 
amongst all such subsets. Although the concept. of PD (and a greedy algorithm for 
constructing high-PD sets) has been around for 14 years [7), it was only in 2005 
[21, 18] that the greedy algorithm was formally shown to solve the PD optimization 
problem. The implication of this is that it is now realistic to solve this optimization 
problem exactly for thousands of species [17). 

In this paper, we apply greedoid theory (a branch of combinatorics related to 
mat.mid theory) to study optimization problems based on PD, including three vari­
ations that are biologically motivated. We first make explicit the underlying role 
of greedoids in the original PD optimization problem. We then consider the fol­
lowing variations on the problem that include a geographic component: in the first 
problem we wish to maximize the PD of the species chosen so that at least certain 
numbers are conserved from each of a set of regions. We show that this problem 
has a polynomial-time algorithm based on the greedy algorithm. 

Next we show that the problem (described in [19)) of selecting a given number 
of regions to maximize the PD of the species that occur within at least. one of the 
selected regions is NP-hard. 

In the third variation, we incorporate an obvious ecological constraint: the ex­
tinction of a certain set of species will necessarily lead to the extinction of other 
species (for example, if that species depends on at least one of the species in the set 
for it.s survival)-that. is, not all subsets of X are (ecologically) 'viable' (this point 
has been raised by other authors, such as [22, 23]). Consequently it. is desirable t.o 
restrict the PD optimization problem just to the 'viable' subsets of X. Again there 
is an underlying greedoid structure to this problem (though in a quite different 
sense to the standard PD optimization problem) and we describe precisely when 
the greedy algorithm solves this restricted PD optimization problem. 

The final section of the paper considers three functions related to PD, and pro­
vides examples to show that for all three the corresponding optimization problem is 
not solved by the greedy algorithm. We begin by recalling some fundamental con­
cepts from greedoid theory, in particular the concept of a greedoid and the formal 
definition and properties of the greedy algorithm. 

2. SOME FACTS FROM GREEDOID THEORY 

Let X be a finite set. and let F be a collection of subsets of X. The pair (X, F) 
is a greedoid if it satisfies the following two conditions: 

(Gl) If FE F and F =I 0, then there is an x E F such that F - {:r} E F; 
(G2) If F1, F2 E F and [F2[ = IF1 I+ 1, then there is an x E F2 - F1 such that 

F1 U {x} E F. 

Note that a consequence of ( G 1) is that 0 E F. 
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For a greedoid (X, F), the members of F are called feasible. Furthermore, the 
maximal feasible sets, that is the feasible sets not properly contained in any other 
feasible set, are called bases. Observe that, because of (G2), all bases have the same 
size. 

Condition (G1) implies that (X,F) is an 'accessible' set system. The implication 
of this is that if F is a feasible set, then it can be obtained from the empty set. by 
sequentially adding elements of X such that at each stage the set. so far constructed 
is feasible. In particular, there is a sequence of feasible sets 0 = F0 , F1, F2 , .•. Fk = 
F such that, for all i, we have that F;_i c;:: F; and IF;!= IF;-il + 1. 

Now consider the following condition, a strengthening of (G2): 

(G2') If Fi,F2 E F and IF2I = IF1I + 1, then there is an x E F2 - Fi such that 
Fi U { x} E F and F2 - { x} E F. 

If (X,F) satisfies (Gl), (G2'), then (X,F) is called a strong greedoid or, equiva­
lently, a Gauss greedoid. Bryant and Brooksbank, and Goecke derive a number of 
properties of this type of greedoid in [4] and [11], respectively. 

One natural way to obtain one greedoid from another is stated in the following 
well-known proposition (for example, see [3]). 

Proposition 2.1. Let (X, F) be a greedoid (resp. a strong greedoid}, k a non­
negative integer, and ;::(k) denote the subset of F containing all feasible sets with 
at most k elements. Then (x,;::(k)) ·is a greedoid (1·esp. a strong greedoid). 

The original motivation for greedoids was to provide a unified approach to var­
ious greedy algorithms that can be successfully applied to optimization problems. 
Generically, these algorithms work by sequentially selecting objects of maximum 
weight with no backtracking. Their simplicity is highlighted by the fact that the 
sole criteria for each selection is the weight of the objects--the available object with 
the biggest weight is the one that is selected. In this section, we formally describe 
the greedy algorithm and give one direction of an algorithmic characterization of 
greedoids (see Theorem 2.2). This characterization in terms of the greedy algorithm 
justifies the original motivation. 

Formally, the greedy algorithm is stated as follows. 

Algorithm: GREEDY 

Input: A collection F of subsets of a set X, and an objective function f: F----> IR. 
Output: A member of F. 

1. Set F0 = 0 and i = 0. 
2. Given F;, choose an element x in X - F; such that 

(i) F; U { x} E F and 
(ii) f(F; U {x}) 2 f(F; U {y}) for ally EX - F; with F; U {y}. 

3. Set F;+i = F; U {x}. 
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4. If F;+l is not a maximal member of :F, set i = i + 1 and go to to Step 2; otherwise 
output F;+i-

To state Theorem 2.2, we need one further definition. Suppose that (X, :F) is 
a greedoid and let J : :F --> IR be an objective function on :F. We say that f is 
compatible with (X, :F) if the following property holds: 

• Let F ~ G and x EX - G, and assume that 

F,G,FU {x},GU {x} E :F. 

Then, for ally EX -F with FU{y} E :F such that f(FU{x}) :;,: J(FU{y} ), 
we have 

f(GU{x}) 2 J(GU{z}) 

for all z E X - G with G U { z} E :F. 

Informally, this property says that if x is the current best choice, t.hen it is also 
the best choice at any latter stage. An example of an objective function that is 
compatible with every greedoid (X, :F) is the cardinality function, which is the 
objective function Jon :F that is defined by setting f(F) = IFI for all FE :F. 

The following theorem gives one direction of the characterization of greedoids in 
terms of GREEDY (see [3, Theorem 8.5.2] and [15, Theorem 1.3, page 155)). 

Theorem 2.2. Let (X, :F) be a greedoid and let f : :F --> IR be an objective function 
that is compatible with (X,:F). Then GREEDY applied to (X,:F) and f outputs a 
basis of (X, :F) of maximum weight. 

An important and well-known observation to note is the following. Let (X, :F) 
be a greedoid and let f : :F --> IR be an objective function that is compatible with 
:F. Then, by Theorem 2.2, GREEDY applied to (X, :F) and f finds a basis, F say, 
of (X, :F) of maximum weight. To find F, the algorithm finds a nested sequence of 
feasible sets 

0 = Fo c Fi c F2 c · · · c Fr = F, 

where fF;f = fF;_if + 1 for all i E {1,2, ... ,r}. While Fr= Fis a feasible set 
of size r of maximum weight, it also turns out that, for all i, the set. F; is a 
maximum weight feasible set of size i. To see this, let k E {O, 1, 2, ... , r}. Then, by 
Proposition 2.1, (X,:F(k)) is a greedoid. Let!,.: :F(k)--, IR denote the function that 
is obtained from J by setting fk(F) = J(F). Since f is compatible with (X, :F), 
fk is compatible with (X, :F(k)) and so GREEDY applied to (X, :F(,·)) and !,. finds 
a basis of maximum weight. But this basis is also a maximum weight feasible set 
of size k of ( X, :F). By considering GREEDY applied to ( X, :F) and f, the desired 
outcome follows routinely. 

The following result will also be useful in what follows. It provides a slight 
strengthening of part of Theorem 4 in [4]. 

Lemma 2.3. Let (X, :F) be a strong greedoid and let f : :F--> IR be a Junction on 
:F. Suppose that, J or all F1, F2 E :F with I F2 I = !Fi I + 1 and x E F2 - F1 such that 
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F1 U { x}, F2 - { x} E :F, we have 

(1) f(F1 U {x}) + f(F2 - {x}) 2 f(F1) + f(F2). 

Then 

:F* ={FE :F: f(F) = max{f(F'): F' E :F, IF'I = IFI}} 

is the collection of feasible sets of a strong greedoid on X. 

Before proving Lemma 2.3, we note that the set :F' is the subset of :F consisting 
of all feasible sets of each size of maximum weight. 

Proof of Lemma 2.3. To verify condition (G1), let FE :F'. Since :F satisfies (Gl) 
and F E :F, there is an element y E F such that F - {y} E :F. Consequently, there 
is some element F' E :F' of cardinality I Fl - 1. As ( X, :F) is a strong greedoid. there 
is an element x E F - F' such that F' U { x}, F - { x} E :F. Applying inequality ( 1) 
with F1 = F' and F2 = F, we have 

(2) f(F' U {x}) + f(F - {x}) 2 f(F') + f(F). 

Since F, F' E :F', IF'U{x }I= IF!, and IF-{x }I= IF'I, it follows that f(F'U{x}) ::; 
f(F) and f(F - {x})::; f(F'). By considering (2), we deduce that f(F - {.1:}) = 
f(F'), and so there is an element in F, namely .T, such that F - x E :F'. It follows 
that :F' satisfies ( G 1). 

To show that :F' satisfies (G2'), let F1,F2 E :F* with IF2I =\Fil+ 1. Siuce :F 
satisfies (G2'), there exists some element x E A-F1 such that F1 U {x }, F2 - {x} E 
:F. Furthermore, by hypothesis, 

f(F1 U {x}) + f(F2 - {x}) 2 f(F1) + f(F2), 

Since IF2 - {x}I = IF1I and IF1 U {x}J = \F2I and since F1,F2 E :F*, it follows that 
f (F1 U{x}) ::; f (F2) and f (F2-{ x}) ::; f (F1 ). Combining these last two inequalities 
with the previous inequality gives f(F1 U {x}) = f(F2),f(F2 - {x}) = f(F1), and 
so F1 U {x}, F2 - {x} E :F'. Hence :F' satisfies (G2'). We conclude that (X, :F') is 
a strong greedoid. D 

Remark. Let (X, :F) be a strong greedoid and let f : :F--> JR be an objective func­
tion on :F satisfying the property of its namesake in the statement of Lemma 2.3. 
A consequence of Lemma 2.3 is t.hat if F is a feasible set of size k that maximizes 
f over all feasible sets of size k, then it is possible for GREEDY when applied to :F 
and f to construct a nested sequence that includes F. To see this, observe that., as 
(X, :F') is a greedoid on X, there is a nested sequence of feasible set.s 

0 = Fa c Fi c F2 c · · · c Fk = F 

such that, for each i, we have JF;\ = IF;-1 I - 1 and F, maximizes f over all subsets 
of :F of size i. Now consider applying GREEDY to :F and f. Beginning with Fa 
at Step 1, we rnn subsequently choose F1 at the first iteration, F2 at the second 
iteration and so on. Eventually, GREEDY chooses Fk =Fat. the k-th iteration. 
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FIGURE 1. A phylogenetic X-tree with edge lengths, where X = {a,b,c,d,e,J,g}. 

3. PHYLOGENETIC DIVERSITY 

In this section the notation and terminology follows [21] (also see [20]). A phy­
logenetic X-tree is a tree with no degree-2 vertices and whose leaf set. is X. Let T 
be a phylogenetic X-tree with edge set E and let .\ : E -> JR:0: 0 be an assignment 
of lengths (weights) to the edges of T. For example, ignoring the dashed edges, 
the tree shown in Fig. 1 is a phylogenetic tree whose edges are weighted with non­
negative real numbers. For a subset S of X, the phylogenetic diversity (PD) score 
of S, denoted PD(T,>.)(S), is the sum of the edge lengths of the minimal subtree 
of T that. connects S. If there is no ambiguity, we frequently denote PD(T,>.)(S) 
by P D(S). Referring to Fig. 1, if S = { a, b, !}, then P D(S) is equal to the sum 
of the weights of the minimal subtree (dashed edges) that connects a, b, and f. In 
particular, PD(S) = 12. 

Following [18], it is also useful to consider an extended version of PD by restrict­
ing attention to those subsets of X that contain a fixed non-empty subset \.V of X. 
For example, if we take vV to be a singleton, { z} say, we may regard z as providing 
a root for the tree T (in which case, if the edge incident with leaf z is assigned 
weight 0, the concept of rooted phylogenetic diversity coincides with that used in 
biology). For a fixed subset l,V of X, let PDw.k denote the maximum PD score over 
all subsets S of X of size k that. contain W. Let .Fw be the collection of all subsets 
F of X - W that have the property that PD(W U F) = PDw.1w1+IFI· In other 
words, .Fw is the collection of subsets of X - W that together with W maximize the 
PD score for their cardinality under the restriction that they contain W. Within 
this setting, the standard phylogenetic diversity problem can be formally stated as 
follows. 

Problem: OPTIMIZING DIVERSITY 
Instance: A phylogenetic X-tree T, a weighting.\ : E -> JR:0: 0 of the edge set. of 
T, a subset. W of X, and a positive integer k. 
Question: Find a subset X' of X of size k that. contains W and maximizes the 
PD score amongst all such subsets of X. 



OPTIMIZING PHYLOGENETIC DIVERSITY UNDER CONSTRAINTS 7 

It is shown in [21, 18] that the greedy algorithm can be used to solve OPTIMIZING 
DIVERSITY in polynomial time. Essentially, this is done by applying GREEDY to the 
collection of all subsets of X and the PD function on this collection. In particular, 
provided W is non-empty, we begin with W instead of the emptyset in Step 1 of 
GREEDY and add elements sequentially as in Steps 2 and 3. Once the set that. 
contains W has size k, we stop: this set maximizes the PD score over all subsets of 
X of size k that contain l·V. Interestingly, if l,V is empty and k 2: 2, one proceeds 
in the same way but begins with an initial subset of size two that maximizes the 
PD score over all subsets of size two. 

In the rest of this section, we put OPTIMIZING DIVERSITY in the setting of 
greedoids and show that all optimal solut.ions can be obtained via GREEDY. To 
achieve this aim, we begin with a lemma, which we will use to show that (X, Fw) 
is a (strong) greedoid. 

Lemma 3.1. Let T be a phylogenetic X-tree and let).: E ____, JR2° be a weighting 
of the edge set E of T. Let A and B be subsets of X both containing at least one 
common element with 1 '.:'. IAI < IBI. Then there is an element x E B - A such 
that 

PD(B - {x}) + PD(A U {x}) 2: PD(B) + PD(A). 

Proof. The case when IAI 2: 2 is established at the beginning of the proof of Theo­
rem 1 in [21]. Therefore assume that A = { z} and let x be any element in B - A. 
Then, as PD(A) = 0 and both A and B contain z, it is easily seen that 

PD(B) + PD(A) S PD(B - {x}) + P(A U {x}). 

This completes the proof of the lemma. D 

Theorem 3.2. Let T be a phylogenetic X-tree and let A : E ____, JR2° be a weighting 
of the edge set E of T. Let W be a fixed non-empty subset of X. Then (X, Fw) is 
a strong greedoid. 

Proof. Define f: 2x-w----, JR by setting f(F) = PD(WUF) for all FE zx-w Let 
F1, F2 be subsets of 2x -w with IF2 I = IF1 I + 1. Since W is non-empty, it follows 
by Lemma 3.1 that there is an element x in (F2 U W) - (FI U W) = F2 - F1 such 
that 

J(F2 - {x}) + f(F1 U {x}) 2: f(F2) + J(F1). 

Observing that the pair (X, 2X-W) is trivially a strong greedoid, it now follows by 
Lemma 2.3 that (X, F,v) is a strong greedoid. D 

The importance consequence of Theorem 3.2 for us is that (X, Fw) is a greedoid. 
It now follows from the remarks after Lemma 2.3 that, for all W and k, every 
optimal solution of OPTIMIZING DIVERSITY can be chosen by GREEDY. Indeed, by 
considering all possible choices at Step 2 of GREEDY, a straightforward modification 
of this algorithm can produce such a set of solutions. 
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4. OPTIMIZING DIVERSITY WITH COVERAGE 

In this section we consider the following problem. Suppose t.hat each species in 
our set X possesses one of several possible ( discrete state) attributes. For example, 
we may have a collection of geographic regions, and we record for each species the 
region(s) it is found in (each region may contain several species, and each species 
can be present in several regions). Vv'e may wish to select a subset of species of 
maximal phylogenetic diversity, so that. we select. at least one (or more generally 
some positive number) from each region. We will show how this problem can be 
solved by a polynomial-time approach based on the greedy algorithms, providect 
that. (i) the regions are chosen sufficiently large so that. each species i8 present in 
just. one location and (ii) species of given attribute are compatible with the tree 
(i.e. they divicte the tree up into non-overlappinl', subtrees). Firnt. we formalize t.he 
problem. 

Consider a phylogenetic X -tree T and,\ a weighting of the edges by non-negative 
real numbers. Let A be a finite set, and let J: X --> 2.4 be a fonction. For a E A, 
let. 

(3) Xa = {x EX: a E /(x)}, 

that is Xa is the set of species with attribute a. Now suppose we wish to sample 
k species from X, so that for each a E A at least n0 2" 1 species are selected from 
Xa in order to maximize the PD-score of the set over all such selections. In other 
words, we have the following problem. 

Problem: OPTIMIZING DIVERSITY WITH COVERAGE 

Instance: A pair (T, >.), f: X--> 2A, positive integer k, and a positive integer n0 

for each a E A. 
Question: Find a subset X' of X of maximum PD score amongst all subsets of X 
of size k that satisfy the constraint that, for each a E A, at least n 0 species in X a 

are included in X'. 

Let T ( X a) denote the minimal subtree of T that connects the leaves in X a 
(note that this tree may have vertices of degree 2). Following [20], we say that 
f is conve.T on T if the collection {T(Xa) : a E A} of subtrees is vertex-disjoint. 
Intuitively, f is convex on T if there is a subset of edges whose deletion results in a 
graph such that, for all a E A, the elements of X having attribute a are in exactly 
one component of the graph, and no component. has elements of X with different 
attributes. Furthermore, we say that J is atomic if 1/(.r)! = 1 for all x EX, that. is 
.r has precisely one attribute. 

Lemma 4.1. Let N = {l, 2,3, ... } and let m EN. For each i E {l, 2, ... , rn}, let 
n; E N and let f; : N --> !Ft be an increasing Junction. Let k E N with k 2: I:7,',,1 n;. 
Then, with respect tom and k, the following problem can be solved in polynomial­
time: construct an m-tuple (x1, x2, ... , xm) E N"' that maximizes I;;',',, 1 J,(.c;) sllb­
ject to the constraints 

(i) I;;: 1 x; = k, and 
(ii) foralliE{l, ... ,m},x;2:n;. 
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Proof. For all i between 1 and m and all j between I:;=1 n1 and k, let M(i,j) 

denote a sequence (m1,mz, .. ,,mi) E Ni that maximizes I:/= 1 f1(m1) subject to 
the constraints m1 :::, n1 for all l E { 1, 2, ... , i} and I:!=i m1 = j. Let m( i, j) denote 
the corresponding value of I:;= 1 ft ( m1). 

The algorithm for solving the desired problem is inductive. For i = 1, we have 
M(l,j) = (j) for each j :::, n 1 . To construct a valid choice for M(i + 1,j) for 
all values of j between I:!!i n1 and k from the sequences J\,J(i,j') (for j' between 

I:!= 1 n1 and k) observe that 

l 

(4) m(i + l,j) = max{m(i, r) + J.+i (s): r + s = j, r 2: L n1, s 2: ni+d· 
1=1 

Thus in O(j) steps we can find a pair r and s to maximize the expression on the 
right-hand side of (4) and we can then extend the sequence M(i,r) to a sequence 
M ( i + 1, j) by appending s as the ( i + 1 )-th coordinate. Continuing in this way 
constructs a desired sequence M(m, k). D 

Theorem 4.2. If f is atomic and convex on T, then OPTIMIZING DIVERSITY 

WITH COVERAGE can be solved in polynomial-time by a method based on the g1·eedy 
algorithm. 

Proof. First note that, as f is atomic, we may assume that k 2: LaeA n 0 • Let 

Eo = E(T) ~ LJ E(T(X0 )) 

a EA 

and let E1 denote the subset of Eo containing those edges with at least one end 
vertex in 

LJ V(T(Xa)). 
a EA 

Let Ai= LeEEn .>-(e). For each a EA, let Ta denote the tree that is obtained from 
T(Xa) by adjoining a new leaf (via a new edge) to each vertex v of T(Xa) that 
is an end-vertex of an edge in E1 in T. Note that v may be a degree-2 vertex of 
T(Xa ). For each a E A, let Wa denote the resulting set of new leaves and observe 
that Ta is a phylogenetic tree with leaf set Xa U Wa. Now assign each edge incident 
with a leaf in W0 weight. 0, thereby extending the restriction of A to T(Xa) t.o an 
edge weighting >. 0 of Ta. For each positive integer j between n0 and I \\/0 I + IX a I, 
let 

fu(j) = max{PD(7,,,,,.,)(Y): Wai;;: Yi;;: X0 u Wa, \YI= j}, 
and let Y0 (j) denote any set Y that realizes this maximum. It follows from Theo­
rems 2.2 and 3.2 and the comments after Theorem 2.2 that the sequence fu(j) and 
a set Ya (j) can be computed by the greedy algorithm for j = na, n 0 + 1, ... , I W" \ + 
\Xa\· 

Now, for every subset X' of X that satisfies the condition \X' n Xu\:::, 1 for all 
a, we have 

PD(T.>,)(X') = A1 + L PD(T,,,>.,,)((X' n Xa) U Wa), 
a EA 



10 VINCENT MOULTON, CHARLES SEMPLE. AND MIKE STEEL 

Consequently, a set X' that maximizes this last quantity and is subject t.o the 
constraints IX' n Xal ::> n 0 ::> 1 and IX'I = k is the disjoint. union 

u (X' n YaUa)), 
a EA 

where the sequence (j0 , a E A) is chosen to maximize the expression 

L, fa(Ja) 
a EA 

subject to the constraints j 0 ::> n0 + IWal and LaEAja = k + LaEA IWal· The 
construction of the sets Ya (j0 ) can now be carried out by applying Lemma 4 .1. D 

5. OPTIMIZING DIVERSITY VIA REGIONS 

In t.his section we consider a variation on the phylogenetic coverage problem, 
discussed in [19]. The motivation for the problem is as follows. Suppose we have 
various regions (for example, nature reserves) each of which contains a subset of 
species. We can conserve each region at some cost, and we wish to select certain 
regions to conserve so as to (i) keep within the allowed budget and (ii) maximize 
the PD score of the species that are 'safe' (i.e. present within at least one conserved 
region). 

Here the set-up is similar to OPTIMIZING DIVERSITY WITH COVERAGE, but the 
question is different. Let T be a X-phylogenetic tree with positive edge weighting 
.\ let A be a set of regions, each containing some subset of X, and let. f : X ____, 2A 
be the function defined by setting /(x) to be the set of regions that. contain .c, for 
each x E X. Given a non-negative integer k, the problem is to find a subset. A' 
of A of size k that maximizes the PD score of those species that are contained in 
at least one region in A' amongst all such choices of A' of size k. Formally, the 
problem can be stated as follows (recall the definition of Xa from 3). 

Problem: OPTIMIZING DIVERSITY VIA REGIONS 
Instance: A phylogenetic X-tree T, a positive weighting A on the edges of T, a 
set of regions, a function f : X---, 2A, and a positive integer k. 
Question: Find a subset A' of A that maximizes the PD score of UaEA' X 0 over 
all subsets of A of size k. 

A more general version of the problem would be to have an additional cost 
function c : A ____, JE.> 0 and a budget B and so the choice of A' is also subject to 
the constraint LaEA' c(a) S B. However, OPTIMIZING DIVERSITY VIA REGIONS 
is computationally hard. 

Theorem 5.1. OPTIMIZING DIVERSITY VIA REGIONS is NP-hard. 

Proof. To establish the theorem, we use a polynomial-time reduction from the NP­
complete problem SET COVER [10]. In this latter problem, one is given a collection 
C of subsets of a finite set X and a positive integer k'. The question is whether there 
exists a subset of C of size k' whose union is X. Given an instance of this problem, 
we construct an instance of OPTIMIZING DIVERSITY VIA REGIONS as follows. Take 
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the phylogenetic X-tree T having exactly one interior vertex and assign weight 1 
to each edge of T. Let f: X ____, 2c be the function that is defined by setting f(x) 
to be the the collection of sets in C that contain x. Here C corresponds to the set 
A in the problem OPTIMIZING DIVERSITY VIA REGIONS. For a subset C' of C, the 
union of the members of C' is a subset of X and, referring to T, its PD score is the 
cardinality of that set (provided it has size at least two) since the pendant edges of 
T connecting these elements of X all have weight 1. 

If we could solve OPTIMIZING DIVERSITY VIA REGIONS in polynomial time, 
then we could decide in polynomial time whether or not the maximum PD score 
amongst all subsets of C of size k' was IXI or not. This is precisely the condition 
that C contains a subset of size k' whose union is X, and thus we would obtain a 
solution to the given instance of SET COVER. Since the above reduction is clearly 
polynomial time in the size of the input, it follows that OPTIMIZING DIVERSITY 
VIA REGIONS is NP-hard. 0 

6. OPTIMIZING DIVERSITY WITH DEPENDENCIES BETWEEN SPECIES 

In this section we consider a complication that arises in maximizing phylogenetic 
diversity in real ecosystems. Namely, often species depend on other species for their 
survival; that is, only certain sets of taxa are 'viable' and selecting sets to maximize 
phylogenetic diversity should respect this constraint [22, 23]. 

We can model this formally as follows. Suppose that, as well as our phylogenetic 
X-tree with its edge lengths (T, ,,\), we also have a acyclic digraph D = (X, A); thi1-; 
could represent for example a "food web" where an arc (u, v) is present precisely 
if taxon u feeds on taxon v. We say that a subset S of X is viable if the following 
property holds: 

• for every x E S, either x has out-degree 0, or there exists some s E S such 
that (x, s) EA. 

For the food-web interpretation, this translates into the condition that S is viable 
if every species under consideration that needs to predate at least one of the other 
species under consideration, has such a species available to it within the set S. 

Proposition 6.1. Let D = (X, A) be a digraph and let :F be the collection of 
subsets F of X that are viable. Then (X,:F) is a greedoid. Moreover, F has the 
property that if Fi, F2 E F, then Fi U F2 E F. 

Proof. Let G be a rooted digraph with vertex set V and root vertex r. Let P be 
the collection of subsets F' of V - { r} such that F' U { r} is the set of vertices of a 
subtree of G directed away from r. Then (V - {r }, F') is a greedoid. This greedoid 
is sometimes referred to as the vertex search greedoid of G [3]. 

To show that (X, :F) is a greedoid, consider the rooted digraph that is obtained 
from D in the following way: 
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(i) Add a new vertex r that is adjoined to precisely the vertices of D that have 
out-degree O. Initially, the direct.ion of the arcs incident with rare directed 
towards r. 

(ii) Now reverse the direction of all the arcs, and let D' denote the resulting 
digraph. 

It. is easily seen that the collection F' of feasible sets of the vertex search digraph 
of D' is equal to F, and so (X, F) is a greedoid. Furthermore, as F' is closed under 
union [3]. it follows that Fis closed under union. This completes the proof of the 
proposition. D 

We note in passing that Proposition 6.1 implies that the pair (X,F) has the 
strneture of an 'antimatroid' (see [3, Proposition 8.2.7]). 

An immediate consequence of Theorem 2.2 and Proposition 6.1 is the following. 

Corollary 6.2. Let (X, A) be an acyclic digraph and let (X, F) denote the gr·eedoid 
described in Theorem 6. 1. Let f : F -> ~ be an objective function. If f is compatible 
.with (X, F), then GREEDY applied to F and f finds, for all k, a feasible subset of 
size k that maximizes f. 

Consider now Lhe question of optimizing phylogenetic diversity while respecting 
the dependencies specified by (X, A). The biological motivation for this is that 
there is no point conserving a species if all of the taxa it depends on go extinct.. 
Formally, we have the following problem. 

Problem: OPTIMIZING DIVERSITY WITH DEPENDENCIES 
Instances: A phylogenetic X-tree T with edge set E, a function ,\: E-, ~2°, an 
acyclic digraph (X, A), and a positive integer k. 
Question: Find a subset of X of size at most k that is viable and maximizes the 
PD score over T amongst all such subsets. 

By Corollary 6.2, OPTIMIZING DIVERSITY WITH DEPENDENCIES can also be 
solved by GREEDY if the weighting on the viable subsets of X induced by their PD 
score over Tis compatible with (X, F), where Fis the collection of viable subsets 
of X in (X, A). 

For example, suppose the edge lengths of Tare clock-like - that is, the sum of the 
lengths of the edges from the root to each leaf is the same. If, in addition, T is the 
phylogenetic X-tree consisting of exactly one interior vertex (the 'star tree'), then 
GREEDY solves this special case of OPTIMIZING DIVERSITY WITH DEPENDENCIES 
(we can use Corollary 6.2 by choosing f to be the cardinality function). 

However, for an arbitrary phylogenetic tree, even with clock-like edge lengths, 
the greedy algorithm does not solve OPTIMIZING DIVERSITY WITH DEPENDENCIES, 
as the following example shows. 
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y 

\ 
a y 

(a) (b) 

FIGURE 2. (a) A digraph Don X and (b) a root.ed phylogenetic 
tree with clock-like edge lengths. 

Let. X = {a, b, b', x, y} and let. D he t.he digraph shown in Fig. 2(a). The collection 
of viable subsets of X of size at most 3 is 

:F = { {a}, {b}, {a, b}, {a, x }, {b, b'}, {a, b, b'}, {a, b, x}, {b, b', y} }. 

Now consider the rooted phylogenetic tree T shown in Fig. 2(h) and suppose that 
the edge-lengths are clock-like. The unique member of :F that maximizes the PD 
score on Tis {b, b', y }. However, this set does not contain the unique member of :F 
of size 2, namely { a, x}, that maximizes the PD score on T. 

7. VARIATIONS AND EXTENSIONS OF PD 

vVe now describe some variations and extensions of PD, and investigate whether 
the greedy algorithm is guaranteed to find optimal solutions. 

First, suppose we have a function f: zx ---> R Fork E {l, ... , \X\} let m(f, k) = 
max{f(A): A<;; X, \A\= k} and let M(J, k) = {A EX : [A[= k, J(A) = m(J, k)}. 
We say that f satisfies the nested optimality property if for every k E {2, ... , [X[}, 
there exists a pair A E M(f, k), A' E l\l(J, k - 1) wit.h A' C A. In particular 
if GREEDY maximizes f amongst all sets of given cardinality, then J satisfies the 
nested optimality property, and so to demonstrate that GREEDY fails it suffices 
to show for some k that. the nested optimality property fails. We will use this 
observation repeatedly in what follows. 

Lewis and Lewis [16] defined a measure of diversity on a phylogenetic X-tree 
with fl non-negative re11l-v11lued edge weighting as follows. For a :mbset S of X, let 

ED(S) = PD(X)- PD(X - S). 

Note tlrnt. selecting a subset S of X of size at most k to maximize ED is equivalent 
to selecting a subset. S' of X of size [XI - k to minimize PD. 

However, a simple example shows that ED fails to have the nested optimality 
property. Consider the phylogenetic tree shown in Fig. 3. It is easily checked 
that S = {b,c,e} is the unique maximum weight subset of X of size 3. However, 
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1 
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l 
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d 

b 

10 c 

e 

FIGURE 3. A phylogenetic tree with edge lengths. Here {b,c,e} is 
the unique subset of size 3 that maximizes ED( { b, c, e}) = 15 -
1 = 14, while {a. d} is the unique subset of size 2 that maximizes 
ED( { a, d}) = 15 - 4 = 11. 

a ---· _8 _4 __ I_2_: __ r_2_I,-8-----· c 

d e 

FIGURE 4. An phylogenetic tree with edge lengths. Here 
{ a, c, d, e} is the unique subset of size 4 that maximizes 
.M({a,c,d,e}) = 12, but it does not contain {a,b,c}, the unique 
subset of size 3 that maximizes M( { a, b, c}) = 13. 

T = { a, d} is the unique maximum weight subset of X of size 2, and T is not a 
subset of S. 

An alternative way to measure the diversity of a subset S of X has been proposed 
by Holland [13] in the context of model strain selection. Here we set 

l'd(S) = min{PD({x,y}): x,y ES}. 

Selecting a subset S of X of size k to maximize !11(5) corresponds to selecting a 
subset of k elements of X each pair of which is as 'far apart' as possible in the tree. 
Note that, as before, sets which maximize !11 do not necessarily maximize PD and 
vice-versa. As with the previous variation, !If does not have the nested optimality 
property. Consider the phylogenetic tree shown in Fig. 4 with its edge lengths. 
The set { a, c, d, e} is the unique subset of size 4 that maximizes !11, but it does not 
contain { a., b, c}, the unique subset of size 3 that maximizes M. 

Instead of varying PD, it is natural to extend PD on phylogenetic t.rees t.o more 
general structures. For example, we may regard a phylogenetic X-tree as a collec­
tion I: of pairwise compatible X-splits ([5)) and we can regard edge lengths as a 
map ,\ : I: -, Jlf,: 0 , in which case the PD score of a subset. S of X is 

L,\(AIB). 

where the sum is over all AIB E I: with An S ,jc 0 and B n S ¥ 0. Extending 
this definition of PD on a pairwise compatible collection of ,\-weighted splits to an 
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d 

e 

FIGURE 5. A split network [14] corresponding to a circular split 
system. Apart from the edges with weight ~, all edges have 
weight 1. Here {b,c,e,f} is a subset of size 4 that maximizes 
PD( {b, c, e, J} = 11, but it does not contain { a, d}, the unique set 
of size 2 that maximizes PD({a,d}) = 7. 

arbitrary collection of splits, we can ask the question of whether the pair (E, ,\) has 
the nested property. Here we could impose for exl\mple thflt E is either circular or 
weakly compatible [1]. 

In general, (E, .>-) does not. have the nested property. For example, consider t.he 
network shown in Fig. 5. This network is a pictorial way of describing a collection of 
weighted splits that are circular. Splits are obtaining by deleting "parallel edges". 
Except for the four edges with weight ~. all edges have weight 1. The dist.ance 
between two labelled vertices u and v is the length of a shortest path joining ti and 
v. It is easily checked that {b, c, e, f} is the unique subset of size 4 that maximizes 
PD. However, this set does not contain the unique set of size 2, namely { a, d}, that 
maximizes PD, and so the nested optimality property fails. Nevertheless, there are 
collections E of non-compatible splits for which (E, .>-) has the nested optimality 
property. An interesting (and possibly challenging) problem is to characterize these 
structures. 

Fast algorithms for constructing high diversity subsets for networks could be 
useful in case trees are constructed from various genomic regions [17]. In this 
context, it is worth mentioning one further extension of PD. Given a collection of 
phylogenetic X-trees Ti, ... , Tn and a subset S of X we define 

G9 (S) = g(PD1(S), ... , PDn(S)), 

where P D,(S) is the PD score of S with respect to tree T; for 1 <::; i <::; n and 
g is some multivariate function. In general, for n > 1, the greedy algorithm will 
again fail to find subsets of X optimizing G9 • For example, suppose that G9 (S) = 
max{x1, ... ,xn}, where x, = PD,(S) for all i, and consider the two phylogenetic 
trees in Fig. 6. Here { a, b, d} is the unique 3-element subset of X that maximizes 
G9 , yet it does not contain {a,c}, the unique 2-element. subset of X that maximizes 
G9 and so the nested optimality property fails. Note that G9 ({a,b,d}) = 28 and 
G9 ({a.,c}) = 21. 
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FIGURE 6. For the multivariat.e funct.ion C9 (S) = max{,:1,x2 }, 

the set { a, b, d} is the unique 3-element set that maximizes Cg, but 
it does not contain { a, c}, t.he unique 2-element set that maximizes 
Cg. 

Despite the last example, a subset S of X of size k maxim1zmg C9 (S) = 
max{x1, ... , xn} may be found by applying the greedy algorithm to each T; to 
find a set of size k with highest PD; score, and then taking the highest scoring set 
amongst all of these sets. It would be interesting to investigate whether other mul­
tivariate functions C9 could be optimized using variants of the greedy algorithm. 
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