Relating Atomistic Grain Boundary

Simulation Results to the Phase-Field Model

Catherine M. Bishop * W. Craig Carter

Department of Materials Science and Engineering,
Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139

Abstract

A coarse-graining method for mapping discrete data to a continuous structural order
parameter is presented. This method is intended to provide a useful and consistent
method of utilizing structural data from molecular simulations in continuum mod-
els, such as the phase field model. The method is based on a local averaging of
the variation of a Voronoi tessellation of the atomic positions from the Voronoi tes-
sellation of a perfect crystal (the Wigner-Seitz cell). The coarse-graining method
is invariant to coordinate frame rotation. The method is illustrated with a simple
two-dimensional example and then applied to a three-dimensional relaxation simu-
lation using the silicon EDIP potential of a 35 grain boundary. Calculated results
indicate that a continuous structural parameter is obtained that has grain bound-
ary characteristics similar to phase field models of grain boundaries. Comparisons

to other coarse-graining measures of structure are discussed as well as applications
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to experimental data sets.
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1 Introduction

In this paper we describe an algorithm for coarse-graining to generate struc-
tural order parameters. Coarse-graining is the first step in deriving a con-
tinuum model, such as the phase-field model from microscopic physics or
atomistic data. Furthermore, the method is reference-frame invariant which is

important as we discuss below.

The phase-field model has been used to study dendritic solidification of binary
alloys, phase changes in ternary systems, grain growth in single component
solids, equilibrium shapes of a particle in a matrix, and grain growth with

anisotropic mobilities and grain boundary energies [1-6].

The basic premise of the phase-field model is that the phase fields represent
some coarse-graining of a physical system, or averaged physical system, com-
posed of an ensemble of atoms. The parameter fields are considered to vary

continuously as a function of position whether the system is in equilibrium or
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not. Continuity of parameters results in a “diffuse interface” that represents
the average spatial variation of a field but is understood to represent a set of
atomic coordinates. Typically, these atoms are represented by discrete points
in space. For example, physical measurements of composition or of the struc-
ture of a system are an averaging of this atomic data in space and also in time.
Molecular Dynamics (MD) or Monte Carlo (MC) experiments are a time or
phase space average, respectively, of discrete data such as atomic positions.
In order to compare atomistic simulation data to the phase-field model some

averaging must take place.

A phase-field model derives from a free energy functional that depends on
the phase fields, ¢;(Z), and ought to be constructed so that it is consistent
with observed phenomena and underlying physical behavior. The total energy,
Eq. 1, is written as an integral of the homogeneous energy density, f(¢;(Z)),
and gradient energy terms that intrinsically account for interfacial energies.

The interface is “smoothed” with typically square gradient energy penalties.

P= [ |r6@) + o] av o

The evolution of the system assures a monotonic decrease in Eq. 1 and is
determined by the evolution of the set of fields that describe it. Level sets of

¢; can be used to track interfaces.

A phase-field is a continuous description of one property of a physical sys-

tem. Multiple fields are used to study complex systems. For studies of grain



growth, Kobayashi, Warren and Carter (KWC) use a phase-field model with
two fields: the degree of crystalline order, 7(Z), and the crystallographic orien-
tation, #(%), that represents a rotation with respect to a particular laboratory
frame [4]. It should be noted that here the homogeneous energy density is
correctly reference-frame invariant. In this model, a grain boundary has a
particular signature in the two fields, n(#) and 6(Z). Suppose a grain bound-
ary is located at = 0 and runs parallel to the y-axis, the orientation 6(x)
then changes abruptly in the vicinity of x = 0 to values representative of the
abutting grain orientations, while the crystallographic order exhibits a sig-
nificantly less localized dip with a local minimum at the boundary position.
MD simulations exhibit behavior that is qualitatively similar [7,8]. This paper

describes a method that quantifies such comparisons.

Other models of grain growth that are not reference-frame invariant, such as
those proposed by Venkitachalam et al. and Kazaryan et al. , have a finite set
of long-range order parameters (LRO), n;(Z), representing the distinct orienta-
tions for each grain [9,10]. Khachaturyan has suggested a method for extract-
ing structural information, a LRO parameter, from atomistic coordinates [11].
However, this method is not reference-frame invariant and the multiple fields
from such a method are neither necessary nor correct in resulting formulations

of phase-field models for grain growth.

Khachaturyan’s method defines a reference-frame dependent LRO parameter

for each grain orientation in a simulation. For a system of grains with p dis-



tinct orientations, this results in a phase-field representation with p fields and
evolution equations. This method also prohibits the grain rotation which has
been observed experimentally, for example, in gold thin films, in 2-D nanocrys-
talline MD grain growth simulations, and is naturally included in the KWC

method [12,13,4]. Grain rotation is expected in fine-grained materials.

The radial distribution function (RDF) is used to look for non-crystalline
structures by examining the second-nearest neighbor peak. This method is
reference-frame invariant but loses the angular information that is required in
the KWC model in addition to generating a spatially averaged distribution

rather than a position dependent order-parameter field.

Other reference-frame invariant methods of characterizing structure such as
bond-center distributions, angle-cosine distributions, and invariants of spher-
ical harmonics are reviewed by McGreevy [14]. The bond center distribution
method assigns points to the center of the vectors connecting neighboring
atoms and the structure factor or radial distribution function of these is then
used to characterize the order. The angle-cosines of the vectors between neigh-
boring atoms are calculated to generate bond angle distributions that give in-
sight into the dominant local symmetry. Steinhardt et al. introduced spherical
harmonics in the description of short-range order in liquid and glass struc-
tures [15]. Comparison of the Steinhardt’s distribution in a sample to known
distributions for reference samples gives an indication of local ordering. Van

Duijneveldt and Frenkel use a rotationally invariant combination of spherical



harmonics averaged over all atoms, (Js, as an orientational order parame-
ter [16]. This single number is chosen as it is relatively insensitive to crystal
structure but at the same time sensitive to local order and disorder. Stein-
hardt’s method has been generalized with the use of Legendre polynomials by

Rodriguez de la Fuente and Soler [17].

The methods described above generate either a distribution or a single order
parameter to characterize the whole sample. The goal of this work is to find
a method of turning discrete atomic data into a field parameter, n(Z) of the
KWC phase-field model, that smoothly varies in space and measures short

range order.

An alternate way of characterizing the structure of a material in a reference-
frame independent scheme is to utilize a geometric method. Several authors
have dismissed the use of Voronoi tessellations in the characterization of order
in materials but have only considered the usefulness of the Voronoi histogram
which is very sensitive to small perturbations of the atomic positions [16,18].
However, Voronoi tessellations have been used extensively for material char-
acterization at the microstructural length-scale and to examine single and
multiple component atomic structures [19-21]. An anisotropy factor, typically
a non-sphericity, is calculated as a ratio of tessellation properties and used in

a statistical analysis.

One such analysis of single-component ordered and disordered structures was



completed by Montoro and Abascal [20]. The authors performed 3-D simula-
tions using a Lennard-Jones potential to produce data structures that they
characterize as solid, liquid, quenched liquid, and gas. The Voronoi tessella-
tion is calculated for each atom in a structure and the non-sphericity, «, given
in Eq. 2, is calculated where V is the volume, S is the surface area, and R
is the average radius of curvature of the convex body. The average radius of
curvature for a polyhedron is given in Eq. 3 where the sum is over the edges, [;
is the length of the ith edge, and ¢; is the angle between the faces intersecting
the 7th edge. The authors distinguish the different structures by examining

the histogram of the anisotropy factors.
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For each crystal structure there is a characteristic value of the anisotropy factor
for the Wigner-Seitz cell (Voronoi tessellation for the crystal). For example,
for a simple cubic crystal structure, the Wigner-Seitz cell is a cube with a,,s =
%. For non-crystalline structures the anisotropy factor has a dispersion that
characterizes a disordered system as shown in Fig. 1. Note that the average
values of a for the quenched liquid, liquid, and gas structures are greater than

Uyys-

In this paper we describe a method for reducing the wealth of data available

at the small scale to data sets needed at the larger scale of the phase-field.



The small scale data sets are discrete while the phase-field description re-
quires continuous and differentiable data. Particularly, we present a method
of analyzing atomistic data to produce a reference-frame invariant measure
of short-range structure, such as the n(#) parameter in the KWC model, us-
ing Voronoi tessellations [4]. The method is first defined in general terms for
a single component solid structure and is then applied to a relaxed ¥5 grain
boundary from a simulation at 0K in diamond cubic silicon. While the method
is applied to a particular system, this paper aims to describe a general method
of coarse-graining atomistic data. Our purpose is to find a meaningful way of

extrapolating data.

2 Method

2.1 General

In this section we describe a general method for coarse-graining atomic struc-
ture information to a continuum SRO parameter. The results from an MD or
MC simulation are a set of atomic positions, usually in three dimensions. To il-
lustrate the method it is useful to describe its application to a two-dimensional
MD grain boundary equilibration for a Lennard-Jones solid, although it is ap-

plied below to a three-dimensional data set.! From the list of positions, the

! The description of the algorithm is in three-dimensions, but the illustration in

Fig. 2 is in two. The reduction is straightforward.



Voronoi tessellation for each atom is constructed using Qhull [22], a convex
hull calculation code, and stored, as shown in Fig. 2. Qhull calculates the sur-
face area and volume of each tessellation. Using output from Qhull, required
geometric quantities, such as the mean curvature and anisotropy factor, were

calculated for each tessellation.

A cubic mesh of a given size is laid over the data so that at least 100 mesh
points fall within each tessellation. Each mesh point is assigned an anisotropy
factor, a;j; where ijk reference the mesh point, based on the tessellation in
which it falls. Next, the center of a measurement volume or aperture is placed
at some position in space, ¥, where the averaging is to be assigned. The value
of the anisotropy factor at this point, &(Z), is the average over all the a;jy

that fall within the measurement aperture.

This averaged anisotropy factor, @(Z), can be compared to that for the Wigner-
Seitz cell, au,s, to generate a coarse-grained measure of the crystalline SRO
called n(Z). Disordered solid structures may have a(Z) > au,s or () < qys.
The proposed scaling in Eq. 4, which has an upper bound of n(Z) = 1 but no
lower bound, naturally handles either case, Fig. 3. For the case when &(%) =
(s and n(Z) = 1, this corresponds to the definition of the crystalline solid as

described in the KWC model [4].



2.2 Grain Boundary Example

The above method for coarse-graining is applied to the specific example of a
Y5 grain boundary in diamond cubic silicon. The equilibrium configuration
of a ¥5 boundary at 7" = 0K and P = 0Pa was computed on a 3-D peri-
odic simulation cell in silicon using the EDIP potential developed by Bazant
et al. [23,24]. The results are qualitatively similar to previous numerical ex-
periments, for example [8,25]. The orthorhombic cell with o,, = 0 containing
two grain boundaries (at z = 0 and z = Z/2) has cell dimensions X = 8.577A,
Y =8.577A, and Z = 33.517A, or a 2.875% elongation in the z-direction. The
purpose of obtaining this structure was the procurement of a data set to illus-
trate the procedure of relating atomic positions to a continuous field variable.
The details of the simulation are less important than the relation of the results

to a continuous order parameter.

The equilibrium atomic positions were input to Qhull to calculate the Voronoi
tessellation of each atom. The anisotropy factor for each tessellation, «;, was
then calculated. Next, cubic meshes with spacings 0.5A and 0.25A were created
with O(10%) and O(10?) mesh points per tessellation, respectively. The c;;; at
each mesh point was assigned. The meshes and the corresponding o, values

were stored in a file for use in further calculations.

Both cubic and spherical apertures with characteristic sizes r = 1A and r = 2A

were used for averaging. The local value of &(#) was calculated from the
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average of the mesh values within the aperture volume and scaled to 7(Z)
using Eq. 4. Profiles were calculated at constant height, (z,v,20), and also
for variable height, (¢, yo, 2), for both meshes with measurements spaced by

0.25A in every case. The results are presented in the next section.

3 Results

Grain boundary profiles of n(xo, 3o, 2) are presented in Figs. 4 and 5. The
profiles 7(0,0, z) traverse the boundary through a grain boundary coinci-
dence lattice site in the unrelaxed structure. The other profiles at (2,2, 2)
and (3.5, 3.5, 2) pass through arbitrary points in the grain boundary. It should
be noted that no computational calculation generates a truly continuous vari-
able but only a variable that can be sampled anywhere in a domain such as

this n(Z).

It is apparent that the 0.25A mesh approximates the intersection of the aper-
ture with each tessellation better than the 0.5A mesh. The 2A aperture gen-
erates a smoother profile than the 1A aperture. Also, the spherical aperture
produces a smoother profile than the cubic aperture. The smoothest profiles
are generated for the 0.25A mesh with a spherical aperture of radius 2A. The
larger aperture and smaller mesh size mean that more points are averaged
for each measurement. The spherical aperture has higher symmetry than the

cubic aperture, thus reducing geometric noise in the averaging.
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These profiles show that there is some non-crystallinity between the center of
each simulated grain and the center of the grain boundary. Just to the side
of the center of each grain there is a small deviation from unity. This is an
effect of the exact method of the relaxation simulation. The large deviation

from unity is the hallmark of the grain boundary itself.

These profiles resemble those diffuse interfaces found in the phase-field model
representing grain boundaries. The smaller the mesh size and the smaller the
sampling distance, the smoother the grain boundary profiles should become.
However, convergence is hard to define for this coarse-graining technique. For
the “smoothest” profile (i.e., 0.25A mesh and 2A spherical aperture) the devi-
ation from perfect SRO is 4.8% at (2, 2, z). In contrast, the maximum variation

within the (x,y,8) plane section (i.e., in the crystalline region) is 0.09%.

4 Discussion

The coarse-graining method above generates a short-range structural order
parameter. The local measure of SRO in the system, not LRO, should control
the structural contribution to the total energy. In fact, this is the basic as-
sumption in the phase-field model: that the energy density is local. The local
energy density is represented as the Taylor expansion of the homogeneous en-
ergy about small gradients in the phase fields. So the energy that is written for

an infinitesimal volume element should be in terms of SRO for the structural

12



part. In other words, when comparing the energies of two infinitesimal regions
in a material both with the structure of perfect crystal but the first surrounded
by perfect crystal and the second by liquid-like structures, the difference in

energy should come from the gradient energy terms in the functional.

Other characterization methods are unsuitable for the generation of n(Z) in
this application. The RDF contains no angular information and is a distri-
bution not a scalar or vector field. Bond-center and bond-angle distribution
functions are unsuitable as they also output a distribution. The methods based
on spherical harmonics are non-local in the sense that they generate a single
reaction coordinate to characterize the short-range orientational order, not a
position dependent field. However, it may be possible to construct a method
of generating an order-parameter field derived from the spherical harmonics
but the method presented here is computationally and conceptually straight-

forward.

In this method, the mesh is used as a way of approximating the geometry
of each tessellation. The best method is to find the exact intersection of the
measuring aperture and each tessellation. This is straightforward for the cu-
bic aperture using Qhull. However, in order to find the intersection with the
spherical aperture, the sphere must be approximated as a convex polyhedron
with very many faces. Finding the intersection of the volumes is equivalent to
finding the convex hull of the tessellation and the approximated sphere. Qhull

is capable of this but is much slower than the proposed stored-mesh method

13



and must be performed for every sampling.

Another possible averaging technique is to spread the properties of each atom
out in space according to a Gaussian relation. In other words, treat the
anisotropy factor like a position dependent quantity with a probability density
given by a Gaussian distribution. The averaged anisotropy factor at a point &

is given by:

— —=+\2
o Q; — (-7
) =3 S o | B 5
In the above, the sum is over all the atoms 7, «; is the anisotropy factor of the
tessellation corresponding to the atom, ¥; is the location of the atom, and o
is the standard deviation of the distribution or a measure of the spread. We

attempted to use this method but &(Z) doesn’t exhibit the required uniform

value in a perfect crystal, even for large o.

The coarse-graining method demonstrated in this paper has been illustrated
for a single component solid simulation. The same method is equally applicable
to multicomponent substitutional solid solutions as long as the atomic radii
of species are similar. Then the geometry of the Voronoi tessellation of every
atom in the perfect crystal at any composition is identical. The composition
is measured with another phase-field and so should not be taken into account

in the structural measure.

The scaling from &(%) to n(Z) here, Eq. 4, is sufficient for solid systems with

some structural disorder. However, it is possible that liquids and gases will
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have (%) > 2ay, and, therefore, n(Z) < 0, Fig. 1. For liquids and gases, a
normalizing value different from «a,,; may be needed, such as the average a(%)

for the liquid or gas.

The coarse-graining method was illustrated with an example of a simulated
grain boundary relaxed at zero temperature. For non-zero temperature simu-

lations, there is a further complication due to thermal noise.

In MC simulations, phase space is sampled using, for example, the Metropolis
algorithm to hone the sampling. After a large number of steps, the equilibrium
state is that which has the most occurrences in phase space. This equilibrium
configuration, set of positions, can be input directly into the coarse-graining

method.

However, for MD, the atoms are moved around according to the force on each
atom. When the total energy converges to a roughly constant (minimum)
value or the force on each atom drops below some limit, the system is taken
to be equilibrated for constant temperature simulations. However, thermal vi-
brations (Debye-Waller effect) mean that the atoms are moving about their
equilibrium positions. Commonly, the trajectories of the atoms are then fol-
lowed and averaged to give the equilibrium positions which may be input to

the coarse-graining method.

One problem with the phase-field model is the artificial spreading of the inter-

face. Using this coarse-graining method, the structural width of the interface
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is also increased. This method, therefore, allows a direct comparison between
atomistic grain boundary simulations and phase-field simulations. Boundary
energies, widths, and mobilities can be computed from a phase-field model and
matched to those generated from coarse-graining simple atomistic simulations.
This will allow for the incorporation of small-scale physics into larger-scale

phase-field calculations on complicated microstructures.

The relatively new three-dimensional atom probe (3DAP) provides data on
the spatial distribution of chemical species evaporated from the tip of a probe
[26,27]. The spatial resolution of the technique is 2A laterally and 0.6A in the
perpendicular direction for a pure metal [26]. The effectiveness of this method
applied to ceramic systems exhibiting intergranular glassy films should be
limited by thermal effects and the difference in ionization potentials for the
constituents. However, using MD or MC experiments in concert with 3DAP
can provide data sets for coarse-graining. These results can be used to develop

phase-field models.

5 Conclusions

A structural method for coarse-graining discrete atomic data to produce a
continuous, differentiable measure of SRO using Voronoi tessellations has been
developed. The method was applied to simulation results for a 35 grain bound-

ary in silicon. The coarse-grained profiles of the structural order parameter,

16



n(xq, Yo, 2), reveal a smooth profile across the interface similar to the results

of phase-field simulations [4].

The method as described above can be applied readily to MD or MC simula-
tions of any multicomponent, iso-structural, solid system. The normalization
may need to be adjusted for application to liquid and gas systems. The method
is reference-frame invariant as it is based on the geometric properties of the
Voronoi tessellations of discrete atomic positions and produces a continuous

parameter suitable for phase-field simulation.
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Nonsphericity Probability Dstribution
10

Fig. 1. Schematic of Fig. 6 from Montoro and Abascal showing non-sphericity for
some generated structures [20]. S is solid curve, L liquid, G glass, and @ quenched
liquid structure. The average a for each structure (except solid) is significantly

larger than ay,; = 1.117.
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n Profileat (x,3) for 0.1 Mesh

Fig. 2. Illustration of averaging method on averaged results of MD tilt boundary

M

equilibration of Lennard-Jones solid. The anisotropy factor here is defined as 8 = %

where L is boundary length and A is area of the tessellation. We select this form
instead of the two-dimensional equivalent of the non-sphericity, the non-circularity,
because the mean radius of curvature for the Wigner-Seitz cell is identically zero.
The normalization from 3(F) to n(¥) is chosen as n =1 — msﬂ_% (a) Schematic
of equilibrium-averaged atomic positions for complete set. (b) Voronoi tessellations
are constructed from a central subset of positions. The anisotropy, f;, is calculated
for each tessellation. (c) A square mesh is laid over the tessellations. The value of
Bi; for each mesh point is determined from the tessellation in which it lies. (d) The
measurement aperture of size r is centered at (x,y) and the local value of B(:I:,y)
is the average of all mesh points that fall within the aperture. (e) Example of n(Z)
profile perpendicular to grain boundary. Note local deviation of 7(%) in vicinity of

grain boundary at z = 0.
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Fig. 3. Proposed scaling of «(%) to n(#). Note that a(Z) > 0 (n(Z) < 1) but there

is no upper bound on «(f), or equivalently, no lower bound on 7(Z%).
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Fig. 5. Comparison of 7(Z) profiles across the grain boundaries based on 0.25A

tessellation mesh with different aperture shapes and sizes. (a) at (0,0,z) (b) at

(2,2.2) (c) (3.5,3.5,2).
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