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Below scales of about 100/hMpc our universe displays a complex inhomogeneous struc-
ture dominated by voids, with clusters of galaxies in sheets and filaments. The coin-
cidence that cosmic expansion appears to start accelerating at the epoch when such
structures form has prompted a number of researchers to question whether dark energy
is a signature of a failure of the standard cosmology to properly account, on average, for

the distribution of matter we observe. Here I discuss the timescape scenario, in which
cosmic acceleration is understood as an apparent effect, due to gravitational energy gra-
dients that grow when spatial curvature gradients become significant with the nonlinear
growth of cosmic structure. This affects the calibration of local geometry to the solutions
of the volume–average evolution equations corrected by backreaction. I further discuss
recent work on defining observational tests for average geometric quantities which can
distinguish the timescape model from a cosmological constant or other models of dark
energy.
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1. Introduction

In this paper I will review the conceptual basis1,2 and observational tests3 of a

cosmology model,1,4 which represents a new approach to understanding the phe-

nomenology of dark energy as a consequence of the effect of the growth of inhomo-

geneous structures. The basic idea, outlined in a nontechnical manner in ref. [5],

is that as inhomogeneities grow one must consider not only their backreaction on

average cosmic evolution, but also the variance in the geometry as it affects the

calibration of clocks and rulers of ideal observers. Dark energy is then effectively

realised as a misidentification of gravitational energy gradients.

Although the standard Lambda Cold Dark Matter (ΛCDM) model provides a

good fit to many tests, there are tensions between some tests, and also a number of

puzzles and anomalies. Furthermore, at the present epoch the observed universe is

only statistically homogeneous once one samples on scales of 150–300 Mpc. Below

such scales it displays a web–like structure, dominated in volume by voids. Some

40%–50% of the volume of the present epoch universe is in voids with δρ/ρ∼−1 on

scales of 30h−1 Mpc,6 where h is the dimensionless parameter related to the Hubble

constant by H0 = 100h km sec−1 Mpc−1. Once one also accounts for numerous

minivoids, and perhaps also a few larger voids, then it appears that the present

epoch universe is void-dominated. Clusters of galaxies are spread in sheets that

surround these voids, and in thin filaments that thread them.

A number of different approaches have been taken to study inhomogeneous cos-

mologies. One large area of research is that of exact solutions of Einstein’s equations
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(see, e.g., ref. [7]), and of the Lemâıtre–Tolman–Bondi8 (LTB) dust solution in par-

ticular. While one mimic any luminosity distance relation with LTB models, gener-

ally the inhomogeneities required to match the supernova data are much larger than

the typical scales of voids described above. Furthermore, one must assume the un-

likely symmetry of a spherically symmetric universe about our point, which violates

the Copernican principle. It is my view that while the LTB solutions are interesting

toy models, one should retain the Copernican principle in a statistical sense, and

one should seriously try to model the universe with those scales of inhomogeneity

that we observe.

One particular consequence of a matter distribution that is only statistically

homogeneous, rather than exactly homogeneous, is that when the Einstein equa-

tions are averaged they do not evolve as a smooth Friedmann–Lemâıtre–Robertson–

Walker (FLRW) geometry. Instead the Friedmann equations are supplemented by

additional backreaction termsa.10 Whether or not one can fully explain the expan-

sion history of the universe as a consequence of the growth of inhomogeneities and

backreaction, without a fluid–like dark energy, is the subject of ongoing debate.11

A typical line of reasoning against backreaction is that of a plausibility argu-

ment:12 if we assume a FLRW geometry with small perturbations, and estimate the

magnitude of the perturbations from the typical rotational and peculiar velocities of

galaxies, then the corrections of inhomogeneities are consistently small. This would

be a powerful argument, were it not for the fact that at the present epoch galaxies

are not homogeneously distributed. The Hubble Deep Field reveals that galaxies

were close to being homogeneous distributed at early epochs, but following the

growth voids at redshifts z <
∼ 1 that is no longer the case today. Therefore galaxies

cannot be consistently treated as randomly distributed gas particles on the 30h−1

Mpc scales6 that dominate present cosmic structure below the scale of statistical

homogeneity.

Over the past few years I have developed a new physical interpretation of cos-

mological solutions within the Buchert averaging scheme.1,2,4 I start by noting that

in the presence of strong spatial curvature gradients, not only should the average

evolution equations be replaced by equations with terms involving backreaction,

but the physical interpretation of average quantities must also account for the dif-

ferences between the local geometry and the average geometry. In other words,

geometric variance can be just as important as geometric averaging when it comes

to the physical interpretation of the expansion history of the universe.

I proceed from the fact that structure formation provides a natural division of

scales in the observed universe. As observers in galaxies, we and the objects we

observe in other galaxies are necessarily in bound structures, which formed from

density perturbations that were greater than critical density. If we consider the

evidence of the large scale structure surveys on the other hand, then the average

aFor a general review of averaging and backreaction see, e.g., the article by van den Hoogen in
this volume.9
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location by volume in the present epoch universe is in a void, which is negatively

curved. We can expect systematic differences in spatial curvature between the aver-

age mass environment, in bound structures, and the volume-average environment,

in voids.

Spatial curvature gradients will in general give rise to gravitational energy gra-

dients, and herein lie the issue which I believe are key to understanding the phe-

nomenon of dark energy. The definition of gravitational energy in general relativity

is notoriously subtle. This is due to the equivalence principle, which means that

we can always get rid of gravity near a point. As a consequence, the energy, mo-

mentum and angular momentum associated with the gravitational field, which have

macroscopic effects on the relative calibrations of the clocks and rulers of observers,

cannot be described by local quantities encoded in a fluidlike energy-momentum

tensor. Instead they are at best quasi-local.13 There is no general agreement on

how to deal with quasi-local gravitational energy. It is my view that since the issue

has its origin in the equivalence principle, we must return to first principles and

reconsider the equivalence principle in the context of cosmological averages.

2. The cosmological equivalence principle

In laying the foundations of general relativity, Einstein sought to refine our physical

understanding of that most central physical concept: inertia. As he stated: “In a

consistent theory of relativity there can be be no inertia relatively to ‘space’, but

only an inertia of masses relatively to one another”.14 This is the general philoso-

phy that underlies Mach’s principle, which strongly guided Einstein. However, the

refinement of the understanding of inertia that Einstein left us with in relation to

gravity, the Strong Equivalence Principle (SEP), only goes part-way in addressing

Mach’s principle.

Mach’s principle may be stated:15,16 “Local inertial frames (LIFs) are deter-

mined through the distributions of energy and momentum in the universe by some

weighted average of the apparent motions”. The SEP says nothing about the average

effect of gravity, and therefore nothing about the “suitable weighted average of the

apparent motions” of the matter in the universe. Since gravity for ordinary matter

fields obeying the strong energy condition is universally attractive, the spacetime

geometry of a universe containing matter is not stable, but is necessarily dynam-

ically evolving. Therefore, accounting for the average effect of matter to address

Mach’s principle means that any relevant frame in cosmological averages is one in

which time symmetries of the Lorentz group in LIFs are removed.

My proposal for applying the equivalence principle on cosmological scales is to

deal with the average effects of the evolving density by extending the SEP to larger

regional frames while removing the time translation and boost symmetries of the

LIF to define a Cosmological Equivalence Principle as follows:2

At any event, always and everywhere, it is possible to choose a suitably defined

spacetime neighbourhood, the cosmological inertial frame (CIF), in which average
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motions (timelike and null) can be described by geodesics in a geometry that is

Minkowski up to some time-dependent conformal transformation,

ds2
CIF

= a2(η)
[

−dη2 + dr2 + r2(dθ2 + sin2 θ dφ2)
]

. (1)

Since the average geometry is a time–dependent conformal scaling of Minkowski

space, the CEP reduces to the standard SEP if a(η) is constant, or alternatively over

very short time intervals during which the time variation of a(η) can be neglected.

The relation to cosmological averages is understood by the fact that (1) is the spa-

tially flat FLRW metric. In the standard cosmology this is taken to be the geometry

of the whole universe. Here, however, the whole universe is inhomogeneous but its

geometry is restricted by the requirement that it is possible to always choose (1) as

a regional average. This would rule out geometries with global anisotropies, such as

Bianchi models, while hopefully leaving enough room to describe an inhomogeneous

but statistically homogeneous universe like the one we observe.

To understand why an average geometry (1) is a relevant average reference

geometry for the relative calibration of rulers and clocks in the absence of global

Killing vectors, let us construct what I will call the semi-tethered lattice by the

following means. Take a lattice of observers in Minkowski space, initially moving

isotropically away from each nearest neighbour at uniform initial velocities. The

lattice of observers are chosen to be equidistant along mutual oriented x̂, ŷ and ẑ

axes. Now suppose that the observers are each connected to six others by strings

of negligible mass and identical tension along the mutually oriented spatial axes.

The strings are not fixed but unwind freely from spools on which an arbitrarily long

supply of string is wound. The strings initially unreel at the same uniform rate,

representing a “recession velocity”. Each observer carries synchronised clocks, and

at a prearranged local proper time all observers apply brakes to each spool, the

braking mechanisms having been pre-programmed to deliver the same impulse as a

function of local time.

The semi-tethered lattice experiment is directly analogous to the decelerating

volume expansion of (1) due to some average homogeneous matter density, because

it maintains the homogeneity and isotropy of space over a region as large as the

lattice. Work is done in applying the brakes, and energy can be extracted from this

– just as kinetic energy of expansion of the universe is converted to other forms

by gravitational collapse. Since brakes are applied in unison, however, there is no

net force on any observer in the lattice, justifying the inertial frame interpretation,

even though each observer has a non-zero 4-acceleration with respect to the global

Minkowski frame. The braking function may have an arbitrary time profile; provided

it is applied uniformly at every lattice site the clocks will remain synchronous in

the comoving sense, as all observers have undergone the same relative deceleration.

Let us now consider two sets of disjoint semi-tethered lattices, with identical

initial local expansion velocities, in a background static Minkowski space. (See

Fig. 1(a).) Observers in the first congruence apply brakes in unison to deceler-

ate homogeneously and isotropically at one rate. Observers in the second congru-
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ence do so similarly, but at a different rate. Suppose that when transformed to

a global Minkowski frame, with time t, that at each time step the magnitudes of

the 4–decelerations satisfy α1(t) > α2(t) for the respective congruences. By special

relativity, since members of the first congruence decelerate more than those of the

second congruence, at any time t their proper times satisfy τ1 < τ2. The members

of the first congruence age less quickly than members of the second congruence.

(a)

t

more deceleration
less deceleration

t i

t0

(b)

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

Fig. 1. Two equivalent situations: (a) in Minkowski space observers in separate semi–tethered
lattices, initially expanding at the same rate, apply brakes homogeneously and isotropically within
their respective regions but at different rates; (b) in the universe which is close to homogeneous and
isotropic at last-scattering comoving observers in separated regions initially move away from each
other isotropically, but experience different locally homogeneous isotropic decelerations as local
density contrasts grow. In both cases there is a relative deceleration of the observer congruences
and those in the region which has decelerated more will age less.

By the CEP, the case of volume expansion of two disjoint regions of different

average density in the actual universe is entirely analogous. The equivalence of the

circumstance rests on the fact that the expansion of the universe was extremely

uniform at the time of last scattering, by the evidence of the CMB. At that epoch

all regions had almost the same density – with tiny fluctuations – and the same

uniform Hubble flow. At late epochs, suppose that in the frame of any average

cosmological observer there are expanding regions of different density which have

decelerated by different amounts by a given time, t, according to that observer.

Then by the CEP the local proper time of the comoving observers in the denser

region, which has decelerated more, will be less than that of the equivalent observers

in the less dense region which has decelerated less. (See Fig. 1(b).) Consequently

the proper time of the observers in the more dense CIF will be less than that of

those in the less dense CIF, by equivalence of the two situations.

The fact that a global Minkowski observer does not exist in the second case

does not invalidate the argument. The global Minkowski time is just a coordinate

label. In the cosmological case the only restriction is that the expansion of both

average congruences must remain homogeneous and isotropic in local regions of
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different average density in the global average t =const slice. Provided we can

patch the regional frames together suitably, then if regions in such a slice are still

expanding and have a significant density contrast we can expect a significant clock

rate variance.

This equivalence directly establishes the idea of a gravitational energy cost for

a spatial curvature gradient, since the existence of expanding regions of different

density within an average t =const slice implies a gradient in the average Ricci

scalar curvature, 〈R〉, on one hand, while the fact that the local proper time varies

on account of the relative deceleration implies a gradient in gravitational energy on

the other.

In the actual universe, the question is: can the effect described above be signifi-

cant enough to give a significant variation in the clocks of ideal isotropic observers

(those who see an isotropic mean CMB) in regions of different density, who experi-

ence a relative deceleration of their regional volume expansions? Since we are dealing

with weak fields the relative deceleration of the background is small. Nonetheless

even if the relative deceleration is typically of order 10−10ms−2, cumulatively over

the age of the universe it leads to significant clock rate variances,2 of the order

of 38%. Such a large effect is counterintuitive, as we are used to only considering

time dilations due to relative accelerations within the static potentials of isolated

systems. Essentially, we are dealing with a different physical effect concerning the

relative synchronization of clocks in the absence of global Killing vectors. A small

instantaneous relative deceleration can lead to cumulatively large differences, given

one has the lifetime of the universe to play with. As a consequence the age of the

universe itself becomes position–dependent. Since we and all the objects we observe

are necessarily in regions of greater than critical density, on account of structure

formation we have a mass–biased view of the universe and cannot directly observe

such variations.

3. A detailed cosmological model

I proceed from an ansatz that the variance in gravitational energy is correlated

with the average spatial curvature in such a way as to implicitly solve the Sandage–

de Vaucouleurs paradox that a statistically quiet, broadly isotropic, Hubble flow

is observed deep below the scale of statistical homogeneity. In particular, galaxy

peculiar velocities have a small magnitude with respect to a local regional volume

expansion. Expanding regions of different densities are patched together so that the

regionally measured expansion remains uniform. Such regional expansion refers to

the variation of the regional proper length, ℓr = V1/3, with respect to proper time

of isotropic observers Although voids open up faster, so that their proper volume

increases more quickly, on account of gravitational energy gradients the local clocks

will also tick faster in a compensating manner.

Details of the fitting of local observables to average quantities for solutions to

the Buchert formalism are described in detail in refs. [1,4]. Negatively curved voids,
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and spatially flat expanding wall regions within which galaxy clusters are located,

are combined in a Buchert average

fv(t) + fw(t) = 1, (2)

where fw(t) = fwiaw
3/ā3 is the wall volume fraction and fv(t) = fviav

3/ā3 is the

void volume fraction, V = Viā
3 being the present horizon volume, and fwi, fvi and

Vi initial values at last scattering. The time parameter, t, is the volume–average

time parameter of the Buchert formalism, but does not coincide with that of local

measurements in galaxies. In trying to fit a FLRW solution to the universe we

attempt to match our local spatially flat wall geometry

ds2
fi
= −dτ2 + aw

2(τ)
[

dη2w + η2wdΩ
2
]

. (3)

to the whole universe, when in reality the calibration of rulers and clocks of ideal

isotropic observers vary with gradients in spatial curvature and gravitational energy.

By conformally matching radial null geodesics with those of the Buchert average

solutions, the geometry (3) may be extended to cosmological scales as the dressed

geometry

ds2 = −dτ2 + a2(τ)
[

dη̄2 + r2w(η̄, τ) dΩ
2
]

(4)

where a = γ̄−1ā, γ̄ = dt
dτ is the relative lapse function between wall clocks and

volume–average ones, dη̄ = dt/ā = dτ/a, and rw = γ̄ (1− fv)
1/3

fwi
−1/3ηw(η̄, τ),

where ηw is given by integrating dηw = fwi
1/3dη̄/[γ̄ (1− fv)

1/3
] along null geodesics.

In addition to the bare cosmological parameters which describe the Buchert

equations, one obtains dressed parameters relative to the geometry (4). For ex-

ample, the dressed matter density parameter is ΩM = γ̄3Ω̄M , where Ω̄M =

8πGρ̄
M0

ā3
0
/(3H̄

2
ā3) is the bare matter density parameter. The dressed parameters

take numerical values close to the ones inferred in standard FLRW models.

3.1. Apparent acceleration and Hubble flow variance

The gradient in gravitational energy and cumulative differences of clock rates

between wall observers and volume average ones has important physical conse-

quences. Using the exact solution obtained in ref. [4], one finds that a volume

average observer would infer an effective deceleration parameter q̄ = −¨̄a/(H̄
2
ā) =

2 (1− fv)
2
/(2 + fv)

2, which is always positive since there is no global acceleration.

However, a wall observer infers a dressed deceleration parameter

q = −
1

H2a

d2a

dτ2
=

− (1− fv) (8fv
3 + 39fv

2 − 12fv − 8)
(

4 + fv + 4fv
2
)2 , (5)

where the dressed Hubble parameter is given by

H = a−1 d
dτ a = γ̄H̄ − ˙̄γ= γ̄H̄ − γ̄−1 d

dτ γ̄ . (6)

At early times when fv → 0 the dressed and bare deceleration parameter both take

the Einstein–de Sitter value q ≃ q̄ ≃ 1
2 . However, unlike the bare parameter which
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monotonically decreases to zero, the dressed parameter becomes negative when

fv ≃ 0.59 and q̄ → 0− at late times. For the best-fit parameters17 the apparent

acceleration begins at a redshift z ≃ 0.9.

Cosmic acceleration is thus revealed as an apparent effect which arises due to

the cumulative clock rate variance of wall observers relative to volume–average

observers. It becomes significant only when the voids begin to dominate the universe

by volume. Since the epoch of onset of apparent acceleration is directly related to

the void fraction, fv, this solves one cosmic coincidence problem.

In addition to apparent cosmic acceleration, a second important apparent effect

will arise if one considers scales below that of statistical homogeneity. By any one

set of clocks it will appear that voids expand faster than wall regions. Thus a wall

observer will see galaxies on the far side of a dominant void of diameter 30h−1

Mpc recede at a rate greater than the dressed global average H0, while galaxies

within an ideal wall will recede at a rate less than H0. Since the uniform bare rate

H̄ would also be the local value within an ideal wall, eq. (6) gives a measure of

the variance in the apparent Hubble flow. The best-fit parameters17 give a dressed

Hubble constant H0 = 61.7+1.2
−1.1 km sec−1 Mpc−1, and a bare Hubble constant H̄0 =

48.2+2.0
−2.4 km sec−1 Mpc−1. The present epoch variance is 17–22%.

Since voids dominate the universe by volume at the present epoch, any observer

in a galaxy in a typical wall region will measure locally higher values of the Hubble

constant, with peak values of order 72 km sec−1 Mpc−1 at the 30h−1 Mpc scale

of the dominant voids. Over larger distances, as the line of sight intersects more

walls as well as voids, a radial spherically symmetric average will give an average

Hubble constant whose value decreases from the maximum at the 30h−1 Mpc scale

to the dressed global average value, as the scale of homogeneity is approached at

roughly the baryon acoustic oscillation (BAO) scale of 110h−1Mpc. This predicted

effect could account for the Hubble bubble18 and more detailed studies of the scale

dependence of the local Hubble flow.19

In fact, the variance of the local Hubble flow below the scale of homogeneity

should correlate strongly to observed structures in a manner which has no equivalent

prediction in FLRW models.

4. Future observational tests

There are two types of potential cosmological tests that can be developed; those

relating to scales below that of statistical homogeneity as discussed above, and

those that relate to averages on our past light cone on scales much greater than the

scale of statistical homogeneity. The second class of tests includes equivalents to

all the standard cosmological tests of the standard FLRW model with Newtonian

perturbations. This second class of tests can be further divided into tests which

just deal with the bulk cosmological averages (luminosity and angular diameter

distances etc), and those that deal with the variance from the growth of structures

(late epoch integrated Sachs–Wolfe effect, cosmic shear, redshift space distortions
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etc). Here I will concentrate solely on the simplest tests which are directly related

to luminosity and angular diameter distance measures.

In the timescape cosmology we have an effective dressed luminosity distance

d
L
= a

0
(1 + z)rw, (7)

where a0 = γ̄−1
0

ā0, and

rw = γ̄ (1− fv)
1/3

∫ t
0

t

dt′

γ̄(t′)(1− fv(t′))1/3ā(t′)
. (8)

We can also define an effective angular diameter distance, dA, and an effective

comoving distance, D, to a redshift z in the standard fashion

dA =
D

1 + z
=

dL
(1 + z)2

. (9)

A direct method of comparing the distance measures with those of homogeneous

models with dark energy, is to observe that for a standard spatially flat cosmology

with dark energy obeying an equation of state PD = w(z)ρD, the quantity

H0D =

∫ z

0

dz′
√

ΩM0(1 + z′)3 +ΩD0 exp
[

3
∫ z′

0
(1+w(z′′))dz′′

1+z′′

]

, (10)

does not depend on the value of the Hubble constant, H0, but only directly on

ΩM0 = 1 − ΩD0. Since the best-fit values of H0 are potentially different for the

different scenarios, a comparison of H0D curves as a function of redshift for the

timescape model versus the ΛCDM model gives a good indication of where the

largest differences can be expected, independently of the value of H0. Such a com-

parison is made in Fig. 2.

We see that as redshift increases the timescape model interpolates between

ΛCDM models with different values of ΩM0. For redshifts z <
∼ 1.5 DTS is very

close to DΛCDM for the parameter values (ΩM0,ΩΛ0) = (0.34, 0.66) (model (iii))

which best–fit the Riess07 supernovae (SneIa) data21 only, by our own analysis.

For very large redshifts that approach the surface of last scattering, z <
∼ 1100,

on the other hand, DTS very closely matches DΛCDM for the parameter values

(ΩM0,ΩΛ0) = (0.249, 0.751) (model (i)) which best–fit WMAP5 only.20 Over red-

shifts 2 <
∼ z <

∼ 10, at which scales independent tests are conceivable, DTS makes

a transition over corresponding curves of DΛCDM with intermediate values of

(ΩM0,ΩΛ0). The DΛCDM curve for joint best-fit parameters to SneIa, BAO mea-

surements and WMAP5,20 (ΩM0,ΩΛ0) = (0.279, 0.721) is best–matched over the

range 5 <
∼ z <

∼ 6, for example.

The difference of DTS from any single DΛCDM curve is perhaps most pronounced

in the range 2 <
∼ z <

∼ 6, which may be an optimal regime to probe in future experi-

ments. Gamma–ray bursters (GRBs) now probe distances to redshifts z <
∼ 8.3, and

could be very useful. A considerable amount work of work has already been done

on Hubble diagrams for GRBs. (See, e.g.,22) Much more work is needed to nail
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Fig. 2. The effective comoving distance H0D(z) is plotted for the best–fit timescape (TS) model,
with fv0 = 0.762, (solid line); and for various spatially flat ΛCDM models (dashed lines). The
parameters for the dashed lines are (i) Ω

M0
= 0.249 (best–fit to WMAP5 only20); (ii) Ω

M0
= 0.279

(joint best–fit to SneIa, BAO and WMAP5); (iii) Ω
M0

= 0.34 (best–fit to Riess07 SneIa only21).
Panel (a) shows the redshift range z < 6, with an inset for z < 1.5, which is the range tested by
current SneIa data. Panel (b) shows the range z < 1100 up to the surface of last scattering, tested
by WMAP.

down systematic uncertainties, but GRBs may eventually provide a definitive test

in future. An analysis of the timescape model Hubble diagram using 69 GRBs has

just been performed by Schaefer,23 who finds that it fits the data better than the

concordance ΛCDM model, but not yet by a huge margin. As more data is accu-

mulated, it should become possible to distinguish the models if the issues with the

standardization of GRBs can be ironed out.

4.1. The effective “equation of state”

It should be noted that the shape of the H
0
D curves depicted in Fig. 2 represent

the observable quantity one is actually measuring when some researchers loosely

talk about “measuring the equation of state”. For spatially flat dark energy models,

with H0D given by (10), one finds that the function w(z) appearing in the fluid

equation of state PD = w(z)ρD is related to the first and second derivatives of (10)

by

w(z) =
2
3 (1 + z)D′−1D′′ + 1

ΩM0(1 + z)3H2
0
D′2 − 1

(11)

where prime denotes a derivative with respect to z. Such a relation can be applied

to observed distance measurements, regardless of whether the underlying cosmol-

ogy has dark energy or not. Since it involves first and second derivatives of the

observed quantities, it is actually much more difficult to determine observationally

than directly fitting H0D(z).

The equivalent of the “equation of state”, w(z), for the timescape model is

plotted in Fig. 3. The fact that w(z) is undefined at a particular redshift and

changes sign through ±∞ simply reflects the fact that in (11) we are dividing by a
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quantity which goes to zero for the timescape model, even though the underlying

curve of Fig. 2 is smooth. Since one is not dealing with a dark energy fluid in the

present case, w(z) simply has no physical meaning. Nonetheless, phenomenologically

the results do agree with the usual inferences about w(z) for fits of standard dark

energy cosmologies to SneIa data. For the canonical model of Fig. 3(a) one finds

that the average value of w(z) ≃ −1 on the range z <
∼ 0.7, while the average value

of w(z) < −1 if the range of redshifts is extended to higher values. The w = −1

“phantom divide” is crossed at z ≃ 0.46 for fv0 ≃ 0.76. One recent study24 finds mild

95% evidence for an equation of state that crosses the phantom divide from w > −1

to w < −1 in the range 0.25 < z < 0.75 in accord with the timescape expectation.

By contrast, another study25 at redshifts z < 1 draws different conclusions about

dynamical dark energy, but for the given uncertainties in w(z) the data is consistent

with Fig. 2(a) as well as with a cosmological constant.3

The fact that w(z) is a different sign to the dark energy case for z > 2 is

another way of viewing our statement above that the redshift range 2 <
∼ z <

∼ 6 may

be optimal for discriminating model differences.

(a) –2

–1.5

–1

–0.5

0

0.5

1

1 2 3 4 5 6

z

w

(b) –2

–1.5

–1

–0.5

0

0.5

1

1 2 3 4 5 6

z

w

Fig. 3. The artificial equivalent of an equation of state constructed using the effective comoving
distance (11), plotted for the timescape tracker solution with best–fit value fv0 = 0.762, and two
different values of Ω

M0
: (a) the canonical dressed value Ω

M0
= 1

2
(1 − fv0)(2 + fv0) = 0.33; (b)

Ω
M0

= 0.279.

4.2. The H(z) measure

Further observational diagnostics can be devised if the expansion rate H(z) can be

observationally determined as a function of redshift. Recently such a determination

of H(z) at z = 0.24 and z = 0.43 has been made using redshift space distortions of

the BAO scale in the ΛCDM model.26 This technique is of course model dependent,

and the Kaiser effect would have to be re-examined in the timescape model before

a direct comparison of observational results could be made. A model–independent

measure of H(z), the redshift time drift test, is discussed below.

In Fig. 4 we compare H(z)/H0 for the timescape model to spatially flat ΛCDM
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models with the same parameters chosen in Fig. 2. The most notable feature is that

the slope of H(z)/H0 is less than in the ΛCDM case, as is to be expected for a

model whose (dressed) deceleration parameter varies more slowly than for ΛCDM.

2

4

6

8

10

0 1 2 3 4 5 6

(ii)
(i)

(iii)

z

H/H0

Fig. 4. The function H−1

0
H(z) for the timescape model with fv0 = 0.762 (solid line) is compared

to H−1

0
H(z) for three spatially flat ΛCDM models with the same values of (Ω

M0
,Ω

Λ0
) as in Fig. 2

(dashed lines).

4.3. The Om(z) measure

Recently a number of authors27–29 have discussed various roughly equivalent di-

agnostics of dark energy. For example, Sahni, Shafieloo and Starobinsky,28 have

proposed a diagnostic function

Om(z) =
[H2(z)

H2
0

− 1
]

[

(1 + z)3 − 1
]−1

, (12)

on account of the fact that it is equal to the constant present epoch matter density

parameter, ΩM0, at all redshifts for a spatially flat FLRW model with pressureless

dust and a cosmological constant. However, it is not constant if the cosmological

constant is replaced by other forms of dark energy. For general FLRW models,

H(z) = [D′(z)]−1
√

1 + Ωk0H
2
0
D2(z), which only involves a single derivatives of

D(z). Thus the diagnostic (12) is easier to reconstruct observationally than the

equation of state parameter, w(z).

The quantity Om(z) is readily calculated for the timescape model, and the result

is displayed in Fig. 5. What is striking about Fig. 5, as compared to the curves for

quintessence and phantom dark energy models as plotted in ref. [28], is that the

initial value

Om(0) = 2
3 H ′|0 =

2(8f3
v0 − 3f2

v0 + 4)(2 + fv0)

(4f2
v0 + fv0 + 4)2

(13)

is substantially larger than in the spatially flat dark energy models. Furthermore,

for the timescape model Om(z) does not asymptote to the dressed density param-

eter ΩM0 in any redshift range. For quintessence models Om(z) > ΩM0, while for
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z (b)

0
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0.8

1
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z

Fig. 5. The dark energy diagnostic Om(z) of Sahni, Shafieloo and Starobinsky28 plotted for the
timescape tracker solution with best–fit value fv0 = 0.762 (solid line), and 1σ limits (dashed lines)
from ref. [17]: (a) for the redshift range 0 < z < 1.6 as shown in ref. [30]; (b) for the redshift
range 0 < z < 6.

phantom models Om(z) < ΩM0, and in both cases Om(z) → ΩM0 as z → ∞. In

the timescape model, Om(z) > ΩM0 ≃ 0.33 for z <
∼ 1.7, while Om(z) < ΩM0 for

z >
∼ 1.7. It thus behaves more like a quintessence model for low z, in accordance

with Fig. 3. However, the steeper slope and the different large z behaviour mean

the diagnostic is generally very different to that of typical dark energy models. For

large z, Ω̄M0 < Om(∞) < ΩM0, if fv0 > 0.25.

Interestingly enough, a recent analysis of SneIa, BAO and CMB data30 for dark

energy models with two different empirical fitting functions for w(z) gives an in-

tercept Om(0) which is larger than expected for typical quintessence or phantom

energy models, and in the better fit of the two models the intercept (see Fig. 3 of

ref. [30)] is close to the value expected for the timescape model, which is tightly

constrained to the range 0.638 < Om(0) < 0.646 if fv0 = 0.76+0.12
−0.09.

4.4. The Alcock–Paczyński test and baryon acoustic oscillations

Some time ago Alcock and Paczyński devised a test31 which relies on comparing the

radial and transverse proper length scales of spherical standard volumes comoving

with the Hubble flow. This test, which determines the function

fAP =
1

z

∣

∣

∣

∣

δθ

δz

∣

∣

∣

∣

=
HD

z
, (14)

was originally conceived to distinguish FLRW models with a cosmological constant

from those without a Λ term. The test is free from many evolutionary effects, but

relies on one being able to remove systematic distortions due to peculiar velocities.

Current detections of the BAO scale in galaxy clustering statistics32,33 can in

fact be viewed as a variant of the Alcock–Paczyński test, as they make use of both

the transverse and radial dilations of the fiducial comoving BAO scale to present a

measure

DV =

[

zD2

H(z)

]1/3

= Df−1/3
AP

. (15)
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Fig. 6. (a) The Alcock–Paczyński test function fAP = HD/z; and (b) the BAO radial test

function H
0
D

V
= H

0
Df

−1/3

AP . In each case the timescape model with fv0 = 0.762 (solid line) is
compared to three spatially flat ΛCDM models with the same values of (Ω

M0
,Ω

Λ0
) as in Fig. 2

(dashed lines).

In Fig. 6 the Alcock–Paczyński test function (14) and BAO scale measure (15) of

the timescape model are compared to those of the spatially flat ΛCDM model with

different values of (ΩΛ0,ΩΛ0). Over the range of redshifts z < 1 studied currently

with galaxy clustering statistics, the fAP curve distinguishes the timescape model

from the ΛCDM models much more strongly than the DV test function. In particu-

lar, the timescape fAP has a distinctly different shape to that of the ΛCDM model,

being convex. The primary reason for use of the integral measure (15) has been

a lack of data. Future measurements with enough data to separate the radial and

angular BAO scales are a potentially powerful way of distinguishing the timescape

model from ΛCDM.

Recently Gaztañaga, Cabré and Hui26 have made the first efforts to separate

the radial and angular BAO scales in different redshift slices. Although they have

not yet published separate values for the radial and angular scales, their results

are interesting when compared to the expectations of the timescape model. Their

study yields best-fit values of the present total matter and baryonic matter density

parameters, ΩM0 and ΩB0, which are in tension with WMAP5 parameters fit to

the ΛCDM model. In particular, the ratio of non-baryonic cold dark matter to

baryonic matter has a best-fit value ΩC0/ΩB0 = (ΩM0 − ΩB0)/ΩB0 of 3.7 in the

0.15 < z < 0.3 sample, 2.6 in the 0.4 < z < 0.47 sample, and 3.6 in the whole sample,

as compared to the expected value of 6.1 from WMAP5. The analysis of the 3–point

correlation function yields similar conclusions, with a best fit34 ΩM0 = 0.28± 0.05,

ΩB0 = 0.079± 0.025. By comparison, the parameter fit to the timescape model of

ref. [17] yields dressed parameters ΩM0 = 0.33+0.11
−0.16, ΩB0 = 0.080+0.021

−0.013, and a ratio

ΩC0/ΩB0 = 3.1+2.5
−2.4. Since other forms of dark energy are not generally expected to

give rise to a renormalization of the ratio of non-baryonic to baryonic matter, this

is encouraging for the timescape model.
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4.5. Test of (in)homogeneity

Recently Clarkson, Bassett and Lu35 have constructed what they call a “test of

the Copernican principle” based on the observation that for homogeneous, isotropic

models which obey the Friedmann equation, the present epoch curvature parameter,

a constant, may be written as

Ωk0 =
[H(z)D′(z)]2 − 1

[H0D(z)]2
(16)

for all z, irrespective of the dark energy model or any other model parameters.

Consequently, taking a further derivative, the quantity

C(z) ≡ 1 +H2(DD′′ −D′2) +HH ′DD′ (17)

must be zero for all redshifts for any FLRW geometry.

A deviation of C(z) from zero, or of (16) from a constant value, would therefore

mean that the assumption of homogeneity is violated. Although this only consti-

tutes a test of the assumption of the Friedmann equation, i.e., of the Cosmological

Principle rather than the broader Copernican Principle adopted in ref. [1], the av-

erage inhomogeneity will give a clear and distinct prediction of a non-zero C(z) for

the timescape model.
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(b) –0.3

–0.2

–0.1

0

0.1

0.2

2 4 6 8 10 12 14 16 18 20

z

C (z)

Fig. 7. Left panel: The (in)homogeneity test function B(z) = [HD′]2 − 1 is plotted for

the timescape tracker solution with best–fit value fv0 = 0.762 (solid line), and compared to
the equivalent curves B = Ωk0(H0

D)2 for two different ΛCDM models with small curvature:
(a) ΩM0

= 0.28, Ω
Λ0

= 0.71, Ωk0 = 0.01; (b) ΩM0
= 0.28, Ω

Λ0
= 0.73, Ωk0 = −0.01.

Right panel: The (in)homogeneity test function C(z) is plotted for the fv0 = 0.762 tracker
solution.

The functions (16) and (17) are computed in ref. [3]. Observationally it is more

feasible to fit (16) which involves one derivative less of redshift. In Fig. 7 we exhibit

both C(z), and also the function B(z) = [HD′]2 − 1 from the numerator of (16)

for the timescape model, as compared to two ΛCDM models with a small amount

of spatial curvature. A spatially flat FLRW model would have B(z) ≡ 0. In other

FLRW cases B(z) is always a monotonic function whose sign is determined by that of
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Ωk0. An open Λ = 0 universe with the same ΩM0 would have a monotonic function

B(z) very much greater than that of the timescape model.

4.6. Time drift of cosmological redshifts

For the purpose of the Om(z) and (in)homogeneity tests considered in the last

section, H(z) must be observationally determined, and this is difficult to achieve in

a model independent way. There is one way of achieving this, however, namely by

measuring the time variation of the redshifts of different sources over a sufficiently

long time interval,36 as has been discussed recently by Uzan, Clarkson and Ellis.37

Although the measurement is extremely challenging, it may be feasible over a 20

year period by precision measurements of the Lyman-α forest in the redshift range

2 < z < 5 with the next generation of Extremely Large Telescopes.38

In ref. [3] an analytic expression for H−1
0

dz
dτ is determined, the derivative being

with respect to wall time for observers in galaxies. The resulting function is displayed

in Fig. 8 for the best-fit timescape model with fv0 = 0.762, where it is compared

to the equivalent function for three different spatially flat ΛCDM models. What

is notable is that the curve for the timescape model is considerably flatter than

those of the ΛCDM models. This may be understood to arise from the fact that

the magnitude of the apparent acceleration is considerably smaller in the timescape

model, as compared to the magnitude of the acceleration in ΛCDM models. For

models in which there is no apparent acceleration whatsoever, one finds that H−1
0

dz
dτ

is always negative. If there is cosmic acceleration, real or apparent, at late epochs

then H−1
0

dz
dτ will become positive at low redshifts, though at a somewhat larger

redshift than that at which acceleration is deemed to have begun.

–3
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0
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(iii)
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z

Fig. 8. The function H−1

0

dz
dτ

for the timescape model with fv0 = 0.762 (solid line) is compared

to H−1

0

dz
dτ

for three spatially flat ΛCDM models with the same values of (Ω
M0

,Ω
Λ0

) as in Fig. 2
(dashed lines).

Fig. 8 demonstrates that a very clear signal of differences in the redshift time

drift between the timescape model and ΛCDM models might be determined at low

redshifts when H−1
0

dz
dτ should be positive. In particular, the magnitude of H−1

0
dz
dτ is



May 2, 2010 11:14 WSPC - Proceedings Trim Size: 9.75in x 6.5in MG12˙proc

17

considerably smaller for the timescape model as compared to ΛCDM models. Ob-

servationally, however, it is expected that measurements will be best determined for

sources in the Lyman α forest in the range, 2 < z < 5. At such redshifts the magni-

tude of the drift is somewhat more pronounced in the case of the ΛCDM models. For

a source at z = 4, over a period of δτ = 10 years we would have δz = −3.3×10−10 for

the timescape model with fv0 = 0.762 and H0 = 61.7 km sec−1 Mpc−1. By compar-

ison, for a spatially flat ΛCDM model with H0 = 70.5 km sec−1 Mpc−1 a source at

z = 4 would over ten years give δz = −4.7× 10−10 for (ΩM0,ΩΛ0) = (0.249, 0.751),

and δz = −7.0× 10−10 for (ΩM0,ΩΛ0) = (0.279, 0.721).

5. Discussion

The tests outlined here demonstrate several lines of investigation to distinguish the

timescape model from models of homogeneous dark energy. The (in)homogeneity

test of Clarkson, Bassett and Lu is definitive, since it tests the validity of the

Friedmann equation directly.

In performing these tests, however, one must be very careful to ensure that

data has not been reduced with built–in assumptions that use the Friedmann equa-

tion. For example, current estimates of the BAO scale such as that of Percival et

al.33 do not determine DV directly from redshift and angular diameter measures,

but first perform a Fourier space transformation to a power spectrum, assuming a

FLRW cosmology. Redoing such analyses for the timescape model may involve a

recalibration of relevant transfer functions.

In the case of supernovae, one must also take care as compilations such as the

Union39 and Constitution40 datasets use the SALT method to calibrate light curves.

In this approach empirical light curve parameters and cosmological parameters – as-

suming the Friedmann equation – are simultaneously fit by analytic marginalisation

before the raw apparent magnitudes are recalibrated. As Hicken et al. discuss,40

a number of systematic discrepancies exist between data reduced by the SALT,

SALT2, MLCS31 and MLCS17 techniques even within the ΛCDM model. In the

case of the timescape model, we find considerable differences between the different

approaches.41 In principle, at present there appear to be enough supernovae to de-

cide between the ΛCDM and timescape models on Bayesian evidence, but one is

led to different conclusions depending on how the data is reduced. It is therefore

important that the systematic issues are unravelled.

The value of the dressed Hubble constant is also an observable quantity of con-

siderable interest. A recent determination of H0 by Riess et al.42 poses a challenge

for the timescape model. However, it is a feature of the timescape model that a

17–22% variance in the apparent Hubble flow will exist on local scales below the

scale of statistical homogeneity, and this may potentially complicate calibration of

the cosmic distance ladder. Further quantification of the variance in the apparent

Hubble flow in relationship to local cosmic structures would provide an interesting

possibility for tests of the timescape cosmology for which there are no counterparts
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in the standard cosmology.

A huge amount of work remains to be done to develop the timescape scenario

to the level of detail of the standard cosmology. At the mathematical level, we

need to refine the notion of coarse–graining of dust in relation to the various scales

of averaging, slicings by hypersurfaces in the evolution equations, and null cone

averages. Whatever the outcome of such investigations, I believe that it is exciting

that much remains to be still explored in general relativity. The difficult problem of

quasi-local gravitational energy in Einstein’s theory may turn out not to simply be

an arcane curiosity in mathematical relativity, but to be of direct importance for

understanding the large scale structure of the universe.
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26. E. Gaztañaga, A. Cabre and L. Hui, Mon. Not. R. Astr. Soc. 399, 1663 (2009).
27. J. A. Gu, C. W. Chen and P. Chen, New J. Phys. 11, 073029 (2009).
28. V. Sahni, A. Shafieloo and A. A. Starobinsky, Phys. Rev. D78, 103502 (2008).
29. C. Zunckel and C. Clarkson, Phys. Rev. Lett. 101, 181301 (2008).
30. A. Shafieloo, V. Sahni and A. A. Starobinsky, Phys. Rev. D80, 101301 (2009).
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