
University of Canterbury

Master’s Thesis

A formal correctness proof of Bor̊uvka’s
minimum spanning tree algorithm

Author:
Nicolas Robinson-O’Brien

Supervisor:
Walter Guttmann

October 27, 2020

ii

Abstract

Prior work has described an algebraic framework for proving the correctness of Prim’s and
Kruskal’s minimum spanning tree algorithms. We prove partial correctness of an additional min-
imum spanning tree algorithm, Bor̊uvka’s, using the same framework. Our results are formally
verified using the automated deduction capabilities of the Isabelle proof assistant. This further
demonstrates the suitability of the algebraic framework as a sound abstraction for reasoning
about weighted-graph algorithms.

iii

Contents

1 Introduction 1
1.1 A description of Bor̊uvka’s MST algorithm . 1
1.2 Significance of Bor̊uvka’s MST algorithm . 2
1.3 Formal verification . 2

1.3.1 Proof assistants . 3
1.3.2 Isabelle/HOL . 3

1.4 Aim of this thesis . 4
1.5 Organization of this thesis . 4
1.6 Contributions . 5
1.7 Related work . 5

2 Background 7
2.1 Graphs . 7

2.1.1 Undirected graphs . 7
2.1.2 Directed graphs . 9

2.2 Minimum spanning trees . 10
2.2.1 Prim’s and Kruskal’s MST algorithms . 11
2.2.2 Bor̊uvka’s MST algorithm . 11

2.3 Algebras for reasoning about graphs . 14
2.3.1 Relations . 15
2.3.2 Orders . 18
2.3.3 Lattices . 19
2.3.4 Relation algebras . 20
2.3.5 Stone relation algebras . 21
2.3.6 Stone-Kleene relation algebras . 24

3 Formalization of Bor̊uvka’s MST algorithm 26
3.1 An operation to select components . 26
3.2 Formalization description . 29
3.3 Operation details . 30

3.3.1 Processing components . 30
3.3.2 Component selection . 31
3.3.3 Arc selection . 31
3.3.4 Preservation of injectivity . 31
3.3.5 Proving properties in m-k-Stone-Kleene relation algebras 33

4 Correctness of Bor̊uvka’s MST algorithm 34
4.1 Proof overview . 34
4.2 A reachability structure for forests . 35

4.2.1 Properties of E-forests . 37
4.2.2 E-forest paths . 38

iv Contents

4.2.3 Arc weight comparison in c(h)-forests . 39
4.3 Conditions and invariants . 39

4.3.1 Specification . 39
4.3.2 The outer loop . 40
4.3.3 The inner loop . 41

4.4 Proof . 42
4.4.1 A selection of general results . 42
4.4.2 Establishing invariants . 42
4.4.3 Maintaining invariants . 43
4.4.4 Maintaining the relationship between f and the c(h)-forest 43
4.4.5 Maintaining arc weight comparison in a c(h)-forest 44
4.4.6 Extending f to a minimum spanning forest 48

5 Conclusion 50
5.1 Limitations and future work . 50
5.2 Discussion . 51

Bibliography 56

A An intuition for the weighted-graph instance notation 57

B Isabelle/HOL theory 59
B.1 Weakly connected components . 59
B.2 Bor̊uvka’s minimum spanning tree algorithm . 61

B.2.1 General results . 61
B.2.2 An operation to select components . 68
B.2.3 m-k-Stone-Kleene relation algebras . 71
B.2.4 Formalization and proof of Bor̊uvka’s minimum spanning tree algorithm . 121

v

List of Figures

2.1 Examples of undirected graphs. 8
2.2 A graph, E, and three of its subgraphs F , G, and H. 8
2.3 Examples of digraphs. 9
2.4 A graph and its two minimum spanning trees. 10
2.5 The operation of Bor̊uvka’s MST algorithm. 12
2.5 The operation of Bor̊uvka’s MST algorithm (continued). 13
2.6 Input graphs to Bor̊uvka’s MST algorithm need to have distinct edge weights. . . 14
2.7 The universal, L, and empty, O, relations. 15
2.8 An interpretation of relation composition for digraphs. 16
2.9 An interpretation of the reflexive-transitive closure for digraphs. 17
2.10 An interpretation of relation transposition for digraphs. 17
2.11 Representing digraphs with equivalence relations. 18
2.12 A partial order of divisibility. 19
2.13 An example of the m operation on a graph. 25

3.1 An operation to select a component. 28
3.2 A relational formalization of Bor̊uvka’s MST algorithm. 30
3.3 An example of component selection for a graph with six vertices and arcs. 32
3.4 Preservation of injectivity when adding an arc to the rooted directed forest. . . . 32

4.1 An example E-forest. 35
4.2 Examples of structures that do not satisfy the axioms of an E-forest. 36
4.3 Examples of c(h)-forest-paths. 38
4.4 Maintaining the invariant with case distinctions. 45
4.5 Maintaining the invariant that f can be extended to a minimum spanning forest. 49

A.1 A depiction of how 2S denotes a power set. 57
A.2 An intuition for how R′A×A denotes the set of weighted graphs. 58

1

Chapter 1

Introduction

In 1926, Otakar Bor̊uvka formalized the Minimum Spanning Tree (MST) problem and proposed
a solution to it [14]. He was perhaps the first person to do so [34]. Bor̊uvka’s MST algorithm
computes a minimum spanning tree of a weighted, connected, undirected graph whose edge
weights are distinct.

Bor̊uvka’s original paper is written in Czech; translations of varying completeness can be
found in [34, 63]. The MST problem has since been redefined using the language of graph theory
that is more readily understandable, for example, in [20, 78].

Bor̊uvka’s MST algorithm has been independently rediscovered by Choquet [18], Florek et
al. [25], and Sollin [79]. Some of the work discussed in this thesis is based on the identical
algorithms presented by these other authors. However, for simplicity, such work will be referred
to under the title of Bor̊uvka’s MST algorithm.

1.1 A description of Bor̊uvka’s MST algorithm

We use standard terminology to describe the MST problem and Bor̊uvka’s MST algorithm [75].
Recall that a graph is composed of a set of vertices and a set of edges, where each edge joins
two vertices. An edge may have a cost associated with it, called the edge’s weight. A graph
that contains no cycles is a forest. If there is a sequence of one or more edges between all pairs
of vertices in the graph then we say the graph is connected. We call a connected graph that
contains no cycles a tree. We call a maximal collection of vertices that are connected in a graph
a component. Each component of a forest is a tree.

The MST problem is concerned with finding a subset of the edges of a graph that form a tree,
connecting the graph’s vertices, where the sum of the weights of the edges is minimal [78]. Since
a MST algorithm can find the minimal-cost subset of edges that maintains connectivity, the
problem has applications in the design of networks, for example, computer, telecommunication,
and transportation networks.

Bor̊uvka’s MST algorithm operates as follows. The algorithm takes, as input, an undirected,
connected, distinctly-weighted graph. Next, a forest is initialized with n trees, each containing
a single vertex, where n is the number of vertices in the graph. While there is more than one
tree in that forest, the following step is repeated. For each tree in the forest, find the edge in
the graph with the smallest weight among all edges that leave the tree; all edges found in this
way are then added to the forest.

By rephrasing this description, it can solve the more general minimum spanning forest prob-
lem, that is, to find a subset of the edges of a graph, g, that form a tree for each component
of g where the sum of the weights of the edges is minimal. The algorithm starts the same, by
initializing a forest to n trees, each containing a single vertex, where n is the number of vertices
in the graph. Then, while there are any trees in the forest that could be connected by edges in
the graph, the following step is repeated. For each tree that could be connected to another in

2 Chapter 1. Introduction

the forest by an edge in the graph, find the edge with the smallest weight among all edges that
leave the tree; all edges found in this way are then added to the forest.

A contemporary description of the implementation of Bor̊uvka’s MST algorithm can be found
in [80].

1.2 Significance of Bor̊uvka’s MST algorithm

Typically, algorithm textbooks focus on the MST algorithms of Kruskal [54] and Prim [74], such
as in [20, 24, 30]. In [78], the authors classify Bor̊uvka’s MST algorithm as a less well-known
MST algorithm and do not give an implementation. However, Bor̊uvka’s MST algorithm is not
merely a historic novelty. It has influenced and been the basis for significant improvements in
the running-time complexity of MST algorithms.

Often improvements of running-time complexity come by way of the use of different data
structures. In 1975, Yao published a modified version of Bor̊uvka’s MST algorithm with running-
time complexity O(e · log log v), where e is the number of edges and v is the number of vertices
[84]. Fredman and Tarjan [27] found an implementation using Fibonacci heaps with a running-
time complexity of O(e ·β(e, v)), where β(e, v) = min{i | log(i) v ≤ e/v} is a very slowly-growing
function similar to the iterated logarithm function [20]. Their work was improved by Gabow et
al. to O(e · log β(e, v)) [28]. Our verification will not be concerned with running-time complexity
or efficient data structures.

Another promising approach is to make use of parallelism. It is noted that in each iteration
of Bor̊uvka’s MST algorithm, the selection of an edge for each component of the current forest
does not depend on any other edge selection. For this reason, the algorithm is well suited for
parallelism. Our verification will be of a sequential version of Bor̊uvka’s MST algorithm, not a
parallel version.

Chazelle’s MST algorithm makes use of Bor̊uvka’s MST algorithm and has a running-time
complexity of O(e ·α(e, v)), where α is the inverse of Ackermann’s function [16]. This is a nearly
linear running-time complexity. It is not known whether a linear-running-time, deterministic
MST algorithm exists.

Karger has modified Bor̊uvka’s MST algorithm to create a randomized MST algorithm with
an expected linear-running-time complexity O(e) [51].

1.3 Formal verification

Formal verification is an approach to reliability assurance for computer software where a higher
level of guarantee is given by way of reasoning about a specification and a program that is shown
to satisfy that specification. A specification describes what is expected of a program.

Often, the reliability of algorithms is managed by manual or automated tests. It is not
possible for such an empirical method of reliability testing to provide verification that any
but the simplest algorithms are correct. Rather, a failed test will verify that a program is
incorrect. Instead, a formal mathematical proof may be used to verify that an algorithm meets
its specification, that is, the algorithm will produce the correct output for all possible inputs. The
correctness of an algorithm can be formally proved, in the sense that it meets its specification,
by expressing the semantics of the algorithm. This amounts to expressing the algorithm and the
specification mathematically, and then using logic to show that the mathematical expression of
the algorithm satisfies the mathematical expression of the specification.

The associated problem of manual proof-verification may be somewhat alleviated by the use
of a program, such as a proof assistant, that is capable of mechanically verifying proofs.

3 Chapter 1. Introduction

1.3.1 Proof assistants

There are many proof assistants available. See, for example, the survey [12] and book [83]. The
purpose of such proof assistants is to automatically verify mathematical proofs and in some
cases assist with proof finding. Some of the more prominent proof assistants include Coq [7],
HOL [32], Mizar [62], and Isabelle/HOL [69]. All of these proof assistants include proof libraries
of formally verified mathematics, for example, sets, relations, natural numbers, and integers.

Coq is an interactive proof assistant that facilitates the production of specifications and pro-
grams which are proved to be consistent with those specifications. It implements a mathematical
language Gallina, based on the Calculus of Inductive Constructions, that combines higher-order
logic and a richly-typed functional programming language. Coq differs from many other proof
assistants in that it provides a mechanism to extract a working program from the proof. There
are plugins that enhance Coq with automated proof-finding tools, for example, SMTCoq [23].

HOL is an interactive proof assistant for the form of predicate logic by the same name.
It is released with built-in proof-finding tools and a mechanical verification system. To avoid
confusion we will not make any further references to this proof assistant and in the remainder
of this thesis, Higher Order Logic (HOL) should be taken to mean the form of mathematical
predicate logic.

Mizar consists of an input language for the formalization of proofs and a mechanical verifi-
cation tool. The language is close in appearance to mathematics, and therefore lends itself to
be more readily understood by a person schooled in mathematics but unfamiliar with Mizar.

Isabelle/HOL has similar features. It allows both manual proof-writing as well as providing
proof-finding tools and allowing the use of external proof-finding tools. It has a proof verification
system and an expressive language similar to mathematics. It is most sensible for us to use
Isabelle/HOL due to the extensive related work that has already been done in this system.

1.3.2 Isabelle/HOL

We chose to use Isabelle/HOL to produce the formal verification of Bor̊uvka’s MST algorithm.
This was primarily because the algebraic framework that our work builds on and a substantial
number of relevant lemmas had already been published in the Archive of Formal Proofs, a
repository of proofs that have been verified by Isabelle/HOL.

Our Isabelle/HOL theory artifact begins by inheriting useful library files, including a library
for Hoare logic proofs and the theory files that include the definition of the algebraic framework
that our proof is based in. We work in m-k-Stone-Kleene relation algebras. This is an algebra
based on m-Kleene algebras, discussed in Section 2.3.6.

Isabelle/HOL provides utilities that simplify proof development. A list of lemmas is pre-
sented in a separate pane. Fast navigation hotkeys are available to jump to key definitions and
navigation history is maintained so that a user is able to return to their previous editing posi-
tions. The proof state at the cursor position, in particular the proof subgoal, is also presented
in a separate pane.

We have relied heavily on Sledgehammer, a proof-finding tool that is integrated with Is-
abelle/HOL [73]. Sledgehammer attempts to automatically find proofs for goals by making
requests to various automatic theorem provers. The proofs that are found are then verified
by Isabelle/HOL. Sledgehammer has heuristics to select relevant lemmas that are available in
the scope of the proof goal. These lemmas are provided to the automatic theorem provers. In
order to discharge proof goals without this tool, the author would need to know the name of the
lemmas required that prove each goal. This is a considerable ask, especially for an author who
is unfamiliar with the available lemmas that may be spread out over many proof files. While
Sledgehammer is not typically able to find proofs for complex goals, it has been a valuable
addition.

4 Chapter 1. Introduction

Finally, we have used a Hoare-logic verification generator library that comes with Is-
abelle/HOL [65, 66]. This library has allowed us to input our formalized algorithm, from
Section 3.2, and have a list of proof goals generated that, once satisfied, imply that the
algorithm is correct. We show partial correctness. This means that whenever the input satisfies
the precondition and the algorithm terminates, its output satisfies the postcondition. We
discuss the work required to prove termination in Chapter 5.

1.4 Aim of this thesis

The aim of our research is to provide a machine-verified formal partial-correctness proof for
Bor̊uvka’s MST algorithm using Isabelle/HOL. To our knowledge, there is no formal proof of
correctness for this algorithm, machine-verified or otherwise.

Guttmann has recently introduced new algebras [44] that have proved useful for reason-
ing about weighted-graph algorithms. In particular, they have been used to complete total-
correctness proofs of both Prim’s and Kruskal’s MST algorithms. We intend to use the same
algebras to further demonstrate their suitability as a framework for reasoning about weighted
graphs in general and constructing proofs for MST algorithms in particular.

1.5 Organization of this thesis

In Chapter 2 we discuss mathematical structures that we use in our work.
In Section 2.1 we give definitions for various graph structures and concepts that we use

throughout the paper. Almost all of these are standard in the literature. Of particular impor-
tance is the rooted directed forest, a structure that we use often in our proof.

In Section 2.2 we discuss minimum spanning trees in general. We give a definition of
Bor̊uvka’s MST problem in Section 2.2.2 as well as an example of its operation. Some notable
differences to Kruskal’s MST algorithm are also mentioned.

In Section 2.3 we discuss binary relations. There is a straightforward model of a directed
graph as a relation. Binary relations provide a good base to reason about unweighted graphs
and, with some changes to the algebraic structure, weighted graphs. Our proof is based on an
existing algebraic framework and we give definitions for these structures and discuss ideas that
are used in the remainder of the thesis.

In Chapter 3 we introduce the algebras that our formalization and proof are completed in
as well as present and describe our formalization of Bor̊uvka’s MST algorithm.

In Section 3.1, we introduce m-k-Stone-Kleene relation algebras, that our proof is completed
in. An m-k-Stone-Kleene relation algebra combines m-Kleene relation algebras, discussed in
Section 2.3.6, the Tarski rule and a new binary operation, k, that models the selection of a
component in a graph.

In Section 3.2 we present our formalization of Bor̊uvka’s MST algorithm. We make three
changes to the algorithm as it is described in Section 2.2.2. The first is that our formalization
uses a variable to track a forest. As the algorithm progresses, this forest grows to be the MST.
The second is that the formalization solves the minimum spanning forest problem. In the case
where the input graph is connected the output forest will be a tree. Lastly, we do not require
that the input graph’s edge weights are distinct. Instead, we predicate the addition of an edge
to the forest variable on the condition that such an addition will not create a cycle.

In this thesis, we include the Isabelle/HOL theory in Appendix B. We do not discuss all the
theorems contained in it, though we do discuss a selection of them in Chapter 4.

In Section 4.2 we introduce a new abstraction, E-forests, that is used in our proof to reason
about reachability in the remainder of Chapter 4.

In Section 4.3 we formally specify what it means to be a minimum spanning forest, that is,
what the output of our formalization should satisfy. Additionally, we give the invariants used

5 Chapter 1. Introduction

to show that the specification is met.
In Section 4.4 we discuss how our invariants are established and maintained. We provide

several examples, in various levels of detail.

1.6 Contributions

The main contributions of our work are:

• A new algebraic structure, k-Stone relation algebras, that extends Stone relation algebras
with a component selection operation, k. The k operation models selection of components
in graphs. We also introduce m-k-Stone-Kleene relation algebras, an algebraic structure
that combines k-Stone relation algebras, m-Kleene algebras and the Tarski rule. Our
formalization of Bor̊uvka’s MST algorithm and its partial-correctness proof is done in
these algebras. These contributions are presented in Section 3.1.

• A formal specification of Bor̊uvka’s MST algorithm, presented in Section 3.2.

• A new abstraction, E-forests, that we use to model reachability, presented in Section 4.2.

• A Hoare-logic formally-verified partial-correctness proof of Bor̊uvka’s MST algorithm, dis-
cussed in Section 4.4.

• Formal verification of our proof as Isabelle/HOL theorems, included in Appendix B.

1.7 Related work

A formal proof reasons about correctness using a step-by-step argument expressed in a formal
language such as mathematics, while an informal proof does not. The correctness of graph
algorithms in general, and MST algorithms in particular, have typically been argued informally,
for example, in [20, 78]. Bor̊uvka included such an informal proof of his MST algorithm in his
original work [14].

Relation algebras provide a framework to reason about and develop unweighted-graph algo-
rithms. An unweighted graph has a direct representation as a Boolean matrix and hence a binary
relation. Such relations may represent both directed and undirected graphs. It is therefore not
surprising that relation algebras have been used to reason about unweighted graph algorithms
with some success.

In [52], the authors use relation algebras to improve computation performance for the mini-
mum vertex cover, maximum clique, and maximum independent set problems. In [5], the authors
present a relation-algebraic approach to the tournament choice problem. This involves the com-
putation of choice sets using relation algebra and RelView [3, 4], a software system that assists
with computation on Boolean matrices.

In [6], the authors use relation algebras to compute spanning trees of undirected graphs.
A proof is also given for a variant of Prim’s MST algorithm using relation algebras. The
proof includes arguments about the Galois connection between incidence relations and adjacency
relations. While the incidence relations make computation more difficult, they provide a more
convenient base to generalize with weighted graphs. No automated proof is provided. However,
an implementation of the algorithm is given in RelView. The authors discuss how the use of
a formal calculus that allows automated verification would be more ideal than the informal
approach taken.

Relation algebras are not so suitable for reasoning about weighted graphs, so some authors
have looked to other algebraic frameworks for this purpose. Semirings have been applied to path
finding problems in graphs [31, 49]. Mohri discusses the application of semirings to weighted-
graph shortest-path problems in [61]. The author notes that other authors have also investigated

6 Chapter 1. Introduction

the use of semiring frameworks with respect to the all-pairs shortest-distance problem. A formal
proof is given, though it is not machine-verified.

A general algebraic framework for the MST problem is introduced in [9]. It leverages
constraint-based semirings and is inspired by the work of Mohri. The paper includes a proof of
a variant of Kruskal’s MST algorithm. The proof is informal and not automated.

In [68], the authors survey recent work formally verifying algorithms from the algorithm
textbook by Cormen et al. [20].

Use has been made of theorem provers to construct machine-verified proofs for some MST
algorithms. A distributed MST algorithm by Gallagher et al. [29] was formally proved correct
by Hesselink [48] in the Nqthm framework [15]. Abrial et al. use the B event-based method in
the Atelier B environment to show the correctness of Prim’s MST algorithm [1].

A proof, machine-verified by Referee [71], is presented in [72] showing that a connected claw-
free graph has a Hamiltonian cycle in its square and, if it has an even number of vertices, owns
a perfect matching.

A formal verification has been constructed in [56] for Dijkstra’s single source shortest path
algorithm, Prim’s MST algorithm, and the Ford-Fulkerson maximum network flow algorithm.
It is a machine-verified proof written in Mizar [62].

A library for proving various properties of graph theory is presented in [22]. The library is
written in Coq [7] and is used to formally verify: Menger’s theorem, the excluded-minor char-
acterization of treewidth-two graphs, and a correspondence between multigraphs of treewidth
at most two and terms of certain algebras. A formal verification, also written in Coq, of the
iterated register coalescing algorithm is presented in [10]. This paper includes a proof that the
algorithm terminates.

A graph library [70] has also been constructed for Isabelle/HOL [69]. It covers simple graphs
and multigraphs. A formalization of planar graphs was constructed as part of the Flyspeck
project [67] in Isabelle/HOL.

A formal verification is given in Isabelle/HOL for two network flow algorithms, Edmonds-
Karp and generic push–relabel, in [55]. The time complexity bounds, O(V E2) and O(V 2E)
respectively, are also formally verified in that paper.

Guttmann presents a Stone-Kleene relation-algebraic framework, in [43], and uses it to for-
mally verify Prim’s MST algorithm. The algebra permits instantiation by weighted matrices.
He extends this work in [44] including a proof of Kruskal’s MST algorithm. This is a proof of
total correctness, that is, the algorithm is shown to terminate. Use is made of Isabelle/HOL
and its integrated, automated theorem provers to mechanically verify these results. The relevant
Isabelle/HOL theorems, in particular those of Stone relation algebras [40], Stone-Kleene relation
algebras [39], and aggregation algebras [41], are included in the Archive of Formal Proofs.

Our work is based on the work by Guttmann and we have been able to reuse many results
from his work. The verification of both Prim’s and Kruskal’s MST algorithms use Hoare logic
and the majority of both proofs are performed in Stone-Kleene relation algebras. The proof of
Kruskal’s MST algorithm is particularly related to our work because, similar to Bor̊uvka’s MST
algorithm, it is concerned with growing a forest whereas Prim’s MST algorithm grows a tree.
This is discussed further in Section 2.2.1.

Guttmann gives different formal specifications of the MST problem for Prim’s and Kruskal’s
MST algorithms. The specification for Prim’s MST algorithm outputs a tree whereas the spec-
ification for Kruskal’s MST algorithm outputs a forest. Guttmann notes that it should be
possible to modify the proof of Prim’s MST algorithm so that it uses the same specification as
for Kruskal’s MST algorithm since trees are a special case of forests.

We use the minimum spanning forest specification given for Kruskal’s MST algorithm since
a forest structure is more suitable for our work. This specification is discussed in Section 4.3.1.
The MST problem is defined at the start of Section 2.2.

7

Chapter 2

Background

Many mathematical structures are used in this thesis. In this chapter, we give definitions for
these structures and discuss concepts that will be used. We introduce terminology that is used to
discuss the operation of Bor̊uvka’s MST algorithm as well as our correctness proof. In particular,
we describe graphs, MSTs, relations, orders, lattices, and Stone algebras.

2.1 Graphs

We start with graphs. Many textbooks are available that further discuss properties of graphs
[13, 26, 30, 33, 46, 75, 82]. The definitions we use come from [26]. Note that for our applications
we consider only finite graphs.

Though it is possible to have graphs comprised of both directed and undirected parts, in this
thesis, when referring to a graph, we will either be talking about an undirected or a directed
graph. When introducing MST algorithms in Section 2.2, we will be talking exclusively about
undirected graphs. However, our proof is done with directed graphs.

2.1.1 Undirected graphs

An undirected graph (graph), G = 〈V , E〉, is a pair of sets, V and E, where V is non-empty
and finite and E may be empty and is also finite. V is the set of vertices in G and E is the set
of edges in G. Each edge has a set of one or two vertices associated with it that are called its
endpoints.

A loop is an edge that joins a single vertex to itself. Therefore, a loop has only one endpoint.
For example in Figure 2.1(a), vertex a is the endpoint of a loop. A multi-edge is a collection
of two or more edges that have identical endpoints. For example, vertices e and d share two
edges in Figure 2.1(a). We do not deal with graphs containing multi-edges, so every edge can
be uniquely identified by its endpoints.

An edge is said to be incident to a vertex that it connects to and two vertices are called
adjacent if they are connected by an edge. For example, in Figure 2.1(b), edge e3 is incident to
vertices a and c while vertex d is adjacent to no vertices.

A walk in a graph is an alternating sequence of vertices and edges (v0, e1, v1, e2, . . . , en−1,
vn−1, en, vn), such that for i = 1, . . . , n, the vertices vi−1 and vi are the endpoints of the edge
ei. A walk is closed if v0 is the same as vn, otherwise, it is open.

A trail is a walk where no edge occurs more than once. A path is a trail, (v0, e1, v1, e2, . . . ,
en−1, vn−1, en, vn), where the vertices are distinct, except that v0 may be the same as vn.

A cycle is a closed path that has at least one edge. If a graph contains no cycles, then it is
called acyclic.

For example, Figure 2.1(b) shows a walk, (a, e1, b, e2, c, e3, a). This is also a trail, a path,
and a cycle. Figure 2.1(c) depicts a path in bold.

8 Chapter 2. Background

a
b

c

d

e

(a) A graph with a loop and
multi-edge.

a b

cd

e1

e2e3

(b) A graph with two
components.

a

b

c d

e

f

3

5

8 11

12

6

4

5

1

(c) A weighted graph with a path marked
in bold.

Figure 2.1: Examples of undirected graphs.

a

b

c

d

e

E

b

c

d

e

F

a

b

c

d

e

G

a

b

c

d

e

H

Figure 2.2: A graph, E, and three of its subgraphs F , G, and H.

A graph is connected if, for all pairs of vertices u, v ∈ V , there is a walk from u to v. For
example, the graphs in Figures 2.1(a) and 2.1(c) are connected while Figure 2.1(b) depicts a
graph that is not connected; there is no path from d to vertices a, b and c. A maximal collection
of vertices that are connected in a graph we call a component of the graph so that Figure 2.1(b)
has two components.

A forest is an acyclic graph and a tree is a connected forest.
A subgraph, G′ = 〈V ′ , E′〉, is a subset of the vertices and edges of a graph, G, such that

V ′ ⊆ V , E′ ⊆ E, and any edge in E′ has its endpoints in V ′. A spanning subgraph of G is a
subgraph that contains all the vertices of G. A spanning tree is a spanning subgraph that is a
tree. For example, in Figure 2.2, F is a subgraph of E but is not a spanning subgraph. G is a
spanning subgraph of E but is not a tree. H is a spanning tree of E.

Vertices and edges may be colored. This is when a color is assigned to a vertex or edge, often
to partition a graph into subgraphs.

A weighted graph, G = 〈V , E , w〉, is a graph where w is a function, w : E 7→ R, that maps
edges to real values. Figure 2.1(c) is such a weighted graph with, for example, w({a, b}) = 5
and w({e, f}) = 1.

9 Chapter 2. Background

a

b

c

de

f

g

(a) An example digraph, also a
rooted directed tree, with the
root highlighted gray.

D

G

(b) An example digraph, D,
and its underlying graph, G.

(c) A rooted directed forest comprised of three rooted
directed trees. The roots of the rooted directed trees
are highlighted gray.

Figure 2.3: Examples of digraphs.

2.1.2 Directed graphs

A directed graph (digraph), D = 〈V , A〉, is a pair of sets, V and A. The set of vertices, V , is
non-empty and finite. The set of directed edges, A, is finite where a directed edge is an ordered
pair of vertices, (u, v) ∈ V × V . We also call a directed edge an arc.

Vertices in a digraph are also called adjacent when connected by an arc, and an arc is incident
to the vertices it connects to.

Let (x, y) be an arc of a digraph. The order of this pair is to be interpreted as the arc
originating at vertex x (the source) and terminating at vertex y (the target). We depict the arcs
of a digraph with an arrow pointing to the target. For example, the graph in Figure 2.3(a) has
arcs {(a, b), (d, a), (d, c), (d, e), (d, f), (e, g)}.

A directed walk in a digraph is an alternating sequence of vertices and arcs (v0, a1, v1, a2, . . . ,
an−1, vn−1, an, vn), such that for i = 1, . . . , n the source of ai is vi−1 and the target of ai is vi. A
directed walk is closed if v0 is the same as vn, otherwise, it is open. Then, similar to undirected
graphs, a directed trail is a directed walk where no arc occurs more than once, a directed path
is a directed trail where the vertices are distinct, except that v0 may be the same as vn, and a
directed cycle is a closed directed path that has at least one arc.

10 Chapter 2. Background

7

6

3

1

9

3

10

2

4

5

8

6

3

1

2

4

5

6

1

3 2

4

5

Figure 2.4: A graph and its two minimum spanning trees.

An acyclic digraph is a digraph that has no directed cycles.
The underlying graph of a digraph is the undirected graph that results if all direction infor-

mation is removed from the arcs. In the case where a digraph, D, has arcs in both directions
between two vertices, for example, (u, v) and (v, u), the underlying graph of D has only one
edge between u and v, not a multi-edge.

A digraph is connected if its underlying graph is connected. A component of a digraph is a
maximal collection of vertices that are connected.

A directed tree is an acyclic digraph whose underlying graph is a tree. For example, the
underlying graph, G, of a digraph, D, is shown in Figure 2.3(b). Since G is a tree D is a
directed tree.

A rooted directed tree is a directed tree that has a vertex r, the root, such that for all other
vertices v there is a directed path from r to v in the directed tree. This variation, where all the
arcs are directed away from the root, is also known as an arborescence. The variant of a rooted
directed tree that has all arcs directed towards the root is also known as an anti-arborescence.
For example, Figure 2.3(a) depicts a rooted directed tree, in particular, an arborescence. Neither
graph D nor G in Figure 2.3(b) is a rooted directed tree.

A rooted directed forest is a digraph where each component is a rooted directed tree. For
example, Figure 2.3(c) shows three rooted directed trees that together form a rooted directed
forest. This structure is acyclic and each vertex is the target of at most one arc. The arcs form
directed paths away from the roots. Another representation may be had if all the arc directions
are reversed. In this case, each vertex would be the source of at most one arc and the arcs would
form directed paths towards the roots. A rooted directed forest is a generalization of a rooted
directed tree. While the graph in Figure 2.3(a) is a rooted directed tree, it is also a rooted
directed forest.

2.2 Minimum spanning trees

A minimum-weighted spanning tree of an undirected, connected, weighted graph, G = 〈V , E ,
w〉, is a spanning tree, T = 〈V , E′〉, of G where the sum of the weights of the edges, E′, of T

w(T) =
∑

{u,v}∈E′

w({u, v})

is minimal, that is, less than or equal to the weight of any other spanning tree of G.
We assume it is understood that we are minimizing weight, so we simply refer to a MST.

The graph in Figure 2.4 has two MSTs, each with total weight 21.
The MST problem is to find a MST of a graph. The search for solutions to the MST

problem has a rich history [34, 60, 64]. There are many obvious applications of solutions to the

11 Chapter 2. Background

MST problem including development of computer, communication, transportation, and other
networks.

2.2.1 Prim’s and Kruskal’s MST algorithms

Descriptions of the common algorithms that find a MST can be found in [20, 24, 30, 60, 78, 80].
Two well-known algorithms that solve the MST problem are those by Prim [74] and Kruskal
[54].

Prim’s MST algorithm

Prim’s MST algorithm operates as follows. Given an undirected, connected, weighted graph, G,
as input, initialize a tree, T , with an arbitrary vertex from G. While there are still vertices in
G that are not in T repeat the following:

1. Determine vertices in G that are not in T , but are adjacent to a vertex in T . Select from
those a vertex, v, connected to T by an edge with minimal weight, e.

2. Add v and e to T .

When the while-condition fails the algorithm outputs T . After each iteration of the while-loop,
T is a tree. We call this an invariant.

Kruskal’s MST algorithm

Kruskal’s MST algorithm operates as follows. Take as input an undirected, connected, weighted
graph, G. Initialize a forest, F , with one component for each vertex of G and no edges. For
each edge, e, in G, ordered by weight in non-decreasing order, repeat the following step:

1. Test whether adding e to F creates a cycle. If it does not then add e to F .

When the while-condition fails the algorithm outputs F . An invariant of the while-loop is that
F is a forest.

There are notable differences between these algorithms. Prim’s MST algorithm enumerates
the vertices of a graph, while Kruskal’s MST algorithm enumerates the edges of a graph. In
the form presented above, if the input to Prim’s MST algorithm is not a connected graph then
there will be undefined behavior. This is because at some stage there will be a vertex in G
that is not in T but is not adjacent to any vertex in T so the first step of the loop cannot be
performed. Kruskal’s MST algorithm does have well-defined behavior for an input graph that is
not connected. In this case, the output will be a forest where each tree of the forest is a MST.
This is called a minimum spanning forest.

2.2.2 Bor̊uvka’s MST algorithm

Bor̊uvka’s MST algorithm operates as follows. Given an undirected, connected, distinctly-
weighted graph, color all vertices gray and assign them to a forest, F , with no edges. Repeat
the following step until only one gray tree remains.

For every gray tree, T , in F :

1. Determine those edges incident to vertices in T that do not have both endpoints in T .

2. Select from those edges the one with minimum weight and color it gray.

When the algorithm terminates, it outputs those colored edges and vertices.
This algorithm contains two loops. The outer loop continues while F is not connected and

the inner loop iterates over the trees of F . Coloring an edge in step 2 does not change the trees
until the current iteration of the outer loop completes.

12 Chapter 2. Background

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(a-1) The algorithm accepts as input an undi-
rected, connected, distinctly-weighted graph.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(a-2) Each vertex in the graph is colored gray,
initializing n trivial trees.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-1) The tree with vertex a is processed, hav-
ing an incident edge with minimal weight of 1.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-2) The tree with vertex b is processed, having
an incident edge with minimal weight of 1.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-3) The tree with vertex c is processed, having
an incident edge with minimal weight of 5.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-4) The tree with vertex d is processed, hav-
ing an incident edge with minimal weight of 3.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-5) The tree with vertex e is processed, having
an incident edge with minimal weight of 3.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-6) The tree with vertex f is processed, hav-
ing an incident edge with minimal weight of 2.

Figure 2.5: The operation of Bor̊uvka’s MST algorithm.

13 Chapter 2. Background

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-7) The tree with vertex g is processed, hav-
ing an incident edge with minimal weight of 4.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(b-8) The tree with vertex h is processed, hav-
ing an incident edge with minimal weight of 2.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(c-1) The left tree (with vertices a, b and c) has
an incident edge with minimal weight 6.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(c-2) The center tree (with vertices d and e) has
an incident edge with minimal weight 6.

a

b

c
d

e

f

g

h

1

12

10

5 6

14

9

3

8

13

15

11

4

2

7

(c-3) The right tree (with vertices f , g, and h)
has an incident edge with minimal weight 8.

a

b

c
d

e

f

g

h

1

5 6

3

8

4

2

(d) Only one tree remains and the algorithm
outputs the MST.

Figure 2.5 (continued): The operation of Bor̊uvka’s MST algorithm.

Example of operation

An example of the operation of this algorithm is given in Figure 2.5. The state of the forest, F
is indicated with gray coloring. The initialization steps are performed in Figures 2.5(a-1) and
2.5(a-2). At this stage, the loops have not started.

There are two iterations of the outer loop. The sub-figures that depict the operations that
occur in the first iteration of the outer loop are prefixed with (b). The sub-figures that depict
the operations that occur in the second iteration of the outer loop are prefixed with (c). For
example, Figure 2.5(b-2) shows the outcome of the second iteration of the inner loop in the first
iteration of the outer loop and Figure 2.5(c-1) shows the outcome of the first iteration of the
inner loop in the second iteration of the outer loop. While F is updated in each iteration of the
inner loop, the trees that are being processed do not change until the end of each iteration of
the outer loop. For this reason, the eight trees shown in Figure 2.5(a-2) are processed in Figures
2.5(b-1) to 2.5(b-8) irrespective of the edges being colored in F .

In Figure 2.5(b-1), the outer loop has been entered for the first time and a single iteration

14 Chapter 2. Background

a b

cd

4

2

4

1
7

(a) An input graph
with non-distinct edge
weights.

a b

cd

4

2

4

1
7

(b) After one itera-
tion of the outer loop,
the forest contains two
trees.

a b

cd

4

2

4

1
7

(c-1) The edge between
d and c may be added
next.

a b

cd

4

2

4

1
7

(c-2) Adding the edge
between a and b creates
a cycle.

Figure 2.6: Input graphs to Bor̊uvka’s MST algorithm need to have distinct edge weights.

of the inner loop has been performed to process the tree with vertex a, adding the edge with
weight 1 to F . In Figure 2.5(b-2) the second iteration of the inner loop has processed the tree
with vertex b. The minimum-weight incident edge to this tree, the edge with weight 1, is already
in F so this iteration of the inner loop makes no observable changes to F . The remaining trees
in F are processed in the same manner, as shown in Figures 2.5(b-3) to 2.5(b-8).

Figure 2.5(b-8) shows the state of F as the first iteration of the outer loop has completed.
The second iteration of the outer loop has three trees to process. In Figure 2.5(c-1) the tree

in F containing vertices a, b and c is processed first and the edge with weight 6 is added to F .
The same edge is the minimum-weight incident edge to the tree with vertices d and e so that
there is no observable change to F in the second iteration of the inner loop. This is shown in
Figure 2.5(c-2). The edge with weight 8 is added to F when the tree with vertices f , g, and h
is processed, as shown in Figure 2.5(c-3).

The inner loop then exits as each tree in F has been processed. The outer loop also exits,
as F is connected, and the MST shown in Figure 2.5(d) is output. This example required two
iterations of the outer loop to complete.

Distinct edge weights

Unlike Kruskal’s and Prim’s MST algorithms, Bor̊uvka’s MST algorithm requires the input edge
weights to be distinct. The reason for this may be seen if we trace an example for a graph that
has two edges with the same weight.

Consider the input graph in Figure 2.6(a). There are two edges with weight 4. The algorithm
will proceed as described above until it reaches a situation where there are two trees in F ,
comprised of vertex pairs {a, d} and {b, c}, as shown in Figure 2.6(b). Now the algorithm
proceeds for each tree, T , in F to select the minimum-weighted edge that does not have both
endpoints in T . Because the edge weights are not distinct, different edges may be chosen. For
the tree with vertices {a, d}, it may select the edge between d and c. The outcome of this
selection is shown in Figure 2.6(c-1). When the algorithm processes the tree with vertices {b, c}
there are two edges it may choose. If the edge between vertices a and b is added then a cycle is
created so that F will no longer be a forest. This selection is shown in Figure 2.6(c-2).

2.3 Algebras for reasoning about graphs

We are interested in mathematical representations of graphs that will be useful for reasoning
about algorithms that operate on graphs in general and Bor̊uvka’s MST algorithm in particular.
Binary relations provide a good base to reason about unweighted graphs, but because weighted
graphs do not have a direct representation as a binary matrix, we require some alternative
structure. Guttmann [38] proposes such a suitable structure. Weighted graphs, represented as

15 Chapter 2. Background

1 1 1

1 1 1

1 1 1

x y z

x

y

z

L =

x y

z

0 0 0

0 0 0

0 0 0

x y z

x

y

z

O =

x y

z

Figure 2.7: The universal, L, and empty, O, relations.

matrices whose entries range over the real numbers (denoting the weight of edges) extended
with two elements (denoting no edge and an edge of unknown weight) are an instance of this
structure. In this section, we discuss the relevant algebras.

2.3.1 Relations

Relations and their algebraic structure are discussed in more detail in [59, 77].
A binary relation on a non-empty set S is a subset of the Cartesian product S×S = {(x, y) |

x, y ∈ S}. For x, y ∈ S we say that if (x, y) ∈ R then x is related to y by R. For example, the
less-than relation (of infinite size) on N is

{(0, 1), (0, 2), (0, 3), . . . ,

(1, 2), (1, 3), (1, 4), . . . ,

(2, 3), (2, 4), (2, 5), . . . ,

. . . , }

There is a straightforward representation of a digraph as a binary relation, R, over the set of
vertices. Such a representation is an adjacency matrix where a 1 entry in row i and column j,
(i, j) ∈ R, denotes the existence of an arc with source i and target j in the graph. Unweighted,
undirected graphs may also be represented using binary relations. This could be done by having
(i, j) ∈ R and (j, i) ∈ R. Such a pair of entries would be interpreted as an undirected edge
between vertices i and j.

The universal relation, L, over a set, S, is all pairs of the Cartesian product

L = S × S = {(x, y) | x, y ∈ S}

The empty relation, O, on set S, is the empty set, O = ∅.
The interpretation of these relations for a graph with vertex set, V , is all arcs, E = V × V ,

and no arcs respectively. For example, Figure 2.7 depicts how these would look for a graph of
three vertices.

Relations are sets and many operations of sets apply to relations, such as complement, union,
intersection, and subset. Given a relation, R, on a set S, the complement of R, R, is the set of
all pairs of elements not in R but where each element of the pair is in S

R = {(x, y) | (x, y) /∈ R ∧ x, y ∈ S}

Then, for example, the involutive property of complement holds for relations so that R = R.
Consider also the union and intersection of two relations, Q and R, denoted as Q∪R and Q∩R

16 Chapter 2. Background

0 1 1

0 0 0

0 0 0

x y z

x

y

z

Q =

x

y

z

0 0 0

1 0 1

0 0 0

x y z

x

y

z

R =

x

y

z

1 0 1

0 0 0

0 0 0

x y z

x

y

z

QR =

x

y

z

Figure 2.8: An interpretation of relation composition for digraphs.

respectively, where

Q ∪R = {(x, y) | (x, y) ∈ Q ∨ (x, y) ∈ R}
Q ∩R = {(x, y) | (x, y) ∈ Q ∧ (x, y) ∈ R}

Then, for example, both union and intersection of relations are associative, P ∪ (Q ∪ R) =
(P ∪Q)∪R and P ∩ (Q∩R) = (P ∩Q)∩R; commutative, Q∪R = R ∪Q and Q∩R = R ∩Q;
and idempotent, R ∪R = R and R ∩R = R. The subset relationship, R ⊆ Q, is defined as

∀x, y ∈ S : (x, y) ∈ R⇒ (x, y) ∈ Q

Other operations are defined for relations. The composition of two relations, Q and R, is
denoted as QR and defined as

QR = {(x, y) | ∃z : (x, z) ∈ Q ∧ (z, y) ∈ R}

An interpretation of this for a digraph is a relation, QR, representing arcs such that, if we were
to step from their source to their target, we could reach exactly those vertices if we had taken
consecutive steps in Q and then R. For example, in Figure 2.8 the arc from x to itself is in QR
because we can step from vertex x to y in Q and then from y to x in R.

The identity relation, I, on a set S is

I = {(x, x) | x ∈ S}

A graph interpretation of the identity relation is all loops of the vertices. The identity relation
is the unit of composition for relations, so RI = R = IR.

Relations may be composed with themselves and there is an exponent notation for this, for
example, R2 = RR. More generally, the i-th power of a relation, Ri, is defined as

Ri =

{
I i = 0

RRi−1 i ≥ 1

A relation is said to be transitive if the product R2 ⊆ R. The transitive closure of R is
denoted R+ and defined as

R+ =
⋃
i≥1

Ri = R1 ∪R2 ∪R3 ∪ . . .

A relation, R, is said to be reflexive if I ⊆ R, co-reflexive if R ⊆ I, and irreflexive if R ⊆ Ī.
The reflexive-transitive closure of a relation, R, is denoted R∗ and defined as

R∗ = I ∪R+

17 Chapter 2. Background

0 1 0 0 0

0 0 0 0 1

0 1 0 1 0

0 0 0 0 0

0 0 1 0 0

v w x y z

v

w

x

y

z

R =

v w x y

z

1 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 0 0 1 0

0 1 1 1 1

v w x y z

v

w

x

y

z

R∗ =

v w x y

z

Figure 2.9: An interpretation of the reflexive-transitive closure for digraphs. In the matrix, R∗,
the original arcs from the graph of R are highlighted gray.

0 1 0

0 0 1

1 0 0

x y z

x

y

z

R =

x y

z

0 0 1

1 0 0

0 1 0

x y z

x

y

z

R> =

x y

z

Figure 2.10: An interpretation of relation transposition for digraphs.

It follows that R+ = RR∗. An interpretation of the reflexive-transitive closure, R∗, for digraphs
is the reachability relation of the graph of R, that is, (x, y) ∈ R∗ says that vertex y is reachable
from x by taking zero or more arcs. For example, in Figure 2.9, vertex x is reachable from vertex
v in the graph of R in three steps and there is a transitive arc in R∗ from v to x.

The transpose relation, R>, of a relation R is defined as

R> = {(y, x) | (x, y) ∈ R}

An interpretation of this for digraphs is to reverse the directions of the arcs of the graph. For
example, consider the relation R and its transpose R> in Figure 2.10.

A relation is said to be symmetric if R ⊆ R>, asymmetric if R∩R> ⊆ O, and antisymmetric
if R ∩ R> ⊆ I. The symmetric closure of a relation, R, is R ∪ R> and is the smallest relation
that contains R and is symmetric.

Of particular interest are equivalence relations. An equivalence relation on a set is a binary
relation that is reflexive, symmetric and transitive. Such relations may be used to describe
how some members of a set have a common property. This could be used to represent the
components of a graph, partitioning connected vertices into classes. For example, Figure 2.11
shows a digraph of a relation R, and its symmetric-reflexive-transitive closure, (R ∪R>)∗. This
describes which vertices are reachable by taking any number of steps, ignoring direction.

A relation, R, is called a vector if R = RL, and a co-vector if R = LR. A vector is row
constant, that is, every column is identical. A vector, R ⊆ S × S can be used to represent the
subset of S containing those elements x ∈ S such that (x, y) ∈ S for all y. This is useful for us
to denote a subset of the vertices of a graph.

18 Chapter 2. Background

t

u

v

w

x

y

z
1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

t u v w x y z

t

u

v

w

x

y

z

Figure 2.11: How equivalence relations may be used to represent the components of a digraph.
The adjacency matrix on the right is the equivalence relation of the graph on the left.

A relation, R, is univalent if R>R ⊆ I, injective if RR> ⊆ I, total if I ⊆ RR>, surjective if
I ⊆ R>R, a mapping if R is total and univalent, bijective if R is injective and surjective, and a
point if R is a bijective vector.

These properties have useful interpretations for digraphs. For example, every vertex of the
graph of a univalent relation is the source of at most one arc. A total relation may be interpreted
as a graph where all vertices are the source of at least one arc. Every vertex of the graph of a
bijective mapping is the source and target of exactly one arc, and a point represents a subset of
a single element, that is, one vertex of the graph.

Notably, an injective relation may be interpreted as a graph where all vertices are the target
of at most one arc. This forms part of the definition of an arborescence, and as we will see in
Section 2.3.6, a rooted directed forest.

Binary relations are not so suitable for reasoning about weighted graphs. If a matrix of
weights were used to represent a weighted graph then it is not clear what interpretation should
be had for the complement operation. For this reason, alternative algebraic structures have been
proposed to reason about weighted graphs. These structures share many properties of relations.
We present definitions for these structures beginning with orders.

2.3.2 Orders

Several textbooks further discuss the properties of orders [8, 11, 21, 47, 76].
We use order in the sense of the arrangement of things in relation to each other, rather than

the sense of a command or instruction. An order may be assigned to mathematical objects.
Consider some a, b ∈ N. An order may be applied to a and b with the usual sense of ‘less than’:
either a ≤ b or b < a, which is to be read as a is less than or equal to b or b is strictly less than
a. Similar to how we might order objects in the world, the ‘less than’ operation is not the only
useful operation by which to order mathematical objects.

If we take the order of sets to be subset inclusion, we can have difficulty making comparisons
between some finite S,Q ⊆ N. For example, S = {1, 2} and Q = {3} are not ⊆-comparable.
However, if we were to use the cardinality of the sets as our metric then we can compare S and
Q.

Therefore, an order requires some operation by which to compare objects. Also, notice that
it does not make sense to assign an order to a single object, rather an order appears as the result
of a binary operation: a comparison between two objects.

Definition 1. An order (also partial order) is a structure 〈S , ≤〉, where S is a set and ≤ is a
binary relation on S that is reflexive, antisymmetric, and transitive. That is, for all x, y, z ∈ S

x ≤ x x ≤ y ∧ y ≤ x⇒ x = y x ≤ y ∧ y ≤ z ⇒ x ≤ z

This is similar to the properties of the equivalence relation, with the antisymmetry property
replacing the symmetry property.

19 Chapter 2. Background

T

S

1

2 3

4

5

6

7

8

9

10

11

12

Figure 2.12: A set, S, with a partial order of divisibility, and a subset, T . An arc between two
numbers denotes that the source divides the target. The transitive and reflexive arcs are not
shown.

Let P = 〈S , ≤〉 be a partial order and have T ⊆ S. We call an element x ∈ S an upper
bound of T if for all y ∈ T , y ≤ x. Consider such an upper bound, j. We call j the join of T if
for all u ∈ S, where u is an upper bound of T , j ≤ u.

Dually, we call an element x ∈ S a lower bound of T if for all y ∈ T , x ≤ y. A lower bound,
m, is called the meet of T if for all l ∈ S, where l is a lower bound of T , l ≤ m. The meet and
join are unique if they exist.

For example, let P be a partial order on the set, S, of the positive integers from one to
twelve, ordered by divisibility, that is, a|b ⇔ (b = ak for some integer k). Furthermore, let
T = {2, 3} ⊆ S as depicted in Figure 2.12. Then, there are two upper bounds of T with respect
to the order P , 6 and 12. The join is 6. There is only one lower bound of T with respect to the
order P , that is 1 which is also the meet.

2.3.3 Lattices

Lattices have been well studied and many textbooks discuss their structure [2, 8, 11, 21, 35, 36,
76].

If all pairs of elements in a partial order have a meet (also greatest lower bound or infimum)
and a join (also least upper bound or supremum) then we call this a lattice.

Definition 2. A lattice, 〈S , t , u〉, is a partial order, 〈S , ≤〉, where for all x, y ∈ S, both a
meet, x u y, and a join, x t y, exist.

If L is a lattice, then the following properties hold for all x, y, z ∈ L. Both meet and join are
associative x t (y t z) = (x t y) t z and x u (y u z) = (x u y) u z; commutative, x t y = y t x
and x u y = y u x; and idempotent x t x = x and x u x = x. In addition, x ≤ y if and only
if x u y = x, and x ≤ y if and only if x t y = y; and the absorption laws are satisfied, that is,
x t (x u y) = x and x u (x t y) = x.

For example, the partially ordered set, 〈N , ≤〉, is a lattice. This lattice has xty = max(x, y)
and x u y = min(x, y) for all x, y ∈ N. It is quite easy to show examples of properties holding
for this lattice, for example, associativity of meet: min(1,min(2, 3)) = min(min(1, 2), 3) = 1.

Given a partial order 〈S , ≤〉, the ≤-greatest (also top or maximum) element of a subset, P ,
of S is the x ∈ P where y ≤ x for all y ∈ P . Dually, the ≤-least (also bottom or minimum)

20 Chapter 2. Background

element is the x ∈ P where x ≤ y for all y ∈ P . Where the order is understood from context
then we refer simply to the greatest and least elements.

The greatest and least elements do not necessarily exist. We cannot find the greatest element
in N, with respect to the order 〈N , ≤〉, though its least element is 0. Since a lattice is an order,
we can talk about the least and greatest elements in lattices. Where such elements do exist for
the entire lattice, it is called a bounded lattice.

Definition 3. A bounded lattice, 〈S , t , u , ⊥ , >〉, is a lattice, 〈S , t , u〉, with a least
element, ⊥, and a greatest element, >.

For example, the power set, P(S), ordered by the subset relation, 〈P(S) , ⊆〉, forms a
structure 〈P(S) , ∪ , ∩ , ∅ , S〉 that is an instance of a bounded lattice. The full set S is the ⊆-
greatest element because S ∈ P(S) and for all T ∈ P(S), T ⊆ S. A similar argument describes
how ∅ is the ⊆-least element.

We consider additional axioms that can be asserted for the meet and join operations to give
the definition for a bounded distributive lattice.

Definition 4. A bounded distributive lattice, 〈S , t , u , ⊥ , >〉, is a bounded lattice where for
all x, y, z ∈ S

x t (y u z) = (x t y) u (x t z) x u (y t z) = (x u y) t (x u z)

2.3.4 Relation algebras

In Section 2.3.1 we mentioned that relations have been used to reason about unweighted graphs
with some success but that weighted graphs presented a problem as it is unclear how the com-
plement operation should be applied to elements of the set that the relation is formed over. Here
we give more precise definitions of the algebras relevant for unweighted graphs to be compared
with the structures that we will be working in.

Definition 5. A Boolean algebra, 〈S , t , u , , ⊥ , >〉, is a bounded distributive lattice, 〈S ,
t , u , ⊥ , >〉, with a complement operation, , where for all x ∈ S

x t x = >
x u x = ⊥

There are alternative axiomatizations of Boolean algebras, for example in [2, 21, 50, 59]. The
axioms we give, from [76], are presented in terms of bounded distributive lattices to mirror the
axiomatization of pseudo-complemented algebras presented in section 2.3.5.

Definition 6. A relation algebra, 〈S , t , u , · , , > , ⊥ , > , 1〉, is a Boolean algebra, 〈S ,
t , u , , ⊥ , >〉, with composition, ·, and transpose, >, operations, and a constant 1, where
for all x, y, z ∈ S

x(yz) = (xy)z (2.1)

(x t y)z = xz t yz (2.2)

z(x t y) = zx t zy (2.3)

x1 = x (2.4)

1x = x (2.5)

x>
>

= x (2.6)

(x t y)> = x> t y> (2.7)

(xy)> = y>x> (2.8)

x>xy ≤ y (2.9)

21 Chapter 2. Background

We note that, in this thesis, composition, x · y, is often abbreviated to xy. We also use this
abbreviation for other algebras that have a composition operation.

The axiomatization in Definition 6 is due to Jónsson and Tarski as discussed in [57]. Other
forms can be found in [58, 81]. Unless overridden with brackets, the operations have the prece-
dence, from highest to lowest: >, , ·, u, t.

A number of properties hold in relation algebras and we give two examples here. If R
is a relation algebra then the following properties hold for all x, y, z ∈ R. Composition sub-
distributes over meet, x(y u z) ≤ xy u xz and (y u z)x ≤ yx u zx; and join is ≤-isotone, x ≤ y
implies z t x ≤ z t y. Further discussion of the properties of relation algebras can be found in,
for example, [77].

2.3.5 Stone relation algebras

For weighted graphs, the idea proposed by Guttmann [38] is to work in relation algebras where
the Boolean algebra reduct is weakened only so much as to permit the inclusion of arc weights in
the considered set while maintaining most of the structure of a relation algebra. Stone relation
algebras fit this purpose.

Some of the following algebraic structures are discussed in a number of textbooks [2, 11, 35,
36]. Stone algebras are additionally treated in [17, 37, 42]. Stone relation algebras are introduced
in [43] and further discussed in [42, 44].

Definition 7. A distributive p-algebra, 〈S , t , u , , ⊥ , >〉, is a bounded distributive lattice,
〈S , t , u , ⊥ , >〉, with a pseudo-complement operation, , where for all x, y ∈ S

x u y = ⊥ ⇔ x ≤ y

This says y is the ≤-greatest element whose meet with y is ⊥.

Definition 8. A Stone algebra is a distributive p-algebra, 〈S , t , u , , ⊥ , >〉, where for all
x ∈ S

x t x = >

If x = x then x is said to be regular. If a Stone algebra has only regular elements then it is
a Boolean algebra.

A number of properties hold in Stone algebras and we give two examples here. If S is a Stone
relation algebra then the following properties hold for all x, y ∈ S. Complement is ≤-antitone,
x ≤ y if and only if y ≤ x; and x = x. Further discussion of the properties of Stone algebras
can be found in the resources listed at the start of this section.

A Stone algebra is a generalization of a Boolean algebra with a weakened complement oper-
ation. Therefore, a trivial example of a Stone algebra is a Boolean algebra with the complement
operation playing the role of the pseudo-complement operation. Often, the MST problem is
solved for graphs with arc weights selected over R. Therefore, it is sensible for us to consider an
example that uses this set, such as Theorem 5 from [42].

Consider the real numbers extended by ⊥ and >: R′ = R ∪ {⊥,>}. Here, ⊥ denotes the
non-existence of an arc, > denotes an arc of unknown weight, and the real numbers denote
weights of their corresponding values. If we define the ordered set, 〈R′ , ≤〉, such that ⊥ is the
≤-least element and > is the ≤-greatest element then 〈R′ , max , min , , ⊥ , >〉 is a Stone
algebra. The effect of Definition 7 on the real numbers is that, for all x ∈ R′

x =

{
> if x = ⊥
⊥ otherwise

x =

{
⊥ if x = ⊥
> otherwise

22 Chapter 2. Background

While some examples are given in [2], we are motivated by being able to give precise mathe-
matical descriptions of graphs and operations on graphs. For this purpose, we give an example
of this algebra for matrices whose entries range over the extended real numbers, R′.

We denote the set of all square matrices whose entries range over the extended real numbers
as R′A×A, where A is the set of indices of the matrix. An intuition for this notation is given in
Appendix A. We interpret any M ∈ R′A×A as a graph with arc weights taken from R′ and with
vertex set A. Under this interpretation, 〈R′A×A , t , u , , ⊥ , >〉 is a Stone algebra where the
operations, t, u, , ⊥, >, and the lattice order, ≤, are lifted componentwise so that

(M tN)i,j = Mi,j tNi,j

(M uN)i,j = Mi,j uNi,j

M i,j = Mi,j

⊥i,j = ⊥
>i,j = >

and M ≤ N ⇔ ∀i, j ∈ A : Mi,j ≤ Ni,j . In this instance of a Stone algebra, the regular elements
are matrices with entries that are either ⊥ or >. These elements can be interpreted as matrices,
without weight information, that describe a graph’s structure. The structure of a graph, M ,

can be obtained by applying the complement twice: M .

Definition 9. A Stone relation algebra, 〈S , t , u , · , , > , ⊥ , > , 1〉, is a Stone algebra
with composition and transpose operations denoted in the same manner as for relations and a
constant, 1, where for all x, y, z ∈ S

(xy)z = x(yz)

1x = x

(x t y)z = xz t yz
(xy)> = y>x>

(x t y)> = x> t y>

x>
>

= x

⊥x = ⊥
xy u z ≤ x(y u x>z)

xy = x y

1 = 1

Unless overridden with brackets, the operations have the precedence, from highest to lowest:
>, , ·, u, t.

Recall, from Section 2.3.4, that a relation algebra has the signature, 〈S , t , u , · , , > ,
⊥ , > , 1〉. A Stone relation algebra has the same signature and many properties of relation
algebras hold for Stone relation algebras, some of which are given in Theorems 8 and 9 of [42].
Indeed, if the Boolean algebra reduct of a relation algebra, 〈S , t , u , , ⊥ , >〉, is replaced
with a Stone algebra then we obtain a Stone relation algebra. We take the opportunity to reuse
relevant terminology.

An element x ∈ S is called reflexive if 1 ≤ x, transitive if xx ≤ x, symmetric if x = x>, a
vector if x> = x, a co-vector if >x = x, co-reflexive if x ≤ 1, irreflexive if x ≤ 1, asymmetric
if x u x> = ⊥, antisymmetric if x u x> ≤ 1, univalent if x>x ≤ 1, injective if xx> ≤ 1, total if
1 ≤ xx>, surjective if 1 ≤ x>x, a mapping if x is univalent and total, bijective if x is injective
and surjective, a point if x is a bijective vector, and an arc if both x> and x>> are bijective.

23 Chapter 2. Background

For example, consider the Stone algebra, R′A×A, previously discussed, extended with the
operations of a Stone relation algebra. Then 〈R′A×A , t , u , · , , > , ⊥ , > , 1〉 is a Stone
relation algebra with

(MN)i,j = maxk∈A(min(Mi,k, Nk,j))

(M>)i,j = Mj,i

1i,j =

{
> if i = j

⊥ otherwise

Let M be an element in the Stone algebra, R′A×A. Then, M is a matrix that represents a
weighted graph. Because the entries of M are not selected over a binary set, some of the graph
interpretations to be had about Stone algebras are not the same as for relations. Theorem 13
of [44] describes such an M as being

1. reflexive if and only if the diagonal entries are all >,

2. co-reflexive if and only if only the diagonal has non-⊥ entries,

3. irreflexive if and only if the diagonal entries are all ⊥,

4. symmetric if and only if ∀i, j ∈ A : Mi,j = Mj,i.

A symmetric M may be interpreted as an undirected weighted graph. Theorem 11 of [44]
describes such an M as being

1. univalent if and only if in every row at most one entry is not ⊥,

2. injective if and only if in every column at most one entry is not ⊥,

3. total if and only if in every row at least one entry is >,

4. surjective if and only if in every column at least one entry is >.

The same interpretations are taken for vectors, co-vectors, points, and arcs as for relations.
Theorem 12 of [44] describes M as being

1. a vector, if and only if in every row no entries are different,

2. a co-vector, if and only if in every column no entries are different,

3. a point, if and only if exactly one row has all entries > and every other row has only ⊥
entries, and

4. an arc, if and only if exactly one entry is > and all others are ⊥.

Therefore, points and arcs are regular but vectors and co-vectors merely require constant rows
and columns respectively.

For some properties of relations that do not hold in Stone relation algebras, there exist
similar, weakened properties that do hold. For example, the Schröder equivalence x>y ≤ z ⇔
xz ≤ y holds in relation algebras but not in Stone relation algebras. However, if the right-hand
sides of the inequalities are regular then the equivalence holds. This can be achieved with the
pseudo-complement, x>y ≤ z ⇔ xz ≤ y.

24 Chapter 2. Background

2.3.6 Stone-Kleene relation algebras

Stone relation algebras are extended to Stone-Kleene relation algebras in [43]. This allows us
to reason about reachability in graphs, conceptually similar to how it was discussed in Section
2.3.1. The unfold and induction axioms given for the Kleene star that are used in Definition 10
are taken from [53].

Definition 10. A Stone-Kleene relation algebra, 〈S , t , u , · , , > , ∗ , ⊥ , > , 1〉, is a Stone
relation algebra, 〈S , t , u , · , , > , ⊥ , > , 1〉, with an operation, ∗, where for all x, y, z ∈ S
the unfold and induction axioms hold

1 t xx∗ ≤ x∗ z t yx ≤ x⇒ y∗z ≤ x
1 t x∗x ≤ x∗ z t xy ≤ x⇒ zy∗ ≤ x

and additionally,

(x)∗ = x∗ (2.10)

We abbreviate xx∗ as x+. Furthermore, we call any x ∈ S acyclic if x+ ≤ 1, and a rooted
directed forest if x is injective and acyclic. Axiom (2.10) states that the regular elements of S
are closed under the ∗ operation.

Consider the Stone relation algebra, 〈R′A×A , t , u , · , , > , ⊥ , > , 1〉, extended with the
∗ operation of a Stone-Kleene relation algebra where A is finite, ∗ is defined recursively using
Conway’s construction [19](

a b
c d

)∗
=

(
(a t bd∗c)∗ a∗b(d t ca∗b)∗

d∗c(a t bd∗c)∗ (d t ca∗b)∗
)

and for x ∈ R′, x∗ = >.
This forms a Stone-Kleene relation algebra, 〈R′A×A , t , u , · , , > , ∗ , ⊥ , > , 1〉. We

extend the weighted graph interpretation, from Section 2.3.5, for an element, M ∈ R′A×A over
such a Stone-Kleene relation algebra. If M is a rooted directed forest then it represents a graph
that is acyclic and whose edges form directed paths that are directed away from their root
vertices. As described in Section 2.1.2, an alternative description for a rooted directed forest
would be to have the directed paths directed towards their root vertices. This would be acyclic
and univalent.

Bor̊uvka’s MST algorithm selects edges of minimum weight so that we need to be able to
reason about the comparison of edge weights to complete our proof. Algebras for summing
and minimizing weights are given in Definition 17 of [44]; in particular, we use the s and m
operations of m-Kleene algebras.

Definition 11. An m-Kleene algebra, 〈S , t , u , · , + , , > , ∗ , s , m , ⊥ , > , 1〉, is a
Stone-Kleene relation algebra, 〈S , t , u , · , , > , ∗ , ⊥ , > , 1〉, with addition, +, summation,
s, and minimum selection, m, operations, where for all x, y, z ∈ S, the summation properties
are satisfied

x 6= ⊥ ∧ s(x) ≤ s(y)⇒ s(z) + s(x) ≤ s(z) + s(y) (2.11)

s(x) + s(⊥) = s(x) (2.12)

s(x) + s(y) = s(x t y) + s(x u y) (2.13)

s(x>) = s(x) (2.14)

the linear properties are satisfied

s(x) ≤ s(y) ∨ s(y) ≤ s(x) (2.15)

{x | x ∈ S} is finite (2.16)

25 Chapter 2. Background

a

b

c

4

7

2

(a) A digraph, G, that has three edges with
weights: 2, 4, and 7.

⊥ 4 ⊥
⊥ ⊥ ⊥
7 2 ⊥

a b c

a

b

c

G =

⊥ ⊥ ⊥
⊥ ⊥ ⊥
⊥ > ⊥

a b c

a

b

c

m(G) =

(b) The graph from Figure 2.13(a) in matrix
form and the output of the m operation on G.

Figure 2.13: An example of the m operation on a graph.

and the minimum selection properties are satisfied

m(x) ≤ x (2.17)

x 6= ⊥ ⇒ m(x) is an arc (2.18)

y is an arc ∧ y u x 6= ⊥ ⇒ s(m(x) u x) ≤ s(y u x) (2.19)

We discuss the axioms that are more important to our proof. Further details about the
remaining axioms are provided in [44].

Axiom (2.14) ensures that the weights of arcs do not depend on direction. Axiom (2.17)
states that, ignoring weight, the output of the m operation is contained in the graph. Axiom
(2.18) states that if a graph is not empty then the result of the m operation is an arc. If there
is more than one minimum-weight arc in the graph, the order of row and column indices can be
used to uniquely identify an arc. Axiom (2.19) ensures that the weight of arc m(x) must be less
than or equal to the weight of any other arc in the graph.

For the R′A×A model, the output of the m operation on a matrix whose entries are not all
⊥ is a matrix with an entry of > in the row and column denoting an arc with minimum weight.
For example, Figure 2.13 shows the output of the m operation for a weighted graph. In Figure
2.13(b), the arc with weight 2 has been selected for the graph shown in Figure 2.13(a). There is
only one entry in m(G), that is >, in row c and column b, all other entries are ⊥. The axioms

of the m operation are satisfied: m(G) is contained in G, is an arc, and is the minimum weight
arc from G.

26

Chapter 3

Formalization of Bor̊uvka’s MST
algorithm

In this chapter, we give our formalization of Bor̊uvka’s MST algorithm.
In Section 3.1 we introduce an operation, k, that axiomatizes component selection in a graph

with k-Stone relation algebras. This operation is used in our formalization. Additionally, we
define m-k-Stone-Kleene relation algebras, which our proof is completed in, and which combine
k-Stone relation algebras with m-Kleene algebras and include the Tarski rule. We give a simple
example of proving a result in m-k-Stone-Kleene relation algebras at the end of Section 3.3.

To formalize the algorithm some work was done to massage the method described in Section
2.2.2 into a form that is more amenable to being described with the language available to us. This
is discussed further in Section 3.2, where we also present the formalization. The formalization
is discussed in Section 3.3.

3.1 An operation to select components

Recall, from Section 2.2.2, that Bor̊uvka’s MST algorithm iterates over the trees of a forest.
We treat these trees as components of the forest, so to achieve this behavior, we extend Stone
relation algebras with a binary operation, k, that models component selection.

This operation was added so that we could create a formalization of Bor̊uvka’s MST algorithm
that is similar to its textual description. Our first approach to formalize component selection
used the m operation described in Section 2.3.6

c = h>
∗
h∗m(j)>

Here, h is a forest representing the spanning tree under construction and j is a set of vertices
that have yet to be processed by the algorithm. Therefore, the expression, c, is a set of vertices,
represented as a vector, that are connected in h. Additionally, the set contains a vertex that
still needs to be processed, selected by m(j)>. This approach to select a component is subpar
for two reasons. Firstly, it is not immediately clear that this expression selects a component of
the graph. In contrast, the k operation promises to return an arbitrary component of a graph,
so its meaning is clear. Secondly, the properties that are required of selected components in
the proof need to be derived from the algebraic expression. This requires additional reasoning,
while the k operation ensures those properties by its axioms.

Given a set of vertices and some information about their connections, the k operation outputs
an arbitrary component of those vertices represented as a vector.

Definition 12. A k-Stone relation algebra, 〈S , t , u , · , , > , k , ⊥ , > , 1〉, is a Stone

27 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

relation algebra, 〈S , t , u , · , , > , ⊥ , > , 1〉, with an operation k, where for all x, y ∈ S

k(x, y) = k(x, y)> (3.1)

k(x, y) ≤ y (3.2)

k(x, y) = k(x, y) (3.3)

k(x, y) · k(x, y)> ≤ x (3.4)

k(x, y) = x · k(x, y) (3.5)

and, if x is a regular equivalence, y is a regular vector, xy = y, and y 6= ⊥ then

k(x, y) 6= ⊥ (3.6)

If x is a regular equivalence and y is a regular vector then the k(x, y) operation may be used
to choose an arbitrary component. In this case, y is the set of vertices from which to select a
component and x describes connectivity among those vertices.

Axiom (3.1) states that the image of the k operation is a vector.
Axiom (3.2) expresses that the result of k is contained in the set of vertices we are selecting

from, ignoring the weights. For example, we see that e is contained in y in Figures 3.1(c) and
3.1(d).

Axiom (3.3) ensures that the output of k is regular.
Axiom (3.4) makes any two vertices from the result of k connected in x. For example,

consider Figure 3.1(e), the graphical representation of the vector, k(x, y) from Figure 3.1(d).
For any two steps that we can take first forwards, k(x, y), and then backwards, k(x, y)>, we will
start and arrive in vertices e or f , which are in the same component of x.

Axiom (3.5) expresses that the result of k is closed under being connected in x. This means
that either all vertices of a component of x are included in the output of k, or none are.

Axiom (3.6) requires that k returns a non-empty component if the input satisfies the given
criteria. The criterion that xy = y ensures that y contains each component entirely. If any of
the criteria are not met the k operation may return ⊥.

The following result shows that one instance of k-Stone relation algebras may be obtained
from m-Kleene algebras.

Theorem 1. Let S be an m-Kleene algebra with a k operation defined as

k(x, y) =

x ·m(y)> if x is a regular equivalence and y 6= ⊥

and y is a regular vector and xy = y,

⊥ otherwise

(3.7)

then S is a k-Stone relation algebra.

Finally, we combine k-Stone relation algebras with m-Kleene algebras and include the Tarski
rule for regular elements.

Definition 13. An m-k-Stone-Kleene relation algebra, 〈S , t , u , · , + , , > , ∗ , s , m ,
k , ⊥ , > , 1〉, is an m-Kleene algebra, 〈S , t , u , · , + , , > , ∗ , s , m , ⊥ , > , 1〉, with a
component selection operation, k, such that the reduct 〈S , t , u , · , , > , k , ⊥ , > , 1〉 is a
k-Stone relation algebra and for all x ∈ S the Tarski rule,

x = x ∧ x 6= ⊥ ⇒ >x> = > (3.8)

is satisfied.

28 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

a e

c

d

b

f

(a) A graph with three components.

> > ⊥ ⊥ ⊥ ⊥
> > ⊥ ⊥ ⊥ ⊥
⊥ ⊥ > > ⊥ ⊥
⊥ ⊥ > > ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥ > >

a b c d e f

a

b

c

d

e

f

x

(b) The equivalence, x, represents
the components of the graph.

> > > > > >
> > > > > >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
> > > > > >
> > > > > >

a b c d e f

a

b

c

d

e

f

y

(c) The vector, y, represents the set
of vertices that a particular compo-
nent will be selected from.

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
> > > > > >
> > > > > >

a b c d e f

a

b

c

d

e

f

k(x, y)

(d) The k operation selects a compo-
nent from the vertices of y, that are
connected in x.

e

f

b

a

c

d
c

(e) A graphical view of the selected
component, k(x, y).

a b

c d

e f

x

(f) A graphical view of the equiva-
lence, x.

Figure 3.1: The component selection operation, k, operating on a set of nodes, y, that are con-
nected as shown in the top-left graph. The connection information is encoded in the equivalence,
x, shown both in matrix and graph form.

29 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

3.2 Formalization description

Because we are working in an algebra of matrices over extended real numbers, R′A×A, our formal-
ization operates on digraphs. However, recall from Section 2.2.2 that Bor̊uvka’s MST algorithm
operates on an undirected graph. Therefore, to resolve this discrepancy we use symmetric el-
ements of the algebra to represent undirected graphs. In particular, the input digraph, g, is
symmetric.

Recall that the arcs of the MST that will be output are tracked by coloring. Some work
would be required to associate a coloring property with each arc and vertex by embedding
it in the algebra. Instead, our formalization of Bor̊uvka’s MST algorithm maintains a rooted
directed forest variable, f , to be output upon termination. In our implementation, the variable
f may be thought of as those colored arcs, though we will not refer to coloring further. A forest
(undirected) may be obtained from f by taking the symmetric closure, f t f>.

Additionally, if g is connected then Bor̊uvka’s MST algorithm outputs a MST. However, if
g is not connected then the output is a minimum spanning forest. By requiring that the output
be a minimum spanning forest we obtain a proof for a more general specification.

We do not require that the input graph’s arc weights are distinct. Instead, our formalization
performs a check to ensure that a cycle will not be created when adding an arc to the forest.

With these considerations in mind, we re-describe the algorithm.

Bor̊uvka’s MST algorithm takes as input an undirected graph, g. Initialize a rooted di-
rected forest, f , where each vertex in g is a tree with no arcs. Repeat the following step while
there are still arcs, in g, between components, in f .

For every component, c, in f ,

1. Determine those arcs incident to vertices in c that do not have a source and target in c.

2. Select from those arcs one with minimum-weight and add it to f .

Adding an arc to f in step 2 does not alter the components being iterated over in the inner loop.
The algorithm outputs f .

This algorithm is formalized in Figure 3.2. We begin with a high-level description of its
operation and continue with a more detailed discussion in the following sections.

The input to the algorithm is a symmetric, weighted graph, g, (line 1). The variable f is
initialized as empty (line 2). It will become a structural representation of the minimum spanning
forest of the graph so it will be regular.

The outer while-loop continues until there are no arcs between the components of the rooted
directed forest (line 3). Lines 4 and 5 initialize variables that are used by the inner while-loop.
The regular vector, j, tracks the set of vertices that have yet to be considered by the inner
while-loop. The rooted directed forest, h, is used to maintain a stable representation of what f
was for each iteration of the outer loop.

On line 6, the variable d is initialized. This variable tracks the arcs that have been added
to f in each iteration of the outer loop (line 13). While d is not required by the algorithm it is
used in the correctness proof.

The inner while-loop terminates when all components have been processed (line 7). An
arbitrary component, c, is chosen among those that have not been processed (line 8). We select
a minimum-weighted arc, e, whose source is inside c and whose target is outside c (line 9).

Recall, from Section 2.2.2, that Bor̊uvka’s MST algorithm requires the input graph’s arc
weights to be distinct. Because our formalization does not require this, we have added a check
in the inner loop to ensure that a cycle is not created. We check that e is not contained in a
component of f (line 10) and make no adjustment to f in the current iteration of the inner loop
if it is (line 15). In future work, this check should be able to be removed and we discuss this
limitation in Section 5.1.

30 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

1 input g
2 f ← ⊥
3 while f>

∗
f∗ u g 6= ⊥ do

4 j ← >
5 h← f
6 d← ⊥
7 while j 6= ⊥ do

8 c← k(h>
∗
h∗, j)

9 e← m(cc> u g)

10 if e ≤ f>∗f∗ then
11 f ← f u e>

12 f ← (f u >ef>∗) t (f u >ef>∗)> t e
13 d← d t e
14 else
15 skip
16 end
17 j ← j u c
18 end

19 end
20 output f

Figure 3.2: A relational formalization of Bor̊uvka’s MST algorithm.

Before adding the arc to the rooted directed forest we ensure the arc’s transpose is removed,
as it may have been added in a previous iteration of the inner while-loop, to mitigate the creation
of a cycle (line 11). The minimum-weighted outgoing arc is added to f and at the same time, we
reverse any paths that would break the injective property required to maintain that f is acyclic
(line 12). We update d to track the arcs that have been added in this iteration of the outer
while-loop. We remove the processed component from j so that it is not considered in the next
iteration of the inner while-loop (line 17).

When the outer while-loop exits the algorithm terminates returning f (line 20). The forest,
f , contains the structural information of the found minimum spanning forest but not the weight
information. If desired, this could be obtained by taking the meet with g.

3.3 Operation details

We describe how the major parts of the formalization operate: how the components of the rooted
directed forest are represented, how a component is selected from the rooted directed forest in
the inner loop, how an arc is selected to be added to f , and the principle behind maintaining
the injective property of f . We conclude this section with an example of how results are proved
in m-k-Stone-Kleene relation algebras.

Throughout the remainder of this thesis, we often need to refer to variables that have been
updated since the previous iteration of the inner loop. This is done with prime notation. For
example, d′ = d t e, is the value of d at the end of an iteration.

3.3.1 Processing components

The components of f can be represented as an equivalence relation, (f t f>)∗, as discussed
in Section 2.3.1. Since f is a rooted directed forest and injective, by Theorem 21 of [44], we

can instead express the components of f as f>
∗
f∗. Therefore, f>

∗
f∗ contains all possible arcs

31 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

between components in f and we take the meet with g, in line 3 of the formalization, to consider
only those arcs which exist in the graph. As long as such a component exists the outer loop
continues.

When we refer to the components of some forest, x, we will abbreviate this using the notation
from Definition 20 of [44], that is, c(x) = x>

∗
x∗.

3.3.2 Component selection

In the inner loop we select a component to process from those that still require processing using
c← k(h>

∗
h∗, j). The vector j represents the set of vertices not yet processed by the inner loop.

The rooted directed forest, h, contains f as it was when the current iteration of the outer loop
started. Therefore, c(h) = h>

∗
h∗ is an equivalence relation that describes which vertices were

connected when the current iteration of the outer loop started. We record this information using
h since Bor̊uvka’s MST algorithm needs to process every component of the forest, as it was at
the start of the current iteration of the outer loop.

We use the k operation from Section 3.1 to choose an arbitrary component such that it
contains only vertices we have not yet processed, in j, and where those vertices were connected
when the current iteration of the outer loop started.

On line 17, the vertices in the processed component are removed from j, not to be considered
in subsequent iterations of the inner loop. In this way, the inner loop iterates over the components
of f as they were before arcs were added between them.

For example, in Figure 3.3 the state of various variables is represented for a graph that has
been partially processed by the algorithm in Figure 3.2 where line 8 has just been executed.
There are three components in h, depicted by circles in the graph and as a matrix of the
equivalence, c(h). One iteration of the inner loop has been completed, where the component,
in h, with vertices w and x has been processed. This is evident from the contents of vector j,
and the arc (x, y) being in f . A component, c = k(c(h), j), has just been selected and it is the
component, in h, with vertices y and z.

3.3.3 Arc selection

The formulation, m(cc> u g) was taken from [43], where it is expressed as m(vv> u g), and is
used in the formalization of Prim’s MST algorithm to select an arc with minimum weight that
leaves a set of visited vertices, represented by vector v.

In our formulation, c is likewise a vector and cc> is the set of all possible arcs that have a
source in c and a target not in c. Since g is symmetric, we are actually considering the set of all
arcs that have one incident vertex inside the component and the other incident vertex outside
the component, though our selection is directed.

While the component we select is regular and does not contain weight information, the
graph, g, does. So the meet with g not only restricts cc> to those arcs that are in the graph but
also retains the weight information necessary for the m operation to return one of the desired
minimum weight arcs, e = m(cc> u g) on line 9 of Figure 3.2.

3.3.4 Preservation of injectivity

A particularly important property we maintain is that f is a rooted directed forest. Recall from
Section 2.3.6 that a rooted directed forest must be both acyclic and injective. To maintain that
f is injective some care must be taken when adding arcs to it. This can be illustrated with an
example.

We have reused a formulation given in [44] that maintains the injective property of f when
adding an arc e between components of f . In Figure 3.4, a rooted directed forest, f , is depicted
before and after an arc, e, is added. The path, p, from a root of the rooted directed forest to

32 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

u

v

w x

y

z

⊥ > ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ > ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

u v w x y z

u

v

w

x

y

z

f

> > ⊥ ⊥ ⊥ ⊥
> > ⊥ ⊥ ⊥ ⊥
⊥ ⊥ > > ⊥ ⊥
⊥ ⊥ > > ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥ > >

u v w x y z

u

v

w

x

y

z

h>
∗
h∗

> > > > > >
> > > > > >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
> > > > > >
> > > > > >

u v w x y z

u

v

w

x

y

z

j

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
> > > > > >
> > > > > >

u v w x y z

u

v

w

x

y

z

c

Figure 3.3: An example of component selection for a graph with six vertices and arcs. A solid
line represents an arc that has been added to f while a dashed line represents an arc that exists
in the graph but has not been added to f . Circles in the graph depict components in h. States of
various variables are displayed on the right as matrices. Highlighting is used to help distinguish
> and ⊥.

p

e

p>

e

Figure 3.4: The rooted directed forest, f , before and after adding arc, e. The path, p, from
the root of the rooted directed forest is reversed to maintain injectivity. A dashed line indicates
those arcs in the graph that have not been added to the rooted directed forest. A solid line
indicates the arc is in the rooted directed forest. The vertices enclosed in a circle denote a
component, in h.

33 Chapter 3. Formalization of Bor̊uvka’s MST algorithm

the target of e is

p = f u >ef>∗

This construction can be understood as those arcs in f that are reachable from the target of e
by taking zero or more steps backward in f .

When e is added to f , this path must be reversed to maintain the injective property of the
rooted directed forest. That is, when adding e, we alter f as follows:

f ′ = (f u p) t p> t e

= (f u f u >ef>∗) t (f u >ef>∗)> t e

This removes the path from the target of e to the root of the rooted directed forest, by taking the
meet with p, and replaces it with the path reversed, by taking the join with p>. This simplifies
to the expression in line 12 of Figure 3.2.

Additionally, when adding an arc to f we take the meet with the complement of the arc’s
transpose to ensure that a cycle is not created (line 11 of the algorithm). This is an artifact
of working on a directed graph. As a result, the complete expression that describes how f is
modified to f ′ in the inner loop is

f ′ =
(
f u e> u >e

(
f u e>

)>∗) t (f u e> u >e(f u e>)>∗)> t e
3.3.5 Proving properties in m-k-Stone-Kleene relation algebras

We conclude this section by giving an example of how we prove properties about weighted graphs
in m-k-Stone Kleene relation algebras. The result presented here is a gentle introduction before
encountering the more complex proofs presented in Chapter 4.

Let g be a weighted graph input to the algorithm described in Section 3.2. As the inner
loop of that algorithm iterates over the components of the rooted directed forest, an arbitrary
component, c = k(c(h), j) is chosen. Then, the arc e = m(cc> u g), with minimal weight having
a source in c and target outside c is selected. The vector j is the set of vertices that have yet
to be processed by the inner loop and is not ⊥. All variables except for g are regular elements.
We can show that the point, e>, which represents the source of e, is contained in j as follows:

Theorem 2. e> ≤ j
Proof.

e> = m(cc> u g)> (3.9)

≤ (cc> u g)> (3.10)

= (cc> u g)> (3.11)

= (cc> u g)> (3.12)

= (c u c> u g)> (3.13)

≤ c> (3.14)

≤ j> (3.15)

= j (3.16)

We have (3.9) from the definition of e. Axiom (2.17) gives us (3.10) and we can then simplify
to (3.14) because c is a regular vector and due to the results of Theorems 2, 8 and 9 of [42].
Because j is regular, axiom (3.2) of k-Stone relation algebras gives us (3.15) and then, since j
is a vector and ≤ is transitive, we have e> ≤ j.

The interpretation of this result is that the source of e is a vertex in the set of vertices that
are still to be processed by the inner loop, as we would expect.

34

Chapter 4

Correctness of Bor̊uvka’s MST
algorithm

In this chapter we discuss the partial-correctness proof of the formalization presented in Chapter
3. We work in m-k-Stone-Kleene relation algebras and our proof holds for any instance of those
algebras. In particular, it holds for weighted matrices, S = R′A×A, representing weighted graphs
as discussed in Section 2.3.5.

We begin by giving a high-level overview of how our Hoare-logic proof is structured in Section
4.1.

In Section 4.2 we introduce E-forests, a structure that we use to model and reason about
reachability. We also give a result that allows us to compare weights of particular arcs in an
E-forest. Edge weight comparison is a crucial aspect of Bor̊uvka’s MST algorithm and this
result is one of the most important results in our proof.

The specification of a minimum spanning forest is given in Section 4.3. This is the specifi-
cation that the output of our algorithm must satisfy. In this section we also give the invariants
for both the inner and outer loops of our formalization.

In Section 4.4 we discuss how we establish the invariants. We also give three examples of
how the invariants are maintained. The first example uses a chain of reasoning to show that
the relationship between the forest, f , and the temporary variable from the inner while-loop
that is a copy of the forest, h, is maintained as we add arcs to f . The second example uses
case distinction to show that, as arcs are added to the forest, the result that allows edge weight
comparison between particular arcs in an E-forest continues to hold. Finally, in Section 4.4.6
we discuss how we maintain the invariant that the forest, f , may be extended to a minimum
spanning forest.

4.1 Proof overview

We use Hoare-logic to complete our partial-correctness proof of Bor̊uvka’s MST algorithm. We
enter an annotated version of our formalization from Section 3.2 into Isabelle/HOL. The anno-
tations include the precondition, the invariants of both the inner and outer while-loops, and the
postcondition, to be discussed in Section 4.3. We use a Hoare-logic library to generate proof
goals [65]. For a while-loop nested in another while-loop it creates five proof goals.

The first goal is to show that if the precondition holds then the outer while-loop invariant
also holds.

The next three goals are to show that that if the outer while-loop invariant holds then the
inner while-loop invariant can be established, that the inner while-loop invariant is maintained
following each iteration of the inner while-loop, and that when the inner while-loop terminates
the outer while-loop invariant is maintained.

35 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

w

x

y zc1

c2

c3 c4

d1

d2

d3

c1 c2

c3

c4

d1 d2

d3

Figure 4.1: On the left, an example E-forest. The arcs in d are labeled d1 to d3. The components
described by E = c(h) are enclosed in circles and labeled c1 to c4. The directions of the arcs
within these components are not shown because the components, c(h), form an equivalence
that represents any number of steps, in any direction, within a component. A simpler 1-forest
representation of this structure is shown on the right.

Finally, the last proof goal is to show that when the outer while-loop exits the postcondition
can be established.

Once we have discharged each of these goals we can assume that the postcondition holds.
This shows that our formalization produces an element of the m-k-Stone-Kleene relation algebra
that satisfies the formal specification of a minimum spanning forest.

4.2 A reachability structure for forests

Within the inner loop of the algorithm the rooted directed forest is grown by some number of arcs
that connect its components. We introduce an abstraction called an E-forest that encapsulates
the idea of reachability in a structure comprised of the components of a rooted directed forest
connected by arcs.

An E-forest, d, is comprised of an equivalence, E, and a set of arcs, d. We are particularly
interested in the case E = c(h), that is, where the equivalence is the snapshot of the components
of the rooted directed forest, h, as they were at the start of the inner loop. The set of arcs, d,
represents those arcs that have been added to connect the components of h since the start of
this iteration of the outer loop.

We use the terms incoming and outgoing to describe an arc with respect to a component. An
arc that is incoming to a component describes an arc that has a source outside of that component
and a target inside that component. An arc that is outgoing from a component describes an arc
that has a source inside that component and a target outside that component. We also say that
incoming and outgoing arcs are adjacent to a component. For example, in Figure 4.1, arc d1 is
outgoing from component c1 and incoming to component c3. Arc d3 is adjacent to both c3 and
c4.

Definition 14. Let S be a Stone-Kleene relation algebra and let E, d ∈ S where E is an

36 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

(a) This is not an E-forest because there is a
cycle between components, that is, (Ed)+ ≤ E
does not hold.

(b) This is not an E-forest because there is a
component with more than one outgoing arc:
d>Ed ≤ 1 is not satisfied.

(c) This is not an E-forest because there is a
component with more than one outgoing arc:
E u dd> ≤ 1 is not satisfied.

(d) This is not an E-forest because there is
component with more than one outgoing arc:
d>Ed ≤ 1 is not satisfied.

Figure 4.2: Four simple examples of structures that do not satisfy the axioms of an E-forest.
The components that the equivalence E represents are enclosed in ovals and d is shown as edges
between the components.

equivalence. Then, d is an E-forest if the following axioms are satisfied:

d ≤ E (4.1)

d>Ed ≤ 1 (4.2)

E u dd> ≤ 1 (4.3)

(Ed)+ ≤ E (4.4)

An example of an E-forest is shown in Figure 4.1. It consists of a number of components,
specified by E, and a number of arcs connecting those components, specified by d. If the
components are collapsed into a single vertex the resulting graph is a forest, specifically a tree.

It should be the case that all arcs in d do not have both a source and target within the same
component. This is expressed by axiom (4.1).

Axiom (4.2) expresses the univalent-like structure of an E-forest, that is, Ed is univalent.
This is part of a constraint that ensures each component of h has at most one outgoing arc.
For example, in Figure 4.1 consider a sequence of steps allowed by d>c(h)d starting from vertex
y. The first step backward in d could be along d1 which would take us to vertex w. We then
would take any number of steps, forwards and backwards in component c1. Finally, the only
step allowed forwards in d is again d1 taking us back to vertex y. This, and any other sequence
allowed by d>c(h)d, results in a loop, which is why the left hand side of axiom (4.2) is below 1.
Examples of structures that do not satisfy this axiom can be seen in Figures 4.2(b) and 4.2(d).

Axiom (4.3) is the other constraint that, in conjunction with axiom (4.2), ensures each
component has at most one outgoing arc. For example, in Figure 4.1, starting at vertex w then
taking a step forwards then a step backwards in d could leave us at vertex x or back at vertex
w. By taking the meet with c(h), that is, c(h) u dd>, we restrict those arcs to arcs contained
in a component. Then, only loops should remain which, in the example given, is the loop on
vertex w. Figure 4.2(c) is an example of a structure that does not satisfy this axiom.

Lastly, axiom (4.4) ensures that if we were to take any number of steps in a component
followed immediately by a single step between components, one or more times, we will not find
ourselves back in the same component. This expresses the acyclic-like structure of the E-forest.
For example, in Figure 4.1, it is possible to reach vertex z from vertex x by c(h)d2c(h)d3 and
these vertices are in different components. There is no sequence of steps expressed by (c(h)d)+

that we could take from vertex x where we would arrive in component c2. An example of a
structure that does not satisfy this axiom can be seen in Figure 4.2(a).

37 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

The name E-forest arises from the idea that it is a forest-like structure. If the components of
the equivalence each contain a single vertex such that E = 1 then we call the resulting structure
a 1-forest. The axioms from Definition 14 then describe an element that is univalent, d>d ≤ 1,
and acyclic, d+ ≤ 1, from axioms (4.2) and (4.4) respectively. Axiom (4.3) is satisfied trivially,
and axiom (4.1) follows from axiom (4.4) owing to d ≤ d+ ≤ 1. Recall, from Section 2.3.6, that
an acyclic and univalent element describes a rooted directed forest, where the arcs are directed
towards the root vertices. Therefore, a 1-forest is a rooted directed forest.

Usually, we will talk about a particular instance of an E-forest where the equivalence is the
result of the component operation discussed in Section 3.3.1. For example, we would call the
E-forest using an equivalence made from the components of forest, h, a c(h)-forest.

4.2.1 Properties of E-forests

We have proved a number of properties about the E-forest abstraction. We discuss a selection
of these, beginning with properties that apply more generally to equivalences and arcs.

Theorem 3. Let S be a Stone-Kleene relation algebra. Then, for all a,E, x ∈ S where a is an
arc and E is an equivalence, the following properties hold:

Ea = Ea(>Ea)∗ (4.5)

(E(x t a))∗ = (Ex)∗ t (Ex)∗Ea(Ex)∗ (4.6)

The most interesting case of Property (4.5) is where a lies between equivalence classes of
E. It says that starting anywhere in an equivalence class, moving to the source of a, and then
stepping along a to another equivalence class is the same as doing that and then: moving back to
the first equivalence class, moving to the source of a, and stepping along a to another equivalence
class, any number of times. Consider, for example, Figure 4.1. The result of the sequence of
steps starting from vertex y, moving through the equivalence class representing component c3,
and taking edge d3 to vertex z is the edge (y, z). This is the same as if after making the step
(y, z) we were to jump anywhere in c3 and move back to z some number of times.

Property (4.6) is a separation rule for the Kleene star. If the arc, a, is contained in x then
this becomes trivial. The interesting case is where a is not contained in x. On the left-hand side
we can make any number of steps in the equivalence E and then a single step in either x or a.
This can be done any number of times. However, because a is an arc, once a step is taken along
it it is not necessary to do so again.

We also prove properties about E-forests in particular.

Theorem 4. Let S be a Stone-Kleene relation algebra. Then, for all d,E, a ∈ S where E is an
equivalence, d is an E-forest, and a is an arc, the following properties hold:

(d>E)∗(Ed)∗ = (d>E)∗ t (Ed)∗ (4.7)

a ≤ d⇒ (d u a)>(Ea>) ≤ ⊥ (4.8)

Property (4.7) follows from E being an equivalence and the fact that E-forests are univalent.
Notice that d>E is the transpose of Ed. This property states that taking any number of steps
backwards in the E-forest (away from the roots) followed by any number of steps forwards in the
E-forest (towards the roots) is the same as going either forwards or backwards. This is similar
to how the components of a forest may be equivalently represented as (f t f>)∗ or f>

∗
f∗ owing

to a forest’s injectivity, as was discussed in Section 3.3.1.
Property (4.8) states that if we take a step backwards between components of an E-forest,

without using some arc, a, that lies between components, then there is no sequence of steps we
can then take in the component we find ourselves in to then be able to take a step along arc a.
For example, starting from vertex y in Figure 4.1 we take a step backwards along d2, that is,
(du d1)>, to arrive at vertex x. From there, we can move anywhere in component c2 but it will
not be possible to then take a step along arc d1.

38 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

a>> b>

a

(
c(h)d

)∗ · c(h)

b

(a) An example of a c(h)-forest-path. The target of a, that is,
a>>, and the source of b, that is, b>, are shown.

c1 c2 c3

a b

(b) The weights of a and b may
be directly compared since they
are adjacent to the same compo-
nent.

a

b

(c) There is no path from the tar-
get of a to the source of b.

a

b

(d) The arc a is contained in a
component.

Figure 4.3: Examples of c(h)-forest-paths, and non-c(h)-forest-paths between two arcs, a and b.
The components of h are enclosed in ovals. The directions of arcs within components are not
shown. A dotted line represents zero or more components, connected by arcs of d.

4.2.2 E-forest paths

Our formalization constructs a c(h)-forest in a way that allows us to compare edge weights
among certain edges. For example, in Figure 4.3(a) we could show that the weight of b is less
than the weight of a. To achieve this, we establish and maintain an invariant, the details of
which are discussed in Section 4.2.3.

First we define a general expression for a path between two vertices in an E-forest.

Definition 15. Let a, b, d, E, and g be elements of an m-k-Stone-Kleene relation algebra.
Then, 〈a , b , d〉 is an E-forest-path in g if a, b, d and E are regular, a and b are arcs, d is an
E-forest, E is an equivalence, and the following axioms are satisfied:

a>> ≤ (Ed)∗Eb> (4.9)

a ≤ E u g (4.10)

b ≤ d (4.11)

Condition (4.9) verifies that there is a path in the E-forest, d, from the target of a to the
source of b. The target of a is in the set of predecessors of the source of b. An example of this
is shown in Figure 4.3(a). Condition (4.10) ensures that a is in g and is not contained in a
component of the E-forest. Lastly, condition (4.11) ensures that b is contained in d.

In the remainder of this thesis we do not explicitly mention the graph, g, that an E-forest-
path refers to: it should be understood from context. We abbreviate E-forest-path as a d

E b
or

a
d

E
b

39 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

The following result says that there is a path in the E-forest, d t e, between a and b if and
only if there is either a path in the E-forest, d, from a to b or one from a to e and one from e
to b.

Theorem 5. Let a, b, E, d and e be elements of an m-k-Stone-Kleene relation algebra where e
is an arc. Then,

a
dte

E
b⇐⇒ a

d

E
b ∨
(
a

d

E
e ∧ e d

E
b
)

Theorem 5 allows us to split E-forest-paths. This is primarily used to make case distinctions.
We give an example of this in Section 4.4.5.

4.2.3 Arc weight comparison in c(h)-forests

The c(h)-forest structure allows a convenient comparison between the weights of the arcs in d.
For example, in Figure 4.3(b), the weights of arcs a and b may be compared because they are
both adjacent to the same component. Since b is outgoing from c2, it must have a weight that
is less than or equal to all other arcs that are adjacent to that component. This is because, as
discussed in Section 3.3.3, when the algorithm was processing c2, b was chosen as the arc with
minimal weight among those that were adjacent to the component. So we can, for example,
conclude that the weight of b is less than or equal to the weight of a. By the same argument, a
must have a weight less than or equal to any arc that is adjacent to c1.

This idea is generalized to c(h)-forest-paths and we show that for any arcs, a and b, where
there is a c(h)-forest-path from a to b, the weight of b is less than or equal to the weight of a,
that is,

a
d

c(h)

b =⇒ s(b u g) ≤ s(a u g) (4.12)

For example, we can use this property to compare the weights of arcs a and b in Figure
4.3(a). We know that a is in the graph and is not contained in a component, b is in d, and there
is a path from a to b in the c(h)-forest. Hence, we can conclude that the weight of b is less than
or equal to the weight of a. It should be apparent that this property does not provide a means
to compare all arcs in a c(h)-forest. For example, we cannot use the property to compare the
arc weights of a and b in Figures 4.3(c) and 4.3(d).

This property does not hold in general for E-forest-paths. We maintain an inner-loop in-
variant to show that it does hold for c(h)-forest-paths that are handled by the inner loop of our
formalization.

4.3 Conditions and invariants

In this section, we give the specification of what the output of our algorithm should satisfy and
list the invariants for both the inner and outer loops of our formalization.

4.3.1 Specification

Upon termination of the algorithm, it should be the case that the output f is a minimum
spanning forest of the input graph, g. To show this, we need a specification for what it is to
be a minimum spanning forest, expressed in the algebra that we are working in. To specify a
minimum spanning forest we were able to reuse the formal specification from [41, 44] that was
created for Kruskal’s MST.

40 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

Definition 16. Let S be an m-Kleene algebra where f, g ∈ S. Then, f is a spanning forest of
g if f is a regular, rooted directed forest and

f ≤ g (4.13)

g
∗ ≤ c(f) (4.14)

The spanning forest, f , is a minimum spanning forest of g if for all u ∈ S where u is a spanning
forest of g, the following holds:

s(f u g) ≤ s(u u g) (4.15)

Note that the minimum selection operation of the m-Kleene algebra, axiomatized in (2.17-
2.19), is not required for this definition.

Axiom (4.13) ensures that the rooted directed forest f is a subgraph of g, ignoring edge
weights. Axiom (4.14) requires that the components of g are contained in the components of
the rooted directed forest. As discussed in Section 2.3.5, the double pseudo-complement of the
graph, g, removes the weight information and so these axioms talk about the structure of the
graph. To specify that the spanning forest is a minimum spanning forest we use the summation
operation of m-Kleene algebras, s, in axiom (4.15).

4.3.2 The outer loop

To show that the output of the algorithm, f , satisfies this specification we were able to reuse
much of the invariant from [44]. When the outer loop terminates we have enough information
to be able to conclude our proof.

The precondition is that g is symmetric. The invariant of the outer loop maintains that

1. g is symmetric,

2. f is a rooted directed forest,

3. f ≤ g, meaning that f is contained in g, ignoring arc weight,

4. f is regular, and

5. there is a minimum spanning forest, w, such that f ≤ w t w>.

Then, we guarantee the postcondition that f is a minimum spanning forest of g.
The invariant of the outer loop is similar to the invariant of Kruskal’s MST algorithm de-

scribed in [44], with some differences. Our invariant does not mention a variable tracking
processed arcs because, as described in Section 2.2, while Kruskal’s MST algorithm iterates over
the arcs of the graph, Bor̊uvka’s MST algorithm does not. We also do not require that f is a
spanning forest of g, ignoring unprocessed arcs. This invariant is used for the establishment of
the postcondition in the proof of Kruskal’s MST algorithm but in our case it follows from other
properties. Namely, we obtain that f is a regular, rooted directed forest and f ≤ g directly from
the invariant. From the negation of the outer loop condition, we can show axiom (4.14)

c(f) u g = ⊥
⇔ c(f) u g ≤ ⊥

⇔ g ≤ c(f)

⇒ g ≤ c(f)

⇒ g
∗ ≤ c(f)

41 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

Therefore f is a spanning forest of g. To get that f is a minimum spanning forest we use the
last part of the invariant of the outer loop, that there exists a minimum spanning forest, w, such
that f ≤ w t w> and derive

s(f u g) = s(w u g)

Since w is a minimum spanning forest of g, axiom (4.15) is satisfied and all proof obligations
have been discharged.

4.3.3 The inner loop

To support showing that the invariant of the outer loop holds, our inner-loop invariant has many
properties. The invariant of the inner loop maintains that:

1. the invariants of the outer loop also hold,

2. g 6= ⊥, meaning that the graph has at least one arc,

3. j is a vector,

4. j is regular,

5. h is a rooted directed forest,

6. h ≤ g, meaning that h is contained in g, ignoring arc weights,

7. h is regular,

8. there is a minimum spanning forest, w, such that h ≤ w t w>,

9. c(h) ≤ c(f), meaning that the components of h are contained in the components of f ,

10. d is a c(h)-forest, that is, the components of h connected by the arcs in d form a c(h)-forest,

11. d> ≤ j, meaning that the sources of the arcs in d are not in the set of vertices still to be
processed,

12. c(h)j = j, meaning that j contains each component of h entirely or not at all,

13. c(f) =
(
c(h) (dt d>)

)∗
c(h), meaning that the components of f can be obtained by taking

any number of steps in the c(h)-forest, ignoring arc direction,

14. f t f> = h t h> t d t d>, meaning that, ignoring direction, f can be obtained by taking
the join of h and d,

15. ∀a, b : a d
c(h) b =⇒ s(b u g) ≤ s(a u g), meaning that, for any arcs a and b, if there is a

c(h)-forest-path from a to b then the weight of b is less than or equal to the weight of a,
and

16. d is regular.

Invariant 15 is particularly important for our proof and we discuss the maintenance of this
invariant in detail in Section 4.4.3.

42 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

4.4 Proof

We are performing a Hoare-logic proof so the most challenging part of our work was to choose
appropriate loop invariants and then maintain them. Aside from variable initialization, most
of the logic of our formalization is found inside the inner loop. This makes the maintenance
of the inner loop invariant particularly difficult. In this section, we give examples of how we
established and maintained the inner and outer invariants that were introduced in Sections 4.3.3
and 4.3.2.

Before we discuss more interesting examples from our proof we give a selection of results we
have proved that are more general.

4.4.1 A selection of general results

In addition to the results that are specialized toward a weighted-graph instance of m-k-Stone-
Kleene relation algebras, we have proved some more general results. In the following theorem,
we present a selection of these results.

Theorem 6. Let S be an m-Kleene algebra. Then, for all a, b, x, y ∈ S, where a and b are arcs

yx∗y ≤ y ⇒ (x t y)∗ = x∗ t x∗yx∗ (4.16)

a = aa>a (4.17)

a ≤ x t b⇒ a ≤ x ∨ a ≤ b (4.18)

¬(a ≤ b)⇒ a ≤ b (4.19)

Property (4.16) is a separation rule for the Kleene star. The condition yx∗y ≤ y also implies
(yx∗)∗y ≤ y from the induction axioms. We use this property when reasoning about paths
through components.

Property (4.17) states that taking a single step along an arc, then back, then along the arc
again is equivalent to taking a single step along the arc.

Property (4.18) states that if an arc, a, is contained in the join of an arc, b, and some other
element, x, then it must be contained either in x or in b.

Property (4.19) states that if an arc, a, is not contained in an arc, b, then it must be in b’s
complement. The implication could also be written as a ≤ b ∨ a ≤ b.

4.4.2 Establishing invariants

To establish the outer invariant we were able to reuse lemma kruskal-exists-minimal-spanning
by Guttmann [41]. This lemma shows that a symmetric graph has a minimum spanning forest.
Since we assume our input graph is symmetric and we initialize f to be ⊥ we can immediately
establish the outer-loop invariant as follows:

• g is symmetric follows from the precondition,

• f is regular since ⊥ is regular,

• f is a rooted directed forest since ⊥ is injective, ⊥⊥> ≤ 1, and acyclic, ⊥+ ≤ 1,

• f is contained in g ignoring arc weight since f = ⊥ ≤ g, and

• there is a minimum spanning forest w such that f ≤ w t w> owing to the precondition
and the above-mentioned lemma.

43 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

Establishing the invariant of the inner loop was similarly easy. For example, the graph is
not empty, that is, g 6= ⊥, immediately follows from the condition of the outer while-loop,
c(f) u g 6= ⊥. Another condition that must be established is that the components of f can
be obtained by taking any number of steps in the c(h)-forest, ignoring arc direction, that is,
c(f) =

(
c(h) (d t d>)

)∗
c(h). Because d is initialized as ⊥ and h is initialized as f in the inner

while-loop, it follows that

(c(h) (d t d>))∗c(h) =
(
c(h)⊥

)∗
c(h)

= ⊥∗c(h)

= c(h)

= c(f)

Sledgehammer was able to find proofs that established the invariants of both our inner and
outer loops.

4.4.3 Maintaining invariants

Since g is not updated, anything that we establish about g will follow immediately, in particular,
that g 6= ⊥. The maintenance of other invariants is not so trivial. In the following sections we
discuss two examples of maintaining the inner loop invariant. Firstly, f can be obtained by
taking any number of steps in the c(h)-forest, ignoring arc direction. Secondly, for any arcs, a
and b, where there is a c(h)-forest-path from a to b the weight of b is less than or equal to the
weight of a. We then discuss how we maintain the outer loop invariant that the rooted directed
forest, f , can be extended to a minimum spanning forest of the graph.

4.4.4 Maintaining the relationship between f and the c(h)-forest

To maintain the invariant that f can be obtained by taking any number of steps in the c(h)-
forest, ignoring arc direction, we show that this property still holds when f and d are updated
in the inner loop. We assume that c(f) = (c(h) (d t d>))∗c(h) and then show that

c(f ′) =
(
c(h) (d′ t d′>)

)∗
c(h) (4.20)

where

f ′ =
(
f u e> u >e

(
f u e>

)>∗) t (f u e> u >e(f u e>)>∗)> t e
which is the update of the forest discussed in Section 3.3.4, and where

d′ = d t e

as listed in line 13 of the algorithm in Figure 3.2.
It is often more difficult to algebraically manipulate an expression containing composition

than join. This is certainly the case for the left-hand side of Equation (4.20), c(f ′), that is,
f ′>
∗
f ′∗. Since f ′ is very complex, and c(f ′) even more so, we use the following result [45] to

rewrite our problem.

Theorem 7. Let S be a Stone-Kleene relation algebra and let x ∈ S be injective. Then

c(x) = (x t x>)∗

We know that all variables in equation (4.20) are regular and that f and f ′ are injective since
they are forests. Then, we use Theorem 7 to rewrite c(f ′) as (f ′tf ′>)∗. Since we are taking the
symmetric closure, we can simplify to (f t f> t e t e>)∗ because, if direction is ignored, then

44 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

we ignore the path reversal part of the update to f and just consider the addition of arc e. The
following chain of equalities is then applied to show Equation (4.20).

c(f ′) = (f t f> t e t e>)∗ (4.21)

= (h t h> t d t d> t e t e>)∗ (4.22)

= (h t h> t d′ t d′>)∗ (4.23)

=
(
(h t h>)∗ (d′ t d′>)

)∗
(h t h>)∗ (4.24)

=
(
c(h) (d′ t d′>)

)∗
c(h) (4.25)

We have (4.22) from f t f> = h t h> t d t d>, which is maintained by the inner invariant.
Because join is associative and commutative, and using the definition of d′, we obtain (4.23).
Owing to the sumstar property of ∗ we have (4.24) and then (4.25) follows from Theorem 7.

4.4.5 Maintaining arc weight comparison in a c(h)-forest

One key part of the invariant of the inner loop that must be maintained is that for any arcs, a
and b, where there is a c(h)-forest-path from a to b the weight of b is less than or equal to the
weight of a.

We start with the assumption that the invariant holds for the previous loop and additionally
assume that there is a c(h)-forest-path from a to b in d′. The property of the invariant that we
are most interested in is that, for all arcs a, b

a
d

c(h)

b =⇒ s(b u g) ≤ s(a u g) (4.26)

We need to show that a d′

c(h) b =⇒ s(bu g) ≤ s(au g) for any arcs a, b. To this end, we assume

a d′

c(h) b, that is, a, b, c(h) and d′ are regular, a and b are arcs, c(h) is an equivalence, d′ is a

c(h)-forest and furthermore, that

a>> ≤
(
c(h) · d′

)∗ · c(h) · b>
∧ a ≤ c(h) u g
∧ b ≤ d′

and then show that s(b u g) ≤ s(a u g).
The proof that this invariant is maintained as d is updated is performed by case distinctions.

The case distinctions, along with example graph structures for each of the cases, are shown in
Figure 4.4. We first make a case distinction on whether b = e or not.

When b 6= e we make an additional distinction on whether e is contained in d or not. If
e � d then we use Theorem 5 to split this case into cases (1) and (2) from Figure 4.4. Case (3)
is when e is contained in d.

When b = e we make an additional distinction on whether a = e or not. If a 6= e, we make a
further case distinction on whether a is incoming to the component that b is outgoing from or
not. The case where it is not, that is, a>> � c(h)e>, is case (4) shown in Figure 4.4. Case (5)
shows where a is incoming to the component that b is outgoing from. Finally, case (6) in Figure
4.4 is where b = e and a = e.

Cases (1), (3) and (6) can be shown immediately while the remaining cases require more
work to prove.

Case (1) In this case there is a c(h)-forest-path from a to b without using e as an intermediate
arc, therefore, we have all the conditions required to show that s(bug) ≤ s(aug) using assumption
(4.26).

45 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

b = e
a = e

a 6= e

a>> ≤ c(h)e>

a>> � c(h)e>

b 6= e

e ≤ d

e � d

a>> ≤
(
c(h)d

)∗
c(h)e>

∧
e>> ≤

(
c(h)d

)∗
c(h)b>

a>> ≤
(
c(h)d

)∗
c(h)b> (1)

a b

e

(2)

a

e

b

(3)

a b

e

(4)

a

xb = e

(5)
a b = e

(6)
a = b = e

Figure 4.4: Six case distinctions to maintain the inner loop invariant that for any arcs, a and b,
where there is a c(h)-forest-path from a to b the weight of b is less than or equal to the weight
of a. Each of the cases is defined by the conjunction of the expressions in the left tree. For
example, case (6) is where b = e and a = e. On the right side of the figure are examples of what
these cases look like in the graph. A dotted line indicates zero or more components connected
by arcs in d. A dashed line denotes an arc that is not in d.

Case (2) In this case we have that b 6= e and e � d and a>> ≤
(
c(h)d

)∗
c(h)e>, and e>> ≤(

c(h)d
)∗
c(h)b>.

First we consider the path from a to e, that is, a>> ≤
(
c(h)d

)∗
c(h)e> and recognize that

we can conclude that s(e u g) ≤ s(a u g) by applying the same logic from cases (4) and (5).
Next, we consider the path from e to b. Since e is contained in the graph, and is not

contained in a component of c(h) then e ≤ g u c(h). Also, because b is an arc, b ≤ d t e and
b 6= e then we have b ≤ d. Therefore, we have b d

c(h) e so it follows from assumption (4.26) that

s(b u g) ≤ s(e u g).
Because s(eug) ≤ s(aug) and s(bug) ≤ s(eug), we obtain our desired result s(bug) ≤ s(aug).

46 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

Case (3) In this case b 6= e and e ≤ d. Because e ≤ d, it follows that a dte
c(h) b if and only if

a d
c(h) b. Therefore, we can conclude that s(b u g) ≤ s(a u g) owing to assumption (4.26).

Case (4) In this case b = e and a 6= e and a>> � c(h)e>. We start by identifying an arc, x
that is incoming to the component that b is outgoing from and which is also in the c(h)-forest,
as shown in Figure 4.4, case (4). The arc x is defined as

x = d u >e>c(h) u
(
c(h)d>

)∗
c(h)a>>

The meet with d ensures that x is an arc between components of the c(h)-forest. The second
part of this expression, >e>c(h), ensures that the target of x is in the same component of c(h)
as the source of e. The last part of this expression,

(
c(h)d>

)∗
c(h)a>>, ensures that the source

of x is reachable from the target of a by taking any number of steps in the c(h)-forest. The
expression is used to show that x is regular, x ≤ c(h) u g, and x>> ≤ c(h)e>. We also show
that x is an arc which is the part of our proof that requires the Tarski rule, (3.8) of Definition
13, to show that >x> = >.

Then we use Theorem 11, discussed later, to show that s(e u g) ≤ s(x u g).
We prove that s(xug) ≤ s(aug) by showing that the conditions of Definition 15 are satisfied.

a
d

E
x =⇒ s(x u g) ≤ s(a u g)

Then we conclude that s(b u g) ≤ s(a u g) since

s(b u g) = s(e u g)

≤ s(x u g)

≤ s(a u g)

Case (5) In this case b = e and a 6= e and a>> ≤ c(h)e>. We show that a is a regular arc,
is contained in the graph and is not contained within any component of c(h). We have all the
assumptions required to use Theorem 11, presented later, so we can conclude that s(b u g) ≤
s(a u g).

Case (6) The final case is where b = e and a = e, as shown in Figure 4.4. Since a = b we
have s(b u g) ≤ s(a u g).

In the remainder of this section we present Theorem 11. This theorem allows us to show that
the selected arc, e, that is outgoing from a component must have a weight less than or equal
to any other arc incoming to that component in the c(h)-forest. We first present supporting
results that are used by Theorem 11. Like all results in this thesis, they are formally verified in
Isabelle/HOL.

The following result shows that the source of e is contained in the component c and the
target of e is not contained in c, that is, e is outgoing from component c.

Theorem 8. Let S be a m-k-Stone-Kleene relation algebra and let c, e, g ∈ S where e = m(cc>u
g) and c is regular. Then, e ≤ cc>.

Proof.

e = m
(
cc> u g

)
(4.27)

≤ cc> u g (4.28)

= cc> u g (4.29)

≤ cc> (4.30)

= cc> (4.31)

47 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

We have (4.27) from the assumptions. Then, (4.28) follows from axiom (2.17). We then simplify
owing to the results of Theorems 2, 8, and 9 of [42] and can remove the double complement
(4.31) since c is regular.

The co-vector c> are all arcs that terminate at the component represented by the vector c.
The following result shows that the arc x terminates at component c.

Theorem 9. Let S be a m-k-Stone-Kleene relation algebra and let x, c, e, h ∈ S where x>> ≤
c(h)e> and c is a vector and c = c(h)c and e ≤ cc> and h is a forest. Then, x ≤ c>.

Proof.

x ≤ >x (4.32)

≤ >e>c(h) (4.33)

≤ >(cc>)>c(h) (4.34)

= >cc>c(h) (4.35)

≤ c>c(h) (4.36)

= c> (4.37)

We apply the transpose to the assumption, x>> ≤ c(h)e>, so that (4.33) follows from Definition
7 and Theorem 8 of [42] and since c(h) is symmetric. We have (4.34) from the assumption that
e ≤ cc>. We have (4.35) again from Definition 7 and Theorem 8 of [42]. Since c is a vector
(4.35) can be simplified to (4.36) by >cc>c(h) ≤ >>c>c(h) = >c>c(h) = c>c(h). Finally, (4.37)
follows because c>c(h) = (c(h)c)> = c>, from the assumption c = c(h)c and the fact that c(h)
is an equivalence, therefore, symmetric.

The following result is used to show that the arc x is not contained in the selected component.

Theorem 10. Let S be a m-k-Stone-Kleene relation algebra and let x, c, h ∈ S where x ≤ c>

and x ≤ c(h) and c is a vector and cc> ≤ c(h). Then, x ≤ c.

Proof.

c u c> = cc> (4.38)

≤ c(h) (4.39)

then, since c u c> ≤ c(h) ≤ c(h), we have

c(h) u c u c> ≤ ⊥ (4.40)

⇔ c(h) u c> ≤ c (4.41)

and finally, it follows that

x ≤ c(h) u c> (4.42)

≤ c (4.43)

We have (4.38) owing to c being a vector and (4.39) then follows from the assumptions. Next,
(4.40) and (4.41) follow from the weak shunting property of Theorem 4 from [42]. Since the
assumptions, x ≤ c(h) and x ≤ c>, imply (4.42) we have (4.43) because of (4.41).

The following result allows us to compare weights of two arcs under certain conditions. The
intuition is, if there is an arc incoming to a component of c(h) in a c(h)-forest, and another arc
outgoing from that same component, we can show that the weight of the outgoing arc is less
than or equal to that of the incoming arc.

48 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

Theorem 11. Let S be a m-k-Stone-Kleene relation algebra and let x, c, e, h, g ∈ S where x is an
arc and x>> ≤ c(h)e> and x ≤ c(h)u g and c is a regular vector and c = c(h)c and cc> ≤ c(h)

and c 6= ⊥ and e = m(cc> u g) and h is a forest and g is symmetric. Then, s(e u g) ≤ s(x u g).

Proof.

x ≤ c u c> (4.44)

= cc> (4.45)

then we apply the transpose

x> ≤ cc> (4.46)

⇒ x> u cc> u g 6= ⊥ (4.47)

⇒ x> u cc> u g 6= ⊥ (4.48)

then, since x is an arc, x> is also an arc. It follows that

s
(
m(cc> u g) u cc> u g

)
≤ s(x> u cc> u g) (4.49)

⇔ s
(
e u cc> u g

)
≤ s(x> u cc> u g) (4.50)

⇒ s(e u g) ≤ s(x> u g) (4.51)

⇔ s(e u g) ≤ s(x u g) (4.52)

We have (4.44) from the assumptions and Theorems 8, 9, and 10. The properties of vectors then
give (4.45). We apply the transpose to get (4.46). Since x is an arc that is contained in g and
because g is symmetric, x> ≤ g, then we have (4.47). Because x is an arc and given (4.48) then
we get (4.49) by axiom (2.19). We can use the definition of e and that c is regular to simplify
to (4.51). Finally, axiom (2.14) can be used to show (4.52).

4.4.6 Extending f to a minimum spanning forest

The key property of the invariant of the outer loop that must be maintained is that the rooted
directed forest, f , can be extended to a minimum spanning forest of the graph, g, ignoring arc
direction, that is, there exists a minimum spanning forest, w, such that f ≤ w t w>. We were
able to reuse some work from [44] in the maintenance of this invariant. However, while the
basic structure of the proof of the maintenance of this invariant remains the same, considerable
reworking was required.

To maintain this invariant, we assume that f ≤ wtw> and then must show that there exists
a minimum spanning forest, w′, such that, when f is updated to f ′, we have that f ′ ≤ w′ tw′>.
An illustration how this is done is given in Figure 4.5. In Figure 4.5(a), we see a forest, w, that
extends f . In Figure 4.5(b) we see a forest, w′, that extends f ′ in a manner that ensures we can
show our invariant is maintained.

When f is updated to f ′ with the addition of e we must maintain that the minimum spanning
forest, w′, that extends f ′, is injective, acyclic, and has weight at most as large as w. To do
this we consider some transformations of w and then prove that the properties of interest are
maintained.

Firstly, to maintain injectivity, we define a minimum spanning forest, v, in terms of w where
any path from the root of w to the target of e is reversed. This is shown as the reversal of q, in
Figure 4.5(a), to q>, in Figure 4.5(b). The path from the root of w to the target of e is

q = w u >ew>∗

49 Chapter 4. Correctness of Bor̊uvka’s MST algorithm

q

w

e

(a) A minimum spanning forest, w, that ex-
tends f .

q>

w′

e

i

(b) A minimum spanning forest, w′, that ex-
tends f ′.

Figure 4.5: Maintaining the invariant that f can be extended to a minimum spanning forest, w,
before and after adding arc, e. The path, q, to the root of the rooted directed forest is reversed
to maintain injectivity. The arc, i, whose target is in the same component of f as the source of e,
is removed to maintain that w′ is acyclic. The vertices enclosed in a circle denote a component,
in f . The root of the rooted directed forest is highlighted gray.

Then, similar to how we maintain the injectivity of f as discussed in Section 3.3.4, we define v
as

v = (w u q) t q>

Secondly, we require that w′ is acyclic. If the arc added to f was not also in w then the
definition of the minimum spanning forest extending f ′ must change to ensure that it remains
acyclic. This is done by selecting another arc in v and defining w′ with that arc removed and e
added. Furthermore, we show that this swap results in a spanning tree with weight at most as
large as w.

In [44] the arc selected for removal was the arc whose source was in the same component of f
as the target of e. This arc does not suit our purposes because we do not have a convenient way
to compare the weight of that arc with the weight of e. However, there is an easy comparison
to be made between the arc, i, whose target is in the same component of f as the source of e.
Namely, the weight of e is at least as small as the weight of i, since i is among those arcs that
the algorithm chose e from with the minimum selection m(cc> u g). The arc i is defined as

i = v u c(f)e> u>e>c(f)

The meet with v limits i to only those arcs in the rooted directed forest w, with the path, q, from
the root of w to the target of e reversed. The second part of this expression, c(f)e>, specifies
that the source of i cannot be in the same component of f as the source of e. Finally, the last
part of the expression, >e>c(f), requires that the target of i is in the same component of f as
the source of e. We prove that these requirements uniquely identify an arc, i. After the update,
the target of i becomes the root of w′ in the component that e is in. Furthermore, we show that
s(e u g) ≤ s(i u g) using Theorem 11.

Therefore, the desired forest, w′, that extends f ′ is v, with i removed and e added, that is,

w′ = (v u i) t e

This is the construction shown in Figure 4.5(b).

50

Chapter 5

Conclusion

Our aim was to provide a machine-verified formal partial-correctness proof for Bor̊uvka’s MST
algorithm. We have given a formal description of Bor̊uvka’s MST algorithm using m-k-Stone-
Kleene relation algebras. We have completed a formal, partial correctness proof to show that
this description satisfies a formal specification for computing minimum spanning forests. The
proof has been automatically verified by Isabelle/HOL.

5.1 Limitations and future work

A minor change that could be made to our proof would be to define an E-forest in terms that
are closer to the way that forests are defined. In Definition 14, we describe an E-forest as
being univalent. This description of a forest is one where the arcs are directed towards the root
vertices. However, as discussed in Section 2.3.6, we define a forest as being injective, that is, the
arcs of the forest are directed away from the root vertices. It should not require too much work
to adjust this definition though a number of theorems of the proof would need to be changed.
Making this change would result in a more consistent approach to forest definition across the
proof.

We do not prove that the algorithm terminates. Rather, our Hoare-logic proof concludes
that if the algorithm terminates then the output is a minimum spanning forest of the input
graph. We do not expect this to require a substantial amount of time to complete, in particular
because of the prior work by Guttmann to extend the Hoare-logic library we are using to allow
for total-correctness proofs.

We claim that our formalization, presented in Section 3.2, is an accurate representation of
Bor̊uvka’s MST algorithm, with the exception of an additional conditional statement in the inner
while-loop, as discussed in the following paragraph. This claim is based on informal reasoning
only so is not made with the same confidence as our partial-correctness proof.

We do not give a specification for the input graph to have distinct arc weights. As discussed
in Section 2.2.2, this could result in a cycle being created in the algorithm’s output. Our
formalization circumvents this problem by having a condition in the inner while-loop that checks
whether the addition of the arc e would create a cycle in the forest f if it were added. It does
this by checking that e is not contained in any component of f and performing a skip operation
if it is.

Recall, from Section 1.2, that one motivation for using Bor̊uvka’s MST algorithm is the
performance gain to be had by leaning on how readily it may be parallelized. One limitation
with our approach of using a condition in the inner while-loop that depends on the state of the
forest is that it results in a description which is not amenable to parallelization. At least, in
practice this would require some synchronization before performing the conditional check.

We suspect that if a specification were given that required the input graph to have only
distinct arc weights then we could derive that the selected arc is not contained in a component

51 Chapter 5. Conclusion

of the forest in each iteration of the inner while-loop. We could then remove the condition from
the formalization.

5.2 Discussion

We have benefited greatly from the prior work of Guttmann, both from the algebraic framework
that we extend and from the theorems and lemmas published in the Archive of Formal Proofs.
We have found that Stone-Kleene relation algebras are a useful algebraic framework to prove
most of our results. Some parts of our proof required additional structure. There were sections
of our proof that additionally required the axioms of m-Kleene relation algebras, in particular
for selecting an arc with minimal weight and for comparing weights between arcs.

We extended Stone relation algebras to k-Stone relation algebras with the addition of a
component selection operation, k. This operation was not strictly necessary to complete our
proof and we could have used an algebraic expression in m-Kleene relation algebras to formalize
the selection of a component. However, we found the addition of the k operation for this purpose
to more clearly communicate the desired intent to a reader of the formalization.

While most of our proof used only the axioms of Stone-Kleene relation algebras, we work
in m-k-Stone-Kleene relation algebras to have access to the component selection operation and
because we required the Tarski rule to prove that a particular element is an arc.

Because our proof is conducted using only the axioms of m-k-Stone-Kleene relation algebras,
the proof will hold for instances other than the weighted-graph model. We do not explore this
further here but note that in [38] it is discussed how different instances of the m-Stone algebras
give rise to formalizations of various other algorithms, for example, the minimum bottleneck
spanning tree problem. The proof holds for any instance that satisfies the axioms the proof is
conducted in. This means that Bor̊uvka’s MST algorithm is correct for various related MST
problems.

We benefited from the tools and libraries of Isabelle/HOL. Sledgehammer was able to find
proofs for many of the smaller goals for us which alleviated the burden of having to know the
name and content of each relevant property in the library of theory files. We used the Hoare-logic
verification generator library to generate the proof goals for us directly from our formalization.
This meant that we did not have to manually generate our verification conditions and, given
that we rewrote our formalization and loop invariants a number of times, saved us considerable
time.

52

Bibliography

[1] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Formal derivation of
spanning trees algorithms. In International Conference of B and Z Users, pages 457–476.
Springer, 2003.

[2] Raymond Balbes and Philip Dwinger. Distributive Lattices. University of Missouri Press,
1974.

[3] Ralf Behnke, Rudolf Berghammer, Erich Meyer, and Peter Schneider. RelView—a system
for calculating with relations and relational programming. In International Conference on
Fundamental Approaches to Software Engineering, pages 318–321. Springer, 1998.

[4] Rudolf Berghammer and Frank Neumann. RelView–an OBDD-based computer algebra sys-
tem for relations. In International Workshop on Computer Algebra in Scientific Computing,
pages 40–51. Springer, 2005.

[5] Rudolf Berghammer, Agnieszka Rusinowska, and Harrie De Swart. Computing tournament
solutions using relation algebra and RelView. European Journal of Operational Research,
226(3):636–645, 2013.

[6] Rudolf Berghammer, Burghard von Karger, and Andreas Wolf. Relation-algebraic deriva-
tion of spanning tree algorithms. In Johan Jeuring, editor, Mathematics of Program Con-
struction, volume 1422 of Lecture Notes in Computer Science, pages 23–43. Springer, 1998.

[7] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer, 2004.

[8] Garrett Birkhoff. Lattice Theory, volume 25. American Mathematical Society, 1948.

[9] Stefano Bistarelli and Francesco Santini. C-semiring frameworks for minimum spanning
tree problems. In International Workshop on Algebraic Development Techniques, pages
56–70. Springer, 2008.

[10] Sandrine Blazy, Benôıt Robillard, and Andrew W. Appel. Formal verification of coalescing
graph-coloring register allocation. In Andrew D. Gordon, editor, European Symposium on
Programming, volume 6012 of Lecture Notes in Computer Science, pages 145–164. Springer,
2010.

[11] T. S. Blyth. Lattices and Ordered Algebraic Structures. Springer, 2005.

[12] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis:
A survey of proof assistants and libraries. Mathematical Structures in Computer Science,
26(7):1196–1233, 2016.

[13] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

53 Bibliography

[14] Otakar Bor̊uvka. O jistém problému minimálńım (about a certain minimal problem). 3:33–
58, 1926.

[15] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore theorem prover
and its interactive enhancement. Computers & Mathematics with Applications, 29(2):27–62,
1995.

[16] Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type com-
plexity. Journal of the ACM, 47(6):1028–1047, 2000.

[17] C. C. Chen and G. Grätzer. Stone lattices. I: Construction theorems. Canadian Journal of
Mathematics, 21:884–894, 1969.

[18] Gustave Choquet. Étude de certains réseaux de routes. Comptes Rendus Hebdomadaires
des Séances de l’Académie des Sciences, 206:310–313, 1938.

[19] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT press, 3rd edition, 2009.

[21] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge,
second edition, 2002.

[22] Christian Doczkal and Damien Pous. Graph theory in Coq: Minors, treewidth, and iso-
morphisms. Journal of Automated Reasoning, pages 1–31, 2020.

[23] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds,
and Clark Barrett. SMTCoq: A plug-in for integrating SMT solvers into Coq. In Interna-
tional Conference on Computer Aided Verification, pages 126–133. Springer, 2017.

[24] Shimon Even. Graph Algorithms. Cambridge, second edition, 2012.

[25] Kazimierz Florek, Jan Lukaszewicz, Julian Perkal, Hugo Steinhaus, and Stefan Zubrzycki.
Sur la liaison et la division des points d’un ensemble fini. In Colloquium Mathematicae,
volume 2, pages 282–285, 1951.

[26] Jean-Claude Fournier. Graph Theory and Applications. Wiley, 2009.

[27] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[28] Harold N Gabow, Zvi Galil, and Thomas H. Spencer. Efficient implementation of graph
algorithms using contraction. In 25th Annual Symposium on Foundations of Computer
Science, pages 347–357. IEEE, 1984.

[29] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming Languages and
systems, 5(1):66–77, 1983.

[30] Alan Gibbons. Algorithmic Graph Theory. Cambridge, 1985.

[31] Michel Gondran and Michel Minoux. Graphs, Dioids and Semirings: New Models and
Algorithms, volume 41. Springer, 2008.

[32] Michael J. C. Gordon and Tom F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

54 Bibliography

[33] Ronald Gould. Graph Theory. Benjamin/Cummings, 1988.

[34] Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7(1):43–57, 1985.

[35] George Grätzer. General Lattice Theory. American Press, 1978.

[36] George Grätzer. Lattice Theory: Foundation. Springer, 2011.

[37] George Grätzer and Elégius T Schmidt. On a problem of MH Stone. Acta Mathematica
Academiae Scientiarum Hungaricae, 8:455–460, 1957.

[38] W. Guttmann. Relation-algebraic verification of Prim’s minimum spanning tree algorithm.
In A. Sampaio and F. Wang, editors, Theoretical Aspects of Computing, volume 9965 of
Lecture Notes in Computer Science, pages 51–68. Springer, 2016.

[39] W. Guttmann. Stone-Kleene relation algebras. Archive of Formal Proofs, 2017.

[40] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

[41] W. Guttmann. Aggregation algebras. Archive of Formal Proofs, 2018.

[42] Walter Guttmann. Stone relation algebras. In Peter Höfner, Damien Pous, and Georg
Struth, editors, International Conference on Relational and Algebraic Methods in Computer
Science, volume 10226 of Lecture Notes in Computer Science, pages 127–143. Springer, 2017.

[43] Walter Guttmann. An algebraic framework for minimum spanning tree problems. Theoret-
ical Computer Science, 744:37–55, 2018.

[44] Walter Guttmann. Verifying minimum spanning tree algorithms with Stone relation alge-
bras. Journal of Logical and Algebraic Methods in Programming, 101:132–150, 2018.

[45] Walter Guttmann. Verifying the correctness of disjoint-set forests with Kleene relation
algebras. In Uli Fahrenberg, Peter Jipsen, and Michael Winter, editors, Relational and Al-
gebraic Methods in Computer Science, volume 12062 of Lecture Notes in Computer Science,
pages 134–151. Springer, 2020.

[46] Norah Hartsfield and Gerhard Ringel. Pearls in Graph Theory: A Comprehensive Intro-
duction. Academic Press, 1994.

[47] Egbert Harzheim. Ordered Sets, volume 7 of Advances in Mathematics. Springer, 2005.

[48] Wim H. Hesselink. The verified incremental design of a distributed spanning tree algorithm.
Formal Aspects of Computing, 11(1):45–55, 1999.

[49] Peter Höfner and Bernhard Möller. Dijkstra, Floyd and Warshall meet Kleene. Formal
Aspects of Computing, 24(4-6):459–476, 2012.

[50] Thomas Judson. Abstract Algebra: Theory and Applications. Austin State University, 2016.

[51] David R Karger, Philip N Klein, and Robert E Tarjan. A randomized linear-time algorithm
to find minimum spanning trees. Journal of the ACM, 42(2):321–328, 1995.

[52] Britta Kehden and Frank Neumann. A relation-algebraic view on evolutionary algorithms
for some graph problems. In Jens Gottlieb and Günther R. Raidl, editors, Evolutionary
Computation in Combinatorial Optimization, volume 3906 of Lecture Notes in Computer
Science, pages 147–158. Springer, 2006.

55 Bibliography

[53] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

[54] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[55] Peter Lammich and S. Reza Sefidgar. Formalizing network flow algorithms: A refinement
approach in Isabelle/HOL. Journal of Automated Reasoning, 62(2):261–280, 2019.

[56] Gilbert Lee. Verification of graph algorithms in Mizar. Master’s thesis, University of
Alberta, 2004.

[57] Roger D. Maddux. The origin of relation algebras in the development and axiomatization
of the calculus of relations. Studia Logica, 50(3-4):421–455, 1991.

[58] Roger D. Maddux. Relation-algebraic semantics. Theoretical Computer Science, 160(1-
2):1–85, 1996.

[59] Roger D. Maddux. Relation algebras. In Studies in Logic and the Foundation of Mathe-
matics, volume 150. Elsevier, 2006.

[60] Martin Mareš. The saga of minimum spanning trees. Computer Science Review, 2(3):165–
221, 2008.

[61] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. Jour-
nal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

[62] Michal Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, 1993.

[63] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Bor̊uvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1-3):3–36, 2001.

[64] Jaroslav Nešetril and Helena Nešetrilová. The origins of minimal spanning tree algorithms–
Boruvka and Jarńık. Documenta Mathematica, Extra Volume on Optimization Stories,
pages 127–141, 2012.

[65] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing, 10(2):171–186, 1998.

[66] Tobias Nipkow. Hoare logics in Isabelle/HOL. In Helmut Schwichtenberg and Ralf
Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer Academic Pub-
lishers, 2002.

[67] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. Flyspeck I: tame graphs. In Interna-
tional Joint Conference on Automated Reasoning, pages 21–35. Springer, 2006.

[68] Tobias Nipkow, Manuel Eberl, and Maximilian P. L. Haslbeck. Verified textbook algorithms.
A biased survey. In Dang Van Hung and Oleg Sokolsky, editors, ATVA 2020, Automated
Technology for Verification and Analysis, Lecture Notes in Computer Science. Springer,
2020. To appear.

[69] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[70] Lars Noschinski. A graph library for Isabelle. Mathematics in Computer Science, 9(1):23–
39, 2015.

56 Bibliography

[71] Eugenio G. Omodeo, Domenico Cantone, Alberto Policriti, and Jacob T. Schwartz. A
computerized referee. In Reasoning, Action and Interaction in AI Theories and Systems,
pages 117–139. Springer, 2006.

[72] Eugenio G. Omodeo and Alexandru I. Tomescu. Set graphs. III. Proof pearl: Claw-free
graphs mirrored into transitive hereditarily finite sets. Journal of Automated Reasoning,
52(1):1–29, 2014.

[73] J. C. Paulson, L. C. Blanchette. Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In Ternovska E. Sutcliffe G.,
Schulz S., editor, International Workshop on the Implementation of Logics, 2010.

[74] Robert Clay Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36(6):1389–1401, 1957.

[75] Saidur Rahman. Basic Graph Theory. Springer, 2017.

[76] Steven Roman. Lattices and Ordered Sets. Springer, 2008.

[77] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs–Discrete Mathematics for
Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer,
1993.

[78] Steven S. Skiena. The Algorithm Design Manual, volume 1. Springer, second edition, 1998.

[79] M. Sollin. La trace de canalisation. In C. Berge and A. Ghouilla-Houri, editors, Program-
ming, Games, and Transportation Networks. Wiley, 1965.

[80] Robert Endre Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, 1983.

[81] Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

[82] Douglas Brent West. Introduction to Graph Theory. Pearson, second edition, 2002.

[83] Freek Wiedijk. The Seventeen Provers of the World: Foreword by Dana S. Scott, volume
3600 of Lecture Notes in Artificial Intelligence. Springer, 2006.

[84] Andrew Chi-Chih Yao. An O(e log log v) algorithm for finding minimum spanning trees.
Information Processing Letters, 4(1):21–23, 1975.

57

Appendix A

An intuition for the weighted-graph
instance notation

We denote the set of matrices whose entries range over the real numbers, extended by > and ⊥
as R′A×A. Here, we give some intuition for this.

The set of extended real numbers, R′, is the union of the real numbers with the set {⊥,>},
that is R′ = R ∪ {⊥,>}. A notation that is sometimes used to denote the set of functions from
set X to set Y is Y X . Before discussing how this applies for R′A×A we give a simple example.

Note that 2S denotes the set of functions mapping elements from the set S to the two-element
set. A common use of this particular notation is to denote the power-set relation (function).
This is because we can interpret one element of the two-element set to denote inclusion (for
instance 1) and the other to denote exclusion (for instance 0).

a

b

c

d

0

1

S {0, 1}

f : S 7→ {0, 1}

Figure A.1: A depiction of how 2S denotes a power set. Here, f maps S to {0, 1} in a way that
denotes the subset {a, b, c}.

Consider the set S = {a, b, c, d} and {0, 1} in Figure A.1. The instance of f shown maps all
elements of S to 1 except for d which is mapped to 0. This is the instance of 2S that denotes
the subset, {a, b, c}. The function mapping all elements of S to 0 would denote the empty set.

Next we consider R′A×A. Our interpretation of this is the set of functions mapping the set of
tuples of the Cartesian product, A×A, to the extended real numbers. Recall, that A denotes the
index set of vertices under consideration. Therefore, R′A×A denotes all possible weighted-graph
instances, as matrices, that may be formed over graphs with a vertex set, A, and edge weights
taken from R′.

Consider, for example, the graph in Figure A.2(a) that has three edges with weights: 3.5, 9.1,
and 6.9. This graph is shown in matrix form in Figure A.2(b). In Figure A.2(c), the function,
f : A×A 7→ R′, maps vertex pairs to edge weights for the graph. For example, we see that (c, a)
from set A×A maps to 6.9 from set R′. Likewise (a, a) maps to ⊥.

58 Appendix A. An intuition for the weighted-graph instance notation

a

b

c

3.5

6.9

9.1

(a) A graph of three vertices, a, b, and c.
Edge weights are selected from the extended
real numbers.

⊥ 3.5 ⊥

⊥ ⊥ ⊥

6.9 9.1 ⊥

a b c

a

b

c

(b) A matrix view of the graph from Figure
A.2(a).

(a, a)

(a, c)

(b, a)

(b, b)

(b, c)

(c, c)

(a, b)

(c, a)

(c, b)

⊥

...

3.5

...

6.9

...

9.1

...

>

A×A R′

f : A×A 7→ R′

(c) A particular function, f , from the set of functions R′A×A that denote possible matrices over index set
A. Here, f represents the weighted-graph instance from Figure A.2(a).

Figure A.2: A depiction of how R′A×A denotes all possible weighted-graph instances, as matrices,
that may be formed over graphs with a vertex set, A, and edge weights taken from R′.

59

Appendix B

Isabelle/HOL theory

We include the Isabelle/HOL theory that formally verifies the correctness of Bor̊uvka’s MST
algorithm in this appendix. We intend to publish this theory to the Archive of Formal Proofs. We
also include results about weakly connected components [45] that have not yet been published
to the Archive of Formal Proofs. Until these theories are published to the Archive of Formal
Proofs, they will also be available at https://gitlab.com/nicobrien/boruvka-mst-theory.

B.1 Weakly connected components

The results in this section are from [45].

theory WCC

imports Stone-Kleene-Relation-Algebras.Kleene-Relation-Algebras

begin

no-notation
trancl ((-+) [1000] 999)

context stone-kleene-relation-algebra
begin

lemma reachable-without-loops:
x? = (x u −1)?

proof (rule antisym)
have x ∗ (x u −1)? = (x u 1) ∗ (x u −1)? t (x u −1) ∗ (x u −1)?

by (metis maddux-3-11-pp mult-right-dist-sup regular-one-closed)
also have ... ≤ (x u −1)?

by (metis inf .cobounded2 le-supI mult-left-isotone star .circ-circ-mult star .left-plus-below-circ
star-involutive star-one)

finally show x? ≤ (x u −1)?

by (metis inf .cobounded2 maddux-3-11-pp regular-one-closed star .circ-circ-mult star .circ-sup-2
star-involutive star-sub-one)
next

show (x u −1)? ≤ x?

by (simp add : star-isotone)
qed

abbreviation wcc x ≡ (x t xT)?

lemma wcc-equivalence:
equivalence (wcc x)
apply (intro conjI)

https://gitlab.com/nicobrien/boruvka-mst-theory

60 Appendix B. Isabelle/HOL theory

subgoal by (simp add : star .circ-reflexive)
subgoal by (simp add : star .circ-transitive-equal)
subgoal by (simp add : conv-dist-sup conv-star-commute sup-commute)
done

lemma wcc-increasing :
x ≤ wcc x
by (simp add : star .circ-sub-dist-1)

lemma wcc-isotone:
x ≤ y =⇒ wcc x ≤ wcc y
using conv-isotone star-isotone sup-mono by blast

lemma wcc-idempotent :
wcc (wcc x) = wcc x
using star-involutive wcc-equivalence by auto

lemma wcc-below-wcc:
x ≤ wcc y =⇒ wcc x ≤ wcc y
using wcc-idempotent wcc-isotone by fastforce

lemma wcc-bot :
wcc bot = 1
by (simp add : star .circ-zero)

lemma wcc-one:
wcc 1 = 1
by (simp add : star-one)

lemma wcc-top:
wcc top = top
by (simp add : star .circ-top)

lemma wcc-with-loops:
wcc x = wcc (x t 1)
using conv-dist-sup star-decompose-1 star-sup-one sup-commute symmetric-one-closed by presburger

lemma wcc-without-loops:
wcc x = wcc (x u −1)
by (metis conv-star-commute star-sum reachable-without-loops)

lemma forest-components-wcc:
injective x =⇒ wcc x = forest-components x
by (simp add : cancel-separate-1)

abbreviation fc x ≡ x? ∗ xT ?

lemma fc-equivalence:
univalent x =⇒ equivalence (fc x)
apply (intro conjI)
subgoal by (simp add : reflexive-mult-closed star .circ-reflexive)
subgoal by (metis cancel-separate-1 eq-iff star .circ-transitive-equal)
subgoal by (simp add : conv-dist-comp conv-star-commute)
done

lemma fc-increasing :
x ≤ fc x
by (metis le-supE mult-left-isotone star .circ-back-loop-fixpoint star .circ-increasing)

61 Appendix B. Isabelle/HOL theory

lemma fc-isotone:
x ≤ y =⇒ fc x ≤ fc y
by (simp add : comp-isotone conv-isotone star-isotone)

lemma fc-idempotent :
univalent x =⇒ fc (fc x) = fc x
by (metis fc-equivalence cancel-separate-1 star .circ-transitive-equal star-involutive)

lemma fc-star :
univalent x =⇒ (fc x)? = fc x
using fc-equivalence fc-idempotent star .circ-transitive-equal by simp

lemma fc-plus:
univalent x =⇒ (fc x)+ = fc x
by (metis fc-star star .circ-decompose-9)

lemma fc-bot :
fc bot = 1
by (simp add : star .circ-zero)

lemma fc-one:
fc 1 = 1
by (simp add : star-one)

lemma fc-top:
fc top = top
by (simp add : star .circ-top)

lemma fc-wcc:
univalent x =⇒ wcc x = fc x
by (simp add : fc-star star-decompose-1)

end

end

B.2 Bor̊uvka’s minimum spanning tree algorithm

In this section we prove partial-correctness of Bor̊uvka’s minimum spanning tree algorithm. The
specification is similar as for Guttmann’s proof of Kruskal’s minimum spanning tree algorithm
and the proof is conducted in Stone-Kleene relation algebras supplemented with the Tarski rule
for regular elements, operations for aggregation and minimization, and an operation to select
components of a graph. The proof uses Hoare Logic.

theory Boruvka

imports
Aggregation-Algebras.Minimum-Spanning-Trees
WCC

begin

B.2.1 General results

The proof of Bor̊uvka’s minimum spanning tree algorithm is carried out in m-k-Stone-Kleene
relation algebras, that is, stone-kleene-relation-algebra-tarski. In this section we give results that

62 Appendix B. Isabelle/HOL theory

hold more generally.

context stone-kleene-relation-algebra
begin

definition big-forest H d ≡
equivalence H
∧ d ≤ −H
∧ univalent (H ∗ d)
∧ H u d ∗ dT ≤ 1
∧ (H ∗ d)+ ≤ − H

definition bf-between-points p q H d ≡ point p ∧ point q ∧ p ≤ (H ∗ d)? ∗ H ∗ d
definition bf-between-arcs a b H d ≡ arc a ∧ arc b ∧ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
definition e-forest-path a b H d g ≡

big-forest H d
∧ arc a
∧ arc b
∧ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
∧ a ≤ −H u −−g
∧ b ≤ d

Theorem 3

lemma He-eq-He-THe-star :
assumes arc e

and equivalence H
shows H ∗ e = H ∗ e ∗ (top ∗ H ∗ e)?

proof −
let ?x = H ∗ e
have 1 : H ∗ e ≤ H ∗ e ∗ (top ∗ H ∗ e)?

using comp-isotone star .circ-reflexive by fastforce
have H ∗ e ∗ (top ∗ H ∗ e)? = H ∗ e ∗ (top ∗ e)?

by (metis assms(2) preorder-idempotent surjective-var)
also have ... ≤ H ∗ e ∗ (1 t top ∗ (e ∗ top)? ∗ e)

by (metis eq-refl star .circ-mult-1)
also have ... ≤ H ∗ e ∗ (1 t top ∗ top ∗ e)

by (simp add : star .circ-left-top)
also have ... = H ∗ e t H ∗ e ∗ top ∗ e

by (simp add : mult .semigroup-axioms semiring .distrib-left semigroup.assoc)
finally have 2 : H ∗ e ∗ (top ∗ H ∗ e)? ≤ H ∗ e

using assms arc-top-arc mult-assoc by auto
thus ?thesis

using 1 2 by simp
qed

lemma path-through-components:
assumes equivalence H

and arc e
shows (H ∗ (d t e))? = (H ∗ d)? t (H ∗ d)? ∗ H ∗ e ∗ (H ∗ d)?

proof −
have H ∗ e ∗ (H ∗ d)? ∗ H ∗ e ≤ H ∗ e ∗ top ∗ H ∗ e

by (simp add : comp-isotone)
also have ... = H ∗ e ∗ top ∗ e

by (metis assms(1) preorder-idempotent surjective-var mult-assoc)
also have ... = H ∗ e

using assms(2) arc-top-arc mult-assoc by auto
finally have 1 : H ∗ e ∗ (H ∗ d)? ∗ H ∗ e ≤ H ∗ e

by simp
have (H ∗ (d t e))? = (H ∗ d t H ∗ e)?

63 Appendix B. Isabelle/HOL theory

by (simp add : comp-left-dist-sup)
also have ... = (H ∗ d)? t (H ∗ d)? ∗ H ∗ e ∗ (H ∗ d)?

using 1 star-separate-3 by (simp add : mult-assoc)
finally show ?thesis

by simp
qed

lemma simplify-f :
assumes regular p

and regular e
shows (f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u − eT u − p)T t eT t e = f
t f T t e t eT

proof −
have (f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u − eT u − p)T t eT t e

= (f u − eT u − p) t (f u − eT u p) t (f T u − e u pT) t (f T u − e u − pT) t eT t e
by (simp add : conv-complement conv-dist-inf)

also have ... =
((f t (f u − eT u p)) u (− eT t (f u − eT u p)) u (− p t (f u − eT u p)))
t ((f T t (f T u − e u − pT)) u (− e t (f T u − e u − pT)) u (pT t (f T u − e u − pT)))
t eT t e
using sup-inf-distrib2 sup-assoc by presburger

also have ... =
((f t f) u (f t − eT) u (f t p) u (− eT t f) u (− eT t − eT) u (− eT t p) u (− p t f) u (−

p t − eT) u (− p t p))
t ((f T t f T) u (f T t − e) u (f T t − pT) u (− e t f T) u (− e t − e) u (− e t − pT) u (pT t

f T) u (pT t − e) u (pT t − pT))
t eT t e
using sup-inf-distrib1 sup-assoc inf-assoc sup-inf-distrib1 by simp

also have ... =
((f t f) u (f t − eT) u (f t p) u (f t − p) u (− eT t f) u (− eT t − eT) u (− eT t p) u (−

eT t − p) u (− p t p))
t ((f T t f T) u (f T t − e) u (f T t − pT) u (− e t f T) u (f T t pT) u (− e t − e) u (− e t −

pT) u (− e t pT) u (pT t − pT))
t eT t e
by (smt abel-semigroup.commute inf .abel-semigroup-axioms inf .left-commute

sup.abel-semigroup-axioms)
also have ... = (f u − eT u (− p t p)) t (f T u − e u (pT t − pT)) t eT t e

by (smt inf .sup-monoid .add-assoc inf .sup-monoid .add-commute inf-sup-absorb sup.idem)
also have ... = (f u − eT) t (f T u − e) t eT t e

by (metis assms(1) conv-complement inf-top-right stone)
also have ... = (f t eT) u (− eT t eT) t (f T t e) u (− e t e)

by (metis sup.left-commute sup-assoc sup-inf-distrib2)
finally show ?thesis

by (metis abel-semigroup.commute assms(2) conv-complement inf-top-right stone
sup.abel-semigroup-axioms sup-assoc)
qed

lemma simplify-forest-components-f :
assumes regular p

and regular e
and injective (f u − eT u − p t (f u − eT u p)T t e)
and injective f

shows forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = (f t f T t e t eT)?

proof −
have forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = wcc ((f u − eT u − p) t (f
u − eT u p)T t e)

by (simp add : assms(3) forest-components-wcc)
also have ... = ((f u − eT u − p) t (f u − eT u p)T t e t (f u − eT u − p)T t (f u − eT u p)

64 Appendix B. Isabelle/HOL theory

t eT)?

using conv-dist-sup sup-assoc by auto
also have ... = ((f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u − eT u − p)T t

eT t e)?

using sup-assoc sup-commute by auto
also have ... = (f t f T t e t eT)?

using assms(1 , 2 , 3 , 4) simplify-f by auto
finally show ?thesis

by simp
qed

lemma components-disj-increasing :
assumes regular p

and regular e
and injective (f u − eT u − p t (f u − eT u p)T t e)
and injective f

shows forest-components f ≤ forest-components (f u − eT u − p t (f u − eT u p)T t e)
proof −

have 1 : forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = (f t f T t e t eT)?

using simplify-forest-components-f assms(1 , 2 , 3 , 4) by blast
have forest-components f = wcc f

by (simp add : assms(4) forest-components-wcc)
also have ... ≤ (f t f T t eT t e)?

by (simp add : le-supI2 star-isotone sup-commute)
finally show ?thesis

using 1 sup.left-commute sup-commute by simp
qed

lemma fch-equivalence:
assumes forest h
shows equivalence (forest-components h)
by (simp add : assms(1) forest-components-equivalence)

lemma big-forest-path-split-1 :
assumes arc a

and equivalence H
shows (H ∗ d)? ∗ H ∗ a ∗ top = (H ∗ (d u − a))? ∗ H ∗ a ∗ top

proof −
let ?H = H
let ?x = ?H ∗ (d u −a)
let ?y = ?H ∗ a
let ?a = ?H ∗ a ∗ top
let ?d = ?H ∗ d
have 1 : ?d? ∗ ?a ≤ ?x? ∗ ?a
proof −

have ?x? ∗?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a ∗ ?a
using mult-left-isotone star .circ-right-top top-right-mult-increasing mult-assoc by smt

also have ... = ?x? ∗ ?a ∗ a ∗ top
by (metis ex231e mult-assoc)

also have ... = ?x? ∗ ?a
by (simp add : assms(1) mult-assoc)

finally have 11 : ?x? ∗?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a
by simp

have ?d? ∗ ?a = (?H ∗ (d u a) t ?H ∗ (d u −a))? ∗ ?a
proof −

have 12 : regular a
using assms(1) arc-regular by simp

have ?H ∗ ((d u a) t (d u − a)) = ?H ∗ (d u top)

65 Appendix B. Isabelle/HOL theory

using 12 by (metis inf-top-right maddux-3-11-pp)
thus ?thesis

using mult-left-dist-sup by auto
qed
also have ... ≤ (?y t ?x)? ∗ ?a

by (metis comp-inf .coreflexive-idempotent comp-isotone inf .cobounded1
inf .sup-monoid .add-commute semiring .add-mono star-isotone top.extremum)

also have ... = (?x t ?y)? ∗ ?a
by (simp add : sup-commute mult-assoc)

also have ... = ?x? ∗ ?a t (?x? ∗ ?y ∗ (?x? ∗ ?y)? ∗ ?x?) ∗ ?a
by (smt mult-right-dist-sup star .circ-sup-9 star .circ-unfold-sum mult-assoc)

also have ... ≤ ?x? ∗ ?a t (?x? ∗ ?y ∗ (top ∗ ?y)? ∗ ?x?) ∗ ?a
proof −

have (?x? ∗ ?y)? ≤ (top ∗ ?y)?

by (simp add : mult-left-isotone star-isotone)
thus ?thesis

by (metis comp-inf .coreflexive-idempotent comp-inf .transitive-star eq-refl mult-left-dist-sup
top.extremum mult-assoc)

qed
also have ... = ?x? ∗ ?a t (?x? ∗ ?y ∗ ?x?) ∗ ?a

using assms(1 , 2) He-eq-He-THe-star arc-regular mult-assoc by auto
finally have 13 : (?H ∗ d)? ∗ ?a ≤ ?x? ∗ ?a t ?x? ∗ ?y ∗ ?x? ∗ ?a

by (simp add : mult-assoc)
have 14 : ?x? ∗ ?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a

using 11 mult-assoc by auto
thus ?thesis

using 13 14 sup.absorb1 by auto
qed
have 2 : ?d? ∗ ?a ≥ ?x? ∗?a

by (simp add : comp-isotone star-isotone)
thus ?thesis

using 1 2 antisym mult-assoc by simp
qed

lemma dTransHd-le-1 :
assumes equivalence H

and univalent (H ∗ d)
shows dT ∗ H ∗ d ≤ 1

proof −
have dT ∗ H T ∗ H ∗ d ≤ 1

using assms(2) conv-dist-comp mult-assoc by auto
thus ?thesis

using assms(1) mult-assoc by (simp add : preorder-idempotent)
qed

lemma HcompaT-le-compHaT :
assumes equivalence H

and injective (a ∗ top)
shows −H ∗ a ∗ top ≤ − (H ∗ a ∗ top)

proof −
have a ∗ top ∗ aT ≤ 1

by (metis assms(2) conv-dist-comp symmetric-top-closed vector-top-closed mult-assoc)
then have a ∗ top ∗ aT ∗ H ≤ H

using assms(1) comp-isotone order-trans by blast
then have a ∗ top ∗ top ∗ aT ∗ H ≤ H

by (simp add : vector-mult-closed)
then have a ∗ top ∗ (H ∗ a ∗ top)T ≤ H

by (metis assms(1) conv-dist-comp symmetric-top-closed vector-top-closed mult-assoc)

66 Appendix B. Isabelle/HOL theory

thus ?thesis
using assms(2) comp-injective-below-complement mult-assoc by auto

qed

Theorem 4

lemma expand-big-forest :
assumes big-forest H d
shows (dT ∗ H)? ∗ (H ∗ d)? = (dT ∗ H)? t (H ∗ d)?

proof −
have (H ∗ d)T ∗ H ∗ d ≤ 1

using assms big-forest-def mult-assoc by auto
then have dT ∗ H ∗ H ∗ d ≤ 1

using assms big-forest-def conv-dist-comp by auto
thus ?thesis

by (simp add : cancel-separate-eq comp-associative)
qed

lemma big-forest-path-bot :
assumes arc a

and a ≤ d
and big-forest H d

shows (d u − a)T ∗ (H ∗ a ∗ top) ≤ bot
proof −

have 1 : dT ∗ H ∗ d ≤ 1
using assms(3) big-forest-def dTransHd-le-1 by blast

then have d ∗ − 1 ∗ dT ≤ − H
using triple-schroeder-p by force

then have d ∗ − 1 ∗ dT ≤ 1 t − H
by (simp add : le-supI2)

then have d ∗ dT t d ∗ − 1 ∗ dT ≤ 1 t − H
using assms(3) big-forest-def inf-commute regular-one-closed shunting-p by (metis le-supI)

then have d ∗ 1 ∗ dT t d ∗ − 1 ∗ dT ≤ 1 t − H
by simp

then have d ∗ (1 t − 1) ∗ dT ≤ 1 t − H
using comp-associative mult-right-dist-sup by (simp add : mult-left-dist-sup)

then have d ∗ top ∗ dT ≤ 1 t − H
using regular-complement-top by auto

then have d ∗ top ∗ aT ≤ 1 t − H
using assms(2) conv-isotone dual-order .trans mult-right-isotone by blast

then have d ∗ (a ∗ top)T ≤ 1 t − H
by (simp add : comp-associative conv-dist-comp)

then have d ≤ (1 t − H) ∗ (a ∗ top)
by (simp add : assms(1) shunt-bijective)

then have d ≤ a ∗ top t − H ∗ a ∗ top
by (simp add : comp-associative mult-right-dist-sup)

also have ... ≤ a ∗ top t − (H ∗ a ∗ top)
using assms(1 , 3) HcompaT-le-compHaT big-forest-def sup-right-isotone by auto

finally have d ≤ a ∗ top t − (H ∗ a ∗ top)
by simp

then have d u −−(H ∗ a ∗ top) ≤ a ∗ top
using shunting-var-p by auto

then have 2 :d u H ∗ a ∗ top ≤ a ∗ top
using inf .sup-right-isotone order .trans pp-increasing by blast

have 3 :d u H ∗ a ∗ top ≤ top ∗ a
proof −

have d u H ∗ a ∗ top ≤ (H ∗ a u d ∗ topT) ∗ (top u (H ∗ a)T ∗ d)
by (metis dedekind inf-commute)

67 Appendix B. Isabelle/HOL theory

also have ... = d ∗ top u H ∗ a ∗ aT ∗ H T ∗ d
by (simp add : conv-dist-comp inf-vector-comp mult-assoc)

also have ... ≤ d ∗ top u H ∗ a ∗ dT ∗ H T ∗ d
using assms(2) mult-right-isotone mult-left-isotone conv-isotone inf .sup-right-isotone by auto

also have ... = d ∗ top u H ∗ a ∗ dT ∗ H ∗ d
using assms(3) big-forest-def by auto

also have ... ≤ d ∗ top u H ∗ a ∗ 1
using 1 by (metis inf .sup-right-isotone mult-right-isotone mult-assoc)

also have ... ≤ H ∗ a
by simp

also have ... ≤ top ∗ a
by (simp add : mult-left-isotone)

finally have d u H ∗ a ∗ top ≤ top ∗ a
by simp

thus ?thesis
by simp

qed
have d u H ∗ a ∗ top ≤ a ∗ top u top ∗ a

using 2 3 by simp
also have ... = a ∗ top ∗ top ∗ a

by (metis comp-associative comp-inf .star .circ-decompose-9 comp-inf .star-star-absorb
comp-inf-covector vector-inf-comp vector-top-closed)

also have ... = a ∗ top ∗ a
by (simp add : vector-mult-closed)

finally have 4 :d u H ∗ a ∗ top ≤ a
by (simp add : assms(1) arc-top-arc)

then have d u − a ≤ −(H ∗ a ∗ top)
using assms(1) arc-regular p-shunting-swap by fastforce

then have (d u − a) ∗ top ≤ −(H ∗ a ∗ top)
using mult .semigroup-axioms p-antitone-iff schroeder-4-p semigroup.assoc by fastforce

thus ?thesis
by (simp add : schroeder-3-p)

qed

lemma big-forest-path-split-2 :
assumes arc a

and a ≤ d
and big-forest H d

shows (H ∗ (d u − a))? ∗ H ∗ a ∗ top = (H ∗ ((d u − a) t (d u − a)T))? ∗ H ∗ a ∗ top
proof −

let ?lhs = (H ∗ (d u − a))? ∗ H ∗ a ∗ top
have 1 : dT ∗ H ∗ d ≤ 1

using assms(3) big-forest-def dTransHd-le-1 by blast
have 2 : H ∗ a ∗ top ≤ ?lhs

by (metis le-iff-sup star .circ-loop-fixpoint star .circ-transitive-equal star-involutive sup-commute
mult-assoc)

have (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) = (d u − a)T ∗ H ∗ (d u − a) ∗ (H ∗ (d u
− a))? ∗ (H ∗ a ∗ top)

proof −
have (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) = (d u − a)T ∗ (1 t H ∗ (d u − a) ∗ (H ∗

(d u − a))?) ∗ (H ∗ a ∗ top)
by (simp add : star-left-unfold-equal)

also have ... = (d u − a)T ∗ H ∗ a ∗ top t (d u − a)T ∗ H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ (H
∗ a ∗ top)

by (smt mult-left-dist-sup star .circ-loop-fixpoint star .circ-mult-1 star-slide sup-commute
mult-assoc)

also have ... = bot t (d u − a)T ∗ H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)
using assms(1 , 2 , 3) big-forest-path-bot mult-assoc le-bot by metis

68 Appendix B. Isabelle/HOL theory

thus ?thesis
by (simp add : calculation)

qed
also have ... ≤ dT ∗ H ∗ d ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

using conv-isotone inf .cobounded1 mult-isotone by auto
also have ... ≤ 1 ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

using 1 by (metis le-iff-sup mult-right-dist-sup)
finally have 3 : (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ ?lhs

using mult-assoc by auto
then have 4 : H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ ?lhs
proof −

have H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ H ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top
using 3 mult-right-isotone mult-assoc by auto

also have ... = H ∗ H ∗ ((d u − a) ∗ H)? ∗ H ∗ a ∗ top
using assms(3) big-forest-def star-slide mult-assoc preorder-idempotent by metis

also have ... = H ∗ ((d u − a) ∗ H)? ∗ H ∗ a ∗ top
using assms(3) big-forest-def preorder-idempotent by fastforce

finally show ?thesis
by (metis assms(3) big-forest-def preorder-idempotent star-slide mult-assoc)

qed
have 5 : (H ∗ (d u − a) t H ∗ (d u − a)T) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ ?lhs
proof −

have 51 : H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ (H ∗ (d u − a))? ∗ H ∗ a ∗ top
using star .left-plus-below-circ mult-left-isotone by simp

have 52 : (H ∗ (d u − a) t H ∗ (d u − a)T) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top = H ∗ (d u − a)
∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top t H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top

using mult-right-dist-sup by auto
then have ... ≤ (H ∗ (d u − a))? ∗ H ∗ a ∗ top t H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ H ∗ a

∗ top
using star .left-plus-below-circ mult-left-isotone sup-left-isotone by auto

thus ?thesis
using 4 51 52 mult-assoc by auto

qed
then have (H ∗ (d u − a) t H ∗ (d u − a)T)? ∗ H ∗ a ∗ top ≤ ?lhs
proof −

have (H ∗ (d u − a) t H ∗ (d u − a)T)? ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ ?lhs
using 5 star-left-induct-mult-iff mult-assoc by auto

thus ?thesis
using star .circ-decompose-11 star-decompose-1 by auto

qed
then have 6 : (H ∗ ((d u − a) t (d u − a)T))? ∗ H ∗ a ∗ top ≤ ?lhs

using mult-left-dist-sup by auto
have 7 : (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ (H ∗ ((d u − a) t (d u − a)T))? ∗ H ∗ a ∗ top

by (simp add : mult-left-isotone semiring .distrib-left star-isotone)
thus ?thesis

using 6 7 by (simp add : mult-assoc)
qed

end

B.2.2 An operation to select components

class stone-kleene-relation-algebra-tarski = stone-kleene-relation-algebra +
assumes tarski : regular x =⇒ x 6= bot =⇒ top ∗ x ∗ top = top

begin
end

We introduce the operation choose-component. Axiom component-in-v expresses that the
result of choose-component is contained in the set of vertices, v, we are selecting from, ignoring

69 Appendix B. Isabelle/HOL theory

the weights. Axiom component-is-vector states that the result of choose-component is a vec-
tor. Axiom component-is-regular states that the result of choose-component is regular. Axiom
component-is-connected states that any two vertices from the result of choose-component are con-
nected in e. Axiom component-single states that the result of choose-component is closed under
being connected in e. Axiom component-not-bot-when-v-bot-bot states that choose-component
returns a non-empty component if the input satisfies the given criteria.

class choose-component-algebra = stone-relation-algebra +
fixes choose-component :: ′a ⇒ ′a ⇒ ′a
assumes component-in-v : choose-component e v ≤ −−v
assumes component-is-vector : vector (choose-component e v)
assumes component-is-regular : regular (choose-component e v)
assumes component-is-connected : choose-component e v ∗ (choose-component e v)T ≤ e
assumes component-single: choose-component e v = e ∗ choose-component e v
assumes component-not-bot-when-v-bot-bot :

regular e
∧ equivalence e
∧ vector v
∧ regular v
∧ e ∗ v = v
∧ v 6= bot −→ choose-component e v 6= bot

Theorem 1

We show that m-kleene-algebras form an instance of choose-component-algebra when the
choose-component operation is defined as follows:

context m-kleene-algebra
begin
definition choose-component-input-condition e v ≡

regular e
∧ equivalence e
∧ vector v
∧ regular v
∧ e ∗ v = v

definition m-choose-component e v ≡
if choose-component-input-condition e v then

e ∗ minarc(v) ∗ top
else

bot

sublocale m-choose-component-algebra: choose-component-algebra where choose-component =
m-choose-component
proof (unfold-locales)

fix e v
show m-choose-component e v ≤ −− v
proof (cases choose-component-input-condition e v)

case True
then have m-choose-component e v = e ∗ minarc(v) ∗ top

by (simp add : m-choose-component-def)
also have ... ≤ e ∗ −−v ∗ top

by (simp add : comp-isotone minarc-below)
also have ... = e ∗ v ∗ top

using True choose-component-input-condition-def by auto
also have ... = v ∗ top

using True choose-component-input-condition-def by auto
finally show ?thesis

using True choose-component-input-condition-def by auto
next

70 Appendix B. Isabelle/HOL theory

case False
then have m-choose-component e v = bot

using False m-choose-component-def by auto
thus ?thesis

by simp
qed

next
fix e v
show vector (m-choose-component e v)
proof (cases choose-component-input-condition e v)

case True
thus ?thesis

by (simp add : mult-assoc m-choose-component-def)
next

case False
thus ?thesis

by (simp add : m-choose-component-def)
qed

next
fix e v
show regular (m-choose-component e v)

using choose-component-input-condition-def minarc-regular regular-closed-star regular-mult-closed
m-choose-component-def by auto
next

fix e v
show m-choose-component e v ∗ (m-choose-component e v)T ≤ e
proof (cases choose-component-input-condition e v)

case True
assume 1 : choose-component-input-condition e v
then have m-choose-component e v ∗ (m-choose-component e v)T = e ∗ minarc(v) ∗ top ∗ (e ∗

minarc(v) ∗ top)T

by (simp add : m-choose-component-def)
also have ... = e ∗ minarc(v) ∗ top ∗ topT ∗ minarc(v)T ∗ eT

using comp-associative conv-dist-comp by presburger
also have ... = e ∗ minarc(v) ∗ top ∗ top ∗ minarc(v)T ∗ e

using 1 choose-component-input-condition-def by auto
also have ... = e ∗ minarc(v) ∗ top ∗ minarc(v)T ∗ e

by (simp add : comp-associative)
also have ... ≤ e
proof (cases v = bot)

case True
thus ?thesis

by (simp add : True minarc-bot)
next

case False
assume 3 : v 6= bot
then have e ∗ minarc(v) ∗ top ∗ minarc(v)T ≤ e ∗ 1

using 3 minarc-arc arc-expanded comp-associative mult-right-isotone by fastforce
then have e ∗ minarc(v) ∗ top ∗ minarc(v)T ∗ e ≤ e ∗ 1 ∗ e

using mult-left-isotone by auto
also have ... = e

using 1 choose-component-input-condition-def preorder-idempotent by auto
thus ?thesis

using calculation by auto
qed
thus ?thesis

by (simp add : calculation)
next

71 Appendix B. Isabelle/HOL theory

case False
thus ?thesis

by (simp add : m-choose-component-def)
qed

next
fix e v
show m-choose-component e v = e ∗ m-choose-component e v
proof (cases choose-component-input-condition e v)

case True
thus ?thesis

by (metis choose-component-input-condition-def preorder-idempotent m-choose-component-def
mult-assoc)

next
case False
thus ?thesis

by (simp add : m-choose-component-def)
qed

next
fix e v
show regular e ∧ equivalence e ∧ vector v ∧ regular v ∧ e ∗ v = v ∧ v 6= bot −→

m-choose-component e v 6= bot
proof (cases choose-component-input-condition e v)

case True
then have m-choose-component e v ≥ minarc(v) ∗ top

by (metis choose-component-input-condition-def mult-1-left mult-left-isotone
m-choose-component-def)

also have ... ≥ minarc(v)
using calculation dual-order .trans top-right-mult-increasing by blast

thus ?thesis
using True bot-unique minarc-bot-iff by fastforce

next
case False
thus ?thesis

using choose-component-input-condition-def by blast
qed

qed

end

B.2.3 m-k-Stone-Kleene relation algebras

class m-kleene-algebra-tarski =
m-kleene-algebra
+ stone-relation-algebra-tarski
+ choose-component-algebra

begin

abbreviation selected-edge h j g ≡ minarc (choose-component (forest-components h) j ∗ −
choose-component (forest-components h) j T u g)
abbreviation path f h j g ≡ top ∗ selected-edge h j g ∗ (f u − selected-edge h j gT)T ?

definition boruvka-outer-invariant f g ≡
symmetric g
∧ forest f
∧ f ≤ −−g
∧ regular f
∧ (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)

72 Appendix B. Isabelle/HOL theory

definition boruvka-inner-invariant j f h g d ≡
boruvka-outer-invariant f g
∧ g 6= bot
∧ vector j
∧ regular j
∧ boruvka-outer-invariant h g
∧ forest h
∧ forest-components h ≤ forest-components f
∧ big-forest (forest-components h) d
∧ d ∗ top ≤ − j
∧ forest-components h ∗ j = j
∧ forest-components f = (forest-components h ∗ (d t dT))? ∗ forest-components h
∧ f t f T = h t hT t d t dT

∧ (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤ −(forest-components h) u −− g ∧ b ≤
d
−→ sum(b u g) ≤ sum(a u g))
∧ regular d

lemma expression-equivalent-without-e-complement :
assumes selected-edge h j g ≤ − forest-components f
shows f u − (selected-edge h j g)T u − (path f h j g) t (f u − (selected-edge h j g)T u (path f h j

g))T t (selected-edge h j g)
= f u − (path f h j g) t (f u (path f h j g))T t (selected-edge h j g)

proof −
let ?p = path f h j g
let ?e = selected-edge h j g
let ?F = forest-components f
have 1 : ?e ≤ − ?F

by (simp add : assms)
have f T ≤ ?F

by (metis conv-dist-comp conv-involutive conv-order conv-star-commute
forest-components-increasing)

then have − ?F ≤ − f T

using p-antitone by auto
then have ?e ≤ − f T

using 1 dual-order .trans by blast
then have f T ≤ − ?e

by (simp add : p-antitone-iff)
then have f T T ≤ − ?eT

by (metis conv-complement conv-dist-inf inf .orderE inf .orderI)
then have f ≤ − ?eT

by auto
then have f = f u − ?eT

using inf .orderE by blast
then have f u − ?eT u − ?p t (f u − ?eT u ?p)T t ?e = f u − ?p t (f u ?p)T t ?e

by auto
thus ?thesis by auto

qed

Theorem 2

lemma et-below-j :
assumes vector j

and regular j
and j 6= bot

shows selected-edge h j g ∗ top ≤ j
proof −

let ?e = selected-edge h j g
let ?c = choose-component (forest-components h) j

73 Appendix B. Isabelle/HOL theory

have ?e ∗ top ≤ −−(?c ∗ −?cT u g) ∗ top
using comp-isotone minarc-below by blast

also have ... = (−−(?c ∗ −?cT) u −−g) ∗ top
by simp

also have ... = (?c ∗ −?cT u −−g) ∗ top
using component-is-regular regular-mult-closed by auto

also have ... = (?c u −?cT u −−g) ∗ top
using assms(1 , 2 , 3) component-is-vector conv-complement vector-complement-closed

vector-covector by metis
also have ... ≤ ?c ∗ top

using inf .cobounded1 mult-left-isotone order-trans by blast
also have ... ≤ j ∗ top

by (metis assms(2) comp-inf .star .circ-sup-2 comp-isotone component-in-v)
also have ... = j

by (simp add : assms(1))
finally show ?thesis

by simp
qed

lemma fc-j-eq-j-inv :
assumes forest h

and forest-components h ∗ j = j
shows forest-components h ∗ (j u − choose-component (forest-components h) j) = j u −

choose-component (forest-components h) j
proof −

let ?c = choose-component (forest-components h) j
let ?H = forest-components h
have 1 :equivalence ?H

by (simp add : assms(1) forest-components-equivalence)
have ?H ∗ (j u − ?c) = ?H ∗ j u ?H ∗ − ?c

by (metis 1 assms(2) equivalence-comp-dist-inf inf .sup-monoid .add-commute)
then have 2 : ?H ∗ (j u − ?c) = j u ?H ∗ − ?c

by (simp add : assms(2))
have 3 : j u − ?c ≤ ?H ∗ − ?c

by (metis 1 assms(2) dedekind-1 dual-order .trans equivalence-comp-dist-inf inf .cobounded2)
have ?H ∗ ?c ≤ ?c

using component-single by auto
then have ?H T ∗ ?c ≤ ?c

using 1 by simp
then have ?H ∗ − ?c ≤ − ?c

using component-is-regular schroeder-3-p by force
then have j u ?H ∗ − ?c ≤ j u − ?c

using inf .sup-right-isotone by auto
thus ?thesis

using 2 3 antisym by simp
qed

Theorem 5

lemma big-forest-path-split-disj :
assumes equivalence H

and arc c
and regular a ∧ regular b ∧ regular c ∧ regular d ∧ regular H

shows bf-between-arcs a b H (d t c) ←→ bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧
bf-between-arcs c b H d)
proof −

have 1 : bf-between-arcs a b H (d t c) −→ bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧
bf-between-arcs c b H d)

proof (rule impI)

74 Appendix B. Isabelle/HOL theory

assume 11 : bf-between-arcs a b H (d t c)
then have aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

by (simp add : bf-between-arcs-def)
also have ... = ((H ∗ d)? t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)?) ∗ H ∗ b ∗ top

using assms(1 , 2) path-through-components by simp
also have ... = (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

by (simp add : mult-right-dist-sup)
finally have 12 :aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

by simp
have 13 : aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top ∨ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗

top
proof (rule point-in-vector-sup)

show point (aT ∗ top)
using 11 bf-between-arcs-def mult-assoc by auto

next
show vector ((H ∗ d)? ∗ H ∗ b ∗ top)

using vector-mult-closed by simp
next

show regular ((H ∗ d)? ∗ H ∗ b ∗ top)
using assms(3) pp-dist-comp pp-dist-star by auto

next
show aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

using 12 by simp
qed
thus bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧ bf-between-arcs c b H d)
proof (cases aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top)

case True
assume aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
then have bf-between-arcs a b H d

using 11 bf-between-arcs-def by auto
thus ?thesis

by simp
next

case False
have 14 : aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

using 13 by (simp add : False)
then have 15 : aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ top

by (metis mult-right-isotone order-lesseq-imp top-greatest mult-assoc)
have cT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
proof (rule ccontr)

assume ¬ cT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
then have cT ∗ top ≤ −((H ∗ d)? ∗ H ∗ b ∗ top)

by (meson assms(2 , 3) point-in-vector-or-complement regular-closed-star regular-closed-top
regular-mult-closed vector-mult-closed vector-top-closed)

then have c ∗ (H ∗ d)? ∗ H ∗ b ∗ top ≤ bot
using schroeder-3-p mult-assoc by auto

thus False
using 13 False sup.absorb-iff1 mult-assoc by auto

qed
then have bf-between-arcs a c H d ∧ bf-between-arcs c b H d

using 11 15 assms(2) bf-between-arcs-def by auto
thus ?thesis

by simp
qed

qed
have 2 : bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧ bf-between-arcs c b H d) −→

bf-between-arcs a b H (d t c)
proof −

75 Appendix B. Isabelle/HOL theory

have 21 : bf-between-arcs a b H d −→ bf-between-arcs a b H (d t c)
proof (rule impI)

assume 22 :bf-between-arcs a b H d
then have aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top

using bf-between-arcs-def by blast
then have aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

by (simp add : mult-left-isotone mult-right-dist-sup mult-right-isotone order .trans star-isotone
star-slide)

thus bf-between-arcs a b H (d t c)
using 22 bf-between-arcs-def by blast

qed
have bf-between-arcs a c H d ∧ bf-between-arcs c b H d −→ bf-between-arcs a b H (d t c)
proof (rule impI)

assume 23 : bf-between-arcs a c H d ∧ bf-between-arcs c b H d
then have aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ top

using bf-between-arcs-def by blast
also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ cT ∗ c ∗ top

using ex231c by (metis comp-inf .star .circ-sup-2 mult-isotone mult-right-isotone mult-assoc)
also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ cT ∗ top

by (simp add : mult-right-isotone mult-assoc)
also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

using 23 mult-right-isotone mult-assoc by (simp add : bf-between-arcs-def)
also have ... ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

by (simp add : bf-between-arcs-def)
finally have aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

using assms(1 , 2) path-through-components mult-right-dist-sup by simp
thus bf-between-arcs a b H (d t c)

using 23 bf-between-arcs-def by blast
qed
thus ?thesis

using 21 by auto
qed
thus ?thesis

using 1 2 by blast
qed

lemma dT-He-eq-bot :
assumes vector j

and regular j
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and j 6= bot

shows dT ∗ forest-components h ∗ selected-edge h j g ≤ bot
proof −

let ?e = selected-edge h j g
let ?H = forest-components h
have 1 : ?e ∗ top ≤ j

using assms(1 , 2 , 5) et-below-j by auto
have dT ∗ ?H ∗ ?e ≤ (d ∗ top)T ∗ ?H ∗ (?e ∗ top)

by (simp add : comp-isotone conv-isotone top-right-mult-increasing)
also have ... ≤ (d ∗ top)T ∗ ?H ∗ j

using 1 mult-right-isotone by auto
also have ... ≤ (− j)T ∗ ?H ∗ j

by (simp add : assms(3) conv-isotone mult-left-isotone)
also have ... = (− j)T ∗ j

using assms(4) comp-associative by auto
also have ... = bot

by (simp add : assms(1) conv-complement covector-vector-comp)

76 Appendix B. Isabelle/HOL theory

finally show ?thesis
using coreflexive-bot-closed le-bot by blast

qed

lemma big-forest-d-U-e:
assumes forest f

and vector j
and regular j
and forest h
and forest-components h ≤ forest-components f
and big-forest (forest-components h) d
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and f t f T = h t hT t d t dT

and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot
and j 6= bot

shows big-forest (forest-components h) (d t selected-edge h j g)
proof (unfold big-forest-def , intro conjI)

let ?H = forest-components h
let ?F = forest-components f
let ?e = selected-edge h j g
let ?d ′ = d t ?e
show 01 : reflexive ?H

by (simp add : assms(4) forest-components-equivalence)
show 02 : transitive ?H

by (simp add : assms(4) forest-components-equivalence)
show 03 : symmetric ?H

by (simp add : assms(4) forest-components-equivalence)
have 04 : equivalence ?H

by (simp add : 01 02 03)
show 1 : ?d ′ ≤ − ?H
proof −

have ?H ≤ ?F
by (simp add : assms(5))

then have 11 : ?e ≤ − ?H
using assms(10) order-lesseq-imp p-antitone by blast

have d ≤ − ?H
using assms(6) big-forest-def by auto

thus ?thesis
by (simp add : 11)

qed
show univalent (?H ∗ ?d ′)
proof −

have (?H ∗ ?d ′)T ∗ (?H ∗ ?d ′) = ?d ′T ∗ ?H T ∗ ?H ∗ ?d ′

using conv-dist-comp mult-assoc by auto
also have ... = ?d ′T ∗ ?H ∗ ?H ∗ ?d ′

by (simp add : conv-dist-comp conv-star-commute)
also have ... = ?d ′T ∗ ?H ∗ ?d ′

by (metis 01 02 preorder-idempotent mult-assoc)
finally have 21 : univalent (?H ∗ ?d ′) ←→ ?eT ∗ ?H ∗ d t dT ∗ ?H ∗ ?e t ?eT ∗ ?H ∗ ?e t dT

∗ ?H ∗ d ≤ 1
using conv-dist-sup semiring .distrib-left semiring .distrib-right by auto

have 22 : ?eT ∗ ?H ∗ ?e ≤ 1
proof −

have 221 : ?eT ∗ ?H ∗ ?e ≤ ?eT ∗ top ∗ ?e
by (simp add : mult-left-isotone mult-right-isotone)

have arc ?e

77 Appendix B. Isabelle/HOL theory

using assms(11) minarc-arc minarc-bot-iff by blast
then have ?eT ∗ top ∗ ?e ≤ 1

using arc-expanded by blast
thus ?thesis

using 221 dual-order .trans by blast
qed
have 24 : dT ∗ ?H ∗ ?e ≤ 1

by (metis assms(2 , 3 , 7 , 8 , 12) dT-He-eq-bot coreflexive-bot-closed le-bot)
then have (dT ∗ ?H ∗ ?e)T ≤ 1T

using conv-isotone by blast
then have ?eT ∗ ?H T ∗ dT T ≤ 1

by (simp add : conv-dist-comp mult-assoc)
then have 25 : ?eT ∗ ?H ∗ d ≤ 1

using assms(4) fch-equivalence by auto
have 8 : dT ∗ ?H ∗ d ≤ 1

using 04 assms(6) dTransHd-le-1 big-forest-def by blast
thus ?thesis

using 21 22 24 25 by simp
qed
show coreflexive (?H u ?d ′ ∗ ?d ′T)
proof −

have coreflexive (?H u ?d ′ ∗ ?d ′T) ←→ ?H u (d t ?e) ∗ (dT t ?eT) ≤ 1
by (simp add : conv-dist-sup)

also have ... ←→ ?H u (d ∗ dT t d ∗ ?eT t ?e ∗ dT t ?e ∗ ?eT) ≤ 1
by (metis mult-left-dist-sup mult-right-dist-sup sup.left-commute sup-commute)

finally have 1 : coreflexive (?H u ?d ′ ∗ ?d ′T) ←→ ?H u d ∗ dT t ?H u d ∗ ?eT t ?H u ?e ∗ dT

t ?H u ?e ∗ ?eT ≤ 1
by (simp add : inf-sup-distrib1)

have 31 : ?H u d ∗ dT ≤ 1
using assms(6) big-forest-def by blast

have 32 : ?H u ?e ∗ dT ≤ 1
proof −

have ?e ∗ dT ≤ ?e ∗ top ∗ (d ∗ top)T

by (simp add : conv-isotone mult-isotone top-right-mult-increasing)
also have ... ≤ ?e ∗ top ∗ − j T

by (metis assms(7) conv-complement conv-isotone mult-right-isotone)
also have ... ≤ j ∗ − j T

using assms(2 , 3 , 12) et-below-j mult-left-isotone by auto
also have ... ≤ − ?H

by (metis 03 assms(2 , 3 , 8) conv-complement conv-dist-comp equivalence-top-closed
mult-left-isotone schroeder-3-p vector-top-closed)

finally have ?e ∗ dT ≤ − ?H
by simp

thus ?thesis
by (metis inf .coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)

qed
have 33 : ?H u d ∗ ?eT ≤ 1
proof −

have 331 : injective h
by (simp add : assms(4))

have (?H u ?e ∗ dT)T ≤ 1
using 32 coreflexive-conv-closed by auto

then have ?H u (?e ∗ dT)T ≤ 1
using 331 conv-dist-inf forest-components-equivalence by auto

thus ?thesis
using conv-dist-comp by auto

qed
have 34 : ?H u ?e ∗ ?eT ≤ 1

78 Appendix B. Isabelle/HOL theory

proof −
have 341 :arc ?e ∧ arc (?eT)

using assms(11) minarc-arc minarc-bot-iff by auto
have ?H u ?e ∗ ?eT ≤ ?e ∗ ?eT

by auto
thus ?thesis

using 341 arc-injective le-infI2 by blast
qed
thus ?thesis

using 1 31 32 33 34 by simp
qed
show 4 :(?H ∗ (d t ?e))+ ≤ − ?H
proof −

have ?e ≤ − ?F
by (simp add : assms(10))

then have ?F ≤ − ?e
by (simp add : p-antitone-iff)

then have ?FT ∗ ?F ≤ − ?e
using assms(1) fch-equivalence by fastforce

then have ?FT ∗ ?F ∗ ?FT ≤ − ?e
by (metis assms(1) fch-equivalence forest-components-star star .circ-decompose-9)

then have 41 : ?F ∗ ?e ∗ ?F ≤ − ?F
using triple-schroeder-p by blast

then have 42 :(?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)? ≤ − ?F
proof −

have 43 : ?F ∗ ?F = ?F
using assms(1) forest-components-equivalence preorder-idempotent by auto

then have ?F ∗ ?e ∗ ?F = ?F ∗ ?F ∗ ?e ∗ ?F
by simp

also have ... = (?F)? ∗ ?F ∗ ?e ∗ (?F)?

by (simp add : assms(1) forest-components-star)
also have ... = (?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)?

using 43 by simp
finally show ?thesis

using 41 by simp
qed
then have 44 : (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ≤ − ?H
proof −

have 45 : ?H ≤ ?F
by (simp add : assms(5))

then have 46 :?H ∗ ?e ≤ ?F ∗ ?e
by (simp add : mult-left-isotone)

have d ≤ f t f T

using assms(9) sup.left-commute sup-commute by auto
also have ... ≤ ?F

by (metis forest-components-increasing le-supI2 star .circ-back-loop-fixpoint star .circ-increasing
sup.bounded-iff)

finally have d ≤ ?F
by simp

then have ?H ∗ d ≤ ?F ∗ ?F
using 45 mult-isotone by auto

then have 47 : (?H ∗ d)? ≤ (?F ∗ ?F)?

by (simp add : star-isotone)
then have (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ≤ (?H ∗ d)? ∗ ?F ∗ ?e ∗ (?H ∗ d)?

using 46 by (metis mult-left-isotone mult-right-isotone mult-assoc)
also have ... ≤ (?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)?

using 47 mult-left-isotone mult-right-isotone by (simp add : comp-isotone)
also have ... ≤ − ?F

79 Appendix B. Isabelle/HOL theory

using 42 by simp
also have ... ≤ − ?H

using 45 by (simp add : p-antitone)
finally show ?thesis

by simp
qed
have (?H ∗ (d t ?e))+ = (?H ∗ (d t ?e))? ∗ (?H ∗ (d t ?e))

using star .circ-plus-same by auto
also have ... = ((?H ∗ d)? t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)?) ∗ (?H ∗ (d t ?e))

using assms(4 , 11) forest-components-equivalence minarc-arc minarc-bot-iff
path-through-components by auto

also have ... = (?H ∗ d)? ∗ (?H ∗ (d t ?e)) t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ (?H ∗ (d t ?e))
using mult-right-dist-sup by auto

also have ... = (?H ∗ d)? ∗ (?H ∗ d t ?H ∗ ?e) t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ (?H ∗ d t
?H ∗ ?e)

by (simp add : mult-left-dist-sup)
also have ... = (?H ∗ d)? ∗ ?H ∗ d t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗

(?H ∗ d t ?H ∗ ?e)
using mult-left-dist-sup mult-assoc by auto

also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ (?H ∗ d
t ?H ∗ ?e)

by (simp add : star .circ-plus-same mult-assoc)
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ d t

(?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add : mult .semigroup-axioms semiring .distrib-left sup.semigroup-axioms semigroup.assoc)

also have ... ≤ (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ d t
(?H ∗ d)? ∗ ?H ∗ ?e

proof −
have ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?e ∗ top ∗ ?e

by (metis comp-associative comp-inf .coreflexive-idempotent comp-inf .coreflexive-transitive
comp-isotone top.extremum)

also have ... ≤ ?e
using assms(11) arc-top-arc minarc-arc minarc-bot-iff by auto

finally have ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?e
by simp

then have (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add : comp-associative comp-isotone)

thus ?thesis
using sup-right-isotone by blast

qed
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ d

by (smt eq-iff sup.left-commute sup.orderE sup-commute)
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)+

using star .circ-plus-same mult-assoc by auto
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (1 t (?H ∗ d)+)

by (simp add : mult-left-dist-sup sup-assoc)
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)?

by (simp add : star-left-unfold-equal)
also have ... ≤ − ?H

using 44 assms(6) big-forest-def by auto
finally show ?thesis

by simp
qed

qed

lemma shows-arc-x :
assumes big-forest H d

and bf-between-arcs a e H d

80 Appendix B. Isabelle/HOL theory

and H ∗ d ∗ (H ∗ d)? ≤ − H
and ¬ aT ∗ top ≤ H ∗ e ∗ top
and regular a
and regular e
and regular H
and regular d

shows arc (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)
proof −

let ?x = d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top
have 1 :regular ?x

using assms(5 , 6 , 7 , 8) regular-closed-star regular-conv-closed regular-mult-closed by auto
have 2 : aT ∗ top ∗ a ≤ 1

using arc-expanded assms(2) bf-between-arcs-def by auto
have 3 : e ∗ top ∗ eT ≤ 1

using assms(2) bf-between-arcs-def arc-expanded by blast
have 4 : top ∗ ?x ∗ top = top
proof −

have aT ∗ top ≤ (H ∗ d)? ∗ H ∗ e ∗ top
using assms(2) bf-between-arcs-def by blast

also have ... = H ∗ e ∗ top t (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
by (metis star .circ-loop-fixpoint star .circ-plus-same sup-commute mult-assoc)

finally have aT ∗ top ≤ H ∗ e ∗ top t (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
by simp

then have aT ∗ top ≤ H ∗ e ∗ top ∨ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
using assms(2 , 6 , 7) point-in-vector-sup bf-between-arcs-def regular-mult-closed

vector-mult-closed by auto
then have aT ∗ top ≤ (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top

using assms(4) by blast
also have ... = (H ∗ d)? ∗ H ∗ d ∗ (H ∗ e ∗ top u H ∗ e ∗ top)

by (simp add : mult-assoc)
also have ... = (H ∗ d)? ∗ H ∗ (d u (H ∗ e ∗ top)T) ∗ H ∗ e ∗ top

by (metis comp-associative covector-inf-comp-3 star .circ-left-top star .circ-top)
also have ... = (H ∗ d)? ∗ H ∗ (d u topT ∗ eT ∗ H T) ∗ H ∗ e ∗ top

using conv-dist-comp mult-assoc by auto
also have ... = (H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H ∗ e ∗ top

using assms(1) by (simp add : big-forest-def)
finally have 2 : aT ∗ top ≤ (H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H ∗ e ∗ top

by simp
then have e ∗ top ≤ ((H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H)T ∗ aT ∗ top
proof −

have bijective (e ∗ top) ∧ bijective (aT ∗ top)
using assms(2) bf-between-arcs-def by auto

thus ?thesis
using 2 bijective-reverse mult-assoc by metis

qed
also have ... = H T ∗ (d u top ∗ eT ∗ H)T ∗ H T ∗ (H ∗ d)?T ∗ aT ∗ top

by (simp add : conv-dist-comp mult-assoc)
also have ... = H ∗ (d u top ∗ eT ∗ H)T ∗ H ∗ (H ∗ d)?T ∗ aT ∗ top

using assms(1) big-forest-def by auto
also have ... = H ∗ (d u top ∗ eT ∗ H)T ∗ H ∗ (dT ∗ H)? ∗ aT ∗ top

using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto
also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ H ∗ (dT ∗ H)? ∗ aT ∗ top

using assms(1) conv-dist-comp big-forest-def comp-associative conv-dist-inf by auto
also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top

by (simp add : comp-associative star-slide)
also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ ((H ∗ dT)? ∗ H ∗ aT ∗ top u (H ∗ dT)? ∗ H ∗ aT ∗ top)

using mult-assoc by auto
also have ... = H ∗ (dT u H ∗ e ∗ top u ((H ∗ dT)? ∗ H ∗ aT ∗ top)T) ∗ (H ∗ dT)? ∗ H ∗ aT ∗

81 Appendix B. Isabelle/HOL theory

top
by (smt comp-inf-vector covector-comp-inf vector-conv-covector vector-top-closed mult-assoc)

also have ... = H ∗ (dT u (top ∗ eT ∗ H)T u ((H ∗ dT)? ∗ H ∗ aT ∗ top)T) ∗ (H ∗ dT)? ∗ H ∗
aT ∗ top

using assms(1) big-forest-def conv-dist-comp mult-assoc by auto
also have ... = H ∗ (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)T ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top

by (simp add : conv-dist-inf)
finally have 3 : e ∗ top ≤ H ∗ ?xT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top

by auto
have ?x 6= bot
proof (rule ccontr)

assume ¬ ?x 6= bot
then have e ∗ top = bot

using 3 le-bot by auto
thus False

using assms(2 , 4) bf-between-arcs-def mult-assoc semiring .mult-zero-right by auto
qed
thus ?thesis

using 1 using tarski by blast
qed
have 5 : ?x ∗ top ∗ ?xT ≤ 1
proof −

have 51 : H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
proof −

have 511 : d ∗ (H ∗ d)? ≤ − H
using assms(1 , 3) big-forest-def preorder-idempotent schroeder-4-p triple-schroeder-p by fastforce

then have (d ∗ H)? ∗ d ≤ − H
using star-slide by auto

then have H ∗ (dT ∗ H)? ≤ − d
using assms(1) big-forest-def conv-dist-comp conv-star-commute schroeder-4-p by (smt

star-slide)
then have H ∗ (d ∗ H)? ≤ − dT

by (metis 511 assms(1) big-forest-def schroeder-5-p star-slide)
then have H ∗ (d ∗ H)? ≤ − (H ∗ dT)

by (metis assms(3) p-antitone-iff schroeder-4-p star-slide mult-assoc)
then have H ∗ (d ∗ H)? u H ∗ dT ≤ bot

by (simp add : bot-unique pseudo-complement)
then have H ∗ d ∗ (H ∗ (d ∗ H)? u H ∗ dT) ≤ 1

by (simp add : bot-unique)
then have 512 : H ∗ d ∗ H ∗ (d ∗ H)? u H ∗ d ∗ H ∗ dT ≤ 1

using univalent-comp-left-dist-inf assms(1) big-forest-def mult-assoc by fastforce
then have 513 : H ∗ d ∗ H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
proof −

have d ∗ H ∗ dT ≤ H ∗ d ∗ H ∗ dT

by (metis assms(1) big-forest-def conv-dist-comp conv-involutive mult-1-right mult-left-isotone)
thus ?thesis

by (smt 512 dual-order .trans p-antitone p-shunting-swap regular-one-closed)
qed
have dT ∗ H ∗ d ≤ 1 t − H

using assms(1) big-forest-def dTransHd-le-1 le-supI1 by blast
then have (− 1 u H) ∗ dT ∗ H ≤ − dT

by (metis assms(1) big-forest-def dTransHd-le-1 inf .sup-monoid .add-commute le-infI2
p-antitone-iff regular-one-closed schroeder-4-p mult-assoc)

then have d ∗ (− 1 u H) ∗ dT ≤ − H
by (metis assms(1) big-forest-def conv-dist-comp schroeder-3-p triple-schroeder-p)

then have H u d ∗ (− 1 u H) ∗ dT ≤ 1
by (metis inf .coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)

then have H u d ∗ dT t H u d ∗ (− 1 u H) ∗ dT ≤ 1

82 Appendix B. Isabelle/HOL theory

using assms(1) big-forest-def le-supI by blast
then have H u (d ∗ 1 ∗ dT t d ∗ (− 1 u H) ∗ dT) ≤ 1

using comp-inf .semiring .distrib-left by auto
then have H u (d ∗ (1 t (− 1 u H)) ∗ dT) ≤ 1

by (simp add : mult-left-dist-sup mult-right-dist-sup)
then have 514 : H u d ∗ H ∗ dT ≤ 1

by (metis assms(1) big-forest-def comp-inf .semiring .distrib-left inf .le-iff-sup
inf .sup-monoid .add-commute inf-top-right regular-one-closed stone)

thus ?thesis
proof −

have H u d ∗ H ∗ dT t H ∗ d ∗ H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
using 513 514 by simp

then have d ∗ H ∗ dT u (H t H ∗ d ∗ H ∗ (d ∗ H)?) ≤ 1
by (simp add : comp-inf .semiring .distrib-left inf .sup-monoid .add-commute)

then have d ∗ H ∗ dT u H ∗ (1 t d ∗ H ∗ (d ∗ H)?) ≤ 1
by (simp add : mult-left-dist-sup mult-assoc)

thus ?thesis
by (simp add : inf .sup-monoid .add-commute star-left-unfold-equal)

qed
qed
have ?x ∗ top ∗ ?xT = (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top) ∗ top ∗ (dT u H T ∗ eT T

∗ topT u topT ∗ aT T ∗ H T ∗ (dT T ∗ H T)?)
by (simp add : conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)

also have ... = (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top) ∗ top ∗ (dT u H ∗ e ∗ top u top
∗ a ∗ H ∗ (d ∗ H)?)

using assms(1) big-forest-def by auto
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u (d u top ∗ eT ∗ H) ∗ top ∗ (dT u H ∗ e ∗ top u top

∗ a ∗ H ∗ (d ∗ H)?)
by (metis inf-vector-comp vector-export-comp)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u (d u top ∗ eT ∗ H) ∗ top ∗ top ∗ (dT u H ∗ e ∗ top
u top ∗ a ∗ H ∗ (d ∗ H)?)

by (simp add : vector-mult-closed)
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u d ∗ ((top ∗ eT ∗ H)T u top) ∗ top ∗ (dT u H ∗ e ∗

top u top ∗ a ∗ H ∗ (d ∗ H)?)
by (simp add : covector-comp-inf-1 covector-mult-closed)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u d ∗ ((top ∗ eT ∗ H)T u (H ∗ e ∗ top)T) ∗ dT u top ∗
a ∗ H ∗ (d ∗ H)?

by (smt comp-associative comp-inf .star-star-absorb comp-inf-vector conv-star-commute
covector-comp-inf covector-conv-vector fc-top star .circ-top total-conv-surjective vector-conv-covector
vector-inf-comp)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ ((top ∗ eT ∗ H)T u (H
∗ e ∗ top)T) ∗ dT

using inf .sup-monoid .add-assoc inf .sup-monoid .add-commute by auto
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ ((top ∗ eT ∗ H)T u (H

∗ e ∗ top)T) ∗ dT

by (smt comp-inf .star .circ-decompose-9 comp-inf .star-star-absorb comp-inf-covector fc-top
star .circ-decompose-11 star .circ-top vector-export-comp)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ (H ∗ e ∗ top u top ∗ eT ∗ H)
∗ dT

using assms(1) big-forest-def conv-dist-comp mult-assoc by auto
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ H ∗ e ∗ top ∗ eT ∗ H ∗ dT

by (metis comp-inf-covector inf-top.left-neutral mult-assoc)
also have ... ≤ (H ∗ dT)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ e ∗ top ∗ eT ∗ H ∗ dT

proof −
have (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ≤ (H ∗ dT)? ∗ H ∗ 1 ∗ H ∗ (d ∗ H)?

using 2 comp-associative comp-isotone mult-left-isotone mult-semi-associative
star .circ-transitive-equal inf .sup-left-isotone by metis

also have ... = (H ∗ dT)? ∗ H ∗ (d ∗ H)?

83 Appendix B. Isabelle/HOL theory

using assms(1) big-forest-def mult .semigroup-axioms preorder-idempotent semigroup.assoc by
fastforce

also have ... = (H ∗ dT)? ∗ (H ∗ d)? ∗ H
by (metis star-slide mult-assoc)

finally show ?thesis
using inf .sup-left-isotone by auto

qed
also have ... ≤ (H ∗ dT)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ dT

proof −
have d ∗ H ∗ e ∗ top ∗ eT ∗ H ∗ dT ≤ d ∗ H ∗ 1 ∗ H ∗ dT

using 3 by (metis comp-isotone idempotent-one-closed mult-left-isotone mult-sub-right-one
mult-assoc)

also have ... ≤ d ∗ H ∗ dT

by (metis assms(1) big-forest-def mult-left-isotone mult-one-associative mult-semi-associative
preorder-idempotent)

finally show ?thesis
using inf .sup-right-isotone by auto

qed
also have ... = H ∗ (dT ∗ H)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ dT

by (metis assms(1) big-forest-def comp-associative preorder-idempotent star-slide)
also have ... = H ∗ ((dT ∗ H)? t (H ∗ d)?) ∗ H u d ∗ H ∗ dT

by (simp add : assms(1) expand-big-forest mult .semigroup-axioms semigroup.assoc)
also have ... = (H ∗ (dT ∗ H)? ∗ H t H ∗ (H ∗ d)? ∗ H) u d ∗ H ∗ dT

by (simp add : mult-left-dist-sup mult-right-dist-sup)
also have ... = (H ∗ dT)? ∗ H u d ∗ H ∗ dT t H ∗ (d ∗ H)? u d ∗ H ∗ dT

by (smt assms(1) big-forest-def inf-sup-distrib2 mult .semigroup-axioms preorder-idempotent
star-slide semigroup.assoc)

also have ... ≤ (H ∗ dT)? ∗ H u d ∗ H ∗ dT t 1
using 51 comp-inf .semiring .add-left-mono by blast

finally have ?x ∗ top ∗ ?xT ≤ 1
using 51 assms(1) big-forest-def conv-dist-comp conv-dist-inf conv-dist-sup conv-involutive

conv-star-commute equivalence-one-closed mult .semigroup-axioms sup.absorb2 semigroup.assoc by (smt
conv-isotone conv-order)

thus ?thesis
by simp

qed
have 6 : ?xT ∗ top ∗ ?x ≤ 1
proof −

have ?xT ∗ top ∗ ?x = (dT u H T ∗ eT T ∗ topT u topT ∗ aT T ∗ H T ∗ (dT T ∗ H T)?) ∗ top ∗ (d u
top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)

by (simp add : conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)
also have ... = (dT u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?) ∗ top ∗ (d u top ∗ eT ∗ H u (H ∗

dT)? ∗ H ∗ aT ∗ top)
using assms(1) big-forest-def by auto

also have ... = H ∗ e ∗ top u (dT u top ∗ a ∗ H ∗ (d ∗ H)?) ∗ top ∗ (d u top ∗ eT ∗ H u (H ∗
dT)? ∗ H ∗ aT ∗ top)

by (smt comp-associative inf .sup-monoid .add-assoc inf .sup-monoid .add-commute star .circ-left-top
star .circ-top vector-inf-comp)

also have ... = H ∗ e ∗ top u dT ∗ ((top ∗ a ∗ H ∗ (d ∗ H)?)T u top) ∗ (d u top ∗ eT ∗ H u (H
∗ dT)? ∗ H ∗ aT ∗ top)

by (simp add : covector-comp-inf-1 covector-mult-closed)
also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ top ∗ (d u top ∗ eT ∗ H u (H ∗ dT)? ∗

H ∗ aT ∗ top)
using assms(1) big-forest-def comp-associative conv-dist-comp by auto

also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ top ∗ (d u (H ∗ dT)? ∗ H ∗ aT ∗ top)
u top ∗ eT ∗ H

by (smt comp-associative comp-inf-covector inf .sup-monoid .add-assoc
inf .sup-monoid .add-commute)

84 Appendix B. Isabelle/HOL theory

also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ (top u ((H ∗ dT)? ∗ H ∗ aT ∗ top)T) ∗
d u top ∗ eT ∗ H

by (metis comp-associative comp-inf-vector vector-conv-covector vector-top-closed)
also have ... = H ∗ e ∗ top u (H ∗ e ∗ top)T u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ ((H ∗ dT)? ∗ H ∗ aT

∗ top)T ∗ d
using assms(1) big-forest-def conv-dist-comp inf .left-commute inf .sup-monoid .add-commute

symmetric-top-closed mult-assoc by (smt inf-top.left-neutral)
also have ... = H ∗ e ∗ top ∗ (H ∗ e ∗ top)T u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ ((H ∗ dT)? ∗ H ∗ aT

∗ top)T ∗ d
using vector-covector vector-mult-closed by auto

also have ... = H ∗ e ∗ top ∗ topT ∗ eT ∗ H T u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ topT ∗ aT T ∗ H T ∗
(H ∗ dT)?T ∗ d

by (smt conv-dist-comp mult .semigroup-axioms symmetric-top-closed semigroup.assoc)
also have ... = H ∗ e ∗ top ∗ top ∗ eT ∗ H u dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)?

∗ d
using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto

also have ... = H ∗ e ∗ top ∗ eT ∗ H u dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ∗ d
using vector-top-closed mult-assoc by auto

also have ... ≤ H u dT ∗ (H ∗ dT)? ∗ H ∗ (d ∗ H)? ∗ d
proof −

have H ∗ e ∗ top ∗ eT ∗ H ≤ H ∗ 1 ∗ H
using 3 comp-associative mult-left-isotone mult-right-isotone by metis

also have ... = H
using assms(1) big-forest-def preorder-idempotent by auto

finally have 611 : H ∗ e ∗ top ∗ eT ∗ H ≤ H
by simp

have dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ∗ d ≤ dT ∗ (H ∗ dT)? ∗ H ∗ 1 ∗ H ∗
(d ∗ H)? ∗ d

using 2 comp-associative mult-left-isotone mult-right-isotone by metis
also have ... = dT ∗ (H ∗ dT)? ∗ H ∗ (d ∗ H)? ∗ d

using assms(1) big-forest-def mult .semigroup-axioms preorder-idempotent semigroup.assoc by
fastforce

finally have dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ∗ d ≤ dT ∗ (H ∗ dT)? ∗ H ∗
(d ∗ H)? ∗ d

by simp
thus ?thesis

using 611 comp-inf .comp-isotone by blast
qed
also have ... = H u (dT ∗ H)? ∗ dT ∗ H ∗ d ∗ (H ∗ d)?

using star-slide mult-assoc by auto
also have ... ≤ H u (dT ∗ H)? ∗ (H ∗ d)?

proof −
have (dT ∗ H)? ∗ dT ∗ H ∗ d ∗ (H ∗ d)? ≤ (dT ∗ H)? ∗ 1 ∗ (H ∗ d)?

by (smt assms(1) big-forest-def conv-dist-comp mult-left-isotone mult-right-isotone
preorder-idempotent mult-assoc)

also have ... = (dT ∗ H)? ∗ (H ∗ d)?

by simp
finally show ?thesis

using inf .sup-right-isotone by blast
qed
also have ... = H u ((dT ∗ H)? t (H ∗ d)?)

by (simp add : assms(1) expand-big-forest)
also have ... = H u (dT ∗ H)? t H u (H ∗ d)?

by (simp add : comp-inf .semiring .distrib-left)
also have ... = 1 t H u (dT ∗ H)+ t H u (H ∗ d)+

proof −
have 612 : H u (H ∗ d)? = 1 t H u (H ∗ d)+

using assms(1) big-forest-def reflexive-inf-star by blast

85 Appendix B. Isabelle/HOL theory

have H u (dT ∗ H)? = 1 t H u (dT ∗ H)+

using assms(1) big-forest-def reflexive-inf-star by auto
thus ?thesis

using 612 sup-assoc sup-commute by auto
qed
also have ... ≤ 1
proof −

have 613 : H u (H ∗ d)+ ≤ 1
by (metis assms(3) inf .coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)

then have H u (dT ∗ H)+ ≤ 1
by (metis assms(1) big-forest-def conv-dist-comp conv-dist-inf conv-plus-commute

coreflexive-symmetric)
thus ?thesis

by (simp add : 613)
qed
finally show ?thesis

by simp
qed
have 7 :bijective (?x ∗ top)

using 4 5 6 arc-expanded by blast
have bijective (?xT ∗ top)

using 4 5 6 arc-expanded by blast
thus ?thesis

using 7 by simp
qed

Theorem 8

lemma e-leq-c-c-complement-transpose-general :
assumes e = minarc (c ∗ −(c)T u g)

and regular c
shows e ≤ c ∗ −(c)T

proof −
have e ≤ −− (c ∗ − cT u g)

using assms(1) minarc-below order-trans by blast
also have ... ≤ −− (c ∗ − cT)

using order-lesseq-imp pp-isotone-inf by blast
also have ... = c ∗ − cT

using assms(2) regular-mult-closed by auto
finally show ?thesis

by simp
qed

Theorem 9

lemma x-leq-c-transpose-general :
assumes forest h

and vector c
and xT ∗ top ≤ forest-components(h) ∗ e ∗ top
and e ≤ c ∗ −cT

and c = forest-components(h) ∗ c
shows x ≤ cT

proof −
let ?H = forest-components h
have x ≤ top ∗ x

using top-left-mult-increasing by blast
also have ... ≤ (?H ∗ e ∗ top)T

using assms(3) conv-dist-comp conv-order by force
also have ... = top ∗ eT ∗ ?H

using assms(1) comp-associative conv-dist-comp forest-components-equivalence by auto

86 Appendix B. Isabelle/HOL theory

also have ... ≤ top ∗ (c ∗ − cT)T ∗ ?H
by (simp add : assms(4) conv-isotone mult-left-isotone mult-right-isotone)

also have ... = top ∗ (− c ∗ cT) ∗ ?H
by (simp add : conv-complement conv-dist-comp)

also have ... ≤ top ∗ cT ∗ ?H
by (metis mult-left-isotone top.extremum mult-assoc)

also have ... = cT ∗ ?H
using assms(1 , 2) component-is-vector vector-conv-covector by auto

also have ... = cT

by (metis assms(1) assms(5) fch-equivalence conv-dist-comp)
finally show ?thesis

by simp
qed

Theorem 10

lemma x-leq-c-complement-general :
assumes vector c

and c ∗ cT ≤ forest-components h
and x ≤ cT

and x ≤ −forest-components h
shows x ≤ −c

proof −
let ?H = forest-components h
have x ≤ − ?H u cT

using assms(3 , 4) by auto
also have ... ≤ − c
proof −

have c u cT ≤ ?H
using assms(1 , 2) vector-covector by auto

then have −?H u c u cT ≤ bot
using inf .sup-monoid .add-assoc p-antitone pseudo-complement by fastforce

thus ?thesis
using le-bot p-shunting-swap pseudo-complement by blast

qed
finally show ?thesis

by simp
qed

Theorem 11

lemma sum-e-below-sum-x-when-outgoing-same-component-general :
assumes e = minarc (c ∗ −(c)T u g)

and regular c
and forest h
and vector c
and xT ∗ top ≤ (forest-components h) ∗ e ∗ top
and c = (forest-components h) ∗ c
and c ∗ cT ≤ forest-components h
and x ≤ − forest-components h u −− g
and symmetric g
and arc x
and c 6= bot

shows sum (e u g) ≤ sum (x u g)
proof −

let ?H = forest-components h
have 1 :e ≤ c ∗ − cT

using assms(1 , 2) e-leq-c-c-complement-transpose-general by auto
have 2 : x ≤ cT

using 1 assms(3 , 4 , 5 , 6) x-leq-c-transpose-general by auto

87 Appendix B. Isabelle/HOL theory

then have x ≤ −c
using assms(4 , 7 , 8) x-leq-c-complement-general inf .boundedE by blast

then have x ≤ − c u cT

using 2 by simp
then have x ≤ − c ∗ cT

using assms(4) by (simp add : vector-complement-closed vector-covector)
then have xT ≤ cT T ∗ − cT

by (metis conv-complement conv-dist-comp conv-isotone)
then have 3 : xT ≤ c ∗ − cT

by simp
then have x ≤ −− g

using assms(8) by auto
then have xT ≤ −− g

using assms(9) conv-complement conv-isotone by fastforce
then have xT u c ∗ − cT u −− g 6= bot

using 3 assms(10 , 11) by (metis comp-inf .semiring .mult-not-zero conv-dist-comp
conv-involutive inf .orderE mult-right-zero top.extremum)

then have xT u c ∗ − cT u g 6= bot
using inf .sup-monoid .add-commute pp-inf-bot-iff by auto

then have sum (minarc (c ∗ − cT u g) u (c ∗ − cT u g)) ≤ sum (xT u c ∗ − cT u g)
using assms(10) minarc-min inf .sup-monoid .add-assoc by auto

then have sum (e u c ∗ − cT u g) ≤ sum (xT u c ∗ − cT u g)
using assms(1) inf .sup-monoid .add-assoc by auto

then have sum (e u g) ≤ sum (xT u g)
using 1 3 inf .orderE by metis

then have sum (e u g) ≤ sum (x u g)
using assms(9) sum-symmetric by auto

thus ?thesis
by simp

qed

lemma sum-e-below-sum-x-when-outgoing-same-component :
assumes symmetric g

and vector j
and forest h
and x ≤ − forest-components h u −− g
and xT ∗ top ≤ forest-components h ∗ selected-edge h j g ∗ top
and j 6= bot
and arc x

shows sum (selected-edge h j g u g) ≤ sum (x u g)
proof −

let ?e = selected-edge h j g
let ?c = choose-component (forest-components h) j
let ?H = forest-components h
show ?thesis
proof (rule sum-e-below-sum-x-when-outgoing-same-component-general)
next

show ?e = minarc (?c ∗ − ?cT u g)
by simp

next
show regular ?c

using component-is-regular by auto
next

show forest h
by (simp add : assms(3))

next
show vector ?c

by (simp add : assms(2 , 6) component-is-vector)

88 Appendix B. Isabelle/HOL theory

next
show xT ∗ top ≤ ?H ∗ ?e ∗ top

by (simp add : assms(5))
next

show ?c = ?H ∗ ?c
using component-single by auto

next
show ?c ∗ ?cT ≤ ?H

by (simp add : component-is-connected)
next

show x ≤ −?H u −− g
using assms(4) by auto

next
show symmetric g

by (simp add : assms(1))
next

show arc x
by (simp add : assms(7))

next
show ?c 6= bot

using assms(2 , 5 , 6 , 7) inf-bot-left le-bot minarc-bot mult-left-zero mult-right-zero by fastforce
qed

qed

lemma a-to-e-in-bigforest :
assumes symmetric g

and f ≤ −−g
and vector j
and forest h
and big-forest (forest-components h) d
and f t f T = h t hT t d t dT

and (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤ −(forest-components h) u −− g ∧
b ≤ d −→ sum(b u g) ≤ sum(a u g))

and regular d
and j 6= bot
and b = selected-edge h j g
and arc a
and bf-between-arcs a b (forest-components h) (d t selected-edge h j g)
and a ≤ − forest-components h u −− g
and regular h

shows sum (b u g) ≤ sum (a u g)
proof −

let ?p = path f h j g
let ?e = selected-edge h j g
let ?F = forest-components f
let ?H = forest-components h
have sum (b u g) ≤ sum (a u g)
proof (cases aT ∗ top ≤ ?H ∗ ?e ∗ top)

case True
show aT ∗ top ≤ ?H ∗ ?e ∗ top =⇒ sum (b u g) ≤ sum (a u g)
proof−

have sum (?e u g) ≤ sum (a u g)
proof (rule sum-e-below-sum-x-when-outgoing-same-component)

show symmetric g
using assms(1) by auto

next
show vector j

using assms(3) by blast

89 Appendix B. Isabelle/HOL theory

next
show forest h

by (simp add : assms(4))
next

show a ≤ − ?H u −− g
using assms(13) by auto

next
show aT ∗ top ≤ ?H ∗ ?e ∗ top

using True by auto
next

show j 6= bot
by (simp add : assms(9))

next
show arc a

by (simp add : assms(11))
qed
thus ?thesis

using assms(10) by auto
qed

next
case False
show ¬ aT ∗ top ≤ ?H ∗ ?e ∗ top =⇒ sum (b u g) ≤ sum (a u g)
proof −

let ?d ′ = d t ?e
let ?x = d u top ∗ ?eT ∗ ?H u (?H ∗ dT)? ∗ ?H ∗ aT ∗ top
have 61 : arc (?x)
proof (rule shows-arc-x)

show big-forest ?H d
by (simp add : assms(5))

next
show bf-between-arcs a ?e ?H d
proof −

have 611 : bf-between-arcs a b ?H (d t b)
using assms(10) assms(12) by auto

have 616 : regular h
using assms(14) by auto

have regular a
using 611 bf-between-arcs-def arc-regular by fastforce

thus ?thesis
by (smt 616 big-forest-path-split-disj assms(4 , 8 , 10 , 12) bf-between-arcs-def fch-equivalence

minarc-regular regular-closed-star regular-conv-closed regular-mult-closed)
qed

next
show (?H ∗ d)+ ≤ − ?H

using assms(5) big-forest-def by blast
next

show ¬ aT ∗ top ≤ ?H ∗ ?e ∗ top
by (simp add : False)

next
show regular a

using assms(12) bf-between-arcs-def arc-regular by auto
next

show regular ?e
using minarc-regular by auto

next
show regular ?H

using assms(14) pp-dist-star regular-conv-closed regular-mult-closed by auto
next

90 Appendix B. Isabelle/HOL theory

show regular d
using assms(8) by auto

qed
have 62 : bijective (aT ∗ top)

by (simp add : assms(11))
have 63 : bijective (?x ∗ top)

using 61 by simp
have 64 : ?x ≤ (?H ∗ dT)? ∗ ?H ∗ aT ∗ top

by simp
then have ?x ∗ top ≤ (?H ∗ dT)? ∗ ?H ∗ aT ∗ top

using mult-left-isotone inf-vector-comp by auto
then have aT ∗ top ≤ ((?H ∗ dT)? ∗ ?H)T ∗ ?x ∗ top

using 62 63 64 bijective-reverse mult-assoc by smt
also have ... = ?H ∗ (d ∗ ?H)? ∗ ?x ∗ top

using conv-dist-comp conv-star-commute by auto
also have ... = (?H ∗ d)? ∗ ?H ∗ ?x ∗ top

by (simp add : star-slide)
finally have aT ∗ top ≤ (?H ∗ d)? ∗ ?H ∗ ?x ∗ top

by simp
then have 65 : bf-between-arcs a ?x ?H d

using 61 assms(12) bf-between-arcs-def by blast
have 66 : ?x ≤ d

by (simp add : inf .sup-monoid .add-assoc)
then have x-below-a: sum (?x u g) ≤ sum (a u g)

using 65 bf-between-arcs-def assms(7) assms(13) by blast
have sum (?e u g) ≤ sum (?x u g)
proof (rule sum-e-below-sum-x-when-outgoing-same-component)

show symmetric g
using assms(1) by auto

next
show vector j

using assms(3) by blast
next

show forest h
by (simp add : assms(4))

next
show ?x ≤ − ?H u −− g
proof −

have 67 : ?x ≤ − ?H
using 66 assms(5) big-forest-def order-lesseq-imp by blast

have ?x ≤ d
by (simp add : conv-isotone inf .sup-monoid .add-assoc)

also have ... ≤ f t f T

proof −
have h t hT t d t dT = f t f T

by (simp add : assms(6))
then show ?thesis

by (metis (no-types) le-supE sup.absorb-iff2 sup.idem)
qed
also have ... ≤ −− g

using assms(1) assms(2) conv-complement conv-isotone by fastforce
finally have ?x ≤ −− g

by simp
thus ?thesis

by (simp add : 67)
qed

next
show ?xT ∗ top ≤ ?H ∗ ?e ∗ top

91 Appendix B. Isabelle/HOL theory

proof −
have ?x ≤ top ∗ ?eT ∗ ?H

using inf .coboundedI1 by auto
then have ?xT ≤ ?H ∗ ?e ∗ top

using conv-dist-comp conv-dist-inf conv-star-commute inf .orderI inf .sup-monoid .add-assoc
inf .sup-monoid .add-commute mult-assoc by auto

then have ?xT ∗ top ≤ ?H ∗ ?e ∗ top ∗ top
by (simp add : mult-left-isotone)

thus ?thesis
by (simp add : mult-assoc)

qed
next

show j 6= bot
by (simp add : assms(9))

next
show arc (?x)

using 61 by blast
qed
then have sum (?e u g) ≤ sum (a u g)

using x-below-a order .trans by blast
thus ?thesis

by (simp add : assms(10))
qed

qed
thus ?thesis

by simp
qed

lemma boruvka-exchange-spanning-inv :
assumes forest v

and v? ∗ eT = eT

and i ≤ v u top ∗ eT ∗ wT ?

and arc i
and arc e
and v ≤ −−g
and w ≤ −−g
and e ≤ −−g
and components g ≤ forest-components v

shows i ≤ (v u −i)T ? ∗ eT ∗ top
proof −

have 1 : (v u −i u −iT) ∗ (vT u −i u −iT) ≤ 1
using assms(1) comp-isotone order .trans inf .cobounded1 by blast

have 2 : bijective (i ∗ top) ∧ bijective (eT ∗ top)
using assms(4 , 5) mult-assoc by auto

have i ≤ v ∗ (top ∗ eT ∗ wT ?)T

using assms(3) covector-mult-closed covector-restrict-comp-conv order-lesseq-imp vector-top-closed
by blast

also have ... ≤ v ∗ wT ?T ∗ eT T ∗ topT

by (simp add : comp-associative conv-dist-comp)
also have ... ≤ v ∗ w? ∗ e ∗ top

by (simp add : conv-star-commute)
also have ... = v ∗ w? ∗ e ∗ eT ∗ e ∗ top

using assms(5) arc-eq-1 by (simp add : comp-associative)
also have ... ≤ v ∗ w? ∗ e ∗ eT ∗ top

by (simp add : comp-associative mult-right-isotone)
also have ... ≤ (−−g) ∗ (−−g)? ∗ (−−g) ∗ eT ∗ top

using assms(6 , 7 , 8) by (simp add : comp-isotone star-isotone)
also have ... ≤ (−−g)? ∗ eT ∗ top

92 Appendix B. Isabelle/HOL theory

by (metis comp-isotone mult-left-isotone star .circ-increasing star .circ-transitive-equal)
also have ... ≤ vT ? ∗ v? ∗ eT ∗ top

by (simp add : assms(9) mult-left-isotone)
also have ... ≤ vT ? ∗ eT ∗ top

by (simp add : assms(2) comp-associative)
finally have i ≤ vT ? ∗ eT ∗ top

by simp
then have i ∗ top ≤ vT ? ∗ eT ∗ top

by (metis comp-associative mult-left-isotone vector-top-closed)
then have eT ∗ top ≤ vT ?T ∗ i ∗ top

using 2 bijective-reverse mult-assoc by metis
also have ... = v? ∗ i ∗ top

by (simp add : conv-star-commute)
also have ... ≤ (v u −i u −iT)? ∗ i ∗ top
proof −

have 3 : i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using star .circ-loop-fixpoint sup-right-divisibility mult-assoc by auto

have (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ i ∗ top ∗ i ∗ top
using comp-isotone inf .cobounded1 inf .sup-monoid .add-commute mult-left-isotone top.extremum

by presburger
also have ... ≤ i ∗ top

by simp
finally have 4 : (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

using 3 dual-order .trans by blast
have 5 : (v u −i u −iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

by (metis mult-left-isotone star .circ-increasing star .left-plus-circ)
have v+ ≤ −1

by (simp add : assms(1))
then have v ∗ v ≤ −1

by (metis mult-left-isotone order-trans star .circ-increasing star .circ-plus-same)
then have v ∗ 1 ≤ −vT

by (simp add : schroeder-5-p)
then have v ≤ −vT

by simp
then have v u vT ≤ bot

by (simp add : bot-unique pseudo-complement)
then have 7 : v u iT ≤ bot

by (metis assms(3) comp-inf .mult-right-isotone conv-dist-inf inf .boundedE inf .le-iff-sup le-bot)
then have (v u iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ bot

using le-bot semiring .mult-zero-left by fastforce
then have 6 : (v u iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

using bot-least le-bot by blast
have 8 : v = (v u i) t (v u iT) t (v u −i u −iT)
proof −

have 81 : regular i
by (simp add : assms(4) arc-regular)

have (v u iT) t (v u −i u −iT) = (v u −i)
using 7 by (metis comp-inf .coreflexive-comp-inf-complement inf-import-p inf-p le-bot

maddux-3-11-pp top.extremum)
then have (v u i) t (v u iT) t (v u −i u −iT) = (v u i) t (v u −i)

by (simp add : sup.semigroup-axioms semigroup.assoc)
also have ... = v

using 81 by (metis maddux-3-11-pp)
finally show ?thesis

by simp
qed
have (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top t (v u iT) ∗ (v u −i u −iT)? ∗ i ∗ top t (v u −i u

−iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

93 Appendix B. Isabelle/HOL theory

using 4 5 6 by simp
then have ((v u i) t (v u iT) t (v u −i u −iT)) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u

−iT)? ∗ i ∗ top
by (simp add : mult-right-dist-sup)

then have v ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using 8 by auto

then have i ∗ top t v ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using 3 by auto

then have 9 :v? ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
by (simp add : star-left-induct-mult mult-assoc)

have v? ∗ i ∗ top ≤ v? ∗ (v u −i u −iT)? ∗ i ∗ top
using 3 mult-right-isotone mult-assoc by auto

thus ?thesis
using 9 order .trans by blast

qed
finally have eT ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

by simp
then have i ∗ top ≤ (v u −i u −iT)?T ∗ eT ∗ top

using 2 bijective-reverse mult-assoc by metis
also have ... = (vT u −i u −iT)? ∗ eT ∗ top

using comp-inf .inf-vector-comp conv-complement conv-dist-inf conv-star-commute
inf .sup-monoid .add-commute by auto

also have ... ≤ ((v u −i u −iT) t (vT u −i u −iT))? ∗ eT ∗ top
by (simp add : mult-left-isotone star-isotone)

finally have i ≤ ((vT u −i u −iT) t (v u −i u −iT))? ∗ eT ∗ top
using dual-order .trans top-right-mult-increasing sup-commute by presburger

also have ... = (vT u −i u −iT)? ∗ (v u −i u −iT)? ∗ eT ∗ top
using 1 cancel-separate-1 by (simp add : sup-commute)

also have ... ≤ (vT u −i u −iT)? ∗ v? ∗ eT ∗ top
by (simp add : inf-assoc mult-left-isotone mult-right-isotone star-isotone)

also have ... = (vT u −i u −iT)? ∗ eT ∗ top
using assms(2) mult-assoc by simp

also have ... ≤ (vT u −iT)? ∗ eT ∗ top
using mult-left-isotone conv-isotone star-isotone comp-inf .mult-right-isotone inf .cobounded2

inf .left-commute inf .sup-monoid .add-commute by presburger
also have ... = (v u −i)T ? ∗ eT ∗ top

using conv-complement conv-dist-inf by presburger
finally show ?thesis

by simp
qed

lemma boruvka-edge-arc:
assumes equivalence F

and forest v
and arc e
and regular F
and F ≤ forest-components (F u v)
and regular v
and v ∗ eT = bot
and e ∗ F ∗ e = bot
and eT ≤ v?

and e 6= bot
shows arc (v u −F ∗ e ∗ top u top ∗ eT ∗ F)

proof −
let ?i = v u −F ∗ e ∗ top u top ∗ eT ∗ F
have 1 : ?iT ∗ top ∗ ?i ≤ 1
proof −

have ?iT ∗ top ∗ ?i = (vT u top ∗ eT ∗ −F u F ∗ e ∗ top) ∗ top ∗ (v u −F ∗ e ∗ top u top ∗ eT

94 Appendix B. Isabelle/HOL theory

∗ F)
using assms(1) conv-complement conv-dist-comp conv-dist-inf mult .semigroup-axioms

semigroup.assoc by fastforce
also have ... = F ∗ e ∗ top u (vT u top ∗ eT ∗ −F) ∗ top ∗ (v u −F ∗ e ∗ top) u top ∗ eT ∗ F

by (smt covector-comp-inf covector-mult-closed inf-vector-comp vector-export-comp
vector-top-closed)

also have ... = F ∗ e ∗ top u (vT u top ∗ eT ∗ −F) ∗ top ∗ top ∗ (v u −F ∗ e ∗ top) u top ∗ eT

∗ F
by (simp add : comp-associative)

also have ... = F ∗ e ∗ top u vT ∗ (top u (top ∗ eT ∗ −F)T) ∗ top ∗ (v u −F ∗ e ∗ top) u top ∗
eT ∗ F

using comp-associative comp-inf-vector-1 by auto
also have ... = F ∗ e ∗ top u vT ∗ (top u (top ∗ eT ∗ −F)T) ∗ (top u (−F ∗ e ∗ top)T) ∗ v u top

∗ eT ∗ F
by (smt comp-inf-vector conv-dist-comp mult .semigroup-axioms symmetric-top-closed

semigroup.assoc)
also have ... = F ∗ e ∗ top u vT ∗ (top ∗ eT ∗ −F)T ∗ (−F ∗ e ∗ top)T ∗ v u top ∗ eT ∗ F

by simp
also have ... = F ∗ e ∗ top u vT ∗ −FT ∗ eT T ∗ topT ∗ topT ∗ eT ∗ −FT ∗ v u top ∗ eT ∗ F

using comp-associative conv-complement conv-dist-comp by presburger
also have ... = F ∗ e ∗ top u vT ∗ −F ∗ e ∗ top ∗ top ∗ eT ∗ −F ∗ v u top ∗ eT ∗ F

by (simp add : assms(1))
also have ... = F ∗ e ∗ top u vT ∗ −F ∗ e ∗ top u top ∗ eT ∗ −F ∗ v u top ∗ eT ∗ F

by (metis comp-associative comp-inf-covector inf .sup-monoid .add-assoc inf-top.left-neutral
vector-top-closed)

also have ... = (F u vT ∗ −F) ∗ e ∗ top u top ∗ eT ∗ −F ∗ v u top ∗ eT ∗ F
using assms(3) injective-comp-right-dist-inf mult-assoc by auto

also have ... = (F u vT ∗ −F) ∗ e ∗ top u top ∗ eT ∗ (F u −F ∗ v)
using assms(3) conv-dist-comp inf .sup-monoid .add-assoc inf .sup-monoid .add-commute

mult .semigroup-axioms univalent-comp-left-dist-inf semigroup.assoc by fastforce
also have ... = (F u vT ∗ −F) ∗ e ∗ top ∗ top ∗ eT ∗ (F u −F ∗ v)

by (metis comp-associative comp-inf-covector inf-top.left-neutral vector-top-closed)
also have ... = (F u vT ∗ −F) ∗ e ∗ top ∗ eT ∗ (F u −F ∗ v)

by (simp add : comp-associative)
also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v)

using assms(3) by (smt conv-dist-comp mult-left-isotone shunt-bijective symmetric-top-closed
top-right-mult-increasing mult-assoc)

also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v) u F
by (metis assms(1) inf .absorb1 inf .cobounded1 mult-isotone preorder-idempotent)

also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v) u (F u v)T ? ∗ (F u v)?

using assms(5) comp-inf .mult-right-isotone by auto
also have ... ≤ (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)T ? ∗ (F u v)?

proof −
have F u vT ∗ −F ≤ (vT u F ∗ −FT) ∗ −F

by (metis conv-complement dedekind-2 inf-commute)
also have ... = (vT u −FT) ∗ −F

using assms(1) equivalence-comp-left-complement by simp
finally have F u vT ∗ −F ≤ F u (vT u −F) ∗ −F

using assms(1) by auto
then have 11 : F u vT ∗ −F = F u (−F u vT) ∗ −F

using assms(1) inf .antisym-conv inf .sup-monoid .add-commute by (metis comp-left-subdist-inf
inf .boundedE inf .sup-right-isotone)

then have FT u −FT ∗ vT T = FT u −FT ∗ (−FT u vT T)
by (metis (full-types) assms(1) conv-complement conv-dist-comp conv-dist-inf)

then have 12 : F u −F ∗ v = F u −F ∗ (−F u v)
using assms(1) by (simp add : abel-semigroup.commute inf .abel-semigroup-axioms)

have (F u vT ∗ −F) ∗ (F u −F ∗ v) = (F u (−F u vT) ∗ −F) ∗ (F u −F ∗ (−F u v))
using 11 12 by auto

95 Appendix B. Isabelle/HOL theory

also have ... ≤ (−F u vT) ∗ −F ∗ −F ∗ (−F u v)
by (metis comp-associative comp-isotone inf .cobounded2)

finally show ?thesis
using comp-inf .mult-left-isotone by blast

qed
also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)T ∗ (F u v)T ? ∗ (F u v)?) t ((−F

u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)
by (metis comp-associative inf-sup-distrib1 star .circ-loop-fixpoint)

also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u vT) ∗ (F u v)T ? ∗ (F u v)?) t ((−F
u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)

using assms(1) conv-dist-inf by auto
also have ... = bot t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)
proof −

have (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u vT) ∗ (F u v)T ? ∗ (F u v)? ≤ bot
using assms(1 , 2) forests-bot-2 by (simp add : comp-associative)

thus ?thesis
using le-bot by blast

qed
also have ... = (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (1 t (F u v)? ∗ (F u v))

by (simp add : star .circ-plus-same star-left-unfold-equal)
also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u 1) t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v)

u (F u v)? ∗ (F u v))
by (simp add : comp-inf .semiring .distrib-left)

also have ... ≤ 1 t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)? ∗ (F u v))
using sup-left-isotone by auto

also have ... ≤ 1 t bot
using assms(1 , 2) forests-bot-3 comp-inf .semiring .add-left-mono by simp

finally show ?thesis
by simp

qed
have 2 : ?i ∗ top ∗ ?iT ≤ 1
proof −

have ?i ∗ top ∗ ?iT = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u (−F ∗ e ∗ top)T u (top ∗
eT ∗ F)T)

by (simp add : conv-dist-inf)
also have ... = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u topT ∗ eT ∗ −FT u FT ∗ eT T ∗

topT)
by (simp add : conv-complement conv-dist-comp mult-assoc)

also have ... = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u top ∗ eT ∗ −F u F ∗ e ∗ top)
by (simp add : assms(1))

also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ (vT u top ∗ eT ∗ −F u F ∗ e ∗ top)
by (smt inf .left-commute inf .sup-monoid .add-assoc vector-export-comp)

also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ (vT u F ∗ e ∗ top) u top ∗ eT ∗ −F
by (smt comp-inf-covector inf .sup-monoid .add-assoc inf .sup-monoid .add-commute mult-assoc)

also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ top ∗ (vT u F ∗ e ∗ top) u top ∗ eT ∗
−F

by (simp add : mult-assoc)
also have ... = −F ∗ e ∗ top u v ∗ ((top ∗ eT ∗ F)T u top) ∗ top ∗ (vT u F ∗ e ∗ top) u top ∗ eT

∗ −F
by (simp add : comp-inf-vector-1 mult .semigroup-axioms semigroup.assoc)

also have ... = −F ∗ e ∗ top u v ∗ ((top ∗ eT ∗ F)T u top) ∗ (top u (F ∗ e ∗ top)T) ∗ vT u top ∗
eT ∗ −F

by (smt comp-inf-vector covector-comp-inf vector-conv-covector vector-mult-closed
vector-top-closed)

also have ... = −F ∗ e ∗ top u v ∗ (top ∗ eT ∗ F)T ∗ (F ∗ e ∗ top)T ∗ vT u top ∗ eT ∗ −F
by simp

also have ... = −F ∗ e ∗ top u v ∗ FT ∗ eT T ∗ topT ∗ topT ∗ eT ∗ FT ∗ vT u top ∗ eT ∗ −F
using comp-associative conv-dist-comp by presburger

96 Appendix B. Isabelle/HOL theory

also have ... = −F ∗ e ∗ top u v ∗ F ∗ e ∗ top ∗ top ∗ eT ∗ F ∗ vT u top ∗ eT ∗ −F
using assms(1) by auto

also have ... = −F ∗ e ∗ top u v ∗ F ∗ e ∗ top u top ∗ eT ∗ F ∗ vT u top ∗ eT ∗ −F
by (smt comp-associative comp-inf-covector inf .sup-monoid .add-assoc inf-top.left-neutral

vector-top-closed)
also have ... = (−F u v ∗ F) ∗ e ∗ top u top ∗ eT ∗ F ∗ vT u top ∗ eT ∗ −F

using injective-comp-right-dist-inf assms(3) mult .semigroup-axioms semigroup.assoc by fastforce
also have ... = (−F u v ∗ F) ∗ e ∗ top u top ∗ eT ∗ (F ∗ vT u −F)

using injective-comp-right-dist-inf assms(3) conv-dist-comp inf .sup-monoid .add-assoc
mult .semigroup-axioms univalent-comp-left-dist-inf semigroup.assoc by fastforce

also have ... = (−F u v ∗ F) ∗ e ∗ top ∗ top ∗ eT ∗ (F ∗ vT u −F)
by (metis inf-top-right vector-export-comp vector-top-closed)

also have ... = (−F u v ∗ F) ∗ e ∗ top ∗ eT ∗ (F ∗ vT u −F)
by (simp add : comp-associative)

also have ... ≤ (−F u v ∗ F) ∗ (F ∗ vT u −F)
by (smt assms(3) conv-dist-comp mult .semigroup-axioms mult-left-isotone shunt-bijective

symmetric-top-closed top-right-mult-increasing semigroup.assoc)
also have ... = (−F u v ∗ F) ∗ ((v ∗ F)T u −F)

by (simp add : assms(1) conv-dist-comp)
also have ... = (−F u v ∗ F) ∗ (−F u v ∗ F)T

using assms(1) conv-complement conv-dist-inf by (simp add : inf .sup-monoid .add-commute)
also have ... ≤ (−F u v) ∗ (F u v)? ∗ (F u v)T ? ∗ (−F u v)T

proof −
let ?Fv = F u v
have −F u v ∗ F ≤ −F u v ∗ (F u v)T ? ∗ (F u v)?

using assms(5) inf .sup-right-isotone mult-right-isotone comp-associative by auto
also have ... ≤ −F u v ∗ (F u v)?

proof −
have v ∗ vT ≤ 1

by (simp add : assms(2))
then have v ∗ vT ∗ F ≤ F

using assms(1) dual-order .trans mult-left-isotone by blast
then have v ∗ vT ∗ FT ? ∗ F ? ≤ F

using assms(1) by (metis mult-1-right preorder-idempotent star .circ-sup-one-right-unfold
star .circ-transitive-equal star-one star-simulation-right-equal mult-assoc)

then have v ∗ (F u v)T ∗ FT ? ∗ F ? ≤ F
using conv-isotone dual-order .trans inf .cobounded2 inf .sup-monoid .add-commute

mult-left-isotone mult-right-isotone by presburger
then have v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? ≤ F

using conv-isotone dual-order .trans inf .cobounded2 inf .sup-monoid .add-commute
mult-left-isotone mult-right-isotone by (meson comp-isotone conv-dist-inf inf .cobounded1 star-isotone)

then have −F u v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? ≤ bot
using eq-iff p-antitone pseudo-complement by auto

then have (−F u v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)?) t v ∗ (v u F)? ≤ v ∗ (v u F)?

using bot-least le-bot by fastforce
then have (−F t v ∗ (v u F)?) u (v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? t v ∗ (v u F)?) ≤ v

∗ (v u F)?

by (simp add : sup-inf-distrib2)
then have (−F t v ∗ (v u F)?) u v ∗ ((F u v)T ∗ (F u v)T ? t 1) ∗ (v u F)? ≤ v ∗ (v u F)?

by (simp add : inf .sup-monoid .add-commute mult .semigroup-axioms mult-left-dist-sup
mult-right-dist-sup semigroup.assoc)

then have (−F t v ∗ (v u F)?) u v ∗ (F u v)T ? ∗ (v u F)? ≤ v ∗ (v u F)?

by (simp add : star-left-unfold-equal sup-commute)
then have −F u v ∗ (F u v)T ? ∗ (v u F)? ≤ v ∗ (v u F)?

using comp-inf .mult-right-sub-dist-sup-left inf .order-lesseq-imp by blast
thus ?thesis

by (simp add : inf .sup-monoid .add-commute)
qed

97 Appendix B. Isabelle/HOL theory

also have ... ≤ (v u −F ∗ (F u v)T ?) ∗ (F u v)?

using dedekind-2 by (metis conv-star-commute inf .sup-monoid .add-commute)
also have ... ≤ (v u −F ∗ FT ?) ∗ (F u v)?

using conv-isotone inf .sup-right-isotone mult-left-isotone mult-right-isotone star-isotone by auto
also have ... = (v u −F ∗ F) ∗ (F u v)?

using assms(1) by (metis equivalence-comp-right-complement mult-left-one star-one
star-simulation-right-equal)

also have ... = (−F u v) ∗ (F u v)?

using assms(1) equivalence-comp-right-complement inf .sup-monoid .add-commute by auto
finally have −F u v ∗ F ≤ (−F u v) ∗ (F u v)?

by simp
then have (−F u v ∗ F) ∗ (−F u v ∗ F)T ≤ (−F u v) ∗ (F u v)? ∗ ((−F u v) ∗ (F u v)?)T

by (simp add : comp-isotone conv-isotone)
also have ... = (−F u v) ∗ (F u v)? ∗ (F u v)T ? ∗ (−F u v)T

by (simp add : comp-associative conv-dist-comp conv-star-commute)
finally show ?thesis

by simp
qed
also have ... ≤ (−F u v) ∗ ((F u v?) t (F u vT ?)) ∗ (−F u v)T

proof −
have (F u v)? ∗ (F u v)T ? ≤ F ? ∗ FT ?

using fc-isotone by auto
also have ... ≤ F ∗ F

by (metis assms(1) preorder-idempotent star .circ-sup-one-left-unfold star .circ-transitive-equal
star-right-induct-mult)

finally have 21 : (F u v)? ∗ (F u v)T ? ≤ F
using assms(1) dual-order .trans by blast

have (F u v)? ∗ (F u v)T ? ≤ v? ∗ vT ?

by (simp add : fc-isotone)
then have (F u v)? ∗ (F u v)T ? ≤ F u v? ∗ vT ?

using 21 by simp
also have ... = F u (v? t vT ?)

by (simp add : assms(2) cancel-separate-eq)
finally show ?thesis

by (metis assms(4) assms(6) comp-associative comp-inf .semiring .distrib-left comp-isotone
inf-pp-semi-commute mult-left-isotone regular-closed-inf)

qed
also have ... ≤ (−F u v) ∗ (F u vT ?) ∗ (−F u v)T t (−F u v) ∗ (F u v?) ∗ (−F u v)T

by (simp add : mult-left-dist-sup mult-right-dist-sup)
also have ... ≤ (−F u v) ∗ (−F u v)T t (−F u v) ∗ (−F u v)T

proof −
have (−F u v) ∗ (F u vT ?) ≤ (−F u v) ∗ ((F u v)T ? ∗ (F u v)? u vT ?)

by (simp add : assms(5) inf .coboundedI1 mult-right-isotone)
also have ... = (−F u v) ∗ ((F u v)T ∗ (F u v)T ? ∗ (F u v)? u vT ?) t (−F u v) ∗ ((F u v)? u

vT ?)
by (metis comp-associative comp-inf .mult-right-dist-sup mult-left-dist-sup star .circ-loop-fixpoint)

also have ... ≤ (−F u v) ∗ (F u v)T ∗ top t (−F u v) ∗ ((F u v)? u vT ?)
by (simp add : comp-associative comp-isotone inf .coboundedI2 inf .sup-monoid .add-commute

le-supI1)
also have ... ≤ (−F u v) ∗ (F u v)T ∗ top t (−F u v) ∗ (v? u vT ?)

by (smt comp-inf .mult-right-isotone comp-inf .semiring .add-mono eq-iff inf .cobounded2
inf .sup-monoid .add-commute mult-right-isotone star-isotone)

also have ... ≤ bot t (−F u v) ∗ (v? u vT ?)
using assms(1 , 2) forests-bot-1 by (metis comp-associative comp-inf .semiring .add-right-mono

mult-semi-associative vector-bot-closed)
also have ... ≤ −F u v

by (simp add : assms(2) acyclic-star-inf-conv)
finally have 22 : (−F u v) ∗ (F u vT ?) ≤ −F u v

98 Appendix B. Isabelle/HOL theory

by simp
have ((−F u v) ∗ (F u vT ?))T = (F u v?) ∗ (−F u v)T

by (simp add : assms(1) conv-dist-inf conv-star-commute conv-dist-comp)
then have (F u v?) ∗ (−F u v)T ≤ (−F u v)T

using 22 conv-isotone by fastforce
thus ?thesis

using 22 by (metis assms(4) assms(6) comp-associative comp-inf .pp-comp-semi-commute
comp-inf .semiring .add-mono comp-isotone inf-pp-commute mult-left-isotone)

qed
also have ... = (−F u v) ∗ (−F u v)T

by simp
also have ... ≤ v ∗ vT

by (simp add : comp-isotone conv-isotone)
also have ... ≤ 1

by (simp add : assms(2))
thus ?thesis

using calculation dual-order .trans by blast
qed
have 3 : top ∗ ?i ∗ top = top
proof −

have 31 : regular (eT ∗ −F ∗ v ∗ F ∗ e)
using assms(3) assms(4) assms(6) arc-regular regular-mult-closed by auto

have 32 : bijective ((top ∗ eT)T)
using assms(3) by (simp add : conv-dist-comp)

have top ∗ ?i ∗ top = top ∗ (v u −F ∗ e ∗ top) ∗ ((top ∗ eT ∗ F)T u top)
by (simp add : comp-associative comp-inf-vector-1)

also have ... = (top u (−F ∗ e ∗ top)T) ∗ v ∗ ((top ∗ eT ∗ F)T u top)
using comp-inf-vector conv-dist-comp by auto

also have ... = (−F ∗ e ∗ top)T ∗ v ∗ (top ∗ eT ∗ F)T

by simp
also have ... = topT ∗ eT ∗ −FT ∗ v ∗ FT ∗ eT T ∗ topT

by (simp add : comp-associative conv-complement conv-dist-comp)
finally have 33 : top ∗ ?i ∗ top = top ∗ eT ∗ −F ∗ v ∗ F ∗ e ∗ top

by (simp add : assms(1))
have top ∗ ?i ∗ top 6= bot
proof (rule ccontr)

assume ¬ top ∗ (v u − F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top 6= bot
then have top ∗ eT ∗ −F ∗ v ∗ F ∗ e ∗ top = bot

using 33 by auto
then have eT ∗ −F ∗ v ∗ F ∗ e = bot

using 31 tarski comp-associative le-bot by fastforce
then have top ∗ (−F ∗ v ∗ F ∗ e)T ≤ −(eT)

by (metis comp-associative conv-complement-sub-leq conv-involutive p-bot schroeder-5-p)
then have top ∗ eT ∗ FT ∗ vT ∗ −FT ≤ −(eT)

by (simp add : comp-associative conv-complement conv-dist-comp)
then have v ∗ F ∗ e ∗ top ∗ eT ≤ F

by (metis assms(1) assms(4) comp-associative conv-dist-comp schroeder-3-p
symmetric-top-closed)

then have v ∗ F ∗ e ∗ top ∗ top ∗ eT ≤ F
by (simp add : comp-associative)

then have v ∗ F ∗ e ∗ top ≤ F ∗ (top ∗ eT)T

using 32 shunt-bijective by (metis comp-associative conv-involutive)
then have v ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

using comp-associative conv-dist-comp by auto
then have v? ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

using comp-associative star-left-induct-mult-iff by auto
then have eT ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

by (meson assms(9) mult-left-isotone order-trans)

99 Appendix B. Isabelle/HOL theory

then have eT ∗ F ∗ e ∗ top ∗ (e ∗ top)T ≤ F
using 32 shunt-bijective assms(3) mult-assoc by auto

then have 34 : eT ∗ F ∗ e ∗ top ∗ top ∗ eT ≤ F
by (metis conv-dist-comp mult .semigroup-axioms symmetric-top-closed semigroup.assoc)

then have eT ≤ F
proof −

have eT ≤ eT ∗ e ∗ eT

by (metis conv-involutive ex231c)
also have ... ≤ eT ∗ F ∗ e ∗ eT

using assms(1) comp-associative mult-left-isotone mult-right-isotone by fastforce
also have ... ≤ eT ∗ F ∗ e ∗ top ∗ top ∗ eT

by (simp add : mult-left-isotone top-right-mult-increasing vector-mult-closed)
finally show ?thesis

using 34 by simp
qed
then have 35 : e ≤ F

using assms(1) conv-order by fastforce
have top ∗ (F ∗ e)T ≤ − e

using assms(8) comp-associative schroeder-4-p by auto
then have top ∗ eT ∗ F ≤ − e

by (simp add : assms(1) comp-associative conv-dist-comp)
then have (top ∗ eT)T ∗ e ≤ − F

using schroeder-3-p by auto
then have e ∗ top ∗ e ≤ − F

by (simp add : conv-dist-comp)
then have e ≤ − F

by (simp add : assms(3) arc-top-arc)
then have e ≤ F u − F

using 35 inf .boundedI by blast
then have e = bot

using bot-unique by auto
thus False

using assms(10) by auto
qed
thus ?thesis

by (metis assms(3) assms(4) assms(6) arc-regular regular-closed-inf regular-closed-top
regular-conv-closed regular-mult-closed semiring .mult-not-zero tarski)

qed
have bijective (?i ∗ top) ∧ bijective (?iT ∗ top)

using 1 2 3 arc-expanded by blast
thus ?thesis

by blast
qed

lemma exists-a-w :
assumes symmetric g

and forest f
and f ≤ −−g
and regular f
and (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)
and vector j
and regular j
and forest h
and forest-components h ≤ forest-components f
and big-forest (forest-components h) d
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and forest-components f = (forest-components h ∗ (d t dT))? ∗ forest-components h

100 Appendix B. Isabelle/HOL theory

and f t f T = h t hT t d t dT

and (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤ −(forest-components h) u −− g ∧
b ≤ d −→ sum(b u g) ≤ sum(a u g))

and regular d
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot
and j 6= bot
and regular h
and h ≤ −−g

shows ∃w . minimum-spanning-forest w g ∧
f u − (selected-edge h j g)T u − (path f h j g) t (f u − (selected-edge h j g)T u (path f h j g))T t

(selected-edge h j g) ≤ w t wT

proof −
let ?p = path f h j g
let ?e = selected-edge h j g
let ?f = (f u −?eT u −?p) t (f u −?eT u ?p)T t ?e
let ?F = forest-components f
let ?H = forest-components h
let ?ec = choose-component (forest-components h) j ∗ − choose-component (forest-components h) j T

u g
from assms(4) obtain w where 2 : minimum-spanning-forest w g ∧ f ≤ w t wT

using assms(5) by blast
hence 3 : regular w ∧ regular f ∧ regular ?e

using assms(1 , 4) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
minimum-spanning-forest-def spanning-forest-def by metis

have 5 : equivalence ?F
using assms(2) forest-components-equivalence by auto

have ?eT ∗ top ∗ ?eT = ?eT

using assms(4) by (metis arc-conv-closed arc-top-arc coreflexive-bot-closed coreflexive-symmetric
minarc-arc minarc-bot-iff semiring .mult-not-zero)

hence ?eT ∗ top ∗ ?eT ≤ −?F
using 5 assms(17) conv-complement conv-isotone by fastforce

hence 6 : ?e ∗ ?F ∗ ?e = bot
using assms(2) le-bot triple-schroeder-p by simp

let ?q = w u top ∗ ?e ∗ wT ?

let ?v = (w u −(top ∗ ?e ∗ wT ?)) t ?qT

have 7 : regular ?q
using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto

have 8 : injective ?v
proof (rule kruskal-exchange-injective-inv-1)

show injective w
using 2 minimum-spanning-forest-def spanning-forest-def by blast

next
show covector (top ∗ ?e ∗ wT ?)

by (simp add : covector-mult-closed)
next

show top ∗ ?e ∗ wT ? ∗ wT ≤ top ∗ ?e ∗ wT ?

by (simp add : mult-right-isotone star .right-plus-below-circ mult-assoc)
next

show coreflexive ((top ∗ ?e ∗ wT ?)T ∗ (top ∗ ?e ∗ wT ?) u wT ∗ w)
by (metis 2 comp-inf .semiring .mult-not-zero forest-bot kruskal-injective-inv-3 minarc-arc

minarc-bot-iff minimum-spanning-forest-def semiring .mult-not-zero spanning-forest-def)
qed
have 9 : components g ≤ forest-components ?v
proof (rule kruskal-exchange-spanning-inv-1)

show injective (w u − (top ∗?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T)
using 8 by simp

next

101 Appendix B. Isabelle/HOL theory

show regular (w u top ∗ ?e ∗ wT ?)
using 7 by simp

next
show components g ≤ forest-components w

using 2 minimum-spanning-forest-def spanning-forest-def by blast
qed
have 10 : spanning-forest ?v g
proof (unfold spanning-forest-def , intro conjI)

show injective ?v
using 8 by auto

next
show acyclic ?v
proof (rule kruskal-exchange-acyclic-inv-1)

show pd-kleene-allegory-class.acyclic w
using 2 minimum-spanning-forest-def spanning-forest-def by blast

next
show covector (top ∗ ?e ∗ wT ?)

by (simp add : covector-mult-closed)
qed

next
show ?v ≤ −−g
proof (rule sup-least)

show w u − (top ∗ ?e ∗ wT ?) ≤ − − g
using 7 inf .coboundedI1 minimum-spanning-forest-def spanning-forest-def 2 by blast

next
show (w u top ∗ ?e ∗ wT ?)T ≤ − − g

by (metis assms(1) 2 conv-complement conv-isotone inf .coboundedI1
minimum-spanning-forest-def spanning-forest-def)

qed
next

show components g ≤ forest-components ?v
using 9 by simp

next
show regular ?v

using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto
qed
have 11 : sum (?v u g) = sum (w u g)
proof −

have sum (?v u g) = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?qT u g)
using 2 conv-complement conv-top epm-8 inf-import-p inf-top-right regular-closed-top

vector-top-closed minimum-spanning-forest-def spanning-forest-def sum-disjoint by smt
also have ... = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?q u g)

by (simp add : assms(1) sum-symmetric)
also have ... = sum (((w u −(top ∗ ?e ∗ wT ?)) t ?q) u g)

using inf-commute inf-left-commute sum-disjoint by simp
also have ... = sum (w u g)

using 3 7 8 maddux-3-11-pp by auto
finally show ?thesis

by simp
qed
have 12 : ?v t ?vT = w t wT

proof −
have ?v t ?vT = (w u −?q) t ?qT t (wT u −?qT) t ?q

using conv-complement conv-dist-inf conv-dist-sup inf-import-p sup-assoc by simp
also have ... = w t wT

using 3 7 conv-complement conv-dist-inf inf-import-p maddux-3-11-pp sup-monoid .add-assoc
sup-monoid .add-commute by auto

finally show ?thesis

102 Appendix B. Isabelle/HOL theory

by simp
qed
have 13 : ?v ∗ ?eT = bot
proof (rule kruskal-reroot-edge)

show injective (?eT ∗ top)
using assms(18) minarc-arc minarc-bot-iff by blast

next
show pd-kleene-allegory-class.acyclic w

using 2 minimum-spanning-forest-def spanning-forest-def by simp
qed
have ?v u ?e ≤ ?v u top ∗ ?e

using inf .sup-right-isotone top-left-mult-increasing by simp
also have ... ≤ ?v ∗ (top ∗ ?e)T

using covector-restrict-comp-conv covector-mult-closed vector-top-closed by simp
finally have 14 : ?v u ?e = bot

using 13 by (metis conv-dist-comp mult-assoc le-bot mult-left-zero)
let ?i = ?v u (− ?F) ∗ ?e ∗ top u top ∗ ?eT ∗ ?F
let ?w = (?v u −?i) t ?e
have 15 : regular ?i

using 3 regular-closed-star regular-conv-closed regular-mult-closed by simp
have 16 : ?F ≤ −?i
proof −

have 161 : bijective (?e ∗ top)
using assms(18) minarc-arc minarc-bot-iff by auto

have ?i ≤ − ?F ∗ ?e ∗ top
using inf .cobounded2 inf .coboundedI1 by blast

also have ... = − (?F ∗ ?e ∗ top)
using 161 comp-bijective-complement by (simp add : mult-assoc)

finally have ?i ≤ − (?F ∗ ?e ∗ top)
by blast

then have 162 : ?i u ?F ≤ − (?F ∗ ?e ∗ top)
using inf .coboundedI1 by blast

have ?i u ?F ≤ ?F u (top ∗ ?eT ∗ ?F)
by (meson inf-le1 inf-le2 le-infI order-trans)

also have ... ≤ ?F ∗ (top ∗ ?eT ∗ ?F)T

by (simp add : covector-mult-closed covector-restrict-comp-conv)
also have ... = ?F ∗ ?FT ∗ ?eT T ∗ topT

by (simp add : conv-dist-comp mult-assoc)
also have ... = ?F ∗ ?F ∗ ?e ∗ top

by (simp add : conv-dist-comp conv-star-commute)
also have ... = ?F ∗ ?e ∗ top

by (simp add : 5 preorder-idempotent)
finally have ?i u ?F ≤ ?F ∗ ?e ∗ top

by simp
then have ?i u ?F ≤ ?F ∗ ?e ∗ top u − (?F ∗ ?e ∗ top)

using 162 inf .bounded-iff by blast
also have ... = bot

by simp
finally show ?thesis

using le-bot p-antitone-iff pseudo-complement by blast
qed
have 17 : ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

proof −
have ?i ≤ ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)?

by (smt 2 8 12 inf .sup-right-isotone kruskal-forest-components-inf mult-right-isotone mult-assoc)
also have ... = ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗ (1 t (?F u ?v)? ∗ (?F u ?v))

using star-left-unfold-equal star .circ-right-unfold-1 by auto
also have ... = ?v u − ?F ∗ ?e ∗ top u (top ∗ ?eT ∗ (?F u ?v)T ? t top ∗ ?eT ∗ (?F u ?v)T ? ∗

103 Appendix B. Isabelle/HOL theory

(?F u ?v)? ∗ (?F u ?v))
by (simp add : mult-left-dist-sup mult-assoc)

also have ... = (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ?) t (?v u − ?F ∗ ?e ∗ top u top
∗ ?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)? ∗ (?F u ?v))

using comp-inf .semiring .distrib-left by blast
also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗

(?F u ?v)? ∗ (?F u ?v))
using comp-inf .semiring .add-right-mono inf-le2 by blast

also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?FT u ?vT)? ∗
(?F u ?v)? ∗ (?F u ?v))

by (simp add : conv-dist-inf)
also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?FT ? ∗ ?F ? ∗

(?F u ?v))
proof −
have top ∗ ?eT ∗ (?FT u ?vT)? ∗ (?F u ?v)? ∗ (?F u ?v) ≤ top ∗ ?eT ∗ ?FT ? ∗ ?F ? ∗ (?F u ?v)

using star-isotone by (simp add : comp-isotone)
then have ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?FT u ?vT)? ∗ (?F u ?v)? ∗ (?F u ?v) ≤ ?v u

− ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?FT ? ∗ ?F ? ∗ (?F u ?v)
using inf .sup-right-isotone by blast

thus ?thesis
using sup-right-isotone by blast

qed
also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ? ∗ ?F ? ∗ (?F

u ?v))
using 5 by auto

also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ ?F ∗ (?F u
?v))

by (simp add : assms(2) forest-components-star)
also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v))

using 5 mult .semigroup-axioms preorder-idempotent semigroup.assoc by fastforce
also have ... = top ∗ ?eT ∗ (?F u ?v)T ?

proof −
have ?e ∗ top ∗ ?eT ≤ 1

using assms(18) arc-expanded minarc-arc minarc-bot-iff by auto
then have ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F ∗ 1

by (metis comp-associative comp-isotone mult-semi-associative star .circ-transitive-equal)
then have ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ 1 ∗ ?F ∗ 1

using 8 by (smt comp-isotone mult-assoc)
then have 171 : ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F

by simp
then have ?v ∗ (?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F
proof −

have ?v ∗ (?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗ ?eT

by (simp add : conv-dist-inf mult-left-isotone mult-right-isotone)
thus ?thesis

using 171 order-trans by blast
qed
then have 172 : −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T ≤ −?v

using schroeder-4-p by (smt comp-associative order-lesseq-imp pp-increasing)
have −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T = −?F ∗ ?eT T ∗ topT ∗ ?eT ∗ ?FT ∗ (?F u

?v)T T

by (simp add : comp-associative conv-dist-comp)
also have ... = −?F ∗ ?e ∗ top ∗ ?eT ∗ ?F ∗ (?F u ?v)

using 5 by auto
also have ... = −?F ∗ ?e ∗ top ∗ top ∗ ?eT ∗ ?F ∗ (?F u ?v)

using comp-associative by auto
also have ... = −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v)

using comp-associative comp-inf .star .circ-decompose-9 comp-inf .star-star-absorb

104 Appendix B. Isabelle/HOL theory

comp-inf-covector inf-vector-comp vector-top-closed by smt
finally have −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T = −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗

(?F u ?v)
by simp

then have −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v) ≤ −?v
using 172 by auto

then have ?v u −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v) ≤ bot
by (smt bot-unique inf .sup-monoid .add-commute p-shunting-swap pseudo-complement)

thus ?thesis
using le-bot sup-monoid .add-0-right by blast

qed
also have ... = top ∗ ?eT ∗ (?F u ?v u −?i)T ?

by (smt 16 comp-inf .coreflexive-comp-inf-complement inf-top-right p-bot pseudo-complement
top.extremum)

finally show ?thesis
by blast

qed
have 18 : ?i ≤ top ∗ ?eT ∗ ?wT ?

proof −
have ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

using 17 by simp
also have ... ≤ top ∗ ?eT ∗ (?v u −?i)T ?

using mult-right-isotone conv-isotone star-isotone inf .cobounded2 inf .sup-monoid .add-assoc by
presburger

also have ... ≤ top ∗ ?eT ∗ ((?v u −?i) t ?e)T ?

using mult-right-isotone conv-isotone star-isotone sup-ge1 by simp
finally show ?thesis

by blast
qed
have 19 : ?i ≤ top ∗ ?eT ∗ ?vT ?

proof −
have ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

using 17 by simp
also have ... ≤ top ∗ ?eT ∗ (?v u −?i)T ?

using mult-right-isotone conv-isotone star-isotone inf .cobounded2 inf .sup-monoid .add-assoc by
presburger

also have ... ≤ top ∗ ?eT ∗ (?v)T ?

using mult-right-isotone conv-isotone star-isotone by auto
finally show ?thesis

by blast
qed
have 20 : f t f T ≤ (?v u −?i u −?iT) t (?vT u −?i u −?iT)
proof (rule kruskal-edge-between-components-2)

show ?F ≤ − ?i
using 16 by simp

next
show injective f

by (simp add : assms(2))
next

show f t f T ≤ w u − (top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T t (w u − (top ∗ ?e ∗ wT ?) t
(w u top ∗ ?e ∗ wT ?)T)T

using 2 12 by (metis conv-dist-sup conv-involutive conv-isotone le-supI sup-commute)
qed
have minimum-spanning-forest ?w g ∧ ?f ≤ ?w t ?wT

proof (intro conjI)
have 211 : ?eT ≤ ?v?

proof (rule kruskal-edge-arc-1 [where g=g and h=?ec])
show ?e ≤ −− ?ec

105 Appendix B. Isabelle/HOL theory

using minarc-below by blast
next

show ?ec ≤ g
using assms(4) inf .cobounded2 by (simp add : boruvka-inner-invariant-def

boruvka-outer-invariant-def conv-dist-inf)
next

show symmetric g
by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)

next
show components g ≤ forest-components (w u − (top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T)

using 9 by simp
next

show (w u − (top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T) ∗ ?eT = bot
using 13 by blast

qed
have 212 : arc ?i
proof (rule boruvka-edge-arc)

show equivalence ?F
by (simp add : 5)

next
show forest ?v

using 10 spanning-forest-def by blast
next

show arc ?e
using assms(18) minarc-arc minarc-bot-iff by blast

next
show regular ?F

using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto
next

show ?F ≤ forest-components (?F u ?v)
by (simp add : 12 2 8 kruskal-forest-components-inf)

next
show regular ?v

using 10 spanning-forest-def by blast
next

show ?v ∗ ?eT = bot
using 13 by auto

next
show ?e ∗ ?F ∗ ?e = bot

by (simp add : 6)
next

show ?eT ≤ ?v?

using 211 by auto

next
show ?e 6= bot

by (simp add : assms(18))
qed
show minimum-spanning-forest ?w g
proof (unfold minimum-spanning-forest-def , intro conjI)

have (?v u −?i) ∗ ?eT ≤ ?v ∗ ?eT

using inf-le1 mult-left-isotone by simp
hence (?v u −?i) ∗ ?eT = bot

using 13 le-bot by simp
hence 221 : ?e ∗ (?v u −?i)T = bot

using conv-dist-comp conv-involutive conv-bot by force
have 222 : injective ?w
proof (rule injective-sup)

106 Appendix B. Isabelle/HOL theory

show injective (?v u −?i)
using 8 by (simp add : injective-inf-closed)

next
show coreflexive (?e ∗ (?v u −?i)T)

using 221 by simp
next

show injective ?e
using assms(4) arc-injective minarc-arc by (metis coreflexive-bot-closed coreflexive-injective

minarc-bot-iff)
qed
show spanning-forest ?w g
proof (unfold spanning-forest-def , intro conjI)

show injective ?w
using 222 by simp

next
show acyclic ?w
proof (rule kruskal-exchange-acyclic-inv-2)

show acyclic ?v
using 10 spanning-forest-def by blast

next
show injective ?v

using 8 by simp
next

show ?i ≤?v
using inf .coboundedI1 by simp

next
show bijective (?iT ∗ top)

using 212 by simp
next

show bijective (?e ∗ top)
using assms(4) by (smt 14 212 comp-inf .idempotent-bot-closed conv-complement minarc-arc

minarc-bot-iff p-bot regular-closed-bot semiring .mult-not-zero symmetric-top-closed)
next

show ?i ≤ top ∗ ?eT ∗?vT ?

using 19 by simp
next

show ?v ∗ ?eT ∗ top = bot
using 13 by simp

qed
next

have ?w ≤ ?v t ?e
using inf-le1 sup-left-isotone by simp

also have ... ≤ −−g t ?e
using 10 sup-left-isotone spanning-forest-def by blast

also have ... ≤ −−g t −−h
proof −

have 1 : −−g ≤ −−g t −−h
by simp

have 2 : ?e ≤ −−g t −−h
by (metis inf .coboundedI1 inf .sup-monoid .add-commute minarc-below order .trans p-dist-inf

p-dist-sup sup.cobounded1)
then show ?thesis

using 1 2 by simp
qed
also have ... ≤ −−g

using assms(20 , 21) by auto
finally show ?w ≤ −−g

by simp

107 Appendix B. Isabelle/HOL theory

next
have 223 : ?i ≤ (?v u −?i)T ? ∗ ?eT ∗ top
proof (rule boruvka-exchange-spanning-inv)

show forest ?v
using 10 spanning-forest-def by blast

next
show ?v? ∗ ?eT = ?eT

using 13 by (smt conv-complement conv-dist-comp conv-involutive conv-star-commute
dense-pp fc-top regular-closed-top star-absorb)

next
show ?i ≤ ?v u top ∗ ?eT ∗ ?wT ?

using 18 inf .sup-monoid .add-assoc by auto
next

show arc ?i
using 212 by blast

next
show arc ?e

using assms(18) minarc-arc minarc-bot-iff by auto
next

show ?v ≤ −−g
using 10 spanning-forest-def by blast

next
show ?w ≤ −−g
proof −

have 2231 : ?e ≤ −−g
by (metis inf .boundedE minarc-below pp-dist-inf)

have ?w ≤ ?v t ?e
using inf-le1 sup-left-isotone by simp

also have ... ≤ −−g
using 2231 10 spanning-forest-def sup-least by blast

finally show ?thesis
by blast

qed
next

show ?e ≤ −−g
by (metis inf .boundedE minarc-below pp-dist-inf)

next
show components g ≤ forest-components ?v

by (simp add : 9)
qed
have components g ≤ forest-components ?v

using 10 spanning-forest-def by auto
also have ... ≤ forest-components ?w
proof (rule kruskal-exchange-forest-components-inv)
next

show injective ((?v u −?i) t ?e)
using 222 by simp

next
show regular ?i

using 15 by simp
next

show ?e ∗ top ∗ ?e = ?e
using assms(4) by (metis arc-top-arc minarc-arc minarc-bot-iff semiring .mult-not-zero)

next
show ?i ≤ top ∗ ?eT ∗ ?vT ?

using 19 by blast
next

show ?v ∗ ?eT ∗ top = bot

108 Appendix B. Isabelle/HOL theory

using 13 by simp
next

show injective ?v
using 8 by simp

next
show ?i ≤ ?v

by (simp add : le-infI1)
next

show ?i ≤ (?v u −?i)T ? ∗ ?eT ∗ top
using 223 by blast

qed
finally show components g ≤ forest-components ?w

by simp
next

show regular ?w
using 3 7 regular-conv-closed by simp

qed
next

have 224 : ?e u g 6= bot
using assms(18) inf .left-commute inf-bot-right minarc-meet-bot by fastforce

have 225 : sum (?e u g) ≤ sum (?i u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show j 6= bot

by (simp add : assms(19))
next

show f ≤ −− g
by (simp add : assms(3))

next
show vector j

using assms(6) boruvka-inner-invariant-def by blast
next

show forest h
by (simp add : assms(8))

next
show big-forest (forest-components h) d

by (simp add : assms(10))
next

show f t f T = h t hT t d t dT

by (simp add : assms(14))
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d −→ sum (b u g) ≤ sum
(a u g)

by (simp add : assms(15))
next

show regular d
using assms(16) by auto

next
show ?e = ?e

by simp
next

show arc ?i
using 212 by blast

next
show bf-between-arcs ?i ?e ?H (d t ?e)
proof −

109 Appendix B. Isabelle/HOL theory

have dT ∗ ?H ∗ ?e = bot
using assms(19) assms(11) assms(12) assms(6) assms(7) dT-He-eq-bot le-bot by blast

then have 251 : dT ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by simp

then have dT ∗ ?H ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (metis assms(8) forest-components-star star .circ-decompose-9 mult-assoc)

then have dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
proof −

have dT ∗ ?H ∗ d ≤ 1
using assms(10) big-forest-def dTransHd-le-1 by blast

then have dT ∗ ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (metis mult-left-isotone star .circ-circ-mult star-involutive star-one)

then have dT ∗ ?H ∗ ?e t dT ∗ ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
using 251 by simp

then have dT ∗ (1 t ?H ∗ d ∗ (?H ∗ d)?) ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add : comp-associative comp-left-dist-sup semiring .distrib-right)

thus ?thesis
by (simp add : star-left-unfold-equal)

qed
then have ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ (?H ∗ d)? ∗ ?H ∗ ?e

by (simp add : mult-right-isotone mult-assoc)
then have ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ ?H ∗ (d ∗ ?H)? ∗ ?e

by (smt star-slide mult-assoc)
then have ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ (d ∗ ?H)? ∗ ?e

by (metis assms(8) forest-components-star star .circ-decompose-9)
then have ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

using star-slide by auto
then have ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e t ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗

?H ∗ ?e
by (smt le-supI star .circ-loop-fixpoint sup.cobounded2 sup-commute mult-assoc)

then have (?H ∗ (d t dT)) ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add : semiring .distrib-left semiring .distrib-right)

then have (?H ∗ (d t dT))? ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add : star-left-induct-mult mult-assoc)

then have 252 : (?H ∗ (d t dT))? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (smt mult-left-dist-sup star .circ-transitive-equal star-slide star-sup-1 mult-assoc)

have ?i ≤ top ∗ ?eT ∗ ?F
by auto

then have ?iT ≤ ?FT ∗ ?eT T ∗ topT

by (simp add : conv-dist-comp conv-dist-inf mult-assoc)
then have ?iT ∗ top ≤ ?FT ∗ ?eT T ∗ topT ∗ top

using comp-isotone by blast
also have ... = ?FT ∗ ?eT T ∗ topT

by (simp add : vector-mult-closed)
also have ... = ?F ∗ ?eT T ∗ topT

by (simp add : conv-dist-comp conv-star-commute)
also have ... = ?F ∗ ?e ∗ top

by simp
also have ... = (?H ∗ (d t dT))? ∗ ?H ∗ ?e ∗ top

by (simp add : assms(13))
also have ... ≤ (?H ∗ d)? ∗ ?H ∗ ?e ∗ top

by (simp add : 252 comp-isotone)
also have ... ≤ (?H ∗ (d t ?e))? ∗ ?H ∗ ?e ∗ top

by (simp add : comp-isotone star-isotone)
finally have ?iT ∗ top ≤ (?H ∗ (d t ?e))? ∗ ?H ∗ ?e ∗ top

by blast
thus ?thesis

using 212 assms(18) bf-between-arcs-def minarc-arc minarc-bot-iff by blast

110 Appendix B. Isabelle/HOL theory

qed
next

show ?i ≤ − ?H u −− g
proof −

have 241 : ?i ≤ −?H
using 16 assms(9) inf .order-lesseq-imp p-antitone-iff by blast

have ?i ≤ −− g
using 10 inf .coboundedI1 spanning-forest-def by blast

thus ?thesis
using 241 inf-greatest by blast

qed
next

show regular h
using assms(20) by auto

qed
have ?v u ?e u −?i = bot

using 14 by simp
hence sum (?w u g) = sum (?v u −?i u g) + sum (?e u g)

using sum-disjoint inf-commute inf-assoc by simp
also have ... ≤ sum (?v u −?i u g) + sum (?i u g)

using 224 225 sum-plus-right-isotone by simp
also have ... = sum (((?v u −?i) t ?i) u g)

using sum-disjoint inf-le2 pseudo-complement by simp
also have ... = sum ((?v t ?i) u (−?i t ?i) u g)

by (simp add : sup-inf-distrib2)
also have ... = sum ((?v t ?i) u g)

using 15 by (metis inf-top-right stone)
also have ... = sum (?v u g)

by (simp add : inf .sup-monoid .add-assoc)
finally have sum (?w u g) ≤ sum (?v u g)

by simp
thus ∀ u . spanning-forest u g −→ sum (?w u g) ≤ sum (u u g)

using 2 11 minimum-spanning-forest-def by auto
qed

next
have ?f ≤ f t f T t ?e

using conv-dist-inf inf-le1 sup-left-isotone sup-mono by (smt inf .order-lesseq-imp)
also have ... ≤ (?v u −?i u −?iT) t (?vT u −?i u −?iT) t ?e

using 20 sup-left-isotone by simp
also have ... ≤ (?v u −?i) t (?vT u −?i u −?iT) t ?e

using inf .cobounded1 sup-inf-distrib2 by presburger
also have ... = ?w t (?vT u −?i u −?iT)

by (simp add : sup-assoc sup-commute)
also have ... ≤ ?w t (?vT u −?iT)

using inf .sup-right-isotone inf-assoc sup-right-isotone by simp
also have ... ≤ ?w t ?wT

using conv-complement conv-dist-inf conv-dist-sup sup-right-isotone by simp
finally show ?f ≤ ?w t ?wT

by simp
qed
thus ?thesis by auto

qed

lemma boruvka-outer-invariant-when-e-not-bot :
assumes boruvka-inner-invariant j f h g d

and j 6= bot
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot

111 Appendix B. Isabelle/HOL theory

shows boruvka-outer-invariant (f u − selected-edge h j gT u − path f h j g t (f u − selected-edge h j
gT u path f h j g)T t selected-edge h j g) g
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
show boruvka-outer-invariant ?f ′ g
proof (unfold boruvka-outer-invariant-def , intro conjI)

show symmetric g
by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)

next
show injective ?f ′

proof (rule kruskal-injective-inv)
show injective (f u − ?eT)

by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def injective-inf-closed)
show covector (?p)

using covector-mult-closed by simp
show ?p ∗ (f u − ?eT)T ≤ ?p

by (simp add : mult-right-isotone star .left-plus-below-circ star-plus mult-assoc)
show ?e ≤ ?p

by (meson mult-left-isotone order .trans star-outer-increasing top.extremum)
show ?p ∗ (f u − ?eT)T ≤ − ?e
proof −

have ?p ∗ (f u − ?eT)T ≤ ?p ∗ f T

by (simp add : conv-dist-inf mult-right-isotone)
also have ... ≤ top ∗ ?e ∗ (f)T ? ∗ f T

using conv-dist-inf star-isotone comp-isotone by simp
also have ... ≤ − ?e

using assms(1) boruvka-inner-invariant-def assms(4) boruvka-outer-invariant-def
kruskal-injective-inv-2 minarc-arc minarc-bot-iff by auto

finally show ?thesis .
qed
show injective (?e)

by (metis arc-injective coreflexive-bot-closed minarc-arc minarc-bot-iff semiring .mult-not-zero)
show coreflexive (?pT ∗ ?p u (f u − ?eT)T ∗ (f u − ?eT))
proof −

have (?pT ∗ ?p u (f u − ?eT)T ∗ (f u − ?eT)) ≤ ?pT ∗ ?p u f T ∗ f
using conv-dist-inf inf .sup-right-isotone mult-isotone by simp

also have ... ≤ (top ∗ ?e ∗ f T ?)T ∗ (top ∗ ?e ∗ f T ?) u f T ∗ f
by (metis comp-associative comp-inf .coreflexive-transitive comp-inf .mult-right-isotone

comp-isotone conv-isotone inf .cobounded1 inf .idem inf .sup-monoid .add-commute star-isotone
top.extremum)

also have ... ≤ 1
using assms(1) assms(4) boruvka-inner-invariant-def boruvka-outer-invariant-def

kruskal-injective-inv-3 minarc-arc minarc-bot-iff by auto
finally show ?thesis

by simp
qed

qed
next

show acyclic ?f ′

proof (rule kruskal-acyclic-inv)
show acyclic (f u − ?eT)

112 Appendix B. Isabelle/HOL theory

proof −
have f-intersect-below : (f u − ?eT) ≤ f by simp
have acyclic f

by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)
thus ?thesis

using comp-isotone dual-order .trans star-isotone f-intersect-below by blast
qed

next
show covector ?p

by (metis comp-associative vector-top-closed)
next

show (f u − ?eT u ?p)T ∗ (f u − ?eT)? ∗ ?e = bot
proof −

have ?e ≤ − (f T ? ∗ f ?)
by (simp add : assms(3))

then have ?e ∗ top ∗ ?e ≤ − (f T ? ∗ f ?)
by (metis arc-top-arc minarc-arc minarc-bot-iff semiring .mult-not-zero)

then have ?eT ∗ top ∗ ?eT ≤ − (f T ? ∗ f ?)T

by (metis comp-associative conv-complement conv-dist-comp conv-isotone symmetric-top-closed)
then have ?eT ∗ top ∗ ?eT ≤ − (f T ? ∗ f ?)

by (simp add : conv-dist-comp conv-star-commute)
then have ?e ∗ (f T ? ∗ f ?) ∗ ?e ≤ bot

using triple-schroeder-p by auto
then have 1 : ?e ∗ f T ? ∗ f ? ∗ ?e ≤ bot

using mult-assoc by auto
have 2 : (f u − ?eT)T ? ≤ f T ?

by (simp add : conv-dist-inf star-isotone)
have (f u − ?eT u ?p)T ∗ (f u − ?eT)? ∗ ?e ≤ (f u ?p)T ∗ (f u − ?eT)? ∗ ?e

by (simp add : comp-isotone conv-dist-inf inf .orderI inf .sup-monoid .add-assoc)
also have ... ≤ (f u ?p)T ∗ f ? ∗ ?e

by (simp add : comp-isotone star-isotone)
also have ... ≤ (f u top ∗ ?e ∗ (f)T ?)T ∗ f ? ∗ ?e

using 2 by (metis comp-inf .comp-isotone comp-inf .coreflexive-transitive comp-isotone
conv-isotone inf .idem top.extremum)

also have ... = (f T u (top ∗ ?e ∗ f T ?)T) ∗ f ? ∗ ?e
by (simp add : conv-dist-inf)

also have ... ≤ top ∗ (f T u (top ∗ ?e ∗ f T ?)T) ∗ f ? ∗ ?e
using top-left-mult-increasing mult-assoc by auto

also have ... = (top u top ∗ ?e ∗ f T ?) ∗ f T ∗ f ? ∗ ?e
by (smt covector-comp-inf-1 covector-mult-closed eq-iff inf .sup-monoid .add-commute

vector-top-closed)
also have ... = top ∗ ?e ∗ f T ? ∗ f T ∗ f ? ∗ ?e

by simp
also have ... ≤ top ∗ ?e ∗ f T ? ∗ f ? ∗ ?e

by (smt conv-dist-comp conv-isotone conv-star-commute mult-left-isotone mult-right-isotone
star .left-plus-below-circ mult-assoc)

also have ... ≤ bot
using 1 covector-bot-closed le-bot mult-assoc by fastforce

finally show ?thesis
using le-bot by auto

qed
next

show ?e ∗ (f u − ?eT)? ∗ ?e = bot
proof −

have 1 : ?e ≤ − ?F
by (simp add : assms(3))

have 2 : injective f
by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)

113 Appendix B. Isabelle/HOL theory

have 3 : equivalence ?F
using 2 forest-components-equivalence by simp

then have 4 : ?eT = ?eT ∗ top ∗ ?eT

using arc-conv-closed arc-top-arc covector-complement-closed covector-conv-vector ex231e
minarc-arc minarc-bot-iff pp-surjective regular-closed-top vector-mult-closed vector-top-closed by smt

also have ... ≤ − ?F using 1 3 conv-isotone conv-complement calculation by fastforce
finally have 5 : ?e ∗ ?F ∗ ?e = bot

using 4 triple-schroeder-p le-bot pp-total regular-closed-top vector-top-closed by smt
have (f u − ?eT)? ≤ f ?

by (simp add : star-isotone)
then have ?e ∗ (f u − ?eT)? ∗ ?e ≤ ?e ∗ f ? ∗ ?e

using mult-left-isotone mult-right-isotone by blast
also have ... ≤ ?e ∗ ?F ∗ ?e

by (metis conv-star-commute forest-components-increasing mult-left-isotone mult-right-isotone
star-involutive)

also have 6 : ... = bot
using 5 by simp

finally show ?thesis using 6 le-bot by blast
qed

next
show forest-components (f u −?eT) ≤ − ?e
proof −

have 1 : ?e ≤ − ?F
by (simp add : assms(3))

have f u − ?eT ≤ f
by simp

then have forest-components (f u − ?eT) ≤ ?F
using forest-components-isotone by blast

then show ?thesis
using 1 order-lesseq-imp p-antitone-iff by blast

qed
qed

next
show ?f ′ ≤ −−g
proof −

have 1 : (f u − ?eT u − ?p) ≤ −−g
by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def inf .coboundedI1)

have 2 : (f u − ?eT u ?p)T ≤ −−g
proof −

have (f u − ?eT u ?p)T ≤ f T

by (simp add : conv-isotone inf .sup-monoid .add-assoc)
also have ... ≤ −−g

by (metis assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def conv-complement
conv-isotone)

finally show ?thesis
by simp

qed
have 3 : ?e ≤ −−g

by (metis inf .boundedE minarc-below pp-dist-inf)
show ?thesis using 1 2 3

by simp
qed

next
show regular ?f ′

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
regular-closed-star regular-conv-closed regular-mult-closed by auto

next
show ∃w . minimum-spanning-forest w g ∧ ?f ′ ≤ w t wT

114 Appendix B. Isabelle/HOL theory

proof (rule exists-a-w)
show symmetric g

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
next

show forest f
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show f ≤ −−g

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
next

show regular f
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
next

show vector j
using assms(1) boruvka-inner-invariant-def by blast

next
show regular j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest h
using assms(1) boruvka-inner-invariant-def by blast

next
show forest-components h ≤ forest-components f

using assms(1) boruvka-inner-invariant-def by blast
next

show big-forest (forest-components h) d
using assms(1) boruvka-inner-invariant-def by blast

next
show d ∗ top ≤ − j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest-components h ∗ j = j
using assms(1) boruvka-inner-invariant-def by blast

next
show forest-components f = (forest-components h ∗ (d t dT))? ∗ forest-components h

using assms(1) boruvka-inner-invariant-def by blast
next

show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤ −(forest-components h) u −− g
∧ b ≤ d −→ sum(b u g) ≤ sum(a u g))

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show selected-edge h j g ≤ − forest-components f

by (simp add : assms(3))
next

show selected-edge h j g 6= bot
by (simp add : assms(4))

next
show j 6= bot

by (simp add : assms(2))

115 Appendix B. Isabelle/HOL theory

next
show regular h

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
next

show h ≤ −−g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

qed
qed

qed

lemma second-inner-invariant-when-e-not-bot :
assumes boruvka-inner-invariant j f h g d

and j 6= bot
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot

shows boruvka-inner-invariant
(j u − choose-component (forest-components h) j)
(f u − selected-edge h j gT u − path f h j g t
(f u − selected-edge h j gT u path f h j g)T t
selected-edge h j g)

h g (d t selected-edge h j g)
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
show boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (unfold boruvka-inner-invariant-def , intro conjI)
have 1 : boruvka-outer-invariant ?f ′ g

using assms(1 , 2 , 3 , 4) boruvka-outer-invariant-when-e-not-bot by blast
show boruvka-outer-invariant ?f ′ g

using assms(1 , 2 , 3 , 4) boruvka-outer-invariant-when-e-not-bot by blast
show g 6= bot

using assms(1) boruvka-inner-invariant-def by force
show vector ?j ′

using assms(1 , 2) boruvka-inner-invariant-def component-is-vector vector-complement-closed
vector-inf-closed by simp

show regular ?j ′

using assms(1) boruvka-inner-invariant-def by auto
show boruvka-outer-invariant h g

by (meson assms(1) boruvka-inner-invariant-def)
show injective h

by (meson assms(1) boruvka-inner-invariant-def)
show pd-kleene-allegory-class.acyclic h

by (meson assms(1) boruvka-inner-invariant-def)
show ?H ≤ forest-components ?f ′

proof −
have 2 : ?F ≤ forest-components ?f ′

proof (rule components-disj-increasing)
show regular ?p

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
regular-closed-star regular-conv-closed regular-mult-closed by auto[1]

next
show regular ?e

116 Appendix B. Isabelle/HOL theory

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
regular-closed-star regular-conv-closed regular-mult-closed by auto[1]

next
show injective ?f ′

using 1 boruvka-outer-invariant-def by blast
next

show injective f
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by blast

qed
thus ?thesis

using assms(1) boruvka-inner-invariant-def dual-order .trans by blast
qed
show big-forest ?H ?d ′

using assms(1 , 2 , 3 , 4) big-forest-d-U-e boruvka-inner-invariant-def boruvka-outer-invariant-def
by auto

next
show ?d ′ ∗ top ≤ −?j ′

proof −
have 31 : ?d ′ ∗ top = d ∗ top t ?e ∗ top

by (simp add : mult-right-dist-sup)
have 32 : d ∗ top ≤ −?j ′

by (meson assms(1) boruvka-inner-invariant-def inf .coboundedI1 p-antitone-iff)
have regular (?c ∗ − ?cT)

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def component-is-regular
regular-conv-closed regular-mult-closed by presburger

then have minarc(?c ∗ − ?cT u g) = minarc(?c u − ?cT u g)
by (metis component-is-vector covector-comp-inf inf-top.left-neutral vector-conv-compl)

also have ... ≤ −− (?c u − ?cT u g)
using minarc-below by blast

also have ... ≤ −− ?c
by (simp add : inf .sup-monoid .add-assoc)

also have ... = ?c
using component-is-regular by auto

finally have ?e ≤ ?c
by simp

then have ?e ∗ top ≤ ?c
by (metis component-is-vector mult-left-isotone)

also have ... ≤ −j t ?c
by simp

also have ... = − (j u − ?c)
using component-is-regular by auto

finally have 33 : ?e ∗ top ≤ − (j u − ?c)
by simp

show ?thesis
using 31 32 33 by auto

qed
next

show ?H ∗ ?j ′ = ?j ′

using fc-j-eq-j-inv assms(1) boruvka-inner-invariant-def by blast
next

show forest-components ?f ′ = (?H ∗ (?d ′ t ?d ′T))? ∗ ?H
proof −

have forest-components ?f ′ = (f t f T t ?e t ?eT)?

proof (rule simplify-forest-components-f)
show regular ?p

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
regular-closed-star regular-conv-closed regular-mult-closed by auto

next

117 Appendix B. Isabelle/HOL theory

show regular ?e
using minarc-regular by auto

next
show injective ?f ′

using assms(1 , 2 , 3 , 4) boruvka-outer-invariant-def boruvka-outer-invariant-when-e-not-bot by
blast

next
show injective f

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by blast
qed
also have ... = (h t hT t d t dT t ?e t ?eT)?

using assms(1) boruvka-inner-invariant-def by simp
also have ... = (h t hT t ?d ′ t ?d ′T)?

by (smt conv-dist-sup sup-monoid .add-assoc sup-monoid .add-commute)
also have ... = ((h t hT)? ∗ (?d ′ t ?d ′T))? ∗ (h t hT)?

by (metis star .circ-sup-9 sup-assoc)
finally show ?thesis

using assms(1) boruvka-inner-invariant-def forest-components-wcc by simp
qed

next
show ?f ′ t ?f ′T = h t hT t ?d ′ t ?d ′T

proof −
have ?f ′ t ?f ′T = f u − ?eT u − ?p t (f u − ?eT u ?p)T t ?e t (f u − ?eT u − ?p)T t (f u

− ?eT u ?p) t ?eT

by (simp add : conv-dist-sup sup-monoid .add-assoc)
also have ... = (f u − ?eT u − ?p) t (f u − ?eT u ?p) t (f u − ?eT u ?p)T t (f u − ?eT u

− ?p)T t ?eT t ?e
by (simp add : sup.left-commute sup-commute)

also have ... = f t f T t ?e t ?eT

proof (rule simplify-f)
show regular ?p

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def minarc-regular
regular-closed-star regular-conv-closed regular-mult-closed by auto

next
show regular ?e

using minarc-regular by blast
qed
also have ... = h t hT t d t dT t ?e t ?eT

using assms(1) boruvka-inner-invariant-def by auto
finally show ?thesis

by (smt conv-dist-sup sup.left-commute sup-commute)
qed

next
show ∀ a b . bf-between-arcs a b ?H ?d ′ ∧ a ≤ − ?H u −− g ∧ b ≤ ?d ′ −→ sum (b u g) ≤ sum

(a u g)
proof (intro allI , rule impI , unfold bf-between-arcs-def)

fix a b
assume 1 : (arc a ∧ arc b ∧ aT ∗ top ≤ (?H ∗ ?d ′)? ∗ ?H ∗ b ∗ top) ∧ a ≤ − ?H u −− g ∧ b ≤

?d ′

thus sum (b u g) ≤ sum (a u g)
proof (cases b = ?e)

case b-equals-e: True
thus ?thesis
proof (cases a = ?e)

case True
thus ?thesis

using b-equals-e by auto
next

118 Appendix B. Isabelle/HOL theory

case a-ne-e: False
have sum (b u g) ≤ sum (a u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show j 6= bot

by (simp add : assms(2))
next

show f ≤ −− g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show vector j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest h
using assms(1) boruvka-inner-invariant-def by blast

next
show big-forest (forest-components h) d

using assms(1) boruvka-inner-invariant-def by blast
next

show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d −→ sum (b u g) ≤
sum (a u g)

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show b = ?e

using b-equals-e by simp
next

show arc a
using 1 by simp

next
show bf-between-arcs a b ?H ?d ′

using 1 bf-between-arcs-def by simp
next

show a ≤ − ?H u −− g
using 1 by simp

next
show regular h

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
qed
thus ?thesis

by simp
qed

next
case b-not-equal-e: False
then have b-below-d : b ≤ d

using 1 assms(4) different-arc-in-sup-arc minarc-arc minarc-bot-iff by metis
thus ?thesis
proof (cases ?e ≤ d)

case True
then have bf-between-arcs a b ?H d ∧ b ≤ d

using 1 bf-between-arcs-def sup.absorb1 by auto

119 Appendix B. Isabelle/HOL theory

thus ?thesis
using 1 assms(1) boruvka-inner-invariant-def by blast

next
case e-not-less-than-d : False
have 71 :equivalence ?H

using assms(1) fch-equivalence boruvka-inner-invariant-def by auto
then have 72 : bf-between-arcs a b ?H ?d ′←→ bf-between-arcs a b ?H d ∨ (bf-between-arcs a

?e ?H d ∧ bf-between-arcs ?e b ?H d)
proof (rule big-forest-path-split-disj)

show arc ?e
using assms(4) minarc-arc minarc-bot-iff by blast

next
show regular a ∧ regular b ∧ regular ?e ∧ regular d ∧ regular ?H

using assms(1) 1 boruvka-inner-invariant-def boruvka-outer-invariant-def arc-regular
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto

qed
thus ?thesis
proof (cases bf-between-arcs a b ?H d)

case True
have bf-between-arcs a b ?H d ∧ b ≤ d

using 1 True bf-between-arcs-def sup.absorb1 by (metis assms(4) b-not-equal-e minarc-arc
minarc-bot-iff different-arc-in-sup-arc)

thus ?thesis
using 1 assms(1) b-below-d boruvka-inner-invariant-def by auto

next
case False
have 73 :bf-between-arcs a ?e ?H d ∧ bf-between-arcs ?e b ?H d

using 1 72 False bf-between-arcs-def by blast
have 74 : ?e ≤ −−g

by (metis inf .boundedE minarc-below pp-dist-inf)
have ?e ≤ − ?H

by (meson assms(1) assms(3) boruvka-inner-invariant-def dual-order .trans p-antitone-iff)
then have ?e ≤ − ?H u −−g

using 74 by simp
then have 75 : sum (b u g) ≤ sum (?e u g)

using assms(1) b-below-d 73 boruvka-inner-invariant-def by blast
have 76 : bf-between-arcs a ?e ?H ?d ′

by (meson 73 big-forest-path-split-disj assms(1) bf-between-arcs-def
boruvka-inner-invariant-def boruvka-outer-invariant-def fch-equivalence arc-regular regular-closed-star
regular-conv-closed regular-mult-closed)

have 77 : sum (?e u g) ≤ sum (a u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show j 6= bot

by (simp add : assms(2))
next

show f ≤ −− g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto

next
show vector j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest h
using assms(1) boruvka-inner-invariant-def by blast

next
show big-forest (forest-components h) d

120 Appendix B. Isabelle/HOL theory

using assms(1) boruvka-inner-invariant-def by blast
next

show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d −→ sum (b u g) ≤
sum (a u g)

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show ?e = ?e

by simp
next

show arc a
using 1 by simp

next
show bf-between-arcs a ?e ?H ?d ′

by (simp add : 76)
next

show a ≤ − ?H u −−g
using 1 by simp

next
show regular h

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by auto
qed
thus ?thesis

using 75 order .trans by blast
qed

qed
qed

qed
next

show regular ?d ′

using assms(1) boruvka-inner-invariant-def minarc-regular by auto
qed

qed

lemma second-inner-invariant-when-e-bot :
assumes selected-edge h j g = bot

and selected-edge h j g ≤ − forest-components f
and boruvka-inner-invariant j f h g d

shows boruvka-inner-invariant
(j u − choose-component (forest-components h) j)
(f u − selected-edge h j gT u − path f h j g t
(f u − selected-edge h j gT u path f h j g)T t
selected-edge h j g)

h g (d t selected-edge h j g)
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c

121 Appendix B. Isabelle/HOL theory

show boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (unfold boruvka-inner-invariant-def , intro conjI)
next

show boruvka-outer-invariant ?f ′ g
using assms(1) assms(3) boruvka-inner-invariant-def by auto

next
show g 6= bot

using assms(3) boruvka-inner-invariant-def by blast
next

show vector ?j ′

by (metis assms(3) boruvka-inner-invariant-def component-is-vector vector-complement-closed
vector-inf-closed)

next
show regular ?j ′

using assms(3) boruvka-inner-invariant-def by auto
next

show boruvka-outer-invariant h g
using assms(3) boruvka-inner-invariant-def by blast

next
show injective h

using assms(3) boruvka-inner-invariant-def by blast
next

show pd-kleene-allegory-class.acyclic h
using assms(3) boruvka-inner-invariant-def by blast

next
show ?H ≤ forest-components ?f ′

using assms(1) assms(3) boruvka-inner-invariant-def by auto
next

show big-forest ?H ?d ′

using assms(1) assms(3) boruvka-inner-invariant-def by auto
next

show ?d ′ ∗ top ≤ −?j ′

using assms(1) assms(3) boruvka-inner-invariant-def by (metis order .trans p-antitone-inf
sup-monoid .add-0-right)

next
show ?H ∗ ?j ′ = ?j ′

using assms(3) fc-j-eq-j-inv boruvka-inner-invariant-def by blast
next

show forest-components ?f ′ = (?H ∗ (?d ′ t ?d ′T))? ∗?H
using assms(1 , 3) boruvka-inner-invariant-def by auto

next
show ?f ′ t ?f ′T = h t hT t ?d ′ t ?d ′T

using assms(1 , 3) boruvka-inner-invariant-def by auto
next

show ∀ a b. bf-between-arcs a b ?H ?d ′ ∧ a ≤ −?H u −−g ∧ b ≤ ?d ′ −→ sum(b u g) ≤ sum(a u
g)

using assms(1 , 3) boruvka-inner-invariant-def by auto
next

show regular ?d ′

using assms(1) assms(3) boruvka-inner-invariant-def by auto
qed

qed

B.2.4 Formalization and proof of Bor̊uvka’s minimum spanning tree
algorithm

The following result shows that Bor̊uvka’s algorithm constructs a minimum spanning forest.
We have the same postcondition as Guttmann’s proof of Kruskal’s minimum spanning tree

122 Appendix B. Isabelle/HOL theory

algorithm. We show only partial correctness.

theorem boruvka-mst :
VARS f j h c e d
{ symmetric g }
f := bot ;
WHILE −(forest-components f) u g 6= bot

INV { boruvka-outer-invariant f g }
DO

j := top;
h := f ;
d := bot ;
WHILE j 6= bot

INV { boruvka-inner-invariant j f h g d }
DO

c := choose-component (forest-components h) j ;
e := minarc(c ∗ −cT u g);
IF e ≤ −(forest-components f) THEN

f := f u −eT ;
f := (f u −(top ∗ e ∗ f T ?)) t (f u top ∗ e ∗ f T ?)T t e;
d := d t e

ELSE
SKIP

FI ;
j := j u −c

OD
OD
{ minimum-spanning-forest f g }

proof vcg-simp
assume 1 : symmetric g
show boruvka-outer-invariant bot g

using 1 boruvka-outer-invariant-def kruskal-exists-minimal-spanning by auto
next

fix f
let ?F = forest-components f
assume 1 : boruvka-outer-invariant f g ∧ − ?F u g 6= bot
have 2 : equivalence ?F

using 1 boruvka-outer-invariant-def forest-components-equivalence by auto
show boruvka-inner-invariant top f f g bot
proof (unfold boruvka-inner-invariant-def , intro conjI)

show boruvka-outer-invariant f g
by (simp add : 1)

next
show g 6= bot

using 1 by auto
next

show surjective top
by simp

next
show regular top

by simp
next

show boruvka-outer-invariant f g
using 1 by auto

next
show injective f

using 1 boruvka-outer-invariant-def by blast
next

show pd-kleene-allegory-class.acyclic f

123 Appendix B. Isabelle/HOL theory

using 1 boruvka-outer-invariant-def by blast
next

show ?F ≤ ?F
by simp

next
show big-forest ?F bot

by (simp add : 2 big-forest-def)
next

show bot ∗ top ≤ − top
by simp

next
show times-top-class.total (?F)

by (simp add : star .circ-right-top mult-assoc)
next

show ?F = (?F ∗ (bot t botT))? ∗ ?F
by (metis mult-right-zero semiring .mult-zero-left star .circ-loop-fixpoint sup-commute

sup-monoid .add-0-right symmetric-bot-closed)
next

show f t f T = f t f T t bot t botT

by simp
next

show ∀ a b. bf-between-arcs a b ?F bot ∧ a ≤ − ?F u −− g ∧ b ≤ bot −→ sum (b u g) ≤ sum (a
u g)

by (metis (full-types) bf-between-arcs-def bot-unique mult-left-zero mult-right-zero top.extremum)
next

show regular bot
by auto

qed
next

fix f j h d
let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
assume 1 : boruvka-inner-invariant j f h g d ∧ j 6= bot
show (?e ≤ −?F −→ boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′) ∧ (¬ ?e ≤ −?F −→

boruvka-inner-invariant ?j ′ f h g d)
proof (intro conjI)

show ?e ≤ −?F −→ boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (cases ?e = bot)
case True
then show ?thesis

using 1 second-inner-invariant-when-e-bot by simp
next

case False
then show ?thesis

using 1 second-inner-invariant-when-e-not-bot by simp
qed

next
show ¬ ?e ≤ −?F −→ boruvka-inner-invariant ?j ′ f h g d
proof (rule impI , unfold boruvka-inner-invariant-def , intro conjI)

show boruvka-outer-invariant f g
using 1 boruvka-inner-invariant-def by blast

next

124 Appendix B. Isabelle/HOL theory

show g 6= bot
using 1 boruvka-inner-invariant-def by blast

next
show vector ?j ′

using 1 boruvka-inner-invariant-def component-is-vector vector-complement-closed
vector-inf-closed by auto

next
show regular ?j ′

using 1 boruvka-inner-invariant-def by auto
next

show boruvka-outer-invariant h g
using 1 boruvka-inner-invariant-def by auto

next
show injective h

using 1 boruvka-inner-invariant-def by blast
next

show pd-kleene-allegory-class.acyclic h
using 1 boruvka-inner-invariant-def by blast

next
show ?H ≤ ?F

using 1 boruvka-inner-invariant-def by blast
next

show big-forest ?H d
using 1 boruvka-inner-invariant-def by blast

next
show d ∗ top ≤ −?j ′

using 1 boruvka-inner-invariant-def by (meson dual-order .trans p-antitone-inf)
next

show ?H ∗ ?j ′ = ?j ′

using 1 fc-j-eq-j-inv boruvka-inner-invariant-def by blast
next

show ?F = (?H ∗ (d t dT))? ∗ ?H
using 1 boruvka-inner-invariant-def by blast

next
show f t f T = h t hT t d t dT

using 1 boruvka-inner-invariant-def by blast
next

show ¬ ?e ≤ −?F =⇒ ∀ a b. bf-between-arcs a b ?H d ∧ a ≤ −?H u −−g ∧ b ≤ d −→ sum(b u
g) ≤ sum(a u g)

using 1 boruvka-inner-invariant-def by blast
next

show ¬ ?e ≤ −?F =⇒ regular d
using 1 boruvka-inner-invariant-def by blast

qed
qed

next
fix f j h d
assume 1 : boruvka-inner-invariant j f h g d ∧ j = bot
then show boruvka-outer-invariant f g

by (meson 1 boruvka-inner-invariant-def)
next

fix f
assume 1 : boruvka-outer-invariant f g ∧ − forest-components f u g = bot
then have 2 :spanning-forest f g
proof (unfold spanning-forest-def , intro conjI)

show injective f
using 1 boruvka-outer-invariant-def by blast

next

125 Appendix B. Isabelle/HOL theory

show acyclic f
using 1 boruvka-outer-invariant-def by blast

next
show f ≤ −−g

using 1 boruvka-outer-invariant-def by blast
next

show components g ≤ forest-components f
proof −

let ?F = forest-components f
have −?F u g ≤ bot

by (simp add : 1)
then have −−g ≤ bot t −−?F

using 1 shunting-p p-antitone pseudo-complement by auto
then have −−g ≤ ?F

using 1 boruvka-outer-invariant-def pp-dist-comp pp-dist-star regular-conv-closed by auto
then have (−−g)? ≤ ?F ?

by (simp add : star-isotone)
thus ?thesis

using 1 boruvka-outer-invariant-def forest-components-star by auto
qed

next
show regular f

using 1 boruvka-outer-invariant-def by auto
qed
from 1 obtain w where 3 : minimum-spanning-forest w g ∧ f ≤ w t wT

using boruvka-outer-invariant-def by blast
hence w = w u −−g

by (simp add : inf .absorb1 minimum-spanning-forest-def spanning-forest-def)
also have ... ≤ w u components g

by (metis inf .sup-right-isotone star .circ-increasing)
also have ... ≤ w u f T ? ∗ f ?

using 2 spanning-forest-def inf .sup-right-isotone by simp
also have ... ≤ f t f T

proof (rule cancel-separate-6 [where z=w and y=wT])
show injective w

using 3 minimum-spanning-forest-def spanning-forest-def by simp
next

show f T ≤ wT t w
using 3 by (metis conv-dist-inf conv-dist-sup conv-involutive inf .cobounded2 inf .orderE)

next
show f ≤ wT t w

using 3 by (simp add : sup-commute)
next

show injective w
using 3 minimum-spanning-forest-def spanning-forest-def by simp

next
show w u wT ? = bot

using 3 by (metis acyclic-star-below-complement comp-inf .mult-right-isotone inf-p le-bot
minimum-spanning-forest-def spanning-forest-def)

qed
finally have 4 : w ≤ f t f T

by simp
have sum (f u g) = sum ((w t wT) u (f u g))

using 3 by (metis inf-absorb2 inf .assoc)
also have ... = sum (w u (f u g)) + sum (wT u (f u g))

using 3 inf .commute acyclic-asymmetric sum-disjoint minimum-spanning-forest-def
spanning-forest-def by simp

also have ... = sum (w u (f u g)) + sum (w u (f T u gT))

126 Appendix B. Isabelle/HOL theory

by (metis conv-dist-inf conv-involutive sum-conv)
also have ... = sum (f u (w u g)) + sum (f T u (w u g))
proof −

have 51 :f T u (w u g) = f T u (w u gT)
using 1 boruvka-outer-invariant-def by auto

have 52 :f u (w u g) = w u (f u g)
by (simp add : inf .left-commute)

thus ?thesis
using 51 52 abel-semigroup.left-commute inf .abel-semigroup-axioms by fastforce

qed
also have ... = sum ((f t f T) u (w u g))

using 2 acyclic-asymmetric inf .sup-monoid .add-commute sum-disjoint spanning-forest-def by simp
also have ... = sum (w u g)

using 4 by (metis inf-absorb2 inf .assoc)
finally show minimum-spanning-forest f g

using 2 3 minimum-spanning-forest-def by simp
qed

end

end

	Introduction
	A description of Borůvka's MST algorithm
	Significance of Borůvka's MST algorithm
	Formal verification
	Proof assistants
	Isabelle/HOL

	Aim of this thesis
	Organization of this thesis
	Contributions
	Related work

	Background
	Graphs
	Undirected graphs
	Directed graphs

	Minimum spanning trees
	Prim's and Kruskal's MST algorithms
	Borůvka's MST algorithm

	Algebras for reasoning about graphs
	Relations
	Orders
	Lattices
	Relation algebras
	Stone relation algebras
	Stone-Kleene relation algebras

	Formalization of Borůvka's MST algorithm
	An operation to select components
	Formalization description
	Operation details
	Processing components
	Component selection
	Arc selection
	Preservation of injectivity
	Proving properties in m-k-Stone-Kleene relation algebras

	Correctness of Borůvka's MST algorithm
	Proof overview
	A reachability structure for forests
	Properties of E-forests
	E-forest paths
	Arc weight comparison in c(h)-forests

	Conditions and invariants
	Specification
	The outer loop
	The inner loop

	Proof
	A selection of general results
	Establishing invariants
	Maintaining invariants
	Maintaining the relationship between f and the c(h)-forest
	Maintaining arc weight comparison in a c(h)-forest
	Extending f to a minimum spanning forest

	Conclusion
	Limitations and future work
	Discussion

	Bibliography
	An intuition for the weighted-graph instance notation
	Isabelle/HOL theory
	Weakly connected components
	Borůvka's minimum spanning tree algorithm
	General results
	An operation to select components
	m-k-Stone-Kleene relation algebras
	Formalization and proof of Borůvka's minimum spanning tree algorithm

