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Abstract 

A model of the movement of precursor particles in the unsteady Pulsed-Pressure 

Chemical Vapour Deposition (PP-CVD) process is developed to study the high conversion 

efficiencies observed experimentally in this process.  Verification of the modelling procedures 

was conducted through a study of velocity persistence in an equilibrium gas and through 

Direct Simulation Monte Carlo (DSMC) simulations of unsteady self-diffusion processes.  

The model results demonstrate that in the PP-CVD process the arrival time for precursor 

particles at the deposition surface is much less than the reactor pump-down time, resulting in 

high precursor conversion efficiencies.  Higher conversion efficiency was found to correlate 

with smaller size solvent molecules and moderate reactor peak pressure. 
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1. Introduction 

Over the past several decades, chemical vapour deposition (CVD) has become an 

increasingly important process for the manufacture of thin film materials.  These materials 

have importance in such diverse applications as electronics, bio-technology and optics.  As 
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thin film technology has advanced, new types of CVD processes have been developed to 

manufacture these films [1].  

The motivation for this work is the patented Pulsed-Pressure CVD (PP-CVD) process 

developed by Raj et al. [2].  Like other CVD processes deposition occurs via the thermal 

decomposition of the precursor on a heated substrate, however unlike other processes the 

precursor is delivered in an unsteady manner whereby timed pulses of precursor are released 

into a continuously evacuated reactor volume.  The technique has been used successfully to 

deposit films from metal-organic precursors including titania films from titanium 

isopropoxide (TTIP) dissolved in toluene and delivered into the reactor as a liquid via an 

ultrasonic nozzle [3].  Yttria-stabilised zirconia (YSZ) has also been deposited using the same 

technique [4, 5]. 

Figure 1 shows a functional schematic of a PP-CVD reactor, along with a plot of the 

reactor pressure during operation.  For gaseous precursors, during the injection phase (0 < t < 

ti) a solenoid valve is opened which releases the precursor in the high pressure source vessel 

into the reactor volume at pressure Pmin.  When the valve closes at t = ti the reactor is at its 

maximum pressure of Pmax.  During the pump-down period (ti < t < tp) the reactor is 

evacuated by the vacuum pump and the reactor pressure during this phase is given by: 
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where τR is the reactor pump-down constant which can be determined experimentally by 

fitting the exponential function to the measured pressure profile [6]. 

Experimental studies and a phenomenological model of PP-CVD by Krumdieck and Raj 

have reported that during the deposition of titania, the conversion efficiency of the TTIP 

precursor into solid film exceeds 90% under certain operating conditions [3, 7, 8].  

Efficiencies this high have not been reported in conventional CVD processing.  It was 
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proposed by Krumdieck et al. that during the injection phase there is a mass transport regime 

in which expansion effects dominate over continuum effects [9] and a study of the injection 

phase using computational fluid dynamics (CFD) by Cave et al. showed that this continuum 

breakdown region sweeps through the reactor volume resulting in a highly uniform mass flux 

field at the beginning of the pump-down phase [10]. 

At the low reactor pressures which occur during PP-CVD, or where the scale of 

macroscopic property gradients is of the order of the mean free path, the continuum 

description of gas dynamics becomes invalid.  In this rarefied state, a molecular description of 

the reactor flow is required.  Several methods exist for simulating rarefied flow including 

molecular dynamics (MD) simulations, where molecular motion and collisions are calculated 

deterministically, and the Lattice-Boltzmann method (LBM), which solves a simplified 

version of the Boltzmann equation over a grid [11].  However, the proceeding methods suffer 

respectively from enormous computational expense and poor physical reality, so the preferred 

technique for modelling rarefied flows has become the Direct Simulation Monte Carlo 

(DSMC) technique [12].  Here the movement and collisions of a large number of test particles 

are decoupled over a time step which is a fraction of the mean collision time.  The technique 

is well established and has been used to simulate flow applications as diverse as high altitude 

aerodynamics [13], micro-thrusters for space applications [14] and steady flow CVD 

applications [15]. 

Modelling of the PP-CVD process using DSMC presents some significant challenges.  

The wide range of gas densities experienced and the unsteady nature of the flow means that 

modelling the entire process using the DSMC technique requires significant computational 

expense, even given the 2D axisymmetric nature of the flow.  This problem is exacerbated by 

the relatively large ratio of solvent molecules to precursor molecules meaning a large number 

of particles must be simulated to maintain accuracy in precursor concentrations.  A technique 
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used to overcome a similar problem is the stochastic biatomic collision theory (BCT) method 

developed by Groves to model the Directed Vapour Deposition (DVD) of copper [16].  Here 

the paths of a large number of reactant molecules are tracked individually through a steady 

background gas field generated using DSMC.  The technique assumes the concentration of 

reactant molecules is low enough that there is negligible interaction between them and utilises 

a complex method for the determination of vapour atom mean free path and collision 

dynamics. 

 

2.  Reactor Efficiency Model 

2.1. Model Structure 

The reactor efficiency model used in this study was loosely based on the BCT method, 

however mean free path calculations and the interaction of molecules during collision events 

were simulated using either the hard sphere (HS) collision model or the variable soft sphere 

(VSS) model developed by Koura and Matsumoto [17].  In this way the movement of the test 

particles through the reactor volume was decoupled from collision events in much the same 

way as the DSMC method, while allowing the use of readily available collision parameters.  

The computational flow of the model, known as the Pulsed Injection Efficiency Simulation 

(or “PIES”) model, is illustrated in figure 2.  Here Nparts represents the number of test particles 

tracked for each simulation run. 

 

2.2. Model Development  

As shown by Bird [12], the vast majority of collisions in a dilute gas involve only two 

atoms.  Furthermore, for these simulations it was assumed collisions were elastic such that 

there was no exchange of energy between the participant molecule’s translational and internal 
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degrees of freedom.  In binary elastic collisions momentum and energy are conserved and the 

transport mean free path is given by [18]: 
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where R is the universal gas constant (8.314 kJ/kmolK), NA is Avogadro’s number 

(6.023x1023 molecules/mol) and σM is the momentum transfer collision cross section. 

The actual free path of a molecule is distributed about the mean value given in equation 

(2) with the probability of a particle travelling at least a distance x before a collision being 
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The momentum transfer collision cross section, which occurs in the Chapman-Enskog 

expression for diffusion coefficients [19], is given by Bird [12] as: 
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where χ is the deflection angle of the relative velocities of either molecule during collision 

and σ(χ) is the angular cross section which can be expressed in terms of an impact parameter b 

which defines the distance of closest approach between the undisturbed trajectories of the 

collision partners:   
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Substitution of equation (5) into (4) and invoking the change in variable gives: 
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To define the momentum cross section, and hence the transport mean free path, a 

relationship must be determined between the collision parameters b and χ, which are functions 



 6

of the energy of the collision event.  In the implementation of the BCT model by Groves, a 

relatively complex iterative procedure is employed to determine these parameters for the high 

energy copper molecules.  However, here either the phenomenological hard sphere or VSS 

models are used primarily because of their relative simplicity and due to the ready availability 

of input parameters. 

For the hard sphere model it can be shown that the momentum cross section is 

equivalent to the total collision cross section σM=σT=πd12
2 where d12 is the mean of the hard 

sphere diameter of the two collision partners [12].  The primary weakness of the hard sphere 

model is that in real gases the total collision cross section is a function of the relative 

translational energy of the collision partners and so is a function of temperature.  The variable 

hard sphere (VHS) model [20], in which the hard sphere diameter becomes a function of the 

relative velocity of the collision partners cr and the temperature exponent of the coefficient of 

viscosity ω, was formulated to correct this problem.  In the VHS model the momentum cross 

section and the total collision cross section are again equivalent, however this leads to 

discrepancies in simulating flows where diffusion is important which lead to the development 

of the variable soft sphere (VSS) model by Koura and Matsumoto [17].  Here the momentum 

cross section is related to the total collision cross section by: 
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where α is the VSS scattering parameter, a function of the Schmidt number which gives the 

ratio of viscosity to diffusion. 

The total collision cross section for the VSS model is given by [12]: 
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where dref is the reference molecular diameter at temperature Tref,  k is Boltzmann’s constant, 

Γ represents the gamma function and mr is the reduced mass of the collision partners. 

In this model a potential collision partner for the precursor molecule is generated at the 

collision point with components of velocity selected at random from the Maxwell-Boltzmann 

distribution for the local background gas conditions.  The total collision cross section is then 

determined from equation (8) and, because the probability of a collision is a function of the 

total collision cross section and relative speed of the potential collision partners, the 

acceptance-rejection method suggested by Bird [12] is employed and, if required, a new 

collision partner is generated.  The momentum cross section is then calculated through 

equation (7) and the collision position determined from the velocity of the precursor molecule 

and equations (2) and (3).  The collision itself is then generated by random selection of 

appropriate deflection and azimuth angles, along with expressions for the conservation of 

momentum and energy.  In this way the position of the collision and the collision event itself 

are effectively decoupled.  The model assumes that the precursor concentration is sufficiently 

low that molecular collisions between precursor molecules are relatively infrequent. 

 

2.3 Code Implementation and Validation 

The PIES model was implemented using code developed in MATLAB version 6.5.  In 

order to test the procedures employed in the code, a series of validation studies were carried 

out.  These were designed to test the simulated rate of diffusion of the precursor particles in 

the reactor and the collision procedures employed for molecular interactions. 

The standard pseudorandom number generator in MATLAB “rand” was used to 

generate the required random variables and was started in a different state for each run.  The 

“rand” function has been shown to have a period, which is the number of random numbers 

generated before any two values are repeated, of almost 21430 [21].   



 8

2.3.1 Velocity Persistence in an Equilibrium Gas 

After a collision of particles of masses m1 and m2 in the vapour phase, the collision 

partners can be expected to maintain a component of their velocity in the pre-collision 

direction.  The ratio of this post-collision component to the pre-collision velocity is known as 

the velocity persistence ratio which has a mean value for hard sphere particles of [19]: 
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For molecules of the same size 12ϖ = 0.406, while when m1 >> m2, 112 →ϖ and the 

heavy particles move almost ballistically; and when m1 << m2, 012 →ϖ and the light particles 

move as if they were undergoing random walk. 

To validate the reactor efficiency code, the algorithm was used to calculate the 

persistence ratio for the movement of various noble gas particles through a uniform and 

stationary field of other noble gas particles.  This was done by determining the magnitude of 

the projection of the post-collision velocity vector 2v  onto the unit vector of the pre-collision 

velocity vector 1v , and comparing this to the magnitude of the pre-collision vector 1v .  The 

results were averaged over a large number of collisions N: 
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The simulated results with N = 10,000 in equation (10), utilising both hard sphere and 

VSS models, were compared to theoretical values obtained from equation (9) and are shown 

in figure 3.  Because statistical error is of the order of  N/1  the error in these calculations is 

approximately 1%. 

The hard sphere values show good agreement with the theoretical curve from equation 

(9) which itself assumes hard sphere collisions.  This indicates that the algorithm is 
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performing correctly since the persistence ratios computed by the algorithm and those from 

hard sphere theory are almost identical.  The VSS model deviates significantly from the 

theoretical values especially when the ratio m1/m2 is small.  This does not indicate a problem 

with the algorithm, but rather illustrates the limitations of the hard sphere model in real gas 

simulations.  The VSS model can reproduce experimentally measured values of the diffusion 

coefficient [12] and consequently will produce more accurate values of the persistence ratio 

than can be produced by the hard sphere model or predicated from hard sphere theory.  

 

2.3.2 Comparison with Pure Random Walk 

A further check was carried out by comparing the average straight line distance 

travelled by small particles in a field of large particles (i.e. as m1/m2 becomes very small) to 

the distance predicted by pure random walk.  Pure random walk occurs when the direction of 

movement after a collision has no relation to the pre-collision direction (i.e. 012 =ϖ ) and 

corresponds to the movement of a particle undergoing surface diffusion.  The average straight 

line distance d travelled from the origin for a particle undergoing random walk is equivalent 

to the standard deviation of the Gaussian distribution, centred about the origin, of the distance 

travelled by a large number of particles nd λ= , where n is the number of steps taken by the 

particles and λ is the mean step distance [22].  Figure 4 shows a comparison of the average 

straight line distance travelled by 1000 helium atoms in a uniform stationary field of xenon at 

10Pa (for which 0159.012 =ϖ ) to the distance predicted by random walk, where n is the 

number of collision events and λ is the mean free path.  Deviation between the two lines is 

due in part to the slight persistence of the simulated system and in the small statistical error in 

the simulations. 
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2.3.3 Unsteady Self Diffusion 

To validate the procedures for the VSS collision model, custom DSMC code was 

developed in MATLAB to measure the unsteady (i.e. time dependent) self diffusion of argon 

with a number density of 1.4 x 1020 m-3 and a temperature of 273K.  The analytical solution 

for one dimensional transient diffusion into a semi-infinite region is analogous to the transient 

heat conduction into a semi-infinite solid with constant surface temperature [23] such that the 

density of species A, ρA(x,t), is: 
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where ρA,0 is the initial density of species A, x is the position from the initial separation 

interface of the two species, DAA is the self-diffusion coefficient and erf(…) represents the 

error function.  It should be noted that due to the requirement of species equilibrium at  

x = 0, the density ratio ρA(0,t)/ ρA,0 = 0.5 for all values of time t > 0 in a manner equivalent to 

the thermal equilibrium requirement of the analogous heat transfer problem. 

The simulations utilised 100,000 test particles on a 1 x 0.01 m two dimensional grid 

with periodic boundary conditions in the y-direction.  An ensemble average was taken to 

reduce statistical error in the sampling.  Figure 5 compares the results of these simulations 

with the predicted values from equation (11) using the value for self diffusion calculated by 

Bird of DAA = 2.95 m2/s [12].  The results show agreement between the simulations and the 

theoretical values within the statistical scatter of the sampling and confirm the validity of the 

VSS collision procedures.  

The results of the various verification studies confirm that the computational procedures 

employed in the PIES code will result in realistic diffusion rates of precursor molecules 

through the background flow field and gives confidence in the validity of reactor efficiency 

simulation results. 
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3.  Investigation of Pulsed-Pressure CVD  

The PIES model was used to investigate the process of precursor diffusion from a well 

mixed gas to a substrate that consumes the precursor component.  In order to establish the 

high efficiency behaviour of PP-CVD, the numerical investigation aims to determine the time 

scale for consumption of the precursor on the substrate.  It is reasoned, that if the diffusion 

and deposition processes are much faster than the pump-down process, then it is possible that 

high precursor conversion efficiency can be achieved.   

The investigation was based around noble gas molecules as a model for the precursor-

solvent vapour system because these have known collision parameters and only translational 

degrees of freedom.  The model system was necessary because very limited data is available 

for the collisional behaviour of the actual precursor or the solvent molecules used in typical 

PP-CVD processes.  Of the data which is available, Tatsuda et al. estimate the hard sphere 

diameter of TTIP as 12Å [24] and Rubio et al. estimate the hard sphere diameter of toluene as 

5.72Å [25].  This data was used in the study, however the limitations of the hard sphere model 

have already been mentioned. 

During the simulations the background gas is assumed to have no bulk velocity and to 

be everywhere uniform throughout the reactor volume (i.e. have no property gradients).  The 

gas pressure throughout the reactor volume was determined at time t after the start of the 

pump-down phase using equation (1).  Although these assumptions are unphysical in a 

volume which is being evacuated, it will be shown that this approximation holds over the time 

scale required for the vast majority of precursor molecules to be consumed by the substrate.  

Furthermore, the rate of pump-down in this PP-CVD process is approximately 3 m3/h which 

translates to a bulk flow velocity of approximately 0.3 m/s through the reactor cross section: 

several orders of magnitude less than the molecular velocities experienced in the flow.  Flow 
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visualisation experiments also confirm that there is little bulk velocity during the pump-down 

phase [9].  

Figure 6 gives a schematic representation of the modelling process with the PP-CVD 

reactor geometry shown in figure 6a.  As illustrated in figure 6b, the precursor molecule is 

spawned at a random point in the reactor and moves ballistically, undergoing collisions with 

solvent molecules, until it impacts the substrate and is deposited upon it.  The pressure, and 

thus the number of solvent molecules, in the reactor decreases with time causing an increase 

in the precursor (mean) free path λ, as shown in figure 6c.  Precursor particles which strike the 

reactor’s walls are assumed to be diffusely reflected with complete thermal accommodation.  

Because the reactor is axially symmetric, the computational expense of the simulations can be 

greatly reduced and the path of the precursor molecule can be projected onto the zero-azimuth 

plane. 

The parameters used in the study were set to be consistent with the experimental studies 

of Krumdieck and Raj [8] and are summarised in table 1.   
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Table 1.  Simulation parameters 

Reactor height (jet inlet to substrate distance), h 0.185 m 

Reactor radius, R 0.03 m 

Substrate radius, r 0.0225 m 

Reactor peak pressure, Pmax 1, 10, 100, 1000 Pa 

Reactor minimum pressure, Pmin 0 Pa 

Pump-down constant, τR 2.65 s 

Wall and background gas temperature, T 293 K 

Noble gases studied (VSS model) He, Ne, Ar, Kr, Xe* 

Real precursor / solvent pairs studied (HS model) TTIP / Toluene 

* Gas properties and collision data taken from Bird [12]. 

 

Simulations were conducted to assess the effect of reactor peak pressure, solvent gas 

type and precursor molecule type on the residence time of particles within the reactor.  The 

time taken for 95% of the precursor molecules within the reactor volume to reach the 

substrate t95% was chosen as a suitable measure of this residence time.  Figure 7 shows the t95% 

values for different precursor-solvent gas pairs for a reactor with Pmax = 10 Pa. 

The same data is presented in figure 8 showing an approximately logarithmic 

relationship between the precursor to solvent gas mass ratio and residence time when the data 

is grouped by solvent molecule type.  Here mr is the mass of the solvent gas relative to the 

mass of helium.  Included on this plot is the data point for the toluene-TTIP hard sphere 

system.   

The effect of reactor peak pressure on precursor residence time was studied by 

simulating the pump-down phase for several precursor-solvent combinations including the 

hard sphere TTIP-toluene combination, Xe-Ar (which has a similar precursor to solvent mass 

ratio as TTIP-toluene) and, as a point of comparison, Ar-He.  Simulations we not carried out 



 14

for peak pressures exceeding 1000 Pa due to the large computational expense required.  The 

larger magnitude of the error on the higher pressure values is a consequence of a smaller 

sample size due to the large computational expense.  The results of this study are illustrated in 

figure 9. 

 

3.  Results and Discussion 

The results in the previous section can be compared to reactor pump-down time tP to 

gain an appreciation of the processes leading to the observed high precursor conversion 

efficiencies in PP-CVD.  Typically, PP-CVD reactors operate with a pulse period tP ≥ 4τ and 

tP >> ti  to ensure that both mass flux uniformity is high after the injection phase and the 

reactor pressure does not climb over a period of several pulses [26].  For the reactor studied in 

these simulations the reactor pump-down time tP = 10.6 seconds. 

From figures 7 and 8 we see that in every case residence time t95% << 10.6s for  

Pmax = 10 Pa.  Because the time for diffusion of precursor particles to the substrate is much 

less than the pump-down time we can expect very high efficiencies for a reactor operating in 

this regime.  The relationship between the different precursor-solvent combinations in these 

figures reveals that the mass ratio of the precursor to the solvent along with the relative mass 

of the solvent both have large effects on the precursor residence time.  Lighter solvent 

molecules result in a decrease in precursor residence time as does a decrease in precursor size 

relative to the size of the solvent.   

The reasons for these relationships can be readily understood by examining equation 

(2).  As the collision cross section of the collision partners increases, the free-path of the 

molecules within the gas decreases.  Larger molecules undergo more scattering events and, 

coupled with the fact that their molecular speed is lower than smaller molecules at the same 

temperature, their residence time increases, as would be expected from diffusion 
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relationships.  Clearly the lesson here is that solvents should be chosen with as low a 

molecular weight as possible for the PP-CVD process.  Similar results have been reported for 

Jet Vapour Deposition (JVD), in which a helium carrier gas stream is employed to deposit 

gold vapour [27], and in Directed Vapour Deposition (DVD) [16]. 

From figure 9 it can be seen that the arrival rate for the precursor at the substrate is 

highly dependent on reactor peak pressure.  As Pmax increases so that the residence time t95% 

approaches tP we can expect a corresponding drop in reactor efficiency.   This result is as 

would be expected from diffusion relationships, however it should be kept in mind that the 

decreasing reactor pressure throughout the pump-down phase given by equation (1) means 

that precursor residence time will be significantly lower than for a reactor which operates at 

steady pressures. 

It has been shown that when the precursor residence time t95% << tP we can expect high 

reactor efficiencies.  When this condition is satisfied, convective effects within the reactor due 

to bulk flow are minimal and precursor particles diffuse to the surface due to random 

molecular walk.  Random walk is a very rapid process in stationary gases at the relatively low 

pressures in the pump-down phase of PP-CVD and consequently high precursor conversion 

efficiencies are achieved.  In steady flow reactors, or in unsteady reactors with a short pump-

down time, convective effects are high and precursor particles must diffuse in a direction 

which is generally normal to the bulk flow direction in order to reach the deposition surface.  

Consequently convective effects move large quantities of the precursor out of the reactor 

before the molecules can diffuse to the deposition surface resulting in low precursor 

conversion efficiencies. 

The study confirms that the physical mechanisms for high efficiencies in PP-CVD 

reactors occur when the rate of precursor diffusion, adsorption onto the substrate and thermal 

decomposition are faster than the reactor pump-down rate.  The study also shows that to 
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achieve high efficiencies solvents of minimal molecular size should be employed and 

confirms that high reactor peak pressures will result in a decrease in precursor conversion 

efficiency. 

The intend to extend the current study by generating the solvent gas flow field during 

both the pump-down and injection phases using either pure DSMC or hybrid continuum-

DSMC methods, and then using the PIES method to track precursor particles though the flow 

field.  This step will help confirm the validity of the minimal bulk flow assumption and will 

allow the development of the uniform mass flux field to be studied in detail. 

  

5.  Conclusion 

The development of a model for the pump-down phase in PP-CVD has allowed the 

physical mechanisms for the high precursor conversion efficiencies in this process to be 

studied in detail.  The model utilises the hard sphere and variable soft sphere (VSS) collision 

models to track individual precursor particles through a uniform expanding solvent flow field 

within the reactor volume.  The validity of the model was confirmed by studying the 

persistence ratio in collisions between hard sphere molecules of different sizes and the 

transient self-diffusion behaviour of VSS argon molecules. 

In the PP-CVD process, when the time taken for the majority of precursor molecules to 

reach the substrate is much less than the reactor pump-down time, high reactor efficiencies 

can be expected.  This is because the random drift of precursor to the substrate takes much 

less time than for molecules to be removed from the reactor by the vacuum pump.  The 

relationship between precursor and solvent size has also been studied confirming that larger 

precursor molecules will result in a decrease in reactor efficiency as will heavier solvents.   

The simulations show that the efficiency results from experimental deposition studies 

are plausible and provide a valuable step in understanding the complex unsteady flow field 
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exhibited in the PP-CVD process.  The present authors intend to extend the present study by 

using the precursor tracking model to investigate the movement of precursor through a 

solvent flow field generated using DSMC or hybrid continuum-DSMC methods. 
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Figure 2. 

 

 

 

 

 

 

 

 

 

Load initial conditions 
and molecular properties.

N > Nparts?
Output simulation 
results (i.e. mean 
arrival time etc). 

Yes

Generate test particle at position 
(x,r) with velocity v from 

Maxwell-Boltzmann distribution.  
Set time counter to t=0

No 

Determine the velocity vc of a 
potential collision partner in the 
background gas from Maxwell-

Boltzmann distribution.

Determine collision 
cross sections using HS 

or VSS model.

Is collision 
probable? 

No 

Determine actual free path and 
move test particle to new position, 

applying boundary conditions.  
Increment time counter by ∆t. 

Has test particle 
reached the 
substrate?

Yes 

Yes 

No 

Record substrate 
arrival time.  
N = N + 1 

Generate collision 
and update test 

particle velocity.  



 24

Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

1 10 100 1000
Pressure [Pa]

Ar-He

Xe-Ar

TTIP-Toluene

Precursor-Solvent 
Combination

Pr
ec

ur
so

r r
es

id
en

ce
 ti

m
e,

 t 9
5%

 [s
] 


