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ABSTRACT: Liquefaction-induced lateral spreading is a critical design consideration for 

many bridges in high-seismicity regions. Bridge foundation design procedures based on the 

pile pinning concept adequately account for the three-dimensionality of the problem, but 

do not offer much guidance on the expected significance of foundation pinning at a 

particular site. The purpose of this study is to quantify how changes in the 3D site geometry 

contribute to changes in the foundation bending demands during lateral spreading, and to 

identify the critical site geometric features that lead to reductions in foundation demands 

relative to a plane strain analysis. These objectives are accomplished using a parameter 

study carried out using 3D finite element models of the soil-foundation system that consider 

different combinations of approach embankment width, crust thickness, liquefiable layer 

thickness, and foundation-to-soil stiffness ratio. 

1 INTRODUCTION 

The response of a piled bridge foundation to the lateral deformation of the surrounding soil caused by 

liquefaction-induced lateral spreading depends on many different factors, including both inertial and 

kinematic soil-structure interaction effects. In addition to site-specific hazards and soil conditions, the 

design approach for such foundations should take into account the particular application for the 

foundations, i.e. interior piers will be handled differently than piled bridge foundations in approach 

embankments. For the approach embankment case, the recommended design approach for lateral 

spreading (Martin et al. 2002; Boulanger et al. 2006; Ashford et al. 2011) is based on the pile pinning 

concept, where it is assumed that the reaction forces developed in the foundations and superstructure 

during lateral spreading (pinning forces) can be significant relative to the driving inertial forces such 

that the near-field displacements are reduced. Under this approach, the design foundation displacement 

demand accounts for compatibility between the driving forces and the structural resistance, and is often 

far less than the free-field lateral spreading displacement. 

Evidence of such pinning resistance has been observed at numerous bridges with approach 

embankments affected by lateral spreading in previous seismic events (e.g. Youd 1993; Berrill et al. 

2001; Arduino et al. 2010; Wotherspoon et al. 2011), where near-field deformations are reduced 

significantly from the free-field soil displacement. The significance of the foundation pinning forces is 

driven by two 3D effects related to the finite width of the approach embankment. Firstly, the mass of 

soil imposing demands on the bridge foundation is limited by the width of the embankment. Secondly, 

because there are no lateral constraints, when liquefaction is triggered in the underlying soils the 

embankment soils commonly undergo large settlements and transverse deformations (perpendicular to 

longitudinal bridge axis), resulting in further reductions to the near-field demands. Though the pile 

pinning design approach is not based on a truly three-dimensional analysis, comparisons with 3D finite 

element analysis by McGann and Arduino (2014) have shown that the design approach recommended 

by Ashford et al. (2011) is consistent with a 3D description of the problem.  

While the pile pinning concept is particularly attractive due to the reduction in near-field demands 

consistent with post-earthquake observations and 3D models, there is little information or guidance that 

can be used to determine how significant pinning effects may be at a given site. For example, how wide 
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can the embankment be relative to the bridge such that significant foundation pinning effects should be 

expected? Will this relationship be different for shallow versus deep liquefaction? This paper describes 

the results of an ongoing parameter study designed to seek answers to such questions. 3D finite element 

models are generated in which certain geometric properties are varied, including the embankment crest 

width, the thickness of the non-liquefiable crust, and the thickness of the liquefiable material. These 

models are analysed under loadings consistent with the kinematic demands of lateral spreading, and the 

effects on the embedded deep foundations are assessed. The current results of this parameter study 

suggest the critical importance of 3D site geometry on the response of the soil-foundation system during 

lateral spreading. When completed, it is expected that the results of this study will provide a first-order 

approximation with which to assess the relative importance of 3D effects on the bridge foundation 

demands due to lateral spreading at any given site. 

2 3D FINITE ELEMENT MODELS 

The 3D finite element models used in this study are intended to be the most simple representations of 

the problem that capture all of the relevant three-dimensional effects. Each model considers a single 

deep foundation embedded in a layered soil profile with an embankment sitting atop the upper layer. A 

schematic representation of the general layout used for these models is shown in Figure 1. As shown, the 

generic soil profile includes a layer of saturated loose sand that is assumed to be in a fully liquefied state 

over the course of the analysis. No distinction is given to whether the deep foundation is a pile or drilled 

shaft beyond the foundation size, i.e. no installation effects are considered.  

All of the models are developed and analysed using the OpenSees computational framework (McKenna 

1997; McKenna et al. 2010). Solid elements are used to model the soil, beam-column elements are used 

to represent the deep foundation body, and the beam-solid contact element of Petek (2006) is used to 

represent the soil-foundation interface. The mesh for each model was generated to minimise boundary 

effects on the important portion of the model (soil-pile interface), and symmetry and selective mesh 

refinement are used as shown in Figure 1. 

 
Figure 1: Typical mesh and layout for 3D finite element models used in parameter study. 

2.1 Considered site geometries  

The developed 3D finite element models are used to examine the effects of different site geometries on 

the foundation response to the demands of lateral spreading through the consideration of a large number 

of different geometric combinations. The geometric properties varied in these models are the 
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embankment crest width, the thickness of the crust layer (dry loose sand layer in Figure 1), the thickness 

of the liquefiable layer (sat. loose sand layer in Figure 1), and the diameter of the pile/shaft. The current 

study is an expansion of the study discussed by McGann and Arduino (2015), where 72 distinct 

geometric combinations were considered: three crustal thicknesses (1, 3, and 6 m); three liquefiable 

layer thicknesses (1, 3, and 6 m); two pile/shaft diameters (0.6 and 1.4 m); and four embankment crest 

widths (4, 8, 16 m and full model width).  

The variations in pile/shaft diameter provide two soil-pile stiffness ratio cases, as previous work with 

these types of models has identified that the ratio of the soil and pile stiffness is of primary importance 

rather than the actual stiffness values for each (McGann et al. 2012). Figure 2 shows the four considered 

embankment width cases. Three of the embankment cases are representative of varying sizes of finite-

width embankments for which some degree of foundation pinning is expected. These embankments are 

distinguished by the crest widths and are defined with 2H:1V side slopes. The fourth embankment case 

considers an embankment that extends across the entire model domain and for which significant 

foundation pinning effects are not expected. Evaluation of the degree of pinning in each of the other 

three cases is made relative to the results of the full width case for the same combination of pile/shaft 

diameter, crust thickness, and liquefiable layer thickness. 

 
Figure 2: Embankment width cases considered in parameter study. Listed width values refer to crest width of 

embankments. 

McGann and Arduino (2015) identified several shortcomings in the case matrix for the original 

parameter study, in particular with regard to the lack of more realistic crustal and liquefiable layer 

thickness. To expand upon this previous effort, two new crustal thicknesses (1.5 and 2 m) and two new 

liquefiable layer thicknesses (2 and 4 m) are added to the case matrix, resulting in a total of 200 distinct 

cases (72 from old study, 128 new cases). The analysis phase for these 128 new cases is currently 

ongoing. To date, the analyses for about 90 of these new cases have been completed, with some of the 

preliminary results presented in subsequent sections of this paper. 

2.2 Boundary and loading conditions 

Boundary conditions are applied only on the outer surfaces of the soil mesh, with the nodes on each 

surface fixed against out-of-plane translations only, and symmetry is used as shown in Figure 1. The 

base node of the pile is fixed against vertical translations and the upper node is fixed against all rotations 

to simulate the rotational fixity provided by a superstructure body. All of the pile nodes are fixed against 

translations out of the symmetry plane, and are only allowed rotations within the symmetry plane (i.e. 

out of plane and torsional rotations are fixed).  

Elemental body forces equivalent to the unit weights of the various soil layers are applied to the solid 

elements to achieve a proper initial state of stress in the soil. A vertical force is applied to the upper pile 

node and held constant during the analysis to represent the self-weight of the pile and a loading from 

the superstructure. The kinematic demands of lateral spreading are simulated in the models by 

incrementally imposing displacements to the non-symmetry vertical mesh boundaries. The applied 

displacement profile is roughly representative of the free-field lateral spreading deformation profile, 

with constant displacements across the crust layer, zero displacements in the lower non-liquefiable 

material, and a linearly increasing profile across the liquefiable layer. The final free-field surface 

displacement for all of the models is 1.0 m. This approach is not able to capture effects related to pore 

pressure, inertia, or the initiation of liquefaction, but it is an effective way of imposing the kinematic 

demands of lateral spreading on the embedded foundation. Additionally, this approach enforces 

comparison-facilitating consistency across all of the analyses that would be difficult to achieve with 

dynamic effective stress analyses. Further details on the loading conditions are available in McGann and 

Arduino (2014,2015). 
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2.3 Soil modelling 

The solid elements representing the soil layers are assigned multi-surface soil constitutive models to 

capture an appropriate material response. The non-liquefiable layers are represented using a pressure-

dependent (Drucker-Prager type) soil constitutive model (Parra 1996; Yang 2000; Elgamal et al. 2003) 

with the mass density, , friction angle, , and shear and bulk modulus, Gmax and Kmax, properties listed 

in Table 1. To fit within the static modelling scheme used for these models, it is assumed that 

liquefaction has been triggered across the entire liquefiable layer from the onset of the analysis. To this 

purpose, the liquefiable loose sand layer is initially defined with the residual strength and stiffness 

properties of a liquefied material. This layer is defined using a pressure-independent (J2 type) 

constitutive model (Prevost 1977) with the model properties provided in Table 1. For this modelling 

approach, the undrained strength, Su, is set as the residual strength of the liquefied material. All model 

properties not listed in Table 1 were taken as the default values for each material model. 

Table 1. Model properties for soils in 3D finite element models. Refer to Figure 1 for layer arrangement.  

Layer  (Mg/m3)  (º) Gmax (MPa) Kmax (MPa) Su (kPa) 

dry loose sand 1.7 32 75 200 – 

sat. loose sand 1.7 – 6 175 5 

dense sand 2.0 38 100 300 – 

embankment fill 1.9 48 130 390 – 

2.4 Foundation modelling 

The foundation bodies are modelled using displacement-based beam-column elements assigned the 

linear elastic material and section properties listed in Table 2 (area, A, elastic modulus, E, shear 

modulus, G, and second area moment, I). Two circular pile/shaft models are considered, one with a 0.6 

m diameter and the other with a 1.4 m diameter. For consistency with the symmetry conditions, A and 

I are based on half of the cross-section. Both of these foundation models are based on real template 

designs, and further information on these template foundations are available in McGann et al. (2012). A 

semi-circular space is included in the solid element mesh such that the physical size of the foundations 

can be considered. The beam-solid contact element of Petek (2006) is used to enforce a frictional contact 

condition on the surface of this empty space, linking the beam and solid nodes in a manner consistent 

with the kinematics of the 0.6 and 1.4 m diameter cylindrical pile/shaft bodies. The foundations are 

assigned a linear elastic response such that the results represent the foundation demands independent of 

the yield strength and plastic characteristics of the piles/shafts. 

Table 2. Material and section properties for model deep foundations. 

Diameter A (m2) E (GPa) G (GPa) I (m4) 

0.6 m 0.15 31.3 12.5 0.0038 

1.4 m 0.74 28.7 11.5 0.0869 

3 EFFECTS OF SITE GEOMETRY ON FOUNDATION RESPONSE 

As with the original study of McGann and Arduino (2015), the effects of variations in the geometric site 

parameters are primarily assessed in terms of the relative influence on the flexural response of the deep 

foundations as compared to the full width embankment cases. Both qualitative and quantitative 

assessments will be considered, though at this preliminary stage in the new expanded study, the focus is 

on qualitative assessment.  

The results of Figure 3 demonstrate some of the qualitative observations that have been made from the 

completed analyses. Figure 3 shows the deformation contours in the direction of loading for all four 

embankment width cases corresponding to a 1.4 m diameter pile/shaft, a 1 m crustal thickness, and a 2 

m thick liquefiable layer. Because the 1.4 m diameter shaft is quite stiff relative to the soil, there is little 

difference between the results for the 4 and 8 m wide embankments, where it is observed that the applied 
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free-field surface displacements of 1 m essentially exist only in the free-field (boundaries of the mesh), 

and the significant pinning resistance provided by the foundations is clearly evident in that the 

foundation displacements are about 20-25% of the free-field values. As the embankment width is 

increased to 16 m, the displacement of the foundation becomes larger and a smaller near-field zone of 

soil is affected, indicating a clear reduction in pinning resistance. In the case of the full width 

embankment, only minimal pinning resistance is evident, even for this stiff 1.4 m diameter shaft. 

 
Figure 3: Contours of displacement in direction of applied lateral spreading deformation for four embankment 

width cases. 

The thickness of the non-liquefied crust is perhaps of equal importance to the embankment width in 

defining the system response. Figure 4 shows the deformed shapes with contours of displacement in the 

direction of loading for crustal thicknesses of 1 and 3 m with a 0.6 m diameter pile, an 8 m wide 

embankment, and a 2 m thick liquefiable layer. As shown, the apparent pinning resistance is far greater 

for the shallow liquefiable layer case than for the deeper liquefiable layer, even though the embankment 

width is the same for both cases. For the 3 m crustal thickness, the displacement at the head of the pile 

is essentially identical to the free-field soil displacement. As discussed in McGann and Arduino (2015), 

this 3 m crustal thickness appears to be a limiting value in defining the influence of 3D embankment 

deformation effects in these models. For crust thicknesses < 3 m, the current results suggest that the 

embankment is the primary source of the kinematic demands on the foundation, and thus changes in 

embankment width affect significant changes in response. For crust thicknesses ≥ 3 m, the crustal 

material itself is the primary source of kinematic demands. The 1.5 and 2 m crustal thicknesses cases 

considered in the expansion of the parameter study were selected to explore this effect further.  

The ratio of the foundation bending stiffness relative to the stiffness of the soil also plays a relatively 

intuitive role in defining the system response. With everything else equal, the deformation of the 0.6 m 

diameter case is larger than the corresponding 1.4 m diameter model, and changes in system response 

are affected for narrower embankments and shallower crustal thicknesses. For example, in the 0.6 m 

diameter cases corresponding to the results of Figure 3, there is a discernible difference between the 4 

and 8 m wide embankment cases, while these two cases are negligibly different for the 1.4 m shaft. 
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These observations make intuitive sense, as increasing the size or stiffness of the foundation is a natural 

way to reduce the structural displacements resulting from lateral spreading, and it is encouraging that 

the model results and trends correspond to expected behaviours. The thickness of the liquefiable layer 

has the most subtle effect on the foundation bending demands of the considered geometric properties. 

There are differences observed as this parameter is varied, particularly in regard to the foundation shear 

forces, but no clear trend that holds across all of the cases has yet emerged. 

 
Figure 4: Contours of displacement in direction of applied lateral spreading deformation for two crust thickness 

cases. 

4 CONCLUSIONS 

Foundation pinning is an important consideration in the design of piled bridge foundations to withstand 

liquefaction-induced lateral spreading. Current design procedures for this case that account for pinning 

resistance (Martin et al. 2002; Boulanger et al. 2006; Ashford et al. 2011) have been shown to produce 

results consistent with a fully three-dimensional representation of the problem, however, there is a 

general lack of information regarding how significant pinning effects should be for a given site. To 

address this issue, a parameter study investigating the differences in foundation bending demands across 

variations in different site geometric properties is being carried out using 3D finite element analyses. 

This current study expands the case matrix originally considered by McGann and Arduino (2015) from 

72 to 160 distinct cases, with an emphasis on more realistic configurations rather than the broader, more 

enveloping range of values represented in the original case matrix. 

The results to date indicate the general significance of the geometric aspects of each site on the bending 

demands developed in the deep foundations due to the kinematic demands of lateral spreading. The 

near-field alteration of the soil deformation caused by foundation pinning varies greatly with changes 

geometric properties such as the embankment width, where less resistance is observed for increasing 

width of embankment, and the thickness of the non-liquefied crust in the soil profile. Once the expanded 

parameter study is completed, the goal is to produce a simple equation through analysis of the aggregate 

foundation flexural demands that allows for an estimation of the expected significance of pinning effects 

given the particular combination of embankment width, crustal thickness, liquefiable layer thickness, 

and soil-foundation stiffness ratio at any given site. The significance of the pinning effects will be 

framed in terms of the ratio between the flexural demands in a given case to those in the corresponding 

full width embankment case, such that a low ratio indicates that pinning effects are significant, a higher 

ratio indicates that pinning effects are less significant, and a ratio of 1.0 indicates no pinning resistance 

(i.e. same demands as full width case). It is also anticipated that further cases will be added to the 

parameter matrix to consider further variations to the currently-considered geometric properties (in 

particular an embankment width > 16 m) as well as changes to other aspects of the models not currently 

being varied, such as the soil properties and embankment height. 
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