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ABSTRACT

This thesis is concerned with determining the orientation of small Unmanned Aerial Ve-
hicles (UAVs). To make commercial use of these aircraft in aerial surveying markets their
attitude needs to be determined accurately and precisely throughout a survey flight.

Traditionally inertial sensors have been used on larger aircraft to estimate both position
and orientation in combination with Global Navigation Satellite Systems (GNSS). High
quality inertial sensors have many downsides when used on the small UAV. They are
expensive, power hungry and often heavy. Inertial sensors are vulnerable to vibration,
high acceleration, high rotation rate and jerk. All of these are present on the small UAV.
This thesis identifies GNSS attitude determination as a potentially suitable alternative to
inertial techniques.

Carrier phase GNSS attitude determination uses three or more GNSS receivers with an-
tennas separated by a short baseline to estimate the orientation of the UAV. This technique
offers low cost, high accuracy and drift-free attitude estimates. To be successfully used
it requires removal of the biases present in the received GNSS signals and estimation of
the integer cycle ambiguity present in the carrier phase measurement.

This thesis presents and examines the state of the art techniques for removing these bi-
ases and estimating an integer cycle ambiguity using a priori measurement of the inter-
antenna distance. In this work a novel method is developed which uses this a priori
baseline measurement to validate estimates of the carrier phase ambiguities.

In order to test these methods data has been gathered using low cost, commercially avail-
able GNSS receivers and antennas. This is the first work in which modern, low cost,
GNSS equipment has been tested for use in attitude determination. It is found that the
state of the art carrier phase GNSS attitude determination methods can provide an accu-
rate attitude estimate for every set of measurements from the GNSS receivers.

However, a real UAV flight indicates that the low cost GNSS equipment does not track the
GNSS signals throughout the flight. Signal outages, cycle slips and half cycle ambigu-
ous carrier phase measurements occur due to rapid UAV manoeuvres. Having identified
this problem this work goes on to replicate and quantify it through the use of a GNSS
hardware simulator. Algorithms are then devised to increase the availability of the GNSS
attitude solution throughout the tracking difficulties.



Complete GNSS signal tracking failures are overcome through the innovative use of
kinematic and dynamic attitude models. Both types of model give an attitude solution
throughout GNSS signal tracking problems without adding significant cost or weight to
the system. When tracking of the GNSS carrier phase signal is possible, novel use of
the carrier phase triple difference observable allows the attitude rate to be estimated even
when the carrier phase measurements are half cycle ambiguous. It is shown that integer
and half integer cycle slips can be removed from the measurement through the combina-
tion of the modelling and triple difference techniques.

The attitude output of both modelling and triple difference methods is used to resolve
half cycle ambiguities and make full use of half cycle ambiguous data where previously
it could not have been used. Success rates of up to 99.6% have been achieved for half
cycle ambiguity resolution. As a result precise and accurate GNSS attitude solutions
are available at nearly every epoch for which a carrier phase measurement is output by
the GNSS receivers. When no measurement is available the attitude solution gracefully
degrades over time.

This work makes reliable, accurate, low cost attitude determination possible on mini-
UAVs.
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CONTRIBUTIONS IN THIS RESEARCH

This research contains the following contributions and innovations;

• Identification of problems with high accuracy Unmanned Aerial Vehicle (UAV)
attitude determination.

• Identification of GNSS attitude determination as a suitable alternative to traditional
inertial techniques.

• Full testing of the GNSS attitude method with modern, non-dedicated, low cost
GPS receivers.

• Developed & tested integer ambiguity validation technique using a priori baseline
length knowledge.

• Identification of signal tracking problems through field work and a mini-UAV. In
particular loss of signal tracking in high-g turns and half cycle ambiguous carrier
phase data.

• Development of kinematic & dynamic attitude models to bridge signal outages
& enable cycle slip correction down to half cycle slips. Novel integration of un-
augmented UAV kinematic and dynamic modelling with the GNSS attitude tech-
nique.

• Comparison of attitude model performance with the rotation rate output from an
Inertial Measurement Unit on a mini-UAV. Specification, integration and testing of
suitable hardware for logging mini-UAV control inputs.

• Innovative use of the GNSS carrier phase triple difference observable for small
cycle slip correction and rotation rate estimation.

• Development and testing of half integer ambiguity resolution using ‘float’ baselines
from the dynamic model or triple difference observable.

As a result of this research, GNSS attitude determination is a viable and attractive tech-
nique for practical use on a fixed wing mini-UAV. This work is a key enabler for the
commercial use of mini-UAV’s for high resolution remote sensing.
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Chapter 1

Introduction

1.1 Background

In recent years Unmanned Aerial Vehicles (UAVs) have been the subject of extensive re-

search and development. The worldwide UAV market was estimated to be worth $US4.9

billion in 2010 and is predicted to rise to $US11.5 billion by 2020 (Teal, 2010).

UAVs offer cost effective access to airspace for long periods. They can operate in poten-

tially dangerous environments without risk to human life. For these reasons the history

of the UAV has been driven primarily by military users. A good overview of military

UAVs, their history and a future vision can be found in the ‘Unmanned Aircraft Systems

Roadmap 2005-2030’ published by the US Department of Defence (USDoD, 2005).

Increasingly UAVs are finding application in civilian environments. Their ability to offer

low cost access to airspace at low risk to operators has meant they have found application

in science, security and land management. Military UAV systems may be adapted to

meet civilian roles or alternatively bespoke systems may be developed to meet a specific

task.

This thesis forms part of a larger body of work on the use of UAVs for aerial survey

applications. The advent of powerful electronics with low cost, small form factor and low
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power requirements now mean that high accuracy survey with consumer grade equipment

is a possibility. The cost of a complete UAV system with imaging equipment and an

associated control system can now be as low as $US1000. Such a system can offer

survey images with a ground resolution of 2cm or better. This performance and cost

opens commercial possibilities far beyond traditional military operations. For example

such UAVs are attractive to developing nations with large areas of forest to manage. They

can be safely used for science in polar regions where manned flight is dangerous. They

also have applications in niche areas such as traffic management and disaster response.

The term UAV covers a wide range of aircraft configurations. Traditional fixed or rotary

wing designs compete with ‘lighter than air’ craft and flapping wing designs which mimic

bird flight. The lack of a human pilot means that the size of the UAV is driven only by the

weight of its payload, command and control systems. UAVs which weigh tens of grams

for indoor use have been developed alongside those which weight many tons for long

endurance and high altitude work.

For the purposes of the research surrounding this thesis the fixed wing mini-UAV has

been selected as the survey platform. A fixed wing aircraft uses minimal fuel to carry

a payload long distances. It is relatively simple and safe to operate when compared to

rotary wing alternatives. For a given payload weight the fixed wing UAV can be smaller

than its rotary wing counterpart and tends to expose the payload to less vibration. In

order to carry a typical low cost aerial survey payload the fixed wing UAV will have a

mass at takeoff of 1 to 10kg. This puts it into the class of UAVs known as the mini-UAV.

The current regulatory environment for operation of UAVs in New Zealand is described

in Appendix A.
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1.1.1 Problem Statement

The current work focuses on the problem of georeferencing the high resolution survey

data collected from the mini-UAV. That is the problem of establishing the relationship

between the pixels of an image or other piece of survey data and a geographical reference

frame.

The georeferencing process requires knowledge of the precise location and orientation

of the survey sensor (eg, camera) at the time the data were collected. This is usually

achieved by determining the trajectory of the sensor and using knowledge of the precise

time of of data collection to estimate the position and orientation at that time. The actual

accuracy requirement will depend on the system designer and the flight profile, they are

discussed further in Appendix B.

In traditional aerial survey performed by manned aircraft the trajectory is usually deter-

mined using a high grade Inertial Navigation System (INS) and a position from a Global

Navigation Satellite System (GNSS) receiver. In these applications the cost of the INS

and GPS receiver is analogous to the cost of operating a manned aircraft. The INS in

particular is expensive, costing upwards of $US100000, 100 times the cost of a complete

UAV and imaging system.

The purpose of this work is to develop an alternative to the high grade GNSS/INS sys-

tem traditionally used on manned aircraft. The solution must be cheap, lightweight and

accurate enough for mini-UAV applications.

1.1.2 GNSS Attitude

GNSS attitude determination has been identified as a possible solution to the problem

described above. GNSS attitude determination uses two or more GNSS receiver and an-

tenna pairs separated by known baselines (Figure 1.1). Attitude parameters may then be
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estimated directly from the GNSS observations or via an estimate of the relative posi-

tions of the antennas in a global reference frame. The GNSS attitude method has existed

since the advent of GNSS (Spinney, 1976). The past 25 years of research has made the

technique accurate and cost effective enough to be considered for UAV applications.

A B C

D

Figure 1.1: GNSS attitude layout on a mini-UAV. Baselines can be formed between any

of the antenna locations A,B,C and D. Baseline A-B or A-C can be used to estimate roll

and heading. Baseline B-D can be used to estimate pitch and heading. A triangle of any

three baselines which are not collinear will provide an estimate of the complete three

dimensional attitude.

Cost

The GNSS attitude determination technique offers a relatively low cost. Three receiver

and antenna pairs are required for full attitude determination at a total cost of around

$US1000. These receivers may also be used collectively or independently to estimate the

position of the UAV (Pinchin et al., 2008).

The number of applications for low cost attitude determination increase with the reduc-

tion in cost. Currently such systems find application in airborne (Evans et al., 1999) (Lee

et al., 2004), space (Cohen et al., 1993), marine (Lu, 1995) and land environments.



5

Weight

The use of GNSS attitude determination also adds very little to the weight of the survey

payload. The uBlox LEA-5T receiver used in this work weighs 2.1g (u-blox AG, 2009)

while the Onshine ANT-555 antenna used weighs 80g with 2m of cable (Onshine, 2007).

Accuracy

The accuracy and precision of the GNSS attitude technique is difficult to determine from

the literature. The variety of equipment, applications and most importantly baseline

lengths used makes comparison challenging.

In his 1999 PhD thesis (Keong, 2001) Keong tested a two receiver GPS system over a

0.9m baseline in a static setting. The RMS error was observed to be 0.27◦ in yaw and

0.93◦ in pitch. This compares to 0.23◦ in yaw and 0.43◦ in pitch when using combined

GPS and GLONASS observations from a high-end receiver.

In static tests Cannon and Ray (Cannon and Ray, 2000) achieved attitude accuracies of

5.93◦, 6.29◦ and 2.66◦ in roll, pitch and heading respectively. This was done over a very

short baseline in the order 10-14cm. The static nature of this test allowed errors to be

mitigated by utilising many observations of the same attitude parameters.

In 2005 Kannemans conducted airborne testing of a two receiver GPS attitude system

with 1.8m antenna separation (Kannemans, 2005). The test was performed aboard a full

sized aircraft. Accuracies of 1.7◦ and 0.8◦ were achieved in pitch and roll respectively.

In tests conducted at sea Lu et al show accuracies of 0.04◦ are achievable in heading using

a 15m baseline (Lu, 1995). These tests were performed aboard a small survey launch. Lu

also shows that low cost receivers with independent oscillators (such as those used in

this work) match a high grade dedicated attitude determination system with common

oscillator to within 0.25◦ in pitch and 0.11◦ in yaw (Lu et al., 1993).
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Disadvantages

The primary disadvantages of the GNSS attitude method are those which affect all GNSS

based navigation solutions. It suffers from relatively low measurement rates, is vulnera-

ble to problems with the GNSS system itself and is vulnerable to problems with tracking

the GNSS signals.

GNSS has proven itself over three decades to be sufficiently reliable for non-safety crit-

ical applications such as the one currently under consideration. Problems arising from

the GNSS itself are not considered to be a major obstacle to the use of GNSS attitude for

georeferencing.

Measurements from a typical IMU based attitude solution are available at upwards of

100Hz. This is a major advantage over GNSS which typically outputs measurements at

a maximum of 5Hz. This problem will be particularly acute on the mini-UAV which

accelerates and turns at high rates.

Finally the GNSS attitude method suffers from problems in tracking the GNSS signals.

These are caused by highly dynamic trajectories, large rotation angles and electronic

noise, particularly in low cost equipment.

If for any reason the raw GNSS range measurements are unavailable at one measurement

epoch the solution does not degrade gracefully. In this case it is immediately lost and

must be regained when GNSS range measurements become available.

1.1.3 Alternatives

The practical alternatives to the GNSS attitude technique are low cost GNSS/INS systems

or the use of ground control to georeference images.

Low cost GNSS/INS systems are not suitable for accurate attitude determination on mini-
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UAVs. They are prone to problems resulting from vibration of the platform and the large

dynamics observed. UAVs may rotate at rates in excess of 300 degrees per second and

accelerate at rates upwards of 5g. A vibration noise of up to 3g may also be observed.

In addition low cost GNSS/INS systems require an accurate initial heading estimate for

stable filter performance (Farrell and Barth, 1999). The heading observability may be

improved through the use of augmenting sensors, for example the twin antenna GNSS

attitude solution, a magnetometer or image recognition technology (Hide and Botterill,

2010), (Hide et al., 2004). The fact remains however that the penalty of the GNSS/INS

system in weight and cost remains too high for the performance delivered.

The second alternative is to avoid directly georeferencing the data collected and use tar-

gets on the ground with known, pre-surveyed, locations. By identifying these features in

aerial images, the georeferencing may be performed through the use of a least-squares

procedure known as a bundle adjustment. The first disadvantage to this technique is that

it will only work for imagery. Other data, for example laser ranging data, cannot be geo-

referenced in this way. Secondly this technique requires trained personnel with expensive

survey equipment to access the ground being surveyed. This may not be practical or safe

and in all cases will be expensive when compared to the cost of flying the UAV. Finally

images from collected from the UAV flown at low altitude will naturally only cover a

small area on the ground. To survey a large area many images will need to be collected,

often upwards of 10000 images per square kilometre. To identify the pre-surveyed loca-

tions in all of these images is difficult to automate and would take many expensive man

hours to complete.

1.1.4 Summary

The case can be made that GNSS attitude determination is a key enabler for aerial sur-

veying using mini-UAVs. If the problems listed in Section 1.1.2 can be overcome for the

mini-UAV environment, a wide range of commercial and research applications will have
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access to low cost, high accuracy aerial survey data previously beyond their reach.

1.2 Research Aims and Objectives

The aim of this work is to develop methods which will provide a robust attitude solution

using low cost GNSS attitude hardware onboard a mini-UAV.

The objectives are:

• To identify and test the current state of the art in GNSS attitude technology.

• To identify and quantify limitations with existing methods.

• To develop algorithms and methods which overcome these limitations without

adding significant cost, weight or processing requirements to the mini-UAV pay-

load.

• To quantify the benefits the developed algorithms give over existing methods and

assess the suitability of the complete system for use on the mini-UAV.

1.3 Methodology

The methodology used for this research is as follows:

• Research the current state of the art in GNSS attitude technology and identify the

processing methods likely to give the most robust GNSS attitude solution from low

cost receivers.

• Gather GNSS datasets representative of typical mini-UAV applications. Develop

a Matlab script to test the current state of the art processing techniques. Identify
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problems and disadvantages with the use of GNSS attitude technology on the mini-

UAV.

• Identify approaches to mitigate the effects of cycle slips and loss of lock events

caused by mini-UAV attitude dynamics. Develop novel algorithms to implement

these approaches.

• Apply the algorithms to the same GNSS datasets and analyse the effects on the

reliability and availability of the attitude solution.

A key aspect of this research has been the development of approaches to mitigate the

effects of cycle slips and loss of lock events. Two independent approaches have been

devised. The first makes use of the velocities available from the GNSS triple difference

observable to bridge short gaps in the GNSS attitude solution due to cycle slips. The

second develops a dynamic model of the fixed wing mini-UAV to bridge longer gaps in

the GNSS attitude solution due to loss of lock incidents. The use of the dynamic model

allows a graceful degradation of the attitude solution in all cases where the GNSS attitude

solution is lost. It utilises the control inputs to the mini-UAV to predict the resulting

attitude dynamics.

1.4 Thesis Overview

• Chapter 2 will give an overview of GNSS concepts and mathematical models used

in this research. The GPS L1 signal will be introduced and the methods used by the

receiver to acquire and track it are examined. The GNSS range observables derived

from the L1 signal will be described, including the errors and biases present in their

measurement. Mitigation of these biases through differencing is described.

• Chapter 3 examines the mathematical models available for use in GNSS attitude

determination. Their relative merits are discussed and the steps used to estimate at-
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titude from the GNSS observables are described. Finally state of the art techniques

for including geometric constraints in the GNSS data processing are examined.

A model for validating carrier phase integer ambiguities using the inter-antenna

distance has been developed in this research and is introduced here.

• Chapter 4 goes on to test the state of the art in GNSS attitude determination using

appropriate data sets. This is the first work to test these techniques using equipment

suitable for the mini-UAV.

GNSS measurements have been made using low cost receiver equipment in simu-

lated and real environments. Static data is used to examine the performance of the

system under ‘ideal’ conditions and a GNSS hardware simulator is used to examine

the receiver performance in dynamic situations with precisely known trajectory.

Measurements from a low cost receiver onboard a mini-UAV are used to identify

problems caused by UAV dynamics. Loss of lock incidents, integer cycle slips and

half cycle ambiguous measurements are observed throughout the sample flight.

The GNSS hardware simulator is then used to replicate and quantify the effect of

these problems in a controlled environment.

• In Chapter 5 novel mitigation strategies are developed to deal with signal tracking

problems without adding weight or cost to the system.

Kinematic and dynamic models are developed to estimate the mini-UAV attitude

trajectory. The output of these models is then used to bridge signal outages and

correct half integer cycle slips. This is the first time kinematic and dynamic models

have been combined with GNSS carrier phase attitude determination.

Finally the triple difference carrier phase observable is employed to make use of

the half cycle ambiguous carrier phase measurements. It is used to estimate the

angular velocities which are then integrated over time to give an attitude output.

The high precision of the output allows half integer ambiguity resolution if the

initial attitude error is low.
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• Chapter 6 presents the results obtained using the developed algorithms. It is shown,

using real mini-UAV flight data, that the proposed algorithms allow an accurate and

precise attitude solution throughout the mini-UAV flight.

A comparison is made between the attitude models and the output from a UAV

mounted Inertial Measurement Unit (IMU). This shows that the dynamic model is

superior to the simple kinematic models but also identifies flaws in the model when

wind is present.

It is shown that by making use of the triple difference observable half cycle am-

biguity resolution is possible with a high rate of success. This enables the use of

half cycle ambiguous carrier phase data for georeferencing which in turn increases

the reliability and availability of the GNSS attitude solution, making it practical for

‘real world’ use.

• Finally in Chapter 7 a more detailed thesis summary is presented. Conclusions are

drawn and recommendations for future work are given.
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Chapter 2

GNSS Principles

2.1 Introduction

Global Navigation Satellite Systems (GNSS) have been available for civilian use for more

than 20 years. They can be used to provide a user with a position and time solution any-

where on or near the earth’s surface. All of the systems currently in use provide a binary

code signal, borne on a radio frequency carrier signal, which may be used to determine

the range to the transmitting satellite. With knowledge of the satellite’s position the user

may then determine their position through process known as trilateration.

GNSS attitude relies on precise observations of the carrier signal and its resolution into

a ranging signal. This chapter will place an emphasis on this process and the math-

ematical models used to obtain an attitude solution. For a more complete description

of GNSS systems and methods the reader is directed to texts such as ref (Hofmann-

Wellenhof et al., 2003), (Hofmann-Wellenhof et al., 2001), (Misra and Enge, 2006) or

(Kaplan and Hegarty, 2006).

This chapter, and thesis, will focus on the use of the US Global Positioning System

(GPS). GPS is the most mature of the currently available GNSS with the first satellite

launched in 1978. While GPS is primarily a military system it was made available to

civilian users early in its development. Its modern day popularity amongst mass-market
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civilian users and relative ease of use has recently lead to a plethora of compatible low

cost receiver equipment suitable for the purposes of this work.

The errors and biases present in GPS observables will be described in this chapter and a

mathematical model of the observables formed. Emphasis is then placed on use of dif-

ferential processing to mitigate errors and provide the high accuracy solutions necessary

for effective attitude determination.

Finally in this chapter three methods of ‘integer ambiguity resolution’ are introduced.

Integer ambiguity resolution is necessary to make use of the precise GPS carrier phase

observable and is essential for GNSS attitude determination.

2.2 Global Navigation Satellite Systems (GNSS)

2.2.1 Overview

A Global Navigation Satellite System (GNSS) is a system which allows a user to position

themselves in three dimensions using radio frequency navigation signals emitted from a

number of satellites in earth orbit. By measuring the signals time of flight from satellite to

receiver, a user computes their distance to the satellite. With knowledge of the satellites

positions a user may use this distance to determine their position and the precise time

through the solution of a set of simultaneous equations.

GNSS satellites broadcast all of the information needed for positioning or time transfer.

The user only needs to receive these signals and does not require two-way communication

with the satellites. This property of GNSS systems means that they can handle an infinite

number of users at no extra cost to the operator and has helped GNSS become popular in

civilian mass market applications.

Current operational GNSS include the Global Position System (GPS), operated by the
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United States, and the Russian Global’naya Navigatsionnaya Sputnikovaya Sistema

(GLONASS). A European system, Galileo, is currently in development. Regional satel-

lite positioning services may also provide signals over a restricted portion of the earths

surface or may provide augmentation to the global systems.

Any GNSS may be described in terms of three segments, the space segment, the control

segment and the user segment.

The space segment describes the space hardware, the satellites. A GNSS needs sufficient

satellites to ensure adequate global availability at all times. Spare satellites are often also

stored in orbit to cover gaps in the constellation caused by the failure of satellites in use.

All current and proposed GNSS use satellites in Medium Earth Orbit (MEO), around

20000 km from the earth surface. Satellites are arranged in multiple orbital planes to

provide global signal coverage.

The control segment consists of a network of ground control stations which monitor and

control the GNSS space segment. These stations check that each satellite is performing

to specifications and issue satellite ‘health’ warnings in the event of malfunction. The

ground segment also monitors the satellites clocks to maintain the synchronised timing

critical to GNSS operation. The stations also compute the satellite orbits to produce

‘ephemerides’ which allow the user to compute the satellite position at a given time.

Finally the user segment consists of a receiver capable or receiving and decoding the

GNSS signal. Modern receivers usually contain 12 or more channels making them ca-

pable of receiving signals from 12 or more satellite simultaneously. Position and time

determination may be performed in real time by the receiver hardware or raw measure-

ments may be logged for post processing.

High end receivers may be capable of receiving and processing signals from multiple

GNSS and from multiple frequencies within the same GNSS. Such receivers inevitably

cost more than simple, single frequency, single system receivers. They also have a larger
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form factor, require more power, require more advanced data handling and require spe-

cialised antennas.

Single frequency, single system receivers usually provide an adequate solution for most

mass market users therefore they dominate the market. In this work raw measurements

are taken using a typical single frequency, single system receiver. In so doing the cost of

the proposed system is minimised at the expense of high quality, plentiful observations.

2.2.2 Global Position System (GPS)

The first Global Position System (GPS) satellite was launched in 1978, in 1993 the system

reached initial operating capacity (IOC) (Parkinson and Spilker, 1996). As a military

system civilian access to the signals was initially limited. On one frequency the signal

was fully encrypted while on the other a technique known as ‘selective availability’ was

used to decrease the accuracy of the position and time solution to a level determined by

the US Department of Defense (USDOD).

Increasing civilian use of the system lead to pressure on the USDOD to remove selective

availability. On 1st May 2000 the level of error introduced by the selective availability

system was set to zero, effectively turning the system off. In 2007 USDOD announced

that future satellites would be launched without the selective availability function.

GPS is currently undergoing a modernisation process which began in 2000. This process

recognises the increasing civilian use of GPS and is introducing open signals on three fre-

quencies. The GPS constellation currently consists of 31 actively broadcasting satellites

in six orbital planes.

A wide range of user hardware is available for GPS. This ranges from high sensitivity

receivers for use in environments where line of sight signals may not be available, to

survey grade receivers designed for ultra precise positioning. This work is concerned

with the low cost end of the GPS hardware range. This hardware is limited to a single
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frequency, the L1 frequency 1575.42 MHz.

2.2.3 The GPS L1 Signal

On the GPS ‘L1’ frequency a ‘coarse / acquisition’ (C/A) code is broadcast which has

been open to civilian use since GPS became operational. This C/A code is a 1023 bit

pseudorandom binary code known as a ‘Gold Code’. Gold Codes have excellent cross

correlation properties allowing each satellite to broadcast its individual code on the same

L1 frequency without fear of interference. GPS is therefore a ‘Code Division Multiple

Access’ (CDMA) system. Since these C/A codes have been available to civilian users for

some time and have well known properties they are typically the codes used in low cost

GPS receivers.

Each Gold code used in the C/A signal is 1023 bits long. This code is broadcast repeat-

edly with a period of 1ms, or 0.977µs per bit. This equates to 293m at the speed of light.

The C/A code is modulated onto the L1 sinusoidal carrier phase signal using a technique

known as Binary Phase Shift Keying (BPSK). For each bit transition in the C/A code

sequence a phase shift of π/2 is introduced to the carrier phase.

Also modulated on the GPS L1 signal is the navigation message. The navigation message

contains information important to the user such as satellite health, ephemeris and almanac

data. The almanac data is primarily used for signal acquisition and will be described

in more detail later. Ephemeris information allows precise computation of the satellite

position at a given time and is generally valid for four hours. The navigation message

is broadcast at 50 bits per second and added to the C/A code through a modulo-2 adder

before being modulated onto the carrier phase.
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2.3 GPS Signal Acquisition and Observables

A full description of GPS signal acquisition and tracking is beyond the scope of this chap-

ter, a good description can be found in (Borre et al., 2007). Signal acquisition has been,

and is, an active area of research leading to improvements such as reduced acquisition

time, high sensitivity acquisition and improved tracking accuracy. The exact techniques

used are very often commercially sensitive. Of relevance to this thesis is the time taken

to acquire the signals and the nature of the observables provided.

A description of the GPS L1 signal and C/A code can be found in Section 2.2.3.

2.3.1 C/A Code Signal Acquisition

When acquiring a GNSS code signal, two parameters need to be determined; the carrier

phase frequency and the code phase shift.

Although all GPS satellites broadcast the L1 signal at 1575.42 MHz, a doppler effect is

introduced due to the relative motion of satellite and receiver. This doppler shift may

reach ±10kHz. A search therefore needs to be performed across a frequency range of

1575.42 MHz ±10kHz.

Secondly the code phase shift needs to be determined. This phase shift allows the receiver

to determine the start of the C/A code ‘frame’ with respect to receiver time. Since the

transmission time of the C/A code is known, the signal time of flight from satellite to

receiver may then be estimated. When multiplied by the speed of light this time of flight

may be transformed to a range. However because the receiver and satellite local time is

not necessarily synchronised with GPS system time this range estimate is corrupted by

clock offsets. For this reason it is known as a ‘pseudorange’. In order to determine the

code phase shift a second search is performed across all 1023 bits of the C/A code.

The acquisition process is therefore a search across two dimensions; carrier frequency
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and code phase shift.

If the receiver’s approximate position and an estimate of the satellite orbit is available the

carrier frequency search may be directed to the most likely doppler frequency shift. An

estimate of the satellite position may be made from coarse orbit information contained

within the almanac, broadcast in the navigation message. Once the full almanac is re-

ceived it remains valid of 6 months. This type of acquisition is called a ‘warm start’ and

is useful if the receiver contains a valid almanac and has not moved far since its last use.

Warm starts may be performed in seconds in ideal conditions, depending on the receiver

type. If almanac and receiver position information is not available the receiver must per-

form a ‘cold start’ with no search optimisation. Naturally this takes considerably longer,

depending on the receiver it may take many minutes. The specifications for the single

frequency receiver used in this work indicates that acquisition should be achieved in 29s

for a cold start and <1s for a warm start (u-blox AG, 2009).

2.3.2 Code Signal Tracking

After acquisition a receiver will use a Delay Lock Loop (DLL) to track the code signal.

A DLL is a feedback loop which uses an error signal to control the tracking subsystem.

In its most basic form, the ‘early-late tracking loop’, the incoming signal is correlated

with three locally generated replicas. These replicas are known as the early, prompt and

late replicas. They are generally closely spaced, around half a bit of the C/A code.

If the signal is properly tracked the prompt replica should give the best correlation with

the incoming code and the early and late replicas should give equal correlations. If this is

not the case an error signal is generated through the use of a discriminator. Various forms

of discriminator exist to give optimised performance in a given receiver and application.

The discriminator output is used to steer the code generator clock and hence the locally

generated code replicas. The resulting code phase shift is then used to obtain the code
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pseudorange measurement.

In a modern receiver the spacing of the replicas is determined by the signal to noise ratio

and has a direct impact on the noise performance of the system. If the replicas are too

closely spaced the receiver will loose lock too often. If they are too far apart the noise

bandwidth will increase and the quality if the pseudorange derived will suffer.

2.3.3 The Carrier Phase Observable

Finally the phase of the carrier signal may be used for positioning. It is this observable

which may be used to provide optimum positioning accuracy. The wavelength of the

GPS L1 signal is 19.029cm. Even very low cost GPS receivers are capable of tracking

the L1 phase with a precision of 1cm or better. This compares well to a typical code

tracking precision of 75cm (Borre et al., 2007). Since the carrier phase measurement is

of critical importance in GPS attitude determination it is discussed in more detail below.

Within a GPS receiver the incoming GPS carrier phase signal is mixed with a locally

generated replica to produce a signal at a third frequency known as the intermediate fre-

quency. It can be shown that the effect of this is to produce a signal with two frequency

components, one at the difference of the incoming and locally generated signal frequen-

cies, and one at the sum. By filtering the mixed signal it is possible to isolate the first

component, the difference. We now label this signal the ‘carrier beat signal’. This beat

signal is at much lower frequency than the incoming GPS signal. This has many advan-

tages, one of which is that it allows lower cost hardware to be used in the GPS receiver.

The beat signal has an associated ‘beat phase’ which is the phase actually measured by

the GPS receiver. This beat phase may be expressed mathematically as:

ϕ(t)B = ϕ(t)R−ϕ(t)G (2.1)
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Where ϕ(t)R is the phase of the locally generated signal at time t and ϕ(t)G is the phase

of the GPS carrier signal at time t.

At this point the integer ambiguity is introduced. We cannot directly measure ϕ(t)B since

we can only measure the fractional phase at any given time. An integer number of cycles

may exist in the difference between ϕ(t)R and ϕ(t)G. This is the integer ambiguity.

Before the precise nature of the carrier phase observable can be fully exploited the integer

ambiguity needs to be resolved. The estimation of this integer ambiguity forms a large

part of this work. A review of integer ambiguity resolution techniques is presented in

Section 2.9.

It is worth noting that the carrier phase ambiguity should not change between observa-

tions.

We now modify Equation 2.1 to include this integer ambiguity, N and the measured beat

phase, Φ(t):

Φ(t)+N = ϕ(t)R−ϕ(t)G (2.2)

Or further:

Φ(t) = ϕ(t)R−ϕ(t)G−N (2.3)

We are now in a position to model the carrier phase measurement including the phase

change due to the signal time of flight:
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Φ(ta)i
a = f0(ta−T i)+ϕ0a−ϕ

i
0−Ni

a (2.4)

In this model we have introduced notation to indicate the origin of the signals, satellite i,

and the receiver a. We have also included the nominal beat signal frequency f0 and made

explicit the signal time of transmission (T i) and reception (ta).

The terms ϕ0a and ϕi
0 are the signal phase at a common time, T = 0. Their difference is

a non-integer bias in the carrier phase measurement. Together ϕ0a , ϕi
0 and Ni

a form the

‘carrier phase bias’, βi
a which is constant in time and non-integer:

β
i
a = ϕ0a−ϕ

i
0−Ni

a (2.5)

2.3.4 Carrier Phase Tracking

Carrier phase tracking is achieved through the use of a phase lock loop (PLL). A PLL is a

feedback loop comparable to the delay lock loop used in tracking the code signal. Again

a discriminator is used to generate an error signal which is fed back to the oscillator

generating the locally generated replica.

A PLL has a number of controls which may be tuned. One of which is the noise band-

width. The noise bandwidth controls the amount of noise tolerated by the filter. If it is

too narrow, noise & initial local frequency errors will prevent the PLL tracking the carrier

phase. Conversely if it is too wide the quality of the carrier phase observable will suffer.

The noise bandwidth of the receiver must also be wide enough to cope with doppler

shifts in the incoming signal caused by platform dynamics. Modern receivers designed

for dynamic applications often adjust the noise bandwidth according to observed signal
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to noise ratio, the predicted dynamics of the application and the observed dynamics. In

this case the noise characteristics of the carrier phase measurement will vary with the

dynamics of the platform.

Half Cycle Ambiguities

The PLL used to track the incoming carrier phase signal must continue to track the signal

through half cycle phase changes so that the modulation of gold code and navigation data

will not cause a loss of lock. It’s output is therefor ambiguous to half a cycle.

When both code and phase signals are properly tracked the half cycle phase changes

can be removed from the incoming signal. Any that remain are due to the navigation

message. Knowledge of the navigation message preamble allows the polarity of the local

phase replica to be determined and full cycle ambiguous phase data to be output.

Until the navigation data preamble is detected and verified after acquisition carrier phase

data will be half cycle ambiguous. The preamble is transmitted every 6 seconds. Some

receivers will not output carrier phase data which is half cycle ambiguous while others

will output the measurements with a flag to indicate it is half cycle ambiguous.

2.3.5 Doppler

In addition to the code pseudorange two further observables may be derived from the

GPS signal. Firstly the doppler shift (also known as range rate) of the carrier signal may

be used to derive the position or velocity of the receiver. This was the principle behind

the precursor to GPS, the US TRANSIT system. Positioning accuracy using the doppler

technique may be many orders worse than that achievable using the code pseudorange,

for that reason the doppler is rarely used for positioning in modern systems.



23

2.4 Error Sources & Mitigation

Besides corruption due to the satellite and receiver clock offsets, the GPS code and phase

observables will also be corrupted by a range of other effects. In order to achieve opti-

mum positioning accuracy and precision these effects must be addressed.

2.4.1 Ephemeris Error

The position of the satellites at a given time is computed using the broadcast ephemeris.

This ephemeris is broadcast by each satellite and allows the user to calculate the position

of the satellite at a given time using the parameters of an orbit model. We are usually

interested in the satellite position at the time of signal transmission.

Even if the signal time of transmission may be precisely determined, errors will still

exist in the orbit parameters transmitted by the satellite and due to the divergence of the

satellite path from the predicted orbit (JPO, 2000). These errors are mitigated in this

work through differencing.

A second source of error in the satellite position calculation is in the estimated time of

signal transmission. This problem is discussed in more depth later in this thesis.

2.4.2 Atmospheric Bias

The first phenomenon to affect the pseudorange and phase observables is changes to

the signal propagation speed due to the atmosphere. The pseudorange is determined by

multiplying the signal time of flight by the speed of light in a vacuum. For most of the

signal flight this is appropriate, however when it enters the earth’s atmosphere the signal

propagation speed is affected. When processing GNSS observables the atmosphere is

generally modelled as being composed of two parts, the ionosphere and the troposphere.
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The ionosphere is the electrically charged part of the atmosphere. It may be considered to

exist above 50km from the earths surface and extending to 500km altitude or more. The

ionosphere is composed of charged particles which affect the GNSS signal propagation.

The speed of GNSS signal propagation is affected by the density of electrons in its path.

The electron density depends largely on the solar activity at the time. The effect of the

ionosphere on the code pseudorange may vary from 1m to 100m (Hofmann-Wellenhof

et al., 2001).

The troposphere is that part of the atmosphere which is electrically neutral. It can be

considered to extend from the earths surface to around 50km altitude. The effect of the

troposphere on the GNSS pseudorange may vary from 2 to 20m. Like the ionospheric

delay, the tropospheric delay depends on the density of the atmosphere. It also depends

in part on the water vapour content of the atmosphere. Estimation of the tropospheric

delay can therefore make the GPS useful in weather prediction.

Atmospheric delays may be mitigated by modelling. Sophisticated atmospheric models

exist and their parameters may be distributed in a variety of ways. Atmospheric delays

may also be mitigated by differencing measurements. If a second GPS receiver is in the

vicinity of the first its measurement will be affected by the atmospheric delays in the same

way. Differencing the measurements will therefore remove the effects of the atmosphere.

Code and phase differencing will be described in more detail in Section 2.6.

2.4.3 Multipath

The GPS observables may be affected by a phenomenon known as multipath. Multipath

is a result of the reflection of signals from surfaces other than the transmitting or receiv-

ing antennas. For example the signal may reflect from the ground before arriving at a

receiving antenna. The increased path length of this reflected signal will increase the

receivers estimate of the satellite - receiver distance.
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Multipath may be mitigated in kinematic applications by antenna design or in the design

of the receivers’ signal tracking system.

Antennas may be designed with ‘groundplanes’ or gain patterns which attenuate signals

originating below the antenna. Such groundplanes add considerable weight to the antenna

and are therefore unsuitable for use on the mini-UAV. Attenuation of signals originating

‘below’ the antenna may also be a disadvantage when the antenna is not level, as on a

banking aircraft, this is depicted in Figure 2.1.

Satellite

Antenna
A

AntennaB

Figure 2.1: A groundplane in a turn. The direct signal from the satellite to antenna A is

received while the reflected signal (dashed line) is blocked by the ground plane. When

the antenna is rotated (antenna B) the direct signal may also be blocked by the

groundplane.

Multipath primarily impacts the performance of the DLL used to track the code signal.

Where multipath is present the received code will be distorted and result in incorrect

placement of the code early, prompt and late replicas. This in turn will lead to a pos-

itive bias in the code pseudorange. Multipath mitigation stratagems which work at the
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signal tracking level are often propriety and not as effective as removing the multipath

component at the antenna stage.

Multipath has a lesser but significant impact on carrier phase tracking. Mitigation strate-

gies are less common and require static antennas or multiple antenna / receiver combina-

tions which are impractical on the small UAV.

Multipath is unlikely to be mitigated by differencing since even the short baselines be-

tween antennas used for attitude determination will result in a decorrelation of the multi-

path bias.

In this work no multipath mitigation stratagems have been employed. Instead data has

been gathered in zero (hardware simulator) or low (open field) multipath environments.

2.4.4 Antenna Phase Centre Variation

The antenna phase centre (APC) is the point at which the GNSS signal is considered to

be received. It is not a physical point which can be directly measured but instead requires

careful calibration of an antenna. The APC may vary by up to tens of millimetres from

the physical centre of the antenna.

The APC varies between antennas and with frequency. High quality, survey grade, anten-

nas are produced to tolerances which allow a single calibration to be used for all antennas

of that type. Because such antennas are intended for precision work calibrations are usu-

ally performed and made available to the user (Akrour and Geiger, 2005).

Low cost antennas however are not produced to such high tolerances. Each antenna must

be calibrated individually in order to obtain the highest quality results. Such calibra-

tions are not practical or economic at this price point and therefore the APC is often an

unmitigated bias.

GNSS attitude determination in this thesis has been performed between matched pairs of
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antennas. In order to minimise the effect of antenna phase centre variations the antennas

have been mounted in a similar orientation with the baseline measured from feed point

to feed point.

2.4.5 Carrier Phase Cycle Slips

This error source only affects the carrier phase observable. Since fractional phase is

measured, integer cycle slips in the receiver will not be measured. These cycle slips

may be caused by temporary obstructions between satellite and receiver, a poor signal to

noise ratio or high receiver dynamics. When a cycle slip occurs the integer ambiguity

introduced in Section 2.3 changes and therefore must be re-estimated. Detection of cycle

slips is a critical part of any carrier phase processing and will be discussed more later in

this thesis.

2.4.6 Receiver Control Loop Performance

The final error source considered to be present in the GPS code and carrier observations

originates in the receiver and antenna hardware. It can be thought of as noise with two

components - system noise and tracking loop noise.

System Noise

System noise is generated by the receiver electronic hardware. It is composed of many

sources of electronic noise including JohnsonNyquist noise (thermal noise). It is possible

to quantify the system noise for a given combination of antenna and receiver (Langley,

1997) but in reality this is impractical and estimates of the noise performance are derived

a posteriori.
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High quality components generally lead to a lower system noise than their low quality

counterparts. Therefore the system noise of a low cost receiver with a simple patch

antenna is very likely to be worse than that of a high end receiver and antenna. The effect

of system noise is far more pronounced on the code pseudorange than the carrier phase.

Tracking Loop Noise

The magnitude of the noise arising from the tracking loops will be determined by the

loop bandwidth and the signal to noise ratio of the incoming GNSS signal. It depends

largely on the proprietary receiver design and the trade off in the tracking loops design

between noise performance and tracking performance.

The low cost receiver used in this work (uBlox LEA-5T) has been set up for dynamic

applications to cope with the large rotation rates exhibited by the UAV. This setup results

in a larger noise component in both the phase and code pseudoranges than would be

expected from the same receiver setup for a static application. This is a deliberate choice

in order to improve signal tracking performance and minimise loss of lock incidents and

cycle slips.

2.5 The GNSS Observation Equations

2.5.1 Code Pseudorange

In order to use satellite to receiver range measurements to determine the receiver posi-

tion, a model of the GNSS range observation must be created. The reader is directed

to (Blewitt, 1997) for a good primer on this subject. First the pseudorange observation

equation is introduced, Equation 2.6.
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PRi
a = ρ

i
a + c(dt i−dTa)+dion+dtrop+dρ

i
a + ε(φrx)+ ε(φmult)+ ε(φant) (2.6)

Where, PRi
a is the pseudorange measurement from satellite i to receiver a in metres

ρi
a is the geometric range from satellite i to receiver a in metres

dt i,dTa are the satellite and receiver clock errors respectively

dion is the ionospheric delay in metres

dtrop is the tropospheric delay in metres

dρi
a is the error in the satellite position determination in metres.

ε(φrx) is the receiver thermal noise in metres.

ε(φmult) is the range measurement error due to multipath in metres.

ε(φant) is the antenna phase centre variation in metres.

The receiver position is contained within the geometric range term, as in Equation 2.6;

ρ
i
a =

√
(X i−Xa)2 +(Y i−Ya)2 +(Zi−Za)2 (2.7)

Where · i and · a are satellite and receiver coordinate components respectively.

From equations 2.6 and 2.7 it may be seen that the observation equation is non-linear

with respect to the components of the receiver position Xa, Ya and Za.

2.5.2 Carrier Phase Pseudorange

Next the carrier phase observation equation is introduced, Equation 2.8.
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Φ
i
a =

ρi
a

λ
+β

i
a +

c
λ
(dt i−dTa)−dion+dtrop+dρ

i
a + ε(φrx)+ ε(φmult)+ ε(φant)

(2.8)

It can be seen that the carrier phase observation equation is of the same form as the

pseudorange observation equation with appropriate scaling by the wavelength λ. Recall

that βi
a is the ambiguity defined in Equation 2.5. Notice also that the ionospheric bias

now has a negative sign. This reflects the increase in phase velocity the signal undergoes

as it passes through the atmosphere.

2.6 Differential Positioning

As introduced in Section 2.4 if two or more receivers are present combinations of their

measurements may be used to mitigate the biases introduced by atmospheric effects.

This technique may also be applied to mitigation of the range biases introduced by the

receiver and satellite clock offsets from GPS time (the ‘clock offsets’). In this section

three combinations of GNSS carrier phase observations will be introduced.

2.6.1 Single Differencing

The single difference observation equation is obtained by differencing the observation

equations between two receivers, a and b, and a common satellite, i. In Equation 2.9

the delta symbol, ∆, is used as a mnemonic device to indicate quantities obtained by

differencing two points on the ground.
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λ∆φ
i
ab = ∆ρ

i
ab +∆λβ

i
ab +∆c(dt i

ab)+∆c(dTab)−∆dioni
ab +∆dtropi

ab +∆dρ
i
ab +∆ε(φi

ab)

(2.9)

The primary benefit of using the single difference observation is the mitigation of atmo-

spheric biases. If the receivers a and b are collocated the atmospheric biases they observe

will be identical. These biases will therefore be completely removed by single differ-

encing and the terms ∆dioni
ab and ∆dtropi

ab will approach zero. As the inter-receiver

distance (‘baseline length’) is increased, the atmospheric biases observed will decorre-

late and the ∆dioni
ab and ∆dtropi

ab terms will increase. The point at which these terms

become significant depends on both the bias (error) acceptable to the user and the pre-

vailing atmospheric conditions. The practical limit for the tropospheric term is usually

reached at around 30km separation. A height difference between receivers will have a

large difference on the differential tropospheric bias. The practical limit for the iono-

spheric term varies to a greater extent and may be reached at 1 - 30km separation. In the

attitude determination application the antenna separation is constant and very short com-

pared to the decorrelation distances. The atmospheric effects are therefore considered

to have been completely removed by single differencing. In this work a ‘short’ baseline

length is considered to be one in which the differenced atmospheric biases are negligi-

ble. This applies to all baselines under 100m and is certainly true for typical attitude

determination baselines of 1-2m.

Satellite clock and ephemeris errors are also mitigated by the single difference operation.

It may be assumed that the satellite clock bias changes very little between the signal time

of transmission to receivers a and b. On differencing it may therefore be assumed that

the term ∆c(dt i
ab) is also zero. The same is true for the differenced ephemeris error term,

∆dρ
i
ab.

The disadvantage of differencing is the associated increase in measurement noise. The
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term ∆ε(φi
ab) can be expected to be the sum of ε(φi

a) and ε(φi
b).

Significantly, single differencing also means that we can no longer estimate the position

of an individual receiver, a or b. Instead we estimate the receiver’s relative positions.

In positioning applications this means that the position of one receiver must be known,

the base station. By estimating the receivers’ relative positions we can then derive the

position of the second, roving, receiver. In attitude determination applications knowledge

of the base receiver position is not necessary since the attitude information is contained

in the baseline between receivers.

We now make the assumption that receivers a and b are in close proximity. The single

difference observation equation is given with the negligible terms removed:

λ∆φ
i
ab = ∆ρ

i
ab +∆λβ

i
ab +∆c(dTab)+∆ε(φi

ab) (2.10)

It may be seen that the integer ambiguity and receiver clock biases remain to be mitigated.

2.6.2 Double Differencing

The primary purpose of double differencing is to remove the receiver clock biases. A

double difference observation is simply the difference between two single difference

observations to a pair of satellites labelled i and j. The symbol ∇ is introduced as a

mnemonic device to indicate between satellite differencing.

In this work a single ‘pivot’ satellite is used and other single difference observations are

all differenced with respect to this satellite. The satellite with the highest elevation above

the horizon is chosen as the pivot satellite.
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λ∇∆φ
i j
ab = ∇∆ρ

i j
ab +λ∇∆β

i j
ab−∇∆c(dt i j

ab)−∇∆dion+∇∆dtrop+∇∆dρ
i j
ab + ε(∇∆φ)

(2.11)

We assume that observations are made to all satellites simultaneously and therefore the

receiver clock bias is constant for all observations. Under this assumption the term

∇∆c(dt i j
ab) becomes zero.

Double differencing also has an important effect on the carrier phase bias β. It can be

shown that the double difference carrier phase bias, β
i j
ab, cancels to become simply a

double differenced integer ambiguity, Ni j
ab. The double differenced integer ambiguity is,

as the name suggests, integer in nature and the carrier phase bias may now be estimated

using this integer constraint. this process is known as integer ambiguity resolution and is

examined in detail later in this work.

We can further assume that the error in the satellite position determination is identical for

receiver a and b. This assumption is based upon the realisation that the majority of the

error in the satellite position determination is due to an ephemeris error, not transmission

time estimation. Under this assumption the term ∇∆dρ
i j
ab may also be removed.

The downside to the double difference observation is once again an increase in noise.

Not only will the noise term increase, systematic effects due to atmospheric biases not

cancelled in the single differencing process will also be amplified. In the limit that the

receivers are collocated the double difference observation equation may be simplified to:

λ∇∆φ
i j
ab = λ∇∆ρ

i j
ab +∇∆Ni j

ab− ε(∇∆φ) (2.12)

If the same double differencing process is undertaken with the code observables:
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∇∆PRi j
ab = ∇∆ρ

i j
ab− ε(∇∆φ) (2.13)

After double differencing we notice that the integer ambiguity remains unmitigated.

Therefore the triple difference observation is introduced.

2.6.3 Triple Differencing

A triple difference observation is simply the difference between two double difference

observations separated by time. The triple difference observation equation is introduced

in Equation 2.14.

λδ∇∆φ
i j
ab = δ∇∆ρ

i j
ab + ε(δ∇∆φ) (2.14)

Since the double difference integer ambiguity should be constant in time it has been

removed by triple differencing. However this is not true if a cycle slip occurs between

the epochs used in triple differencing. In this case a large discontinuity appears in the

triple differenced observable. This in turn makes the triple difference observable useful

for cycle slip detection.

The primary disadvantage of the triple differenced observable is the amplification of noise

and other biases in the threefold differencing process. This increase in noise usually

makes the triple difference observable unsuitable for use in precise positioning and the

double difference is usually chosen as the optimum observable.
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2.7 Estimators

The estimator is the mathematic process used to estimate the desired parameters (in this

case attitude parameters) from the observables. Many estimators are available and have

been applied to GNSS data processing.

Estimation of baseline or attitude parameters from the observables requires the solution

of simultaneous non-linear equations - the observation equations. The Non-Linear Least

Squares and Extended Kalman Filter approach have proven to be reliable and robust in

most GNSS applications. They require minimal processing power and are robust to errors

in the initial state estimates and have therefore been chosen for this work.

2.7.1 Non-Linear Least Squares

The non-linear least squares method is an extension of the standard least squares estima-

tor. It aims to adjust a set of variables in a functional model to fit a set of observations. A

good text on the subject is (Teunissen, 2000).

In the case of GNSS attitude the variables are the baseline or attitude parameters (here-

after known as the state vector) and the observations are the observables. As has been

shown through the observation equations, the observables have a non-linear relationship

to the state vector.

If we have a vector of m observations y with variance - covariance Qy and a vector of n

parameters x ((m > n)) they are related through the non-linear model A;

y = A(x) (2.15)

We then define the residuals as;
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ri = yi−A(xi) (2.16)

And we seek to minimise the sum of the square of the residuals;

S =
m

∑
i=1

r2
i (2.17)

The minimum of S occurs when the gradient of Equation 2.16 is zero and yi ≈ A(xi) . It

is not possible to obtain a closed form solution to this problem.

Instead an iterative approach is taken in which an approximate value for the state vector

x is chosen, (x0), and the non-linear model A is linearised about this approximate value.

Commonly Taylor’s theorem is used to linearise the model;

f (x) = f (x0)+
d
dx

f (x0)∆x+
1
2!

d2

dx2 f (x0)∆x2 + ...+
1

(q−1)!
d(q−1)

dx(q−1)
f (x0)∆x(q−1)+R

(2.18)

If the assumption is made that the remainder term R and terms with q > 2 are negligible

then;

f (x) .
= f (x0)+

d
dx

f (x0)∆x (2.19)

And:

ai(x) = ai(x0)+δai(x0)∆x (2.20)

Where;
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δai(x0) =
d
dx

f (x0) (2.21)

We define the observed minus computed observations as;

li = yi−Ax0 (2.22)

The linearised model can now be expressed as;

∆y = δxA(x0)∆(x) (2.23)

And δxA(x0) is a m x n matrix of the partial derivatives of the observation equations

evaluated at x0.

The linearised problem 2.23 can now be solved as a weighted linear least squares problem

with weight matrix W = Q−1
y .

x̂ = x0 +(δxA(x0)
T WδxA(x0))(δxA(x0)

T Wl) (2.24)

And;

Qx̂ = ((δxA(x0))
T Q−1

y (δxA(x0)))
−1 (2.25)

The problem is iterated, updating at each iteration k;

xk = xk−1 + x̂ (2.26)

The solution is deemed to have converged when the change in the state vector x̂ is below
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a threshold level set by the user. More robust methods have been proposed such as the

Levenberg-Marquardt algorithm which aims to speed up convergence or prevent diver-

gence in the solution. In this work these additions to the basic non-linear least squares

algorithm have proved to be unnecessary and have therefore been omitted.

The non-linear least squares method is of use to this work in that it allows epoch by epoch

analysis of the receiver and algorithms. Each measurement epoch is unaffected by those

before it.

Conversely the primary disadvantage of the non-linear least squares method is that is does

not take into account observations taken outside of the current observation epoch. It relies

on the strength of the single epoch, single frequency model which is often insufficient.

To solve this problem the Extended Kalman Filter is used.

2.7.2 Filters

Using filters can improve the attitude solution available from a given set of observations

by incorporating the history of the observations in the estimate.

For example, the Extended Kalman Filter (EKF) is the de facto standard for kinematic

GNSS processing. It has problems including divergence if the initial state estimate is

sufficiently in error. However it utilises more observations than the single epoch, non-

linear least squares approach and so, given time to converge, it will produce a superior

solution.

The EKF is not used in this work since it is unstable if a good prediction of the change in

attitude is not available.

If it is to provide superior performance compared to an epoch-by-epoch approach it also

requires time to converge to a solution. This time is not available when estimating carrier

phase ambiguities if they are subject to frequent cycle slips. This is often the case when
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using low cost equipment in the mini-UAV environment as will be seen in Chapter 4.

The performance of filtering techniques with the rapidly changing motions of the mini-

UAV is a subject for research beyond the scope of this thesis.

2.8 Stochastic Models

In order to optimise the processing of the GNSS observables a stochastic model must

be formed. This model must describe both the relative precision of the observations

(quantified through their variance) and their correlation. This model is quantified in the

variance - covariance matrix of the observations, Qy.

Such a model is particularly important for code pseudorange observations from low cost

equipment whose variances may vary considerably (Wieser, 2007).

We assume that the errors present in the observations have zero-mean and are initially

uncorrelated.

2.8.1 Variance

In Double and Triple differenced observations a number of error sources still remain

even on short and zero length baselines. Noise from the receiver hardware is the dom-

inant component but multipath and remaining biases which were not removed through

differencing may also be present.

The variance of the observations may be estimated if the receiving equipment is static. In

kinematic applications however this is not practical and an a posteriori estimate some-

times derived from a functional model is used.
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Equal Variance

The simplest functional model is one in which each measurement is deemed to have an

equal variance to all the others. It follows that no one measurement is given greater

weight than any other in the estimator. The actual variance assigned will be determined

from experience with that receiver / antenna combination.

Signal to Noise Model

Many stochastic models have been proposed based on the signal to noise ratio reported

by the receiver eg (Brunner et al., 1999), (Wieser et al., 2005). The SIGMA-ε model

is one such model and has been shown to be effective when processing carrier phase or

code pseudorange observables.

Using the SIGMA-ε model the variance of a measurement is given by:

σ
2
i =C.10−

C/N0
10 (2.27)

Where C is a model parameter and C/N0 is the signal to noise ratio in dBHz−1.

Use of such a model has the advantage of including most kinds of error source in the

variance estimation. The variance of the observations is likely to significantly increase

where the satellite has a low elevation in the sky and where multipath is present. Both of

these will result in a lower signal to noise ratio and hence be reflected in this model.

The disadvantage of using this model, or any based on the signal to noise ratio, is in the

way in which the signal to noise is measured and reported by the receiver manufacturer

(Ozludemir, 2004). No standardised way of presenting the signal to noise ratio to the user

has been implemented and it therefore varies from receiver type to receiver type. Some

data formats (for example the RINEX format) also give the signal to noise ratio on a scale
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of 1-10 which may then be mapped to their values in dBHz−1. This results in aliasing

of the reported signal to noise ratio and is the reason that this method is not used in this

work.

Elevation Weighting

As alluded to above, the variance of the observables will increase for satellites with a low

elevation relative to the horizon. For this reason an ‘elevation mask’ of 10-15 degrees is

often used to preclude low elevation observations from the attitude or position estimate.

A more refined model of the change in variance with elevation is used in this work,

alongside the elevation mask for very low satellites (Rothacher et al., 1998).

σ
2
i =

σ2
0

sin2 Ei
(2.28)

Where σ2
0 is an a posteriori estimate of the observable’s variance and Ei is the elevation

of the satellite transmitting the signal.

In this work it is largely assumed that multipath is absent and that the primary cause of

changes in the variance is elevation. This is therefore the chosen model.

2.8.2 Correlation

While it is assumed that un-differenced observations are uncorrelated, differencing will

introduce predictable correlations. Since double and triple differenced observables are

used in this research their properties are discussed.
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Double Differencing

The double differenced operator D acts on a vector of un-differenced observations Φ to

form the double difference observables:

∇∆Φ = DΦ (2.29)

This operator can now be used to derive the variance - covariance matrix Q of the differ-

enced observables through propagation of error;

Q = DT
σD (2.30)

Where σ is a vector of the variances of the un-differenced observations.

Triple Differencing

The triple differenced operator T acts on a vector of un-differenced observations Φ to

form the triple difference observables:

δ∇∆Φ = TΦ (2.31)

Again this operator can now be used to derive the variance - covariance matrix Q of the

differenced observables through propagation of error;

Q = TT
σT (2.32)

Where σ is a vector of the variances of the un-differenced observations.
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2.9 Integer Ambiguity Resolution

The problem of resolving the integer ambiguity, Ni
a, or more commonly the double dif-

ference integer ambiguity ∇∆Ni j
ab, to an integer has been the study of much research since

attempts were first made to use GPS for precise positioning. Many methods have been

proposed and a complete review of all these is beyond the scope of this thesis (Verhagen,

2004). Instead only those methods used in this work are introduced.

Hereafter the term integer ambiguity will be used to describe the double difference integer

ambiguities ∇∆N. To keep the notation concise, the symbol â will be used to denote an

estimate for ∇∆N which is allowed to take any real value. An estimate for ∇∆N which is

constrained to integer values only will be denoted ǎ.

The steps of the integer ambiguity process are common to all the estimators introduced

in this section. First a ‘float’ solution is obtained in which the integer ambiguities are

estimated alongside the attitude or baseline components and are allowed to take any real

value. Since this stage does not take into account the integer nature of the ambiguities

the ‘float’ solution naturally does not offer the most precise solution.

Since one integer ambiguity is introduced for each double difference carrier phase obser-

vation, the float solution must be obtained using both code and carrier phase observables.

In the case where non-linear least squares is used to estimate the parameters on an epoch

by epoch basis the float attitude solution will be no different to that obtained by solely

using the code observable.

Secondly an estimator is used to resolve the float ambiguities to integers. These esti-

mators are described below. The output from each is a set of integer estimates for the

ambiguities.

Finally a ‘fixed’ solution is obtained for the attitude or baseline components in which the

estimated integer ambiguities are taken as known and the carrier phase observables are
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treated as range signals. The fixed solution takes full advantage of the precise nature of

the carrier phase observable.

2.9.1 Rounding

The most straight forward method of integer ambiguity resolution is to simply round

the ‘float’ estimate of the ambiguities to the nearest integer. While this method gives

computational simplicity it does not take into account the variance - covariance of the

float estimates. Since this information is not used the rounded estimate is not optimal.

In practice the success rate obtained when using rounding is often very low (Teunissen,

1998) and it is rarely chosen as an integer ambiguity estimator.

2.9.2 Integer Bootstrapping

Integer bootstrapping is based upon sequential conditional least squares estimation. The

real valued float ambiguity estimates (âi for i = 1, ...n) are conditioned to integers (ǎi)

taking into account their correlation with the previous conditional estimates (Teunissen,

1998).

Since the bootstrapped estimator does not make use of variance information it is not an

optimal estimator. It is however much less computationally intensive than other search

based methods such as the LAMBDA method introduced below. This makes it an attrac-

tive method for use in real time applications particularly when only low cost hardware is

available.

Firstly each real valued ambiguity âi is adjusted using sequential conditional least squares:

âi|I = âi−
i−1

∑
j=0

σi, j|Jσ
−2
j|J (â j|J− z j) (2.33)
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Where σx|y is the variance of x conditioned on y, I = {1, ...,(i−1)}, J = {1, ...,( j−1)}

and z ∈ Zn.

The sequential conditional least squares estimates are then rounded to the nearest integer:

ǎ j = [â j|J] (2.34)

Where [.] represents nearest integer rounding and j = 1, ..., i−1.

The unit lower triangular decomposition of the float ambiguity covariance matrix may be

used when estimating the bootstrapped solution. It may be expressed as;

Qâ = LDLT (2.35)

Where the entries of L are;

Li j =


0 for 1 ≤ i < j ≤ n

1 for i=j

σi, j|Jσ
−2
j|J for 1 ≤ j < i≤ n

(2.36)

Elements of L may therefore be substituted into Equation 2.33;

ǎb,i =

[
âi−

i−1

∑
j=0

Li j(â j|J− z j)

]
(2.37)
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2.9.3 LAMBDA

Finally we come to the Least-squares AMBiguity Decorrelation Adjustment, or LAMBDA,

method. LAMBDA was proposed in 1993 (Teunissen, 1993) and has been shown to be

the optimal integer ambiguity estimator. It consists of two stages, decorrelation of the

ambiguities followed by an integer least squares process.

Much has been written on the LAMBDA method and a complete description will not be

reproduced here. A good description of the process and its implementation can be found

in (De Jonge and Tiberius, 1996) and (Teunissen, 1999). Instead the aspects important to

this thesis are described. Of particular interest is the integer least squares process.

Integer Least Squares

Like the standard least squares method first proposed by Carl Friedrich Gauss in the

1700s, integer least squares seeks to minimise the square of the difference between ob-

served values and values given by a mathematical model (Teunissen, 2002).

In our application we seek to find the integer ambiguity vector closest to the real valued

float estimate. To optimise our solution we measure this distance in the metric of the

variance of each float ambiguity, the Mahanobolis distance. Or otherwise:

ǎ = min
a∈Zn
‖(â−a)‖2

Qâ
(2.38)

Where ǎ is the selected integer ambiguity vector.

Since it is not possible to determine ǎ directly, a search procedure is employed. A set of

candidate integer vectors is chosen and the Mahanobolis distance of each one to the float

solution is calculated. The candidate vector which minimises this Mahanobolis distance

is then selected as ǎ.
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The choice of candidate integer vectors to test is critical to the process. The approach

taken is first to identify a volume of ambiguity space around the float estimate. The vol-

ume of this space must be large enough to contain at least one candidate integer vector

but not large enough to contain many candidates and make to process unduly computa-

tionally expensive. Since the bootstrapped integer vector will be close to the float ambi-

guity vector it is a sensible choice for setting the search space. Its Mahanobolis distance

from the float ambiguity vector is calculated and all candidate vectors within this dis-

tance are collected (if any). The size of the search space is incrementally increased until

the required number of candidates has been found (usually two for validation purposes

described later).

As will be seen in Section 2.9.4 the two best candidate integer vectors are often required

for validation of the chosen ambiguity vector. If insufficient vectors are found within the

search space defined by the bootstrapped solution the search volume may be incremen-

tally increased. The relevance of the volume of the search space to integer ambiguity

resolution is investigated in (Teunissen et al., 1996).

The LAMBDA Z-Transform

The float ambiguities â are correlated due to the double differencing process. This corre-

lation can makes the integer least squares search procedure very inefficient and so in the

LAMBDA process the ambiguities are transformed using a transformation known as the

Z-Transform.

The derivation of the Z-Transform in described in (Teunissen, 1995) and not reproduced

here. It’s effect is to decorrelate the ambiguities, improve or maintain their precision and

retain their integer nature.

The transformation is performed on the ambiguities and their variance - covariance:
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z = Za (2.39)

Qz = ZQaZT (2.40)

The search for the ambiguities is now performed in the transformed volume Ωz. When

the chosen integer ambiguity candidate ž is found the reverse transformation is performed

on it.

The effect of decorrelating the ambiguities is to minimise and equalise the conditional

variances. Using the Z-transform can therefore be expected to increase the success rate

of integer bootstrapping.

2.9.4 Validation

Once a integer vector has been found it must be verified. Many approaches have been

proposed (Verhagen, 2004), and a theoretical basis described (Teunissen and Verhagen,

2004). Of these the so called ratio test has proved to be the most popular.

The ratio test was first proposed in 1991 (Euler and Schaffrin, 1991). It requires that the

best two integer vector candidates are obtained. The ratio of the squared norm of the am-

biguity residual vectors (Mahanobolis distances ‖â− ǎ‖2
Qâ

) are examined. If the ratio is

not sufficiently high, usually above a preset threshold, it is concluded that the candidates

cannot be sufficiently discriminated and the candidate integer vector is rejected.

There is no theoretical basis which allows a fixed value for the test threshold to be de-

termined. Therefore when used in this way the ratio test as a whole lacks a theoretical

background. It has however been shown to work effectively in practice. Since it is com-

putationally cheap and simple to implement it is now considered the standard method.
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Naturally the ratio test may not be applied to integer vectors determined using the integer

bootstrapping or rounding estimators. In Chapter 3 a validation test which uses a priori

baseline length information will be developed. This test is applicable to all estimators.

2.10 Conclusion

This chapter has introduced the models and concepts required to use a GNSS system for

precise positioning or attitude determination.

Of the currently available GNSS, GPS has been identified as the most mature and most

suitable for this work. The mass market appeal of GPS has lead to the development of

low cost equipment which is optimised for applications where cost, size and weight are

a key factor, such as the mini-UAV.

In this chapter the significant sources of error in GNSS signals have been examined and

mitigation strategies have been identified. Low cost receiver and antenna equipment is

likely to show degraded performance when compared to higher cost options. This is

mainly due to the noise performance of the cheaper electronic components, the lack of an

antenna calibration and the inability of the cheap antenna to mitigate multipath signals.

A mathematical model of the GNSS carrier phase and code pseudorange observations

has been introduced. Using this model it has been shown that by using a technique called

differential positing, most of the significant error sources can be eliminated. The single,

double and triple difference observation equations have been developed.

Mathematical estimators to be used in processing the GNSS observables have been iden-

tified and discussed. The Non-Linear Least Squares method has been selected for use

in this work due to its robustness given a good initial state estimate. It also allows the

performance of the hardware and models to be examined without introducing filtering

artifacts.
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Stochastic models have been introduced to describe the variance and covariance of the

GNSS observations. While the undifferenced observations are assumed to be uncorre-

lated, it has been seen that the correlations introduced by differencing must be taken into

account. Three methods of modelling the observation variance have been introduced. Of

these a model based on satellite elevation has been selected since it is equally effective

regardless of receiver type.

Finally three methods of resolving the double differenced integer ambiguities have been

described and the principles of the integer bootstrapping and integer least squares method

introduced for use later in this thesis.
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Chapter 3

GNSS Attitude

3.1 Introduction

GNSS attitude determination is the name given to deriving platform attitude from the

GNSS observables. It has existed since the advent of GPS (Spinney, 1976), (Cohen,

1993) but only in recent times has it become accurate and practical enough for mini-

UAV applications. If multiple antennas are positioned around a rigid platform, in this

case the UAV, their relative position will be related to the platforms attitude at a given

measurement epoch.

If two antennas are used they will be capable of providing two dimensions of the attitude,

usually heading and roll or pitch. If three or more are used it will be possible to determine

all three dimensions of the platform attitude.

In this chapter the key concepts and procedures needed to derive platform attitude from

the GNSS observables are discussed. First the reference frames and rotation parameters

relevant to this thesis are introduced.

The chapter then goes on to discuss the available functional models for use in the math-

ematical estimator. Particular emphasis is placed on the algorithm used in this work.

Finally adaptation of the ambiguity resolution methods for attitude determination is ex-
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amined.

3.2 The Principles of Attitude

In this section the concepts and mathematical systems behind the concept of attitude are

discussed. Three ways of representing attitude are introduced and their qualities exam-

ined. The reference frames used in this thesis are described and their interrelationships

explored.

3.2.1 Reference Frames

In this work three cartesian reference frames are used. This section describes each frame

and gives the important relationships between them.

The Body Frame

As the name suggests, the body frame is affixed to, and moves with, the platform body it-

self. It is an orthogonal cartesian system with an origin defined at a point on the platform.

Axes may be defined either relative to the platform or the navigation system. In this work

both definitions are used and termed the body frame and sensor frame respectively.

In this thesis the term body frame is used to describe a frame with its origin at the UAV

centre of gravity. The xb axis points towards the nose of the aircraft, the yb axis through

the right wing and the zb axis points down forming a right handed system. The body axis

will primarily be used when discussing aircraft dynamics.

A second body frame is defined which will be termed the ‘sensor frame’. This frame is

affixed to and moves with the platform but is defined relative to the navigation sensors, in

particular the antennas used in the GPS attitude system. In such a system one antenna is
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Figure 3.1: The Body Frame

designated the ‘base’ antenna. This antenna defines the origin of the sensor frame. In this

work the base antenna is either on top of the wing (over the centre of gravity) or on the top

of the leftmost wingtip. The yn axis direction is defined as running from the centre of this

base antenna through the second antenna (‘roving’ antenna) on the rightmost wingtip.

The zn axis is defined as being normal to the plane which passes through the base and

roving antenna with its positive direction down. The xn axis completes the right hand

orthogonal system.

Figure 3.2: The Sensor Frame, body frame axis are shown for reference.
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The transform between body and sensor frame can be achieved using a translation and

rotation operation. The translation required will be known as the lever arm. The rotation

is known as the boresight. Since the relationship between the sensor and body frame is

constant, the lever arm and boresight are constants which may be obtained by survey of

the platform.
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The Local Level Frame

The local level frame is important when discussing the orientation and motion of a plat-

form. For the purposes of this work its origin is at the UAV centre of gravity. The yll axis

points to geodetic north and the zll axis points away from the centre of the earth through

the centre of gravity (up). Once again the xll axis completes the right hand orthogonal

system, pointing east.

Figure 3.3: The Local Level Frame

The Earth Centre Earth Fixed Frame

The origin of the Earth Centre Earth Fixed (ECEF) frame is the centre of mass of the

earth. The frame is not a true inertial frame since it rotates with the earth at ∼ 7.3x10−5

rads−1. The ze axis runs along the mean axis of rotation towards the north celestial

pole. The xe and ye axes run though the equatorial plane with the xe axis pointing in the

direction of the Greenwich meridian and the ye axis completing the orthogonal system.

The realisation of an ECEF frame used in this work is WGS84. The choice of this frame

stems from it being the datum used by the GPS system.
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There are two ways of representing a position using the WGS84 datum. First there is the

cartesian system using the axis defined above. Secondly a position on an ellipsoid defined

in WGS84 may be used. This is the well known latitude and longitude. Together with a

height above the ellipsoid a position is completely described. The relationship between

the latitude(φ), longitude (λ), height (h) system and the cartesian system is given below

(Vanı́ček and Steeves, 1996).


x

y

z

=


(N +h)cosφcosλ

(N +h)cosφsinλ(
Nb2

a2 +h
)

sinφ

 (3.1)

Where a and b are the semi-major axis and semi-minor axes of the ellipsoid respectively.

N is given by:

N =
a(

1− e2 sin2
φ
)1/2 (3.2)

Where e is the eccentricity;

e2 =
a2−b2

a2 (3.3)

3.2.2 Rotation Representations

There are many ways of representing the rotation between two reference frames. Three

of these are discussed in this thesis and are introduced here. Since these systems have

been in use for many years much has been written on the subject. In particular (Schleppe,

1997), (Lovren and Pieper, 1998) and (Phillips et al., 2001) provide good introductions

to the subject.
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Direction Cosine Matrix (DCM)

The direction cosine matrix (DCM) specifies the direction of one set of axes in terms of

another (‘unrotated’) set. A 3x3 matrix is used to define three unit vectors û, v̂ and ŵ;

A =


ûx v̂y ŵz

ûx v̂y ŵz

ûx v̂y ŵz

 (3.4)

Each of the elements of A is the cosine of the angle between the rotated unit vector and

one of the reference axes.

The benefits of the DCM include computational simplicity and accuracy; no trigono-

metric functions are contained in the matrix itself. The singularities seen with the Euler

angle representation also do not occur using the DCM. A series of rotations may also be

represented simply by multiplying the DCMs.

The downside of the DCM is the use of 9 parameters to represent one rotation.

Euler Angles

Euler angles are perhaps the most intuitive of the rotation representations. In the 1700s

Leonhard Euler showed that only three rotations were needed to represent a rotated co-

ordinate system.

A rotation using Euler angles is a three rotation process. The first rotation is around an

axis of the reference frame, the second around an intermediate axis and the third around

an axis of the rotated frame. One of the major downsides to the Euler angle representation

is that the order of the rotations is critical and many conventions have been proposed. In

this work the so called 3-1-2 convention is adopted, this may be visualised as rotations

about yaw then pitch then roll.
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Each of the rotations may be represented by a DCM. As described above a series of

rotations may be represented as a single DCM, the product of the individual rotation

matrices. If the three rotations are through angles φ, Θ and Ψ the total rotation may be

represented in a DCM such as this:

Rx
y =


cosΨcosφ− sinΨsinΘsinφ sinΨcosφ+ cosΨsinΘsinφ −cosΘsinφ

−sinΨcosΘ cosΨcosΘ sinΘ

cosΨsinφ+ sinΨsinΘcosφ sinΨsinφ− cosΨsinΘcosφ cosΘcosφ


(3.5)

If Rx
y represents the rotation from reference frame x to rotated frame y, the reverse rotation

Ry
x is simply the transpose of Rx

y.

Ry
x = Rx

y
T (3.6)

By examining the elements of the DCM we can derive the Euler angles;

Θ = arcsin
(
Rx

y(2,3)
)

(3.7)

Ψ = arctan

(
−Rx

y(2,1)
Rx

y(2,2)

)
(3.8)

φ = arctan

(
−Rx

y(1,3)
Rx

y(3,3)

)
(3.9)

By examining Equations 3.5 and 3.9 it can be seen that when the angle Θ is π/2 radians

the denominators of Equations 3.9 and 3.8 become zero and therefore Ψ and φ are unde-

fined. There is therefore a singularity encountered when using Euler angles, they are not
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robust for applications where high angles might be encountered.

This singularity is the primary disadvantage to using Euler Angles. They also require

trigonometric functions to be evaluated which will result in a loss of precision if many

rotations are undertaken. For these reasons, as well as their intuitive nature, that Euler

angles are mostly reserved for use as process inputs and outputs.

Quaternions

Quaternions are less intuitive than the Euler angle system but do give improvements in

computational speed and accuracy. They also lack the singularity inherent in the Euler

angle system.

The basis for the quaternion representation is Eulers rotation theorem which states that

given two coordinate systems there is an invariant axis along which measurements are

the same in both systems, otherwise known as the Euler Pole. It is therefore possible to

move from one system to the other through a rotation about Euler Pole.

The quaternion representation uses four parameters, three to define the Euler Pole unit

vector (e) and one to describe the rotation around it β.

q =


esin

(
β

2

)

cos
(

β

2

)

 (3.10)

Or expanding;
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q =



ex sin
(

β

2

)

ey sin
(

β

2

)

ez sin
(

β

2

)

cos
(

β

2

)



=



q1

q2

q3

q4



(3.11)

If the reference and rotated frames are parallel the quaternion reduces to;

q =


0

0

0

1

 (3.12)

At the point where β = π the quaternion is;

q =


ex

ey

ez

0

 (3.13)

When β exceeds π radians it becomes negative. In all cases the four quaternion parame-

ters are constrained by the equation;

q2
1 +q2

2 +q2
3 +q2

4 = 1 (3.14)
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A reverse rotation is represented using the inverse of the quaternion;

q−1 =


−q1

−q2

−q3

q4

 (3.15)

Multiple rotations can be achieved using an operation known as quaternion composition.

A rotation which may be represented using DCMs as;

Rx
z = Rx

yRy
z (3.16)

Is achieved using quaternions using;

qx
z =


q1

q2

q3

q4



x

z

= qx
y⊗qy

z =


q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4



x

y


q1

q2

q3

q4



y

z

(3.17)

Where a series of rotations is performed using orthogonal matrices such as the DCM,

rounding errors will likely result in a non-orthogonal matrix which is difficult to correct.

Rounding errors accumulated during quaternion composition are simply dealt with by

normalising the quaternion vector using the condition given in Equation 3.12.

Problems arise when using quaternions with estimators such as non-linear least squares

or the Extended Kalman Filter. Four parameters are used to describe three degrees of

freedom. This leads to a variance - covariance matrix which is singular, it cannot be

inverted. This problem may be overcome through the use of the pseudo-inverse but this

introduces significant errors requiring normalisation of the quaternion at every iteration
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(Hall et al., 2008).

3.2.3 Transformations Between Reference Frames

The relationship between the ECEF Frame and the Local Level Frame

To transform a vector from the ECEF frame (re) to the local level frame (rl) a transla-

tion and rotation is required. With the rotation expressed using a DCM (Re
l ) this can be

described as:

re = Re
l rl + re0 (3.18)

Where re0 is the origin of the local level frame in ECEF coordinates.

The DCM is given in terms of the latitude and longitude of the origin of the local level

frame (Hofmann-Wellenhof et al., 2003):

Re
l =


−sin(φ)cos(λ) −sin(λ) −cos(φ)cos(λ)

−sin(φ)sin(λ) cos(λ) −cos(φ)sin(λ)

cos(φ) 0 −sin(φ)

 (3.19)

The inverse rotation is obtained using the transpose of Re
l .

The relationship between the Local Level Frame and the Body Frame

The relationship between the local level and body frame is key - this rotation describes

the platform attitude. Since no scaling is needed and the frames share a common origin,

the transformation required may be denoted as:
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rb = Rb
l rll (3.20)

Where the DCM, Rb
l is simply derived from that given in Equation 3.5.

Rb
l =


cosΨcosφ− sinΨsinθsinφ sinΨcosφ+ cosΨsinθsinφ −cosθsinφ

−sinΨcosθ cosΨcosθ sinθ

cosΨsinφ+ sinΨsinθcosφ sinΨsinφ− cosΨsinθcosφ cosθcosφ


(3.21)

Angles φ, θ and Ψ now represent yaw, pitch and roll respectively. The euler angle singu-

larity will therefore be encountered when the pitch reaches 90 degrees. In normal UAV

flight this is unlikely, however it is not impossible and this singularity must be considered

especially if a navigation system is to be used as part of a control system.

Again the reverse rotation is simply the transpose of Rb
l

The relationship between the ECEF Frame and the Body Frame

Finally we come to the transform from ECEF to body frame. Again a rotation and trans-

lation is required as in:

re = Re
brb + re0 (3.22)

Where re0 is the origin of the body frame in ECEF coordinates.

The rotation Re
b can be expressed as the product of two rotations previously defined:

Re
b = Re

l Rl
b (3.23)
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Attitude Determination From ECEF Coordinates

To obtain attitude values from a baseline vector in the ECEF frame first the baseline is

rotated to the local level frame. This is done using the DCM Re
l given in Equation 3.19.

The heading, pitch and roll of the sensor frame may now be determined using basic

trigonometric functions and the baseline coordinates in the local level frame. This is then

corrected to the body frame using the boresight / lever arm calibration.

When defining the DCM Re
l the latitude and longitude of the origin of the local level frame

is needed. As described before this is defined as the centre of gravity of the platform. The

estimate of this location will always have some error associated with it and this error will

propagate to the DCM. The magnitude of this error is dependent on the latitude and

longitude of the platform but will not be significant if the position error is kept small. It

is likely to become significant only in high accuracy situations where the position error

exceeds 1km.

In this work this situation is avoided by using the position of one of the antenna obtained

using stand alone GPS positioning.

3.3 Functional Models

This section introduces the functional models and processes used to estimate the platform

attitude from the GNSS pseudorange and carrier phase measurements. Many models have

been proposed, a selection of which are introduced and discussed.

3.3.1 The Spherical Polar Functional Model

One approach involves re-parameterising the baseline in spherical polar coordinates. It is

assumed that the baseline length between antennas is known from a survey. In spherical
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polar coordinates this information is naturally used since the coordinate is parameterised

in terms of two angles α, β and the baseline length, l (Teunissen, 2006).

b([α,β]T ) = l ·

∣∣∣∣∣∣∣∣∣
cosαcosβ

cosαcosβ

sinα

∣∣∣∣∣∣∣∣∣ (3.24)

The GNSS observation equations are adapted to the spherical polar parametrisation and

the weighted non-linear least squares estimate for δα and δβ is obtained at each iteration.

The reference frame chosen may either be ECEF or local level. If the ECEF frame is

chosen the converged estimate for α and β must be rotated to the local level frame through

the use of the rotation described in Equation 3.19.

Alternatively the pitch and heading angles may be estimated directly in the local level

frame as described in (Hide et al., 2007) and (Schleppe, 1997).

The primary disadvantage of this approach, and the reason it is not adopted in this work,

is the requirement for a good initial estimate of the attitude.

The spherical polar parametrisation of the baseline leads to more non-linear observation

equations than the cartesian approach. In order to ensure convergence to the correct

solution a sufficiently accurate initial estimate of the baseline is required. This requires

complimentary sensors to be used (eg an aligned inertial navigation system) or requires

the system to be initialised in a known orientation.

In addition the spherical polar parametrisation also requires accurate and precise knowl-

edge of the baseline length. Any error in this measurement will propagate into the attitude

estimates.
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3.3.2 The Constrained Functional Model

Again it is assumed that the coordinates of the antennas are known in the sensor and body

frames. Note that the cartesian inter-antenna baseline in the ECEF frame, xe is related to

the inter-antenna baseline in the body frame, xb by:

xe = Re
bxb + xe0 (3.25)

Given xb and an estimate of xe0 we can now choose to estimate either xe or Re
b.

If we choose to estimate the rotation matrix Re
b the solution will be constrained by the

properties of the rotation matrix, namely that it must be orthogonal; Re
b(R

e
b)

T = I.

The disadvantage of this approach, and again the reason that it is not used in this work is

that it requires a good estimate of the rotation matrix Re
b in order for the non-linear least

squares or EKF estimator to converge.

3.3.3 The Unconstrained Functional Model

In this work the choice is made to solve for the inter-antenna vector in cartesian coordi-

nates xe. By rotating the ECEF vector obtained into the local level frame we may directly

determine the attitude as described in Section 3.2.3.

This approach does not require knowledge of the inter-antenna baseline and a simple

initial assumption that all of the antennas are collocated is enough for stable estimator

performance.

Using this method allows use of a mathematical model identical to that used in standard

positioning applications. The primary difference is that the reference, or ‘base’, antenna

is allowed to roam and if the platform is in motion a new reference position is needed

every epoch.
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Adapting the standard positioning method means that the model does not intrinsically

include available information on the baseline length. Later in this chapter the baseline

length constraint is included such that the solution satisfies;

||b||=
√

bT b = l (3.26)

Where ||·|| is the Euclidean norm, b is the baseline vector and l is the baseline length.

This constraint will be further explored in Section 3.8.

We must now determine the baseline components from the observation equations 2.12.

To achieve this we use the estimators introduced in Section 2.7.

First we define the linearised functional model δA(x0). The observation equations are

linearised about an initial estimate of the baseline components. In this work the initial

estimate of the baseline has been taken to be ||b||= 0.

From Equation 2.21 the functional model has components;

δai(b0) =
d
dx

f (b0) (3.27)

Using the double difference code observation Equation 2.13 we have:

δai(b0) =
d

db
∇∆PRi j

ab (3.28)

For each of the baseline components x, y and z we therefore have a partial derivative of

the form;

δ

δxb
∇∆PRi j

ab =
δ∇∆ρ

i j
ab

δxb
=

[
X i− x0a

ρi
a

+
X j− x0a

ρ
j
a

+
X i− x0b

ρi
b
− X j− x0b

ρ
j
b

]
(3.29)



68

Where X i is the x component of the position of satellite i and x0a, x0b are the initial

estimates of the x component of the position of receivers a and b.

For each double difference code observation we now have;

δA =

∣∣∣∣∣∣ δ∇∆PRi j
ab

δxb

δ∇∆PRi j
ab

δyb

δ∇∆PRi j
ab

δzb

∣∣∣∣∣∣ (3.30)

In forming the linearised functional model for the double difference carrier phase obser-

vations we modify the code functional model to include terms for the integer ambiguities.

δ∇∆φ
i j
ab

δai j
ab

= 1 (3.31)

Therefore for each carrier phase observation:

δA =

∣∣∣∣∣∣ δ∇∆PRi j
ab

δxb

δ∇∆PRi j
ab

δyb

δ∇∆PRi j
ab

δzb
1

∣∣∣∣∣∣ (3.32)

In the case where four satellites are being tracked we have six double difference obser-

vations (three code and three carrier phase);
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δA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ∇∆PRi j
ab

δxb

δ∇∆PRi j
ab

δyb

δ∇∆PRi j
ab

δzb
0 0 0

δ∇∆PRik
ab

δxb

δ∇∆PRik
ab

δyb

δ∇∆PRik
ab

δzb
0 0 0

δ∇∆PRim
ab

δxb

δ∇∆PRim
ab

δyb

δ∇∆PRim
ab

δzb
0 0 0

δ∇∆φ
i j
ab

δxb

δ∇∆φ
i j
ab

δyb

δ∇∆φ
i j
ab

δzb
1 0 0

δ∇∆φik
ab

δxb

δ∇∆φik
ab

δyb

δ∇∆φik
ab

δzb
0 1 0

δ∇∆φim
ab

δxb

δ∇∆φim
ab

δyb

δ∇∆φim
ab

δzb
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.33)

We finally define the observed minus computed observations from Equation 2.22

l = ∇∆φ
i j
ab−ρ

i j
ab(ba0,bb0) (3.34)

3.4 Pre-Processing

Before the differenced observations can be formed and the estimators used, the satellite

positions must be calculated and the stochastic model created.

3.4.1 Satellite Position Computation

The procedure used to compute the satellite positions can be found in the GPS Interface

control Document (ICD) and is therefore not reproduced here.
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The procedure takes as its input the orbit parameters obtained from the satellites naviga-

tion message and an estimate of the time of signal transmission.

Errors in the estimate of the time of signal transmission will result in an error in the

resulting position calculation. For high quality receivers the receiver clock is steered to

remain close to true GPS time. In this case the error due to the receivers clocks can be

considered to be negligible compared to the other parts of the ephemeris error. Most low

cost receivers allow their clock to drift from GPS time significantly. The clocks of two

receivers may differ by many milliseconds.

In this work the time of signal transmission (T s) is taken as the receiver’s estimate of the

time of reception (Tr) minus the observed code pseudorange scaled to time.

T s = Tr− (cPRs
r) (3.35)

The receiver clock offset is the dominant error source in the pseudorange. By estimating

the time of transmission using the pseudorange the receiver clock offset is therefore taken

into account along with the signal transit time due to the geometric range.

This process is used to obtain a satellite position for each observation from each receiver.

3.4.2 Stochastic Model

The stochastic models used in this work are obtained using the elevation dependent model

introduced in Section 2.8.

It is assumed that the code and carrier phase observations are uncorrelated so that:
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Qy =

∣∣∣∣∣∣∣∣∣∣∣∣
Qy(PR) 0

0 Qy(φ)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.36)

This model is then used to weight the code and carrier phase observations, W = Q−1
y .

3.5 The Float Solution

Using the estimators introduced in Section 2.7.1 and the functional model from Section

3.3.3, an estimate of the baseline parameters may now be made.

Using Equation 2.24 we have:

b̂ = b0 +(δA(b0)
T WδA(b0))(δA(b0)

T Wl) (3.37)

And the estimate b̂ has variance - covariance:

Qb̂ = ((δA(b0))
T Q−1

y (δA(b0)))
−1 (3.38)

The state vector b̂ contains updates to the initial state estimates b0 and if double difference

carrier phase observations are used, a0.

The estimates for the baseline components are not constrained with the a priori knowl-

edge of the baseline characteristics. The estimates for the ambiguities a are allowed to

take any real value, not constrained to integers. For these reasons the float solution is not

the most precise or robust available.
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3.6 The Fixed Solution

If the integer ambiguities can be estimated from the float solution then the estimated

baseline can be improved with this knowledge.

If the integer ambiguities are ǎ then;

b̌ = b̂−Qb̂âQâ
−1(â− ǎ) (3.39)

And;

Qb̌ = Qb̂−Qb̂âQ−1
â Qâb̂ (3.40)

The ‘fixed baseline’ b̌ uses the full precision of the double difference carrier phase ob-

servable. If the ambiguities are fixed correctly there will be little improvement to be had

in the solution by including the a priori baseline knowledge.

3.7 The Choice of Baseline Length and Antenna Loca-

tion

The precision of the attitude parameters which may be derived from an ambiguity fixed

baseline will vary greatly with baseline length. For a given baseline precision the preci-

sion of the attitude parameter estimates will decrease with baseline length.

It follows that to maximise the precision of the attitude parameters the baseline length

must be maximised with the practical limits of the platform. Suitable antenna locations

on the UAV include the wingtips, nose and tail.
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All of these locations are very sensitive to weight since they exert a large lever force

around the UAV centre of gravity. To minimise lever forces the receivers should be

mounted away from the antennas, in the main payload and as close to the UAV centre of

gravity as possible.

3.8 Using the Baseline Constraints

It is possible to modify the ambiguity resolution process and the unconstrained float

solution to include the a priori baseline knowledge. This section will develop a method

used to constrain the float solution and introduce a modification to the LAMBDA method

for ambiguity fixing.

3.8.1 Baseline Constrained Float Solution

In Section 3.5 the unconstrained float estimates b̂ and â were obtained. We aim to con-

strain the float baseline solution using a priori knowledge of the baseline length. This is a

quadratically constrained least squares problem. For convenience the constraint Equation

3.26 is presented again here;

||b||=
√

bT b = l (3.26)

The quadratically constrained least squares problem is one of finding a value for b which

satisfies;

min
∣∣∣∣b̂(a)−b

∣∣∣∣2
Qb̂(a)

(3.41)

Subject to Equation 3.26.
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The value for b which satisfies 3.41 is known as the constrained float solution and denoted

b̂l .

As per (Teunissen, 2006) the problem is approached using lagrange multipliers. The

constraint equation 3.26 is a sphere of radius l. The objective function 3.41 can be put in

the form of an ellipse with:

∣∣∣∣b̂(a)−b
∣∣∣∣2

Qb̂(a)
= k2 (3.42)

At the point at which the sphere and ellipse touch we will find the constrained solution

for b. At this point the gradient of the sphere and ellipse will be parallel and one will be

a scaled version of the other. The symbol5 is used at this point to denote a gradient.

5
∣∣∣∣b̂(a)−b

∣∣∣∣2
Qb̂(a)

= λ5||b||I3
(3.43)

Rearranging we achieve the normal equations in the form Ax−λx = c:

(Q−1
b̂(a)
−λI3)b = Q−1

b̂(a)
b̂(a) (3.44)

The smallest value for λ will yield the solution for b since this will be the point at which

the ellipse first touches the sphere. With this in mind the solution to the problem 3.44 is:

b̂l = (Q−1
b̂(a)
−λI3)

−1c (3.45)

With:

c = Q−1
b̂(a)

b̂ (3.46)
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We find λ by reformulating 3.44 as a quadratic eigenvalue problem of the form (Meer-

bergen and Tisseur, 2001):

(λ2M+λC+K)x = 0

y∗(λ2M+λC+K) = 0

Where x and y are eigenvectors and λ is an eigenvalue.

First note that from equations 3.45 and 3.26 we can say that:

(Q−1
b̂(a)
−λI)2y = c (3.47)

And that:

cT y = l2 (3.48)

With;

y = (Q−1
b̂(a)
−λI3)

−2c

Rearranging 3.47 and 3.48 we form the symmetric quadratic eigenvalue problem;

(
λ

2I3−2λQ−1
b̂(a)

+(Q−2
b̂(a)
− l−2ccT )

)
y = 0 (3.49)

Standard methods may now be used to find the eigenvalues of 3.49. The smallest eigen-
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value is the λ required to complete Equation 3.45 for b̂l .

Once the constrained float baseline solution has been found, the constrained float ambi-

guity solution follows as:

âl = â−Qâb̂Q−1
b̂
(b̂− b̂l) (3.50)

With associated covariance matrix ;

Qâl = Qâ−Qâb̂b̂l(b̂T
l Qb̂b̂l)

−1b̂T
l Qb̂â (3.51)

3.8.2 Baseline Constrained LAMBDA

The a priori baseline knowledge may also be used to modify the objective function of

the lambda process. Either the baseline constraint can be transformed to the ambiguity

domain as in (Monikes et al., 2005) or the LAMBDA process can be modified via the use

of an auxiliary search space. In this work the second approach is taken since it takes full

advantage of the efficiency of the LAMBDA search method.

Recall from Section 2.9.3 the objective function of the standard LAMBDA process is:

ǎ = min
a∈Zn
‖(â−a)‖2

Qâ
(2.38)

Following (Teunissen, 2006) we now include a term to include the baseline length con-

straint:

ǎ = min
a∈Zn,b∈R3

(
‖(â−a)‖2

Qâ
+‖b̌l(a)− b̌(a)‖2

Qb̌l

)
(3.52)
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Where b̌l(a) is the fixed baseline solution obtained using integer ambiguities a and con-

strained to the baseline length l. It is obtained by solving the quadratic least squares

problem as described as above (Section 3.8.1) substituting the fixed baseline b̌(a) for the

float baseline.

The quantity we seek to minimise in Equation 2.38 is now the sum of two parts. First is

the distance of the fixed ambiguity to the float ambiguity in the metric of the float ambi-

guity variance - covariance matrix (as in the unconstrained LAMBDA process). Second

is the distance of the fixed baseline to a constrained version of itself in the metric of the

fixed baseline variance - covariance matrix.

This new objective function requires a modification to the integer search procedure. Re-

call that in the standard LAMBDA process a search space is chosen using the boot-

strapped estimate of the fixed ambiguity vector. All candidates within this distance of the

float solution are returned and the one closest to the float solution is the chosen candidate.

If ǎb are the bootstrapped ambiguities then this search space is;

ψ(χ2) = {‖(â− ǎb)‖2
Qâ
≤ χ

2} (3.53)

With the new objective function 2.38 we can define a new search space;

ψ(χ2
b) = {‖(â− ǎb)‖2

Qâ
+‖b̌l(ǎb)− b̌(ǎb)‖2

Qb̌l
≤ χ

2
b} (3.54)

This new search space is no longer simply elliptical as we had in Equation 3.53. The new

shape is inefficient to search for candidates for ǎ and so we define an auxiliary elliptical

search space:

ψ0(χ
2
b) = {‖(â− ǎb)‖2

Qâ
≤ χ

2
b} (3.55)
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The new space is larger than ψ(χ2
b) but is elliptical and can be searched using the same

methods as in the standard LAMBDA process, including the Z transformation.

The downside of using the auxiliary elliptical search space ψ0(χ
2
b) is that each returned

candidate for ǎ must be checked to see if it satisfies the inequality;

χ
2
b−‖(â−a)‖2

Qâ
≥ ‖b̌l(a)− b̌(a)‖2

Qb̌l
(3.56)

This requires the solution of the quadratically constrained least squares problem in Equa-

tion 3.41 for each candidate. Those which meet the inequality lie within ψ(χ2
b) and that

which returns the solution to 3.52 is the chosen fixed ambiguity ǎ.

For the imprecise float solutions available from low cost, single frequency systems the

search space ψ0(χ
2
b) will be large and the number of candidates within it will be very

large, making the use of 3.56 impractical. For this reason, in this work the ‘search and

expand’ method is used, as developed by Teunissen in (Teunissen, 2006).

In this approach the solution of the quadratically constrained least squares problem for

every candidate is avoided by recognising that:

‖(â−a)‖2
Qâ

+‖b̌l(a)− b̌(a)‖2
Qb̌l
≥ ‖(â−a)‖2

Qâ
+λmin

(
‖b̂(a)‖2

I3
− l
)2

(3.57)

Where λmin is the smallest eigenvalue of Q−1
b̂(a)

. The expression to the right of the inequal-

ity is used to form a third search space:

ψ1(χ
2) = {‖(â−a)‖2

Qâ
+λmin

(
‖b̂(a)‖2

I3
− l
)2 ≤ χ

2} (3.58)

Three search spaces are now available, ψ0(χ
2) the auxiliary search space without a base-

line element, ψ1(χ
2) which does not require solution of the quadratically constrained
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least squares problems and ψ(χ2) which is the original constrained LAMBDA search

space. The search and expand procedure is depicted in Figure 3.4.

Choose a
value for χ0

Find all
integer

candidates
in ψ0(χ

2
0)

Find all
integer

candidates
in ψ1(χ

2
0)

Find all
integer

candidates
in ψ(χ2

0)

Minimiser of ‖(â− a)‖2
Qâ

+ ‖b̌l(a)− b̌(a)‖2
Qb̌l

is the solution.

If none,
increase χ

If none,
increase χ

If none,
increase χ

Figure 3.4: The ‘search and expand’ approach.

The quadratically constrained least squares problem is solved only for the first candi-

dates which appear in ψ(χ2). In this work the initial value for χ0 is obtained using the

bootstrapped estimate for ǎb, χ0 = ‖â− ǎb‖2
Qâ

.
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3.8.3 Integer Ambiguity Validation

The a priori baseline length knowledge can also be used to validate an integer ambiguity

candidate. The ratio test method introduced in Section 2.9.4 requires at least two can-

didates from the estimator, only the LAMBDA or constrained LAMBDA methods can

deliver this. In this section a validation method is developed which can be used with any

estimator - rounding, bootstrap or LAMBDA based.

Using the linearised law of propagation of variances the variance of the fixed baseline

length may be found using Equation 3.59 .

σ
2
|b̌| = AQb̌AT (3.59)

Where:

A =

[
δF(x,y,z)

δx
δF(x,y,z)

δy
δF(x,y,z)

δz

]
(3.60)

And:

F(x,y,z) =
√
(x− x0)2 +(y− y0)2 +(z− z0)2 (3.61)

So:
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δF(x,y,z)
δx

=−x− x0

x
δF(x,y,z)

δy
=−y− y0

y
δF(x,y,z)

δz
=−z− z0

z

(3.62)

If the fixed baseline length | b̌ | and the a priori measurement of the baseline length are

normally distributed then so will their difference ∆ | b | be:

∆ | b |= N(∆ | b |,σ2
∆|b|) (3.63)

With:

σ∆|b| =
√

σ2
l +σ2

|b̌| (3.64)

Where l is the a priori baseline length measurement. Finally, the probability that the

baseline length difference (∆ | b |) is smaller than the measured baseline length difference

(∆ | b̌ |) is:

P(∆ | b̌ |< ∆ | b |) = er f
[

∆ | b | /σ∆|b|√
2

]
(3.65)

Where er f is the Gauss error function.

It is now straightforward to obtain the probability that the baseline length difference
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(∆ | b |) is larger than the measured baseline length difference (∆ | b̌ |).

P(∆ | b̌ |> ∆ | b |) = 1− er f
[

∆ | b | /σ∆|b|√
2

]
(3.66)

A threshold probability is now chosen, above which the fixed baseline is taken to be the

same as the a priori baseline and below which is is taken to be different and the fixed

ambiguity candidate rejected.

3.9 Conclusion

In this chapter the models and concepts required to perform GPS Attitude determination

have been introduced.

The reference frames and rotation representations used in this work have been described

and their interrelationships explored. The intuitive nature of Euler angle representation

has lead to it being selected as suitable for system input and output. Transformations

between reference frames are performed using the Direction cosine Matrix (DCM).

Next functional models for use in the estimators GNSS model have been discussed. The

unconstrained cartesian parametrisation has been selected as the most suitable for this

work primarily because a priori knowledge of the attitude is not required. This functional

model is also more tolerant of variations in the baseline length due to errors in a priori

measurement or flexing of the UAV structure.

The chapter went on to introduce a procedure for determining the unconstrained float

and fixed ambiguity solutions. The pre-processing and hardware layout requirements

were discussed. Emphasis was placed on the importance to this work of accounting for

the poor performance of the low cost receiver clocks in the pre-processing stage.

Finally adaptations to the unconstrained float solution and the LAMBDA method were
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introduced to include a priori information on baseline length.

The float solution was constrained by finding the solution to a quadratically constrained

least squares problem. The quadratically constrained least squares problem was trans-

formed into a quadratic eigenvalue problem (QEP) through the use of lagrange multipli-

ers. The QEP can be can be efficiently and robustly solved leading to an estimate for the

constrained float baseline.

The objective function of the LAMBDA method was modified to include a term which

accounts for the known baseline length. A search method was introduced which gives

an efficient search without the need to solve the quadratically constrained least squares

problem for a large number of candidates. The use of the constrained float solution and

the modified LAMBDA process is expected to provide the most robust GNSS attitude

solution available.

Finally a validation method based on the a priori baseline length knowledge was devel-

oped. The method is equally valid for use with all estimators and so will be particularly

useful when using the bootstrap estimator, for which no validation technique was previ-

ously available.

This thesis now moves on to testing these techniques in Chapter 4.



84

Chapter 4

Testing GNSS Attitude Determination

4.1 Introduction

The purpose of this chapter is to test the methods introduced in Chapters 2 and 3. The

analysis will focus on the system performance with regard to the mini-UAV application.

Of particular interest is the accuracy, precision and robustness of the attitude estimates.

The experimental setups used in this work will first be introduced. Zero baseline, short

baseline, static and kinematic trials have been performed and their purposes are dis-

cussed. GPS measurements made on a mini-UAV platform will also be examined to

identify problems caused by real world mini-UAV flight.

For this work GPS measurements have been made using a low cost receiver with radio

frequency input from low cost antennas and a GPS hardware simulator. The hardware

simulator provides a controllable environment to test the receiver performance while the

low cost antenna trials are essential to examine the techniques in the environment in

which they will be used.

Since successful integer ambiguity resolution is key to obtaining a GNSS attitude solution

the performance of the estimators is quantified in terms of the number of independent

measurement epochs in which the integer ambiguities are successfully resolved. The
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effect of different measurement environments is quantified.

The outcome of an integer ambiguity estimator must be validated and the use of the

LAMBDA ratio test and baseline length information is examined in this chapter.

In this work the ‘accuracy’ of the attitude estimates refers to the difference between

the estimate and an accepted ‘truth’ estimate. The precision describes the degree of

repeatability of the estimate, it relates to the distribution of the errors in the attitude

estimates. In this work the precision is quantified in terms of the standard deviation. For

complete definitions refer to (Isaacs, 2000).

Attitude accuracy and precision statistics are difficult to obtain from the literature (see

Chapter 1). For this reason they will be examined using both real and simulated receiver

inputs.

Next real GPS measurements made using low cost equipment on a mini-UAV are anal-

ysed. The rate of cycle slips and loss of lock incidents are used to examine the per-

formance of the GPS receivers tracking loops in the highly dynamic UAV environment.

Problems with the data are identified and quantified.

Finally a flight profile which replicates the problems observed in the real UAV data is

generated using the hardware simulator. In this controlled environment the receiver re-

sponse to dynamic inputs can be examined.

For each set of results a short discussion is given at the end of the section. All of the

results in this chapter were obtained using the non-linear least squares estimator with

code and phase variances of 0.75m and 3mm respectively. Observations were weighted

using the elevation model given in Section 2.8.
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4.2 Experimental Setup

4.2.1 Zero Baseline Testing

Zero baseline tests use two receivers connected to the same antenna. A splitter is used

to feed the same radio frequency input to both receivers. In this work an ALDCBS1X2

Amplified L1/L2 splitter from GPS Networking Inc. was used.

Zero baseline tests are useful for examining the noise performance of the receiver / an-

tenna combination. All other biases should be completely cancelled in the double differ-

encing process.

This style of test allows the trivial recovery of the integer ambiguities. For convenience

the double difference carrier phase observation equation is reproduced here:

λ∇∆φ
i j
ab = ∇∆ρ

i j
ab +λ∇∆Ni j

ab− ε(∇∆φ) (2.12)

In a zero baseline test the geometric range component ∇∆ρ
i j
ab will be zero. The carrier

phase noise ε(∇∆φ) is expected to be a small fraction of a cycle so the ambiguities can

be reliably estimated using:

∇∆Ni j
ab =

[
∇∆φ

i j
ab

]
(4.1)

Where [·] is used to denote the nearest integer rounding operation.

4.2.2 Short Baseline Testing

Static short baseline tests replicate the GNSS attitude layout. Two receivers are connected

to two antennas on a short, known, baseline length.
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In this work a 1m baseline has been used. This is to replicate the typical baseline length

available on a mini-UAV. Increasing this baseline length up to ≈100 m will not have a

significant effect on the decorrelation of the double difference error sources.

4.2.3 Hardware Simulator Testing

Hardware simulator testing provides a controlled environment in which to examine the

performance of the GNSS attitude system.

In this work a Spirent GSS8000 hardware simulator was used. The hardware simulator

provides a radio frequency signal which emulates that which would be received by an

antenna following the simulated trajectory. It allows testing in different dynamic envi-

ronments while using the same GPS constellation and atmospheric conditions.

Figure 4.1: Spirent GSS8000 Multi-GNSS Hardware Simulator

For this research the scenarios modelled in the hardware simulator were setup to closely

replicate those in the ‘real world’ tests, without the effects of multipath and antenna phase

centre variation. The same GPS constellations were simulated with atmospheric effects

modelled by the hardware simulator.

One major advantage of the hardware simulator is the availability of the precise simulated
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trajectory. This allows examination of the accuracy and precision of the attitude solution

in three dimensions for both dynamic and static tests.

4.2.4 UAV Flights

For this research GPS measurements were made onboard a K70 mini-UAV flying a survey

payload.

The K70 mini-UAV is a 1.8m wingspan UAV which weighs 5kg including payload. It was

developed to test the feasibility of performing aerial surveys using UAVs. It is powered

by a 10cc internal combustion engine and flies at speeds of 10-30ms−1. Control inputs

come from a human pilot via a radio frequency control link.

Figure 4.2: K70 mini-UAV

For the flight trials used in this work the K70 was flying a survey payload consisting of

one uBlox GPS receiver, a Crossbow IMU440 inertial measurement unit, a digital camera

and datalogging equipment. Flights were all conducted within visual range of the pilot.

The regulation and operation of the K70 UAV are discussed in Appendix A. Its payload

is described in Appendix B.

The purpose of using the single receiver GPS data in this work is to examine the tracking

performance of a low cost GPS receiver / antenna in a real mini-UAV environment.
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4.3 Zero Baseline Test Results

In this section the results of simulated and real zero baseline tests are presented. The pur-

pose of these tests is to quantify the effect of noise in the receiver / antenna combinations

and examine the effects of linear acceleration and velocity on the observables.

4.3.1 Solution Accuracy & Precision

The results of processing data collected on a zero baseline are presented in Table 4.1.

Since the attitude solution is undefined for a zero length baseline, the accuracy and pre-

cision have been determined by measuring the distance from the origin in metres.

‘Real’ data refers to that obtained using uBlox LEA-5T receivers and an Onshine patch

antenna in an open sky environment. ‘Simulated’ data is that collected using a uBlox

LEA-5T receiver and the hardware simulator. In all cases the statistics were derived

using around 4000 measurement epochs.

Firstly static testing gives data free from the effects of dynamics. The receiver track-

ing loops should perform consistently throughout and all available satellites should be

tracked at every epoch.

Table 4.1: Static Zero Baseline Results

Real Simulated

Solution Type Accuracy σ Accuracy σ

Float 0.10 m 0.52 m 0.03 m 0.59 m

Fixed 45 µm 2.6 mm 6.9 µm 3.1 mm

The hardware simulator was also used to make measurements on a kinematic zero base-

line. The purpose of this test was to examine the effect of platform dynamics on the
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accuracy and precision of the results. It is expected that dynamics will decrease the pre-

cision of the GPS observables due to the changes required in the receiver tracking loops

(see Section 2.4.6).

The trajectory simulated was level and straight with repeated acceleration and constant

velocity phases. The results are given in Table 4.2 ;

Table 4.2: Kinematic Zero Baseline Results

Simulated

Solution Type Accuracy σ

Float 0.07 m 0.57 m

Fixed 1.3 µm 3.6 mm
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Discussion

The data in Table 4.1 shows that the majority of the noise in the solution arises from

the receiver electronics rather than the antenna. The low cost antenna used for the ‘real

world’ trial could be expected to add to the system noise but these results indicate that

this is not the case.

The ‘real world’ data do show greater biases than the simulated data. While not large

compared to the precision, a float bias of 0.1 m is unexpected. This may be due to

residual errors in the double difference observables caused by the measurements being

made at slightly different times (see Section 3.4). In particular the multipath signals could

be expected to vary over the time between the receivers measurements.

In data used for this research the difference between the receiver’s clocks has been ob-

served to be up to 7 milliseconds. Since multipath is difficult to model in kinematic

applications this bias will be best mitigated by using antennas with ground planes. How-

ever as discussed in Section 2.4.3 this is not practical on the mini-UAV. The observed

bias may therefore be unavoidable when using low cost, low mass equipment.

Finally the kinematic data in Table 4.2 show good agreement with the static simulated

data. Millimetre level biases in the float and fixed solutions do appear during periods

of platform acceleration but subside rapidly once the acceleration ceases. No significant

increase in noise, or corresponding decrease in precision was observed.

4.3.2 Ambiguity Resolution

Since ambiguity resolution is required for attitude determination, the success rate of in-

teger ambiguity resolution using the methods described in 2.9 and 3.8 is now examined.

The fixed ambiguities determined using Equation 4.1 are taken to be correct and used for

comparison in this section.
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The constrained float is not used in this section since the constrained solution will always

be the sought after baseline and integer ambiguity.

The mean value for χ2 (size of the integer least squares search space) and number of

candidates in the search is given for the LAMBDA and constrained LAMBDA methods.

The number of candidates in the search is particularly relevant to processing times in real

time applications.

Table 4.3: Simulated Static Zero Baseline Results

Ambiguity Fixing Method Success % χ2 No. Candidates in search

Bootstrap 5.12 - -

Bootstrap with Z transform 84.67 - -

LAMBDA 88.56 0.11 3.17

Constrained LAMBDA 100 0.45 182

Table 4.4: ‘Real’ Static Zero Baseline Results

Ambiguity Fixing Method Success % χ2 No. Candidates in search

Bootstrap 0.96 - -

Bootstrap with Z transform 90.83 - -

LAMBDA 92.82 0.10 3.24

Constrained LAMBDA 98.41 0.58 758

Table 4.5: Simulated Kinematic Zero Baseline Results

Ambiguity Fixing Method Success % χ2 No. Candidates in search

Bootstrap 5.25 - -

Bootstrap with Z transform 85.37 - -

LAMBDA 88.16 0.11 3.16

Constrained LAMBDA 100 0.45 204
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Discussion

All of the ambiguity resolution results demonstrate the effectiveness of using the Lambda

Z transform. Improvements in the bootstrap success rate of 80-90% are observed when

using the transformed ambiguities.

The unmodified LAMBDA method shows good success rates with few candidates searched

compared to the constrained version. The requirement to examine hundreds of ambiguity

candidates and compute baselines / constrained baselines for them all is a large compu-

tational overhead. The Constrained LAMBDA process does however show near perfect

success rates.

Little difference is observed in the success rates between static and kinematic data from

the simulator. The biases in the ‘real world’ float data however cause a large change in

the size of the constrained LAMBDA search space. This has a negligible impact on the

overall success rate but does add to the computational burden.

The data indicate that the success rate of the LAMBDA and even bootstrap methods may

be sufficient without the computational burdens of the constrained version.

4.4 Short Baseline Test Results

Results are now presented from measurements made over a small baseline, nominally 1m.

It is expected that this small baseline will introduce some decorrelation of the measure-

ment biases which will no longer cancel completely in the double differencing process.

The purpose of these tests is to quantify the effects this decorrelation has on both the

quality of the solution and the ambiguity resolution processes.
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4.4.1 Solution Accuracy and Precision

In Table 4.6 the accuracy and precision of the baseline estimates are given. They are first

measured in terms of baseline component errors to allow comparison with the equivalent

zero baseline test. They are then quantified in terms of the attitude solution which is of

most interest to this work.

The best estimate of the baseline components and therefore attitude is the mean of the

ambiguity fixed solutions. For this reason only the precision of the real world results is

given.

Table 4.6: Static Short Baseline Accuracy and Precision

Real Simulated

Solution Type σ Accuracy σ

Float 0.68 m 0.01 m 0.58 m

Fixed 5.4 mm 7.9 µm 3.2 mm

Table 4.7: Static Short Baseline Attitude Accuracy and Precision

Real Simulated

σ (◦) Accuracy (◦) σ (◦)

Pitch 0.23 1.3x10−3 0.16

Heading 0.11 0.3x10−3 0.07

Discussion

The results in Table 4.6 show a small increase in noise between the ‘real world’ data and

the simulated data. A similar increase in noise is observed between the short and zero

baseline ‘real world’ data. This reflects the decorrelation of high rate multipath over this

small distance.
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The short baseline simulated results are very similar to those obtained over a zero base-

line. As expected the atmospheric effects are removed in the double differencing process

and therefore do not appear in the results. Since multipath is not simulated it does not

appear in the noise levels.

The accuracy and precision of the attitude parameters (Table 4.7) justify the selection

of GPS attitude determination for UAV georeferencing applications. For example a pre-

cision of 0.16◦ in pitch would result in a georeferencing error of around 30cm from a

typical UAV flying height of 100 m. This is similar to the magnitude of the errors from

other parts of the georeferencing process. If the baseline length were increased to 2m

the results in Table 4.6 indicate that the ground error would approach 15cm given the

same flying height. The relationship between attitude error and georeferencing error is

discussed further in Appendix B.
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4.4.2 Ambiguity Resolution

The effect of the decorrelated biases on the ambiguity resolution process is now exam-

ined. Tables 4.8 and 4.9 are intended for comparison with the zero baseline results in

tables 4.3 and 4.4.

Table 4.8: Simulated Short Baseline Ambiguity Resolution Results

Ambiguity Fixing Method Success % χ2 No. Candidates in search

Bootstrap 5.02 - -

Bootstrap with Z transform 83.4 - -

LAMBDA 88.4 0.12 3.12

Constrained LAMBDA 99.4 0.41 123

Constrained Float Input

Bootstrap 18.2 - -

Bootstrap with Z transform 93.4 - -

LAMBDA 96.3 0.11 2.93

Constrained LAMBDA 99.7 0.40 105

Table 4.9: Short Baseline Ambiguity Resolution Results

Ambiguity Fixing Method Success % χ2 No. Candidates in search

Bootstrap 0.32 - -

Bootstrap with Z transform 30.4 - -

LAMBDA 29.6 0.05 3.35

Constrained LAMBDA 86.7 0.24 224

Constrained Float Input

Bootstrap 3.19 - -

Bootstrap with Z transform 51.7 - -

LAMBDA 55.1 0.04 3.02

Constrained LAMBDA 86.8 0.22 158
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Discussion

Again the ‘real world’ short baseline results are worse than the zero baseline or simulated

equivalent. Even in this case however the success rate of ambiguity resolution remains

high, above 85% using the constrained LAMBDA method.

Other published work, (Giorgi et al., 2008), tests the LAMBDA and constrained LAMBDA

methods over a similar static short baseline (2.20m). In this work high quality, survey

grade antennas are used with high quality receivers. This combination can be expected

to mitigate ground reflected multipath mich more effectively than the low cost equip-

ment used in this thesis. Their results show ambiguity resolution success rates of 99.99%

and 100.00% for the LAMBDA and constrained LAMBDA processes respectively. This

agrees well with the multipath free simulated results in this work. This suggests that

multipath is indeed to blame for the lower success rates in the real data when compared

to the simulated data.

The best success rates of ambiguity resolution are achieved by the constrained LAMBDA

process. Even in the ‘real world’ data the success rate remains above 85%. The use of a

constrained float solution as the input does little to improve this success rate. However it

does reduce the number of candidate ambiguity vectors which must be processed in the

search step.

These results agree well with those published by the author in (Pinchin, 2008). They

differ slightly due to different processing strategies and the use of a different type of re-

ceiver. In this 2008 paper it was argued that the standard LAMBDA or bootstrap with

Z transform method gives acceptable results when used with the constrained float in-

put. Using these techniques avoids the long search times associated with the constrained

LAMBDA process. This approach is also justified by the present results which show

success rates of around 95% in the simulated data and 55% in the ‘real world’ data.



98

4.4.3 Ambiguity Validation

In this section the effectiveness of the ambiguity validation techniques described in Sec-

tion 2.9.4 and 3.8.3 are investigated.

First the use of the LAMBDA ratio test is examined. In Tables 4.10 and 4.11 the effect

of the chosen threshold ratio on the quantity of false positives / negatives is given.

A false positive (candidate ambiguity vector passes the test but is in fact false) would be

very detrimental in real world applications. It would allow an undetected error to affect

the attitude results. The impact would be made worse if the wrong candidate vector is

propagated forward to subsequent measurement epochs.

Conversely a false negative result (candidate ambiguity vector fails the test but is in fact

correct) would pose no direct problem to the attitude results. It would however affect the

efficiency of the ambiguity resolution process and so these errors should be minimised.

In testing the validation methods both the ‘real’ and simulated short baseline data is used.

The input to the LAMBDA processes are the constrained float solutions.

Table 4.10: Use of the Ratio Test with the Standard LAMBDA Process

Real Simulated

Threshold False Pos. (%) False Neg. (%) False Pos. (%) False Neg. (%)

1.5 33.6 27.6 76.7 14.3

3 20.5 27.0 50.7 37.9

5 12.4 33.7 31.2 57.3

8 7.6 38.4 18.8 69.6

10 5.5 40.5 14.7 73.7

20 2.0 44.0 6.3 82.0

30 1.4 44.7 3.4 85.0

Next the usefulness of the a priori baseline length for candidate validation is examined.
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Table 4.11: Use of the Ratio Test with the Constrained LAMBDA Process

Real Simulated

Threshold False Pos. (%) False Neg. (%) False Pos. (%) False Neg. (%)

1.5 77.5 11.4 97.4 2.1

3 55.6 30.8 81.4 18.0

10 24.2 62.2 28.3 71.1

30 7.2 79.2 6.8 92.6

70 1.7 84.7 1.8 97.6

In Table 4.12 the effect of the chosen threshold probability on the quantity of false pos-

itives / negatives is given. For clarity only the ‘real’ static zero baseline dataset is pre-

sented here.

Table 4.12: The a priori baseline length as a validation tool

LAMBDA Constrained LAMBDA

False False False. False
Threshold Neg. (%) Pos. (%) Neg. (%) Pos. (%)

50 % 0.00 20.1 0.00 13.7

90 % 0.00 1.10 0.00 12.2

95 % 0.07 0.93 0.00 9.60

98 % 16.8 0.50 16.8 5.97
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Discussion

Tables 4.10 and 4.11 demonstrate the problems involved in using the ratio test. In order

to minimise the number of false positives the threshold ratio must be increased. However

this means a lot of false negative results especially for the constrained LAMBDA process

which is effectively rendered useless by this test.

Table 4.12 shows that the baseline length makes a far more effective validation tool. False

positives can be nearly eliminated by setting a confidence threshold of 98%. At this level

the rate of false negatives is also low (16.8% for the LAMBDA process).

This validation method is less effective for the constrained LAMBDA method than the

unconstrained version. This is because the constrained LAMBDA method always returns

candidates which are close to the a priori baseline length. The high rate of false positive

observed (5.97% compared to 0.50% from the standard LAMBDA method) means that

the gains in success rate are offset by the reliability of the unconstrained methods with

constrained float input. Taking validation into account the constrained LAMBDA method

is a worse choice than the LAMBDA method in the absence of multipath.

4.5 UAV Flight Results

In this section GPS data from a low cost GPS receiver onboard a mini UAV is examined.

The purpose is to analyse the quality of the carrier phase observables.

The flight profile consisted of six portions:

• Static Period.

• Acceleration and takeoff.

• Level off.
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• Survey line & turn (repeated).

• Deceleration and Landing.

• Static Period.

The lines flown were necessarily short to keep the UAV within visual range of the pilot.

The turns were performed at rates typical of survey UAV flight, no manoeuvres were

performed with atypically high dynamics.

The ground track of the flight is shown in Figure 4.3.

Figure 4.3: UAV Trial Flight Groundtrack

If carrier phase lock is completely lost in flight then no measurement will be output. By

examining the number of phase measurements available over the course of the flight it

was observed that 1% of epochs show a complete failure to track any satellites. Following

a ‘failed’ epoch the receiver quickly regains the signal and epochs with no measurements

occur individually or in very small clusters.
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Another good measure of the receiver carrier phase tracking performance is its own re-

ported Loss of Lock or LLI indicators. When the receiver detects a potential cycle slip

an indicator is output with the data.

The RINEX (Receiver Independent Exchange Format) GNSS data format used in this

work allows three types of LLI indicators, given in three data bits.

If the first bit is set to 1 the receiver has detected a loss of lock between measurement

epochs and an integer wavelength cycle slip can be expected.

In Figure 4.4 the number of full cycle LLIs (type 1) at each measurement epoch is given.

The UAV flying height profile derived from stand alone GPS positions is given to indicate

when the UAV is in flight.

Figure 4.4: Full Cycle LLIs Observed During a UAV Flight

If the second bit is set the receiver has changed ‘wavelength factor’. The uBlox LEA-

5T normally outputs data with half cycle ambiguities resolved (see Section 2.4.5). In

the event of tracking difficulties the receiver is unable to do this and so changes the
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wavelength factor from full cycle to half cycle. The measurement may therefore take

three states, either correct or incorrect by plus or minus one half cycle.

In Figure 4.5 the number of half cycle LLIs at each measurement epoch is given.
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Figure 4.5: Half Cycle LLIs Observed During a UAV Flight

If the third LLI indicator bit is set then the measurement is contaminated by selective

availability or anti-spoofing noise. This does not apply to L1 frequency measurements

and so is not of concern to this work.

4.5.1 Discussion

The number of satellites tracked over a UAV flight remains high throughout most of the

flight. When the receiver loses lock on a satellite it tend to lose lock on all the satellites

in that epoch, suggesting that receiver motion is causing the incident rather than partial
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signal blockage by the UAV airframe.

The number of full cycle slips remains low throughout the flight. When a full cycle slip

does occur one of three approaches may be taken - remove the measurement, estimate

the cycle slip or estimate the integer ambiguities without reference to the previous epoch.

If the success rate of ambiguity resolution is high enough (see 4.4.2), ambiguities can

be resolved independently at each epoch and integer cycle slips between epochs will not

affect the solution.

If the success rate of ambiguity resolution is low, validated ambiguity vectors need to be

propagated between epochs to maximise the availability of an attitude solution. In this

case the integer cycle slips will affect the solution since the validated ambiguity vector

will no longer be valid. We can choose to estimate the integer cycle slip and correct the

validated ambiguity vector. Or the measurement and integer ambiguity affected by the

full cycle slip can be removed.

This data indicates that the measurement can often be safely removed while leaving

enough observations to produce a solution. Therefore no full cycle slip resolution process

is necessary to produce valid attitude results.

However in around 1% of the measurement epochs in this dataset insufficient observa-

tions remain without integer cycle slips. For these epochs a valid attitude solution will

not be available if the integer ambiguities are not resolved or the cycle slip quantified.

The number of half cycle ambiguities remains high throughout the kinematic portion of

this data. In many measurement epochs all of the observations are half cycle ambiguous.

Removing these observations is therefore not an option if an attitude solution is to be

estimated. The half cycle slips must be quantified or the half cycle ambiguities resolved

to maximise the number of epochs with a valid attitude solution.
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4.6 Simulated UAV Flight

To reproduce the full and half cycle slip problem under predictable conditions a simu-

lated flight profile was generated using the hardware simulator. A zero baseline test was

performed to allow simple recovery of the correct integer ambiguities.

Again this flight profile consisted of six sections;

• Static Period.

• Acceleration and takeoff.

• Level off and maintain constant speed.

• Survey line & 90 degree turn (repeated).

• Deceleration and Landing.

• Static Period

In this data the 90 degree turns result in short bursts of acceleration and bank angle. It

is expected that these will result in cycle slips. The turns are followed by 30 seconds of

straight and level flying to allow the receiver to recover the half cycle ambiguities and

resume good carrier phase tracking.
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Figure 4.6: The Effects of UAV Acceleration in a Turn on Phase Tracking

In Figure 4.6 the effects of one turn on carrier phase tracking are depicted. At the start of

the example the receiver is tracking all eight GPS satellites in view. At 861 seconds the

turn begins. Soon the half and full cycle slips occur. In the turn the receiver loses lock on

all satellites. At the end of the turn at around 864 seconds the receiver quickly regains all

satellites. Half cycle ambiguities remain however until around 9 seconds after the turn.

Artifacts in the double difference code observations can also be observed after a turn.

Figure 4.7 shows the code residuals during three turns. On the second axis acceleration

is plotted to indicate when the turns occur.
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Figure 4.7: The Effects of UAV Acceleration in a turn on Code Tracking

4.6.1 Discussion

The simulation results show that the acceleration of a turn can cause loss of phase lock

and cycle slips. Large biases are also observed in the double difference code observations.

In Figure 4.7 it can be seen that the code measurements show large biases after a turn.

This is likely to be due to the operation of the tracking loops within the receiver. Since

the methods used within the receiver are proprietary it is not possible to say exactly what

the cause is.

The consequence for this work is that the float solution, dominated by code measure-

ments, is likely to be be un-useable for some time after an turn.

Figure 4.6 shows that during a turn no GPS attitude estimates can be expected since no

satellites are tracked. The GPS attitude solution must restart after the turn using the float

solution to estimate ambiguities.
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After the acceleration ceases the receiver takes around 9 seconds of steady flight to regain

the half cycle ambiguities and output full cycle carrier phase for all satellites in view. In

a real UAV flight 9 seconds of flight will cover a long distance. If data georeferencing

is not possible for this period the flight will be very inefficient. It is imperative that a

method for making use of half cycle ambiguous carrier phase data is developed.

4.7 Conclusion

In this chapter it has been established that the accuracy and precision of the GNSS at-

titude estimates are sufficient for the mini-UAV georeferencing application. Accura-

cies of 1.3 thousandths of a degree in pitch and 0.3 thousandths of a degree in heading

were achieved. The precision of heading and pitch/roll estimates obtained using low cost

equipment and a 1m baseline was 0.07 and 0.16 degrees respectively. This was reduced

to 0.11 and 0.23 degrees in the presence of ground reflection multipath.

This precision, while already adequate for many georeferencing applications, could be

further improved by increasing the baseline length where the size of the UAV allows.

Zero baseline tests using real and simulated radio frequency inputs show good agreement

both in terms of the accuracy and precision of the attitude estimates and in terms of the

ambiguity resolution success rates.

The quality of the attitude estimates and the success rate of ambiguity resolution dropped

when data was collected over a short baseline in real world tests. Data collected over a

simulated short baseline agrees closely with the zero baseline equivalent. Since multipath

is the only bias not simulated this suggests that multipath decorrelates even over a sort

baseline of 1m.

Over a short real world baseline ambiguity resolution success rates reached up to 86%.

In simulated trials without multipath the success rate reached 100% suggesting that if
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multipath could be fully mitigated the real world success rates would improve.

The benefits of using a constrained float input have been demonstrated. Significant im-

provements have been seen in both the bootstrap and LAMBDA success rates. The

Quadratic Eigenvalue approach to constraining the float solution has been stable through-

out the data sets used in the present research.

When using the constrained float solution the success rate of unconstrained LAMBDA

and the bootstrap with Z transform techniques reached 96% and 93% respectively. They

therefore may be more relevant to real time applications since they avoid the heavy pro-

cessing overhead involved in the constrained LAMBDA process.

Use of the a priori baseline length knowledge to validate integer ambiguity candidates, as

contributed by the author, has been seen to give significantly better results than use of the

traditional LAMBDA ratio tests. The ratio tests give higher rates of both false positive

and negative errors when compared to the baseline length techniques. Efficient validated

ambiguity resolution and a robust GNSS attitude solution is dependent on the use of the

developed baseline validation method.

When validation is taken into account and using the constrained float solution, the boot-

strap with Z-transform and LAMBDA processes show better success rates than the con-

strained LAMBDA method.

Finally real GPS data from a mini-UAV was found to contain many loss of tracking

incidents as well as full and half cycle slips. Using the hardware simulator it was found

that these may be caused by the accelerations involved in a turn which also cause biases

in the double difference code measurements.

Since the details of the operation of the tracking loops is proprietary information the exact

cause of the loss of phase tracking and introduction of code biases cannot be established.

However the consequences for this work are;
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• Sufficient phase measurements are not available throughout the flight, at times no

measurements are available. This causes gaps in the availability of the GPS attitude

solution which must be bridged.

• Since the code measurements are often biased by acceleration it cannot be assumed

that an effective float solution can be obtained after a gap in phase measurements.

An estimate of the float ambiguities must then come from another source.

• For large portions of the flight carrier phase data is output by the receiver which is

not resolved to full carrier phase cycles. Until full cycle measurements are output

the half cycle ambiguities must be resolved in order to use the measurement.

These are the problems addressed by the following chapters.
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Chapter 5

Attitude Rate Modelling and Estimation

5.1 Introduction

In Chapter 4 problems with using GNSS attitude determination on a mini-UAV were

identified. Rapid rotational acceleration causes loss of carrier phase tracking, half cycle

ambiguous carrier phase data and unusable code pseudorange measurements. In this

chapter strategies for dealing with these problems will be introduced.

First the problem of using the half cycle ambiguous carrier phase data is dealt with.

The option of solving for half cycle ambiguities using the previously introduced integer

ambiguity estimators is discussed.

The triple difference carrier phase observable is then examined in more detail. It is usable

even with half cycle ambiguous carrier phase observations if no cycle slips occur. It can

also be used to correct for cycle slips if the change in attitude between epochs can be

predicted or obtained from another source.

To predict the change in attitude between epochs, kinematic and dynamic models are

developed. The inputs to these models are discussed in detail and their integration with

the triple difference observable examined.

The integration of GPS based velocity measurements with a dynamic model has been
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suggested in previous work, for example (Lievens et al., 2005) or (Park and Kee, 2006).

In that research the velocity derived from a single GPS receiver and simple stand alone

positioning was integrated with a dynamic model to predict the platform attitude to within

a few degrees. The results of this method were of insufficient accuracy for georeferencing

applications. The techniques proposed also require good code signal tracking through-

out a manoeuver and the attitude estimates were aided by airspeed measurements which

added cost and weight to the system. For those reasons they are not suited to the present

application.

Other work, for example (Lightsey and Madsen, 2003) has suggested the use of a dynamic

model augmented by signal to noise measurements to estimate attitude. This technique

requires an expensive calibrated antenna and relies on the use of a receiver with high

resolution signal to noise reporting. The results of that work were also of insufficient

accuracy for georeferencing applications.

The use of platform attitude models with the triple difference observable is a key in-

novation in this thesis. It allows data gaps to be bridged and sub-optimal quality GPS

measurements to be used. This in turn increases the availability of an altitude solution

throughout the UAV flight and high accuracy attitude estimates during steady flight. Pre-

viously no attitude solution would be available during and after a moderate turn in the

flight path.

5.2 Ambiguity Resolution

The ambiguity resolution methods introduced in Section 3.8 can be adapted to resolve the

ambiguities to half integers. Using this approach the half cycle ambiguous carrier phase

data can be treated in exactly the same way the the normal full cycle ambiguous data.

If the quality of the code observations remained constant throughout the flight the vari-

ance of the float ambiguities would remain similar. Even in this case the success rate
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of half cycle ambiguity resolution could be expected to be considerably lower than that

of full cycle ambiguity resolution. We would therefore need to use the best estimator

available, the constrained LAMBDA method.

Double difference carrier phase measurements are normally ambiguous to one full cycle.

A half cycle on one carrier phase observation before differencing introduces three further

possible states - integer, minus one half cycle of plus one half cycle. In the worst case all

of the undifferenced observations are half cycle ambiguous and the double difference ob-

servation can take nine states for each integer candidate. This extra number of candidates

alone will make constrained LAMBDA method impractical.

In Chapter 4 it was observed that the quality of the code data does in fact not remain

constant throughout the flight and can degrade considerably until full phase tracking is

regained. Even with the optimal ambiguity estimator and allowing a large number of

search candidates the success rate of half cycle ambiguity resolution can therefore be

expected to be negligibly low.

An estimate of the platform attitude from another source, independent of the code observ-

ables, can be used to compute a float ambiguity solution. If it is of sufficient precision

and accuracy this float solution will lead to a high ambiguity resolution success rate. For

a new estimate of the platform attitude this work now turns to the carrier phase triple

difference observable, and modelling techniques. Both give an estimate of the platforms

rotation rate which may be integrated over time to give the change in platform attitude.

5.3 The Triple Difference Observable

In Section 2.6 the triple difference observable was introduced.

Its observation equation is reproduced here;
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λδ∇∆φ
i j
ab = δ∇∆ρ

i j
ab + ε(δ∇∆φ) (2.14)

In the triple difference observable the integer ambiguity has been removed if it has not

changed between epochs (a cycle slip). This will also be true of the half integer ambigu-

ities.

5.3.1 Relative Attitude Estimation

The triple difference geometric range δ∇∆ρ
i j
ab can be used to obtain the change in baseline

between epochs. This is related to the relative velocity of the antennas, or angular velocity

of the GNSS attitude system. The triple difference observable can therefore be used to

estimate the change in attitude over time.

Assuming no cycle slips, the total error in the attitude obtained using the triple difference

is composed of two parts. The error in the start attitude and the sum of the errors in the

angular velocity estimates.

If the sum of the errors in the angular velocity estimates are sufficiently low and the start-

ing attitude is of high quality, the triple difference observable may be used to give a float

estimate of the attitude and ambiguities. The initial attitude estimate will be high quality

from a fixed ambiguity estimate while signal tracking is good and the triple differenced

observable can then be used to give a float estimate in subsequent epochs.

While the error in the attitude obtained using the triple difference observable remains

lower than the error in a code based float solution, it is a better option to use as the float

solution.

The same is true when processing data in reverse. In post-processing or even small la-

tency applications the triple difference may be used to provide float estimates backwards

in time from a fixed ambiguity attitude estimate. If the sum of the errors in the angular
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velocity estimates are low the triple difference observable may even provide an attitude

estimate which is of high enough quality to negate the need to fix ambiguities during half

cycle carrier phase tracking.

5.3.2 Cycle Slip Correction Using the Triple Difference

If the triple difference geometric range δ∇∆ρ
i j
ab can be estimated from another source

it can be removed from the triple difference observations leaving only cycle slips and

noise. In the current application this requires an estimate of the platform angular velocity

to obtain δ∇∆ρ
i j
ab.

δ∇∆φ
i j
ab =

∆(δ∇∆ρ
i j
ab)

λ
+δ∇∆Ni j

ab + ε(δ∇∆φ) (5.1)

Where ∆(δ∇∆ρ
i j
ab) is the error in the triple difference geometric range prediction and

δ∇∆Ni j
ab is a cycle slip.

If the sum of the error in the triple difference geometric range estimate and the noise

ε(δ∇∆φ) is less than the magnitude of a cycle slip, the slip can be detected. In the current

application we need to detect half cycle changes.

The problem of obtaining an estimate of the platform angular velocity remains. In pre-

vious work it has been obtained from code and doppler GNSS observation (Kim and

Langley, 2003). In the current application these prove to be too noisy and unreliable for

half cycle slip resolution. As seen in Chapter 4, code measurements in particular are

unreliable after signal tracking disturbances.

Another option is to use a second navigation sensor, such as an inertial measurement unit.

The cost and weight penalties of this approach negate the benefits of using GNSS attitude

determination.
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In this work a method which uses mathematical models to predict the platform motion is

developed.

5.3.3 Triple Difference Summary

• The triple difference observation can provide precise angular velocity estimates

without needing to resolve ambiguities. It is usable with full and half cycle am-

biguous carrier phase measurements.

• The angular velocity measurements can be integrated with respect to time in order

to obtain an estimate of the change in attitude.

• The estimate of the change in attitude can be used to produce a double difference

float solution from a fixed solution at another epoch.

• The triple difference observation is corrupted by cycle slips.

• To estimate and correct for cycle slips an estimate of the angular velocity is required

to remove its effect on the triple difference observation.

• In this work this estimate will be derived from a model of the platforms motion.

5.4 Attitude Modelling

In this section three models of the platform attitude will be derived. The purpose of

these models is to bridge the gaps in GNSS carrier phase availability and allow cycle slip

detection using the triple difference observable.

Many such models have been proposed for aircraft dynamics and this is an evolving field

of research. In recent years mini-UAVs have provided a challenge to those trying to model

the toques and moments acting on aircraft. The high range of flight modes exhibited by
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the UAV mean that ‘traditional’ methods involving linearisation of the dynamic model

around one stable flight condition are not optimal.

First the simpler kinematic models are introduced for later comparison with the dynamic

model. Then the equations of motion and an aerodynamic model are developed and

combined to form a state space dynamic model of the UAV. The problem of identification

of this model is treated and the instrumentation used is described.

5.4.1 Kinematic Models

Kinematics is the “branch of mechanics concerned with the motions of objects without

being concerned with the forces that cause the motion” (Isaacs, 2000). The most basic

form of kinematic model is the constant attitude model. While suitable for static applica-

tions this model is unlikely to give useful predictions for the length of GNSS outages on

a dynamic UAV platform. To improve the model the variation of attitude with time must

be modelled. Increasing orders of time differentiation will allow the interval between

GNSS measurements to be extended while maintaining the quality of estimate from the

model.

In this section the constant angular rate and angular acceleration models are introduced.

Constant Angular Rate

The constant angular rate model describes the attitude of the platform at epochs k and

k+1 via a first order differential equation.

The quaternion attitude formulation is used in this model to allow small errors which will

accumulate over time to be managed via normalisation of the quaternion vector. Where

q, q̇ and q̈ are the attitude, total angular rate and total angular acceleration parameterised

in terms of the quaternions;



118

qk+1 = qk + q̇∆t (5.2)

Where;

q̇ =
dq
dt

= constant (5.3)

The nature of the dynamics of the small UAV makes this model suitable for use where

the time interval ∆t is kept small. It will work well for constant attitude flight modes

and constant rate turns. For other flight modes the second order differential, or constant

angular acceleration model may be used.

Constant Angular Acceleration

By assuming that the rotation rate of the platform will continue to change in a constant

way after a GNSS solution outage, the constant acceleration model is obtained.

The validity of this model over time will depend on the flight mode when the GNSS

solution is lost. This model will work well for constant attitude, constant turn rate and

constant acceleration into and out of a turn. If the flight mode changes during the outage

this model will fail.

qk+1 = qk + q̇0∆t +
1
2

q̈∆t2 (5.4)

Where;

q̈ =
dq̇
dt

= constant (5.5)

5.4.2 The Attitude Dynamics Model

Dynamics is “the branch of mechanics concerned with the motion of bodies under the

action of forces” (Isaacs, 2000). It is the study of the forces acting to rotate the UAV
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which will allow us to predict its change in attitude over time. This section will develop

a model of these forces and the motion that results through the application of Newton’s

second law.

5.4.3 Fundamentals and Assumptions

Reference Frames

The equations of motion derived below will assume that the reference frame is inertial, ie

one in which a bodies motion remains unchanged unless a force is applied. In an inertial

reference frame Newton’s laws of motion are valid. An inertial frame is non-rotating and

fixed relative to the stars.

For the purposes of this work the local level frame described in Chapter 3 is considered

an inertial frame. While this is not strictly true due to the earths rotation relative to the

stars, it is a fair assumption given that the earths rotation is negligible in the timescales

concerned and the forces due to this rotation are negligible.

A further reference frame known as the wind frame must also be considered. The x axis

of the wind frame points from the UAV centre of gravity along the velocity vector. When

the UAV velocity points along the body frame x axis then the wind and body frames are

collinear. This is known as ‘trimmed flight’. The rotation of the wind x axis about the

body y axis is known as the ‘angle of attack’ α. The rotation of the wind x axis about

the body z axis is known as the ‘angle of sideslip’ or β. This relationship is depicted in

Figure 5.1.

The origin of the wind axis is called the ‘aerodynamic centre’ of the UAV. If it collocated

with the centre of gravity (the origin of the body frame) then no rotation will result from

the linear movement of the UAV.

As described in Chapter 3, the platform attitude is defined as the rotation between the
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xbody

ybody

xwind

ywind

Wind Vector, V

−α

zbody

zbody

xbody

zwind

xwind

Wind Vector, V

β

ybody

Figure 5.1: The relationship between the wind frame and the body frame.

local level and body frames through the euler angles φ, θ and Ψ. Since the dynamic

model is developed in the body frame the rotation rates in the body frame p, q and r will

not be identical to the roll, pitch and yaw rates φ̇, θ̇ and Ψ̇ unless the local level and body
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frames are parallel.

In all other cases the relationship is ((Duke et al., 1988));

Φ̇ = p+qsinΦ tanθ+ r cosΦ tanθ

θ̇ = qcosΦ− r sinΦ

ψ̇ = q+qsinΦsecθ+ r cosΦsecθ

(5.6)

Assumptions

The aircrafts moment of inertia is constant. This assumption is only truly valid for

short time spans since, in most UAVs, fuel will be used over the course of the flight. If

payload is moved or dropped during flight this assumption will be violated. This is not

the case for the survey UAVs of interest to this work.

The mass of the UAV is symmetric in the plane defined by the xb and zb axes. Any mo-

tion in the xb-zb plane will now be termed ‘symmetric’, for example wings level climbs,

descents or loops. Any motion out of this plane, for example banked turns or yaw, will

be called an ‘asymmetric’ motion. This assumption allows simplification of the inertia

matrix as will be seen below.

The UAV is a rigid body. Since the UAV platform will flex due to aerodynamic forces

this assumption will be invalidated when the platform dynamics increase. For the pur-

poses of this work it is assumed that the small UAV is sufficiently rigid to withstand these

forces without significant flex. If this assumption is violated the effect will be a change

in the moment of inertia and a small change in the aerodynamic properties.
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Rotational Dynamics

When considering rotational dynamics it is common to consider the Torque (T) acting to

rotate the body. Torque is the analogue of the concept of force used in linear dynamics.

It is defined as the “product of a force and its perpendicular distance from a point about

which it causes a rotation or torsion” (Isaacs, 2000).

If torque is the analogue of force then the moment of inertia (I) is the analogue of mass.

It is the sum of all elements of mass multiplied by the square of their distance from the

axis of rotation.

The analogue of Newton’s second law is therefore:

Tb = Iω̇b (5.7)

Where ω̇b is the rotational acceleration. The subscript b denotes a quantity in the body

frame.

Angular momentum (H) is the analogue of linear momentum. It is the product of of the

angular velocity of the body (ω) and its moment of inertia (I) or (in the body frame):

Hb = Iωb (5.8)

Expanding Equation 5.8 as in (Calhoun, 2006) we can derive:

Hb =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz




p

q

r

≡ Iωb (5.9)

Where p,q and r are the rotation rates about the body x,y and z axis. These are otherwise
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known as the roll rate, pitch rate and yaw rate respectively. I is hereafter known as the

inertia matrix. Its elements describe the body mass distribution around the origin.

The assumptions made above mean that the inertia matrix, I, can be reduced to:

I =


Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz

 (5.10)

5.4.4 Equations of Motion

The derivation of the rotational equations of motion in this work will follow (Stevens and

Lewis, 1992). We begin by modelling the motion caused by torques acting on the UAV.

We then go on to approximate the torques in terms of their causes.

The torque T, acting on the UAV can be expressed in the body frame using Newton’s

second law as:

Te =
d
dt

Hb (5.11)

The torque in Equation 5.11 is expressed in the inertial frame (the ECEF frame, denoted

by the subscript e). For simplicity we will estimate the torques in the body frame since the

causes of those torques act in the body frame. Therefore the Coriolis law (or ‘transport

theorem’) is used to transform Equation 5.11 from the inertial frame to the rotating body

frame;

Tb = Ḣb +ωb×Hb (5.12)

Where Ḣb is the derivative of the angular momentum with respect to time. We can now
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expand Equation 5.12 to give the torques in terms of the angular rates and accelerations;

Tb = Iω̇b +ωb× (Iωb) (5.13)

Expanding again;

Tb =



Ix 0 −Ixz

0 Iy 0

−Izx 0 Iz





ṗ

q̇

ṙ


+





p

q

r


×



Ix 0 −Ixz

0 Iy 0

−Izx 0 Iz





p

q

r




(5.14)

Finally;

Tb =



L

M

N


=



ṗIxx +qr(Izz− Iyy)+(pq+ ṙ)Ixz

q̇Iyy + rp(Ixx− Izz)+(p2− r2)Ixz

ṙIzz + pq(Iyy− Ixx)+(qr− ṗ)Ixz


(5.15)

Where L,M and N are known as the roll moment, pitch moment and yaw moment. Equa-

tion 5.15 allows us to relate the components of the rotation rate to the components of

the torque applied to the airframe. Rearranging Equation 5.15 for the rotational acceler-

ations;
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

ṗ

q̇

ṙ


=



1
IxIz−I2

xz
{Iz[L+(Iy− Iz)qr]+ Ixz[N +(Ix− Iy + Iz)pq− Ixzqr]}

1
Iy
[M+ pr(Iz− Ix)+(r2− p2)Ixz]

1
IxIz−I2

xz
{Ix[N +(Ix− Iy)pq]+ Ixz[L+(Iy− Ix− Iz)qr+ Ixz pq]}


(5.16)

It can be seen that these equations are coupled and non-linear functions of the rotation

rates p,q and r.

Given an estimate of the torques causing rotation we are now in a position to predict the

rotational accelerations. Integration of these accelerations over time will give an estimate

of angular velocity and from there, angular displacement.

The equations of motion derived so far do not account for the causes of the torques.

In order to accurately predict the motion of the UAV we need to develop a model to

approximate the torques in terms of the control inputs and characteristics of the airframe.

This is done using the aerodynamic model.

5.4.5 The Aerodynamic Model

In the aerodynamic model the torque is described in terms of the ‘dynamic pressure’,

the torque on the UAV due to the movement of the UAV surface through the air. This

dynamic pressure is a result of a number of factors including;

• Control Inputs, δail (aileron), δrud (rudder), δelv (elevator) and δth (throttle).

• Air-relative velocity, through the angle of attack and sideslip α and β.
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• The rotation rates p, q and r.

• The body geometry.

• The local density of the air.

We can say that;

L =Cl q̄Sb =Cl

(
1
2

ρV 2
)

Sb

M =Cmq̄Sc̄ =Cm

(
1
2

ρV 2
)

Sc̄ (5.17)

N =Cnq̄Sb =Cn

(
1
2

ρV 2
)

Sb

Where;

Cl , Cm and Cn are dimensionless coefficients which will vary with control input and rota-

tion rate,

q̄ is the free stream dynamic pressure,

ρ is the air density,

V is the airspeed,

S is a reference area (in this case the wing planform area),

b is the wingspan,

and c̄ is the mean aerodynamic chord of the wing.

Recall the assumption made in Section 5.4.3 that the airframe is symmetrical in the xb-

zb plane. Motions in this plane are called symmetric motions and those out of this plane

asymmetric. We now further assume that state and control variables relating to symmetric

parameters (e.g. θ, q and δelv) have no influence on the asymmetric coefficients Cl and

Cn and vice versa.
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Control Inputs

As throughout this work the mini-UAV in question is assumed to be a propeller driven

fixed wing aircraft suitable for survey work. Control inputs are made to the aircraft to

control pitch, roll, yaw and thrust. In the derived model we take a typical fixed wing

aircraft layout with independent aileron, rudder and elevator inputs. The model will need

to be adapted for UAVs with other control layouts.

In this work we take the aileron control to produce a pure rolling motion, the rudder to

produce a combined roll and yaw motion and the elevator to produce a pure pitch motion.

The throttle input controls the rotation speed of the propeller and therefore the thrust. The

throttle input needs to be considered in this work since it will affect not only the thrust

force but also all of the torques.

If the motor, and thrust vector, is collinear with the body x axis then no rotation will

be caused regardless of the magnitude of the thrust. Any misalignment of the motor will

cause the thrust rotate the UAV at a rate determined by the magnitude of the misalignment

and the thrust.

A change in the throttle setting will result in a rotational acceleration of the propeller.

This in turn will produce a reaction which will rotate the UAV. This is depicted in Figure

5.2.
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Figure 5.2: Engine Torques

The Aerodynamic Coefficients

In Equation 5.17 the aerodynamic coefficients Cl , Cm and Cn were introduced. The mag-

nitude of these coefficients will vary with control input and aerodynamic restoring forces.

The partial derivatives of the aerodynamic coefficients with respect to the control inputs

and aerodynamic restoring forces are known as the control and stability derivatives. For

example CLΩ is the partial derivative of CL with respect to parameter Ω;
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δCL

δΩ
=CLΩ (5.18)

The full expression for the torques L, M and N now becomes;



L

M

N


=



(
CLββ+CLp p+CLrr+CLδailδail +CLδrudδrud +CLδthδth

)
b

(
CM0 +CMαα+CMqq+CMδelvδelv +CMδthδth

)
c̄

(
CNββ+CNββ2 +CN p p+CNrr+CNδrudδrud +CNδthδth

)
b


ρV 2S

2

(5.19)

The control and stability derivatives are dimensionless and non-linear. Traditionally the

model 5.19 is now linearised around a ‘trimmed flight’ condition and values for the

derivatives identified.

The values may be experimentally determined using wind tunnels and / or flight data or

modelled using software such as the United States Air Force Stability and Control Digital

DATCOM. Such software takes the geometry of the aircraft as an input and returns values

of for the derivatives at a set of flight conditions. These values can then be used in a

‘lookup table’ when modelling the flight dynamics.

In flight the mini-UAV has a low Reynolds number, the ratio of the inertial forces to the

aerodynamic forces is very low when compared to larger aircraft (Gursul, 2004). This

condition causes the models used in software such as Digital DATCOM to fall down

when dealing with very small aircraft such as the mini-UAV.

Alternatively the coefficients may be estimated in flight. For example the work of Salman
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et al (Salman et al., 2006) gives a method for identifying a non-linear state-space model

of the mini-UAV. These methods require accurate measurement of the rotation rates and

accelerations for model estimation.

In the current application this is not possible. The purpose of the model is to bridge gaps

in the attitude parameter estimates.

Simplified Model

In this work a simplified approach is developed which reduces the number of coefficients.

We know that the angles of sideslip and attack are proportional to the rotation rates p, q

and r. Simplifying 5.19 we arrive at the model used by (Salman et al., 2006);

L = L(p,r,δail,δrud,δth) = lp p+ lrr+ lδail δail + lδrud δrud + lδthδth

M = M(q,δele,δth) = mqq+mδeleδele +mδthδth (5.20)

N = N(p,r,δail,δrud,δth) = np p+nrr+nδrud δrud +nδthδth

Where the l�, m� and n� terms are approximations of the aerodynamic derivative coeffi-

cients.

We further assume that the primary torque acting to slow the roll of the UAV is pro-

portional to the roll rate and the primary torque acting to slow the yaw of the UAV is

proportional to the yaw rate. That is that lrr ≈ 0 and np p≈ 0. The low Reynolds number

means that aerodynamic forces will return the rotation rate to zero very quickly after a

control input. The lp p and nrr terms will therefore be large and negative.

Having made this assumption the aerodynamic model of the torques is comprised of two

parts. One part is a torque which acts to restore the UAV to a zero rotation rate. It is
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proportional to the rotation rate. The other part is a torque which acts to increase the

rotation rate. It is proportional to the control inputs.

L = L(p,r,δail,δrud,δth) = lp p+ lδail δail + lδrud δrud + lδthδth

M = M(q,δele,δth) = mqq+mδeleδele +mδthδth (5.21)

N = N(p,r,δail,δrud,δth) = nrr+nδrud δrud +nδthδth

Combining the equations of motion 5.16 and the aerodynamic model of the torques 5.21

we get the final model for identification:

ṗ =
1

IxIz− I2
xz
{Iz[(lp p+ lδail δail + lδrud δrud + lδthδth)+(Iy− Iz)qr]+

Ixz[(nrr+nδrud δrud +nδthδth)+

(Ix− Iy + Iz)pq− Ixzqr]} (5.22)

q̇ =
1
Iy
[(mqq+mδeleδele +mδthδth)+ pr(Iz− Ix)+(r2− p2)Ixz] (5.23)

ṙ =
1

IxIz− I2
xz
{Ix[(nrr+nδrud δrud +nδthδth)+(Ix− Iy)pq]+

Ixz[(lp p+ lδail δail + lδrud δrud + lδthδth)+

(Iy− Ix− Iz)qr+ Ixz pq]} (5.24)
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The inertia matrix I, coefficients l�, m�, n� and control inputs δail , δele, δrud , δthr are

required as inputs to the model.

5.4.6 Model Inputs

Inertia Matrix

The inertia matrix, I, can be determined experimentally or via mathematical models of the

UAV mass distribution. For the small UAV the experimental method is straightforward,

accurate and preferred.

Experimental estimation of the inertia parameters is based on measuring the period of

compound and bifilar pendulums - for example, (Jardin and Mueller, 2007) and (Bottasso

et al., 2009).

The procedure used for the estimation of the inertia matrix of the K-series UAVs in this

work was published in (Ou et al., 2008).

The effect of increased inertia is to increase the ‘lag’ of the UAV’s response to control

input since more torque is required to accelerate the rotation of the UAV. Similarly larger

inertia will increase the time taken to achieve trimmed flight after a control input since

the aerodynamic torques cannot reverse the effects of a control input as quickly.

Control Inputs

In this work the control surface deflection and thrust are not measured directly. Instead

the input to the actuators used to move the surfaces and throttle is measured.

These actuators are servo motors with a ‘Pulse Position Modulation’ (PPM) input. The

position of the actuator, and by inference the thrust or control surface deflection, is pro-

portional to the width of an input pulse which may vary from 1-2ms. This pulse is
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received by the servo at 50 Hz giving measurements of δail ,δrud ,δele and δth ten times

faster than the GNSS attitude system update.

A calibration is used to map the servo input (in ms) to control surface deflection (in radi-

ans) or thrust (in Newtons). In this work the calibration of the aileron, rudder and elevator

deflections was undertaken in a wind tunnel at various airspeeds to check the deflection

angle is unaffected by the force applied by an increasing airflow over the control surface.

At airspeeds up to 30 ms−1 the effect on the control surface deflection was negligible.

The control input pulses can be measured by hardware either mounted onboard the UAV

or at a ground station. There is therefore no need to add any hardware to the UAV itself.

Coefficients

The approximations to the stability coefficients lp, mq and nr used in the model will need

to be large and negative to model a large restoring torque on the UAV after a control

input.

If they are too large the predicted resorting torque will be too large and the model will

not be stable. If they are too small the model will not predict a return to trimmed flight

for a long time after control input. From experience and knowing the Reynolds number

of a small UAV is small, this does not reflect reality.

In this work the approximations to the stability coefficients have been selected to provide

a stable model in combination with the measured inertia matrix while providing as fast a

return to stable flight as possible.

For the present research the assumption is made that the approximations to the control

coefficients are constant with respect to the control inputs. This is true if the control

inputs are kept small.

If the approximations to the control coefficients are too large the model will be unstable



134

since the predicted torque and acceleration will be too large to be countered by the sta-

bilising aerodynamic torques. If they are too small the influence of the modelled control

input will be too small to allow the model to reflect reality. In the proposed method the

control coefficients should be selected to match the model output to a fixed ambiguity

solution after signal tracking resumes.

5.4.7 Time-Stamping and Datalogging

In this work the servo inputs were logged and each input pulse time-stamped using GPS

time. Accurate time stamping is essential to accurately align the dynamic model with the

GNSS attitude system.

A basic stand alone GPS position gives a time solution to within 50µs. This is true even

with substantial code biases. A time-stamp error of 50µs will lead to a negligible attitude

error even at very high rotation rates.

The hardware required to measure, time-stamp and log the control inputs is the only

additional hardware required on the mini-UAV to implement the technique proposed in

the current work. The time-stamp and logging equipment will be necessary for other

elements of the UAV payload and so the only addition in most cases will be a low cost

and lightweight circuit to measure the pulse time.

5.4.8 Attitude Modelling Summary

• Kinematic models can provide a prediction of the change in platform attitude over

time without requiring control inputs and with only one calculation.

• A constant angular velocity model is suitable for constant attitude flight modes and

constant rate turns. A constant angular acceleration model is suitable for constant

attitude, constant rate turns and for transition into / out of a turn.
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• A dynamic model predicts the torques acting the UAV. Through equations of mo-

tion the torques are then converted to rotational accelerations.

• The torques are predicted using an aerodynamic model. Dimensionless coefficients

are used to convert rotation rates and control inputs into relaxing and disturbing

torques.

• The dimensionless coefficients are traditionally determined using computational

fluid dynamics or experimental methods. The first method breaks down when

modelling the turbulent flow around a mini-UAV. The second requires an accu-

rate attitude estimate throughout all manoeuvres. This is not possible in the survey

UAV application.

• In this work assumptions are made to allow the dimensionless coefficients to be

chosen to match the attitude estimate at the end of a signal outage to the ambiguity

fixed solution.

5.5 Algorithms

5.5.1 Bridging Signal Outages

The roll, pitch and yaw of the UAV is predicted using the kinematic or dynamic

models until carrier phase tracking resumes.

For the kinematic models the angular velocity or angular acceleration is integrated with

respect to time to give the predicted change in attitude.

For the dynamic model the angular acceleration is predicted at each discrete epoch where

a control input is measured. The accelerations are then twice integrated over time to

predict the change in attitude. Use of the dynamics mode is depicted in Figure 5.3.
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Figure 5.3: Use of the Dynamic Model

5.5.2 Cycle Slip Correction

The attitude dynamic or kinematic models are used to adjust the triple difference

observable to leave only cycle slips for detection and correction.

So long as the relationship given in Equation 5.25 is true, half cycle slips can be detected.

δ∇∆φ
i j
ab− (∆(δ∇∆ρ

i j
ab)+ ε(δ∇∆φ))< 0.5 (5.25)

The triple difference geometric range δ∇∆ρ
i j
ab is calculated from an estimate of the change

in attitude over the time separating the triple differenced epochs.
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The baseline components x(t1), y(t1), z(t1) are computed from the roll, pitch and yaw

using the inverse of the rotation matrix 3.21;

rll = (Rb
l )
−1rb (5.26)

Where rb is known and

re =


x(t)

y(t)

z(t)

= (Re
l )
−1
[
(Rb

l )
−1rb

]
(5.27)

If x(t0), y(t0), z(t0) and x(t1), y(t1), z(t1) are the baseline components at the first and

second epochs used in the triple difference then;

δ∇∆ρ
i j
ab = ∇∆ρ(t1)

i j
ab−∇∆ρ(t0)

i j
ab

=
[
(ρ(t1)i

a−ρ(t1)i
b)− (ρ(t1) j

a−ρ(t1)
j
b)
]
−
[
(ρ(t0)i

a−ρ(t0)i
b)− (ρ(t0) j

a−ρ(t0)
j
b)
]

(5.28)

With;

ρ(t)i
a =

√
(X(t)i− x(t))2 +(Y (t)i− y(t))2 +(Z(t)i− z(t))2 (5.29)

Where X(t), Y(t) and Z(t) are the satellite positions at time t.

If ∆(δ∇∆ρ
i j
ab) and ε(δ∇∆φ) are small then the cycle slip δ∇∆Ni j

ab is;
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δ∇∆Ni j
ab =

[
δ∇∆φ

i j
ab− (∆(δ∇∆ρ

i j
ab)+ ε(δ∇∆φ))

]
0.5

(5.30)

Where [•]0.5 represents rounding to the nearest half integer.

The triple and double difference observables can now be corrected using δ∇∆Ni j
ab.

The process is depicted in Figure 5.4.
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Figure 5.4: Cycle Slip Correction

5.5.3 Using Half Cycle Ambiguous Carrier Phase

The cycle slip corrected triple differenced carrier phase observable is used to ob-

tain estimates of the platform angular velocity. These are integrated over time to

estimate the change in platform attitude and a float ambiguity solution. Ambiguity

resolution can then be attempted.

The integration can be performed forwards or backwards in time. Forwards it provides

an estimate of the change in platform attitude which is likely to be significantly more

accurate than that available from the kinematic of dynamic models. If it remains suffi-
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ciently accurate it can be used to provide a double difference float solution of the integer

ambiguities when full cycle carrier phase tracking resumes.

Backwards in time from an ambiguity fixed attitude solution the integration provides an

estimate of the platform attitude during half cycle carrier phase tracking. The estimated

attitude is again likely to be significantly more accurate than that available from the kine-

matic of dynamic models and may be good enough for georeferencing purposes.

The triple difference observable is linear with respect to the change in relative position

of the antennas. Scaling the observations with the time between measurement epochs ∆t,

the inter antenna velocity v is given by:

λ
δ∇∆φ

i j
ab

∆t
= A.v+δ∇∆ε

i j
ab (5.31)

Where A is the design matrix, consisting of the double difference unit vectors, as intro-

duced in Section 3.3.3, Equation 3.29. The antenna relative velocity is now solved for

using a standard least squares estimator.
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Figure 5.5: Use of the Triple Difference Velocity (Forwards)
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Figure 5.6: Use of the Triple Difference Velocity (Backwards)

5.6 Conclusion

In this chapter three algorithms have been developed for use in case of GNSS signal

tracking problems.

The first uses a kinematic or dynamic model to predict the mini-UAV attitude during

signal outages. This allows a graceful degradation of the attitude solution when carrier

phase tracking is lost. It also provides an attitude solution which may be used as the float

solution when full carrier phase tracking resumes.

The second uses the output from kinematic or dynamic models to remove cycle slips from

the triple difference carrier phase observation. The modelled change in attitude is used to

compute a predicted triple difference geometric range. When this is subtracted from the

triple difference observable only cycle slips will remain which can then be identified.

The third algorithm uses the cycle slip corrected triple difference carrier phase observable

to compute the change in attitude at each epoch. This is possible even with half cycle

ambiguous carrier phase measurements. The estimated attitudes are used to form a float

solution for use in half integer ambiguity resolution.
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The following questions remain to be answered;

• How accurate is the rotational velocity estimated using the triple difference observ-

able with half and full cycle ambiguous measurements?

• How accurate does the attitude prediction from a kinematic or dynamic model need

to be to correct for half cycle slips under normal mini-UAV flight conditions?

• How well do the kinematic and dynamic models match real UAV flight dynamics?

For how long do they remain valid?

• What is the success rate of half cycle ambiguity resolution using the triple differ-

ence observable?

These questions will be addressed in the final chapter.
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Chapter 6

Algorithm Testing

6.1 Introduction

In Chapter 5 three novel algorithms were developed for bridging GNSS signal outages,

identifying and correcting half cycle slips and using half cycle ambiguous carrier phase

measurements. In this chapter the algorithms and the methods contained within them are

tested.

First the use of the triple difference observable to estimate the platform change in attitude

is examined using ‘real world’ static GPS measurements. Static measurements allowed

analysis of the precision and drift of the attitude estimates over time.

Next the use of the geometry corrected triple difference observable to detect cycle slips is

investigated. In the current application the antennas relative motion can only come from

a rotation of the baseline between them. The accuracy requirement for the estimate of

this baseline rotation is examined and a lower limit derived for the specific case of a 1m

baseline and a half cycle slip.

Finally the kinematic and dynamic models will be tested using the output from a UAV

mounted Inertial Measurement Unit (IMU). Their suitability for use in correcting cycle

slips and bridging signal outages will be examined and their limitations discussed.
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6.2 Angular Velocity Estimation Using the Triple Differ-

ence Observable

In this work the linear relative velocity between antennas is estimated from the triple

difference observable (via Equation 5.31).

Using a priori knowledge of the baseline length it is possible to directly estimate the

angular velocity. However using that approach introduces angular velocity errors through

any error in the measurement of the baseline length.

Consequently the approach taken is to estimate linear velocities at each measurement

epoch and convert a derived estimate of the change in position to an estimate of the

change in attitude when required.

In this section the precision and accuracy of the linear velocity estimates derived using

the triple difference carrier phase will be examined. The precision is quantified using the

standard deviation as in Chapter 4.

6.2.1 Static Tests

To examine the performance of the triple difference observable as a measure of angu-

lar velocity a dataset generated using the GNSS hardware simulator was used. In the

simulated scenario one antenna is static 1 metre away from another on a level baseline.

The purpose of this test is to quantify the accuracy and precision of the rotational velocity

estimates over a typical short baseline. The test is performed under good conditions with

no multipath and properly tracked phase and code.

The results of processing this dataset are given in Tables 6.1 and 6.2. The results are sep-

arated into plan and height (yaw and roll/pitch). The satellite geometry can be expected

to make the height (roll / pitch) results worse than the plan (yaw) results.
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Table 6.1: Linear Velocity Estimates using the Carrier Phase Triple Difference

(Hardware Simulator)

Plan Height

Accuracy 8.0x10−5 ms−1 2.7x10−4 ms−1

Precision 8.1x10−3 ms−1 1.6x10−2 ms−1

Table 6.2: Rotational Velocity Estimates using the Carrier Phase Triple Difference

(Hardware Simulator)

Yaw Roll / Pitch

Accuracy 4.8x10−3 ◦/s 1.6x10−2 ◦/s

Precision 0.3 ◦/s 0.87 ◦/s

To validate these results the data collected on a ‘real world’ short baseline were processed

in the same manner. The experimental setup is described in Section 4.4 and the results

are given in Tables 6.4 and 6.3.

Table 6.3: Linear Velocity Estimates using the Carrier Phase Triple Difference (‘Real

World’)

Plan Height

Accuracy 4.1x10−5 ms−1 1.4x10−4 ms−1

Precision 2.0x10−2 ms−1 2.7x10−2 ms−1
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Table 6.4: Rotational Velocity Estimates using the Carrier Phase Triple Difference

(‘Real World’)

Yaw Roll / Pitch

Accuracy 1.8x10−3 ◦/s 5.0x10−3 ◦/s

Precision 0.6 ◦/s 1.5 ◦/s

The small biases seen in the velocity estimates will accumulate and appear as a drift in

the position or attitude estimates. Figure 6.1 shows this drift in the attitude over time

using the ‘real world’ short baseline, static dataset.
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Figure 6.1: Drift in the Attitude Derived from Triple Difference Angular Velocity

Estimates
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6.2.2 Simulated UAV Flight

The third dataset examined is the zero-baseline simulated data used in Chapter 4, Section

4.6. This dataset was designed to reproduce the problems seen in the real UAV data by

featuring turns which induce signal tracking problems followed by a period of straight

and level flight for recovery.

The purpose of this test is to allow comparison of the linear velocity estimates obtained

using variable quality data on a moving baseline with those obtained in the static test.

By definition the linear velocity between the antennas in a zero baseline test is zero.

The rotational velocity is undefined. This allows simple recovery of the linear velocity

accuracy and precision for comparison with the previous static test.

In Figure 6.2 the error in the velocity estimates for a section of the dataset is shown.

Estimates obtained using half cycle ambiguous carrier phase measurements are shown in

red. Table 6.5 gives statistics for the entire dataset.

Table 6.5: Linear Velocity Estimates using the Carrier Phase Triple Difference,

Simulated UAV Dataset

Plan Height

Accuracy 3.3x10−5 ms−1 3.4x10−4 ms−1

Precision 1.4x10−3 ms−1 2.7x10−2 ms−1
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Figure 6.2: Error in the Triple Difference Velocity Estimates from the Simulated UAV

Dataset. Half Cycle Ambiguous Measurements in Red.

6.2.3 Discussion

The results above show that the triple difference carrier phase observable is capable of

giving good linear and angular velocity estimates.

In both simulated and real environments low cost equipment gave relative velocity esti-

mates with noise levels of around 2-3cm per second (standard deviation). Angular ve-

locity estimates had a precision of around 1 degree per second on a 1m baseline. The

satellite - receiver geometry means that the yaw estimates are more than twice as good as

the pitch / roll estimates.

Small biases in the angular velocity estimates appear as drifts in the attitude estimates.

Over time these drifts become significant. For the proposed algorithms the triple dif-
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ference will only be used when half cycle ambiguous carrier phase measurements are

all that are available. This situation lasts for around 10 seconds after a signal outage.

Over this time the drift in the angular velocity estimates is insignificant compared to their

precision.

These results show that the triple difference attitude estimates are not precise enough

for georeferencing. Within the short ( 10s) timescales being considered they are consid-

erably more precise and equally accurate compared with those achieved using the code

dominated ‘float’ estimates.

No significant loss of accuracy or precision was observed when using half cycle ambigu-

ous phase observations (Figure 6.2).

6.3 Half Cycle Slip Correction

In this section the correction of half and full cycle slips is explored. The aim is to deter-

mine the effect of error in the attitude prediction on the ability to detect and resolve cycle

slips.

For the purposes of this section a simple scenario was implemented on the GNSS hard-

ware simulator. One simulated antenna circles the other at 1m distance and at constant

angular velocity. Again the uBlox LEA-5T low cost receiver was used to make measure-

ments from the simulated RF signal.

A short example of the triple difference observables which are formed from this data

is given in Figure 6.3. A half cycle slip is artificially inserted into one observable 97

seconds into the example.
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Figure 6.3: Circular Dataset, Triple Difference Observable. A half cycle slip appears in

one observable (blue) at around 97 seconds.

The same set of triple difference observables, corrected for angular velocity, is shown in

Figure 6.4. Use of the hardware simulator means that the trajectory is perfectly known

and the velocity component of the triple difference observables can be removed com-

pletely. It can be seen that the cycle slip is now clearly identifiable.
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Figure 6.4: Circular dataset, triple difference observable corrected for angular velocity.

A half cycle slip appears in one observable (blue) at around 97 seconds.

The standard deviation of the geometrically corrected triple difference observables (ε(δ∇∆φ))

is 0.015 cycles. They will therefore make a minimal contribution to Equation 5.25 repro-

duced here:

δ∇∆φ
i j
ab−λ(∆(δ∇∆ρ

i j
ab)+ ε(δ∇∆φ))< 0.5 (5.25)

All that remains is the error in the triple difference geometric correction which arises

from the predicted attitude error (∆(δ∇∆ρ
i j
ab)). The magnitude of this error will vary for

each triple difference observation. It will depend on the angle between the error vector

and the double difference observation vector used in the design matrix.

This is depicted for two dimensions in Figure 6.5. An attitude error ∆θ causes an error
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vector ∆(δ∇∆ρ). This is then projected onto the double difference observation vector to

give the geometric error (∆(δ∇∆ρ
i j
ab)).

∇∆ Vector
∆(δ∇∆ρ

i j
ab)

∆θ

Baseline
Length

∆(δ∇∆ρ)

Figure 6.5: Error in the triple difference geometric correction which arises from the

angular error ∆θ.

The situation depicted in in Figure 6.5 means that it is not possible to give a unique value

for the maximum angular error which will allow Equation 5.25 to be satisfied. While it

would be possible to calculate a value for the maximum angular error acceptable for each

observation the approach taken in this work is to use the worst case scenario.

In the worst case the double difference observation vector is parallel to the error vector

∆(δ∇∆ρ). This is depicted in Figure 6.6.
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Figure 6.6: Worst case error in the triple difference geometric correction which arises

from the angular error ∆θ.

The chord length ∆(δ∇∆ρ) is;

∆(δ∇∆ρ) = 2lsin
(

∆θmax

2

)
(6.1)

Where l is the baseline length. Rearranging for ∆θmax we have;

∆θmax = 2sin−1
(

∆(δ∇∆ρ)

2l

)
(6.2)

For a 1m baseline length and 0.015 cycle triple difference observation noise a total atti-

tude error of 5.3◦ will satisfy Equation 5.25 even in the worst case.

This maximum total attitude error can be increased by lengthening the inter-antenna base-

line however this will reduce the precision of the altitude estimates.

It also may be reduced to increase confidence in cycle slip detection. In this work how-

ever 5.3◦ is taken as a good indicative value for the purposes of examining the dynamic

models.
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6.4 Kinematic and Dynamic Modelling

In this section the kinematic and dynamic models developed in Chapter 5 will be imple-

mented and tested. Sample UAV flight data is used to test their ‘real world’ ability to

bridge GNSS tracking gaps and correct cycle slips.

6.4.1 Rotation Rate & Control Input Measurement

To examine the performance of the kinematic and dynamic models some measurement

of the body axis rotation rates p, q and r will be needed.

This could be provided by a GNSS attitude system with a fixed ambiguity attitude solu-

tion. The disadvantage of this method is that to fully test the models an attitude /attitude

rate estimate is required at all times, most importantly in periods of flight which are not

straight and level. As has been seen this is not always possible.

A second option is to use an Inertial Measurement Unit (IMU) to directly measure p, q

and r. High data rates and guaranteed availability of measurement in all flight modes

makes the IMU an attractive choice for the purpose of testing the model outputs.

In this research an IMU is used to provide p, q and r measurements over the course

of a dedicated mini-UAV flight. A Crossbow IMU440 unit forms part of the prototype

survey payload of the K70 mini-UAV used in Chapter 4. The IMU440 is typical of

the class of IMUs which can be flown on a mini-UAV and are theoretically capable of

providing measurements of suitable quality for georeferencing purposes. Some important

specification of the IMU440 are given in table 6.6. Details can be found in the datasheet

(Crossbow, 2010).

The total payload weight flown on the K70 UAV is 1kg, the IMU440 constitutes more

than half of this. It is also the single largest item in the payload bay.
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Table 6.6: Crossbow IMU440 Inertial Measurement Unit

Weight 0.55 kg

Size 7.62 x 9.53 x 6.43 cm

Data Rate 100 Hz

Acceleration Range ±10g

Rotation Rate Range ±400 ◦/s

Rotation Rate Resolution 0.02 ◦/s

Rotation Rate In Run Bias Stability <10 ◦/hr

For the test flight the IMU was mounted to match the body axes as closely as possible. A

‘boresight’ rotation calibration from sensor to body axis is therefore unnecessary.

Since the GPS tracking performance is poor no attempt was made to integrate GPS and

INS measurements. The IMU drifts therefore cannot be mitigated in this way. Instead

the drift of each gyro was estimated from static periods before and after flight and the

measurements corrected using this value. Gyro rate biases due to acceleration and tem-

perature changes in flight remain unmitigated.

Angular acceleration was estimated from the angular rate output of the IMU. Noise in the

IMU measurements propagates into the angular acceleration estimate and so an average

of IMU rate measurements was used to derive the angular accelerations. The high rate

IMU output meant that four IMU measurements could be used to derive the angular

acceleration for each model update. Using any more IMU measurements would increase

the risk of filtering out real angular accelerations.

Control inputs were measured using dedicated hardware as described in Section 5.4.6.

They were timestamped and logged using the hardware which also logged the IMU mea-

surements. All of the data from the flight was saved to a flash memory card and post-

processed.
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The control inputs were mapped to control surface angle and thrust force using calibra-

tions performed in a wind tunnel at typical UAV flight speeds.

6.4.2 Test Flight

The flight test was performed within visual range of the pilot at a nominal 400ft (120m)

above ground level. The temperature on the day was around 20◦C and the winds were

steady at less than 5kts (2.5ms−1) throughout.

The K70 mini-UAV flew a series of circuits with frequent turns to remain within safe

visual range of the pilot. On some lines deliberately exaggerated control inputs were sent

to the UAV but the attitudes were kept within the limits of a normal survey flight.

A sample of the rotation rates measured by the Crossbow IMU440 is given in Figure 6.7.

A series of high frequency turns occur between 100 seconds and 130 seconds into the

sample. This is followed by a positive and negative pitch event before a period of level

flight from 150 seconds. After this the normal flight sequence is resumed.

The maximum rotation rate observed in this flight was around 100 degrees per second in

roll.

Since they are not part of a normal survey flight, unusual flight modes were not included

when examining the models performance for cycle slip detection and bridging GNSS

signal outages.

The takeoff and landing phases were also not examined since the low airspeeds involved

will adversely affect the dynamic model performance at times when the signal tracking

performance can be expected to be good.
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Figure 6.7: Rotation rate measured by a Crossbow IMU440 onboard a K70 mini-UAV.

In Figure 6.8 the aileron, elevator and rudder inputs for the same example period are

shown. The throttle setting throughout this period is constant.

Again the coordinated rudder / aileron inputs forming high rate turns are seen after 100

seconds. At around 130 seconds into the example a rudder only input is performed.

The measurement noise associated with measuring the input pulse widths propagates

into the control surface deflection estimates. In this research the standard deviation of the

control surface deflection estimates when static is 0.22 degrees for ailerons, rudder and

elevator. This noise further propagates into the dynamic model estimates.
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Figure 6.8: Control inputs to a K70 mini-UAV.

6.4.3 Cycle Slip Correction

In this section the suitability of the models for use in cycle slip correction will be inves-

tigated. The metric used is the difference between the IMU derived attitude change and

the modelled attitude change over the time between GNSS epochs.

While the IMU output is far from perfect it is used as a ‘truth’ solution over the short

time spans involved. It is expected, and observed in the datasets, that the gyro errors

integrated over short periods will result in small attitude errors.

For 5Hz data as output from the uBlox LEA-5T the time between epochs is 0.2s. Other

low cost receivers are limited to 1Hz data output and so for completeness the models will

be examined over both 0.2s and 1s intervals.
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In Section 6.3 a value of 5.3◦ was derived as the greatest total angular error for successful

cycle slip detection over a 1m baseline.

Two possible baselines are now considered, one to measure roll and heading with anten-

nas on the wingtips, the other with antennas near the nose and tail to measure pitch and

heading.

In Table 6.7 the 95% confidence limit for the two baseline orientations is given. It can

be seen that the best model (lowest confidence limit) is the dynamic model in both cases.

In fact the dynamic model met the criteria in 94.7% of the cases for the Roll / Heading

baseline and 97.4% of estimates for Pitch / Heading.

Table 6.7: Modelled total attitude error 95% confidence limits (5Hz data rate).

Roll / Heading Pitch / Heading

Constant Attitude Rate Model 5.95◦ 5.58◦

Constant Attitude Acceleration Model 15.1◦ 8.39◦

Dynamic Model 5.44◦ 4.72◦

Table 6.8 shows the same limits for a 1Hz data rate. As expected all of the models

perform significantly worse over the longer time between measurements. This time the

dynamic model met the criteria in 50.0% of the cases for the Roll / Heading baseline and

47.7% of estimates for Pitch / Heading.

Table 6.8: Modelled total attitude error 95% confidence limits (1Hz data rate).

Roll / Heading Pitch / Heading

Constant Attitude Rate Model 22.8◦ 12.2◦

Constant Attitude Acceleration Model 74.5◦ 45.2◦

Dynamic Model 18.6◦ 17.2◦

In practice the models will all show better performance for cycle slip detection than
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indicated since the double difference observation vector will rarely be parallel to the

error vector ∆(δ∇∆ρ) and the worst case condition will not often be met.

6.4.4 Bridging GNSS Signal Outages

The second application for the kinematic and dynamic models is bridging GNSS signal

outages. In this section their performance over time will be examined.

Inaccuracies in the rotation rates predicted by the models will result in a drift in the

attitude solution when they are integrated over time. For the purposes of comparison the

rotation rates output by the IMU440 will be taken as truth, and the attitudes obtained by

integrating them over time will be the baseline against which the models will be tested.

Each of the models have been used to predict the change in attitude over time (the ‘in-

tegration period’) and their outputs at the end of the period compared to that given by

the IMU. The ‘integration period’ corresponds to the length of data gap which can be

covered.

The dynamic model is updated at each control input whereas the kinematic models use

the same angular rate or angular acceleration throughout the integration period. For this

test a new ‘integration period’ is started at each control input to give an error value for

each model at each control measurement epoch.

Figures 6.9, 6.10 and 6.11 show the mean error over the entire dataset for each model and

for integration periods of up to 10 seconds.

The errors are plotted on a log10 scale to emphasise the differences at low integration

periods. The errors for all models have been observed to increase in a linear fashion with

integration time.
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Figure 6.9: Relationship between model roll output and IMU for integration times up to

10seconds.

In the body roll axis the dynamic model is significantly better than either of the kinematic

models over all integration periods. As seen in the cycle slip detection application, for

low integration periods the constant rate model closely matches the performance of the

dynamic model.

After 10 seconds the dynamic model has drifted from the IMU prediction by an average of

24◦ compared to 190◦ and 555◦ for the constant rate and constant acceleration kinematic

models. After a more typical signal outage of 2 seconds duration the models have drifted

by 8◦, 42◦ and 116◦ respectively.
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Figure 6.10: Relationship between model pitch output and IMU for integration times up

to 10seconds.

In the body pitch axis the dynamic model is again better than the kinematic models for

most integration periods. This is not true for very short integration periods where it is

slightly outperformed by the constant rate kinematic model.

After 10 seconds the dynamic model has drifted from the IMU pitch prediction by an

average of 47◦ compared to 100◦ and 176◦ for the constant rate and constant acceleration

kinematic models. After a more typical signal outage of 2 seconds duration the models

have drifted by 13◦, 17◦ and 41◦ respectively.
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Figure 6.11: Relationship between model yaw output and IMU for integration times up

to 10seconds.

In the body roll axis the dynamic model is again better than the constant acceleration

kinematic model for all examined integration periods. The constant yaw rate kinematic

model outperforms the dynamic model up to integration periods of 3.5 seconds.

After 10 seconds the dynamic model has drifted from the IMU yaw prediction by an

average of 80◦ compared to 108◦ and 196◦ for the constant rate and constant acceleration

kinematic models. After a more typical signal outage of 2 seconds duration the models

have drifted by 21◦, 17◦ and 43◦ respectively.
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6.4.5 Special Cases

Large Rotation Rates
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Figure 6.12: Measured and modelled roll rate during rapid turns.

The approximations used when deriving the dynamic model could be expected to cause

a decrease in the model accuracy when large rotation rates occur. In the present research

this has not been observed. The dynamic model and IMU roll outputs for the sequence

of turns described in Section 6.4.2 are shown in Figure 6.12.

No significant decorrelation of model and IMU output is seen at the high rotation rates

between 100 and 115 seconds when compared to the small turns later in the example.
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Figure 6.13: Measured and modelled yaw rates during level flight.

In Figure 6.13 the modelled and measured yaw rate during a period of level flight is

shown.

A change in the yaw rate measured by the IMU can be seen between 445 and 465 seconds.

This change is not due to a control input and is not modelled by the dynamic model which

gives a nearly constant output.

For comparison the heading estimated from the position track at 1Hz is shown in blue. It

indicates that the change in yaw rate measured by the IMU reflects reality and is not due

to unexpectedly large drifts in the IMU output.

It is likely that this change in yaw rate is due to the wind acting to turn the UAV. In the

same fashion as a ‘weather-vane’ the UAV will naturally tend to turn into wind. This is
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not modelled by the dynamic model since it would require an estimate of the wind vector

at the UAV flying altitude.

Since the UAV is being flown by a human pilot with a poor perspective from the ground,

errors and drifts will inevitably appear between the intended and actual flight paths. This

yaw drift is likely to have escaped the pilot’s notice and remained uncorrected.

Control inputs from an autopilot would act to keep the yaw rate zero and keep the UAV

on a constant heading. This control input would then appear as a yaw rate through the

dynamic model. The dynamic model would therefore still not reflect the real yaw rate.

Low Airspeeds
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Figure 6.14: Measured and modelled pitch during landing.
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Figure 6.14 shows the dynamic model output and measured pitch rate during landing. The

UAVs airspeed is reduced throughout this example until touchdown at 2175 seconds.

After touchdown positive input is maintained on the elevators leading to large positive

pitch rates being predicted by the dynamic model. Large accelerations and jerk produced

by the touchdown itself and rolling over rough terrain produce large amounts of noise in

the IMU gyro output. A similar sequence is seen at takeoff.

The dynamic model diverges from the measured pitch rate only when the velocity closely

approaches the stall speed, just before landing. For a well setup and flown UAV this will

not occur during the survey flight itself.

6.4.6 Discussion

As expected the performance of all types of model degrades over time. For a 1m baseline

and 5Hz data rate the constant angular rate and dynamic models met the criteria for

successful slip detection more than 95% of the time. This decreased to around 50%

when the data rate was lowered to 1Hz. For reliable half cycle slip detection the receiver

used should be chosen to have an appropriate output rate for the baseline length.

The constant angular acceleration model showed very poor performance in roll, pitch and

yaw, even for short integration times. In part this reflects the rapidly changing dynamics

of the mini-UAV.

The estimates of angular acceleration are also corrupted by noisy rate measurements from

the IMU which is in a high vibration and acceleration environment. Filtering these mea-

surements over more IMU samples would provide a better angular acceleration estimate

but one which wouldn’t reflect the rapidly changing angular accelerations.

Noise in the GNSS attitude measurements will result in the same problem but with the

added problems of a lower data rate and the need to integrate twice over time as opposed
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to once for the IMU measurements.

The constant rate model showed better performance because the rapid changes in angular

acceleration produce a small net change in the angular rate.

Over longer integration times the dynamic model significantly outperformed the kine-

matic models. In pitch and roll the dynamic model matched the rate output by the IMU

well, resulting in an attitude drift of around 10 degrees over the period of a typical signal

outage compared to tens and even hundreds of degrees for the kinematic models.

All of the models showed poor performance when estimating yaw rate. In the case of

the dynamic model this can be attributed to unmodelled torques resulting from the wind.

The yaw rate and acceleration was rarely constant for this reason, explaining the poor

performance of the kinematic models.

For longer integration times a better heading estimate might be obtained from the UAV

velocity vector. This can be estimated through a separate positioning process, likely to

be GNSS based. For example the platform velocity is available using a triple difference

observable calculated between one of the UAV’s onboard GNSS receivers and a station-

ary receiver on the ground. This approach would allow the half cycle ambiguous carrier

phase data to be used.

The platform velocity will give the true heading in a trimmed, straight flight mode with

no wind acting on the UAV. In all other cases it will be in error.

The results presented here assume that a GNSS signal outage can happen at any time in

the flight. It has been seen that this is more likely to occur at times when the UAV is

undergoing large rotational accelerations.

To keep well within visual range the UAV in this dataset was rarely truly straight and

level. These results therefore closely reflect the portions of a survey flight in which the

UAV is turning rather than the idealised long straight survey lines.
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The turns performed in the present flight were also inconsistent due to human pilot error.

A UAV which is piloted by an autopilot and able to go beyond visual range of the pilot

would allow a more repeatable flight path to be flown with accurate turns. This in turn

would allow better analysis of the model performance in the various flight modes and for

various rotation rates.

A UAV capable of longer flights would also necessarily have a larger fuel tank and the

change in the inertia matrix over the course of the flight would therefore be greater. The

change in the K70s inertia matrix due to fuel usage is insignificantly small and the effects

were not observed in this flight test.

6.5 Half Cycle Ambiguity Resolution

Finally the resolution of half cycle ambiguities is tested with the data obtained using the

GNSS hardware simulator.

6.5.1 Forwards Processing

The aim of this section is to examine the success rate of half cycle ambiguity resolu-

tion using float ambiguities adjusted using the dynamic model output after a short signal

outage.

When processing forwards in time the half cycle ambiguity resolution process will follow

a GNSS signal outage. The estimated attitude will therefore be from a kinematic or

dynamic model. Since the dynamic model has been shown to give the most accurate and

precise estimates it will be used in this section.
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Method

In Section 6.4 the drift of the attitudes estimated by the dynamic model were investigated.

After a 2 second integration time the mean drift was found to be 8◦, 13◦, 21◦ in roll, pitch

and yaw. The dynamic model roll, pitch and yaw estimates also had standard deviations

of 11.4◦, 17.2◦ and 28.3◦.

To investigate the probability of success at each GNSS measurement epoch, a set of 1000

baselines was generated. The set was generated from a normal distribution of attitudes

with mean and standard deviation from the model test results. The number of baselines

which lead to ambiguities being correctly resolved was then used to determine a success

rate at each measurement epoch.

To allow simple recovery of ambiguities, the static, short baseline data from the GNSS

hardware simulator was used.

For each of the generated baselines an attempt was made to resolve ambiguities to half

integers using the bootstrap with Z transform and LAMBDA methods. With this dataset

these techniques gave success rates of better than 95% for whole integer ambiguity reso-

lution using the code based, constrained, float solution (Chapter 4).

Result

In Table 6.9 the mean success rate over 3000 measurement epochs is given for two base-

line orientations and the two ambiguity resolution methods.

Table 6.9: Half Cycle Ambiguity Resolution Using the Dynamic Model

Ambiguity Fixing Method Yaw / Roll Success % Yaw / Pitch Success %

Bootstrap with Z transform 22.2 18.3

LAMBDA 25.1 21.4
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6.5.2 Backwards Processing

The aim of this section is to examine the success rate of half cycle ambiguity resolution

using float ambiguities estimated using the triple difference observable.

When processing backwards in time, the half cycle ambiguity resolution process will

follow an ambiguity fixed epoch, working backwards towards a signal outage. The es-

timated attitude will therefore be of high precision, coming from an ambiguity fixed

solution and a triple difference attitude rate solution over one epoch.

Method

For this section the UAV flight simulated on the GNSS hardware simulator was used. The

zero baseline data was chosen in particular to allow simple recovery of the half integer

and integer ambiguities.

At each GNSS measurement epoch a baseline estimate was obtained using the fixed so-

lution from the subsequent epoch and a change in attitude estimated using the triple

difference observable. The ambiguities were adjusted using this baseline and half integer

ambiguity resolution attempted.

Results

In table 6.10 the success rate of half integer ambiguity resolution is given. The integer

ambiguity estimators used in Section 6.5.1 are employed for the same reasons.

Where full cycle ambiguous measurements were available they were resolved to half

cycles for direct comparison with the half cycle data success rates.

The sample size used to determine the success rate for half cycle ambiguous measure-

ments is smaller than that used to determine the success rate for full cycle ambiguous
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measurements. Of the 3000 measurements processed, around 2000 were full cycle am-

biguous and 1000 were half cycle ambiguous.

Table 6.10: Half Cycle Ambiguity Resolution Using the Triple Difference

Ambiguity Full Cycle Half Cycle
Estimation Method Ambiguous Meas. Ambiguous Meas.

Bootstrap with Z transform 99.6% 91.8%

LAMBDA 99.6% 91.8%

6.5.3 Discussion

These results show that half integer ambiguity resolution using the dynamic model output

after a signal outage is unreliable, having a low success rate. In contrast using the triple

difference observable to estimate attitude yields a high probability of success. Working

backwards after full cycle measurements are regained is therefore preferable where the

latency introduced is acceptable.

The ambiguity estimators used in this section both yield very high success rates (99.6%

and 91.8%) when the triple difference observable is employed. The lower success rate

when using half cycle ambiguous data reflects the lower precision of these measurements.

These success rates could be further improved by using a modified version of the con-

strained LAMBDA method. However this would introduce an unacceptably large number

of candidates to be searched and lead to an unacceptably large computational overhead.

Small improvements may be gained by identifying double difference measurements which

remain integer cycle ambiguous throughout signal tracking problems. In the present data

very few integer ambiguous double difference measurements were found to be available

after tracking problems and the improvement would therefore be negligible.
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6.6 Conclusion

In this chapter data has been used to show that the carrier phase triple difference ob-

servable can be used to estimate the angular velocity of a GNSS attitude system. The

velocity estimates obtained using half cycle ambiguous carrier phase data are no less pre-

cise than those obtained using carrier phase data which has been resolved to full cycle by

the receiver.

Integration of this angular velocity estimate with respect to time results in an attitude

estimate which is more precise than the code dominated ‘float’ solution but suffers from

biases which accumulate over time in addition to any bias in the initial attitude estimate.

Data collected using low cost GPS receivers and antennas has shown that the accumulated

biases are insignificant when the triple difference is used for short periods (<30s).

The noise level of the carrier phase triple difference carrier phase observations is low

enough to allow reliable identification of half cycle slips. Using low cost receivers and a

hardware GNSS simulator the noise level of the geometry free triple difference observ-

ables in a moving baseline test was found to be 0.015 cycles (standard deviation).

The effect of error in the estimated triple difference geometry on the ability to resolve

cycle slips has been shown to depend on the angle between the error vector and the

double difference observation vector. For GNSS attitude determination the length and

direction of the error vector is constrained by the baseline length and depends only on

error in the predicted attitude.

In the worst case the error vector and the double difference observation vector are parallel.

Using this knowledge, the maximum allowable error in the estimated attitude can be

derived. For a baseline length of 1m the error in the predicted attitude must be less than

5.3◦ to resolve half cycle slips.

Next the models used to predict the change in attitude over time were examined. Us-
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ing data from an Inertial Measurement Unit on a real mini-UAV flight the accuracy and

precision of the kinematic models and dynamic model were derived. Their ability to aid

cycle slip detection and bridge GNSS signal outages was then analysed.

In all rotation axes the constant acceleration model was found to have poor performance

due to unavoidable noise in the attitude rate measurements.

The constant angular rate kinematic model showed better performance, especially over

short periods. It was seen to be suitable for cycle slip detection in the 1m baseline case

when the GNSS data rate was 5Hz or above.

For longer integration periods the dynamic model showed superior performance to both

the kinematic models. It was particularly effective in the pitch and roll axes where its

mean deviation from the IMU predicted attitude was less than 13◦ over a typical GNSS

signal outage.

In the yaw axis unmodelled torques due to the wind meant that the dynamics model failed

to accurately match the true rotation rates, drifting by a mean of 21◦ over two seconds.

In the yaw axes the constant rate model actually outperformed the dynamics model for

short integration times, up to 3.5 seconds. A better estimate of the platforms heading

after a signal outage may be obtained using the velocity vector derived from the platform

positioning process, particularly in low wind conditions.

Finally the success rate of half integer ambiguity resolution was examined. As might

be expected, the success rate of half integer ambiguity resolution was higher when us-

ing the triple difference estimates (based on carrier phase data) than when using the dy-

namic model. Working backwards after full cycle measurements are regained is therefore

preferable where the latency introduced (up to 10 seconds) is acceptable.

The data analysed in this chapter has proven the ability of the developed algorithms to

utilise half cycle ambiguous carrier phase data, detect and correct cycle slips and pro-

vide a graceful degradation of the attitude solution during signal outages without adding
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hardware, cost or weight to the UAV.
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Chapter 7

Conclusions & Future Work

7.1 Conclusion

In Chapter 1 the problem to be investigated was introduced. Small Unmanned Aerial

Vehicles (UAVs) offer a very low cost means of flying miniaturised sensors for geospatial

data capture. These sensors (for example cameras and laser distance meters) can in turn

provide high accuracy, high resolution geospatial products.

To obtain a useful product from these remote sensing systems their data must be aligned

with a global or regional reference system, ‘georeferenced’. To achieve this without the

use of an extensive ground survey, high accuracy knowledge of the sensor trajectory is

required. The sensors position can be estimated using established Global Positioning

Satellite System (GNSS) techniques. Estimating the sensor attitude is an open problem.

The traditional inertial methods used on larger aircraft fail on the mini-UAV. Cost, weight,

size and performance requirements make the inertial sensors impractical and their output

is easily corrupted by the vibration and jerk inherent in mini-UAV operation.

The purpose of this research is to identify, test and develop an alternative to inertial

techniques.

The GNSS attitude method is identified as a potential alternative. The equipment required
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is low cost, low mass and small. Indeed one GNSS receiver and antenna will already be

in the UAV payload for use in positioning, re-utilising its output increases the efficiency

of the payload.

The performance and reliability which can be achieved using modern low cost GNSS

equipment and the inter-antenna distances available on a mini-UAV is unclear from the

literature. The first task therefore was to implement and test the state of the art algorithms

with suitable equipment.

In chapters 2 and 3 state of the art GNSS attitude techniques were introduced. The

algorithms were implemented using MATLAB and tested using measurements from a

typical low cost GPS receiver. In Chapter 4 the results of this testing were presented.

The accuracy and precision of the attitude estimates depend on the inter-antenna baseline

length as well as the equipment used and processing strategy. In this research a 1m

baseline length with low cost antennas and single frequency GPS receivers yielded a

heading precision of 0.3 degrees. The precision of the pitch or roll estimates was found

to be 1.3 degrees, worse than the heading due to the satellite - receiver geometry.

It is impossible to put an absolute value on the maximum allowable attitude error for

georeferencing. It depends on the flying height, system design and survey data require-

ments. The relationship between attitude error and georeferencing error is discussed in

Appendix B. The figures obtained in this work over a 1m baseline are adequate for a UAV

flying with typical sensors at 400ft (120m) above ground level.

During static tests it was found that using the constrained LAMBDA method, an inte-

ger ambiguity fixed attitude estimate was available at every measurement epoch in the

absence of multipath.

The disadvantage of the constrained LAMBDA method is its requirement for large num-

bers of integer ambiguity candidates to be examined, making the process slow and com-

putationally expensive. Excellent success rates (93.4% and 96.3%) were also achieved
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using the bootstrap with Z-transform and ordinary LAMBDA methods when the float in-

put was constrained using a priori baseline length information. These methods are very

computationally efficient and so make a better choice for use with low cost hardware in

real time or low latency applications.

Testing of the integer ambiguity validation methods revealed that the traditional ratio test

was ineffective when used with constrained float inputs and the constrained LAMBDA

estimator. The validation technique developed by the author showed excellent perfor-

mance, especially for the bootstrap and LAMBDA method. When used with the con-

strained LAMBDA method a significant number of candidates were accepted when they

were in fact false (5.6%). For this reason, as well as computation simplicity, the bootstrap

and LAMBDA method with constrained float input offer the best choice for a combina-

tion of reliability and success rate.

This is the first work to test and compare the integer bootstrap, LAMBDA and constrained

LAMBDA techniques for GNSS attitude determination using low cost equipment and

‘real world’ static data.

GPS data from a mini-UAV platform showed variations in the quality of the GPS mea-

surements over the course of the flight. Numerous ’loss of lock’ indicators were observed,

the number of carrier phase measurements available varied rapidly and for portions of the

flight only half cycle ambiguous carrier phase measurements were available.

A GNSS hardware simulator was used to generate a trajectory which replicated these

problems. Banked turns at rates typical of mini-UAV flight caused the GPS receiver to

lose lock on the code and carrier phase signals. After loss of lock the carrier phase output

was only resolved to half integers until full code tracking resumed. A period of around

10 seconds stable flight was required to fully regain tracking. This is the first work in

which problems caused by real mini-UAV flight have been identified and reproduced.

To overcome these measurement outages and make use of the half cycle ambiguous car-
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rier phase data three algorithms were developed in Chapter 5.

• The first algorithm uses mathematical modelling to estimate the UAV rotation rate

during signal outages. This novel method allows an estimate of the UAV atti-

tude over time to be made almost entirely in software, incurring little extra cost or

weight.

Three potentially suitable models are introduced - two kinematic models which

use a history of the UAV rotation to make predictions and one dynamic model.

The dynamic model uses an aerodynamic model to estimate the torques acting to

rotate the UAV. These torques are converted to rotational accelerations through

application of Newton’s second law.

An innovative set of assumptions are made to sacrifice aerodynamic model fidelity

for the ability to use the model without extra airspeed sensors on the UAV and with

simple estimation of the model coefficients.

• The second algorithm uses the output from the attitude models to identify and

correct cycle slips in the GPS carrier phase measurements. This is the first time

this has been done using a GNSS attitude system and attitude models.

By correcting the GNSS triple difference carrier phase observation with the change

in attitude predicted by a model, cycle slips above a threshold can be identified and

corrected. A more accurate model allows a lower threshold. Slips as small as

one half cycle need to be identified to make use of the GNSS triple difference

observable in algorithm three.

• Algorithm three uses the (cycle slip corrected) GNSS triple difference observable

to estimate the UAV rotation rate. With an initial attitude estimate this can be used

to estimate the UAV attitude over time. The triple difference observable can be

used with full or half cycle ambiguous measurements and so is capable of making

use of the half cycle ambiguous data observed in this work.
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The use of the triple difference observable to estimate rotation rate with full and

half cycle ambiguous measurements is another innovation in this research.

The UAV attitude estimated using the carrier phase triple difference observable

is more precise than that available from the GPS code based ‘float’ estimate. Its

accuracy depends largely on the accuracy of the initial attitude estimate from an

ambiguity fixed GNSS attitude solution or the prediction from a model. If the

initial attitude estimate is sufficiently accurate the triple difference based attitude

estimate will provide a good starting point for integer, or even half integer ambigu-

ity resolution.

When used in combination the algorithms developed in this thesis;

• Make an attitude estimate available even when no GNSS signals are being tracked.

• Identify and correct cycle slips down to the half cycle level.

• Give an accurate and precise attitude estimate using half cycle ambiguous carrier

phase measurements.

Being able to make use of half cycle ambiguous data for georeferencing greatly increases

the efficiency of a survey. For example to obtain aerial photography of a 1km2 area from

a mini-UAV, 20 lines must are flown. If each turn causes a loss of signal tracking followed

by 10 seconds of half cycle ambiguous data, around 4km will be flown at 20ms−1 with

half cycle ambiguous tracking. The ability to use that half cycle ambiguous data mean

that the 4km of flying will be usable saving 17% of the flight time & cost.

In Chapter 6 the algorithms were tested, again with GNSS measurements from low cost

GPS equipment and real flight data.

To examine the drift of the kinematic and dynamic models measurements from an In-

ertial Measurement Unit (IMU) onboard a mini-UAV were obtained. A comparison of
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the IMU output with that from the models shows that the dynamics model significantly

outperforms the simpler kinematic models in the pitch and roll axis. The dynamic model

drifted from the IMU by a mean of 4 degrees per second in roll and 6 degrees per second

in pitch. This compares favourably to 21 degrees per second in roll and 7.5 degrees per

second in pitch for the best kinematic model.

In the yaw axis, unmodelled torques due to the wind increase the drift of the dynamic

model. This reduces its performance to match that of the constant angular rate kinematic

model.

Drift in the dynamic model output makes it unsuitable for use in georeferencing. How-

ever the success rate of half integer ambiguity estimation after using the model for 2

seconds (the duration of a typical signal outage) was around 50% using the bootstrap or

LAMBDA methods. Half cycle ambiguity resolution has a success rate approaching zero

when using the code pseudorange GPS observation soon after a signal outage and so use

of the model gives significant benefits in real time applications.

Both the dynamics model and constant angular rate kinematic model were found to be

capable of reliable half cycle ambiguity resolution with the triple difference observable if

the output rate of the GNSS receiver is high (at least 5Hz). A lower output rate increases

the drift in the models between measurements and therefore increases the threshold of

cycle slips which can be detected.

The carrier phase triple difference observable yielded an attitude estimate with negligible

drift over periods of less than 30 seconds. It gave an attitude rate estimate with a precision

of 1 degree per second over a 1m baseline under ‘real world’ conditions. While this is

not precise enough for georeferencing, even over short periods, it does give good full and

half cycle ambiguity resolution results.

A final test was carried out using the cycle slip corrected triple difference observation to

estimate the change in attitude from an ambiguity fixed solution at an adjacent epoch.
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This gave half cycle ambiguity resolution success rates of 91.8% when using half cycle

ambiguous data and 99.6% success rates when using full cycle ambiguous data. As a

result, for low latency applications the half cycle ambiguous carrier phase measurements

can be used to provide an attitude solution suitable for use in georeferencing by using the

triple difference observation to ‘work backwards’ from an ambiguity fixed measurement

epoch.

In Chapter 1 the overall aim of this research was stated as “to develop methods which

will provide a robust attitude solution using low cost GNSS attitude hardware onboard a

mini-UAV”.

Using the algorithms developed in this work low cost GPS hardware can be used to

provide an accurate, precise, drift free estimate of the mini-UAV attitude. The solution is

robust to real world problems including complete signal outages caused by rapid changes

in trajectory. As a result of this work substandard GNSS observations can be used to give

an attitude solution suitable for continued georeferencing. The aim has therefore been

met.

This work has enabled practical use of GNSS attitude determination on the mini-UAV.

This in turn will significantly contribute to the mini-UAV becoming a commonplace sur-

vey tool.

7.2 Future Work

This thesis has identified GNSS attitude determination as a suitable technique for use

on the mini-UAV. Through testing with commercially available low cost equipment it

has identified problems with GNSS signal tracking onboard the mini-UAV and has de-

veloped methods to overcome this. There is a great interest in both civilian mini-UAVs

and GNSS attitude determination at present. To continue this research and make further

advancements in these fields recommendations are made here for future work.
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Most importantly the algorithms developed in this work should be tested with a full GNSS

attitude system on a real mini-UAV survey flight. In this work legal and technical con-

straints meant that the mini-UAV test flights needed to be flown within visual range of a

human pilot directly controlling the UAV. In consequence this meant that the flights fea-

tured many turns, short periods of straight flight and a very imprecise trajectory. When

the GNSS receiver showed difficulties in tracking the GNSS signals it rarely had time to

fully recover. Use of a UAV with autopilot and extended range would allow examina-

tion of the kinematic and dynamic models through specific flight phases and allow the

receiver to fully recover from signal outages. This in turn would allow crucial testing of

the full GNSS attitude system on a real mini-UAV.

In chapter 4 multipath was identified as an error source which will reduce the success

rate of integer ambiguity resolution and reduce the precision of the attitude estimates.

In static tests at 1m above ground level reflection of the GPS signals from the ground

caused the success rate of integer ambiguity resolution to drop to 86% from 100%. Low

cost hardware, and in particular antennas, do little to mitigate multipath and traditional

antenna groundplane solutions are not suitable for mini-UAV use. Work is required to

quantify the effect of multipath on a UAV at various flying heights. In this work mul-

tipath from ground reflections was observed at 1m above ground level. This effect will

change with distance from the primary reflector (the ground) and may be reduced or even

eliminated by increasing the flying height.

In recent research more efficient integer ambiguity resolution methods have been devel-

oped, for example (Giorgi et al., 2008), (Giorgi, 2010) and (Giorgi and Teunissen, 2010).

While these methods reduce the computational burden they are not capable of using half

cycle ambiguous measurements and rely solely on the code based float solution. Further

work is required to adapt these, and the constrained LAMBDA approach used in this

work, for half integer ambiguity resolution. If this were to be done, the success rate of

half integer ambiguity resolution could be further improved without adding an unaccept-

able computational burden.
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The aerodynamic model developed in this work was seen to give poor heading perfor-

mance in the presence of unmodelled wind. Future work could focus on improving the

fidelity of this model, perhaps including a wind vector estimated form the UAV trajec-

tory. Alternatively the aiding of the heading output with the measured UAV trajectory

could be investigated.

Eventual integration and testing of the complete GNSS attitude, positioning, remote sens-

ing and mini-UAV system will fulfill the goal of this research. At this point a commer-

cially viable system will be created, enabled in part by the GNSS attitude research in this

thesis.
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Appendix A

Civilian UAV Operations & The K70 System

A.1 Civilian Regulation of Unmanned Aerial Systems

The purpose of this section is to give a brief overview of the regulatory context in which

this UAV based research was undertaken. The regulation of unmanned aircraft is rapidly

evolving as technology develops and civilian market pressures increase.

Regulation of civil aircraft (including unmanned aircraft) in national airspace is usually

delegated to a government agency. In New Zealand it is undertaken by the Civil Aviation

Authority of New Zealand. Each national body has developed its own rules for unmanned

aircraft certification and operation. International & regional regulation is currently con-

cerned with larger unmanned systems which are not of concern to this work.

Common to most civilian regulatory environments is the philosophy that unmanned sys-

tems should ‘do no harm’. It is generally accepted that unmanned aircraft should pose no

greater risk to a third party than a manned aircraft of similar size.

At present the major technological barrier to unmanned aircraft operation alongside manned

aircraft is reliable ‘sense and avoid’ technology. Until the unmanned aircraft can detect

and avoid other airspace users as reliably and effectively as manned aircraft they will not

be permitted to operate in unrestricted airspace.
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In New Zealand strict limits are placed on the operation of unmanned aerial vehicles.

Until autonomous ‘sense and avoid’ technology matures, an unmanned aerial vehicle

cannot operate beyond the visual range of its human controller or above 400ft (120m)

above ground level. If these limits are to be violated segregated airspace is required to

separate manned and unmanned aircraft. It is costly and time consuming to arrange this

airspace and so operations operations are beyond these limits are not practically possible

for a small system developer.

A.1.1 Certification

The terms Unmanned Aircraft System (UAS) and Unmanned Aerial Vehicle (UAV) are

sometimes used interchangeably. In this work the former is defined as the entire hardware

system including the aircraft, ground control station and ground to air communications.

The UAV is the airborne component of the UAS.

Most regulatory frameworks separate the concepts of UAV and UAS. They recognise

that for safe operation all components of the UAS must have equally high integrity and

standards of operation. For this reason unmanned systems are usually certified to operate

as a whole.

Unmanned pilot certification is a developing field. Unmanned aerial systems vary greatly

from type to type. Some simple systems have a single human pilot who directly controls

the UAV and operates the payload. More complex systems may have multiple crew

and payload operators. In some systems takeoff and landing (launch and recovery) is

undertaken by one team while the majority of the flight is undertaken by another team

who may be on another continent to the unmanned aircraft.

In New Zealand no pilot certification is currently required for operators of unmanned

aircraft which weigh less than 15kg.
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A.2 The K70 System

The K70 is a small bespoke UAV developed by the Geospatial Research Centre (NZ) Ltd

for preliminary research into the use of UAVs for aerial surveying.

It is designed to carry a payload of up to 1.5kg and have a net weight of less than 5kg.

It is intended for research concerning survey payloads, control systems and navigation

systems.

All of the UAV components are modular including the payload, control system, engine

and wings. This allows the straightforward integration and testing of payloads in a lab-

oratory environment before they are flown. It also allows the system to be tested with a

variety of engine types (petrol, electric, etc) and control systems.

The low mass of the K70 means that it can legally be flown in the fashion of a remote

control model aircraft. It is flown by a pilot experienced in model flying but without

needing formal certification. The K70 UAS therefore consists of the UAV, a controller

for the pilot and a communications link from controller to UAV.

When flown for this research, the K70 was operated without an autopilot or automated

stability system. These systems are still under development and the financial risk was to

great to operate them alongside a relatively expensive survey payload.

The K70 payload is described further in Appendix B. Its primary purpose is to allow the

examination of the survey images available from low mass cameras operating at visible

and thermal wavelengths.
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Appendix B

Aerial Survey Using UAVs

This appendix gives a brief overview of generalised mini-UAV survey payload compo-

nents. The specific payload components used on the K70 mini-UAV are also described

The process of georeferencing is examined in more detail and the navigation accuracy

requirements are considered.

B.1 Payload Design

All UAV survey payloads have a set of elements in common. Besides the survey sensors

and navigation sensors, subsystems are required to power the hardware and handle the

data produced.

The integration of payload elements with the UAV power and control system varies with

each UAV design. In the K70 UAV used for this work the payload and UAV systems

were separated, besides a data link to log the control inputs.

A generalised UAV payload architecture is depicted in Figure B.1.

In some systems the datalogging element is removed and the data is transmitted direct

to the ground for storage or processing. This has been avoided in the design of the K70

payload to eliminate loss of data in transmission.
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Figure B.1: Generalised Survey Payload Components

In other payload designs, particularly those intended for real time operations, a compu-

tational element must be included. Raw navigation and remote sensing data is processed

onboard and the survey product is logged or transmitted to the ground. The power sub-

system generally consists of a power source and regulation equipment. The power may

be obtained from batteries, solar cells, or generated using the UAV motor. The power

subsystem will also contain a monitoring element to provide warnings when insufficient

power is being generated or remains in the batteries.

The communications subsystem allows the human operator an interface with the payload.

Commands may be issued from the ground to operate the payload while monitoring in-

formation and raw or processed survey data is relayed to the operator. Communications

are expensive and can be unreliable, particularly over long distances and where large
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bandwidths are required to send imagery or other survey data. For this work all data was

post processed and so the communications requirement was minimal and not critical.

B.1.1 The K70 Payload

The payload flown for this work is shown in Figure B.2. For the dynamics modelling

research, a data stream containing the control inputs was also timestamped and logged.
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Figure B.2: K70 Survey Payload Components, the PTDL is bespoke logging hardware

designed by the Geospatial Research Centre (NZ) Ltd, it is described further in the text.

The Precise Time Data Logger ‘PTDL’ is bespoke hardware designed to timestamp and

log data inputs. It uses the precise 1 pulse per second output of the uBlox GPS receiver

to steer its internal clock to GPS time. Time stamp markers are then added to specified
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bytes of an RS232 data stream or to the leading edge or training edge of pulse inputs. The

ability to timestamp pulses means the PTDL can be used to timestamp frames of video

data or synchronisation pulses from other sensors.

The integrated K70 payload has also been tested onboard manned light aircraft to allow

data from high altitudes and large areas to be collected.

B.2 Georeferencing

Georeferencing aerial survey data has been the subject of research for many years. A

complete review is not given here, instead the reader is directed to work such as Kasser

and Egels (2002) or Mostafa and Schwarz (2001).

Of particular concern to this work is a technique known as ‘direct georeferencing’. Whereas

traditional georeferencing of imagery requires extensive ground survey of features iden-

tifiable in images, pure direct georeferencing only uses the position and orientation of the

sensor at the time of image exposure. As a result, access to the areas being surveyed is

not required and an expensive ground survey campaign is not required.

Direct georeferencing is the only option for ranging sensors such as a laser scanner or

nadir pointing laser distance meter.

B.2.1 Imagery

An image sensor can be thought of as an array of sensors (pixels) which measure the

intensity of a part of the light spectrum. Light reflected from a point on the ground will

travel through a lens, through a focal point and onto a pixel. The resulting image will be

distorted by the lens, ground height variation and the sensor orientation.

The lens distortions are removed through calibration and the ground height variations
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through the use of a priori information or through the use of stereo images. Removing

the distortions due to sensor rotation is the purpose of the attitude determination in this

work.

To examine the effect of a rotation error on the direct georeferencing process an imagi-

nary scenario is created in which the image suffers from no lens distortion, the ground is

level and the position of the focal point is precisely known.

This is depicted in Figure B.3.
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Figure B.3: Level imaging sensor with lens and ground distortions removed.
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In Figure B.4 the effect of an attitude error in pitch or roll is depicted. The small attitude

error ∆θ results in an error ∆Ppr
gnd on the ground.
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Figure B.4: Error in georeferencing due to an attitude error in pitch or roll (∆θ).

It can be seen from Figure B.4 that the distance ∆Ppr
gnd , the georeferencing error, is a

function of the flying height (h) and the attitude error (∆θ).

For small ∆θ and for a point Pgnd near the point directly below the sensor we can say;

∆Ppr
gnd = h tan(∆θ) (B.1)

More generally, for sensors which are not level and pixels which are not in the centre of

the sensor we have;

∆Ppr
gnd = h tan(ψ+∆θ)−h tan(ψ) (B.2)
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Where ψ is the angle between a line from the focal point to a point directly below the

sensor and the line joining the focal point and Pgnd . The angle ψ will depend on the

sensor attitude and the pixel location on the imaging sensor.

Figure B.5 depicts the variation in the magnitude of georeferencing error over an image

for a given pitch or roll error.

Figure B.5: The variation of georeferencing error over an image for roll error (left) and

pitch error (right). Warm colours indicate a larger error (towards the outside of the

image).

The effect of an error in heading is more complex to determine. If pitch and roll errors

are zero then it depends on the distance (d) of point Pgnd from a point directly below the

camera. The point directly below the sensor will not be affected by heading error.

As the heading angle changes the point Pgnd will describe a circle around the point di-

rectly below the sensor. A heading error will cause a georeferencing error ∆Ph
gnd which

is equal to the chord length between the point Pgnd and the rotated point.

∆Ph
gnd = 2d sin

(
1
2

∆θ

)
(B.3)

Figure B.6 depicts the variation in the magnitude of georeferencing error over an image

for a given heading error.
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Figure B.6: The variation of georeferencing error over an image for heading error.

Warm colours indicate a larger error (towards the outside of the image).

B.2.2 Ranging Measurements

A ranging measurement, such as that from a nadir pointing laser distance meter, can be

thought of as a measurement from one pixel of an imaging array. The error equations for

the imaging sensor therefore apply equally to the ranging sensor.

B.2.3 Attitude Error Limits

The attitude error acceptable will be determined by the surveyor and system in use. It

requires knowledge of the flying height, imaging sensor dimensions and overall georef-

erencing error budget.

The requirements can be relaxed by flying at a lower altitude, which also has the benefit

of increasing the image ground resolution or reducing atmospheric effects on a laser

signal. This is done at the expense of requiring more images to cover a given area. The

attitude determination requirement can also be relaxed if the sensor is kept near level and
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a smaller imaging sensor (or longer focal length) is used.

To give some representative values, Figure B.7 shows the results of using Equation B.1

to calculate the effect of a pitch attitude error at the centre of an image for a variety of

flying heights.
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Figure B.7: Representative georeferencing errors for a pitch or roll error.
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