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TREE REPRESENTATIONS OF NON-SYMMETRIC 
GROUP-VALUED PROXIMITIES 

CHARLES SEMPLE AND MIKE STEEL 

ABSTRACT. Let X be a finite set and let d be a function from X x X into an 
arbitrary group Q. An example of such a function arises by taking a tree T 
whose vertices include X, assigning two elements of Q to each edge of T ( one 
for each orientation of the edge), and setting d(i,j) equal to the product of the 
elements along the directed path from i to j. We characterize conditions when 
an arbitrary function d can be represented in this way, and show how such 
a representation may be explicitly constructed. We also describe the extent 
to which the underlying tree and the edge weightings are unique in such a 
representation. These results generalize a recent theorem involving undirected 
edge assignments by an Abelian group. The non-Abelian bi-directed case is of 
particular relevance to phylogeny reconstruction in molecular biology. 

1. INTRODUCTION 

A classical problem in classification is the following: when can an arbitrary 
metric on a finite set be realized by embedding the points of the metric space in 
a positively edge-weighted tree with its associated minimum path-length metric? 
More precisely, given a metric d : X x X -+ JR~0 , when does there exist a tree 
T = (V, E) with X s;;: V and a weighting w : E -+ JR2':0 such that d( i, j) is the sum 
of the weights of the edges on the path connecting vertices i and j? Furthermore, 
if d has such a representation, what can one say concerning the possible choices of 
T and w? 

Both questions have well-known solutions which date back 30 years (see [7], 
[12], and [14]). Specifically, a tree representation exists for all of X precisely if it 
exists for every subset of X of size at most 4, and this, in turn, is equivalent to 
an appropriate "four point condition" involving (in)equalities on sums of pairs of 
d(i,j) values. Furthermore, when they exist, the pair (T,w) that accommodate a 
representation of d is uniquely determined, provided T has no vertices in V - X of 
degree less than 3 and w is strictly positive. Note that the last two provisos can 
always be imposed. 

These classical results, which have become a central tool in classification (par
ticularly in evolutionary biology) have been subsequently generalized in several 
directions. Hakimi and Patrinos [10] considered two extensions: firstly, to allow for 
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edge weightings over JR (rather than just JR2°); and, secondly, to consider trees in 
which each edge is assigned two real numbers ( one for each orientation of the edge), 
with d(i,j) now being defined as the sum of the weights on the directed path from 
i to j. This second extension allows, but does not necessarily imply, non-symmetry 
in the function d. 

A second line of generalization was adopted by Bandelt and Steel (4] to allow edge 
weightings to take values in a suitably structured Abelian semigroup. One spin-off 
of this approach was to provide a tree representation for distance hereditary graphs. 

A third line of generalization was provided by Bocker and Dress (5] who devel
oped a purely combinatorial statement (i.e. involving no algebraic structure) which 
implied the result of (4]; though, as pointed out in (5], the two results are actually 
equivalent. The main theorem from (5] will be a central tool here. 

This paper represents a continuation of this story. We generalize the approach 
of (4] by allowing the edge weightings, and hence d, to take values in an arbitrary 
group, and we follow the approach of Hakimi and Patrinos of allowing each edge to 
have two weightings, according to its two orientations. This two-step generalization 
leads to only a slight complication in the statement of the main existence theorem. 

A key motivation for considering these generalizations comes from the field of 
molecular biology, and, in particular, the problem of reconstructing evolutionary 
trees from aligned genetic sequences. If one assumes that these sequences evolve 
according to standard Markov models, then to each edge of the underlying tree 
is associated two transition matrices ( dep,ending on the direction along the edge 
that the process is run). The ordered product of these transition matrices along 
the path from species i to species j is then the net transition matrix for the pair 
( i, j) which can be estimated from genetic data (see [2] and [8]). Thus, if we have 
r-state sequences (for instance r = 4 for DNA sequences), we are precisely in 
the setting of assigning elements of the non-Abelian group Q of r x r invertible 
real matrices to each orientation of the edges and taking (directed) products. The 
results below describe conditions under which the associated tree (and the edge
weightings) can be reconstructed (thereby generalizing the results of (2]). Moreover, 
these results describe conditions under which such a representation exists over Q 
( of course, for this particular problem we require more - namely representation over 
the semigroup of transition matrices, however, representation over Q is certainly a 
necessary condition). 

The structure of the paper is as follows. We begin Section 2 by setting up 
some terminology and establishing a basic property of tree representations. Several 
mappings are defined and some important relationships between these mappings 
are determined. In Section 3, we state the two main (existence and uniqueness) 
results, Theorems 3.1 and 3.2, and provide proofs. We also derive, as a corollary, 
the main theorem from [4]. Section 4 makes some concluding remarks. 
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2. PRELIMINARIES 

Throughout this paper, X will denote a finite set, and Q will denote an arbitrary 
group with identity element lg. We multiply elements of Q from left to right. 

Definitions. 

• Let T be a tree with vertex set V and edge set E s;;; { { x, y} : x, y E V; x =/:- y}. 
A vertex v E V is interior if degr(v) > 1, otherwise v is a leaf. An edge 
e = { u, v} E E is interior if both u and v are interior vertices, otherwise we 
say e is exterior. 

• Suppose we have a map ¢ : X -t V with the property that, for all v E V, 

degr(v) _:::; 2 ==> v E ¢(X). 

The pair (T; ¢) is called an X-tree, and we will sometimes write this as the 
ordered triple (V,E;cp). If¢ is a bijection from X into the set V1 of degree
one vertices of T, then (V, E; ¢) is a phylogenetic X -tree. In this case, we can 
view X as a subset of V1 and so we will frequently just denote a phylogenetic 
X -tree by just T or (V, E), since ¢ is implicitly determined. An example of 
a phylogenetic X -tree for X = { i, j, k, x} is shown in Figure l. Two X-trees 
(V, E; ¢) and (V', E'; ¢') are isomorphic if there exists a bijection a : V -t V' 
which induces a bijection between E and E' and which satisfies ¢' = a o ¢, in 
which case a is unique. We denote isomorphism by the symbol=· 

• For a tree (V,E), let E(2) = {(u,v) : {u,v} E E}. We can regard E(2) 

as the set of pairs in which each member consists of an element of E and 
an orientation of it. Each element of E(2) is called an arc. Let w be a 
function from E(2) into the group Q. We refer to w( ( u, v)) as the weight of 
arc ( u, v) and, for simplicity, we shall write w( ( u, v)) as w( u, v). Following 
(2), the return-trip weights of an edge {u,v} are the elements w(u,v)w(v,u) 
and w(v,u)w(u,v) of Q. We say that an edge e is properly weighted if lg is 
not a return trip weight fore (or, equivalently, if the return trip weights for 
e are not both equal to lg). 

• Given an X-tree (T;¢) and vertices v1,V2 EV, define D(T;<f,;w): V x V-t Q 
by setting D(T;<f,;w) ( v1, v2 ) equal to the ( ordered) product of the weights of 
the arcs on the directed path from v1 to v2 if v1 =/:- v2 and D(T;<f,;w)(v1,v2) 
equal to lg if v1 = Vz. Define d(T;</>;w) : Xx X -t Q by setting 

d(T;<f,;w)(i,j) = D(T;<f,;w)(cp(i), q;(j)), 

for all i, j E X. We will sometimes drop or abbreviate the subscripts on 
D(T;<f,;w) and d(T;<f,;w) and write, for example, dr(i, j) or even just d(i, j) if 
there is no chance of ambiguity. 

• A proximity mapping is any function o : Xx X -t Q that satisfies o(i, i) = lg 
for all i E X. Furthermore, such a mapping is a tree proximity if there is 
an X -tree (V, E; ¢) with a weight function w : E(2) -t Q such that, for all 
i,j EX, d(T;¢;w)(i,j) = o(i,j); in which case (T;cp;w) is said to be a tree 
representation of o. If, in addition, (T; ¢) is a phylogenetic X-tree and each 
interior edge is properly weighted, then (T; ¢; w), or more briefly (T; w), is 
said to be a standard tree representation of o. 
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FIGURE 1. A phylogenetic X-tree for X = {i,j,k,x}. 

Before proving Proposition 2.1, we describe how a tree representation (T; ¢; w) 
of a proximity map <5 gives rise to an associated tree representation (T'; ¢\ w') of 
<5 in which (T'; ¢') is a phylogenetic X-tree. For all v E V(T) (the set of vertices 
of T), let S(v) = {i E X : ¢(i) = v} and let s(v) = IS(v)I. For each interior 
vertex v E V with s(v) > 0 and for each leaf v E V with s(v) > 1, let us make 
v the endpoint of s(v) new edges, and modify¢ so that, instead of mapping S(v) 
to v, we map S(v) bijectively to the endpoints of the new edges, thereby creating 
a phylogenetic X -tree (T'; ¢'). Let w' denote the extension of w to the arcs of T' 
by assigning the value lg to both arcs of each newly-created edge. We will refer to 
(T'; ¢'; w') as the phylogenetic expansion of (T; ¢; w). 

Proposition 2.1. Let <5 : Xx X---+ 9 be a tree proximity map. Then there exists 
a standard tree representation of <5. 

Proof. By obtaining the phylogenetic expansion of some tree representation of <5 

if necessary, we may assume that we have a tree representation (T; ¢; w) of <5 for 
which (T; ¢) is a phylogenetic X -tree. We complete the proof by showing how 
(T; ¢; w) can be transformed to a standard tree representation of <5. Suppose that 
u and v are adjacent interior vertices of (T; ¢; w) such that w(u, v)w(v, u) = lg. 
Let (T; ¢; w') be obtained from (T; ¢; w) by replacing w with the weight function 
w' defined, for all distinct v1 and v2 of V (T) - { u}, by w' ( u, v1 ) = w( v, u )w( u, vi), 
w'(v1,u) = w(v1,u)w(v,u)-1, and w'(v1,v2) = w(v1,v2). Thus w'(u,v) = lg and 
w'(v,u) =lg.Using the fact that (T;¢) is a phylogenetic X-tree, a routine check 
shows that (T; ¢; w') is a tree representation of <5. Thus the tree (T'; ¢; w"), where 

• T' is the tree obtained from T by contracting { u, v}, and 
• the mapping w" : E(T1

)(
2) ---+ Q is defined, for all (v1 ,v2 ) E E(T')( 2 ), by 

w" ( V1, V2) = w' ( V1, V2), 

is also a tree representation of <5. Moreover, it is easily checked that the return
trip weight of every edge in (T; ¢; w') is equal to lg if and only if it is equal to 
lg in (T; ¢; w). Hence, in (T'; ¢; w"), the number of properly weighted interior 
edges is one less than that for (T; ¢; w). By continuing this process if necessary, we 
eventually obtain a standard tree representation of <5. D 

Remark. In contrast to the classical real-valued symmetric setting, a tree proxim
ity map may not have a tree representation in which the weighting function is proper 
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on all edges. In the proof of Theorem 3.1, we outline an explicit polynomial-time 
construction of a standard tree representation of a tree proximity map. 

Before proceeding further, we require the definitions of several maps, each of 
which are essential to the proofs of the main theorems of this paper. 

Definitions. 

• Given a tree T = (V, E), a discriminating (}-dating map is a function t: V --+ 
Q with the property that if {u,v} is an interior edge of T, then t(u) "I t(v). 

• Given a proximity map 8 : X x X --+ Q and an element x in X, there is an 
important associated map 8x : Xx X--+ Q defined, for all i,j EX, by 

8x(i,j) = 8(x,i)8(j,i)-18(j,x). 

Note that 8x is not usually a proximity map since we will generally have 
8x(i,i) f: lg. 

• Given a phylogenetic X-tree T = (V, E), a discriminating (}-dating map 
t : V -+ (}, an element x in X, and a proximity map 8 : X x X --+ Q, we 
describe two associated mappings: 
(i) A map dF;t) : X x X -+ Q which is defined as follows. For elements u 

and v in V, write u '.Sx v if u lies on the path from x to v. For all i, j E X, 
set 

d~T;t)(i,j) = t(glb~.(i,j)), 
where glb<. denotes the greatest lower bound under the partial order '.Sx· 

(ii) An arc w-;;ighting function w = Wt,x : E(2) --+ Q which is defined as 
follows. To each pair of arcs (u,v) and (v,u), assign the weights w(u,v) 
and w(v,u), respectively, so that: 

* if v = i E X - { x} , set 

w(u, i) = t(u)-1 t(i)8(i, x)-1 and w(i, u) = 8(i, x); 

* otherwise, if u '.Sx v or u = x, set 

w(u,v) = t(u)- 1t(v) and w(v,u) = lg. 

• Lastly, two other mappings are needed. Suppose that (T; w) is a standard 
tree representation for a tree proximity 8 with T = (V, E). Let x E X. 
(i)' Define t = t(T;w;x) : V --+ Q as follows. If (u1, v1), (u2, v2), ... , (uk, vk) 

denotes the arcs on the path from x to v (so u1 = x and vk = v), then 
set 

t(v) = w(u1,v1)w(u2,v2) ... w(uk,vk)w(vk,uk) ... w(v2,u2)w(v1,u1). 
In other words, for all v E V, t(v) is the ordered product of the weights 
of the arcs on the directed path from x to v multiplied by the ordered 
product of the weights on the directed path from v back to x. Since (T; w) 
is a standard tree representation ( and so each interior edge is properly 
weighted), it follows that t(T;w;x) is a discriminating (}-dating map. 

(ii)' The second map t8,x : V--+ Q is defined as follows: for each v EV, select 
elements i and j of X so that v is the greatest lower bound ( under the 
partial order :Sx) of i and j, and set 

t8,x(v) = 8(x,i)8(j,i)-18(j,x). 
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That t8,x is well-defined (i.e. independent of the choice of i and j) and, 
moreover, a discriminating Q-dating map, follows from the first part of 
Lemma 2.2. 

Lemma 2.2 establishes some important relationships between the above map
pings. 

Lemma 2.2. Leto : X x X --+ Q be a proximity map and let x be an element of 
x. 

1. If (T; w) is a standard tree representation of o, then 

t8,x = t(T;w;x) 

and 
0 - d(T;t') 

x - x ' 

where t1 = t(T;w;x) (= t8,x)· 

2. Conversely, if Ox = d~T;t) for some phylogenetic X -tree T and discriminating 
Q-dating map t, then (T; Wt,x) is a standard tree representation of o. 

Proof. Part 1. To prove the first half of Part 1, let v be an element of V(T), and 
choose elements i and j of X so that v = glb<Ji,j) in T. Let Pv (resp. qv) be 
the ordered product of arc weights on the path from x to v (resp. v to x) in T. 
Furthermore, let Pi (resp. qj) be the ordered product of arc weights on the path 
from v to i (resp. j to v) in T. Since (T;w) is a tree representation of o, it follows 
that 

t8,x(v) = o(x, i)o(j, i)-1o(j, x) = PvPi(qjpi)- 1qjqv = Pvqv = t(T;w;xl(v), 

as required. 

For the second half of Part 1, set t 1 = t8,x· Since t8,x = t(T;w;x) and since t(T;w;x) 
is a discriminating Q-dating map, t8,x is a discriminating Q-dating map. Now, for 
all i,j EX, we have 

d~T;t')(i,j) = t8,x(glb~.(i,j)) = o(x,i)o(j,i)-1 o(j,x) = Ox(i,j), 

as required. 

Part 2. Suppose that Ox = d~T;t), for some phylogenetic X -tree T and discrim
inating Q-dating map t. Firstly, note that, by the definition of Wt,x and the fact 
that t( u) :/:- t( v) for each interior edge { u, v} of T, we see that each interior edge 
of T is properly weighted. We complete the proof of Part 2 by verifying that 
d(T;wi,.)(i,j) = o(i,j), for all i,j E X. Let I denote the cardinality of {x,i,j}. 
Depending on the value of I, there are three cases to consider: 

• I= 1. In this case, d(T;w,,.)(x, x) =lg= o(x, x), as required. 

• I= 2. In this case, we may assume that i = x. Since Ox = dt;t), we deduce 
that t(x) = lg and so, by the definition of Wt,x, we have d(T;w, .• )(x,j) = 

t(j)o(j,x)-1 . Therefore, as t(j) = t(glb~.(j,j)) = d~T;t)(j,j) = Ox(j,j) = 
o(x,j)o(j, x), it follows that d(r;wi .• )(x,j) = o(x,j). Furthermore, from the 
definition of Wt,x, we directly get d(T;wi .• )U, x) = o(j, x), as required. 
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• I= 3. By the definition of Wt,x, we have 

d(T;w,,,) (i, j) = o(i, X )t(glb~.( i, j) )-1t(j)d(j, X )-l. 

Now 

t(glb~.(i,j)) = df';t)(i,j) = d~T;t)(j,i) = ox(j,i) = o(x,j)o(i,j)-1o(i,x), 

which also implies that t(j) = t(glb~.(j,j)) = o(x,j)o(j,x). Therefore 
d(T;w,,,)(i,j) = o(i,j), as required. 

D 

Combining Proposition 2.1 with the last lemma, we get Corollary 2.3. 

Corollary 2.3. 1. A proximity map o : X x X ---+ g is a tree proximity if and 

only if Ox = d~T;t) for some phylogenetic X-tree T and discriminating 9-
dating map t. 

2. Suppose that o is a tree proximity. If T is the phylogenetic tree involved in a 
standard tree representation of o, then (T; Wt,x) is a standard tree represen
tation of o, where t = t 0,x. 

The next proposition is an immediate consequence of [5, Theorem 2], the main 
theorem of [5]. 

Proposition 2.4. Leto : X x X ---+ 9 be a proximity map and let x be an element 
of X. Then there exists a phylogenetic X -tree T and a discriminating 9-dating 

map t such that Ox = d~T;t) if and only if Ox satisfies the following conditions: 

(Ul) Ox(i,j) = Ox(j,i), for all i,j EX; 
(U2) l{ox(i,j),ox(i,k),ox(j,k)}I:::; 2, for all i,j,k EX; and 
(U3) there exist no pairwise distinct elements i, j, k, and l of X with 

Ox(i,j) = Ox(j, k) = Ox(k, l) f Ox(j, Z) = Ox(l, i) = Ox(i, k). 

Furthermore, up to canonical isomorphism, T is unique. 

Combining Corollary 2.3 with Proposition 2.4, we get Corollary 2.5. 

Corollary 2.5. A proximity map o : X x X ---+ 9 is a tree proximity map if and 
only if Ox satisfies (Ul), (U2), and (U3) for some x EX. 

The existence part of Theorem 3.1 is proved via Corollary 2.5. 

3. MAIN RESULTS 

We are now ready to state and prove our two main (existence and uniqueness) 
results, Theorems 3.1 and 3.2. Note that an explanation for the slight complication 
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concerning "Ho'' in the statement of Theorem 3.1 is given in the remark immediately 
following the proof of Theorem 3.1. 

Theorem 3.1. Leti5: XxX--+ 9 be a proximity map. LetH0 denote the following 
(finite) subset of 9: 

{i5(i,k)i5(j,k)-\5(j,l)i5(i,l)-1 : i,j,k,l EX}. 

Suppose that Ha has no elements of order 2. Then i5 is a tree proximity map if and 
only if i5 satisfies the following two conditions: 

(P 1) For all distinct elements i, j and k of X, 

i5(i,j)i5(k,j)-1 i5(k, i) = i5(i, k)i5(j, k)- 1 i5(j,i). 

(P2) For all four distinct elements of X, we can order these elements as i, j, k, 
and l so that 

i5(i, k)i5(j, k)- 1 = i5(i, l)i5(j, l)-1 . 

Furthermore, a standard tree representation of i5, if one exists, can be constructed 
in polynomial time from i5. 

Proof. If i5 is a tree proximity map, then it is straightforward to check that (Pl) 
and (P2) must hold by cancelling the products of the appropriate arc weights in Q. 

Before establishing the converse, note that if i5(i, k )i5(j, k )-1 = i5(i, l)i5(j, l)-1
, for 

some elements i, j, k, and l of X, then it is easily checked using (P 1) that 

i5(k, i)i5(l, i)-1 = i5(k, j)i5(l, j)-1 

also holds. We freely use this observation in the proof that follows. 

Let x be an element of X. To prove the converse, it suffices to show, by Corol
lary 2.5, that i5x satisfies conditions (Ul), (U2), and (U3) as listed in the statement 
of Proposition 2.4. We now show that this is indeed the case. 

For all i, j E X, (P 1) shows that i5x satisfies (Ul). Furthermore, for all i, j, k E X, 
(P2) together with (Ul) shows that i5x satisfies (U2). The proof that (U3) holds 
for i5x is as follows. 

3.1.1. i5x satisfies (U3). 

Proof. Suppose that i, j, k, and l are pairwise distinct elements of X with 

i5x(i,j) = i5x(J,k) = i5x(k,l) 

and 

i5x(J,l) = i5x(l,i) = i5x(i,k). 

We prove (3.1.1) by showing that i5x(i,j), i5x(j, k), i5x(k, l), i5x(j, l), i5x(l, i), and 
i5x(i, k) are all equal. 

If l{x,i,j,k,l}I = 4, then it is clear that (3.1.1) holds. Therefore assume that 
I { x, i, j, k, l} I = 5. Depending on the relationship between i, j, k, and l given by 
(P2) and noting the observation above, there are three cases to consider: 
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(i) c5(i, k)c5(j, k)-1 = c5(i, z)c5(j, n-1 ; 

(ii) c5(i,j)c5(k,j)-1 = c5(i, l)c5(k, z)-1; and 
(iii) c5(i,j)c5(l,j)-1 = c5(i,k)c5(l,k)-1 . 

We shall denote the above equations as (i), (ii), and (iii), respectively. Moreover, 
in the analysis of Cases (i)-(iii), we freely use the fact that (Ul) holds for c5x. 

Case (i). Since c5x(l,i) = c5x(k,i), we have c5(x,l)c5(i,l)-1 = c5(x,k)c5(i,k)-1 , which 
implies that 

(1) c5(x, l)c5(i, n-1c5(i, k) = c5(x, k). 

Now, by (i), c5(j, Z)-1 = c5(i, l)-1 c5(i, k)c5(j, k)-1 and so 

c5x(j,l) = c5x(l,j) = c5(x,l)c5(j,l)-1c5(j,x) 

= c5(x, l)c5(i, n-1 c5(i, k)c5(j, k)-1 c5(j, x) 

= c5(x, k)c5(j, k)-1 c5(j, x), 

= c5x (k, j) = c5x (j, k ), 

completing the proof of (U3) for Case (i). 

by (1), 

Case (ii). The proof of (U3) for Case (ii) is analogous to that of Case (i). We omit 
the details and just remark that we first deduce c5(x,k)c5(j,k)-1c5(j,i) = c5(x,i) via 
the fact that c5x(i,j) = c5x(k,j), and then show c5x(k,l) = c5x(l,i). 

Case (iii). Since c5x(j,i) = c5x(k,l) and since c5x(j,l) = c5x(k,i), we have 

(2) c5(x,j)c5(i,j)-1c5(i,x) = c5(x, k)c5(l, k)-1 c5(l, x) 

and 

(3) c5(x,j)c5(l,j)-1c5(l,x) = c5(x, k)c5(i, k)-1 c5(i, x), 

respectively. By combining (2) and (3), we deduce that 

c5(l, k)-1 c5(l, x)c5(i, x)-1 c5(i, j) = c5(i, k)-1 c5(i, x)c5(l, x)-1 c5(l, j), 

which in turn implies that 

( 4) c5(i, k )c5(l, k )-1 c5(l, X )c5(i, X )-
1 = c5( i, X )c5(l, X )-1 c5(l, j)c5(i, j)-1

. 

Substituting (iii) into (4), we get 

c5(i, j)c5(l, j)-1c5(l, X )c5( i, X )-
1 = c5( i, X )c5(l, X )-1 c5(l, j)c5( i, j)-1 . 

Since H0 has no elements of order 2, the last equation implies that 

(5) c5(i,x)c5(l,x)-1 c5(l,j)c5(i,j)-1 = lg. 

Having established (5), we complete the proof of (U3) for Case (iii) as follows. 
By (iii), c5(i, k)-1 = c5(l, k)-1c5(l,j)c5(i,j)-1 , and so 

c5x(i, k) = c5x(k, i) = c5(x, k)c5(i, k)-1c5(i, x) 

= c5(x, k)c5(l, k)-1 c5(l, j)c5(i, j)-1 c5(i, x) 

= c5(x, k)c5(l, k)-1c5(l, x), by (5), 

=6x(k,l), 
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as required. 0 

We conclude that Ox satisfies (Ul), (U2), and (U3) and so, by Corollary 2.5, o is 
a tree proximity map. 

Lastly, we describe a polynomial time algorithm for finding a standard tree 
representation of o. Firstly, we provide a construction of a phylogenetic X -tree that 
turns out to be isomorphic to the underlying phylogenetic X -tree of a standard tree 
representation of o. For a tree proximity map o and an element x in X, let R( o, x) 
denote the set of x-rooted phylogenetic trees (that is, trees rooted on leaf x) which 
is constructed as follows. For each pairwise disjoint triple i, j, k E X, if 

Ox(i,j) f- Ox(i,k) = Ox(j,k), 

then place the x-rooted tree ijlkx, as shown in Figure 1, into R(o, x). Let A[R(o, x)] 
denote the x-rooted tree constructed from R(o, x) by applying the algorithm of Aho 
et al. [1] (see also [6) and [11)). Briefly, in this algorithm, one first constructs a 
graph G having vertex set X - { x} and with an edge between any two vertices i 
and j precisely if there exists k EX - {x} such that ijlkx E R(o,x). One then 
takes the connected components of this graph, which form the top "clusters" of the 
tree, and continues this process recursively on the vertices of each component. For 
further details see [6) or [11). 

We now show that if (T; w) is a standard tree representation of o, then 

(6) A[R(o,x)] = T. 

To prove (6), we argue by induction based on the number of interior vertices in 
the longest path of T that starts at x, when one considers T as an x-rooted tree. 
Let h(T) denote this number. If h(T) = 1, then, as T is part of a standard tree 
representation of 8, it follows by the first part of Lemma 2.2 that R(o, x) is empty 
and so (6) holds. 

Now assume that h(T) > 1 and that (6) holds for all trees in a standard tree 
representation of o with fewer interior vertices in the longest path starting at x. 
For r > 1, let Vi, Vi, ... , Vr denote the vertex sets of the subtrees of T, other 
than the isolated vertex x, incident with the vertex of T adjacent to x. For all 
p E {1,2, ... ,r}, let Xp = ¢-1 (Vp), Thus X 1 ,X2 , ... ,Xr forms a partition of 
X - {x}. 

Let G be the graph described above in the brief description of the algorithm. To 
prove the induction step of the proof, it suffices to show that X 1 , X 2 , ... , Xr are 
precisely the vertex sets of the connected components of G. That is, for some p E 
{1, 2, ... , r}, elements i and j are both in Xp if and only if there exists k E X - { x} 
such that ijlkx E R(o, x). We now show that this is indeed the case. 

Suppose that i,j E Xp, for some p E {1,2, ... ,r}. Let v = glb':'o.(i,j) in T. 
Since i, j E Xp, there exists an interior vertex u in T and a k in X such that, in 
T, vertices u and v are adjacent and u = glb':'o.(i, k) = glb':'o, (j, k). By Part 1 of 
Lemma 2.2, the map t&,x : V(T) -+ 9 is a discriminating 9-dating map and so 
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to,x ( u) -/:- t0,x ( v). Therefore 

df;t)(i,j)-/:- d~T;t)(i,k) = d~T;t)(j,k), 

where t = to,x· By Part 1 of Lemma 2.2, c5x = d~T;t) and so ijjkx E R(c5, x). 

Now suppose that there is no pin {1, 2, ... , r} such that i, j E Xp. An argument 
similar to that used in the last paragraph, shows that there is no k E X - { x} such 
that ijjkx E R(c5, x). This establishes (6). 

Having established (6), we see that A[R(c5, x)] is part of a standard tree repre
sentation of c5. By Part 2 of Corollary 2.3, the pair (A[R(c5,x)];wt,x), fort= to,x, 
provides a standard tree representation of c5. Furthermore, the tree A[R(c5, x)] can 
be constructed in polynomial time (see [1], [6], or (11]), and once this tree is con
structed, the arc function Wt,x can also be constructed in polynomial time. This 
completes the proof of Theorem 3.1. D 

Remark. The condition on H,s in the statement of Theorem 3.1 is necessary as 
there exists a group g with elements of order 2 and a proximity map c5 : X x X ~ Q 
such that (Pl) and (P2) are satisfied, but in which there is no tree representation of 
c5. An example is provided by the construction in (4] used to illustrate the "necessary 
part" of [4, Proposition 1(2)]. 

Given a standard tree representation (T; w) of a tree proximity map c5 our second 
main result shows that, up to isomorphism, T is determined by c5, and the arc 
weighting w : E(2) ~ Q is partially determined. More precisely, although w is not 
completely determined (as pointed out by [2], [8], and [10]), the return-trip weights 
of every exterior edge as well as, up to conjugacy, the return-trip weights of every 
interior edge of (T; w) can be obtained (this was established for the particular group 
analysed in [2]). Moreover, we show that the arc weights can be arbitrarily specified 
on a certain subset of arcs, but once this is done, then all the remaining arc weights 
are determined. 

Before stating Theorem 3.2, we note the following. IfT and T' are two isomorphic 
trees, then one can identify the set of vertices (resp. edges) of T' as being equal 
to the set of vertices (resp. edges) of T. For the sake of simplicity and without 
ambiguity, we shall treat the vertices (resp. edges) of two such trees in the statement 
and proof of Theorem 3.2 as equivalent. 

Theorem 3.2. Let c5 : X x X ~ Q be a tree proximity map. Suppose that (T; w) 
and (T'; w') are both standard tree representations of c5. Then: 

1. T is isomorphic to T'. 
2. Let e = {u,v} be an edge of T. 

(i) If e is an exterior edge, then 

w(u,v)w(v,u) = w'(u,v)w'(v,u). 

(ii) If e is an interior edge, then 

w(u,v)w(v,u) ~ w'(u,v)w'(v,u), 
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where o: ~ (3 denotes conjugacy in g, that is, there exists an element I 
in g such that o: = ,(3,-1. 

3. Select an interior (resp. exterior) edge, { u, v} say, of T. For all~, ( E g such 
that~(~ w(u,v)w(v,u) (resp. ~( = w(u,v)w(v,u)), there exists a standard 
tree representation (T; w") with 

w"(u,v) =~and w"(v,u) = (. 
4. Let E denote the set of interior edges of T. Then there exists a subset A of 

E(2
), with IAI = 1 + I.El, such that 

I I 
WIA = WIA :::} w = w . 

Furthermore, provided I.El ?: 1, one can extend an arbitrary assignment of 
elements of g to the members of A to a weight function from E(2) into g 
which, together with T, gives a standard tree representation of c5. Moreover, 
all standard tree representations of c5 can be obtained in this way. 

Proof. Part 1. Equation (6) shows that T is determined by c5, and provides, 
moreover, a polynomial time constructive algorithm. Alternatively, the result may 
be deduced from Proposition 2.4 as follows. From the proof of Theorem 3.1, c5., 
satisfies (Ul), (U2), and (U3). Therefore, by combining the first part of Lemma 2.2 
with Proposition 2.4, we deduce that T is isomorphic to T'. 

Part 2. Here we freely use the fact, from the previous part, that T is isomorphic 
to T'. 

To prove (i), suppose that e = {i,u} is an exterior edge of T, where i EX. If 
i and u are the only vertices of T, then (i) holds. Therefore assume that T has at 
least three vertices. Let j and k be elements of X - { i} such that the path from j 
to k in T is incident with u. It follows that 

c5(i,j)c5(k,j)-1c5(k,i) = w(i,u)w(u,i), 

completing the proof of (i). 

To prove (ii), suppose that e = { u, v} is an interior edge of T. Now let i and j 
be elements of X such that the path from i to j is incident with u, but not with v. 
Similarly, let k and l be elements of X such that the path from k to l is incident 
with v, but not with u. Then 

c5(i, l)o(k, l)-1 o(k, j)c5( i, j)-1 = D(T;w) (i, u)w( u, V )w( v, u)D(T;w) (i, u)-1 

and 

c5( i, l)o(k, l)-1o(k, j)c5( i, j)-1 = D(T';w') (i, u)w' ( u, V )w' ( v, u)D(T' ;w') (i, u)-1
. 

By equating the right-hand-sides of the last two equations, and then multiplying the 
resulting equation on the left by D(T;w)(i,u)-1 and on the right by D(T;w)(i,u)-1

, 

we get the desired result. This completes the proof of (ii). 

Part 3. Suppose that {u,v} is an interior edge of T. Let o: = w(u,v) ·and 
(3 = w(v,u), and suppose that~(~ o:(3, that is, ~( = 1 0:(31 - 1 for some I E Q. 
Let {u1 ,u2 , ... ,ur} be the set of vertices in T adjacent u other than v, and 
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let { v1 , v2 , ... , v8 } be the set of vertices in T adjacent to v other than u. Let 
w" : E(2) -t Q denote the arc weighting function defined as follows: 

• w"(u,v) =~and w"(v,u) = (; 
• w"(u,ui) =ryw(u,ui) and w''(ui,u) =w(ui,u)ry-1

, for all i E {1,2, ... ,r}; 
• w"(v,vj) = ~-1 ,,aw(v,vj) and w"(vj,v) = w(vj,v)(J,'-1 (-1 , for all j E 

{1, 2, ... , s }; and 
• w" agrees with w on all other arcs. 

It is easily checked that each edge of T is properly weighted under the arc 
weighting w 11

• Furthermore, for all i, j E X, a case analysis ( depending on which 
of the above arcs are crossed in the path from i to j) using elementary cancellation 
of products in the group Q shows that 8(T;w")(i,j) = b(T;w)(i,j), as required. 

Now suppose that {x,u} is a exterior edge of T, with x EX, w(x,u) = a, and 
w( u, x) = (3. Suppose that ~( = a(3 and let { u1 , u2 , ... , Ur} be the set of vertices in 
T adjacent to u other than x. Let w" : E(2) -t Q denote the arc weighting function 
defined as follows: 

• w"(x,u) =~and w"(u,x) = (; 
• w"(u, ui) = ~-1aw(u, ui) and w" (ui, u) = w(ui, u)(3(-1 , for all i E {1, ... , s }; 

and 
• w" agrees with w on all other arcs. 

Again it is easily checked that each edge of T is properly weighted under the new 
arc weighting w", and that, for all i, j E X, 8(T;w") ( i, j) = 8(T;w) ( i, j), as required. 

Part 4. We begin the proof of Part 4 by constructing the desired subset of E(2
). 

Select an element, x say, of X. Let e be the edge of T incident with x. Set A to be 
a subset of E(2) such that (u, v) EA if and only if (v, u) (/. A and {u, v} EE U {e}. 
We now show that A has the properties claimed in the statement of Part 4. 

Firstly, to each member of A assign an arbitrary element of Q. Let w* : E(2) -t Q 
denote the arc weight function that extends this arbitrary assignment of elements 
of Q to the members of E(2) and is constructed as follows: 

• For each arc (u,v) in A, set w*(v,u) so that, if u :Sx v (resp. v :Sx u) holds, 
the ordered product of the weights of the arcs from x to v (resp. u) and back 
to x is equal to ta,x ( v) (resp. ta,x ( u)). It is not difficult to see that this can 
be done recursively ( and furthermore uniquely) based on the number of edges 
separating v (resp. u) from x. 

• For the remaining arcs in E(2), if v = i EX, then set w*(u,v) = p-18(x,i) 
and w*(v,u) = 8(i,x)q-1 , where pis the ordered product of the arc weights 
from x to u under w* and q is the ordered product of the arc weights from u 
to x under w*. 

Note that w* is well-defined. We next show that (T; w*) is a tree representation 
of 8 by showing that, for all i,j EX, d(T;w•)(i,j) = d(T;w)(i,j). 

: 
!-
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Set d = d(T;w). Clearly, we have d(T;w•) (x, i) = o(x, i) = d(x, i) and, similarly, 
d(T;w•)(i, x) = d(i, x), for all i EX. So assume that i, j, and x are pairwise distinct. 
Let v = glb-5..(i, j), and let Pv and qv be the ordered products of arc weights from 
x to v and from v to x, respectively, in (T; w*). Furthermore, let qi and Pi be the 
ordered products of arc weights from i to v and from v to j, respectively, in (T; w*). 
By the definition of w*, we have 

Pvqv = t 0,x(v) = o(x,j)o(i,j)-1o(i,x) = d(x,j)d(i,j)- 1d(i,x). 

Therefore 

d(i,j) = [d(x,j)- 1pvqvd(i,x)-l]-l 

= [(PvPj)- 1Pvqv(qiqv)- 1J- 1
, 

= qiPi = d(T;w•)(i,j). 

since d = d(T;w•) when x E {i,j}, 

Hence (T; w*) is a tree representation of o. Furthermore, (T; w*) must be a standard 
tree representation of c5, for otherwise, the phylogenetic X -tree associated with the 
standard tree representation of c5 obtained from (T; w*), by the method described 
in Proposition 2.1, has fewer internal vertices than T, contradicting Part 1. 

Since wjA and c5 determines the weight of each arc under w* and since T is iso
morphic to T', it follows that all standard tree representations of c5 can be obtained 
in this way by making the appropriate assignment of elements of g to the members 
of A and that if WjA = w(A, then w = w'. This completes the proof of Part 4 and 
so Theorem 3.2 is proved. D 

We complete this section of the paper by showing that the main theorem of [4] 
can be deduced from Theorems 3.1 and 3.2. 

Suppose S is an Abelian semigroup with identity (we will denote the binary 
operation by addition +, the identity by 0, and write 2x as shorthand for x + x). 
In (4], the authors considered two further conditions on S, namely, cancellation 
(x + y = x + z => y = z) and uniqueness of halves (2x = 2y => x = y). These 
two conditions are easily seen to be equivalent to the condition that S embeds in 
an Abelian group Q that has no elements of order 2. Thus the following corollary 
immediately gives the main theorem of [4]. 

Corollary 3.3. Suppose Q is an Abelian group, with no elements of order 2, and 
S ~ Q forms a semigroup. Suppose further that c5 : X x X ---+ S is symmetric 
(i.e. o(i,j) = o(j,i), for all i,j EX). Then c5 can be realized by a symmetric edge 

weighting w : E(2 ) ---+ S of an X-tree (T; ¢) if and only if the following four point 
condition applies: 

For all (not necessarily distinct) four points in X, there exists an ordering of 
these points, i, j, k, and l say, and an element ( in S such that 

(7) o(i, j) + o(k, l) + 2( = o(i, k) + o(j, l) = o(i, l) + o(j, k). 

Furthermore, the triple (T; ¢; w) is uniquely determined by o, provided we insist 
that no arc of T has weighting zero. 
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Proof. Regarding the existence of a tree representation of 8 the "only if" direction is 
clear. For the "if" part, we note that (Pl) and (P2) in the statement of Theorem 3.1 
clearly apply, and thus, by Theorem 3.1, there exists a tree representation (T; ¢; w') 
of 8, where (T; ¢) is a phylogenetic X-tree and w' : E(2) ---r Q. We wish to show 
that w' can be replaced by a function w that (i) maps into Sand (ii) is symmetric. 
To this end, we first establish the following claim: For each edge e = { u, v} of T, 
there exists ~ E S such that 

(8) w'(u,v) +w'(v,u) = 2~. 

To establish (8), there are two cases to consider depending upon e being either 
an interior edge of T or an exterior edge of T. We will consider just the former, 
since the proof of the latter is similar. Select i', j', k', l' E X in a such a way that 
in T the path between leaves i' and j' is incident with u, but not with v, while the 
path between k' and Z' is incident with v, but not with u. Then, as G is Abelian 
and denoting d(T;c/>;w') as d', we get 

d'(i' ,j') + d'(l', k') + w' (u, v) + w'(v, u) = d'(i', k') + d'(l',j'). 

Since d' = 8, the condition described by Equation (7) (plus the symmetry of 8) 
guarantees the existence of ~ E S such that 

d' (i' ,j') + d' (l', k') + 2~ = d' (i', k') + d' (l', j'), 

which in view of the previous equation implies that w'(u,v) + w'(v,u) = 2~, as 
required to establish the claim. 

Now, referring to Equation (8), set w(u,v) and w(v,u) both equal to~' for each 
edge { u, v} of T. Let d = d(T;c/>;w). Then, for each i, j E X, 

2d(i,j) = d(i,j) +d(j,i) = d'(i,j) +d'(j,i) = 8(i,j) +8(j,i) = 28(i,j) 

and so 2[d(i,j) - 8(i,j)] = 0. Since Q has no elements of order 2, it follows that 
d = 8, and so (T; ¢; w) provides the desired tree representation of 8. 

Regarding the uniqueness of the tree representation, suppose that (T1; ¢1; w1) 
and (T2; ¢2; w2) both provide tree representations of 8, where w1 and w2 are both 
symmetric functions taking values in S - {O}. 

For all i E {1, 2}, let (Tf;wD denote the phylogenetic expansion of the tree 
representation (Ti;</Ji;wi)· Then (T{;wD and (T~;w;) are both standard tree rep
resentations of 8. Consequently, by Theorem 3.2, T{ and T~ are isomorphic. There
fore, by noting that, for an Abelian group, two elements are conjugates precisely if 
they are identical, the second part of Theorem 3.2 shows that w~ ( u, v) + w~ ( v, u) = 
wHu, v) +w;(v, u) for each (isometrically equivalent) edge { u, v} in T1 and T2 • But, 
since w~ and w; are both symmetric, this implies that 2[w~ ( u, v )-w; ( u, v)] = 0 and, 
since Q has no elements of order 2, this in turn implies that w~ ( u, v) = w; ( u, v). In 
particular, w~ ( u, v) = 0 precisely if w; ( u, v) = 0, which together with the isomor
phism between T{ and T~ and the way in which these trees were constructed from 
(T1; ¢1) and (T2; ¢2) implies that (T1; ¢1) and (T2; ¢2) are isomorphic, and w1 = w2 

as required. D 
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4. REMARKS 

• We return to the problem that motivated our analysis, namely, the case where 
Q is the group of r x r invertible real matrices and we have a general r-state 
Markov process on a tree ((2], (8], and (13]). In this setting, each arc has 
an associated transition matrix, and o(i,j) is the net transition matrix of 
states at j conditional on the states at i. The conditions (Pl) and (P2) 
translate into a collection of polynomial function identities between the joint 
distribution of states at the leaves of the tree - such functions are examples of 
"phylogenetic invariants" (9] and we note that the invariants described by (Pl) 
are independent of the underlying tree T (so called "model invariants"). To 
date, most investigation of phylogenetic invariants has been for submodels of 
this general model ( obtained by restricting the transition matrices assigned 
to the arcs), although a phylogenetic invariant has been described for this 
general model ((13] - essentially by taking determinants of the equation in 
(P2)). We point out here that phylogenetic invariants are, in fact, abundant 
for this general model since each triple or quadruple gives rise (via (Pl) and 
(P2), respectively) to r2 polynomial identities. 

Referring to Theorem 3.1, note that, in this setting, H0 would not be 
expected to have elements of order 2, however Q clearly does, which is why 
we did not impose the simpler restriction in Theorem 3.1 that Q have no 
elements of order 2. 

• Suppose Q is a group, and S ~ Q is a semigroup. An interesting extension of 
Theorem 3.1 would be to characterize when a proximity map o: Xx X ~ S 
is a tree proximity map with arc weights lying in S. 
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