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Analyser-Based Phase-Contrast imaging (ABPCI) is a highly sensitive phase-
contrast imaging method that produces high contrast images of weakly absorb-
ing materials. However, it is only sensitive to phase gradient components lying in
the diffraction plane of the analyser crystal (i.e in one dimension; 1-D). In order
to accurately account for and measure phase effects produced by the wavefield-
sample interaction, ABPCI and other 1-D phase sensitive methods must achieve
2-D phase gradient sensitivity. We applied an inclined geometry method to a Laue
geometry setup for X-ray ABPCI through rotation of the detector and object about
the optical axis. This allowed this traditionally 1-D phase sensitive phase con-
trast method to possess 2-D phase gradient sensitivity. We acquired tomographic
datasets over 360◦ of a multi-material phantom with the detector and sample tilted
by 8◦. The real and imaginary parts of the refractive index were reconstructed for
the phantom.

1. Introduction

Phase-contrast x-ray imaging provides superior contrast for
materials of low atomic number, including soft tissues, com-
pared to traditional attenuation-based radiography, especially
in the high energy regimes (Pelliccia et al., 2018). This has
the potential to enable greater image quality with less radiation
dose delivered to the patient in a clinical setting (Keyriläinen
et al., 2010; Kitchen et al., 2017). Analyser-Based Phase-
Contrast imaging (ABPCI), also referred to as Diffraction
Enhanced imaging, is a phase-contrast imaging technique that
utilizes an analyser crystal to render phase gradients visible
(Goetz et al., 1979; Förster et al., 1980; Somenkov et al.,
1991; Davis et al., 1995; Bushuev et al., 1996; Gureyev &
Wilkins, 1997; Bushuev et al., 1997; Chapman et al., 1997;
Bushuev et al., 1998; Bravin, 2003; Menk et al., 2005; Coan
et al., 2005; Brankov et al., 2006; Rigon et al., 2007; Zhou
et al., 2014). ABPCI is highly sensitive to components of phase
gradients lying in the plane of diffraction of the analyser crystal,
meaning it has 1-D phase sensitivity (Authier, 2001; Wilkins
et al., 2014). The analyser crystal is mainly sensitive to the
first derivative of the phase shift caused by the sample, which
means it can pick up small discrepancies in the wavefield prop-
agated through a sample. This 1-D phase sensitivity is also typ-
ical in other phase contrast methods such as grating interfer-
ometry (David et al., 2002; Momose et al., 2003). For grating
interferometry, Rutishauser et al. (2011) developed a method
in a computed tomography setup to overcome the problem of
1-D sensitivity by utilizing an inclined geometry for the two
1-D gratings through rotation of 45◦ about the optical axis to
reconstruct a 2-D phase gradient. Taking a tomographic projec-

tion and its respective 180◦ projection, then flipping the second
projection enables orthogonal components of the phase gradi-
ent to be reconstructed. These can be combined and integrated
to retrieve the phase map.

Figure 1
Inclined geometry Laue ABPCI experimental setup. The inclination was
applied through rotation of the sample and detector about the optical axis.

The aim of this paper was to apply the methodology of
inclined geometry, proposed in Rutishauser et al. (2011), to
ABPCI to reconstruct 2-D phase maps and improve the 3-D
reconstructions of an object’s complex refractive index using
ABPCI. This 2-D phase reconstruction for ABPCI was achieved
by rotating the detector and sample by an identical angle about
the optical axis, while using the Laue geometry of ABPCI, as
seen in Figure 1. 2-D ABPCI phase reconstruction has been pre-
viously achieved by Modregger et al. (2007) using two anal-
yser crystals in perpendicular directions to achieve 2-D phase
sensitivity and by Pavlov et al. (2004), Pavlov et al. (2005),
Coan et al. (2005) using a variant of combined ABPCI and
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Propagation-Based Phase-Contrast Imaging (PBPCI). Our 2-
D phase sensitive ABPCI is more straightforward and robust
than the aforementioned methods (Pavlov et al., 2004; Pavlov
et al., 2005; Coan et al., 2005; Modregger et al., 2007). For
instance, we use a single crystal in a simple setup, which does
not suffer from the intensity loss due to the interaction of the
wavefield with an additional crystal.

2. Theory and Methods

This section describes the theory and the methods using an
inclined geometry Laue ABPCI setup to reconstruct the real and
imaginary parts of the refractive index.

2.1. Approximations applied to Phase-Contrast Imaging

The phase retrieval procedure outlined in Section (2.2) is
based upon the Geometrical Optics Approximation (GOA).
The GOA incorporates the paraxial and projection approxima-
tions, allowing the simplification of the phase retrieval proce-
dure by assuming smallness of the second derivative of the
phase (Indenbom & Chukhovskii, 1972; Bushuev et al., 1996;
Bushuev et al., 1998; Pavlov et al., 2001; Pavlov et al., 2004;
Paganin, 2006; Nesterets et al., 2006). The Laue geometry of
ABPCI allows phase retrieval to be performed with two images
(diffracted and transmitted) of the sample to be acquired simul-
taneously. Applying the GOA gives us a method using the trans-
mitted and diffracted projections acquired from the Laue geom-
etry setup, to separate the refraction and attenuation informa-
tion (Ingal & Beliaevskaya, 1995; Bushuev et al., 1996; Kitchen
et al., 2008; Kitchen et al., 2010; Kitchen et al., 2011). Some
samples have unresolvable microstructure that produces Ultra
Small Angle X-ray Scattering (USAXS). The USAXS can be
reconstructed using multiple image radiography that requires
multiple sets of data to be recorded upon rotation of the anal-
yser crystal (Oltulu et al., 2003; Wernick et al., 2003; Pagot
et al., 2003; Nesterets et al., 2006). The multiple-image method
allows the effects of refraction and USAXS to be separated and
can be applied with the Laue geometry using data sets of either
the transmitted or diffracted projections (Kitchen et al., 2010).
We focused on a sample that does not have any appreciable
microstructure within the sample and hence produces mini-
mal USAXS as shown in Kitchen et al. (2010). Therefore the
simultaneous dual-image Laue geometry method, neglecting
USAXS, is suitable for imaging this sample. The size of the
Borrmann triangle base (see e.g. Bushuev & Guskova (2005))
is about 15 microns in our experiment. Therefore we used the
detector with an effective pixel size of 16.2 microns and a spa-
tial resolution of ∼ 3 pixels (∼ 50 microns)(i.e., larger than the
Borrmann triangle base) in our experiment. Thus the Borrmann
fan could not significantly affect the resolution in our experi-
ment.

2.2. ABPCI Phase retrieval

We performed phase retrieval following a method derived by
Kitchen et al. (2010) utilizing rocking curves (RCs) produced
by rotating the analyser crystal. These rocking curves are pro-
duced for every pixel in the transmitted and diffracted images.

We also measured the ratio of diffracted over transmitted pro-
jections without the object present in the wavefield. RCs can
be modeled using a Taylor series, Gaussian distribution or a
PearsonVII function (Pearson, 1916), allowing phase retrieval
to be performed. Gaussian functions are commonly used to fit
the RCs as they are relatively easy to implement and accu-
rately models the bell curve shape (Zhifeng et al., 2007; Hu
et al., 2008; Diemoz et al., 2010; Arfelli et al., 2018). However,
Gaussian functions can fail at accurately modeling the peak and
tails of the RC from the long slit geometry of ABPCI (Oltulu
et al., 2003; Nesterets et al., 2006). The broadening of the RC
tails from the long slit geometry is caused by scattering being
integrated in the direction perpendicular to the diffraction plane
(Suortti et al., 2013). PearsonVII functions have been shown to
more accurately model the peaks and tails of the RCs (Kitchen
et al., 2010). Using the phase retrieval method of Kitchen et al.
(2010), with the GOA, the transmitted (IT ) and diffracted (ID)
intensities, produced from the Laue geometry ABPCI setup, can
be approximated as

IT = IRT (∆θ + ∆θ′), (2.1)

and
ID = IRD(∆θ + ∆θ′), (2.2)

respectively. Here IR is the intensity of the refracted beam inci-
dent on the crystal, T (∆θ+∆θ′) and D(∆θ+∆θ′) are the angu-
larly dependent diffraction and transmission coefficients, ∆θ is
the deviation from the Bragg angle and ∆θ′ is the shift caused
by refraction in the object as seen in Figure 2. We can obtain
an expression independent of IR by dividing Eqn (2.2) by Eqn
(2.1) to obtain

ID

IT
=

D(∆θ + ∆θ′)

T (∆θ + ∆θ′)
. (2.3)

This ratio RC is used to perform phase retrieval. We modelled
the RCs with a PearsonVII function given by Hall et al. (1977)
of the form

y = c
[
1 + (x− x̃)2/(ma2)

]−m
. (2.4)

Here c defines the amplitude, x is the independent variable, x̃ is
the centroid, m is the rate of decay of the tail and a and m deter-
mine the profile of the curve. This function can be adapted to the
type of bell curve by modifying the m such as the Lorentzian
(m = 1), the modified Lorentzian (m = 2) and Gaussian
(m→∞). We can apply this model to the ratio RC to give

ID

IT
= c[1 + (∆θ + ∆θ′)2/(ma2)]−m. (2.5)

We can rearrange Eqn (2.5) for ∆θ + ∆θ′ to give

∆θ + ∆θ′ = ±a
√

m[(cIT /ID)1/m − 1], (2.6)

which is an expression for the angular deviation with respect
to the Bragg angle position of the wavefield incident upon the
analyser crystal. Furthermore, we can rearrange Eqns (2.1) and
(2.2) for IR to give

IR =
IT

T (∆θ + ∆θ′)
, (2.7)

IR =
ID

D(∆θ + ∆θ′)
. (2.8)
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Figure 2
Ratio RC of the diffracted RC divided by transmitted RC. The analyser crystal
was positioned at the dashed red line working point on the RC through rotating
it about the horizontal axis to achieve an angular shift ∆θ, shown as the red
arrow from the Bragg angle θB position, which is placed at the origin. When an
object is placed in the path of the wavefield it will cause refraction and attenu-
ation in the wavefield propagated through the object. This changes the incident
angle of the wavefield entering the analyser crystal and thus shifts it to a new
position on the RC shown as the blue line with an angular shift ∆θ′ shown as
the blue double arrow. We can calculate this shift from the change in intensity.
These calculations will generate an intensity map and two ∆θ′ maps for every
projection, as observed in Figure 6.

This gives us potentially two relations to calculate the inten-
sity contrast of the x-ray wavefield. We can fit an inverted Pear-
sonVII function to the transmitted RC such that

IT = IRT (θ) = IR{ f − d[1 + θ2/(nb2)]−n}. (2.9)

The PearsonVII coefficients b, d, and n are equivalent vari-
ables to a, c and m in Eqn (2.5) and applied to avoid confu-
sion between the two fitted RCs with f being the only unique
coefficient.

2.3. Phase Retrieval using an Inclined Geometry

The phase shift of the wave, propagated through the sample,
with spatial coordinates defined in Figure 3, can be expressed
in the form of (Paganin, 2006)

Φ = −
∫

kδ(x, y, z)dz. (2.10)

Here δ is defined as the refractive index decrement of a sam-
ple and k = 2π/λ is the wavenumber. Furthermore, δ is related
to the absorptive properties of the sample, β, and the refractive
index, n, through (James, 1954)

n = 1− δ + iβ. (2.11)

We can measure the appropriate components of the phase gra-
dient

∂Φ

∂x
= −k

[
∂

∂x

∫
δ(x, y, z)dz

]
, (2.12)

by looking at the angular shift in the rocking curve, ∆θ′, caused
by the object in the beam

∆θ′ = −1
k

∂Φ

∂x
. (2.13)

It should be noted that Eqns (2.12), (2.13) and Figure 3 illus-
trate the situation when both the x and x1 axes are parallel to
the direction of the 1-D sensitivity of the analyser crystal. We
applied an α = 8◦ inclination of the object and detector clock-
wise following the x-ray propagation direction and from this a
two dimensional phase gradient can be reconstructed. This is
done through differential phase images from opposing projec-
tions being combined that will produce both components of the
phase gradient vector ∂Φ

∂x and ∂Φ

∂y by retrieving ∆θ̃′ and ∆θ̂′. ∆θ̂′

is the rocking curve shift at the φ̃+180◦ projection, while ∆θ̃′ is
the angular shift at the φ̃ projection. In our chosen geometry ∆θ̂′

corresponds to the projection of ρ′ on the x1 axis (see Figure 4)
and ∆θ̃′ corresponds to the projection of ρ on the x1 axis. The
equations for these two angular shifts will be of the form

∆θ̃′ = −κ1ρx + κ2ρy

k
, (2.14)

∆θ̂′ = −κ3ρx + κ4ρy

k
, (2.15)

where κ1, κ2, κ3 and κ4 are constants accounting for the rota-
tion of the detector and sample at both projections and ρx, ρy

are the components of the phase gradient in the x and y direc-
tion, respectively. To calculate these values we need to consider
the effect of α inclination to the object and detector by looking
at both the non-inclined and inclined geometries.

For clarity, rather than using the angle ∆θ′, let us consider
that we have a phase gradient, ρ, and its respective 180◦ projec-
tion, ρ′, for the non-inclined geometry (see Figure 3). We can
derive a simple expression for the x, x1 and y, y1 components of
ρ using simple trigonometry, see Figure 3

Figure 3
Non-inclined geometry of phase gradient, ρ, with its corresponding 180◦ pro-
jection, ρ′, where the two coordinate systems x, y and x1, y1 are the vertical and
horizontal vectors for the object and detector, and analyser crystal, respectively,
are equivalent and z is the propagation direction of the x-ray wavefield going
into the page. In this setup the analyser crystal is only sensitive to variations of
the phase in the x1 direction.

ρx1 = |ρ| cos(ψ) = ρx, (2.16)
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|ρy1 | = |ρ| sin(ψ) = |ρy|. (2.17)

Here |ρ| is the magnitude of phase gradient, x and y are the axes
for the object and detector, x1 and y1 are the axes for the anal-
yser crystal, which is only sensitive to the phase variations in
the x1 direction and ψ is the angle between the vector ρ and the
x axis.

The two coordinate systems are equivalent, as shown in Fig-
ure 3. However, if we rotate the detector and sample by an
angle α anticlockwise along the path of the wavefield, the x,
y coordinates and the orientation of the object will change with
respect to coordinates x1, y1, as seen in Figure 4. We can again
derive expressions for components of ρ and utilize the cosine
law cos(A + B) = cos A cos B− sin A sin B to give

ρx1 = |ρ| cos(ψ − α) = |ρ|[cosψ cos(α) + sinψ sin(α)] = −k∆θ̃′,

(2.18)

ρ′x1
= |ρ| cos(ψ+α) = |ρ|[cosψ cos(α)−sinψ sin(α)] = −k∆θ̂′,

(2.19)
from Eqn (2.13). From here we can add Eqns (2.18) and (2.19)
to obtain

−k(∆θ̃′ + ∆θ̂′) = 2ρx cos(α). (2.20)

Figure 4
Inclined geometry where the object, detector and, therefore, (x, y) coordinate
system has been rotated by α anticlockwise with respect to the (x1, y1) coor-
dinate system about the optical axis z. While the analyser crystal is still only
sensitive to the phase variations in the x1 direction in the (x1, y1) coordinate
system, it is sensitive to both the x and y components of the gradient of phase.
This allows a 2-D phase gradient to be reconstructed from comparison of the
two projections ρ and ρ′ as they provide unique information in the inclined
geometry setup.

Here we used ρx, from following Figure 4, as

ρx = |ρ| cos(ψ), (2.21)

then rearranging Eqn (2.20) to obtain

ρx = −
k(∆θ̃′ + ∆θ̂′)

2 cos(α)
. (2.22)

Similarly for subtracting Eqns (2.18) and (2.19) we get

−k(∆θ̃′ − ∆θ̂′) = 2ρy sin(α). (2.23)

Here we used ρy, from following Figure 4, as

ρy = |ρ| sin(ψ), (2.24)

then after rearranging Eqn (2.23) we obtain

ρy = −
k(∆θ̃′ − ∆θ̂′)

2 sin(α)
. (2.25)

Therefore, going back to Eqns (2.14) and (2.15) the expression
for the coefficients is given by

κ1 = cos(α), (2.26)

κ2 = sin(α), (2.27)

κ3 = cos(α), (2.28)

κ4 = − sin(α). (2.29)

This method will allow the reconstruction of a 2-D phase gra-
dient with the additional phase information gathered using an
inclined geometry. This is achieved by mirroring ∆θ̂′ about the
vertical axis so that it matches with its opposing plane. These
planes will provide different information about the object that
can be extracted and used in tomographic reconstruction.

3. Experimental Setup
This experiment was performed in hutch 3 of beamline 20B2 in
the Medium-length Beamline Facility at the SPring-8 radiation
facility (Japan) using a mounted perspex phantom as a sam-
ple. The imaged cylindrical perspex phantom was 12.75 mm in
diameter with four 1.02 mm diameter cylindrical holes in the
top of the phantom. Two of these holes were filled with alu-
minium and teflon pins with 1.02 mm diameter each with a cap
on the top, while the other two were left empty. This phan-
tom was discussed in greater detail in Beltran et al. (2010).
We employed an inclined Laue geometry ABPCI experimental
setup as observed in Figure 1.

Following from left to right in Figure 1 we have the syn-
chrotron set to produce x-ray wavefields approximately 210 m
away from the sample. The x-ray wavefields then interacted
with a double-bounce monochromator in a non-dispersive
setup. This consisted of two parallel Si(111) crystals that
monochromatize the x-rays yielding a 26 keV monochromatic
wavefield with energy bandwidth ∆E/E ≈ 10−4 (Goto et al.,
2001). This x-ray wavefield then interacted with the object, with
intensity IR just after the object that was rotated α = 8◦ clock-
wise about the optical axis following the propagation direction
of the x-ray wavefield. Rutishauser et al. (2011) applied an ideal
45◦ rotation of the two gratings in their experimental setup,
while the tilt stages available for use in our experiment were
limited to 8◦. Because of the small α = 8◦ inclination angle we
applied, our setup will still be predominantly sensitive to phase
effects in the x direction. The x-ray wavefield then traveled 22
cm from the sample before being incident on the near perfect
Si(111) analyser crystal in the Laue geometry.
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This analyser crystal consisted of a nominally 100µm thick
silicon wafer that was connected at the base to a monolithic sil-
icon slab. The interaction between the x-ray wavefield and the
analyser crystal caused the x-ray wavefield to be simultaneously
diffracted and transmitted with respective intensities ID and IT .
The diffracted x-ray wavefield then propagated with an angle
2θB = 8.722◦ with respect to the propagation direction of the
incident wavefield (Stepanov, 2004a; Stepanov, 2004b).

The data from these separated beams were then gathered by
a 4000 × 2672 pixel Hamamatsu CCD camera (C9399-124F),
with a tapered fibre optic bonded to the CCD chip and the 20µm
thick gadolinium oxysulfide (Gd2O2S : T b+; P43) phosphor.
The CCD detector with native pixel size of 9µm was converted
to an effective pixel size of 16.2 µm by the 1.8:1 taper ratio. The
CCD detector was positioned 16 cm away from analyser crys-
tal and was also rotated 8◦ clockwise following the propagation
direction of the x-ray wavefield.

Figure 5
a) Transmitted (left) and diffracted (right) projections of three gold foil fiducial
markers captured by a single exposure. Separated and aligned b) diffracted and
c) transmitted images produced using the positions of the three fiducial markers
in the projections. We can check the quality of the alignment by producing an
image of the d) difference between diffracted over transmitted projections. Any
misalignment between these two images will be visible through bright and dark
arcs around the fiducial markers, making them stand out from the background.
Only slight imperfections in the alignment can be seen. The ‘chicken wire’
structure is produced from the fibre optic taper in the detector the wavefield
travels through before incident upon the CCD chip.

Figure 6
Caption on next page
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Figure 6
Maps generated throughout the experimental procedure beginning with the a)
raw tomographic data, projection number 362, showing the diffracted (left) and
transmitted (right) intensities in this single projection that needs to be sepa-
rated and aligned. We then perform phase retrieval to obtain maps b) ∆θ̃′ of
the change of the angle of incidence upon the analyser crystal and c) ∆θ̂′, the
180◦ equivalent of ∆θ̃′ in microradians. From this we split ∆θ̃′ and ∆θ̂′ into the
d) vertical and e) horizontal components of the phase gradients, divided by the
wavenumber, in microradians. From the transmitted projection we obtain a map
of f) intensity, while performing 2-D integration using d) and e) to calculate the
g) phase map in radians. We then performed tomographic reconstruction using
the intensity and phase maps to calculate the h) β maps (×10−9) , and i) δ
maps (×10−6), respectively.

3.1. Diffracted and Transmitted Image Alignment

The data was dewarped using triangular interpolation to cor-
rect for the distortion caused by the fibre optic taper (Kitchen
et al., 2010; Islam et al., 2010). We applied a Laue geometry
ABPCI method that allows one the simultaneous acquisition of
diffracted and transmitted images of the object captured by a
single CCD detector similar to (Kitchen et al., 2011), see Fig-
ure 1. The alignment of the transmitted and diffracted images
was achieved using three gold foil disks placed in the object
plane, as seen in Figure 5. Upon locating the central coordinates
of the foils, we used the three pairs to align the images via the
affine transformation described by Kitchen et al. (2011). From
Figure 5, we can see the alignment procedure appears to fairly
successfully align the transmitted and diffracted projections as
the aligned and subtracted gold foils markers blend in well with
the background, as seen in Figure 5d).

4. Results

Following the phase retrieval procedure discussed in Section
(2), maps of the object were obtained, as shown in Figure 6,
with the analyser crystal positioned at a working point of 50%
peak intensity on the left side of the RC. Beginning with the
raw data a) we have the transmitted and diffracted phase con-
trast images on the right and left hand sides of the image, which
must be separated and aligned, as discussed in Section (3.1). We
then fit rocking curves with a PearsonVII function to the ratio
and diffracted projections with no object present in the beam for
each pixel in the images. We used these fitted rocking curves
with the transmitted and diffracted projections to calculate the
b) ∆θ̃′, c) ∆θ̂′ and f) the attenuation contrast image.

We then split ∆θ̃′ and ∆θ̂′ into the d) vertical and e) horizontal
components of the phase gradients, which were then integrated
to calculate the phase map g). We then performed 180◦ CT fil-
tered back projection reconstruction using the attenuation con-
trast and corrected phase maps (see section 4.1) to produce 3-D
reconstructions of β and δ, respectively. Reconstructions were
obtained for a slice of the reconstructed δ and β maps in Figure
6 i) and h) as shown in Table 1. The uncertainties were calcu-
lated by taking the standard deviation over some area around
the reference point in the slice (Schneider et al., 2012).

The measured β values are in a good agreement with the the-
oretical ones. However, the δ values are all approximately a fac-
tor of two smaller than the theoretical ones.

Table 1
Reconstructed δ and β values for media present in the reconstructed phantom
with theoretical values obtained from Henke et al. (1993). Note: Al = Alu-
minium, PMMA = Perspex, The = Theoretical, Mea = Measured.

βT he βMea δT he δMea

Al 1.5 · 10−9 1.6 ± 0.1 · 10−9 8.0 · 10−7 4.3 ± 0.1 · 10−7

PMMA 1.4 · 10−10 1.5 ± 0.3 · 10−10 3.9 · 10−7 2.1 ± 0.1 · 10−7

Teflon 3.7 · 10−10 4.0 ± 0.3 · 10−10 6.5 · 10−7 3.6 ± 0.1 · 10−7

Figure 7
Phase maps a) without and b) with the linear trend correction applied through
measuring the linear gradient between the left and right edge of the phantom
then dividing it through the entire phase map. c) Plots for the uncorrected and
corrected phase maps given by the red solid line and blue dashed line, respec-
tively, approximately show this linear trend.

4.1. Corrections

Under plane wave illumination the phase outside the object
should be approximately constant. However, Figure 7 shows
large low frequency phase gradients are present across the
images. This comes from the 2-D integration process to calcu-
late the phase map, which amplifies low frequency noise in the
image. A linear ramp correction was applied to the phase map as
the phase of one side of the phantom was underestimated with
respect to the other. This linear correction was applied during
the phase retrieval process to all the phase maps in order to make
the sides of the phantom have the same phase value. Figure 7a)
and b) show phase maps and their plots in c) with and without
the correction applied. We see that for the uncorrected phase
map the right hand side is lower than the left hand side and we
also see a slope in the parabolic shape. This is corrected by esti-
mating the linear ramp through measuring the phase values on
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the left and right hand side of the phantom for each line, nor-
malising, then dividing the phase map by the linear ramp. The
linear ramp of the phase behaves inhomogeneously, changing
in both magnitude and sides of the phantom over the sequence
of acquired phase maps. Causes of these approximately linear
trends are discussed in Section 5.

5. Discussion
Qualitatively, our reconstructions of the β and δ distributions
shown in Figure 6h) and i) are in excellent agreement with
expectation and there are minimal artefacts seen in the recon-
structions, despite having to correct the phase maps. The appli-
cation of the correction procedure to the phase retrieval process
has provided high contrast and high resolution reconstructions
of the object even though it is not the most effective CT filter-
ing method. The quantitative measures of the attenuation prop-
erties are in excellent agreement with theoretical predictions, as
shown in Table 1. The underestimation of the δ values, how-
ever, is most likely due to the underestimation of the phase gra-
dient. Inaccuracies in the phase gradient maps lead to low fre-
quency artefacts of the phase maps. This was partially corrected
by applying the linear correction. These inaccuracies can arise
from (1) the failure of the GOA at boundaries due to the high
phase gradient, (2) imperfect alignment of the transmitted and
diffracted projections and (3) the shallow 8◦ inclination applied.

We explore these issues, beginning with point (1). The GOA
assumes slow variations of the phase as the wavefield propa-
gates through the sample. This assumption may break down at
the boundaries between PMMA and air, where the refractive
index difference is quite large. This could be fixed by submerg-
ing the sample in a fluid with similar refractive properties to
PMMA such as paraffin, which would reduce the change in the
phase gradient. Rutishauser et al. (2011) obtained results for rat
cerebellum submerged in paraffin, using the inclined geometry,
of δ = 4×10−7 with small discrepancies when compared to the
theoretical value of 3.52×10−7 from (TS-Imaging, 2019; Bren-
nan & Cowan, 1992; White et al., 1989; Chantler, 2000; Zschor-
nack, 2007; Stepanov, 2004a; Stepanov, 2004b; Stevenson,
1993). Whereas, (Rutishauser et al., 2011; Rutishauser, 2013)
demonstrated a large discrepancy of about one order of mag-
nitude between the reconstructed and theoretical values while
imaging a cylindrical PMMA phantom in air with a photon
energy of 25 keV (∆E/E) ≈ 2%. The δ value for perspex was
reconstructed to be 0.4×10−7 compared to the theoretical value
of 3.9 × 10−7 (Henke et al., 1993). However, Kitchen et al.
(2010) showed good agreement between the theoretical and
reconstructed values of the function δ obtained for a PMMA
block in air with cylindrical cavities, with a photon energy of
26 keV using a 1-D phase sensitive Laue ABPCI setup. In that
study, the PMMA block was positioned in such a manner that
the direction of the phase gradient produced by the cylinder was
aligned with the direction of maximum sensitivity of the anal-
yser crystal used. Therefore, part of our deviation from the the-
oretical value may result from the restricted angle (8◦) by which
we could rotate the sample and detector.

Following with point (2), any misalignment between the
transmitted and diffracted projections can result in significant

inaccuracies in the reconstructed phase gradients. However,
Figure 5 shows that projections appear to be relatively well
aligned. It is possible that our alignment method needs further
improvements in order to more accurately reconstruct the 2-D
phase gradient map as even subpixel misalignments can have a
significant effect (Kitchen et al., 2011). It is important to note
that the β values were calculated from a single set of 180◦ pro-
jections, while the δ values used two sets of projections, the
second coming from mirroring the ∆θ̂′ projections, as described
previously. This could suggest that complications may have
occurred when utilizing the mirrored projections causing the
observed discrepancy.

Finally, following point (3), we recall that the analyser crys-
tal is only sensitive to the component of the phase gradients
lying in the plane of diffraction of the analyser crystal. For
our experimental setup, this was in the vertical direction. Our
mechanical restriction to 8◦ inclination did allow some infor-
mation from the horizontal direction to be obtained, but with
low amplitude and relatively high noise compared to the vertical
component, as seen by comparing Figure 6 d) and e). This hor-
izontal component information is then amplified through divi-
sion of 2 sin(8◦) = 0.28, as shown in Eqn (2.25), while the
vertical component information is decreased through division
of 2 cos(8◦) = 1.98, as shown in Eqn (2.22). Additional exper-
iments need to be undertaken to test these speculations to deter-
mine the primary source of errors, beginning with increasing
the inclination of the applied inclined geometry. The fact that
our results have the correct order of magnitude for the δ value
is therefore encouraging given the small inclination angle of
just 8 degrees. We anticipate that a larger inclination angle of
30◦− 60◦ will lead to reconstructions with values more closely
matching the theoretical values. This larger inclination will
allow more information from the horizontal axis to be acquired
and used in the integral to calculate the phase.

6. Conclusion

We applied an inclined geometry method in order to achieve
2-D phase sensitivity for ABPCI in a Laue geometry setup
through rotation of the object and detector by 8◦ clockwise
folowing the x-ray wavefield propagation direction. Our mea-
sured β values were in excellent agreement with the theoretical
ones. The measured δ values were qualitatively correct and had
the correct order of magnitude, but the measured values were
approximately a factor of two less than the theoretical values.
Considering the small angle inclination of the crystal relative
to the sample stage and detector (8◦ compared to the ideal 45◦

degrees), the results are encouraging. The discrepancy between
the measured and theoretical δ values could also be due to GOA
condition breaking down or slight misalignment of the transmit-
ted and diffracted images with additional experiments required
in order to confirm the source of error and obtain more accurate
results.

Acknowledgements
The synchrotron radiation experiments were performed at

Beamline BL20B2 of SPring-8 with the approval of the Japan
Synchrotron Radiation Research Institute (JASRI) (Proposal

J. Synchrotron Rad. (0000). 00, 000000 LIST OF AUTHORS · (SHORTENED) TITLE 7



2012B1315). We acknowledge travel funding provided by the
International Synchrotron Access Program (ISAP) managed by
the Australian Synchrotron, part of ANSTO (AS/IA124/6149).
We acknowledge Timur Gureyev, David M. Paganin and Iain
M. Young for their work on the journal article, funding, plan-
ning and discussion of the proposal for this experiment. MJK is
funded by an ARC Future Fellowship (FT160100454).

References
Arfelli, F., Astolfo, A., Rigon, L. & Menk, R. H. (2018). Sci. Rep, 8(1),

362–14.
Authier, A. (2001). Dynamical Theory of X-Ray Diffraction. University

Press.
Beltran, M., Paganin, D., Uesugi, K. & Kitchen, M. (2010). Opt. Expr,

18(7), 6423–6436.
Brankov, J. G., Wernick, M. N., Yang, Y., Li, J., Muehleman, C.,

Zhong, Z. & Anastasio, M. A. (2006). Med. Phys, 33(2), 278–
289.

Bravin, A. (2003). J. Phys. D. Appl. Phys, 36(10A), A24.
Brennan, S. & Cowan, P. (1992). Rev. Sci. Instr, 63(1), 850–853.
Bushuev, V., Bellaevskaya, E. & Ingal, V. (1997). Il Nuovo Cimento D,

19(2-4), 513–520.
Bushuev, V. & Guskova, M. (2005). Bull. Russ. Acad. Sci.: Phys, 69,

253–259.
Bushuev, V., Ingal, V. & Beliaevskaya, E. (1998). Crystallogr. Rep,

43(4), 538–547.
Bushuev, V., Ingal, V. & Belyaevskaya, E. (1996). Crystallogr. Rep,

41(5), 766–774.
Chantler, C. T. (2000). J. Phys. Chem. Ref. Data, 29(4), 597–1056.
Chapman, D., Thomlinson, W., Johnston, R. E., Washburn, D., Pisano,

E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F. & Sayers, D.
(1997). Phys. Med. Biol, 42(11), 2015–2025.

Coan, P., Pagot, E., Fiedler, S., Cloetens, P., Bravin, A. et al. (2005). J.
Synchrotron Radiat, 12(2), 241–245.
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