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ABSTRACT 

 

Elevated levels of trace elements in the environment are of great concern 

because of their persistence, and their high potential to harm living organisms. The 

exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity 

can result. Furthermore, the transfer of these elements through food chains can result 

in exposure to human consumers. Sea-fill or coastal fill sites are among the major 

anthropogenic sources of trace elements to the surrounding marine environment. For 

example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted 

municipal solid waste, with multiple potential sources of trace elements. However, 

there is limited data on environmental trace element levels in the Maldives, and 

although seafood is harvested from close to this site, there is no existing data 

regarding trace element levels in Maldivian diets. Following the Christchurch 

earthquakes of 2011, ―clean‖ rubble was used to create a sea-fill in Lyttelton Harbour, 

potentially altering the environmental trace element profile in this setting, and again 

creating a potential threat in terms of toxicity to both marine biota and human 

consumers of seafood from this site. This thesis sought to investigate the sea-fill 

contributions to trace element contamination in these two distinct sea-fill sites, and to 

determine the impact of this in an aquatic food chain, including possible risks to 

human consumers. 

In order to accurately determine trace element levels from natural seawater, a 

study was conducted to validate the use of iminodiacetate resin as a solid phase 

extraction method. Once the utility of this technique was verified, a baseline study of 

trace elements in seawater, sediment and three species of shellfish around the wider 
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Lyttelton Harbour was performed. This study showed that the level of site 

contamination was reflected in the trace element body burdens of green-lipped 

mussel, cockle, and pipi. The calculated biota sediment accumulation factor (BSAF) 

values suggested that cadmium was the trace element most efficiently transferred 

from sediment to organism. Data also indicated that, in general, green-lipped mussels 

accumulated greater levels of trace elements than cockles and pipi, with the exception 

of arsenic and copper which were most elevated in cockles. 

This baseline study was then extended to investigate the trophic transfer of 

trace elements in a Lyttelton Harbour food chain. These data indicated that mercury 

was the only element that showed any appreciable level of biomagnification through 

the food chain. The results of this study suggested that dietary uptake of trace 

elements is an important route for bioaccumulation in animals, and that in general, 

body burdens do reflect environmental trace element levels. This investigation also 

established for the first time, baseline levels of trace elements in key Lyttelton 

Harbour food chain species such as crabs, and fish (banded wrasse and spotty). 

Investigation of trace element contamination of seawater, marine sediments, 

and marine biota were then conducted at the sea-fill sites of Thilafushi Island and 

Lyttelton Harbour. Significantly higher concentrations of trace elements, and higher 

metal pollution index (MPI) values were measured at the two sea-fill sites relative to 

their reference sites. At Thilafushi Island, regulatory limits for both copper (seawater; 

80% protection limit; sediment ISQG-low) and zinc (sediment ISQG-high) were 

exceeded. Similarly, copper concentrations in seawater exceeded the 90% protection 

level and sediment lead exceeded the ISQG-low value at the sea-fill site of Lyttelton 

Harbour. In marine biota, lead levels in red mullet and cadmium in penguin wing 

oysters collected from the Thilafushi sea-fill site exceeded the food standard 

maximum allowable levels (ML) for fish and molluscs, respectively. Conversely, no 

biota sample from the sea-fill of Lyttelton Harbour exceeded ML values. 

Risk assessment for consumption of seafood from the Thilafushi sea-fill 

showed that the estimated weekly intake values for inorganic arsenic, lead and 

mercury can exceed the provisional tolerable weekly intake (PTWI) value for all 

population categories (toddler, child, male and female adult) in the Maldives. This 

indicates potential risks for consumption of seafood from the vicinity of the Thilafushi 
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sea-fill site. Moreover, the high fish consumption rate in the Maldives can result in 

exceedance of PTWI values even through the consumption of seafood with 

concentrations lower than the ML values. The risk assessment for consumption of sea 

food from Lyttelton Harbour sea-fill showed little risk, with only shellfish 

consumption at high levels exceeding PTWI values. 
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CHAPTER 1 

 

INTRODUCTION 

 
 

Trace element pollution in the marine environment has become a global concern 

due to the potential for harmful impacts on marine ecosystems and human health. 

Advances in industrialisation, pressures of population increases such as elevated 

municipal solid waste (MSW) generation, and increased commercial and agricultural 

operations inevitably increase the release of potentially toxic chemicals into the 

environment (Wong et al. 2006). In recent years the utilisation of coastal landfills and 

sea-fills, has been increasing, but the impacts of these waste management approaches 

are not well understood. Of particular concern is the release of trace elements into the 

surrounding marine environment from these fills (Ettler et al. 2008; Ettler et al. 2006; 

Jones 2010; Kersten et al. 1997). Trace elements can bioaccumulate and transfer 

within aquatic food chains, causing a number of effects within the nearby marine 

ecosystem, but also potential impacts on human consumers (Adriano 2001; Oronsaye 

et al. 2010; Rodriguez & Reynoldson 2011). 

One example of human impact following contamination of the marine 

environment is that of Minamata disease in Japan in the 1950‘s. In this scenario 

mercury contamination in the marine environment from industrial waste discharge to 

Minamata Bay lead to the accumulation of methylmercury in seafood that was then 

consumed by local populations. This resulted in severe direct and indirect 

neurological impacts on the offspring of mothers who consumed the seafood  during 

pregnancy (Kessler 2013). This incident raised significant concern about the transfer 
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of toxic elements in marine food chains to humans (Gochfeld 2003; Wang & Rainbow 

2008). Long term exposure to high levels of trace elements can cause severe health 

conditions including behavioural changes, permanent damage to vital organs, life 

threatening chronic diseases such as cancer, and may also lead to death (D'Souza et al. 

2003; Hartwig et al. 2002). 

Although there has been an extensive amount of work monitoring trace 

elements in the environment around the world, including New Zealand and Australia 

(Acosta et al. 2010; Fabris et al. 2006; Jones 2010; Meador et al. 2004; Peake et al. 

2006; Usero et al. 2005; Williamson et al. 1996), few studies have been undertaken in 

the developing world, where most of the trace element contamination is occurring (Li 

et al. 2009; Pacyna & Pacyna 2001). This lack of knowledge extends to the Maldives, 

a small island nation in the Indian Ocean, with significant waste management issues. 

One solution for MSW is the use of a sea-fill, in the form of a converted lagoon. The 

environmental consequences of this strategy, with respect to trace element 

contamination are unknown. There is even a lack of baseline data regarding trace 

elements, be it in the environment of the Maldives or the human food chain (CDE 

Consulting 2011). Consequently, the two goals of this thesis were to address this data 

gap, and perform a survey of trace element contamination related to sea-fill activities, 

and to determine the potential risk of this contamination to consumers of potentially-

contaminated seafood. 

Knowledge of trace element contamination in the developed world, including 

New Zealand, is much better than in countries such as the Maldives (Glasby et al. 

1988; Kennedy 1986; Redfern 2006; Williamson et al. 1996). However, for sites such 

as Lyttelton Harbour, the main port serving the city of Christchurch, there is relatively 

limited information regarding trace element concentrations and their potential risk to 

the marine ecosystem and seafood consumers (Sneddon & Barter 2009). Furthermore, 

in recent years, a sea-fill has been added to the inner harbour, comprising of ―clean‖ 

rubble sourced from buildings damaged in the 2011 Canterbury earthquakes. This 

could be a potential source of trace elements to the marine ecosystem, and could also 

impact human trace element intake through the consumption of seafood from the 

harbour. The second goal of the current thesis was to investigate the trace element 

profile of Lyttelton Harbour and to assess the potential impact of this sea-fill site on 
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environmental and human health. 

 

1.1 TRACE ELEMENT CONTAMINATION IN THE 

MARINE ENVIRONMENT 

The term ―trace element‖ refers to a group of metals and metalloids that occur 

naturally in the ecosystem at low concentrations (Adriano 2001; Appenroth 2010; 

O'Neill 1998), and includes arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), 

mercury (Hg), lead (Pb) and zinc (Zn). Industrialisation and urbanisation increase the 

anthropogenic contribution of trace elements to the environment (Crain et al. 2009), 

and as elements do not biodegrade (Crnkovic et al. 2006; O'Neill 1998; Wong et al. 

2006), they consequently circulate in biogeochemical cycles within the environment 

(Adriano 2001; O'Neill 1998). Trace elements are of great concern because of their 

high potential to harm living organisms in small amounts. Non-essential trace 

elements (e.g. arsenic, cadmium, mercury and lead) have no known biological 

functions and cause health issues in organisms at trace concentrations (Guérin et al. 

2011; Rainbow 1993,2007). Copper, iron and zinc are essential trace elements that are 

required in small amounts to support physiological processes (Mertz 1981). However, 

at higher concentrations these essential trace elements can be toxic (Adriano 2001; 

Mertz 1981; Rainbow et al. 2004). 

Natural sources of trace elements to the marine environment include 

weathering of soil and rocks, and volcanic discharges (Ahlf et al. 2009; Akter et al. 

2005; Ochieng et al. 2007,2009). Anthropogenic sources of trace elements into the 

marine environment include industrial wastes, agricultural runoff, municipal solid 

wastes in coastal landfills or sea-fills, mining activities, smelting, dredging activities, 

boating activities (e.g. anti-fouling paints), geothermal discharges, domestic effluents 

and storm water runoff (Abrahim & Parker 2002; Acosta et al. 2010; Akter et al. 

2005; Crnkovic et al. 2006; Fakayode & Olu-Owolabi 2003; Williamson et al. 2003). 

Marine sediments act as a sink for contaminants received by the environment 

(Harbison 1986; Williamson et al. 1996). Trace elements released into the aquatic 

environment are preferentially deposited in the benthic sediments of coastal waters, in 
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particular onto the fine particles (Denton & Morrison 2009; Jones 2010; Maata & 

Singh 2008; Naidu & Morrison 1994; Williamson et al. 1996), from which they can 

be released to the environment by various processes of remobilisation (Saulnier & 

Mucci 2000). Trace elements are often adsorbed on clay, organic matter, oxides and 

hydroxides of iron (reducible-Fe
3+

 or oxidisable-Fe
2+

 forms), and manganese, calcium 

carbonates (Agah et al. 2009; Elderfield et al. 1981; Smedley & Kinniburgh 2002), as 

well as other exchangeable and more strongly bound forms (Ibhadon et al. 2004; 

Smedley & Kinniburgh 2002). When not bound in sediments, trace elements may 

exist in the dissolved phase as metal ions (M
2+

), dissolved inorganic metal–ion pairs 

(M–OH
+
, M–Cl

+
, M–CO3, M-S), organic forms (M–DOM; dissolved organic matter) 

and as colloidal forms in both porewater and the water column (Smedley & 

Kinniburgh 2002; Vink 2009). 

Trace elements that are available for organisms to take up from the environment 

are termed bioavailable (Luoma & Rainbow 2005; Rainbow 2007). The increase in 

concentrations of trace elements in a biological organism is called bioaccumulation, 

and the increase in the concentrations of trace elements in a biological organism 

through trophic levels is called biomagnification (Adriano 2001; Barwick & Maher 

2003; Nfon et al. 2009; Rainbow 2007). The bioavailability, and hence 

bioaccumulation, of an element depends on various geochemical and biological 

factors (Al-Weher 2008; Boening 1999; Rainbow 2007; Rodriguez & Reynoldson 

2011; Vink 2009). 

Chemical speciation plays a vital role in the bioavailability of trace elements 

(Adriano 2001; Ahlf et al. 2009; Chakraborty & Owens 2014). Chemical speciation 

refers to the different forms (e.g., different oxidation states, complexes with other 

chemicals) of trace elements that exist in an aquatic system. It is often determined by 

factors such as pH, temperature, ionic strength, dissolved oxygen, solubility, and the 

availability of other chemicals and ligands (Boening 1999). For example, the most 

bioavailable form of lead in the aquatic environment is soluble Pb
2+

 ion, and it is 

mainly present in the form of  lead carbonate (PbCO3) and lead hydroxide (Pb(OH)2) 

(Ibhadon et al. 2004). As another example, it is believed that iron oxide-bound 

cadmium is more bioavailable than organic particulate bound cadmium (Ahsanullah et 

al. 1984). Water chemistry largely dictates availability of trace element to uptake from 
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the dissolved phase, but for most trace elements the major source to an organism is 

the diet (Fauchald & Jumars 1979; Maher 1985; Reinfelder et al. 1998). 

Consequently, trace elements bound to organic ligands such as amino acids may 

become more bioavailable, and factors such as digestive tract pH, and the physiology 

of the intestine play important roles in dietary accumulation, and consequently the 

passage of metals through the food chain (Rainbow et al. 2006a). 

 

1.2 TRACE ELEMENTS: PROPERTIES, USES AND 

SOURCES OF CONTAMINATION TO THE 

MARINE ENVIRONMENT 

The main focus of this thesis was to investigate four toxic trace elements: 

arsenic, cadmium, mercury and lead. However, nutrient trace elements such as 

copper, iron and zinc, are also prominent in aquatic settings and can also produce 

toxic effects at higher concentrations. Therefore, these essential elements were also 

investigated in this study along with the non-essential elements. 

1.2.1 ARSENIC  

Although arsenic is in group five, and is thus classified as a non-metal in the 

periodic table, it is often referred to as a metalloid, because it shares similar physical 

and chemical properties with both metals and non-metals (Akter et al. 2005; Rainbow 

et al. 2006a). Arsenic can be found in the natural environment in both organic and 

inorganic forms, and in several oxidation states (-3, 0, +3 and +5) (Akter et al. 2005; 

Eisler 1988; Smedley & Kinniburgh 2002). In natural waters it is mostly found as 

inorganic arsenite [As
3+

] or pentavalent arsenate [As
5+

] (Smedley & Kinniburgh 

2002). As
3+

 is more toxic than As
5+

, which in turn is more toxic than methylated or 

organic arsenic species (Sharma & Sohn 2009; Smedley & Kinniburgh 2002; WHO 

2001). It is the less toxic organic arsenic species such as arsenobetaine and 

arsenosugars that are the predominant forms found in marine organisms (Francesconi 

& Edmonds 1998; Neff 1997). 

Arsenic is used in pesticides, wood preservatives, semi-conductors, glass and 
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enamels (Denton et al. 1997). The anthropogenic sources of arsenic to the marine 

environment include agricultural runoff from use of fertilisers and pesticides, urban 

runoff, industrial waste, treated woods and timbers, and municipal solid wastes. 

Toxicity associated with arsenic exposure can lead to a range of diseases such as skin 

disorders, lung diseases, liver diseases, peripheral vascular disease, hypertension, 

heart disease, and cancer of skin, lung and urinary bladder (Fatmi et al. 2009; Graeme 

& Pollack 1998; Mazumder 2008). 

1.2.2 CADMIUM 

Although cadmium and zinc are placed in the same group in the periodic table, 

cadmium is considered a non-essential element while zinc is classified as an essential 

element. Cadmium is able to displace zinc from zinc-containing enzymes (O'Neill 

1998) and can therefore inhibit the essential roles of these enzymes in the body. 

Although the chemical properties of cadmium and zinc are very similar, the hydrated 

zinc ion (Zn
2+

) is relatively more stable than the hydrated form of cadmium ion (Cd
2+

) 

in aqueous form (O'Neill 1998). Cadmium is able to compete (i.e. bind) more strongly 

than zinc for binding sites, and thus is favoured in terms of formation of metal-

sulphur bonds (O'Neill 1998). 

The general uses of cadmium include electroplating, plastic stabilisers, 

pigments, plastics, glass, ceramics, semiconductors, and in nickel-cadmium batteries 

(Hutton 1983; O'Neill 1998). The major anthropogenic sources of cadmium to the 

environment are the steel industry, waste incineration, mining activities, agricultural 

runoff from use of phosphate fertilisers, and zinc production (GESAMP 1985; Hutton 

1983). The toxic effects of cadmium include kidney failure, itai-itai disease, 

disruption of enzymatic pathways, anaemia, liver disorders, weakening of bones that 

can lead to osteoporosis as seen in itai-itai disease (which also requires a low calcium 

intake), and lung cancers (Finkelman 2005; GESAMP 1985). 

1.2.3 ZINC 

The major uses of zinc include zinc-based alloys, brass and bronze, galvanising 

works, paints, manufacturing of batteries and rubber materials as well as in sacrificial 

anodes on marine water craft (Denton et al. 1997). The sources of zinc to the marine 

environment include storm water discharge, burning of fossil fuels, municipal solid 
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wastes, brass and galvanised fittings on boats, zinc-based anti-corrosion and anti-

fouling paints on boats, and from applications of fertiliser and pesticides  near coastal 

areas (Denton et al. 1997). Although zinc is an essential element, excess intake can 

disrupt essential enzymatic functions in both humans and aquatic organisms (Berthet 

et al. 2003; O'Neill 1998; Rainbow 2007). 

1.2.4 LEAD  

Lead is one of the few trace elements that can be found in its metallic form in 

nature, but more frequently lead is present in its +2 oxidation state (O'Neill 1998). 

Organolead compounds, particularly alkyl-lead forms, are considered more toxic than 

other species of lead (O'Neill 1998). Lead in the marine environment can precipitate 

as lead sulphide, an insoluble compound, and often exists as forms with low 

bioavailability such as bound to suspended sediment particulate matter (O'Neill 1998). 

These forms of lead can be remobilised by changing environmental conditions, such 

as a reduction in pH (Kjeldsen et al. 2002). Approximately 5% of the lead in aquatic 

systems is in the dissolved form (O'Neill 1998). Like most trace elements, lead has a 

high affinity for thiol (-SH) groups in biological molecules and can strongly bind 

proteins, and also nucleic acids (O'Neill 1998). 

The key uses of lead are in lead-acid storage batteries in motor vehicles, lead 

alkyl compounds that are added to petrol to reduce knock in combustion engines, as 

electrodes in electrolysis, in pigments, lead paints, solder, anti-fouling paints and as 

stabilisers in plastics (Chen et al. 2005; Denton et al. 1997; Järup 2003; O'Neill 1998; 

Wu et al. 2000). The anthropogenic sources of lead to the marine environment include 

discharge from manufacturing processes such as metal processing works, discharge 

from mining activities, combustion of leaded fuels, burning of wood and coals, solid 

waste incineration, atmospheric deposition, domestic wastewater and sewage wastes 

(Cabral-Oliveira et al. 2015; GESAMP 1985). Lead toxicity can manifest as a wide 

range of impacts such as impairment of blood synthesis, hypertension, hyperactivity, 

bone defects, weakness in fingers, wrists and ankles, miscarriage in pregnant woman, 

and brain damage (D'Souza et al. 2003; Finkelman 2005; GESAMP 1985; O'Neill 

1998). 
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1.2.5 MERCURY 

Mercury is the only metal that is liquid at room temperature, and it is very 

volatile in air. Most compounds of mercury are also volatile (Gochfeld 2003; O'Neill 

1998). Mercury exists in the 0, +1, +2 oxidation states and methylation is a very 

important feature of mercury cycling in the aquatic environment. The main form of 

mercury found in fish is methylmercury, which generally accounts for over 90% of 

total mercury (Hight & Cheng 2006; Olmedo et al. 2013). Mercury entering aquatic 

systems will be methylated by microorganisms and abiotic processes and converted to 

methylmercury, a form that has high bioavailability, and which biomagnifies through 

food chains (Gochfeld 2003; O'Neill 1998). This is also a form of mercury that is 

higher in toxicity than inorganic species (Gochfeld 2003; Monperrus et al. 2007). 

Under alkaline conditions, sulphide ions (S
2-

) can turn soluble mercury compounds 

into insoluble mercury (II) sulphide, and when the pH of the system decreases, it 

favours solubilisation, and hence greater potential for the synthesis of methylmercury 

by microorganisms (Gochfeld 2003; O'Neill 1998). 

Mercury is used in the production of chlorine and acetaldehyde, electrical 

equipment, instruments such as thermometers, as a catalyst in the production of 

plastics, in pesticides, as a preservative in vaccines, in pharmaceuticals, in the dental 

industry and as a component of anti-fouling paints (Denton et al. 1997; Fimreite 1970; 

Gochfeld 2003). Sources of mercury to the marine environment include coastal or 

sea-fill activities, industrial waste, discharge from mining activities, sewage outfalls 

and atmospheric deposition (Heck et al. 1994; Wuana & Okieimen 2011). Mercury 

toxicity includes severe kidney damage, neurological disruption, and behavioural 

disturbances (Langford & Ferner 1999). 

1.2.6 COPPER 

Copper is an essential trace elements that is moderately abundant in the natural 

environment. Copper presents in the aquatic environment primarily in the +2 

oxidation state (e.g. CuOH
+
, CuCO3, CuSO4), but also in the cuprous form (Cu

+
 

which rapidly becomes Cu
2+

 in the aquatic environment) (Callender 2003). Copper is 

known to have high affinity for clay mineral fractions, especially organic carbon and 

manganese oxides, and concentrations of copper in the aquatic environment are 



9 
 

 
 

strongly dependent on the type and concentration of inorganic and organic ligands 

present (Callender 2003). In this regard, numerous studies have demonstrated that 

aquatic copper toxicity can vary depending on the type of complexing ligand and the 

concentration of cations that may compete with copper for binding sites and uptake 

pathways (McGeer et al. 2002; Paquin et al. 2002; Santore et al. 2001). 

Copper is used in the electrical industry, as a catalyst in alloy form, as a wood 

preservatives, in pesticides, and as a component of anti-fouling paints (Denton et al. 

1997; Santore et al. 2001). Sources of copper to the marine environment include 

discharge from mining and smelting activities, domestic and industrial wastewaters, 

steam electrical production, MSW disposal at coastal sites, incineration emissions, 

sewage outfalls, antifouling paints, wood preservatives, port operation activities, and 

urban stormwater runoff (Denton et al. 1997; Jones 2010; O'Neill 1998; Williamson et 

al. 2003). Although copper is an essential element in several enzymes and is involved 

in the synthesis of haemoglobin, excess exposure to copper can result in various toxic 

effects in humans including irritations in nose, mouth, and eyes, severe headaches, 

dizziness, nausea, and diarrhoea (Finkelman 2005). 

1.2.7 IRON 

Iron is an essential element found in various oxide forms, and often presents in 

the environment as divalent iron (Fe
2+

) and trivalent iron (Fe
3+

) compounds. Iron is 

not often considered a toxic trace element in the environment, and it is usually found 

at high levels in both marine sediments (Jones 2010; Turner 2000), and biota (Brooks 

& Rumsey 1974; Kennedy 1986; Turoczy et al. 2001). Uses of iron are numerous, and 

include utility as a construction material in ships, heavy vehicles and buildings, and as 

piling materials in wharfs and seawalls. Anthropogenic sources of iron to the marine 

environment include industrial discharge, stormwater runoff, acid mine drainage, port 

operation works, ship hulls, wharves, and coastal fill sites (ECan 2008; Jones 2010; 

Winterbourn et al. 2000). 

 

1.3 SOLID WASTE DISPOSAL AND SEA-FILL 

Increased human activities throughout the world significantly increase the 
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volume of solid waste generated (Turan et al. 2009; Wong et al. 2006). The common 

methods of solid waste disposal are open site dumping, landfills and incineration 

(Kinnaman 2009; Turan et al. 2009). The most economical and common method of 

solid waste disposal in many countries is either burial in landfills, or incorporation 

into sea-fills (Khoury et al. 2000; Kjeldsen et al. 2002). Studies on coastal fill and sea-

fill activities have shown that high levels of trace elements can be released into the 

surrounding marine environment from the fill materials (Chifamba 2007; Jones 2010). 

Therefore, improper management of solid waste can cause serious environmental and 

health consequences, due to the risks associated with leaching of contaminants, 

including trace elements from waste disposal sites (Christensen et al. 1994; Jones 

2010; Kjeldsen et al. 2002). 

1.3.1  SOURCES OF TRACE ELEMENTS IN FILL MATERIALS 

Sources of trace elements in MSW include batteries, consumer electronics, 

ceramics, light bulbs, house dust and paint chips, lead foils, used motor oils, plastics, 

inks and glass (Whittle & Dyson 2002). Sources of arsenic in MSW are wood 

preservatives, paints, dyes, ceramics, glass, electronics, pigments, and antifouling 

agents (Akter et al. 2005; Leonard 1991). The primary source of cadmium in MSW is 

rechargeable nickel-cadmium batteries and some plastic materials, while lead comes 

from variety of sources like plastics, road dust and paint chips (Heck et al. 1994). The 

main contributors of mercury to MSW are used household batteries, broken 

thermometers, and fluorescent lamps (Heck et al. 1994). Sources of copper, iron and 

zinc in MSW include electric wiring materials, galvanised materials, scrap metals, 

cooking pots, kitchen wares, plastic materials, treated woods and cardboards, paper 

material, and food tins and containers (Chifamba 2007; Long et al. 2011). 

Sources of trace elements in fill sites considered to contain clean materials (i.e. 

building materials), such as the one in Lyttelton Harbour, include treated timbers, 

concrete reinforced metal bars, paint chips, plastics, electrical ducting, elemental 

copper in the form of cabling, cable sheathing and panel products (LPC 2011; 

Sneddon 2011). These materials may be inadvertently incorporated in fill materials, 

and are known to release trace elements to the surrounding environment (Akter et al. 

2005; Denton et al. 1997; Heck et al. 1994; Leonard 1991). 
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1.3.2 LEACHATE GENERATION FROM FILL ACTIVITIES 

In landfills, leachate is generated as rainwater passes through the layers of the 

landfill, acting to transfer the pollutants into the percolating water (Ettler et al. 2008; 

Kjeldsen et al. 2002). Marine landfills or sea-fills are subjected to similar processes 

via seawater percolation (Kjeldsen et al. 2002). When seawater levels rise and fall 

with the tide, seawater penetrates through the layers of wastes creating leachate (Jones 

2010). Studies on leaching from fill activities near coastal sites and sea-fill have 

reported that contaminant levels in seawater around the dump site were higher than 

the levels found in waters more distant from the waste site (Jones 2010; Maata & 

Singh 2008; Naidu & Morrison 1994). 

Solid wastes in fill activities undergo physical, chemical and biological 

degradation processes as the refuse decomposes (Kjeldsen et al. 2002; Taulis 2005). 

The concentration and composition of leachates may differ depending on the waste 

type in the fill, and the decomposing environmental conditions (i.e. aerobic or 

anaerobic) (Kjeldsen et al. 2002). There are four distinctive stages of refuse 

decomposition in terrestrial landfills. These are the aerobic phase, the anaerobic acid 

phase, the initial methanogenic phase, and the stable methanogenic phase (Farquhar & 

Rovers 1973; Kjeldsen et al. 2002). When the decomposing condition is aerobic, a 

number of biological and chemical reactions can occur leading to the anaerobic acid 

phase, where lowering of pH occurs, increasing the oxidation-reduction potential, and 

increasing the cation exchange capacity of the refuse (Kjeldsen et al. 2002). The 

increase in oxidation-reduction potential can increase the formation of oxidised 

functional groups such as carboxylic acids on humic matter (Kjeldsen et al. 2002). 

These alterations in the refuse decomposition process can result in an overall increase 

in trace element mobilisation, and increased concentrations of trace elements in the 

leachate (Khoury et al. 2000; Kjeldsen et al. 2002). Little work appears to have been 

carried out to establish whether the characteristics of terrestrial fills are also present in 

marine fills. 

Leachates contain a complex mixture of contaminants, and the broader 

categories of contaminants in leachate include dissolved organic matter, inorganic 

macrocomponents, trace elements and xenobiotic organic compounds (Christensen et 

al. 1994; Jones 2010; Kjeldsen et al. 2002). Dissolved organic matter includes 
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components such as volatile fatty acids and fulvic-like and humic-like compounds. 

Inorganic macrocomponents include calcium, magnesium, sodium, potassium, 

ammonium, chloride, sulphates, and hydrogen carbonates. Xenobiotic organic 

compounds include a variety of aromatic hydrocarbons, phenols, chlorinated 

aliphatics, pesticides, and plasticisers. Trace elements present in leachates include 

arsenic, cadmium, chromium, cobalt, copper, lead, mercury, nickel and zinc (Kjeldsen 

et al. 2002). A wide variation in trace element concentrations has been reported for 

different landfill sites (Table 1.1) (Kjeldsen et al. 2002). 

Table  1.1: Range of trace element concentrations in various landfill leachates 

Trace element Concentration in landfill leachate ( µg L
-1

) 

Arsenic 10 - 1000 

Cadmium 0.1 - 400 

Copper 5 - 10000 

Iron 3000 - 5500000 

Mercury 0.05 - 160 

Lead 1 - 5000 

Zinc 30 - 1000000 

Adapted from Kjeldsen et al. (2002) 

Trace elements deposited in fill activities can be released from the fill materials, 

a process that may take decades (Flyhammar 1995; Kjeldsen et al. 2002). However, 

there are processes that will also act to slow leaching. For example, Belevi & Baccini 

(1989) and Bozkurt et al. (2000) predicted that trace elements can be immobilised for 

hundreds of years by the alkaline conditions generated by the stable phase of 

decomposition. Sorption to organic matter and soil, and precipitation are also thought 

to play a significant role in  immobilising trace elements in refuse (Kjeldsen et al. 

2002). In addition, sulphides (formed by reduction of sulphates under the alkaline 

conditions generated at the stable methanogenic phase) can immobilise trace elements 

by formation of insoluble metal sulphides, which explains the low concentration of 

trace elements measured in some leachates (Christensen et al. 1994). 

1.4 TRACE ELEMENT ACCUMULATION IN 

AQUATIC FOOD CHAINS 

Contaminants, including trace elements, leaching from fill activities near coastal 

areas can enter into the coastal zone (Denton & Morrison 2009; Jones 2010; Maata & 
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Singh 2008), and become bioavailable for uptake by aquatic organisms. 

Microorganisms such as phytoplankton and zooplankton take up these trace elements 

from the surrounding water (Chen et al. 2000; Mason et al. 1996). Subsequently, the 

consumption of these organisms results in the passage of the trace elements through 

the food chain (Ahlf et al. 2009; Chen et al. 2000; Falconer et al. 1983; Mason et al. 

1996). Some of these trace elements will be bioaccumulated, and some (e.g. mercury) 

will biomagnify as they pass to higher trophic levels (Blackmore & Wang 2004; 

Reinfelder et al. 1998; Wang 2002). However, diet is not the only pathway for trace 

element uptake by marine organisms. Some animals can absorb dissolved trace 

elements via gills and/or skin, while other organisms can take up trace elements from 

the particulate phase (Ahlf et al. 2009; Marsden et al. 2014; Wang & Rainbow 2008). 

1.4.1 TOXICITY OF TRACE ELEMENTS TO MARINE ORGANISMS 

Trace elements bioaccumulate in marine biota, and can produce harmful 

impacts on aquatic organisms at higher exposure levels (Filipovic Marijic & Raspor 

2007). Trace element contamination in the aquatic environment can affect the quality 

of water and can result in bioaccumulation of these elements in aquatic life, with 

potential long-term implications for ecosystem health (Ip et al. 2007). Accumulation 

of trace elements may impact physiological function and disrupt growth and 

reproduction (Bowmer et al. 1994; Chandurvelan et al. 2012). At a molecular, 

biochemical and cellular level the mechanisms of trace element toxicity in aquatic 

organisms are similar to those of humans (see Section 1.4.2). In aquatic biota these 

cellular events result in ecologically-important effects such as the impairment of 

growth, development and survival. For example, cadmium, zinc and lead can cause 

injury to fish gills and kidneys, and can cause excess mucus production followed by 

failure of respiratory function (Andreji et al. 2006). In shellfish, cadmium can 

decrease feeding rates, and impair cellular, biochemical and physiological systems 

(Chandurvelan et al. 2012). Toxicity studies indicate that exposure of marine 

phytoplankton to mercury can cause significant inhibition of growth, while 

significantly reducing the rate of photosynthesis (Wu & Wang 2011). Likewise, trace 

element exposure studies on the American oyster (Crassostrea virginica) indicate that 

mercury, copper and zinc can significantly inhibit the development of oyster embryos 

(Calabrese et al. 1973). 
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As in humans, the toxic effects of trace elements are more prominent in juvenile 

stages (Grosell et al. 2007). For example, copper has been shown to be significantly 

more toxic in juvenile fish, and larval polychaete worms and crustaceans, than in 

adults of the tested species (Grosell et al. 2007; Brown and Ahsanullah 1971). At least 

in the case of fish, this is because of the higher demand of juvenile fish for sodium 

uptake, a process inhibited by copper (Grosell et al. 2007). 

The toxicity of trace elements can also vary depending on the species of marine 

organism (Graeme & Pollack 1998; Rainbow 2007). For example, marine worms 

have been shown as more susceptible to the toxic effects of lead, copper and zinc than 

shrimp (Brown & Ahsanullah 1971). Demonstrating that these effects are also trace 

element-dependent, both shrimp and annelid species were equally susceptible to the 

impacts of mercury. Speciation of the trace element also plays a role in toxicity. For 

example inorganic mercury was found to produce less toxic effects than 

methylmercury in phytoplankton (Wu & Wang 2011). 

1.4.2 TOXICITY OF TRACE ELEMENTS TO HUMANS 

Humans can be exposed to trace elements via food, water, and to a much lesser 

degree, via the air and through dermal contact (Akter et al. 2005; O'Neill 1998). 

Among the trace elements, lead, mercury, cadmium and arsenic are of great concern 

(O'Neill 1998), primarily due to their high potential to accumulate in the food chain 

and cause harmful effects on organisms (Ikemoto et al. 2008). Once these toxic trace 

elements are present in the body, they can mimic essential elements such as iron or 

calcium and displace them from their normal binding sites to produce some of their 

biochemical activities (Ahlf et al. 2009; Hartwig et al. 2002). Displacement of metal 

co-factors of enzymes can inhibit enzyme function, and in turn inhibit critical cellular 

activities (Akter et al. 2005; Wang & Rainbow 2010). Toxicity may also be mediated 

by the binding of these elements with sulphydryl (SH) and hydroxyl (OH) groups of 

amino acids or proteins, haemoglobin, RNA and DNA. A third mechanism of toxicity 

that may relate to the first two is the generation of oxidative stress (O'Neill 1998; 

Wang & Rainbow 2010). Oxidative stress occurs through the generation of reactive 

oxygen species, formed via the Fenton reaction. The displacement of iron from this 

reaction by other trace elements can trigger enhanced reactive oxygen species 

production, while trace elements may also bind to thiol groups and decrease activity 
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of important oxidative defence mechanisms such as the intracellular reactive oxygen 

scavenger, glutathione (Ercal et al. 2001; Valko et al. 2005). Oxidative stress can 

manifest as DNA adducts, the formation of protein carbonyls and lipid peroxidation, 

all of which can cause significant toxicity. At a whole organism level, toxicity 

resulting from trace element exposure can manifest in a range of symptoms, including 

alteration of cognitive behaviours, vision and hearing impairment, damage to vital 

organs such as kidney and brain, impaired bone metabolism, and both acute and 

chronic illnesses (Bergomi et al. 2005; Graeme & Pollack 1998; Rose et al. 1992; 

Sulkowski et al. 2000; Wu et al. 2000). 

Although essential trace elements (e.g. copper, iron, zinc) are required for 

physiological functions, they can become toxic at elevated concentrations (Berthet et 

al. 2003; Rainbow 1985; Rainbow et al. 2006a). For example, excess intake of copper 

can result in the accumulation of this element in brain, liver, pancreas, and the 

myocardium, causing detrimental effects (Tuzen et al. 2005). Similarly, although zinc 

is an essential element, vital for the functioning of enzymes, excess zinc can disrupt a 

number of processes in both humans and aquatic organisms (Berthet et al. 2003; 

O'Neill 1998; Rainbow 2007). 

 In general, excessive levels of trace elements have their most significant 

impacts on the developing child (Kaye 2004; O'Neill 1998). Prenatal exposure to trace 

elements such as mercury and lead can cause neuropsychological developmental 

defects, alterations in sexual and functional development and other foetal 

abnormalities (Bjerregaard & Hansen 2000; Butler Walker et al. 2006). Young 

children and infants are very vulnerable to the effects of trace elements because of 

their higher metabolic rates, in combination with more efficient absorption and 

retention of these elements, and reduced defences against their toxic effects (D'Souza 

et al. 2003; Godwin 2001).  For example, children absorb a greater proportion of 

ingested lead than adults, and the ingested lead is distributed differently (Godwin 

2001; O'Neill 1998). Children accumulate about 28% of lead in their soft tissues 

including the brain, whereas only 5% accumulates in adult soft tissues (O'Neill 1998). 

Wide-scale human poisoning by trace elements in food occurred in the 1950‘s 

in Japan, where the local villagers consumed fish and shellfish that had 

bioaccumulated mercury from Minamata Bay. This mercury poisoning led to 
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Minamata disease, and killed hundreds of people, while several thousand people were 

left paralysed due to neurological impairment (Kudo et al. 1998). In 1972, 

consumption of seed grains treated with methylmercury fungicide in Iraq killed an 

estimated 10,000 people, and over 100,000 people were severely and permanently 

brain damaged (Gochfeld 2003; Li et al. 2009). Similarly, cadmium in food has also 

caused human toxicity. Prolonged consumption of rice harvested around a cadmium 

contaminated area caused ―itai–itai‖ (ouch ouch) disease, in the Toyama Prefecture of 

Japan in 1912. This often fatal disease  caused  severe  injuries to kidney and bones 

(Inaba et al. 2005; O'Neill 1998). 

Intake of drinking water with elevated arsenic is considered the main pathway 

of arsenic exposure in humans (Akter et al. 2005; Das et al. 2004; Smedley & 

Kinniburgh 2002). Previous studies showed arsenic concentrations exceeded food 

safety limits in rice grown in arsenic-contaminated sites (Das et al. 2004; Meharg & 

Rahman 2002). A dietary study in Cambodia showed that fish was the foodstuff that 

contained the highest concentrations of total arsenic, and highlighted that fish 

consumption was also the main route of arsenic exposure (Wang et al. 2013). Seafood 

generally contains organic arsenic forms (arsenobetaine, arsenocholine and 

arsenosugars) that have relatively low toxicity (Fattorini et al. 2004; Francesconi 

2010; Jankong et al. 2007; Li et al. 2003; Nam et al. 2010; Schaeffer et al. 2006). 

However, a study in Cuba found that certain species of fish can accumulate extremely 

high levels of inorganic arsenic (over 98%), a more toxic form (Fattorini et al. 2004). 

This same study highlighted the importance of identifying the source of arsenic in 

marine environment, and the species of biota, as these are important factors that can 

determine the toxicity of arsenic. 

These examples show the importance of seafood as a potential source of 

toxicity to human consumers. Fish and shellfish are important dietary components, 

particularly in coastal communities. These sources represent a rich source of protein, 

minerals, vitamins and essential fatty acids (Andreji et al. 2006). Nevertheless, they 

may be an important vector of toxicity. 
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1.5 REGULATORY STANDARDS 

1.5.1 SEAWATER AND MARINE SEDIMENTS 

Seawater and sediment quality guidelines have been developed by regulatory 

organisations to minimise adverse biological effects that chemical contaminants can 

have on the ecosystem. Such regulatory bodies include the National Oceanic and 

Atmospheric Administration (NOAA), and the Australia and New Zealand 

Environment and Conservation Council (ANZECC) (ANZECC 2000). There are four 

main protection levels (80, 90, 95 and 99%) identified in the ANZECC guidelines for 

seawater (Table 1.2). The 99% protection level indicates that a trace element 

concentration below that level will protect 99% of marine species against the onset of 

toxic effects of the given trace element. For marine sediments there are two protection 

levels (Table 1.2). They are the Interim Sediment Quality Guideline-low (ISQG-low) 

value, which is a trigger value for possible biological effect and the ISQG-high value, 

which indicates a probable biological effect. 

Table  1.2: ANZECC trigger values for marine water (µg L
-1

) at different levels of protection of 

marine species (% species), and ANZECC ISQG values for the protection of marine 

species (µg g dry wt
-1

) for sediments 

Trace element 

ANZECC trigger values (µg L
-1

) 

 

ANZECC  (ISQG)  values  

(µg g dry wt
-1

)  

99% 95% 90% 80% ISQG - low ISQG - high 

As  * * * * 20 70 

Cd 0.7 5.5 14 36 2 10 

Cu 0.3 1.3 3 8 65 270 

Fe * * * * * * 

Pb 2.2 4.4 6.6 12 50 210 

Zn 7 15 23 43 200 410 

* Values not provided in the ANZECC guideline. 

1.5.2 SEAFOOD 

Limits for trace element concentrations in food standards are set to minimise 

health impacts on consumers, by limiting the intake of contaminated foods. In this 

regard, regulatory authorities include the World Health Organization (WHO), the 

European Commission (EC), the United States Food and Drug Administration 

(USFDA), and Food Standards Australia New Zealand (FSANZ). These agencies 
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provide guidelines for dietary intake limits and maximum allowable values of specific 

contaminants in food. 

In the current thesis, results were compared with regulatory levels set by the 

FSANZ wherever possible (ANZFSC 2013), and to the EC regulations where FSANZ 

values were not available (Table 1.3). The exceptions to this were the maximum 

levels for copper (30 µg g wet wt
-1

) and zinc (40 µg g wet wt
-1

), which  were obtained 

from the Food and Agricultural Organization (FAO) data for Australia and New 

Zealand other standards (Nauen 1983), as these elements were not included in 

FSANZ or EC regulations. These maximum levels of copper and zinc for fish and fish 

products also apply to crustaceans and molluscs. No limit was provided for iron in 

any of the food standards mentioned above. 

Table  1.3: Trace element limits in regulatory standards for seafood 

Trace elements 
Maximum allowable levels (ML) (µg g wet wt

 -1
)  

FSANZ levels  
Regulation EC. No 1881/2006, 

420/2011 

NZ/Australia other 

standards (FAO) 

As (inorganic) 

   Fish 2 - 

 Crustacean 2 - 

 Molluscs 1 - 

 Cd 

   Fish - 0.05 

 Crustacean - 0.5 

 Molluscs 2 1 

 Hg 

   Fish 0.5 0.5 

 Crustacean 0.5 0.5 

 Molluscs 0.5 0.5 

 Pb 

   Fish 0.5 0.3 

 Crustacean - 0.5 

 Molluscs 2 1.5 

 Cu 

   Fish - - 30 

Zn 

   Fish - - 40 

“-“ indicates that no value is provided in the food standards. NZ- New Zealand.  

FSANZ- Food Standards Australia New Zealand. 
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Data for seafood trace element burdens collected in the current thesis were used 

to conduct risk assessments for the consumption of the species measured. Risk 

assessments compare the intake of trace elements to provisional tolerable weekly 

intake (PTWI) values. PTWI values are provided by the WHO/FAO Joint Expert 

Committee for Food Additives (JECFA) for inorganic arsenic, cadmium, 

methylmercury and  lead, and are 21, 5.6, 1.6, and 25  µg/kg body weight/week, 

respectively (WHO 2000,2007,2010a,b). 

 

1.6 ANALYTICAL METHODS FOR SEAWATER 

Although an extensive number of studies have examined the analysis of the low 

concentrations of trace elements in marine systems, such analyses are still a challenge. 

This is largely because of the detection limit required, and matrix interferences 

(Anthemidis et al. 2011; Rahmi et al. 2007; Tuzen et al. 2005; Yuan et al. 2011). 

Seawater is a rich source of chemical elements including calcium, sodium, and 

organic and inorganic compounds. The concentrations of trace elements in seawater 

often lie below the detection limit of commonly used modern analytical instruments 

such as ICP-MS (Zhang et al. 2010). Furthermore, concentrated ions such as sodium 

and chloride in seawater samples can produce very complicated spectroscopic results 

for trace elements due to interferences (Brown & Milton 2005; Jenner et al. 1990; 

Korn et al. 2006). Thus, pre-concentration or separation procedures are needed to 

obtain an accurate result for trace level elements in complex matrices such as 

seawater (Daskalova & Boevski 1999). 

A considerable amount of attention has been given to developing pre-treatment 

sample preparation methods (Zhang et al. 2010). These methods include liquid-liquid 

extraction, ion-exchange, electrochemical deposition, extraction chromatography, and 

solid phase extraction (SPE) (Zhang et al. 2010). Solid phase extraction methods are 

widely used due to their simplicity, multi-element enrichment, high selectivity, low 

cost, low solvent use, and the ability to couple them with different detection 

techniques (Tuzen et al. 2005; Zhang et al. 2010). Examples of SPEs used for trace 

elements include chemically modified silica gel, inorganic-organic hybrid materials 

like C18 silica cartridge, Chelex-100, Chromosorb resins, and functionalised styrene–
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divinylbenzene copolymers (Camel 2003; Dakova et al. 2009; Hennion 1999; Zhang 

et al. 2010). Novel solid phases include animal fibrous proteins (AFPs) such as wool 

powder and silk powders, which are potentially useful solid phase extractants because 

of the many chemically active functional groups in these fibres that have high binding 

affinities for trace elements (Goto & Suyama 2000; Naik et al. 2010). 

A weakness of trace element pre-concentration methods is that they often 

involve large volumes of seawater, high consumption of chemicals, and are time 

consuming (Naik et al. 2010). For these reasons alternative approaches are necessary. 

In this regard, iminodiacetate resins (SPR-IDA, suspended particulate reagent 

iminodiacetate) have been developed as solid phase treatments for pre-concentrating 

trace elements in seawater (CETAC 2011). The SPR-IDA suspension has been used 

to validate a method for extracting and pre-concentrating trace elements in seawater 

samples in this thesis. The solid phase SPR-IDA requires a small amount of the solid 

phase, is simple to use, and does not require a large volume of seawater unlike most 

of the pre-concentration methods currently employed. 

 

1.7 STUDY SITES 

This research project included fieldwork in two locations with distinct, yet 

related, sea-fill activities. They are Thilafushi Island in the Maldives (MSW sea-fill 

for reclamation) and Lyttelton Harbour, New Zealand (clean construction rubble from 

earthquake damaged buildings for reclamation). 

1.7.1 THILAFUSHI ISLAND OF MALDIVES 

Thilafushi Island is an artificial island created through waste disposal in a 

lagoon called ‗Thilafalhu‘, located 6.85 km northwest of Male‘, the Maldives capital. 

The lagoon is 7 km long and approximately 200 m wide, and located in very close 

proximity to other inhabited islands. The lagoon is still in the process of reclamation 

using different types of solid waste and dredged sand from the inner lagoon (CDE 

Consulting 2011). Thilafushi Island is the main waste disposal site for Male‘ and 

surrounding islands, including several tourist resorts. The MSW disposed includes 

domestic and industrial waste of organic and inorganic origin. The size of this waste 
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also varies, ranging from small tins to whole cars (Khaleel & Saeed 1997). Solid 

waste disposed of at Thilafushi Island is known to contain used batteries, asbestos, 

paints, all types of metals, e-waste and other potentially hazardous chemicals (UNEP 

2005b). Leaching of trace elements from Thilafushi Island into the lagoon could be a 

potential health hazard as local people consume fish and seafood harvested near the 

lagoon. No investigation quantifying trace elements at Thilafushi Island of Maldives 

had been conducted prior to the start of this project. 

1.7.2 LYTTELTON HARBOUR OF NEW ZEALAND 

Lyttelton Harbour is located adjacent to the New Zealand city of Christchurch. 

It is situated on the east coast of the South Island, and it is the northern major sea inlet 

formed by an enclosed rock-wall on Banks Peninsula (ECan 2008; Hart 2004).  Banks 

Peninsula was once a volcanic island, and Lyttelton Harbour is the flooded crater of a 

volcano that erupted millions of years ago (Liggett & Gregg 1965; Stipp & 

McDougall 1968). The Lyttelton port lies about 4.5 km from the head entrance of the 

harbour. The harbour is approximately 15 km long and on average 2 km wide (Hart 

2004). After the Canterbury Earthquake in 2011, Lyttelton Port of Christchurch (LPC) 

Ltd. were granted approval by the Canterbury Regional Council (Environment 

Canterbury; ECan) and Christchurch City Council (CCC) to use ―clean‖ earthquake 

rubble, which included stone, bricks, tiles, aggregates, reinforced and unreinforced 

concrete, general rubble, glass and cured asphalt (LPC 2011), to reclaim ten hectares 

of Lyttelton Harbour (Te Awaparahi Bay) (LPC 2014). Cured asphalt was only 

allowed to be placed out of the wave erosion zone. The sea-fill was created adjacent 

to the Port at Te Awaparahi Bay, between the Cashin Quay breakwater and Battery 

Point. 

1.8 RESEARCH OBJECTIVES 

1.8.1 AIMS  

This research aimed to assess the level of trace element contamination at the 

sea-fill sites of Thilafushi Island, Maldives, and Lyttelton Harbour, New Zealand.  

The specific objectives of the research were to: 
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 Validate suitable and simple methods for analysis of trace elements in 

seawater, marine sediment and marine biota 

 Characterise the trace element concentrations in seawater, sediment and biota 

from the vicinity of Thilafushi Island sea-fill, and to prepare a risk assessment 

for consumption of seafood from the vicinity of the sea-fill site in Thilafushi 

Island 

 Monitor trace element concentrations in seawater, sediment and biota from the 

vicinity of the sea-fill at Lyttelton Harbour of New Zealand 

 Investigate trophic transfer of trace elements in the coastal food chain of 

Lyttelton Harbour 

 Undertake a baseline study of trace element concentrations in fish and 

shellfish, and prepare a risk assessment for consumption of seafood from 

Lyttelton Harbour 

 

1.9 THESIS STRUCTURE 

This thesis is presented in seven chapters, including this introduction chapter. 

Chapter 2: Describes the analytical methods for determining the concentration 

of selected trace elements in seawater, marine sediment and biota samples. Method 

validation is presented in this chapter. 

Chapter 3: This chapter presents the results for trace element concentrations in 

seawater, sediment and biota in the vicinity of the sea-fill site of Thilafushi Island of 

the Maldives and the risk assessment for consumption of seafood.   

Chapter 4: The monitoring results for trace elements in seawater, marine 

sediments and green-lipped mussels at the sea-fill site of Lyttelton Harbour are 

provided in this chapter.  

Chapter 5: This chapter contains the results for trace element concentrations in 

marine biota in a coastal food chain of Lyttelton Harbour, along with the risk 
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assessment for consumption of fish harvested from Lyttelton Harbour  

Chapter 6: The results of the baseline study of trace elements in three species 

of shellfish from Lyttelton Harbour are presented in this chapter, along with the risk 

assessment for the consumption of wild shellfish from the harbour bays. 

Chapter 7: Overall conclusions and recommendations for future work are 

presented in the final chapter. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 
 

2.1 INTRODUCTION 

This chapter describes the materials and methods used to obtain the results 

presented in this thesis. Three types of environmental matrices were collected and 

analysed: seawater, marine sediment and marine biota. A solid phase extraction (SPE) 

method was used to extract trace elements from seawater samples. Suspended 

particulate reagent iminodiacetate (SPR-IDA) was used as the solid phase for pre-

concentrating trace elements. The SPE method used in this thesis was adopted from 

the guidelines of CETAC Technologies (CETAC 2011) and validated for this work. 

Acid digestion methods were used to extract trace elements from marine sediments 

and biota. All samples were prepared and analysed at the University of Canterbury. 

Analyses for trace elements were carried out by Inductively Coupled Plasma Mass 

Spectroscopy (ICP-MS), except for iron in marine sediment samples, which was 

analysed by Atomic Absorption Spectrometry (AAS). Details of fieldwork and 

methods for sample collection are provided in the relevant thesis chapters (Chapters 

3-6). 
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2.2 CHEMICALS AND MATERIALS 

All containers and vials used in this study were plastic to minimise any trace 

element contamination. Acid-cleaned polycarbonate vials (50 mL) were used in the 

digestions of marine sediments and biota samples. Similarly, acid-cleaned 

polypropylene vials (50 mL and 15 mL) were used in the seawater collection and 

extraction work. Custom-built aluminium hot plates were used for digesting all 

sediments and biota samples. Acid-cleaned plastic jars were used to collect sediments, 

while acid-cleaned vials and snap-lock plastic bags were used for collecting and 

transporting biota from field to laboratory. 

2.2.1 CHEMICALS AND MATERIALS FOR SEAWATER ANALYSES 

The solid phase used for extracting trace elements in seawater in this study 

was a chelating polymer resin reagent, SPR-IDA. This consists of a polystyrene 

reagent bead of 10 microns (0.01 mm) and was purchased as a 10% suspension (w/v) 

in deionised water, from CETAC Technologies. The ultrapure (70%) nitric acid, and 

ultrapure (24%) hydrochloric acid used in the extraction work were sub-boiled quartz 

distilled acids purchased from the University of Otago, New Zealand. The ammonium 

hydroxide solution (21%, w/w Optima, for ultra trace analysis) was purchased from 

Fisher Scientific UK. Yttrium stock solution (10,000 ppb in 2% HNO3), mixed 

elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) stock solution (10,000 ppb 

in 2% HNO3), mercury stock solutions (10,000 ppb in 2% HNO3), along with other 

ICP-MS standards, were purchased from Inorganic Ventures. Sodium chloride 

(analytical grade) was purchased from LabServ, Biolab, Australia Ltd., and the 

certified reference seawater (NASS-6, NRC, National Research Council of Canada) 

purchased from the National Research Council of Canada. 

2.2.2 CHEMICALS AND MATERIALS FOR MARINE SEDIMENT 

ANALYSES 

The acids used in the digestion process for extracting trace elements in marine 

sediments were analytical grade nitric acid (69%), and analytical grade hydrochloric 

acid (34%) purchased from Merck, Germany. However, ultrapure acids (with 0.1% L-

cysteine added) were used for diluting the digests of marine sediments. The diluting 
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acid mixture strengths were 2% nitric acid and 0.5% hydrochloric acid. Sigma L-

cysteine (analytical grade; to ensure mercury retention in solution) from a non-animal 

source was used in preparing the ultrapure acid mixture. Marine sediment SRM-2702 

(NIST; National Institute of Standards and Technology) was used as a certified 

reference material. Single element iron stock solution (1000 mg L
-1

) purchased from 

Merck, Germany was used to prepared the calibration standards for sediment iron 

analysis by AAS. 

2.2.3 CHEMICALS AND MATERIALS FOR BIOTA 

The acids used in extracting trace elements from biota were ultrapure nitric 

acid (70%) and ultrapure hydrochloric acid (24%), as for seawater extractions. 

Ultrapure acids (with L-cysteine added) were used for diluting the digests of marine 

biota (same acid mixture as that used for sediment dilution). Certified reference 

materials included mussel tissue (SRM-2976, EVISA, European Virtual Institute for 

Speciation Analysis), fish protein (DORM-3, NRC, National Research Council of 

Canada), bovine liver (SRM 1557c, NIST, National Institute of Standards and 

Technology) and tomato leaves (SRM 1573a, EVISA, European Virtual Institute for 

Speciation Analysis). 

 

2.3 ANALYSIS OF TRACE ELEMENTS IN SEAWATER 

Seawater samples from the Maldives were acidified to pH 2 using ultrapure 

nitric acid within 15 days of sample collection, and after importation to New Zealand 

due to restrictions on transporting acidified samples. These seawater samples were 

acidified to prevent the trace elements from adsorbing onto the surface of the vials 

and reverse any adsorption that had already occurred. Seawater samples from the 

Maldives were extracted within 3 months of collection. 

All seawater samples from New Zealand were acidified to pH 2 with ultrapure 

nitric acid within 12 to 20 hours of sample collection. Seawater samples from New 

Zealand were extracted within 48 hours of sample collection. All seawater samples 

were stored at 4°C until solid phase extraction, and all were extracted using the 

method adopted from the manufacturer of the solid phase reagent (CETAC 2011), as 
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described in Section 2.3.1. 

Seawater samples (15 mL) were extracted for trace elements (cadmium, 

copper, iron, lead and zinc) using SPR-IDA as the solid phase (CETAC 2011). All 

field blanks (one vial of 50 mL Milli-Q water for each of the transect lines) were also 

extracted along with their respective environmental seawater samples. Trace elements 

spiked in natural seawater, Milli-Q water and artificial seawater (freshly prepared) 

were also extracted (with their blanks) with each batch (n = 30-35) of environmental 

seawater. Artificial seawater was prepared with analytical grade sodium chloride salt 

and Milli-Q water at the concentration of 19.37 g/kg, (salinity of approximately 

35.5‰) as this is the concentration of sodium chloride reported for natural seawater 

(Huber et al. 2000). Comparative standards were prepared for each level of trace 

element spike to calculate the percentage recovery of spiked trace elements in these 

different types of water samples. 

2.3.1  EXTRACTION PROCEDURE FOR SEAWATER 

SPR-IDA suspension (100 µL) was added to the water samples (15 mL), and 

the internal standard yttrium was spiked at a concentration of 250 µg L
-1

. The pH of 

the samples was adjusted to 8 using ammonium hydroxide solution (21%, w/w 

Optima). Samples were gently but thoroughly mixed, and left to settle for one hour, 

and thereafter were centrifuged for 15 min at 4500 RPM (revolutions per minute). The 

supernatant was then decanted, and the solid phase was washed with Milli-Q water 

(15 mL) of pH 8 (pH adjusted with the ammonium hydroxide solution). This step 

removed interfering ions such as sodium, magnesium and calcium without permitting 

the leaching of the solid phase-bound trace elements (CETAC 2011). For washing the 

solid phase, Milli-Q water (pH 8) was added to the solid phase, mixed and left to 

settle for one hour. The samples were then centrifuged and the supernatant was 

decanted. Elution was carried out with 7% ultrapure nitric acid. Nitric acid (1.5 mL) 

was added to the solid phase, mixed well and left to settle for one hour, before 

centrifugation. This step was then repeated and the two resulting aliquots were 

collected, mixed well and analysed by ICP-MS. A schematic diagram of the solid 

phase extraction steps showing interactions of trace elements with the solid phase is 

presented in Figure 2.1. 
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Figure 2.1: Schematic diagram of solid phase extraction concept showing the interactions of solid 

phase and the trace elements of interest during the extraction process 

 

SPR-IDA Pellet 
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2.3.2  QUALITY ASSURANCE (QA) / QUALITY CONTROL (QC) 

2.3.2.1  CLEANING AND PREPARATION OF EQUIPMENT 

All vials and containers were acid-cleaned prior to use for sample collection 

and preparation. Extra care was taken in acid-cleaning materials used for seawater 

collection as seawater was expected to contain very low concentrations of these 

elements, and thus even a trace level of contamination could impact results. Therefore 

all containers and vials were acid washed for 5 days in 10% nitric acid followed by 

2% nitric acid for another 5 days. These containers were then rinsed with Milli-Q 

water six times, and air dried in a clean (metal-free) room. Acid-cleaned 

polypropylene vials (50 mL) were used for collecting seawater samples and 15 mL 

vials were used for the extractions. Following collection of seawater, the samples 

were kept in small snap-locked plastic bags (each vial in a separate bag) to avoid any 

cross contamination, and stored at 4°C until extracted. All extractions were carried 

out in a metal-free clean room, except for the centrifugation step, wherein samples 

were taken to the centrifuge location in a well-sealed clean cooler to prevent contact 

with outside dust. Maldives seawater samples were extracted in a fume cupboard in a 

physical containment level 2 (PC2) laboratory for bio-security reasons. 

2.3.2.2  QUALITY ASSURANCE MEASURES 

In the processing of seawater samples, every 10
th

 sample was extracted in 

duplicate to assess the accuracy of the extraction process. Every extraction batch 

included four field blanks as mentioned earlier (one for each transect line). Here, the 

field blanks were Milli-Q water samples (50 mL) carried to the field, and exposed to 

the environment to determine any incidental contamination from environmental 

conditions. In addition to the field blanks, each batch of extracted samples included at 

least two levels (1 µg L
-1

 and 10 µg L
-1

) of trace element spikes in natural seawater, 

artificial seawater and Milli-Q water. Every other extraction batch was carried out 

with a third level of spike in each type of water (5 µg L
-1

). Duplicates of trace element 

spiked samples were also extracted in every other extraction batch (for example, 

duplicates of the 1 µg L
-1

 or 10 µg L
-1

 or 5 µg L
-1

). Each type of trace element-spiked 

water sample was extracted with its blank for checking any contamination during the 

extraction process. A comparative standard was prepared with the eluting acid (7% 
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ultrapure nitric acid, to match the acid strengths of the samples) for each level of trace 

element spike in the QA water samples above. The comparative standards were 

spiked at the same time as the QA water samples to ensure exactly the same 

concentrations of trace elements were spiked. Comparative standards were used to 

calculate recoveries of trace elements from spiked samples. A certified reference 

seawater sample (NASS-6, NRC) was also extracted with each batch of seawater. 

When trace element concentrations in the field blanks were higher than the instrument 

detection limits, a blank correction was applied to the final results. All duplicates 

were averaged to obtain a final result. 

2.3.3 METHOD VALIDATION FOR SEAWATER EXTRACTION  

Method validation was carried out for four different types of water samples 

(freshly prepared artificial seawater, natural seawater, Milli-Q water and certified 

reference seawater (NASS-6, NRC)). Fifteen mL aliquots of these waters were 

extracted using SPR-IDA as the solid phase, as described in Section 2.3.1. With the 

exception of the NASS-6 seawater, all other water samples were spiked at 5 µg L
-1

. A 

blank for each type of water (Milli-Q water blank for NASS-6) was also extracted 

alongside the spiked samples, and a comparative standard was prepared from the 

eluting acid (7% ultrapure HNO3) at a trace element concentration of 5 µg L
-1

. The 

percentage recoveries of the spiked trace elements in the water samples, and the 

percentage recoveries of trace elements in the NASS-6 seawater, are presented in 

Table 2.1. 

Table  2.1:  Percentage recovery of the 5 µg L
-1

 spiked trace elements in three water types and the 

trace elements in the certified reference water (NASS-6) after blank correction (n=2) 

Analytes Milli-Q water Artificial seawater Natural  seawater NASS-6 seawater  

Cadmium 95.3 95.2 98.6 96.4 

Copper 94.1 98.5 90.5 114.2 

Iron 79.5 94.5 119.1 <LOD 

Lead 89.3 85.9 80.7 76.2 

Zinc 112.6 103.3 89.4 97.7 

 

To determine the reliability and reproducibility of the extraction method, a 

series of experiments with different levels of trace element spikes (1, 5, and 10 µg L
-1

) 
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were carried out. This included duplicates of spiked natural seawater, freshly prepared 

artificial seawater and Milli-Q water for each spike level (i.e. n = 6 for each type of 

water). In addition, 6 samples of certified reference seawater (NASS-6, NRC) were 

extracted alongside the trace element-spiked water samples. Blanks and comparative 

standards were also included for each spiked level for calculating percentage 

recoveries (comparative standards provided the exact values of the trace elements that 

were spiked in the samples). Any blank contribution was corrected (to eliminate any 

pre-existing trace elements in the samples or any contribution from sample handling) 

before the percentage recovery calculations. The percentage recoveries of trace 

elements in NASS-6 seawater are presented in Table 2.2, and the percentage 

recoveries of the spiked trace elements in the water samples are presented in Table 

2.3. 

The iron concentration in NASS-6 reference seawater was below the limit of 

detection (LOD). The percentage recovery of lead in NASS-6 water was more 

variable than for the other elements (the %RSD for lead was 11.5%). The % RSD for 

cadmium, copper, iron and zinc was always below 10%. 

 

Table  2.2:  Percentage recoveries and statistical summary of trace elements extracted from the 

certified reference seawater (NASS-6, NRC) 

Analyte Mean % recovery  

(n=6) 

Std dev %RSD 95% C.I. 

Cadmium 98.1% 3.1% 3.1% 2.5% 

Copper 101.1% 6.7% 6.6% 5.4% 

Iron <LOD - - - 

Lead 83.3% 9.5% 11.4% 7.6% 

Zinc 93.3% 4.2% 4.5% 3.3% 

Std dev – standard deviation, %RSD – percentage relative standard deviation, 95%C.I. – 95% percent 

confidence interval. 
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Table  2.3: Mean percentage recoveries and statistical summary of spiked trace elements in three different types of water 

Analyte 1 µg L
-1

 spike (n = 6) 5 µg L
-1

 spike (n = 6) 10 µg L
-1

 spike (n = 6) 

 Mean % 

recovery 

Std dev %RSD 95% C.I Mean % 

recovery  

Std dev %RSD 95% C.I. Mean % 

recovery 

Std dev %RSD 95% C.I. 

Milli-Q  water 

Cadmium 90.4% 2.4% 2.7% 1.9% 93.5% 3.5% 3.7% 2.8% 93.4% 3.1% 3.3% 2.5% 

Copper 105.1% 3.9% 3.7% 3.3% 93.6% 5.3% 5.6% 4.2% 98.8% 7.5% 7.6% 6.0% 

Iron 82.4% 7.9% 9.6% 6.3% 87.5% 9.3% 10.6% 7.4% 89.8% 8.6% 9.6% 6.9% 

Lead 93.2% 2.8% 3.0% 2.2% 91.1% 8.8% 9.6% 7.0% 91.3% 3.6% 3.9% 2.9% 

Zinc 87.8% 6.8% 7.8% 5.5% 95.9% 10.5% 11.0% 8.4% 92.0% 4.0% 4.4% 3.2% 

Artificial seawater 

Cadmium 93.5% 3.0% 3.2% 2.4% 92.4% 4.3% 4.7% 3.5% 96.5% 4.6% 4.7% 3.7% 

Copper 93.2% 6.2% 6.6% 4.9% 92.8% 7.0% 7.5% 5.6% 97.5% 7.1% 7.2% 5.6% 

Iron 98.9% 15.7% 15.8% 12.5% 87.2% 4.8% 5.5% 3.9% 93.6% 11.7% 12.5% 9.4% 

Lead 87.3% 2.3% 2.6% 1.8% 90.1% 8.2% 9.1% 6.6% 87.9% 7.0% 7.9% 5.6% 

Zinc 97.5% 8.6% 8.8% 6.9% 96.7% 12.3% 12.7% 9.8% 101.2% 5.2% 5.3 4.3 

Natural  seawater 

Cadmium 96.2% 3.7% 3.8% 2.9% 105.1% 1.9% 1.8% 1.5% 99.2% 5.7% 5.7% 4.5% 

Copper 92.9% 6.4% 6.9% 5.1% 102.6% 1.6% 1.5% 1.3% 93.8% 6.4% 6.8% 5.1% 

Iron <LOD <LOD <LOD <LOD 95.5% 10.1% 10.5% 8.0% 103.0% 14.3% 13.9% 11.4% 

Lead 86.6% 3.9% 4.5% 3.1% 82.7% 1.1% 1.3% 0.9% 88.1% 2.6% 2.9% 2.0% 

Zinc 99.8% 10.8% 10.9% 8.8% 104.2% 2.6% 2.6% 2.2% 101.1% 6.4% 6.4% 5.1% 

LOD – Limit of detection, Std dev – standard deviation, %RSD – percentage relative standard deviation, 95%C.I. – 95% confidence interval.
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The mean percentage recoveries of cadmium, copper and zinc were always 

greater than 90% in Milli-Q water for all three levels of spikes (Table 2.3), with iron 

and lead showing a slightly lower percentage recovery (always above 82% in all 

water types for the spike levels 5 and 10 µg L
-1

). The limit of detection (LOD) for 

iron was higher than 1 µg L
-1

 and the ICP-MS measurements for 1 µg L
-1 

comparative 

standards were variable. Spike recovery of iron and zinc showed more variability 

compared to the other elements. Higher levels of iron and zinc were also observed in 

the blank extracts compared to other elements. This could be due to their high 

abundance in the environment and laboratory. Building repair work was being carried 

out in the Chemistry building at the time of these extractions, and although the 

samples were tightly sealed when removed from the clean room for centrifugation, 

this may still have contributed to some contamination. 

2.3.4 LIMIT OF DETECTION (LOD) AND LIMIT OF QUANTIFICATION 

(LOQ)  

The LOD and LOQ values were determined using the United States 

Environmental Protection Agency (USEPA) recommended guideline (USEPA 2005), 

and are presented in Table 2.4. The LOQ‘s were determined using low level trace 

element-spiked natural seawater, unspiked natural seawater, and spiked and unspiked 

Milli-Q water extractions (n = 7). Natural seawater for this extraction was sourced off 

the coast of Pigeon Bay of Banks Peninsula, New Zealand. Seven replicates of the 

natural seawater and Milli-Q water were spiked at 5 µg L
-1

 concentrations, which was 

approximately five times the estimated detection limit of the ICP-MS used for this 

analysis. The seven unspiked seawater samples were processed to account for any 

matrix contribution. The limit of detection (LOD) was 3 times the standard deviation 

of the unspiked Milli-Q water and natural seawater samples (Table 2.4). The LOQ 

was calculated by multiplying the standard deviation of the seven spiked replicates by 

the student t-value at α = 0.01 (3.14). These statistically derived LOQ‘s for the 

analytes in seawater were higher than the actual solution concentrations that could be 

achieved for all analytes in seawater, and therefore lower practical quantitation limits 

were applied. The applied practical LOQ‘s were estimated using the standard 

deviation values of the seven unspiked seawater and Milli-Q water replicates, as well 

as checking the precision of the lowest standards used in the analysis. The percentage 
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difference (<10%) of the low concentration trace elements in the duplicate samples 

was also taken into account. 

Table  2.4: LOD and LOQ for trace elements in seawater (µg L
-1

) 

Analyte Calculated 

LOD for 

Milli-Q water 

Calculated 

LOD for 

seawater 

Calculated 

LOQ for Milli-

Q water 

Calculated 

LOQ for 

seawater 

Estimated and 

applied 

practical LOQ 

Cadmium 0.02 0.01 0.26 0.22 0.04 

Copper 0.22 0.07 0.34 0.61 0.29 

Iron 1.95 13.40 0.78 17.85 2.68 

Lead 0.05 0.04 0.21 0.19 0.04 

Zinc 0.60 0.34 1.24 1.70 1.18 

LOD – Limit of detection, LOQ – limit of quantification 

 

2.4 METHODS FOR SEDIMENT AND BIOTA 

ANALYSIS 

Detailed methods for sediment and biota collection, and pre-treatment of 

samples, are provided in the respective chapters. Details of the acid digestion, dilution 

and analytical methods are provided in this chapter. 

2.4.1  SAMPLE PREPARATION AND DIGESTION 

2.4.1.1  MARINE SEDIMENTS 

Total recoverable concentrations of arsenic, cadmium, copper, iron, lead, 

mercury and zinc in marine sediments were determined using an acid digestion 

method adapted from USEPA Method 200.2. Upon collection, the sediment samples 

were placed on ice until transported to the laboratory. Sediment samples were then 

transferred to aluminium trays and oven dried at 30°C for 7-10 days. The dried 

sediments were then transferred to plastic snap-lock bags and crushed within the bags 

using a stainless steel iron bar. Sediments were sieved to less than 2 mm using 

stainless steel sieves. Individual samples were stored in separate snap-lock plastic 

bags at room temperature until acid digested. 
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Oven-dried (30°C, < 2 mm, 1 g) samples were weighed into acid-cleaned 

polycarbonate vials (50 mL). Analytical grade nitric acid (4 mL, 50%) and analytical 

grade hydrochloric acid (10 mL, 20%) were added to the samples. The samples were 

gently mixed, left for one hour, and then digested at 85°C for another hour under 

continuous refluxing. The digests were cooled overnight in a fume hood at room 

temperature and diluted to 20 mL with Milli-Q water. Each sample was again diluted 

twenty one times (0.5 mL of digest plus 10 mL diluting acid mixture (2% HNO3/0.5% 

HCl/0.1% L-cysteine)), and analysed for arsenic, cadmium, copper, mercury, lead and 

zinc by ICP-MS (Agilent 7500cx ICP-MS ASX-500 auto sampler). Iron was analysed 

by flame AAS (Varian SpectrAAS220FS). A procedural blank, internal quality 

assurance samples (certified reference marine sediment, SRM-2702, NIST), and 

duplicates (one per 10 samples) were included in each batch of sediment digestion.  

2.4.1.2  MARINE BIOTA 

Five groupings of biota samples were analysed (green algae, marine worm, 

bivalve, crab and fish). All biota samples were freeze-dried (-40°C at < 0.133 mBar 

vacuum) (Figure 2.2A) for 7-10 days, except green algae from the Maldives (oven 

dried at 50°C for 5-7 days due to restrictions in bringing fresh algae to New Zealand). 

The freeze-dried biota samples were homogenised using a small stainless steel spice 

grinder.  

 

Figure 2.2: Main steps included in the biota sample preparation and digestion 

 

Homogenised biota samples (200 mg) were weighed into acid-cleaned 

polycarbonate centrifuge vials (50 mL), and to these samples, concentrated nitric acid 

(1 mL, 70% ultrapure), and concentrated hydrochloric acid (0.2 mL, 24% ultrapure) 

were added. These samples were mixed gently, left for at least one hour, and digested 

A B C 
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at 85°C for another 1 hour under continuous refluxing (Figure 2.2B) on a hot plate. 

Samples were cooled by leaving them overnight at room temperature in a fume hood, 

before they were made up to 20 mL by adding Milli-Q water and mixed gently 

(Figure 2.2C). Each sample was then diluted five times (1 mL of digest plus 4 mL of 

dilute acid (2% HNO3/0.5% HCl/0.1% L-cysteine)), and analysed for arsenic, 

cadmium, copper, iron, mercury, lead and zinc by ICP-MS. A procedural blank, 

internal quality control (a certified reference material varying according to the type of 

biota), and duplicates (one per 10 samples) were included in each batch of biota 

digestion. 

2.4.2 QUALITY ASSURANCE / QUALITY CONTROL 

All vials and materials were acid-cleaned in 10% nitric acid for 5 days and 

rinsed three times with Milli-Q water. These vials were then air dried in a clean room 

prior to use. Acid-cleaned plastic spoons were used in transferring samples during the 

weighing processes. Spoons were cleaned with methanol (HPLC grade) between 

samples. Acid-cleaned pipette tips were used for transferring acids. All dilutions were 

carried out in fume hoods in a metal-free clean room to prevent contamination. The 

sieves used for separating < 2 mm sediment were washed thoroughly with distilled 

water, then rinsed with Milli-Q water, and dried in an oven at 100°C between samples 

to avoid any cross-contamination. 

Biota samples were freeze-dried prior to homogenisation. Freeze drying was 

preferred over oven drying to prevent contamination, as well as to preserve mercury 

species in the biota samples (LaFleur 1973), as mercury can be volatilised  from the 

sample at temperatures above 60°C (Pillay et al. 1971). The biota samples were 

homogenised using a stainless steel spice grinder, and the spice grinder was cleaned 

with methanol (HPLC grade) between the samples to avoid cross-contamination. 

All reagents were freshly prepared before digestion. Certified reference 

samples were prepared and digested alongside the environmental samples for quality 

assurance. For each batch of samples (n = 20 for sediments; n = 12-24 for biota) that 

were placed together on a hotplate, at least one procedural blank was included.  Every 

10
th

 sample of sediment and biota was digested in duplicate for checking the 

consistency of the digestion process. 
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Standard reference marine sediment (SRM-2702, NIST) was included in 

duplicate with each batch of sediment digestions. Appropriate standard reference 

materials according to the type of biota species (SRM-2976 - mussels; DORM-3 - fish 

protein; SRM 1557c - bovine liver; and SRM 1573a - tomato leaves) were also 

included with every batch of biota digestion as quality assurance samples. All the 

results were reported after correcting any blank contribution higher than the applied 

detection limits for the respective sample type. The average of the 10
th

 sample 

duplicates was calculated, and this value was the reported result for the duplicate 

samples. The percentage differences of the duplicates were always below 10% for the 

samples with concentrations higher than the applied practical LOQ, and for sediments 

most of the time this difference remained below 5%. 

Sample dilutions included one duplicate for every 10
th

 sample, and one 

triplicate for every 20
th

 sample. The duplicate dilutions were to check instrument 

efficiency during the analysis. The triplicate samples were spiked with a known 

concentration of trace elements, and the percentage recoveries were determined to 

verify whether there were any interferences or losses occurring during the analysis. 

2.4.3 METHOD VALIDATION 

2.4.3.1  MARINE SEDIMENTS 

One gram of the homogenised standard reference marine sediment (SRM-

2702, NIST) was digested in duplicate along with an acid blank. The samples were 

weighed into 50 mL polycarbonate vials and digested in 10 mL of nitric acid 

(analytical grade, 50%) and 4 mL of hydrochloric acid (analytical grade, 20%) at 

85°C for 1 hour under continuous refluxing. The samples were left to stand for at least 

one hour after addition of the acids, before placing them on the hotplate. Hydrochloric 

acid was used in the digestion to retain any mercury species in the samples (Louie et 

al. 2012). Samples were cooled by leaving overnight at room temperature in a fume 

hood. These digests were made up to 20 mL by adding Milli-Q water, mixed gently, 

and left to settle overnight. Each sample was then diluted twenty one times (0.5 mL of 

digest plus 10 mL of diluting acid mixture (2% HNO3 and 0.5% HCl with 0.1% L-

cysteine)), and analysed for arsenic, cadmium, copper, mercury, lead and zinc by ICP-

MS. L-cysteine was included in the acid mixture to prevent mercury adsorption on the 
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wall of the vial, and to keep mercury in solution, owing to the ability of L-cysteine to 

complex strongly with mercury (Li et al. 2006; Wang et al. 2010). 

Sediment iron was analysed by flame AAS, due to its high concentration 

compared to the other trace elements in the sample, while all other elements were 

analysed by ICP-MS. Percentage recoveries of over 90% for all the tested trace 

elements were achieved. To determine the reliability and reproducibility of the acid 

digestion method, five different sets of SRM-2702, in duplicate, were digested on five 

different days along with acid blanks. The average percentage recoveries of trace 

elements in the standard reference material (n = 10) were greater than 90% for all 

elements (Table 2.5). The %RSDs for all trace elements were less than 7% with most 

being less than 5%. 

Table  2.5:  Percentage recoveries and statistical summary of the trace elements in marine 

sediment (SRM-2702, NIST, mg kg
-1

) 

Standard Reference Material of Marine Sediment (SRM-2702, NIST), n=10 

Analyte Certified SRM 

values  

 

Measured 

SRM values 

ork  

 

Mean % 

Recovery  

Std dev %RSD 95% C.I. 

Arsenic 45.3 ± 1.8  45.4 ± 2.2 100.3% 4.9% 4.9% 3.0% 

Cadmium 0.817 ± 0.011  0.874 ± 0.044 106.9% 5.4% 5.0% 3.3% 

Copper 117.7 ± 5.6  106.1 ± 5.4 90.1% 4.4% 4.9% 2.7% 

Iron* 7.91 ± 0.24 % 7.30 ± 0.19 % 92.3% 3.3% 3.6% 2.1% 

Lead 132.8 ± 1.1  121.9 ± 5.8 91.8% 4.4% 4.8% 2.7% 

Mercury 0.4474 ± 0.0069  0.4070 ± 0.0275 91.0% 6.2% 6.8% 3.8% 

Zinc 485.3 ± 4.2  442.7 ± 21.8 91.2% 5.5% 6.0% 3.4% 

*Certified value of iron in the SRM-2702 was provided in % weight. 

2.4.3.2  MARINE BIOTA 

Two hundred milligrams of the homogenised mussel standard reference 

material (SRM-2976, EVISA), fish protein (DORM-3), bovine liver (SRM 1557c, 

NIST) or tomato leaves (SRM 1573a, EVISA) were digested in duplicate along with 

acid blanks. These samples were digested in 1 mL of concentrated nitric acid 

(ultrapure, 70%) and 0.2 mL of concentrated hydrochloric acid (ultrapure, 24%) at 

85°C for 1 hour under continuous refluxing. The samples were left for at least one 

hour after addition of the acids, before placing them on the hotplate. As for marine 

sediments, hydrochloric acid was used to retain any mercury species in the samples 

(Louie et al. 2012). Samples were cooled by leaving them overnight at room 
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temperature in a fume hood and then were made up to 20 mL by adding Milli-Q water 

and mixed gently. Each sample was then diluted five times (1 mL of digest plus 4 mL 

of the diluting acid (same acid mixture as sediment)), and analysed for arsenic, 

cadmium, copper, iron, mercury, lead and zinc by ICP-MS. 

The percentage recoveries of all trace elements in the standard reference 

mussel and fish protein were over 90% (except lead in DORM-3, which was 34%). 

Percentage recoveries in bovine liver were over 90% for all elements. For tomato 

leaves all elements were over 90%, with the exception of arsenic and mercury. 

Arsenic and mercury were <LOQ in the tomato leaves. To determine the reliability 

and reproducibility of the acid digestion method for biota, more sets of these standard 

reference materials were digested (as described above) in duplicate with acid blanks 

on different days. The percentage recoveries of the trace elements in standard 

reference mussel and fish protein are presented in Table 2.6, and that of bovine liver 

and tomato leaves are presented in Table 2.7. 

The percentage recoveries of the trace elements in the certified reference 

mussel tissue (SRM-2976) were greater than 90% in all the runs for all elements with 

the exception of mercury (Table 2.6). Although the mean percentage recovery of 

mercury in SRM mussel (n = 19) was 93%, it ranged between 80 to 114% in different 

analytical runs. The %RSDs for all elements were below 10%, except for mercury 

which was 13.9%. 

The mean percentage recovery of the trace elements in the certified reference 

fish protein (DORM-3) was above 94% for all elements except lead, which ranged 

between 32-42% (Table 2.6). It was observed that there were oily solid residues in the 

digests of DORM-3, which may have been resistant to the digestion method 

employed. Initially it was thought that the lead may be bound in these solid residues. 

Therefore digestion was carried out including hydrogen peroxide (30% analytical 

grade). This method achieved complete digestion of all solid materials in the sample, 

leaving a clear digest solution. However, the analytical result for lead recovery 

remained similar (39.7%). To determine if there were any matrix interferences, 

duplicate samples were digested using the normal digestion method after dry DORM-

3 samples (duplicate) were spiked with mixed trace elements (20 μL of 10,000 ppb 

stock solution). The recovery for the spiked lead was 110% (with only a 5% 
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difference in the duplicate samples) indicating that the low recovery of lead in the 

DORM-3 fish protein was unlikely to be due to a matrix effect. The digests were also 

diluted 2, 5 and 10 times and analysed for any enhanced recovery. All dilutions 

resulted in 33-38% recovery. Problems with trace element recovery and complete 

digestion of DORM-3 reference material have been previously reported (Ashoka et al. 

2009). Undigested dry DORM-3 samples were then sent to a commercial analytical 

laboratory (Hills Laboratory, Hamilton, NZ) to validate the results, and these analyses 

determined similar recoveries to those found in the current study, indicating that the 

DORM-3 is not a suitable reference material for lead analysis.  The %RSD‘s for all 

the elements analysed, including lead, were below 10% for the DORM-3 samples. 

The average percentage recovery of the trace elements in the bovine liver 

standard reference material (SRM 1577c) were over 93% for all trace elements except 

for arsenic (Table 2.7), which was <LOD. The %RSDs for all trace elements except 

lead (11%) were below 10%. 

The average percentage recovery of trace elements in the tomato leaves 

standard reference material (SRM 1573a) was above 91% for cadmium, copper, iron 

and zinc (Table 2.7). Arsenic and mercury were <LOQ in the standard reference 

tomato leaves samples. The certified value for lead in tomato leaves (SRM 1573a) 

was not provided. The spiked (20 µg L
-1

) recovery of arsenic in 5-times and 10-times 

diluted samples resulted in slightly higher (125-130%) recovery than the normally 

accepted range (80 -120%).  The low level spiked recovery of mercury (0.24 µg L
-1

) 

in the sample solution was 103% while the spiked (2 µg L
-1

) recovery for lead was 

91%, indicating that the arsenic, mercury and lead can be analysed accurately with 

this method.  The %RSDs for all elements were below 8%. 
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        Table  2.6:  Percentage recoveries and statistical summary of trace elements in mussel tissue and fish protein standard reference material 

Trace elements SRM certified values  

 

SRM values of this work 

 

Mean % Recovery  Std dev %RSD 95% C.I. 

Mussel Standard Reference Material  (SRM-2976, EVISA, mg kg
-1

) n = 19 

Arsenic 13.3 ± 1.8 

 

15.33 ± 0.7 115.2% 4.8% 4.2% 2.2% 

Cadmium 0.82 ± 0.16 

 

0.87 ± 0.04 105.5% 4.8% 4.5% 2.1% 

Copper 4.02 ± 0.33 

 

3.72 ± 0.16 92.5% 4.1% 4.4% 1.8% 

Iron 171 ± 4.9 

 

170 ± 9.7 99.5% 5.6% 5.7% 2.5% 

Lead 1.19 ± 0.18 

 

1.20 ± 0.12 100.9% 9.9% 9.8% 4.4% 

Mercury 0.061 ± 0.004 

 

0.057 ± 0.008 93. 5% 12.9% 13.9% 5.8% 

Zinc 137 ± 13 

 

139.57 ± 6.57 101.9% 4.8% 4.7% 2.2% 

Fish Protein Standard Reference Material (DORM-3, mg kg
-1

), n = 10 

Arsenic 6.88 ± 0.3 6.77 ± 0.3 97.1% 4.2% 4.3% 2.6% 

Cadmium 0.290 ± 0.02 0.288 ± 0.01 103.0% 5.6% 5.4% 3.5% 

Copper 15.5 ± 0.63 14.2 ± 0.69 90.6% 3.4% 3.7% 2.1% 

Iron 347 ± 20 325 ± 13 95.4% 3.9% 4.1% 2.4% 

lead 0.395 ± 0.05 0.140 ± 0.01 36.5% 3.0% 8.1% 1.8% 

Mercury 0.38 ± 0.060 0.37 ± 0.020 93.8% 7.5% 8.0% 4.7% 

Zinc 51.3 ± 3.1 48.1 ± 1.6 98.8% 9.5% 9.6% 5.9% 

n – number of replicates, Std dev – standard deviation, %RSD – percentage relative standard deviation, 95%C.I. – 95 percent confidence interval.
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Table  2.7:  Percentage recoveries and statistical summary of trace elements in bovine liver and tomato leaves standard reference materials 

Trace elements SRM certified values Measured SRM values Mean % recovery Std dev %RSD 95% C.I. 

Bovine Liver Standard Reference Material (SRM 1557c, NIST, mg kg
-1

), n = 10 

Arsenic 0.0196 ± 0.0014 <LOQ - - - - 

Cadmium 0.097 ± 0.0014 0.102 ± 0.0070 105.5% 7.2% 6.8% 4.5% 

Copper 275.2 ± 4.6 256.3 ± 18.9 93.1% 6.9% 7.4% 4.3% 

Iron 197.94 ± 0.65 205.36 ± 18.01 103.9% 9.2% 8.8% 5.7% 

Lead 0.0628 ± 0.001 0.0583 ± 0.0065 93.0% 10.3% 11.03% 6.4% 

Mercury 0.00536 ± 0.00017 0.00536 ± 0.00053 99.9% 9.9% 9.9% 6.1% 

Zinc 181.1 ± 1.0 182.4 ± 14.7 100.7% 8.1% 8.0% 5.0% 

Tomato leaves Standard Reference Material (SRM 1573a, EVISA, mg kg
-1

) n = 6 

Arsenic 0.112 ± 0.004 <LOQ 

30.9±0.7 

 

- - - - 

Cadmium 1.52 ± 0.04 1.39 ± 0.10 91.1% 6.8% 7.4% 5.4% 

Copper 4.70 ± 0.14 4.62 ± 0.21 98.3% 4.5% 4.5% 3.6% 

Iron 368 ± 7 345 ± 17 93.6% 4.8% 5.1% 3.8% 

Lead NP 0.38 ± 0.19 - - - - 

Mercury 0.034 ± 0.004 ND - - - - 

Zinc 30.9 ± .7 29.3 ± 1.5 94.9% 4.7% 5.0% 3.8% 

NP- certified value not provided, ND- not detected, n – number of replicates, Std dev – standard deviation, %RSD – percentage relative standard deviation, 95%C.I. – 95 

percent confidence interval. 
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2.4.4 DETERMINATION OF LOD AND LOQ IN SEDIMENT AND BIOTA 

Instrument limits of detection (LOD) for sediments and biota were  

determined (Table 2.8) as described by the USEPA (USEPA 2005). Although LOD 

was calculated in a similar manner to seawater (three times the standard deviation of 

the blanks), the LOQ was determined slightly differently. The LOQ was calculated by 

taking into account the weight of the sample that was digested and the dilution factors 

for the analysis by ICP-MS.  

The statistically-derived LOD‘s were lower than the actual solution 

concentrations that could routinely be achieved in natural samples (with the exception 

of zinc in biota). Therefore, higher practical LOD‘s were estimated and applied. 

These detection limits were estimated by checking the quantitative recoveries of low 

concentration elements in certified reference materials, percentage recoveries of low 

concentration elements in spiked analyses, percentage differences in duplicate 

samples, and the reproducibility of the reading of the lowest standard used in 

analytical runs. The effective LOQ‘s were obtained using the estimated and applied 

practical LOQ and the dilution factor. 
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   Table  2.8: Detection and quantitation limits for ICP-MS and AAS for trace elements in sediment 

Analyte Calculated ICP-MS LOD 

for sediment (µg L
-1

) 

Estimated and applied 

practical LOQ for 

sediment (µg L
-1

) 

Effective LOQ for 

sediment (µg g
-1

) 

Arsenic 0.480 1.00 0.42 

Cadmium 0.002 0.05 0.02 

Copper 0.070 0.1 0.04 

Iron*  60.00 80.00 33.6  

Lead 0.050 0.15 0.04 

Mercury 0.005 0.20 0.08 

Zinc 1.080 2.50 1.05 

 LOD – limit of detection, LOQ- limit of quantification. *Sediment iron analysis by AAS instrument 

Table 2.9: Detection and quantitation limits for ICP-MS analysis of trace metals in biota 

Analyte Calculated ICP-MS 

detection limits     

(µg L
-1

) 

Estimated and applied 

practical quantitation 

limit (µg L
-1

) 

Effective quantitation 

limit for biota*          

(µg g dry wt
-1

) 

Effective quantitation 

limit for algae            

(µg g dry wt
-1

) 

Effective quantitation 

limit for fish tissue        

(µg g dry wt
-1

) 

Arsenic 0.200 1.00 0.500 1.000 0.20 

Cadmium 0.005 0.05 0.025 0.500 0.01 

Copper 0.040 0.10 0.050 0.025 0.02 

Iron 1.950 10.00 5.000 0.050 2.00 

Lead 0.020 0.10 0.050 5.000 0.02 

Mercury 0.040 0.20 0.100 0.050 0.04 

Zinc 1.400 1.00 0.500 0.100 0.20 

*‖biota‖- fish tissue, whole tissue of green mussel, crab muscle and whole body marine worm
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2.5 SAMPLE ANALYSES 

2.5.1 TRACE ELEMENT ANALYSIS BY ICP-MS 

Trace element analysis of the seawater extract and diluted acid digest 

(sediment and biota) for arsenic (
75

As), cadmium (
111

Cd), copper (
63

Cu), iron (
57

Fe), 

mercury (
201

Hg), lead (sum of 
206

 Pb, 
207

Pb and 
208

Pb) and zinc (
66

Zn) was carried out 

using an Agilent 7500cx ICP-MS instrument. The sole exception was iron in 

sediment, which was analysed by AAS (see Section 2.5.2). The working range of the 

ICP-MS instrument was from 0 to 1000 μg L
-1

. The instrument was calibrated using 

trace element standards of 0, 0.1, 1, 10, 100 and 1000 μg L
-1

, with the acceptable 

calibration curve R
2
 value being >0.999. The standards were prepared by volumetric 

dilution of a 10,000 µg L
-1

 mixed metal stock solution (Al, As, Cd, Co, Cr, Cu, Fe, 

Mn, Ni, Pb, and Zn) and a single element mercury stock standard (10,000 µg L
-1

), 

with the same acid mixture used for the dilution of sediments and biota, to match the 

matrix of the sample and the standards. Concentrations of mixed elements were 

sometimes different from the concentrations of mercury in the same standard to 

prevent contaminating the apparatus with high levels of mercury, and thus ensure 

good and reliable washout in a reasonable timeframe. The concentrations of mercury 

and concentrations of mixed elements in the 0, 0.1 and 1 μg L
-1

 standards were the 

same, while the 10, 100 and 1000 μg L
-1

 mixed element standards contained 2, 5 and 

10 µg L
-1

 of mercury respectively. 

Table 2.10: Operating parameters for the ICP-MS 

RF power (W) 1560 

Sample depth (mm) 9.2 

Carrier gas (L min
-1

) 0.8 

Make up gas (L min
-1

) 0.2 

Peristaltic pump (RPS) 0.1 

Spray chamber  (
 
°C) 2 

Helium flow  (mL min
-1

) 4.5 

 

A standard reference material of water (SRM 1643e) was run daily to check 

the calibration. Standards were analysed every 20 samples at 0, 2 and 20 μg L
-1

 to 

check for instrument drift, and an internal standard 
103

Rh (rhodium) was added on-line 
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to account for drift. The check standards of mixed elements at 0, 2 and 20 μg L
-1

 

contained 0, 0.2 and 2 μg L
-1

 of mercury respectively. The ICP-MS was run in 

collision mode using He to remove polyatomic interferences formed in the plasma and 

was tuned daily using a tuning solution of 1 μg L
-1

 cerium (Ce), cobalt (Co), yttrium 

(Y), lithium (Li) and thallium (Tl). The ICP-MS instrument operating parameters are 

provided in Table 2.10. 

2.5.2 IRON ANALYSIS BY AAS 

Iron was analysed by flame AAS (Varian SpectrAAS220FS), using an 

air/acetylene flame, and absorbance with concentration as the calibration mode. The 

wavelength was 248.3 nm with a slit width of 0.2 nm. Six calibration standards (0, 10, 

25, 50 75 and 100 mg L
-1

) were freshly prepared by volumetric dilution of a single 

element iron stock solution (1000 mg L
-1

) with 2% nitric acid. The R
2
 of the 

calibration graphs was always greater than 0.9948 (0.9948 <R
2
 > 0.9981). The 

instrument was always re-calibrated after 30 samples. Samples analysed by AAS were 

diluted by a factor of 21 using 2% HNO3, and those which gave results outside of the 

calibration range were diluted by a factor of 51 and reanalysed. 

 





49 

 
 

 
 

 

 

 

 

 

 

 

CHAPTER 3 

 

THE SEA-FILL OF THILAFUSHI 

ISLAND OF THE MALDIVES: 

ENVIRONMENTAL 

CHARACTERISATION AND RISK 

ASSESSMENT FOR CONSUMPTION 

OF LOCALLY-SOURCED SEAFOOD 

 

 

3.1 INTRODUCTION 

Sea-fills and coastal landfill activities are potential sources of trace elements 

(Denton et al. 2001; Jones 2010; Kjeldsen et al. 2002), and monitoring of trace 

element concentrations in various matrices around sea-fills is important to determine 

the toxic effects that these elements may have on the aquatic biota and seafood 

consumers. Seafood consumption has been reported as a significant exposure route for 

humans to toxic trace elements including arsenic, mercury, cadmium and lead (Agusa 

et al. 2007; Borak & Hosgood 2007; Falconer et al. 1983; Han et al. 1998; Meador et 
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al. 2004; Olmedo et al. 2013; Phillips et al. 1982; Wang et al. 2013; Ysart et al. 2000). 

Limits for trace element levels in food standards are set to minimise health impacts 

due to the intake of contaminated foods (WHO 2000,2007,2010a,b). 

Although there has been extensive research monitoring trace elements in the 

environment in various parts of the world, few studies have been carried out in the 

developing world, where most of the contamination occurs (Li et al. 2009; Pacyna & 

Pacyna 2001). One potentially contaminated site in the Maldives is an artificial island 

(Thilafushi Island) that was created in a lagoon through accumulation of solid wastes. 

Leaching of trace elements from Thilafushi Island into the lagoon and the surrounding 

marine environment could be a potential health hazard as local people consume fish 

and other seafood harvested from the lagoon and the surrounding sea. 

Fish is an important source of protein and a significant component of diets in 

some parts of the world (Agusa et al. 2007; Kawarazuka & Béné 2011; Olmedo et al. 

2013; Wang et al. 2013; Yilmaz 2003) including Maldives. Maldivians depend 

heavily on fish, with this source contributing approximately 88% of total protein 

intake (Golder et al. 2001). Maldivians are the top consumers of fish in the world, 

consuming an average of 160.3 kg of fish per capita per year (Harrison & Pearce 

2000), making them more reliant on fish than any other surveyed countries 

(Kawarazuka & Béné 2011). 

Local people of the Maldives consume both deep water and reef fish. Some 

commonly consumed reef fish include snapper (Lutjanidae), grouper (Serranidae), 

jack (Carangidae), bigeye scad (Selar crumenophthalamus), surgeon fish 

(Acanthuridae), wrasse (Labridae), mullet (Mugilidae), goatfish (Mullidae), as well as 

a variety of different species of ―bait‖ fish (Adam 1995; Kawarazuka & Béné 2011). 

Other reef organisms consumed, but to a lesser extent, include lobster, octopus, crab, 

squid and shellfish. Commonly consumed deep water fish include different species of 

tuna and swordfish (Kawarazuka & Béné 2011). Fish organs including liver and 

gonad are considered to be delicacies in the Maldives (Bluepeace 2008). 

Data on trace element concentrations in the Maldivian food chain are 

nonexistent. However, baseline data are available on trace element levels in marine 

sediments from Thilafushi Island via an environment impact assessment (EIA) report 



51 

 
 

prepared for a solid waste management facility at Thilafushi Island (CDE Consulting 

2011). Therefore, a multifaceted study was designed and carried out to address current 

levels of trace elements associated with the sea fill, and to measure for the first time, 

levels of trace elements in seafood. Seawater, marine sediment and selected marine 

biota were collected around the sea-fill of Thilafushi Island and a reference site 

(Huruelhi Island) in the Maldives for trace element analysis. The trace elements of 

interest in this study were arsenic, cadmium, copper, iron, mercury, lead and zinc, 

because they are known to be present in the solid waste fill leachates and can pose 

significant threat to the surrounding environment and humans (Jones 2010; Kjeldsen 

et al. 2002; Maata & Singh 2008). This study was particularly focused on arsenic, 

cadmium, mercury and lead because they are non-essential elements, known to cause 

toxic effects at low concentrations. 

The specific objectives of the present study were to: 

 Characterise trace element concentrations in seawater and marine sediment 

from the vicinity of the Thilafushi Island sea-fill site, and a reference site 

(Huruelhi Island) 

 Produce baseline data for trace elements in marine biota from the Maldives 

 Perform a risk assessment for consumption of fish harvested from the vicinity 

of Thilafushi Island 

 

3.2 MATERIALS AND METHODS 

The laboratory experimental methods used to extract trace elements from 

seawater, marine sediments and biota, and their preparation for chemical analysis, are 

provided in Chapter 2. 

3.2.1 STUDY SITE 

The Maldives is an archipelago of 1,190 coral islands, divided into 26 atolls 

for administrative purposes. These islands are spread over an area of approximately 

750 km from north to south and 120 km from east to west (Peterson 2013; van den 
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Akker & Saleem 2007). 

Thilafushi Island (Figure 3.1) was developed during the 1990‘s to solve the 

waste disposal issues of the capital city, Male‘, and the reclamation work with MSW 

began in 1992 (Goverment of Maldives 2008; Government of Maldives 2010; 

Peterson 2013). Thilafushi Island is now the main waste disposal site for Male‘ and 

surrounding islands, including several tourist resorts (Goverment of Maldives 2008; 

Government of Maldives 2010; Peterson 2013; UNEP 2005a). It is estimated that 

more than 860 tons of wastes are generated every day around the Maldives (Peterson 

2013), of which more than 400 tons per day are brought to Thilafushi Island for 

disposal (IFC 2009). 

 

 

Figure 3.1: Thilafushi Island and surrounding lagoon at the start of this project (2011).  

Map adapted from Google Earth 

 

During the early years of waste disposal operations, cells with size of 

approximately 1060 m
3
 were dug on the fringing coral reef and sand obtained from 

the excavation was used to construct walled enclosures around the internal perimeter 

of the cells. Stockpiled waste was used to fill the pits, which were topped off with a 

layer of construction debris, and then uniformly leveled with excavated white sand 

(personal observation). The reclamation process did not involve any lining of the 

Inner lagoon 
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seabed or creation of silt curtains adjacent to the MSW fill site to mitigate leaching of 

materials into the surrounding environment. 

The Maldives government started leasing the reclaimed land for entrepreneurs 

interested in acquiring land for industrial purposes in 1997 (CDE Consulting 2011; 

Peterson 2013). The current major industrial activities on the island are boat building, 

cement packing, methane gas bottling and various large scale warehousing (CDE 

Consulting 2011). On-site open air burning and burning of stockpiled solid waste 

using incinerators has been introduced recently (Peterson 2013). 

3.2.1.1  PHYSICAL ENVIRONMENTAL CONDITIONS 

The seawater in the inner lagoon of Thilafushi showed visible signs of 

pollution at the time of sample collection. The inner lagoon was turbid and dirty green 

in colour unlike other lagoons in the Maldives which are typically clear and turquoise 

in colour. This discolouration could be due to leachate directly running off from the 

adjacent waste dump into the lagoon. The reef areas directly open to the deep ocean 

were more clear (similar to other lagoons in the Maldives), most likely due to the 

dilution of leachate by the open sea. The inner lagoon (Figure 3.1) is a semi-enclosed 

system covered by the reclaimed land, and the surrounding shallow water reef flats 

can restrict direct dilution of contaminants seeping into the inner lagoon. 

The inner lagoon of Thilafushi Island is a low energy environment (CDE 

Consulting 2011). The sea current at both high and low tides in the inner lagoon flows 

mainly from south to north with an average speed of 0.02 - 0.3 m/s (CDE Consulting 

2011). The highest observed sea current was on the reef flat immediately after the 

breaker zone near the sand reclaimed area (Figure 3.2A) at an average speed of 1.15 

m/s (CDE Consulting 2011). The reference site is an uninhabited small island 

(Huruelhi Island) in Ari Atoll, south of Male‘ Atoll, with a similar natural geological 

and physicochemical environment to Thilafushi Island. 

Seawater and marine sediments were collected along four transect lines (T1-3 

on Thilafushi Island, T4 on Huruelhi Island). Transect line T1 passed through the 

inner lagoon starting from approximately 2 m from the shoreline (Figure 3.2A). The 

surrounding land was the first MSW-reclaimed area. The adjacent areas (shown in 

Figure 3.2A) are still being used for dumping wastes and open burning of MSW 
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(observed during field sample collection). The inner lagoon is also extensively used 

by ships and boats as a sheltered location for anchorage for various purposes 

including repair and maintenance works. Wastes from the repair works are also 

continuously being released directly into the inner lagoon (observed during the field 

sampling). Loading and unloading of commercial goods from boats and ships was 

being carried out adjacent to the land of the inner lagoon at the time of sampling. 

 

 

 

Figure 3.2: Transect lines and sample collection points on Thilafushi Island (A). Transect lines 

and sample collection points on Huruelhi Island (B). 

Map adapted from Google Earth 

 

Transect line T2 was adjacent to the sand-only reclaimed area (Figure 3.2A). 

The sand used for reclamation at the T2 site was dredged from the west end of the 

Current MSW dumping sites 

Reclaimed  sand 

Boat yard 
A 

B 
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inner lagoon. Therefore, transect line T2 was not directly connected to the MSW 

disposal sites. Transect line T3 passed through the reef towards the open sea at the 

boat yard (Figure 3.2A). The adjacent land to T3 was part of the initial reclaimed area.  

However, there are still some waste disposal sites (towards the west) at a close 

proximity to transect line T3. Wastes from boat repair and maintenance work are 

directly released into the adjacent sea. Transect line T4 (Huruelhi Island; Figure 3.2B) 

was relatively free of any human activities, except snorkeling by tourists from nearby 

resorts and some recreational reef fishing activities by local islanders. 

3.2.1.2  SOURCES OF TRACE ELEMENTS IN MSW 

The solid wastes disposed of at Thilafushi Island include domestic and 

industrial waste of organic and inorganic nature, and includes a wide range of wastes 

from small tins to whole cars (Khaleel & Saeed 1997). The solid wastes are mixed 

with all types of metals, e-waste and other potentially hazardous chemicals including 

hospital wastes, lead acid batteries, ceramics, light bulbs, house dust, paint chips, lead 

foils, used motor oils, plastics, inks and glass (UNEP 2005b). These wastes can 

contribute trace elements such as iron, copper, arsenic, cadmium, mercury, and lead to 

the surrounding environment (Ettler et al. 2008; Whittle & Dyson 2002). 

3.2.2 SAMPLE COLLECTION AND PREPARTION 

All samples for this study were collected in September, 2012. Seawater and 

marine sediments were collected from the same GPS locations along the three transect 

lines T1, T2, and T3 around Thilafushi Island (Figure 3.2A) and one transect line (T4) 

in the reference site (Huruelhi Island) (Figure 3.2B). The distances from the shoreline 

to each sampling site within each transect were 2 m, 20 m, 80 m, 160 m and 400 m. 

Seawater was collected before sediment samples to avoid any contamination in the 

seawater due to sediment collection work. 

3.2.2.1  ENVIRONMENT CHARACTERISATION SAMPLES 

3.2.2.1.1 SEAWATER 

Surface seawater samples (50 mL) were collected as one-off samples at low 

tide. One field blank (50 mL Milli-Q water) for each transect line was included. 



56   
 

 
 

Triplicate seawater samples (one sample for pH recording, two for trace element 

analysis) were collected by an acid-cleaned plastic jug tied on an untreated wooden 

pole of 1.5 meters long. The GPS coordinates of the sampling sites were recorded 

(Appendix A1). The pH values of the seawater samples were recorded immediately 

upon collection (Appendix A1). The seawater samples for trace element analysis were 

placed on ice until transported to the laboratory (Maldives Food and Drug Authority - 

MFDA), where they were kept at 4°C until couriered (within a week of collection) to 

New Zealand on ice. All seawater samples were acidified to pH ≤ 2, with ultrapure 

nitric acid and stored at 4°C upon arrival at the University of Canterbury, New 

Zealand. 

3.2.2.1.2 MARINE SEDIMENT 

Marine sediments were collected by divers using acid-cleaned plastic jars. The 

sediment samples were placed on ice until transported to the laboratory (MFDA) and 

dried in an oven at 30°C in aluminum trays until constant weight (7 - 10 days). Other 

steps involved in sample preparation, digestion and analysis were described in 

Chapter 2. 

3.2.2.2  MARINE BIOTA  

Four different groups of biota were collected around the sea-fill and reference 

sites. They were green algae, a marine worm (Sipunculus indicus), a shellfish 

(penguin wing oysters, Pteria penguin), and two species of fish (parrotfish, Scarus 

ventula; red mullet or Indian goatfish, Parupeneus indicus). An attempt was made to 

collect crabs, but only one animal was able to be obtained at the sea-fill site. 

The selected fish species have a restricted home range, are endemic to 

Maldives coastal waters, and easy to catch. They are suitable biomonitoring species as 

their accumulated trace element levels are likely to reflect the area from which they 

are caught (Phillips 1977; Rainbow 1995). Additionally, these species of fish are 

consumed by Maldivians, and trace element data are therefore relevant for risk 

assessment for consumption of fish. Red mullet and parrotfish (Figures 3.3A and 3.3B 

respectively) were collected from the study sites by set nets. Fish were euthanised 

according to the University of Canterbury Animal Ethics approval, by immersing 

them into a solution prepared in a clean bucket with 2-phenoxyethanol and seawater 
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(approximately 0.5 to 1 mL of 2-phenoxyethanol per litre of seawater, ~0.3-0.6 mg L
-

1
). The spinal cord was then severed to ensure euthanasia, fish were rinsed with fresh 

seawater, and placed in plastic snap-lock bags on ice until transported to the 

laboratory (Figure 3.3). 

A sentinel bivalve species was selected as these are suspension feeders that 

take trace elements directly from the dissolved phase and also suspended particles 

during filter feeding (Rainbow 1995). Tissue burdens of bivalves are known to reflect 

environmental contamination levels (Amiard-Triquet et al. 1992b; Kennedy 1986; 

Peake et al. 2006; Rainbow 1995; Reinfelder et al. 1998). Since shellfish were not 

readily available in the accessible area of Thilafushi sea-fill site, penguin wing oysters 

(Pteria penguin) were collected at the far end of Thilafulhu lagoon, as it was the only 

species of bivalve that was found in common to the sea-fill and the reference site. 

Locating any site with shellfish was difficult, possibly due to the contaminated and 

highly disturbed environment. The penguin wing oysters (Figure 3.4C) were collected 

by divers from black corals. 

A marine worm was selected as these organisms take in trace elements 

predominantly from ingestion of sediment-bound materials (Fauchald & Jumars 1979; 

Meador et al. 2004; Rainbow et al. 2006a,b), and trace element burdens in marine 

worms can directly correlate with the concentrations in the sediment (Meador et al. 

2004; Phillips 1990). Peanut worms (Sipunculidae) were the only species that were 

reasonably available, common to both the sampling sites, and easy to collect. Marine 

worms (Figure 3.4B) were collected by divers by finger raking in the lagoon sand. 

These worms were sand filled; therefore, the sand was squeezed out immediately after 

capture, before wet weights were recorded. 

Green algae were selected as a primary producer. The principle mechanism of 

nutrient and trace element uptake by the algae is via physicochemical adsorption to 

the surface (Macfie & Welbourn 2000; Robinson et al. 2006). Green algae were 

collected by scraping from rocky concrete-like hard materials at the shore line of 

Thilafushi Island (Figure 3.4A). The green algae were scarce at Huruelhi Island and 

were only present on the dead coral pieces in the shallow area near the shoreline. The 

wet weights of the algae samples were recorded, and algae were then oven dried at 

50°C until constant weight (5 - 7 days) at MFDA laboratory, and kept at -20°C in acid 
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cleaned plastic vials until transported to the University of Canterbury. There the 

samples were freeze-dried to remove any moisture that may have been absorbed in the 

handling process. 

 

Figure 3.3: Goatfish (Parupeneus indicus) (A), and Parrotfish (Scarus ventula) (B) 

 

The whole body weights of shellfish and their shell lengths were recorded 

before all soft tissues were dissected and collected for analysis. The fork lengths and 

whole body weights of fish were also recorded before dissection. Fish muscle, liver, 

gonad and kidney were collected. The wet weights of all samples were recorded and 

tissues were stored in acid-cleaned plastic vials at -20
o
C in the MFDA laboratory, and 

transported to New Zealand on dry ice. These samples were kept at -20
o
C in a 

containment laboratory at the University of Canterbury until analysis. Detailed 

description of digestion and analysis of biota is provided in Chapter 2. Appendix A2 

provides an overview of the biota samples and their physical dimensions. 

 

Figure 3.4: Green algae (A), Sipunculus indicus (B), Pteria penguin (C) 

 

3.2.2.3  METAL POLLUTION INDEX (MPI)  

The metal pollution index (MPI) was calculated and used to compare trace 

element contents at the sea-fill and reference site using the trace element 

A B C 

A B 
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concentrations in seawater and marine sediment. The MPI values were calculated 

using Equation 3.1 (Usero et al. 2005)  

                 
       Equation 3.1 

where Cf is the concentration of the trace element (dry weight), and n is the number 

of trace elements analysed. 

3.2.2.4  RISK ASSESMENT FOR CONSUMPTION OF SEAFOOD 

Exposure scenarios were created as anthropometric data for different age 

groups of Maldivians are not readily available, and no diet survey has been carried out 

for any food, including fish. In this regard, the weekly intake of contaminants per 

kilogram of body weight was calculated for a male adult (65 kg), female adult of 

child-bearing age (49 kg), child (30 kg) and toddler (13 kg) (Golder et al. 2001). The 

three different fish consumption rates chosen were the FAO value of 420 g per day 

(FAO 1999), a diet based on reports that Maldivian women and children consume fish 

(mainly tuna) at a rate of 80 g per day (Golder et al. 2001) and an intermediate 

consumption rate of 250 g of fish per day. The consumption rate chosen for toddlers 

was 80 g per day, assuming that toddlers would not consume as much fish as adults 

and children. The trace element concentrations of red mullet from Thilafushi Island 

were used in the risk assessment calculations, as this fish species contained the 

highest concentrations of trace elements in the muscle of the two fish species 

analysed. 

Trace element exposures were estimated for the toxic elements arsenic, 

cadmium, mercury and lead. The World Health Organization (WHO) and the United 

States Food and Drug Administration (USFDA) assume that less than 10% of the total 

arsenic in fish and shellfish is present as inorganic arsenic (WHO 2010a). These 

values are consistent with the literature values for proportion of total arsenic (Gagnon 

et al. 2004). For example, the inorganic arsenic content in fish and shellfish ranged 

from 2% to 7% of total arsenic (Muñoz et al. 2000), and Gagnon et al. (2004) reported 

a mean of 8.2% inorganic arsenic in shellfish. For total mercury, 100% was assumed 

to be methylmercury (MeHg) as methylmercury is the predominant form of mercury 

in fish (93-99.9%) (Hight & Cheng 2006; Olmedo et al. 2013). 
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The trace element exposure doses were calculated using U.S. Environmental 

Protection Agency (USEPA) guidelines that were used to generate advisories for risk 

assessment and fish consumption limits (USEPA 2000). The weekly intake of the 

trace elements was calculated using Equation 3.2, where EWI is the estimated weekly 

intake of trace elements (µg/kg BW/week), MI is the fish consumption rate per person 

per week (g/person/week), MC is the concentration of trace elements in the edible 

tissue (µg g wet wt
-1

), BW is the body weight of the consumer (kg). 

 

    
     

  
  Equation 3.2 

 

Scenario 1 was based on two different contaminant concentrations (mean and 

95
th

 percentile) of fish muscle by all four body weight (BW) categories for the three 

fish consumption rates. Scenario 2 was based on the consumption of fish muscle and 

fish organs (liver and gonad), because fish organs are considered as delicacies in the 

Maldives. It was assumed that an average Maldivian consumes fish organs, mainly 

gonad and liver, at least once a week along with fish muscle. The mean concentrations 

of muscle and organs were considered at the medium fish consumption rate for the 

male, female and the child, but the lowest consumption rate for the toddler, assuming 

that toddlers do not consume as much fish as the other BW groups. The average wet 

weight of liver and gonad were used in the trace element intake calculations. 

Scenario 3 was based on the consumption of fish muscle, fish organs (liver 

and gonad), and shellfish, although shellfish is not a very commonly consumed 

seafood in the Maldives. Inclusion of shellfish would represent a worst case scenario 

for contaminant intake levels. Scenario 3 assumed at least one shellfish (average size 

of shellfish in this study) is consumed per week along with the fish muscle and organs 

(as in Scenario 2) by each category of consumer with the exception of toddlers. The 

mean concentrations of trace elements in all species/tissues were used for the EWI 

calculations with the medium fish consumption rate. 

3.2.2.5  STATISTICAL ANALYSIS  

All statistical analyses were carried out in R
©

 (Version 2.15.3). For analysis of 
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trace elements, statistics were only performed for sample sets where more than 50% 

of the samples had values above the limit of quantification (LOQ).  In conditions 

where more than 50% of the samples were above the LOQ, the remaining samples 

below LOQ were given a value of half the LOQ. All duplicate measurements were 

averaged before inclusion in the statistical analysis. 

All data were checked for normality by plotting probability plots. Where 

necessary, data were log transformed to meet assumptions of normality before 

analysis. Significant differences (p < 0.05) at the 95% confidence level for trace 

element concentrations between the sites, between the transect lines (T1 to T4) and 

with distance from shoreline (only for the sea-fills site, T1, T2 and T3) were 

determined by using two-way ANOVA  (factors being transect line and distance) 

followed by Tukeys HSD test. Significant differences between the biota species with 

respect to site, differences between organs within the same fish, and difference 

between species within the same site, were assessed by one-way ANOVA followed 

by Tukeys HSD test. Pearson‘s correlation tests were also used to analyse 

relationships between trace elements within and between the environmental matrices. 

 

3.3 RESULTS  

3.3.1 ANALYTICAL PERFORMANCE 

Details of percentage recoveries in the QA (quality assurance) samples are 

provided in Appendix A3 for each of the environmental matrix types. 

3.3.1.1  SEAWATER  

Percentage recoveries of cadmium, copper, iron, lead and zinc in certified 

reference seawater and trace element-spiked Milli-Q water, real seawater, artificial 

seawater and certified reference seawater (NASS-6) ranged from 83 to 122% (Table 

A3.1 in Appendix A3). The percentage recovery for iron ranged from 83 to 97% for 

the trace element-spiked samples. Quality assurance (QA) water samples were 

extracted in duplicate. 
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3.3.1.2  MARINE SEDIMENTS  

The percentage recoveries of trace elements in marine sediment standard 

reference materials (SRM-2702-NIST) ranged from 92 to 115%. 

3.3.1.3  BIOTA  

The percentage recoveries of all elements in the standard reference mussel and 

fish protein (DORM-3) were over 90%, with the exception of lead (34.9%) for 

DORM-3. The mean percentage recoveries of all elements in certified reference 

bovine liver were over 90.7% with the exception of lead (88.7%). Arsenic and 

mercury were below the limit of quantification. Mean percentage recovery of 

cadmium, copper, iron and zinc were over 98.5% in tomato leaves (Table A3.2 in 

Appendix A3). Arsenic and mercury concentrations in tomato leaves were below their 

respective limits of quantification, and a certified value for lead was not provided. 

3.3.2 ENVIRONMENTAL CHARACTERISATION 

The mean and range of trace element concentrations in seawater and marine 

sediments from each of the transect lines is provided in Tables 3.1 and 3.2.  Guideline 

values for seawater and marine sediments (Australian and New Zealand Environment 

and Conservation Council; ANZECC), metal pollution index (MPI) values derived for 

each transect line for each of the matrices, and comparisons of trace elements with 

similar studies are presented in Tables 3.1 and 3.2 for seawater and marine sediments 

respectively. 

3.3.2.1  TRACE ELEMENT CONCENTRATIONS IN SEAWATER 

The pH values of the seawater samples ranged from 7.5 to 8.2 and were not 

significantly different between the two sampling sites. The concentration of trace 

elements in the seawater followed the order: iron > zinc > copper > lead > cadmium 

for both sites. The variation of trace element concentrations in seawater along the 

transect lines is presented in Figure 3.5. Concentrations of all trace elements were 

significantly higher in the seawater at the sea-fill site than at the reference site. In 

general, the concentrations of trace elements at T1 and T3 were significantly higher 

than those of T2 and T4, with the exception of cadmium, where concentrations were 
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not significantly different between T1, T2 and T3. However, the cadmium 

concentrations at T1 were significantly higher than those of T4 (reference site). 

Concentrations of all trace elements at the transect line T2 (sand-reclaimed site) were 

not significantly different from those of the transect line T4. 

There were no significant differences with respect to distance from shoreline 

for any trace element at the sea-fill site when the three transect lines (T1, T2 and T3) 

were combined. However, T3 showed a clear drop-off for all trace elements with 

distance from shoreline. Pearson‘s correlation analysis of trace elements in seawater 

of Thilafushi Island indicated that all trace elements were significantly and positively 

correlated to each other, while there were no significant correlations between any 

elements in the seawater from the reference site (Table A5.1 in Appendix A5). The 

MPI values for seawater (Table 3.1) indicated that trace element contamination was 

highest at the site of transect line T3 (adjacent to the boat yard), followed by T1 (inner 

lagoon) and T2 (sand reclaimed site). The MPI value was lowest at the reference site 

(T4). 

3.3.2.2  TRACE ELEMENT CONCENTRATIONS IN MARINE 

SEDIMENTS 

Mercury was <LOQ for all the marine sediment samples. Figure 3.6 presents 

patterns of individual trace elements in marine sediments as a function of distance 

from the shoreline. Arsenic and cadmium concentrations at T1 were significantly 

higher than those of T2, T3 and T4. However, overall comparisons of Thilafushi 

sediment samples to Huruelhi samples indicated that there were no significant 

differences for arsenic and cadmium levels between the two sites. Transect lines T1 

and T3 contained significantly higher concentrations of copper, iron, lead and zinc 

than T2 and T4, while T1 was significantly elevated in these elements relative to T3. 

In general, all the trace elements were significantly higher at transect line T1 

(in the inner lagoon) and T3 (adjacent to the boat yard) than at T2 (adjacent to the 

sand-only reclaimed area at the sea-fill, away from the MSW dump sites) and T4 

(reference site). There were no significant differences between T2 and T4 for any 

trace element in the sediments. No trace element varied significantly with distance at 

the sea-fill site when the three transect lines were combined (T1, T2 and T3), but 
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individually the T1 and T3 transects showed a clear decrease with distance from the 

shoreline. 

Correlation analysis of trace elements in marine sediments of Thilafushi Island 

indicated that all trace elements were significantly and positively correlated to each 

other, while only copper and cadmium were significantly positively correlated  in the 

sediments at the reference site (Table A5.2, Appendix A5).  There were no significant 

correlations between seawater trace elements and marine sediment trace elements 

(Table A5.3, Appendix A5).  The highest MPI value for the sediments (Table 3.2) was 

derived for transect line T1, followed by T3 and T4 (the reference site). The lowest 

MPI value was obtained for T2. 

 Particle size and total organic carbon (TOC) contents of the sediments were 

not determined due to restrictions on removing the samples from the PC2 laboratory. 

Therefore, the particle size and TOC data from the EIA report of Thilafushi (CDE 

Consulting 2011) were used in the discussion. 
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Figure 3.5: Trace element concentrations in seawater along the four transect lines. Transect lines sharing 

letters are not significantly different. 

 

b 

 

c 

 c 

 

a 

 



67 

 
 

    Table  3.1: Mean and range of trace element concentrations in seawater, MPI values for each transect line, ANZECC guideline values, and comparisons of trace 

element concentrations in seawater with other similar studies 

Sample / location Fe Cu Zn Cd Pb MPI 

Seawater (µg L
-1

)   

T1 26.56 (24 - 29) 1.39 (1 - 2) 4.20 (3.84 - 4.38) 0.017 (0.017 - 0.018) 0.19 (0.17 - 0.22) 0.87 

T2 10.60 (10 - 12) 0.21 (0.17- 0.31) 1.03 (0.88 - 1.18) 0.015 (0.014 - 0.019) 0.034 (0.023 - 0.060) 0.26 

T3 17.04 (10 - 31) 4.06 (0.18 - 16.37) 2.70 (1.38 - 5.26) 0.015 (0.012 - 0.019) 0.36 (0.03 - 0.85) 1.00 

T4 –reference site 10.38 (10 - 11) 0.15 (0.14 - 0.16) 0.94 (0.84 - 1.02) 0.013 (0.011 - 0.014) 0.019 (0.016 - 0.020) 0.20 

ANZECC trigger values for marine water (µg L
-1

) for level of protection of marine species (% species) 

99% protection ** 0.30 7.00 0.70 2.20   

95% protection ** 1.30 15.00 5.50 4.40 

 
90% protection ** 3.00 23.00 14.00 6.60   

80% protection ** 8.00 43.00 36.00 12.00   

Comparisons with other similar studies Reference 

Bermuda coastal 

fill <10 0.12 - 18.4 3.8 - 204 0.02 - 0.07 0.05 -1.5 (Jones 2010) 

Lyttelton Harbour / 

NZ NA <1.1  - 1.2 <4.2 - 8.8 NA <1.1  - 2.7 (Sneddon 2011)  

Lyttelton Harbour / 

NZ 44 - 699 0.30 - 1.63 0.48 -  6.10 0.009 - 0.048 0.06 - 0.84 Chapter 4 of this study 

Thilafushi Island 

(EIA report) 0.11 - 0.32 NA NA 0.07 - 0.14 0.20 - 0.44 (CDE Consulting 2011) 

Background level 2 0.25 4.9 0.11 0.03 (Haynes 2014) 

** Values not provided in the ANZECC guideline. MPI-metal pollution index. NA- trace elements not analysed. Data values in bold indicate concentrations exceeding the 

guideline value. Background levels of trace elements in seawater were obtained from CRC Handbook of Chemistry and Physics, Chapter 14  (Haynes 2014). 
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Table  3.2: Mean and range of trace elements concentrations in marine sediments, MPI values for each transect line, ANZECC guideline values and comparisons of 

trace element concentrations in the sediments with other similar studies 

Sample Fe Cu Zn As 
(total)

 Cd Pb MPI 

Marine sediment (µg g
 
dry wt

-1
) 

 
T1 3991 (741 - 13563) 58.70 (14 - 148) 128 (20 - 426) 4.70 (4 - 6) 0.23 (0.078 – 0.444) 19.52 (6 - 31) 29.29 

T2 29.10 (23 - 35) 0.15 (0.14 - 0.16) 0.36 (0.23 - 0.47) 1.85 (1 - 3) 0.048 (0.038 - 0.057) 0.23 (0.20 – 0.26) 0.56 

T3 377 (61 - 713) 14.56 (0.56 - 49) 6.25 (1 - 14) 2.19 (2 - 3) 0.088 (0.062 - 0.174) 2.01 (0.45 – 4.62) 4.87 

T4 – reference site 28.03 (25 - 30) 0.19 (0.15 - 0.21) 0.26 (0.21 – 0.35) 1.82 (1 - 2) 0.068 (0.055 - 0.078) 0.39 (0.26 – 0.45) 0.64 

ANZECC  Interim Sediment Quality Guideline (ISQG)  values for the protection of marine species (µg g dry wt
-1

) 

  
ISQG-low ** 65 200 20 2 50   

ISQG-high ** 270 410 70 10 210   

Comparisons with other similar studies   Reference 

Thilafushi  Island (EIA 

report) 
<1.4 - 16 <0.4 – 5.46 <0.4 - 4.27 <0.2 – 8.04 0.08 – 0.98 <2 – 17.12 

(CDE 

Consulting 

2011) 

Lyttelton sea-fill / NZ  NA 8 - 15 54 - 93 6 - 8 NA 22 - 49 (Sneddon 2011) 

Kiribati NA 0.3 - 14 1.2 - 77 < LOQ < LOQ 3.4 - 13 (Redfern 2006) 

Suva Harbour / Fiji 
NA 59 - 306 88 - 670 0.7 - 45 59 - 306 19 - 272 

(Naidu & 

Morrison 1994) 

Bermuda 800- 11100 3 - 159 16.6 - 1380 2.7 - 29 3 - 159 15 - 259 (Jones 2010) 

Tanapag Lagoon / 

Saipan 
NA 0.22 - 28 1.63 - 127 1.33-10 <0.1 -  0.58 <0.4 - 41 (Denton et al. 

2001) 

Suva Harbour 
46000 - 49000 99 -143 149 - 200 NA NA 23 

(Maata & Singh 

2008) 

Lyttelton Harbour / NZ 
18199 - 32135 9 - 22 56 - 152 6 - 10 0.039 - 0.133 17 - 75 

Chapter  4 of 

this study 

** Values not provided in the ANZECC guideline. MPI-metal pollution index. NA- trace elements not analysed. LOQ- limit of quantification. Data values in bold indicate 

concentrations exceeding the guideline value. 



69 

 
 

 

 

a 

b 

  a 

b 

b 

a 

b 

b 

b 

c 

a 

b 

c 

a 

b 

c 

c 



70   
 

 
 

 

Figure 3.6: Trace element concentrations in marine sediments along the four transect lines. Transect lines sharing letters are not significantly different. 
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3.3.3 TRACE ELEMENT CONCENTRATIONS IN MARINE BIOTA 

The trace element concentrations (mean values ± SE) in fish tissues are presented in 

Appendix A6 and the trace element concentrations (mean values ± SE) in shellfish, marine 

worms and green algae in Appendix A7. Comparison of trace element concentrations in 

different biota species and fish tissues from the two sites are presented in graphical form in 

Figure 3.7 and Figure 3.8, respectively. Trace element concentration data are presented on a 

wet weight basis. Statistical variation of trace elements between the biota species and sites 

are indicated in Figures 3.7 and 3.8. 

3.3.3.1  FISH TISSUES 

The results of combined fish tissues (muscle and organs) indicated that arsenic, 

cadmium, copper, iron, and zinc concentrations in red mullet were significantly higher than 

those of parrotfish. The overall tissue concentrations indicated that there were no significant 

differences in concentrations of copper and iron in red mullet or parrotfish between the two 

sites. Concentrations of zinc in red mullet from Thilafushi sea-fill site were significantly 

higher than those of the reference site, while parrotfish from the reference site contained 

significantly higher levels of zinc than those collected from Thilafushi sea-fill site. Red 

mullet of Huruelhi Island contained significantly higher concentrations of arsenic than those 

of Thilafushi Island, but there were no significant differences in arsenic levels between the 

two sites for parrotfish. There were no significant differences in cadmium concentrations 

between the two sites. 

In general, trace element concentrations were significantly lower in muscle tissue than 

in liver, kidney and gonad. Overall trace element concentrations within the fish tissues were 

in the order: liver ≥ kidney ≥ gonad > muscle (Figure 3.8). 

3.3.3.2  OTHER BIOTA 

The result of the combined marine biota (muscle tissue was only included for fish) 

indicated that copper, iron, mercury, lead and zinc concentrations were significantly higher in 

Thilafushi Island (sea-fill) than Huruelhi Island (reference site). Conversely, arsenic and 

cadmium concentrations in biota were significantly higher for the reference site than for the 

sea-fill site. 
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Figure 3.7: Comparisons of trace element concentrations in marine biota. Plotted values represent means 

± standard errors (n = 12). Species sharing letters are not significantly different, and asterisks indicate 

significant differences between sites within a species. Lowercase letters represent Huruelhi samples and 

uppercase letters are for Thilafushi samples.  Hg was < LOQ in parrotfish muscle, marine worms and 

algae of both sites, Pb was < LOQ in muscle of red mullet and parrotfish from Huruelhi Island, and Cd 

was < LOQ for parrotfish muscle of both sites. 
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Figure 3.8: Comparison of mean trace element concentrations in fish tissues (P = parrotfish, M = red mullet). Plotted values represent means ± standard errors (n = 

12). Asterisks indicate significant differences between sites within a tissue.  Cd and Hg were <LOQ in parrotfish muscle from both the sites, while Pb was <LOQ in 

parrotfish muscle of Huruelhi Island. Hg was <LOQ in gonad of parrotfish from both the sites and mullet gonad from Huruelhi Island. 
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The highest mean concentrations of arsenic were measured in penguin wing 

oysters from Thilafushi, and the lowest in red mullet muscle tissue at the same site. 

The order of total arsenic concentrations between species was: red mullet = oyster > 

worm > algae > parrotfish for the sea-fill site; with red mullet = oyster = worm > 

algae > parrotfish for the reference site. 

For cadmium, the highest mean concentrations were measured in penguin 

wing oysters from Thilafushi, and the lowest concentrations in muscle tissue of red 

mullet from the reference site. Cadmium was not detected in parrotfish muscle from 

either site. The overall order of cadmium concentrations between the species was: 

oyster > worm > algae > red mullet, for both Thilafushi and Huruelhi samples. 

The highest mean concentration of mercury was measured in red mullet 

muscle from Thilafushi. Mercury was not detected in the marine worms, green algae 

or muscle tissues and gonad of parrotfish at either site. The order of mercury 

concentrations between the marine species was: mullet > oyster for Thilafushi 

samples, while mullet and oysters at the reference site had statistically 

indistinguishable levels of mercury. 

Green algae from Thilafushi contained the highest mean concentration of lead, 

while the lowest mean concentration was measured in the peanut worms collected 

from the reference site. Lead was not detected in the muscle of red mullet or 

parrotfish of the reference site. The order of the lead concentrations in marine biota 

species were: algae ≥ mullet = worm = oyster > parrotfish for Thilafushi samples, and 

algae > oyster > worm for Huruelhi samples. 

The highest mean concentration of copper was measured in green algae of 

Thilafushi, while the lowest was measured in parrotfish muscle of the reference site. 

The copper concentrations in collected species were in the order: algae = oyster > 

worm > mullet > parrotfish for Thilafushi samples, and algae = oyster > worm > 

mullet = parrotfish for Huruelhi samples. 

Similar to the pattern exhibited for copper, the highest mean concentration of 

iron was obtained for green algae from Thilafushi, and the lowest mean 

concentrations in muscle of parrotfish from the reference site. The general order of 

iron concentrations was: algae > worm > oyster > mullet > parrotfish for Thilafushi 
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samples, and algae > worm = oyster > mullet > parrotfish for Huruelhi samples. 

Penguin wing oysters from Thilafushi contained the highest mean 

concentration of zinc, while the lowest mean concentration was measured in green 

algae of the reference site. The concentrations of zinc followed the order: oyster > 

worm = algae = mullet > parrotfish for Thilafushi samples, and oyster > mullet = 

worm > parrotfish > algae for Huruelhi samples. 

3.3.4 RISK ASSESSMENT FOR CONSUMPTION OF SEAFOOD 

Trace element concentrations measured in the food chain species of this study 

were compared to the Food Standard Australia New Zealand (FSANZ) maximum 

allowable levels (MLs) as the principal referencing standard, and European 

Commission (EC) maximum allowable values and other NZ/Australia standards (from 

FAO data) (see Table 1.3) where FSANZ values were not available. 

The concentrations of inorganic arsenic did not exceed the ML value for fish 

in any studied tissue (2 µg g wet wt
-1

), and the concentrations in the penguin wing 

oysters also did not exceed the ML value for molluscs (2 µg g wet wt
-1

). Although the 

cadmium concentrations in the muscle tissue of red mullet did not exceed the ML 

value for fish (0.05 µg g wet wt
-1

;
 

EC standard), liver, kidney and gonad 

concentrations did. The cadmium concentrations in liver of red mullet from both sites 

were over 150-fold higher than this ML value. Cadmium concentrations in the 

penguin wing oysters from the sea-fill site were at the ML value for molluscs (2 µg g 

wet wt
-1

). Fish tissue mercury and copper concentration did not exceed the ML values 

(0.5 µg g wet wt
-1

, and 30 µg g wet wt
-1

 for mercury and copper respectively) for 

either fish or molluscs. Lead concentrations in all tissues of red mullet from the sea-

fill site, and gonad and kidney of parrotfish from the sea-fill site, exceeded the ML 

value for fish (0.5 µg g wet wt
-1

). Zinc concentrations in fish muscle and liver tissues 

did not exceed the ML value of 40 µg g wet wt
-1

. However, the gonad and kidney of 

red mullet from the sea-fill site, and gonad and kidney of parrotfish from the reference 

site, and shellfish from both the sampling sites did. 

The estimated dietary exposures of the contaminants in the three risk 

assessment scenarios are presented in Tables 3.3 and 3.4.  The values presented in 
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bold in Table 3.3 and Table 3.4 exceed the respective provisional tolerable weekly 

intake (PTWI) values. The italicised values represent the total weekly intake of the 

trace elements through consumption of fish muscle, fish organs and shellfish. 

 

Table  3.3:  Estimated weekly intake (EWI) (µg/kg body weight/week) of trace elements at 

different consumption rates by different age-gender cohorts at different contaminant 

concentrations (mean, 95
th

 percentile) in fish muscle (Scenario one) 

      

EWI of trace elements from fish muscle                                   

(µg / kg BW / week) 

   

 As (inorganic) Cd Hg Pb 

WHO / JECFA PTWI values  21 5.6 1.60 25 

Consumption 

rates  g/week Concentration levels         

6
5

 k
g
  

(m
al

e)
 560 

Mean 7.1 0.07 0.40 9.16 

95
th

 Percentile 9.4 0.15 0.73 37 

1750 
Mean 22 0.22 1.3 29 

95
th

 Percentile 29 0.48 2.3 116 

2940 
Mean 37 0.37 2.1 48 

95
th

 Percentile 49 0.81 3.8 195 

4
9

 k
g
  

(f
em

al
e)

 

560 
Mean 9.5 0.09 0.53 12 

95
th

 Percentile 12 0.20 0.97 49 

1750 
Mean 30 0.29 1.7 38 

95
th

 Percentile 39 0.64 3.0 154 

2940 
Mean 50 0.49 2.8 64 

95
th

 Percentile 65 1.07 5.1 258 

3
0

 k
g
  

(c
h

il
d
) 560 

Mean 15 0.15 0.87 20 

95
th

 Percentile 20 0.33 1.6 80 

1750 
Mean 48 0.47 2.7 62 

95
th

 Percentile 63 1.04 4.9 251 

2940 
Mean 81 0.79 4.6 104 

95
th

 Percentile 107 1.74 8.3 422 

13 kg 

(toddler) 
560 

Mean 36 0.35 2.0 46 

95
th

 Percentile 47 0.77 3.6 185 

Values in bold exceed the PTWI values 

 

In the first scenario, cadmium consumption did not exceed the PTWI, 

regardless of the model parameters (Table 3.3). Similarly, using mean fish trace 

element concentrations, and the lowest fish consumption scenario, all values remained 

under the PTWI (for adults and children) for all elements for which EWI‘s were 

determined. The only exception to this was for the toddler, which exceeded PTWI 

values for inorganic arsenic, mercury and lead. Assuming higher fish consumption 
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rates, almost all groups exceeded the PTWI for arsenic, mercury and lead. Even at the 

lowest consumption rate, but using the 95
th

 percentile trace element concentration 

value, the PTWI for lead in adult males and adult females, and lead and mercury for 

children was exceeded. 

The second scenario (Table 3.4) resulted in increased EWI values for 

exposures, and toddlers exceeded the PTWI value of cadmium. In addition, all the 

BW groups exceeded PTWI value for inorganic arsenic and lead, while the female, 

child and toddler exceeded the PTWI value for mercury as well. Similarly, the EWI 

values were again increased for each BW group with the addition of shellfish in the 

third scenario (Table 3.4). With the addition of a very low rate of shellfish 

consumption, children exceeded the PTWI value for all elements. 
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Table  3.4:  Estimated weekly intake (EWI) of trace elements by different age-gender cohorts for 

the consumption of fish muscle and organs (Scenario 2), and addition of shellfish 

(Scenario 3) at the mean concentrations of each tissue 

      

EWI of trace elements from fish muscle  

and organs  (µg / kg BW / week) 

   

 As (inorganic) Cd Hg  Pb 

WHO / JECFA PTWI values  21 5.6 1.60 25 

Scenario 2  Fish tissues 

Consumption rate  

g /week         

Male 

Muscle 1750 22.27 0.27 1.35 28.54 

Liver 8 0.18 1.09 0.01 1.90 

Gonad 11 0.18 0.04 0.01 0.16 

Total dietary intake from seafood   22.63 1.40 1.36 30.59 

Female 

Muscle 1750 29.54 0.36 1.79 37.86 

Liver 8 0.24 1.44 0.01 2.52 

Gonad 11 0.24 0.06 0.01 0.21 

Total dietary intake from seafood   30.02 1.86 1.80 40.58 

Child 

Muscle 1750 48.24 0.58 2.92 61.83 

Liver 8 0.40 2.36 0.01 4.11 

Gonad 11 0.39 0.10 0.01 0.34 

Total dietary intake from seafood   49.03 3.04 2.94 66.28 

Toddler 

Muscle 560 35.62 0.43 2.15 45.66 

Liver 8 0.92 5.44 0.03 9.49 

Gonad 11 0.90 0.22 0.03 0.78 

Total dietary intake from seafood   37.45 6.09 2.21 55.93 

Scenario 3 

 

Fish tissues and 

shellfish 

Consumption rate  

g/week         

Male 

Muscle 1750 22.27 0.27 1.35 28.54 

Liver 8 0.18 1.09 0.01 1.90 

Gonad 11 0.18 0.04 0.01 0.16 

Shellfish 43 0.91 1.37 0.02 0.11 

Total dietary intake from seafood   23.54 2.77 1.38 30.70 

Female 

Muscle 1750 29.54 0.36 1.79 37.86 

Liver 8 0.24 1.44 0.01 2.52 

Gonad 11 0.24 0.06 0.01 0.21 

Shellfish 43 1.21 1.82 0.03 0.14 

 

Total dietary intake from seafood   31.23 3.68 1.83 40.72 

Child 

Muscle 1750 48.24 0.58 2.92 61.83 

Liver 8 0.40 2.36 0.01 4.11 

Gonad 11 0.39 0.10 0.01 0.34 

Shellfish 43 1.98 2.97 0.04 0.23 

Total dietary intake from seafood   51.01 6.00 2.98 66.51 

Values in bold exceed the PTWI values, and the values in italics are the total amount of weekly 

intake of trace elements via consumption of fish muscle, organs and shellfish. 
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3.4 DISCUSSION 

3.4.1 ENVIRONMENTAL CHARACTERISATON 

The pH range of seawater from Thilafushi and Huruelhi Islands was in 

agreement with typical coastal water pH (Byrne 2002; Sneddon 2011), and with 

previously measured pH values for Thilafushi coastal water by CDE Consulting 

(2011). The pH is an important factor determining remobilisation of trace elements in 

ecosystems. A lower pH (i.e. more acidic) seawater often indicates higher 

concentrations in the overlying water column (Denton et al. 1997; Williamson et al. 

2003), and thus higher bioavailability of trace elements (Byrne 2002). In future, 

measurements of sediment porewater would be valuable to determine if pH was 

exerting an influence on sediment-trace element interactions, and whether this could 

therefore be a significant contributor to environmental trace element distribution. 

At transect lines T1, T2 and T3 the concentrations of iron were the highest 

among all the trace elements in seawater followed by zinc, copper, lead and cadmium. 

This order is in agreement with contaminant monitoring studies at the Bermuda 

marine fill and the sea-fill site of Lyttelton Harbour of New Zealand (Jones 2010; 

Sneddon 2011). However, the order of trace element concentrations in seawater at the 

T3 (boat yard) site were slightly different, with copper higher than zinc. This could be 

due to the use of copper as an antifouling paint (Denton et al. 1997). The order of the 

trace elements concentration in background seawater is considered to follow the 

order: zinc > iron > copper > cadmium > lead (Haynes 2014), a trend that is different 

from what was measured for the sea-fill site and the reference site. Differences are 

likely due to the source geology at any given sampling site (Haynes 2014). 

A limited number of studies on trace element concentrations in seawater of 

coastal landfill or sea-fill sites have been performed (Table 3.2). A previous study 

carried out at Thilafushi Island (CDE Consulting 2011) reported concentrations of 

cadmium and lead in seawater comparable to those measured here, while the iron 

concentrations were lower than those of the current study. Lead and zinc 

concentrations at the Bermuda marine fill (Jones 2010) were higher than those of this 

study, while iron, copper and cadmium were comparable. Copper concentrations in 

the seawater of Thilafushi Island in this study were comparatively higher than those 
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of Lyttelton Harbour sea-fill site. These differences in trace element concentrations in 

seawater at different sea-fill sites could be due to a number of factors. For example, 

variations in the nature of the fill materials, trace element leaching rates, differences 

in the geology, the presence of other anthropogenic sources of trace elements in the 

surrounding environment (e.g. boating or industrial activities at a close proximity), 

sewage discharges and storm water runoff could all influence environmental trace 

element concentrations (Denton et al. 1997; Jones 2010; Maata & Singh 2008; 

Morrison & Brown 2003; Naidu & Morrison 1994). 

Trace element concentrations in seawater and marine sediments were 

compared with ANZECC guideline values (Table 3.1 and 3.2), as guidelines specific 

to the Maldives are not available. In general, seawater samples from all three transect 

lines at Thilafushi Island sea-fill exceeded the ANZECC trigger value for the 

protection of 99% of marine species against copper toxicity. The copper 

concentrations in seawater at the transect line T1 exceeded ANZECC trigger values 

for marine species at the 95% protection level, while the concentrations at T3 

exceeded the 80% protection level (Table 3.1), implying that these levels of copper 

can pose risks to at least 20% of the aquatic species in these sites.  Similarly, copper 

concentrations in the marine sediments of T3 exceeded the ANZECC guideline value 

of ISQG-low; while sediment zinc concentrations exceeded the ISQG-high value at 

transect line T1. This again implies that copper concentrations were high enough to 

trigger possible biological effects, with sediment zinc also likely to cause toxicity to 

sediment-dwelling biota at the sea-fill site. 

The overall concentration of trace elements in the sediments followed the 

order: iron > zinc > copper > lead > arsenic > cadmium for the sea-fill site, and iron > 

arsenic > lead > zinc > copper > cadmium for the reference site. For the contaminated 

sea-fill site (specifically, transects T1 and T3) this pattern is consistent with 

monitoring carried out at the Lyttelton Harbour sea-fill site (Sneddon 2011), the study 

of  marine landfill beside a coral reef in Bermuda (Jones 2010), and other similar 

studies (Glasby et al. 1988; Williamson 1992). 

The order of trace element concentrations at the reference site (T4) of this 

study and the transect line T2 of Thilafushi Island (the sand-reclaimed site) was 

different from T1 and T3 (Table 3.2). The higher concentrations of arsenic than zinc 
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and copper at T2 and T4 suggest that this could be the typical trend for trace elements 

in the natural geological environment of Maldives. In general, the concentrations of 

trace elements in transect line T2 and transect line T4 were similar, most likely due to 

the clean sand reclamation area adjacent to the transect line T2, reflecting a lower 

level of contamination, akin to the reference site (T4). 

One obvious reason for the significantly higher concentrations of trace 

elements in seawater and sediments of T1 and T3 compared to T2 at Thilafushi could 

be the higher input of trace elements from MSW fill activities. However, these 

sampling sites (T1 and T3) were near other point sources, including the boatyard at 

T3, discharges from commercial vessels, and a variety of scrap metals and 

racked/broken boats in the inner lagoon of the T1 transect. Numerous studies have 

shown that increased input of trace elements results in an increase in local sediment 

concentrations (Denton & Morrison 2009; Denton et al. 2001; Glasby et al. 1988; 

Jones 2010; Luoma 1990; Naidu & Morrison 1994; Redfern 2006; Williamson et al. 

2003; Williamson 1992). 

Another reason for the higher trace element concentrations in the inner lagoon 

could be due to the semi-enclosed and stagnant nature of this water body. The lower 

hydrodynamic energy facilitates deposition of finer particles and restricts movement 

of input materials, leading to local enhancement of trace elements (O'Connor & Ehler 

1991; Williamson & Wilcock 1994). In addition, the higher concentrations of trace 

elements at T1 and T3 could be due to the comparatively finer nature of the sediment 

particles observed for all the sediments of the inner lagoon, and some of the T3 

sediments. Fine particulates have a tendency to bind relatively more trace elements 

than more coarse particulates (Williamson et al. 2003). Arguing against this, however, 

sediments from the inner lagoon contained a higher proportion of larger particles 

compared to the other sites (CDE Consulting, 2011). However, the available organic 

carbon data for Thilafushi sediments (CDE Consulting 2011) showed that the 

sediments of inner lagoon contained a higher percent of organic carbon (0.29%) 

compared to the other sites (0.17-0.23%), which could account for the higher trace 

element content at the inner lagoon, as sediments with higher organic carbon are 

known to provide more binding sites for trace elements (Williamson et al. 2003). 

Comparison of the current study with other sea-fill data (e.g. Suva Harbour, 
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Fiji (Maata & Singh 2008) and Bermuda (Jones 2010)), showed that the levels of 

some trace elements were comparable (e.g. copper), but other elements were not 

(Table 3.2). This could be because of the different nature of the fill materials, the rate 

of input or proximity to the point source, the geology of the site, and/or differences in 

physical transport characteristics (sea current and sediment movements). In addition, 

the chemical and physical properties of the sediment such as the organic content, the 

grain size or the sediment texture are important factors for determining the trace 

element concentrations in sediments (Jones 2010; Luoma 1990; Redfern 2006; 

Williamson 1992). Furthermore, the potential for redox reactions, the pH and the 

mineralogy of the site (e.g. the iron and manganese oxide content which influences 

binding and remobilisation), all play important roles in shaping environmental trace 

element patterns (Jones 2010; Luoma 1990; Redfern 2006; Williamson 1992). In 

general, the concentrations of trace elements in the Maldives sediment were more 

similar to those of Kiribati and Saipan than the other studies mentioned in Table 3.2. 

This similarity could be due to the related nature of the sediment, which mainly 

consists of coral-derived materials (Denton et al. 2001; Redfern 2006). 

The iron concentrations measured in the sediments of the inner lagoon were 

several-fold higher than those of other sites in this study. In addition, the mean iron 

concentrations measured for the inner lagoon in this study were over 200-fold higher 

than the highest concentrations of iron measured by CDE Consulting (2011) for 

Thilafushi lagoon. The likely reason for the high concentrations of iron measured in 

the inner lagoon samples of this study are rusted and broken iron bars that have been 

directly exposed to seawater. Rusted metal bars and debris were observed lying 

around the boatyard near the shoreline of transect line T3. 

The concentrations of iron, copper, zinc and arsenic in the sediments of this 

study were comparatively higher than those measured previously for Thilafushi Island 

(CDE Consulting 2011), while that same study reported comparatively higher 

concentrations of cadmium. The concentration of cadmium presented in the EIA 

report (CDE Consulting 2011) for the inner lagoon (0.98 mg kg
-1

) was over two-fold 

higher than the highest value of cadmium measured in this study for the same location 

(0.44 mg kg
-1

). Although the inner lagoon was a site common to both studies, the 

likely reason for the vast difference of some trace element concentrations could be 
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differences in distance of the sampling locations to the input sources. 

Because there are multiple sources of trace elements at Thilafushi Island, and 

owing to the limited number of samples collected for this study, it is difficult to draw 

a definite conclusion that the observed elevated trace elements were a consequence of 

MSW. However, numerous studies on trace elements in marine sediments of coastal 

landfills and sea-fills indicate that fill activities significantly contribute trace elements 

to the surrounding marine environment (Denton & Morrison 2009; Jones 2010; Maata 

& Singh 2008; Naidu & Morrison 1994). 

3.4.2 TRACE ELEMENTS IN MARINE BIOTA 

Higher concentrations of copper, iron, mercury, lead and zinc were measured 

in the biota from the sea-fill site compared to the reference site. This is likely due to 

the higher environmental levels of these elements at the sea-fill location. The MPI 

values obtained from seawater and sediment concentrations indicated that the trace 

element loads were several fold higher at transect lines T1 and T3 compared to T4 at 

the reference site. Surprisingly, the arsenic and cadmium concentrations were higher 

at the reference site, even though there are no known anthropogenic sources of trace 

elements at this location. Huruelhi Island is a dumping-free zone, with minimal tourist 

activity. As suggested above this phenomenon could be a consequence of differences 

in natural base-line levels of trace elements between the two sites. 

In general, the levels of all trace elements measured in fish tissues displayed 

the following order: liver ≥ kidney ≥ gonad > muscle. It is normal to find several-fold 

higher concentrations of trace elements in liver, kidney and gonad relative to fish 

muscle (Andres et al. 2000; Brooks & Rumsey 1974; Yılmaz et al. 2010). Trace 

elements preferentially accumulate at higher levels in these tissues as they are 

metabolically active (Allen 1995; Canli & Atli 2003; Romeo et al. 1999; Ünlü et al. 

1996; Yilmaz 2003). Liver is considered the main storage and detoxification organ, 

while kidney is considered an excretory organ, and is thus a site where trace elements 

may accumulate prior to elimination from the body. At a biochemical level, the 

variation in trace element concentrations in different tissues of fish could be explained 

by the presence of metallothioneins. These are metal binding proteins with roles that 

include detoxifying trace elements (Rainbow 2002; Rainbow et al. 2006a; Roesijadi 
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1981; Wang & Rainbow 2010).  The binding of metallic trace elements to 

metallothionein renders them detoxified (Pourang et al. 2004; Roesijadi 1992; Wang 

& Rainbow 2010), allowing them to accumulate. This phenomenon is then reflected 

in the increased tissue burdens in metabolically active tissues such as the liver, kidney 

and gonad, where metallothionein induction is especially prominent (Amiard et al. 

2006; Engel & Brouwer 1984; Marie et al. 2006; Rainbow 2002; Wang & Rainbow 

2010). 

Parrotfish generally displayed lower trace element concentrations than all 

other species investigated in this study. Previous studies have shown that the 

concentrations of trace elements in different fish species are a result of different 

ecological needs, the contamination levels in the surrounding environment, feeding 

patterns, swimming behaviours and rate of metabolism (Canli & Atli 2003; Romeo et 

al. 1999; Young et al. 1980). 

Although trace element concentrations measured in muscle of the two fish 

species in this study were generally comparable to those previously reported for 

comparable fish species (Table 3.5), arsenic (samples from both sites) and lead 

(samples from sea-fill site only) concentrations in red mullet of this study were higher 

than those reported in the literature for similar species. The higher concentration of 

arsenic could be related to the differences in species-specific physiological 

adaptations in handling trace elements. This concept is supported by the fact that red 

mullet from the reference site of this study also contained high concentrations of 

arsenic. Similar species-specific differences in arsenic handling were shown by 

Amlund and colleagues (2006). These authors showed that there were significant 

differences in tissue distribution and excretory patterns between fish species 

administered with arsenobetaine (Amlund et al. 2006). 

The high concentration of lead measured in the red mullet of this study (sea-

fill site) could be related to the higher environmental exposure of lead at the sea-fill 

site (see Section 3.3.2.2). Again, this hypothesis is supported by the trace element 

tissue burdens of red mullet at the reference site, which were significantly lower in 

lead than those of the sea-fill site. This is also reinforced by a previous study that 

investigated two fish species from contaminated sites in the Mediterranean Sea, which 

indicated that mullet (Mugil cephalus) from more contaminated sites contained 
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significantly higher concentrations of lead than those from less contaminated sites 

(Yilmaz 2003). The same study also reported that mullet accumulate more lead than 

another species of fish (Trachurus mediterraneus) from the same site (Yilmaz 2003). 

The higher concentrations of lead in red mullet from the sea-fill site of this study 

could also be related to its diet, as comparatively higher concentrations of lead were 

measured in the green algae and the marine worms from the sea-fill site. These items 

are an important part of mullet diet (Vassilopoulou & Papaconstantinou 1993). 
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Table  3.5: Comparisons of trace element concentrations (concentration range common to both sites for each species) in fish in µg g wet wt 
-1

 with other studies 

Species Total As Cd Cu Fe Hg Pb Zn Ref 

Red mullet (Parupeneus indicus) 5.65 - 11.48 

9 

<LOQ - 0.020 0.15 - 0.25 4.39 - 6.98 <LOQ - 0.09 0.05 - 6.35 5.61 - 9.19 This study 

Parrotfish (Scarus ventula) 

 

0.35 - 1.02 <LOQ 0.12 - 0.26 1.16 - 3.78 <LOQ <LOQ - 0.47 2.87 - 3.52 This study 

Wrasse (Notolabrus fucicola) 

 

0.52 - 5.14 

9 

<LOQ 0.10 - 0.16 1.47 - 4.27 0.16 - 0.38 <LOQ 3.28 - 5.27 Chapter 6 

 

Ch Cha 

Spotty (Notolabrus celidotus) 1.23 - 5.30 <LOQ 0.10 - 0.19 1.03 - 2.52 0.03 - 0.15 <LOQ 3.69 - 5.94 Chapter 6 

Gurnard (Trigla kumu) 
 

0.008 - 0.024 0.15 - 0.75 2.1 - 13.0 
 

0.13 - 0.40 2.5- 16.2 1 

Snapper (Chrysophys auratus) 
 

0.002 - 0.015 0.03 - 0.50 1.0 - 12.0 
 

0.15 - 0.60 2.0 - 10.0 1 

Yellow fin bream (Acanthopagrus  australis) 0.1 - 2.4 0.03 - 0.07 0.1 - 2.0 
 

0.03-0.81 0.3 - 1.7 1.6 - 13.0 2 

Sea mullet (Mugil cephalus) 0.1 - 3.8 0.02 -  0.08 0.2 - 2.8 
 

<0.14 0.2 - 4.1 0.5 - 13.9 2 

Snapper (Chrysophrys auratus) 0.4 - 4.4 0.01 - 0.09 0.2 - 1.5 
 

0.06 - 1.94 0.2 - 1.5 5.30 2 

Snapper (Pagrus  auratus) 2.5 - 12.1 0.02 0.2 - 0.3 
 

0.09 - 0.20 0.05 3.1-7.5 3 

Blue cod (Parapercis colias) 
 

 
  

0.07  
 

4 

Red cod (Pseudophycis kachus) 
 

 
  

0.09  
 

4 

Sardine (Sardina pilchardus) 0.17- 0.96 0.003 
  

0.009 - 0.067 0.004 -0.034 
 

5 

Red mullet (Mullus surmuletus) 0.23 - 0.73 0.002 
  

0.041 - 0.139 0.230 -0.729 
 

5 

Sea bream (Pegellus erythrinus) 
 

0.01 - 0.03 
  

0.05 - 0.70 0.05 - 0.09 
 

6 

Stipped mullet (Mullus barbatus) 
 

0.01 - 0.04 
  

0.05 - 2.76 0.04 - 0.18 
 

6 

Malabar anchovy (Thryssa malabarica) 
 

0.7 4.4 
 

0.01 <1 
 

7 

Trevally (Caranx georgianus) 
 

<LOQ - 0.62 <LOQ -0.7 5 - 11 0.02 - 0.08 <1 2.0 - 5.0 7 

Bluespot mullet (Valamugil seheli) 
 

0.17 6.35 
 

<0.05 0.28 50.3 8 

Blue tail mullet (Valamugil buchanani) 
 

0.36 11.1 
 

0.07 0.09 83.7 8 

Red snapper (Lutjanus vita) 
 

0.23 26.6 
 

0.35 0.07 234 8 

Sea mullet (Mugil cephalus) 
 

 0.69 58.25 
 

10.87 42.18 9 

Horse mackerel (Trachurus mediterraneus) 
 

 0.66 38.89 
 

1.01 19.23 9 

Green chromide (Etroplus suratensis) <LOQ 1.32 2.19 
 

<LOQ 0.23 12.3 10 

Rohu (Labeo rohita) <LOQ 0.02 14.7 
 

<LOQ 0.32 12.3 10 

LOQ-Limit of quantification; Ref: (1)- (Brooks & Rumsey 1974),  (2)- (Bebbington et al. 1977), (3)- (Fabris et al. 2006), (4)- (Love et al. 2003), (5)- (Olmedo et al. 2013), 

(6)- (Storelli 2008), (7)- (Kureishy et al. 1981; Kureishy et al. 1983)  (8)- (Agusa et al. 2007), (9)- (Yilmaz 2003), ( 10)- (Sivaperumal et al. 2007). 

http://www.fishbase.de/Summary/SpeciesSummary.php?ID=592&AT=Malabar+anchovy
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With respect to mercury concentrations in the current study, only red mullet 

and penguin wing oysters (at both sampling sites) displayed values above the LOQ. 

The higher concentration of mercury in red mullet could be due to this fish feeding at 

a slightly higher trophic level than the other organisms in this study. Concentrations 

of total mercury in red mullet were comparable to most species of fish in Table 3.5, 

suggesting similar trophic positions, age, size or similar physiological strategies for 

handling trace elements, such as rate of assimilation, detoxification, and excretion 

(Rainbow 2002; Reinfelder et al. 1998; Wang 2002; Wang & Rainbow 2008). 

Although the penguin wing oysters are filter feeders (lower trophic level), the 

measurable concentrations of mercury in these bivalves could be related to their large 

size (see below). 

The concentrations of copper, iron and zinc measured in biota of this study 

were comparable to those previously reported (Table 3.5 and 3.6). The overall tissue 

concentration of copper and iron in the fish species from the two sites were not 

significantly different. This could be because these elements are essential to 

organisms and subject to regulation within a certain optimal range (Reinfelder et al. 

1998; Yılmaz et al. 2010). However, zinc concentrations in red mullet from the sea-

fill site were significantly higher than those of the reference site; while zinc 

concentrations in parrotfish of the reference site were significantly higher than those 

of the sea-fill site. In addition to the higher concentrations of zinc at the sea-fill site, 

another possible reason for the higher concentrations of this essential element in the 

red mullet is the reproductive cycle of these fish. Zinc is known to play an important 

role in the reproductive cycle and levels of this element increase during spawning 

(Banks et al. 1999; Miramand et al. 1991; Olsson et al. 1987). 

Factors known to contribute towards differences in the accumulated trace 

element levels in different species of marine organisms include the trace element 

concentrations in the available diet (as observed in this study), the physiology of the 

species, the size and age of species, the position in the food chain, and the nature of 

the trace element (Fabris et al. 2006; Falconer et al. 1983; Reinfelder et al. 1998; 

Wang & Rainbow 2008). For instance mercury is an element known to present at 

higher concentrations in organisms at higher trophic positions, and in general mercury 

concentrations also increase with age and size (Bowles et al. 2001; Fabris et al. 2006; 
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Monteiro & Lopes 1990; Storelli & Marcotrigiano 2000; Storelli et al. 2002; Wang 

2002; Zhu et al. 2012). 

Animals are well adapted to regulate trace element burdens. Strategies include 

altering rates of ingestion, assimilation and excretion (Reinfelder et al. 1998; Wang & 

Rainbow 2008). For example, one important mechanism for the regulation of essential 

trace elements is by adjusting the efflux rate, to match the influx rate, thus allowing 

the animal to maintain concentrations at the desired optimal range (Reinfelder et al. 

1998). Furthermore, some marine organisms store assimilated trace elements as 

insoluble metal rich granules and then eliminate them through the alimentary tract as 

faeces, while other organisms store the excess trace elements in kidneys and excrete 

them through urinary processes (Reinfelder et al. 1998; Wang & Fisher 1998). Which 

strategy is used will influence tissue burdens and overall rates of accumulation. 

In summary, the concentration of trace elements in marine food chains 

depends on several factors including the physicochemical properties of the habitat 

(e.g. water chemistry, pH, metal speciation, availability), feeding ecology, and 

strategies for metal handling and storage adopted by the species therein (Blackmore & 

Wang 2004; Otero-Romani et al. 2005; Rainbow 2002,2007). Bioaccumulation, trace 

element handling strategies by different marine species, and trophic transfer of trace 

elements in coastal food chains are discussed in further detail in Chapter 5. 
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Table  3.6:  Comparisons of trace element concentrations (concentration range common to both sites for each species) in penguin wing oysters, marine worms and 

green algae in µg g wet wt 
-1

 (µg g dry wt 
-1

) with other studies 

Species Total As Cd Cu Fe Hg Pb Zn Ref 

Bivalve shellfish 

Penguin Wing Oyster 

(Pteria  penguin) 

5.1 -24 

(27 -127) 

1.1 - 4.5 

(6.9 - 24) 

0.85 - 1.1 

(4.4 - 6.1) 

19 - 53 

(103 - 283) 

0.02 - 0.04 

(0.12 - 0.24) 

0.07 - 0.45 

(0.36 - 2.4) 

52 - 532 

(278 - 2105) 
This study 

Green-lipped mussel 

(Perna canaliculus) 
(8.7 - 12.0) (0.26 - 0.73) (3.3 - 4.8) (310 - 972) (0.10 - 0.22) (0.44 - 1.9) (46.1 - 100) Chapter 5 

Green-lipped mussel 

(Perna canaliculus)  
0.10 - 1.00 0.2 - 28.0 26 - 280 0.04 - 0.19 0.1-7.8 0.5 - 28.0 1 

Black clam (Villorita cyprinoides) <LOQ 0.05 3.9 
 

<LOQ 0.32 19 2 

Abalone (Haliotis rubra) 6.4 - 13 0.10 - 0.18 0.6 - 6.3 
 

0.01 - 0.02 0.05 - 0.06 8.3 - 13 3 

Oysters (Crassostrea virginica) (10) (4.11) (146) (294) (0.13) (0.64) (2150) 4 

Oyster  (Saccostrea  glomerata) 

  
(1.6 - 15) (219 - 1413) (97 - 1146) 

  
(998 - 8629) 5 

Marine worm 

Sipunculid worm 

(Sipunculus indicus) 

 

2.6-16 

(13 - 87 ) 

0.22 -0.56 

(1.2 - 1.3 ) 

0.28 - 0.44 

(1.1 -1.3) 

44 - 51 

(198 -211)  

0.20 - 0.44 

(0.91 -2.0) 

7.8 -11 

(38 - 42) 
This study 

Polychaete worm (21.6-77.3) (1.6- 3.6) (3.4 - 5.9) (221 - 465)  

 
(0.17 - 0.59) (120 - 269) Chapter 5 

Polychaete worm (2.0 -14.8) 
      

7 

Polychaete worm (8.8-117) (<0.2 - 0.6) (9.4 - 858) (427-1521) 
 

(2.1-34.5) (69 - 201) 8 

Green algae 

Chlorophyceae 
0.97 - 2.5 

(5.3 - 11.1) 

0.02 – 0.7 

(0.09 -0.32) 

12.7 -17.4 

(64 -75) 

204 -290 

(1006 -1185)  

1.08 -1.80 

(5.6 -7.2 0 

7.1 – 10.7 

(37 - 47) 
This study 

Chlorophyceae (8.3 - 17.4) (0.05 - 0.06) (9.7 - 10.8) (9007 - 3919) 
 

(6.3 - 29.8) (14.5 - 36.0) Chapter 5 

Chlorophyceae 
 

(0.1 - 2.5) (1.1 - 4.3) (84.7 - 119.3) 
 

(2.1 - 5.5) (39.0 - 82.5) 9 

Chlorophyceae 0.4 - 3.9 
      

10 

LOQ-Limit of quantification; Ref (1)- (Nielsen & Nathan 1975), (2)- (Sivaperumal et al. 2007), (3)- (Fabris et al. 2006) (4)- (Presley et al. 1990), (5)- (Phillips 1979), (7)-

(Watts et al. 2013), (8)- (Rainbow et al. 2006a), (9)- (Haritonidis & Malea 1999), (10)- (Sanders 1979) 
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3.4.3 RISK ASSESMENT FOR CONSUMPTION OF SEAFOOD 

Although the concentrations of inorganic arsenic, mercury, copper and zinc in 

the muscle tissues of fish in this study did not exceed limits considered to be 

protective of human health, cadmium concentrations measured in fish liver and 

gonad, and in shellfish were high enough to suggest health risks from regular 

consumption. The concentrations of zinc in the gonads were also high enough to 

potentially cause harm if consumed regularly. Furthermore, concentrations of lead in 

fish muscle, liver and gonad also exceeded ML values. Overall, these findings suggest 

that consumption of red mullet from the sea-fill site, and consumption of any fish 

organ from this site, is potentially hazardous for human health. 

The weekly intake of inorganic arsenic, mercury and lead can exceed the 

PTWI values in different consumption scenarios in all BW groups. In addition, 

children and toddlers can exceed the PTWI values for cadmium under different 

exposure scenarios in this study. The calculated EWI of trace elements in this study 

was several times higher than those reported for Spain, Italy, New Zealand, 

Cambodia, Malaysia, Thailand and Indonesia (Agusa et al. 2007; NZTDS 2009; 

Olmedo et al. 2013; Storelli 2008) for fish with similar trace element concentrations. 

This is because Maldivians consume a high quantity of fish relative to other parts of 

the world. Moreover, fish organs including liver and gonad are considered to be 

delicacies in the Maldives, exacerbating potential risk. The diets of Maldivians are 

mainly based on starchy foods items including a large proportion of rice and flour 

(Golder et al. 2001).  Rice can also be a source of cadmium and arsenic, which may 

further result in intake rates that exceed the PTWI values for these elements in the 

Maldives (McLaughlin et al. 1999; Wang et al. 2013). 

Since there were limited numbers of species investigated in this current study, 

and no trace element data are currently available for any food items in the Maldives, it 

is extremely important that further studies of trace element concentrations in seafood 

species are carried out in the Maldives, with special attention being given to items 

sourced from Thilafushi Island. Although red mullet and parrotfish are comonly 

consumed species in the Maldives, there are other species that are more widely 

consumed. These include snapper (Lutjanidae), grouper (Serranidae), jack 

(Carangidae), bigeye scad (Selar crumenophthalamus), Indian mackerel (Rastrelliger 
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kanagurta), bait fish species and deep water fish including tuna and swordfish (Adam 

1995; Kawarazuka & Béné 2011). Previous studies have reported that fish from the 

same study site can contain significantly different concentrations of trace elements 

(Bebbington et al. 1977; Brooks & Rumsey 1974; LeBlanc & Jackson 1973; Love et 

al. 2003; Yilmaz 2003), a finding also shown in the current study when comparing 

parrotfish and red mullet. Therefore, the results obtained from this study could under- 

or over-estimate true exposure. Nevertheless the risks to the community due to trace 

element intake via fish consumption are likely to be significant. Of particular concern 

is the high level of lead found in the red mullet from the sea-fill site.  Lead toxicity 

can cause wide range of impacts on human such as impairment of red blood cell 

synthesis, kidney disorders, hypertension, hyperactivity, bone defects, learning 

disabilities, disruption to metabolic pathways, neurological disorders and brain 

damage (GESAMP 1985; O'Neill 1998). 

 

3.5 CONCLUSIONS 

Some of the trace element concentrations in seawater, marine sediments and 

biota of Thilafushi Island exceeded regulatory limits for the protection of marine 

species and/or human consumers of these organisms. The risks associated with 

consumption of seafood from the Thilafushi Island sea-fill site are likely to be high, 

even at normal consumption rates. This is especially true for lead and cadmium, 

which exceeded the maximum allowable levels set by regulatory authorities for 

seafood. In general, the results suggest that the disposal of MSW at the sea-fill can 

increase the dietary exposure of mercury and lead, and exposures exceed the JECFA 

tolerable weekly intakes for these elements. The results also show that even if the 

concentrations in seafood meet the existing maximum allowable levels, people can 

still exceed the PTWI values due to the high rate of fish consumption in the Maldives. 

Therefore, it is advisable for regulatory authorities to establish lower maximum 

allowable levels in foods for countries that report higher consumption rates of 

seafood, including the Maldives, Cambodia, Malaysia and Thailand (Agusa et al. 

2007; FAO 1999; Harrison & Pearce 2000). 
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CHAPTER 4 

 

MONITORING OF TRACE 

ELEMENTS AT THE LYTTELTON 

HARBOUR SEA-FILL, NEW 

ZEALAND 

 

 

 

4.1 INTRODUCTION 

Sea-fill activities with building materials can release trace elements to the 

surrounding environment. The immersion of construction and related materials in 

seawater facilitates a variety of physicochemical processes that result in the leaching 

of trace elements. After the Canterbury Earthquake in 2011, Lyttelton Port of 

Christchurch (LPC) Ltd. was granted approval by Environment Canterbury (ECan) 

and the Christchurch City Council (CCC) to use ―clean‖ earthquake rubble to reclaim 

up to ten hectares of land in Lyttelton Harbour in Te Awaparahi Bay (LPC 2014). 

This rubble material included stone, bricks, tiles, aggregates, reinforced and 

unreinforced concrete, general rubble, glass and cured asphalt (LPC 2011). Cured 

asphalt was only allowed to be placed out of the wave erosion zone. Although the fill 
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materials were supposed to be clean there were a number of other materials 

inadvertently incorporated with the ―clean‖ fill. These included treated timbers, 

concrete reinforced metal bars, paint chips, plastics, electrical ducting, cable sheathing 

and panel products. Such items, in addition to the ―clean‖ materials, are known to 

release trace elements to the surrounding environment (Akter et al. 2005; Denton et 

al. 1997; Heck et al. 1994; Leonard 1991). Trace elements leaching out from sea-fill 

or coastal fill activities can enter into the marine environment leading to enhanced 

local levels of contamination (Denton & Morrison 2009; Jones 2010; Kjeldsen et al. 

2002; Maata & Singh 2008). Release of trace elements to the surrounding ecosystem 

can have potentially serious implications for ecosystem and human health (Ip et al. 

2007; Leivuori et al. 2000; Nfon et al. 2009; Phillips et al. 1982; Pope et al. 2011). 

Therefore, it is important to establish monitoring programs for quantifying trace 

element levels in the environments surrounding sources of potential contamination, 

such as the sea-fill site in Lyttelton Harbour of New Zealand. 

Monitoring of trace element contamination in aquatic systems can be 

conducted by analysing seawater, marine sediment and biota (Rainbow 1995). The 

most effective monitoring programmes are those that combine multiple measures. For 

example, metal concentrations in seawater do not provide a complete picture of the 

bioavailable fraction of trace elements due to factors including the variability of water 

flow, tides, waves and periodicity of contaminant input (Cabral-Oliveira et al. 2015; 

Campanella et al. 2001). Sediments are considered a sink for contaminants released to 

the marine environment (Angelidis 1995), and sediment analysis therefore provides 

useful information about pollution in the marine environment (Calace et al. 2005). 

Measuring trace element concentrations in environmental matrices such as seawater 

or marine sediments provides information on the total contaminant load rather than 

the fraction that is of direct ecotoxicological relevance. As a result, the use of 

bioindicator or biomonitoring species is considered an important factor for assessing 

the bioavailable fraction of trace elements in the marine environment (Phillips 1979; 

Rainbow 1995; Rainbow & Phillips 1993). The use of biomonitoring species 

eliminates the need for complex studies on the chemical speciation and hence 

presumptive bioavailability of aquatic contaminants. Among the biomonitors, bivalve 

molluscs such as mussels have been widely used for monitoring trace elements in 

marine environments (Boening 1999; Chandurvelan et al. 2015; Milne 2006; Pan & 
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Wang 2009), as these sessile filter feeders accumulate trace elements from the 

environment via seawater, sediment, and food (Chan et al. 1986; Rainbow 1995; 

Wang & Rainbow 2008). Furthermore, mussels do not regulate toxic trace elements in 

their bodies, which leads to accumulation, and thus mussel tissue burdens often reflect 

the concentrations in the surrounding environment (Rainbow & Phillips 1993; 

Reinfelder et al. 1998). 

Seawater, marine sediment and mussels were used to investigate trace element 

concentrations at the sea-fill site of Lyttelton Harbour (LH), while the sea-fill was still 

being created. These same matrices were concurrently examined at a reference site 

(Pigeon Bay; PG). The specific objectives of this study were to: 

 Determine if trace elements were leaching from the sea-fill 

 Determine if trace elements were accumulating in sediments due to the sea-fill 

 Determine if trace element concentrations were increasing in bivalve shellfish 

at the sea-fill site 

 

4.2 MATERIALS AND METHODS 

4.2.1 STUDY SITE 

The sea-fill site at Te Awaparahi Bay is situated between the Cashin Quay 

breakwater and Battery Point (BP) of Lyttelton Harbour of New Zealand. The water 

in this area is about 6-8 m deep with largely uniform seafloor sediment (Sneddon & 

Barter 2009). The seabed sediments are formed mainly from loess soils that have 

eroded from the surrounding hillsides (Sneddon & Barter 2009), and thus consist of 

sandy mud and gravel eventually leading to soft mud 50-80 m from the existing 

shoreline (Sneddon & Barter 2009). The harbour shore is predominantly rocky and 

can be described as a high energy shore (Sneddon & Barter 2009). As such it is 

subjected to a continual state of disturbance including elevated levels of turbidity due 

to high sediment mobility, generated by swells and high-wave conditions in the 

harbour (LPC 2009; Sneddon & Barter 2009). The mean tidal velocity at Lyttelton 

Harbour is 0.22 m per second, and large scale tidal circulation ―gyres‖ exist in the 
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eastern half of the harbour, which turn water clockwise on ebb and counter-clockwise 

on flood tides (LPC 2009). The velocities during flood and ebb are constantly 

westward along the shore and southward along the Cashin Quay breakwater due to the 

clockwise eddy formed on ebb tide behind the breakwater (Inglis et al. 2006; LPC 

2009). 

Lyttelton Port is located adjacent to the sea-fill site (Figure 4.1), and the port 

handles a wide range of cargoes including coals for export, shipping vessels and, 

cruising vessels. As such it is a busy site with variety of anthropogenic activities 

(Inglis et al. 2006). Sources of contamination into Lyttelton Harbour, include sewage 

outfalls from the adjacent towns, storm water runoff associated with industrial 

sources, waste water from port operation activities, waste water from the coal 

stockpile yard, dry dock discharge from vessel hull maintenance, discharges from 

vessels, waste from engineering workshops, antifouling materials from ship hulls that 

stop at the port, the operation of an incinerator near Battery Point, chemicals from 

laboratory discharges, and previous reclamation and dredging activities  (Johnston 

2005; Sneddon 2011; Sneddon & Barter 2009; Sneddon et al. 2010). Lyttelton 

Harbour is used for many recreational activities including boating, swimming, 

windsurfing and recreational fishing (Boffa Miskell 2009). The sea-fill that was 

created beside the Lyttelton Port could be another potential source of trace elements 

to the harbour. 
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Figure 4.1: Location and map of Lyttelton Harbour and the sea-fill site, 

Map adapted from Google Earth 

 

4.2.2 SAMPLE COLLECTION AND PRE-TREATMENT 

4.2.2.1  SEAWATER 

Sampling sites are detailed in Figures 4.2A and 4.2B. Seawater sampling was 

carried out quarterly, with samples taken in April 2012 (R1), July 2012 (R2), October 

2012 (R3), January 2013 (R4), April 2013 (R5), July 2013 (R6), October 2013 (R7) 

and January 2014 (R8) along three transect lines (T1, T2, T3) at the sea-fill  (Figure 

4.2A), and one transect line (T4) at the reference site (Pigeon Bay) (Figure 4.2A). 

Pigeon Bay is a small and hydrologically separate marine inlet south of Lyttelton 

Harbour in Banks Peninsula. Surface seawater samples were collected by boat in an 

acid-cleaned plastic jug tied on an untreated wooden pole of 1.5 m long, and 

transferred into duplicate acid-cleaned 50 mL plastic vials. Seawater samples were 

also collected from each sampling point for recording pH. One field blank (50 mL 

Milli-Q water) for each transect line was included. Samples were taken at 2 m (A), 20 
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m (B), 80 m (C), 160 m (D) and 400 m (E) from the silt curtain at the sea-fill site. The 

silt curtain was placed at the sea-fill as a regulatory control measure to mitigate 

migration of sediment materials into the surrounding water. Seawater samples were 

kept on ice and transported to the laboratory in insulated bins. Upon return to the 

laboratory, seawater samples for trace element analysis were acidified to pH ≤ 2 with 

ultrapure HNO3, and stored at 4°C until extracted, generally within 48 hours of 

sample collection. The pH of the unacidified seawater samples was also recorded 

upon arrival at the laboratory. 

 

 

Figure 4.2: Maps showing the sampling sites in Banks Peninsula. Green mussels were collected 

from Battery Point (BP) and Pigeon Bay (PG). Numbers 1-13, represents sediments and seawater 

sites around Lyttelton Harbour- LH (map A). Transect lines at the sea-fill of LH (T 1-3) and PG 

(T4), and A-E on the transects represents selected distances along each transect lines from the silt 

curtain (map B). Maps adapted from Google Earth 

Sea-fill 
T3 

T2 

T1 

 B 

A 
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4.2.2.2  MARINE SEDIMENTS 

Marine sediment samples were collected every six months (April 2012 –R1, 

October 2012- R3, April 2013- R5 and October 2013- R7) along the same transect 

lines as seawater, using a stainless steel ponar grab sampler (16.5 cm × 15 cm). The 

sediments were transferred to acid-cleaned plastic jars with an acid-cleaned plastic 

spoon. The sediment samples were always collected after the seawater samples to 

avoid contaminating the seawater samples. Sediment samples from 13 different 

locations covering the entire Lyttelton Harbour (Figure 4.2A) were also collected at 

the beginning of the sampling work in April 2012 to determine trace element 

concentrations around the harbour. 

Sediment samples were kept on ice and transported to the laboratory, where 

they were kept at 4°C until dried in an oven at 30°C for 7 to 10 days in aluminium 

trays. Details of sample preparation for trace element analysis is provided in Section 

2.4.1.1. The distance to the sampling points from the silt curtain, the GPS coordinates 

of seawater and sediments, and depths of sediments at low tide are provided in 

Appendix B1.  

4.2.2.3  GREEN-LIPPED MUSSELS 

Green-lipped mussels (Perna canaliculus, n = 10, length 80 - 107 mm) were 

collected quarterly from Battery Point (adjacent to the sea-fill site). Green-lipped 

mussels from the PG (reference) site were collected from a site topographically 

similar to Battery Point (BP), that was a projection from a hill into the sea adjacent to 

the transect line T4 (Figure 4.2A). The green-lipped mussels were collected at the 

same time as seawater. Green-lipped mussels were not able to be collected in the 

sampling round R3 (October 2012) due to bad weather. Green-lipped mussels were 

kept on ice during transport to the laboratory where they were kept at 4°C until 

processed the next day. The shells were cleaned of any epibionts, whole body weights 

were recorded, and the mussels dissected. Whole soft tissue was then collected; and 

after wet weights were recorded, tissues were stored at -20°C until freeze-dried for 

analysis. 
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4.2.3 DETERMINATION OF TOTAL ORGANIC CARBON IN SEDIMENTS 

  Marine sediments (< 2 mm) in sampling rounds R1 and R2 from the four 

transect lines (T1-4) were analysed for total organic carbon by loss on ignition (LOI). 

Approximately 3 g of each sediment were accurately weighed into silica crucibles and 

heated in a muffle furnace at 500°C for four hours. Samples were cooled to 

approximately 150°C before being removed from the furnace, and left to cool further 

in a desiccator. Once cold (room temperature), the samples were reweighed and the 

percentage mass difference calculated to provide a measure of organic content. 

4.2.4 SAMPLE PREPARATIONS FOR TRACE ELEMENT ANALYSIS BY 

ICP-MS 

The laboratory experimental methods to extract trace elements in seawater, 

marine sediments and green-lipped mussels, and their preparation for chemical 

analysis by ICP-MS, are provided in Chapter 2 (Section 2.3 and 2.4). 

4.2.5 METAL POLLUTION INDEX (MPI) 

Metal pollution index (MPI) values were calculated for seawater, marine 

sediments and green mussels. These values were used to compare trace element levels 

at the sea-fill and the reference site. The MPI values were calculated using Equation 

4.1 (Usero et al. 2005). 

                 
       Equation 4.1 

where Cf is the concentration of the trace element (dry weight), and n is the number 

of trace elements analysed.  

4.2.6 STATISTICAL ANALYSIS 

All statistical analyses were carried out in R
©

 (Version 2.15.3). Statistical 

analysis was only performed for sample sets where more than 50% of the samples had 

values above the limit of quantification (LOQ). In conditions where more than 50% of 

the samples were above the LOQ, the remaining samples below LOQ were given a 

value of half the LOQ. All duplicate measurements were averaged before inclusion in 

the statistical analysis. 
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All data were checked for normality by plotting probability plots. Where 

necessary, data were log transformed to meet assumptions of normality before 

analysis. Significant differences (p < 0.05) at the 95% confidence level for trace 

element concentrations in the environmental samples between the sites, between the 

transects, variations with distance from silt curtain (sampling point) and variations 

with respect to time (sampling rounds) were determined by using multifactor 

ANOVA tests followed by Tukeys HSD tests, at α = 0.05. Pearson‘s correlation 

coefficients were also used to analyse relationships between trace elements within and 

between the environmental matrices. 

 

4.3 RESULTS 

4.3.1 ANALYTICAL METHOD PERFORMANCE 

Standard reference material of mussel tissue (SRM-2976-EVISA) and fish 

protein (DORM-3, NRCC) were digested along with the green-lipped mussels. 

Standard reference marine sediment (SRM-2702-NIST) was digested along with the 

marine sediments. Certified reference seawater (NASS-6, NRCC) and trace element-

spiked water samples were extracted with the seawater samples. 

Percentage recoveries of cadmium, copper, iron, lead, yttrium and zinc in 

certified reference seawater (NASS-6), and trace element-spiked Milli-Q water, 

natural seawater and artificial seawater were within acceptable ranges (85-120%) 

(Table B2.1, Appendix B2). The mean percentage recoveries of all elements in the 

standard reference mussel, fish protein (DORM-3) and marine sediments ranged 

between 90 and 113% with the exception of lead in DORM-3 (35.7%) (Table B2.2, 

Appendix B2). 

4.3.2 TRACE ELEMENTS IN SEAWATER 

The trace element concentrations (mean values ± SE in µg L
-1

) in seawater 

along the transect lines are presented in Appendix  B2.3, and the concentrations of 

trace elements in the seawater collected around the harbour are presented in Appendix 

B3. The graphical comparisons of variations in trace element concentrations with 
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respect to time, site, and distance from the silt curtains are presented in Figure 4.3a-e. 

The trace elements analysed in seawater were cadmium, copper, iron, lead and zinc 

(mercury and arsenic were not able to be analysed by the employed extraction 

method). The pH values of the seawater samples ranged from 7.74 to 8.16 for both the 

sea-fill site and the reference site throughout the sampling period, and were not 

significantly different between the two sampling sites. 

In general, the concentrations of trace elements in the seawater at the sea-fill 

site were higher than those of the reference site (PG). Concentrations of seawater 

cadmium, copper, iron, lead and zinc are presented in Figures 4.3a-e respectively. 

Concentrations of cadmium, lead and zinc were higher closer to the sea-fill and 

decreased with distance from the sea-fill. Copper and iron did not show any 

significant variations with respect to distance from the sea-fill. Although there was no 

specific pattern of variation between the sampling times, levels of trace elements 

tended to be higher in the first sampling rounds than in later sampling rounds. 

More specifically, cadmium concentrations in seawater of T1, T2, T3 (sea-fill) 

were significantly higher than T4 (PG) (also T1 > T3 at the sea-fill site). Cadmium 

concentrations in sampling rounds R1, R2 and R3 were greater than R5, R6, R7 and 

R8 at the sea-fill site, with the reference site showing similar results where R1 

exhibited higher cadmium levels than all other sampling times except R4. The 

combined results of all 8 sampling times indicated that the cadmium concentrations in 

the seawater at 2 m from the silt curtain at the sea-fill were significantly higher than at 

160 m and 400 m, reflecting a decrease in concentration away from the sea-fill site. 

Concentrations of copper at transect lines T1, T2 and T3 were significantly 

higher than T4 (reference site), with no difference between the three transect lines at 

the sea-fill site. Copper concentrations in transects over time followed the general 

pattern seen for cadmium with R1 significantly elevated relative to all later sample 

times (except R2). 

The iron concentrations at transect line T2 were significantly higher than those 

at T4. In general, the iron concentrations in the sampling rounds R1, R2 and R4 were 

significantly higher than all other sampling rounds at the sea-fill site, and R6 and R8 

were lower than all other sampling rounds. At the reference site, iron concentrations 
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in sampling round R2 were significantly higher than in all other sampling rounds. 

Lead concentrations were significantly higher in all sea-fill transects (T1, T2 

and T3) than in the reference transect (T4). The lead concentrations at 2 m from the 

silt curtain were significantly higher than lead in samples taken at distances 80, 160 

and 400 m from the silt curtain, indicating concentrations decreased away from the 

sea-fill. Zinc followed a similar pattern, with higher levels in the sea-fill transects, and 

significantly decreasing zinc levels with distance along the sea-fill transects. 

The correlation analysis of trace elements within seawater (Table B4.1, in 

Appendix B4) indicated all elements at the sea-fill site were strongly positively 

correlated to each other with the exception of cadmium and lead, which were not 

correlated. At the reference site, iron was significantly positively correlated to lead 

and zinc, whereas copper was significantly positively correlated to cadmium and lead, 

and lead was significantly positively correlated to cadmium. 
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Figure 4.3 (a-e): Comparison of mean trace element concentrations in seawater with distance 

from silt curtain at the sea-fill sites as a function of sampling round. Plotted values represent 

means ± standard errors (n = 3). Significant differences (p < 0.05) in trace element concentration 

with respect to distance are indicated with the arrows. 

 

4.3.3 TRACE ELEMENTS IN MARINE SEDIMENTS 

The trace element concentrations (mean values ± SE in µg g dry wt
-1

) in 

marine sediments collected along the transect lines are presented in Appendix B5, and 

the graphical comparisons of the trace element concentrations with respect to distance 
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from the silt curtain, time (sampling rounds) and sites are presented in Figure 4.4. 

Trace element concentrations in the sediments of Lyttelton Harbour are presented in 

Appendix B3 along with seawater results. The trace elements analysed in marine 

sediments were arsenic, cadmium, copper, iron, lead and zinc. 

Overall, sediment results indicated that cadmium, copper, iron, lead and zinc 

concentrations were significantly higher at the sea-fill site compared to the reference 

site. Arsenic concentrations at the sea-fill site were not significantly different from the 

reference site, and there were no significant differences between any transect lines 

(T1= T4 = T3 = T4). Arsenic, cadmium and lead concentrations were higher closer to 

the silt curtain and decreased away from the sea-fill (T1, T2 and T3 combined), while 

other elements did not vary significantly with respect to distance. Arsenic and iron 

concentrations increased with respect to time at the sea-fill site, while copper 

decreased with respect to time, and other elements did not change significantly over 

time. 

The overall arsenic concentrations varied with time at the sea-fill site, with R3, 

R5, R7 > R1, and R7 > R3. At the reference site, the arsenic concentrations also 

varied in the following manner: R7 = R5 > R3 = R1. The arsenic concentrations also 

varied with distance from the silt curtain, with samples at distances of 2 m and 20 m 

significantly higher than samples collected at 400 m. Arsenic concentrations increased 

with respect to time at the sea-fill as well as at the reference site over the sampling 

period. 

Cadmium concentrations in T1, T2, T3 (sea-fill) > T4 (PG); while within sea-

fill site transects, T1 and T3 > T2. There were no significant differences with respect 

to time at either sampling site. Cadmium concentrations were significantly higher at 

distance of 2 m from the silt curtain than at 400 m at the sea-fill (T1, T2 and T3 

combined). 

Copper concentrations in T1, T2 and T3 > T4 (PG); while T1 > T2 and T3 at 

the sea-fill site. Copper concentrations in R1 and R3 > R7 at the sea-fill site, while 

there were no significant differences with respect to sampling time at the reference 

site. Although the copper concentrations decreased with respect to time at the sea-fill, 

there were no significant differences with respect to distance. 
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Iron was significantly higher in sediments collected from the sea-fill site than 

those sourced from the reference site. Iron levels in sediments also increased with 

time, with R7 showing an elevated level with respect to R1 and R3 at the sea-fill site. 

Similar findings were observed at the reference site with respect to sampling round. 

There was no significant effect of distance from the silt curtain on iron sediment 

concentrations. 

Lead concentrations at T1, T2 and T3 > T4; while T1 > T2. Although there 

were no significant differences in sediment lead with respect to time at the sea-fill site 

or the reference site, the concentrations at 2 m from the silt curtain were significantly 

higher than at distances 160 m and 400 m from the silt curtain. 

Concentrations of zinc at the transect lines T1, T2 and T3 > T4; while T1 > T2 

and T3. There were no significant differences in sediment zinc between the sampling 

rounds at either site, and no significant differences with respect to distance at the sea-

fill site. 

The correlation analysis of trace element levels within the sediments (Table 

B4.2 in Appendix B4) of the sea-fill indicated that iron was significantly negatively 

correlated with cadmium, lead and zinc while arsenic was significantly positively 

correlated to iron. Copper was significantly positively correlated with cadmium, lead 

and zinc; while zinc was significantly positively correlated to cadmium and lead. 

Finally, cadmium was significantly positively correlated with lead at the sea-fill site. 

At the reference site iron was significantly positively correlated to arsenic, 

copper, lead and zinc. Copper was significantly positively correlated to arsenic, lead 

and zinc; while zinc was significantly positively correlated to arsenic and lead. Lead 

was also significantly positively correlated to arsenic. 

Analysis of trace elements that were correlated between seawater and 

sediment samples (Table B4.3 in Appendix B4) indicated that sediment copper was 

significantly positively correlated to seawater copper, and sediment zinc correlated 

with seawater zinc at the sea-fill site. There were no significant correlations at the 

reference site. 
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Figure 4.4 (a-f): Comparison of mean trace element concentrations in sediments along the transect lines at the sea-fill site, and Pigeon Bay (PG) as a function of 

distance from the silt curtain and sampling round. Plotted values represent means ± standard errors (n = 3). Significant differences with respect to distance along 

the transect lines (sea-fill site) are indicated with the arrows. 
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4.3.3.1  ORGANIC CONTENT OF THE SEDIMENTS 

The percentage of organic content (Table B6 in Appendices) in the sediments 

of the first two sampling rounds ranged from 1.35 to 11.5% at the sea-fill site and 

from 3.8 to 7.1% at the reference site (PG). There were no significant differences in 

organic content with respect to distance, transect lines or time at the sea-fill. However, 

organic content at the reference site was greater in the sampling round R3, and was 

elevated relatively to that at R1 at reference site. Copper concentrations were 

significantly (p < 0.05) positively correlated with the organic content at the sea-fill 

site, while arsenic, cadmium and iron were significantly positively correlated with the 

organic content at the reference site. 

4.3.4 TRACE ELEMENTS IN GREEN-LIPPED MUSSELS 

The trace element concentrations (mean values ± SE in µg g wet wt
-1

) in 

green-lipped mussels during the two years of sampling are presented in Appendix B7, 

and the graphical comparisons of the trace element concentrations with respect to time 

and site are presented in Figure 4.5a-g. Comparisons of concentrations of arsenic, 

cadmium, copper, iron, mercury, lead and zinc in green-lipped mussels are presented 

in Figures 4.5a-g respectively. 

Overall, arsenic, copper, iron, mercury, lead and zinc concentrations were 

higher in the samples collected from the sea-fill, while cadmium was higher in the 

samples from PG. In general, the trace element concentrations in green-lipped 

mussels showed variations with time in a manner that suggested changes related to 

season. The cadmium concentrations in the green-lipped mussels of PG were 

significantly higher in the sampling rounds R5 and R6 compared to those of sea-fill 

samples, but there were no differences with respect to sampling time within any one 

sampling site. Mercury concentrations in the green-lipped mussels from the sea-fill 

(BP) were significantly higher than in the PG samples for all the sampling rounds 

with the exception of sampling round R5, and the mercury concentrations in the 

samples of R8 at the PG site were below LOQ. Lead concentrations in the green-

lipped mussels from the sea-fill were significantly higher than those of PG throughout 

the sampling period. Significant differences with respect to sampling site, and time 

within individual sites, are shown in Figures 4.5a-g. The correlation analysis of trace 
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elements in green-lipped mussels and seawater did not show any significant 

relationships at the sea-fill site or the reference site (Appendix B8). Similarly there 

were no significant correlations between trace elements in sediments and mussels at 

either site (Appendix B9). 
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Figure 4.5 (a-g): Comparison of mean trace element concentrations in green-lipped mussels from sea-fill and reference (PG) over time (green-lipped mussels were 

not collected in 3
rd

 round).  Plotted values represent means ± standard errors (n = 10). The asterisks indicate significant differences between the sites within a 

sampling time.  Bars sharing uppercase letters are not significantly different with respect to sample time within the sea-fill  site, and bars sharing lowercase letters 

are not significantly different with respect to sampling times within the reference site (PG). Mercury was <LOQ in green mussels in sampling round 8 at PG.  

(Note: BP- a site in the vicinity of the sea-fill) 
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4.3.5 METAL POLLUTION INDEX (MPI), AND GUIDELINE VALUES 

Metal pollution index (MPI) values derived from the seawater, sediment and 

green-lipped mussel trace element concentrations for the two sampling sites are presented 

in Tables 4.1 - 4.3 respectively. Trace element concentrations obtained in the current 

study for seawater, sediment and green-lipped mussel tissue (whole tissue) are also 

summarised in Tables 4.1 - 4.3, along with regulatory values and values for similar 

studies in the literature. 

When based on seawater and marine sediment results, transect line T1 generated 

the highest MPI value, followed by T2 and T3. Using the same matrices, the lowest MPI 

values were obtained for T4 at the reference site (Pigeon Bay) (Table 4.1 and 4.2). 

Similarly, the MPI values obtained using the trace element content in the green-lipped 

mussels also showed that the reference site contained the lowest MPI value (Table 4.3). 
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     Table  4.1:  Mean, minimum and maximum concentrations (µg L
-1

) for trace elements in seawater, ANZECC guideline values, MPI values derived for each 

transect line at the two sampling sites, and comparisons of results with similar studies 

Sample / location Fe Cu Zn Cd Pb MPI 

Seawater (µg L
-1

)   

T1 212 (44 - 688) 0.66 (0.35 - 3.29) 1.83 (0.69 - 6.10) 0.018 (0.010 - 0.036) 0.33 (0.08 - 0.55) 1.09 

T2 213 (62 - 396) 0.54 (0.30 - 0.88) 1.55 (0.61 - 3.16) 0.018 (0.009 - 0.048) 0.27 (0.06 - 0.84) 0.98 

T3 208 (61 - 699) 0.54 (0.31 - 1.63) 1.41 (0.48 - 4.28) 0.016 (0.009 - 0.026) 0.25 (0.11 - 0.62) 0.91 

T4 (PG)-ref. site 162 (71 - 299) 0.26 (0.18 - 0.86) 0.70 (0.35 - 1.44) 0.015 (0.009 - 0.025) 0.12 (0.07 - 0.18) 0.56 

ANZECC trigger values for marine water (µg L
-1

) for level of protection of marine species (% species) 

99% protection ** 0.30 7.00 0.70 2.20   

95% protection ** 1.30 15.00 5.50 4.40 

 
90% protection ** 3.00 23.00 14.00 6.60   

80% protection ** 8.00 43.00 36.00 12.00   

Comparisons with other similar studies Reference 

Bermuda coastal 

fill <10 0.12 - 18.4 3.8 - 204 0.02 - 0.07 0.05 -1.5 (Jones 2010) 

Lyttelton Harbour NA <1.1  - 1.2 <4.2 - 8.8 NA <1.1  - 2.7 (Sneddon 2011)  

Thilafushi Island / 

Maldives 9.7- 31.4 0.05-16.3 0.84-5.3 0.012-0.019 0.02-0.80 Chapter 3 of this study 

       ** Values not provided in the ANZECC guideline. MPI-metal pollution index. NA- trace elements not analysed 
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Table  4.2:  Mean, minimum and maximum concentrations (µg g dry wt
-1

), of marine sediment, the ANZECC guideline values, and the MPI values derived for the 

transect lines at the two sampling sites. 

Sample Fe Cu Zn As Cd Pb MPI 

Marine sediment (µg g
 
dry wt

-1
) 

 
T1 25348 (19187 - 29738) 12.97 (11 - 22) 93.22 (77 - 152) 8.43 (7 - 9) 0.072 (0.040 - 0.133) 32.37 (20 - 75) 29.03 

T2 26760 (24623 - 28908) 10.78 (9 - 13) 78.87 (71 - 86) 8.76 (8 - 10) 0.050 (0.039 - 0.061) 22.47 (19 - 26) 24.62 

T3 26004 (18199 - 32135) 11.36 (9 - 13) 73.93 (56 - 90) 8.53 (6 - 10) 0.063 (0.046 - 0.086) 27.08 (17 - 30) 26.09 

T4 (PG) 22754 (16878 - 28635) 6.67 (5 - 9) 55.95 (45 - 73) 8.39 (7 - 10) 0.042 (0.033 - 0.044) 16.04 (14 - 20) 19.09 

ANZECC  Interim Sediment Quality Guideline (ISQG)  values for the protection of marine species (µg g dry wt
-1

) 

  
ISQG-low ** 65 200 20 2 50   

ISQG-high ** 270 410 70 10 210   

Comparisons with other similar studies   Reference 

Lyttelton sea-fill / NZ  NA 8 - 15 54 - 93 6 - 8 NA 22 - 49 (Sneddon 2011) 

Kiribati NA 0.3 - 14 1.2 - 77 < LOQ 0.3 - 14 3.4 - 13 (Redfern 2006) 

Te Atatu Peninsula / NZ  NA 14 - 48 97 - 896 2.6 - 36 14 - 48 23 - 130 (Redfern 2006)  

Suva Harbour / Fiji NA 59 - 306 88 - 670 0.7 - 45 59 - 306 19 - 272 

(Naidu & 

Morrison 1994) 

Bermuda 800- 11100 3 - 159 16.6 - 1380 2.7 - 29 3 - 159 15 - 259 (Jones 2010) 

Tanapag Lagoon / 

Saipan NA 0.22 - 28 1.63 - 127 1.33-10 0.22 - 28 <0.4 - 41 

(Denton et al. 

2001)  

Thilafushi Island / 

Maldives 22.56 - 13562.81 0.14 -148 0.21- 425.81 1.5-6.1 0.04 - 0.44 0.20 - 30.69 

Chapter 3 of this 

study 

** Values not provided in the ANZECC guideline. MPI-metal pollution index. NA- trace elements not analysed. 
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Table  4.3:  Mean, minimum and maximum concentration (µg g wet wt
-1

) values of green-lipped 

mussels, the MPI values derived from each sampling site, and the FSANZ maximum 

allowable level for shellfish 

Trace element Battery Point (BP) Reference site (PG) 

FSANZ maximum 

allowable level –ML 

(µg g wet wt
-1

) 

Fe 125 (64 - 191) 89 (50 - 196) ** 

Cu 0.88 (0.73 - 1.51) 0.73 (0.57 -0.96) ** 

Zn 16.10 (10 - 22) 13.39 (10 - 19) ** 

As (total) 2.22 (1.58 - 3.19) 2.01 (1.43 - 3.64) 1 (inorganic) 

Cd 0.070  (0.046 - 0.135) 0.091(0.043 - 0.150) 2 

Hg 0.027 (0.046 - 0.135) 0.020 (0.043 - 0.150) 0.5 

Pb 0.32 (0.14 - 0.53) 0.09 (0.05 - 0.19) 2 

MPI values 1.13 0.84   

** Values not provided in the FSANZ standard. 

 

4.4 DISCUSSION 

4.4.1 TRACE ELEMENTS IN SEAWATER AND SEDIMENT 

Limited studies have been conducted that examine trace element 

concentrations in seawater of coastal landfill or sea-fill sites. In this study, the 

concentrations of iron were the highest amongst all the trace elements analysed in 

seawater, followed by zinc, copper, lead, and cadmium. The high content of iron in 

the samples could be because the seawater samples were not filtered prior to the 

analysis, and thus particulate and colloidal iron in the seawater samples may have 

been present. The order of trace element concentrations in this study was generally in 

agreement with the results of the contaminant monitoring work for reclamation 

activities in Lyttelton Harbour (Sneddon 2011), although iron was not analysed in this 

previous report. However, the lead concentrations reported by Sneddon (2011) were 

greater than those of this study (Table 4.2). 

Previous studies on trace element concentrations in seawater of coastal fills 

are presented in Table 4.1 for comparison to the current data. Copper, zinc, and lead 

levels at the Bermuda marine fill site were comparatively higher than those of this 
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study (Jones 2010). Copper concentrations at Thilafushi Island of the Maldives were 

also significantly higher than those of the Lyttleton Harbour sea-fill (Chapter 3). 

These differences could be related to the nature of the fill materials. The coastal fills 

of Bermuda and Thilafushi Island of the Maldives contained a variety of waste, 

including metallic and building waste, broken boat parts, engines, cars, fridges, 

hazardous chemicals, municipal solid waste, and incinerator ash (CDE Consulting 

2011; Jones 2010). These are potential sources of trace elements to the surrounding 

environment. Moreover, these coastal fill and sea-fill sites did not have control 

mechanisms to mitigate escape of materials into the surrounding environment, such as 

retaining wall linings or silt curtains like the sea-fill site of Lyttelton Harbour (CDE 

Consulting 2011; Jones 2010). 

Similar to seawater, the highest concentration of trace elements in the 

sediments was iron, followed by zinc, lead, copper, arsenic, and cadmium at the sea-

fill site and the sediments collected around the harbour. This order is generally in 

agreement with the monitoring work carried out at the site prior to the sea-fill 

activities (Sneddon 2011). The order also reflects the general pattern of natural crustal 

abundance and marine sediments at other sea-fill sites such as Thilafushi Island of 

Maldives (Chapter 3), the marine landfill beside a coral reef in Bermuda (Jones 2010) 

and other similar studied sites (Glasby et al. 1988; Williamson 1992) (Table 4.2). 

Correlation analysis of the sediment trace elements indicated that cadmium, 

copper, lead, and zinc were significantly positively correlated, as were iron and 

arsenic. Conversely iron was negatively correlated to zinc, cadmium, and lead in the 

sea-fill sediments of this study. This finding was different from the results found for 

volcanic-derived sediments at Paygo Bay in Guam, Laucala Bay in Fiji, and 

Fanga‘uta Lagoon in Tonga (Denton & Morrison 2009; Morrison & Brown 2003; 

Morrison et al. 2001), where the iron-copper and iron-zinc pairs were highly 

positively correlated. In contrast to the correlations between trace elements in the sea-

fill sediments, iron at the reference site was correlated with all trace elements with the 

exception of cadmium. These results suggest that the input sources of cadmium, 

copper, lead and zinc could be different from the sources of arsenic and iron at the 

sea-fill site. 

The MPI values at the sea-fill site compared to the reference site suggest that 
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the sea-fill site is a more contaminated site. The significantly higher concentrations of 

trace elements (cadmium, lead, and zinc in seawater; and arsenic, cadmium, and lead 

in sediment) closer to the silt curtain at the transect lines of the sea-fill site indicate 

that the sea-fill itself was a source of trace elements to the adjacent marine 

environment. Other studies on trace elements in marine sediments beside coastal 

landfills and sea-fills have also shown that fill activities contribute trace elements to 

the marine environment (Denton & Morrison 2009; Jones 2010; Maata & Singh 2008; 

Naidu & Morrison 1994). For example, previous studies of seawater trace elements at 

the marine landfill in Bermuda (Jones 2010), and the sea-fill of Thilafushi Island of 

Maldives (Chapter 3 of this thesis) showed a similar characteristic pattern of 

diminishing trace element concentrations with distance from the sea-fill site. 

Iron concentrations in this study were higher than those of the marine landfill 

sites in Bermuda and Thilafushi Island (Table 4.2). The higher concentrations of iron 

in the LH sea-fill site and the reference site indicate that iron in the sampling area was 

naturally high. It is common to see elevated levels of iron associated with volcanic 

materials (Denton & Morrison 2009), and this could be the case in Lyttelton Harbour. 

A previous study carried out in Manukau Harbour sediments also showed a similar 

range of iron concentrations (17420 to 23940 µg g wet wt
-1

) to that of Lyttelton 

Harbour, implying that iron levels are high in New Zealand marine sediments 

(Williamson 1992). Iron is a nutrient element and also has very low bioavailability in 

marine settings, so even highly elevated levels are unlikely to be toxic to marine biota. 

In fact, iron levels are only rarely reported in studies of marine contamination (Denton 

& Morrison 2009; Naidu & Morrison 1994; Redfern 2006). 

4.4.1.1  SOURCES OF TRACE ELEMENTS AT THE SEA-FILL  

The possible sources of cadmium and lead in the sea-fill materials could be 

plastics, paints, and electronic materials incorporated with the building materials.  

There is a sewage outfall adjacent to the T1 towards the Cashin Quay breakwater at a 

very close proximity to the silt curtains at the sea-fill site. This sewage outfall could 

also be a possible source of trace elements to the environment. In addition to 

cadmium and lead, significantly higher concentrations of copper, iron, and zinc were 

also measured in the seawater and sediments at transect line T1 relative to other 

sample sites. Sewage outfalls are known to be a source of trace elements into the 
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marine environment (Birch & Taylor 1999; Cabral-Oliveira et al. 2015; Denton & 

Morrison 2009; Mance 1987; Sridhara Chary et al. 2008). 

The samples from transect line T1 closest to the silt curtain (1A- sample) 

contained a high concentrations of sediment lead (75 µg g dry wt
-1

) in the first and 

second sampling rounds (68 µg g dry wt
-1

) of this study. A previous study carried out 

at the proposed sea-fill site of Lyttelton Harbour before the reclamation work, showed 

a similar elevated level of lead (100 µg g dry wt
-1

) (Sneddon & Barter 2009).  

Although a gradual decrease of lead at this sample location during the two year of 

sampling was noted (Figure 4.4e), the decrease was not significant. It is likely that the 

elevated lead concentrations represent historical contamination, possibly related to the 

sewage discharge and storm water runoffs (Williamson 1992). The observed gradual 

decrease in trace element concentrations could be due to cleaner materials from the 

sea-fill covering the old materials (sediment) while the sea-fill was being created. 

Arsenic was another element that was elevated closer to the sea-fill site. 

Possible sources of arsenic in the sea-fill include treated timber, semiconductors, and 

glass from the demolished building materials (Denton et al. 1997). However, an 

alternative, more historically important source may have also been responsible for the 

elevated arsenic. There is a coal storage facility behind the sea-fill site. Any leaching 

of waste water from this source may release arsenic into the marine environment, as 

coal is a known source of this trace element (Nalbandian 2012), and previous 

monitoring work at the sea-fill site indicated the presence of coal fines in the 

sediments. However, previous studies have suggested that the amount of coal particles 

present in the sediments of were not high enough to contribute significantly to the 

levels of trace elements in the harbour, as New Zealand coal typically does not have 

high arsenic (Sneddon 2011; Sneddon & Barter 2009). 

Copper and iron did not show variations with respect to distance from the sea-

fill, suggesting that the sea-fill was not the only source of these elements to the 

surrounding seawater. However, copper and iron levels were significantly higher at 

the sea-fill site than at the reference site. As mentioned in Section 4.2.1 above, there 

are multiple sources of trace elements in LH, including a contamination site at the 

dry-dock in the port area, a coal storage facility adjacent to the port, outfalls of three 

major sewage treatment plants (one adjacent to the sea-fill), storm water runoffs from 
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the surrounding hills and roads, and busy shipping activities in the harbour (ECan 

2008). The major source of copper and iron could be from the dry dockyard due to 

ship repair and maintenance work. Sources of copper to the marine environment 

include anti-fouling paints from ship hulls, wood preservatives and brass materials 

used in the ships and other port operation related activities (Denton et al. 1997), while 

the iron could be from the steel used for ship hulls, from the wharfs and pilling work 

at the port, and from other ferrous materials used in port operation activities. 

Although zinc concentrations in seawater decreased significantly with distance 

from the sea-fill, sediment zinc concentrations did not vary with respect to distance 

(Figure 4.4 c, d and f), indicating that the sea-fill was not the only source of zinc. The 

major possible source of zinc in the harbour could be from the boating activities and 

ship movement at the port, as zinc is known to release from steel (Williamson 1992). 

Zinc can be released from the sacrificial anodes on marine vessels, paints, zinc-based 

alloys, brass and bronze, galvanisation work, and rubber materials (Denton et al. 

1997). Other possible sources of zinc to Lyttelton Harbour could be from storm water 

from the surrounding hills that was contaminated with vehicle tyre rubber, sewage 

discharges, and roof runoff (ECan 2008; Glasby et al. 1988). 

4.4.1.2  ENVIRONMENTAL PARAMETERS THAT DETERMINE TRACE 

ELEMENT CONCENTRATIONS IN SEDIMENTS 

Sediment characteristics can determine sediment trace element concentrations. 

For example, sediment grain size has been recognised to affect trace element 

concentrations, with silt/clay fractions having higher accumulation values due to the 

large surface area to volume ratio of the finer particles, coupled with the strong 

adsorptive properties of clay materials (Glasby et al. 1988; Krumgalz et al. 1992; 

Luoma 1990; Williamson & Wilcock 1994). Previous investigation at the LH sea-fill 

site noted that the sediment texture ranged from relatively coarse gravel, sand, and 

shell mixtures to fine, soft muds (Sneddon & Barter 2009). This trend of sediment 

texture was observed visually for the sediments of this current study. Sneddon & 

Barter (2009) reported that the silt content increased from 6% to 64% from east (from 

Battery Point) to west (towards Cashin Quay breakwater), that is from T3 to T1 in this 

current study. This is in agreement with the higher trace element contents at T1, 

suggesting that sediment size may be an important factor contributing towards local 
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variation in trace element content. Similar findings were reported in a study of a 

Kiribati coastal landfill (Redfern 2006). 

Numerous studies have shown that increased input rates of trace elements 

result in an increase in the local sediment concentrations. As such, sediments act as a 

sink, an effect that is most prominent in sheltered environments where the sediment 

movement is restricted (Denton & Morrison 2009; Denton et al. 2001; Naidu & 

Morrison 1994; Redfern 2006; Williamson et al. 2003). Supporting this, the 

concentrations of trace elements found in the transect T1 (more sheltered from the 

Cashin Quay breakwater) of this study were higher than other transect lines. Also, T1 

was located at a position for accumulation of materials from the movement of sea 

currents; the formation of tidal gyres in the region turned water clockwise on ebb tide 

and counter-clockwise on flood tides at the breakwater (Inglis et al. 2006; LPC 2009). 

It has also been recognised that metal-reactive components such as iron 

oxides, manganese oxides, sulphides, and organic material (e.g. humic acid, 

carbohydrates and proteinaceous materials) can increase in the sediment as the 

sediment texture becomes finer (Luoma 1990; Williamson & Wilcock 1994). Organic 

matter often contains negatively charged sites that can attract trace elements, thus 

sediments with a higher content of organic material tend to retain a higher content of 

trace elements (Luoma 1990; Williamson & Wilcock 1994). The organic content data 

of this study did not explain the variable concentrations of trace elements found with 

respect to the site, the distance from the sea-fill, or the sampling rounds. Copper was 

the only trace element significantly correlated with the organic content at the sea-fill 

site, whereas arsenic, cadmium, and iron were correlated with the organic content at 

the reference site. 

Although the nature of the fill materials differs for different fill activities, the 

results of this study are in agreement with those of other studies suggesting that fill 

activities are sources of trace elements into the surrounding marine environment. This 

includes studies at the marine landfill site of Bermuda (Jones 2010), the coastal 

landfill of Suva Harbour in Fiji (Maata & Singh 2008; Naidu & Morrison 1994), the 

landfill of Pago Bay in Guam (Denton & Morrison 2009), and the coastal landfill of 

Kiribati and Te Atatu Peninsula of Auckland, New Zealand (Redfern 2006). These 

studies also indicated that the trace element concentrations in the sediments decrease 
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with distance away from the point sources. 

4.4.1.3  COMPARISON TO REGULATORY GUIDELINES 

Trace element concentrations in seawater at the sea-fill and the reference site 

were below the ANZECC trigger value (Table 4.1) for protection of 99% of species, 

with the exception of copper at the sea-fill site and the reference site. Copper 

concentrations in the seawater of the reference site in the first and the fifth sampling 

rounds exceeded the 99% protection levels, while almost all samples at the sea-fill site 

exceeded the 99% protection level in all the sampling rounds. The 95% protection 

levels for copper were exceeded occasionally at the sea-fill site, and one sample (at 

the T1) in the first sampling round exceeded the 90% protection level. The 

exceedance of the ANZECC trigger values for copper implies that potential adverse 

ecological effects are possible. 

Trace element concentrations in the sediments from the sea-fill site and the 

reference site were generally below the ISQG-low value (Table 4.2), with the 

exception being lead in one sampling location closest to the sea-fill (T1-A-next to 

sewage outfall) at the Cashin Quay breakwater in the first and the second sampling 

rounds (75 and 68 µg g
-1

 respectively), which exceeded the ISQG-low value for lead 

(50 µg g
-1

). The concentrations of lead at that sampling location, however, decreased 

to below the ISQG-low value in the subsequent sampling rounds, suggesting that the 

contaminated sediment may have been replaced by cleaner materials by the sea-fill, as 

discussed earlier. The higher value of lead in this study and a previous study 

(Sneddon & Barter 2009) at the sea-fill site indicates that this could have biological 

effects. 

4.4.2 TRACE ELEMENTS IN SHELLFISH 

Iron was the trace element found at the highest level in the green-lipped 

mussels, followed by zinc, arsenic, copper, lead, cadmium, and mercury. This trend of 

trace element concentration is common in green-lipped mussels in other studies where 

iron concentrations were reported (Kennedy 1986; Nielsen & Nathan 1975). 

Quantitatively, trace element concentrations of green-lipped mussels from this study 

were comparable to, or lower than, concentrations measured in green-lipped mussels 

from sites in New Zealand that were considered to be uncontaminated (Kennedy 
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1986; Nielsen & Nathan 1975; Whyte et al. 2009). More detailed literature 

comparisons of trace elements in green-lipped mussels are presented in Chapter 6 of 

this thesis. No sample of green-lipped mussels from the sea-fill site or the reference 

site exceeded the ML values for bivalve molluscs (Table 4.3). This suggests that 

green-lipped mussels from these locations are safe for human consumption. 

With the exception of cadmium, all trace element concentrations were higher 

in the sea-fill site samples (BP- Battery Point adjacent to the sea-fill) than that of 

reference site (PG). This cadmium accumulation in the green-lipped mussels at the 

reference site was independent of total environmental metal burdens, which were 

lower in the reference site. This implies that bioavailability of cadmium at the 

reference site could be higher than that of the sea-fill site. 

There are multiple sources of trace elements at LH, including the sea-fill site 

(discussed earlier), and the comparatively higher concentrations of trace elements 

found in the shellfish at the sea-fill site were not unexpected. The possible 

anthropogenic sources of trace elements at the reference site could be from storm 

water runoff from the adjacent hills where agricultural activities such as cattle farming 

take place. Although the population in the reference site area was very small 

compared to LH, another possible source of cadmium at the reference site was sewage 

outfalls from the surrounding households. Application of cadmium-containing 

phosphate fertilisers, sewage sludge, and manure from the farming activities are 

known to be the primary anthropogenic sources of cadmium to soil (Hutton 1983; 

McDowell et al. 2013; Thornton 1991; TRC 2005). On the other hand, one of the 

largest natural sources of cadmium is via volcanic activities (Hutton 1983), and both 

the sampling sites were located in a volcanic area, Banks Peninsula of New Zealand. 

Therefore, it is likely that the area may be rich in natural sources of cadmium, but this 

alone does not explain the higher bioaccumulation of cadmium only at the reference 

site. Another study of green-lipped mussels also found higher cadmium 

concentrations at Pigeon Bay (reference site) compared to LH (Chandurvelan 2013), 

and the baseline study of shellfish from the wider LH in this thesis (Chapter 6) also 

indicated significantly higher cadmium concentrations in the samples of the Pigeon 

Bay site. However, the cause of these significantly higher cadmium concentrations is 

unknown. 
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The concentrations of mercury and lead in the green-lipped mussels of the sea-

fill site remained significantly higher than those of the reference site, indicating 

constantly higher availability of these elements at the LH site. In general, trace 

element concentrations in seawater and sediments were significantly higher at the sea-

fill site, although mercury was not able to be analysed from either of the other 

matrices in this study. However, previous studies highlighted elevated levels of 

mercury in the vicinity of the sea-fill area (ECan 2008; Sneddon 2011; Sneddon et al. 

2010). The sediment and seawater results support the higher level of lead found in the 

green-lipped mussels at the sea-fill site compared to the reference site. 

In general, less variation in body burden was observed for the essential 

elements, compared to the non-essential elements. However, within the essential 

elements, iron concentrations were more variable than copper and zinc. The higher 

variability of iron in green-lipped mussels could be related to the sediment 

particulates taken up by the shellfish during filter feeding. These mussels were not 

depurated before the analysis of the whole soft tissue in this study, and it is known 

that shellfish can contain fine sediment particulates in the gut (Kennedy 1986), 

resulting in an overestimation of true body burden (Marsden et al. 2014). The higher 

concentrations of iron in the green-lipped mussels at the sea-fill site, compared to the 

reference site, could be due to the higher sedimentation in the former site, which 

would potentially expose the green-lipped mussels to higher levels of particulates 

(Kennedy 1986). 

The lower variation of copper and zinc concentrations in green-lipped mussel 

from both sites could relate to their essentiality, and thus their regulation within a 

certain optimal range (Reinfelder et al. 1998; Yılmaz et al. 2010). However, these 

elements are known to vary in accordance with the spawning cycle, where zinc, in 

particular, is known to play an important role in reproduction (Banks et al. 1999; 

Coimbra & Carraça 1990; Miramand et al. 1991; Olsson et al. 1987). Numerous 

studies have shown that shellfish can accumulate trace elements in proportion to their 

availability in the surrounding environment and that this varies depending on season 

(Boening 1999; Goldberg 1986; Rainbow 1995). Although essential, at higher 

exposure concentrations, regulation can be overwhelmed, thus leading to 

bioaccumulation similar to non-essential elements (Mertz 1981; Yılmaz et al. 2010). 



126  

 

 
 

It is usual for non-essential trace elements such as arsenic, cadmium, mercury, and 

lead to be accumulated in relation to the exposure level, and these elements are stored 

in various organs as detoxified or metabolically available forms (Amiard et al. 2006; 

Berthet et al. 2003; Luoma & Rainbow 2005; Rainbow 2007). Consequently, levels of 

these elements are often trapped in the body for longer periods than essential 

elements, leading to higher body burdens. 

 

4.5 CONCLUSIONS 

The results of this study indicate that the sea-fill is a likely source of trace 

elements to LH, and suggest that trace elements accumulate closer to the input source. 

The MPI values from three different environmental matrices indicate that the sea-fill 

site contains higher levels of trace element contamination than the reference site (PG), 

implying greater anthropogenic inputs at the sea-fill site. Concentrations of copper in 

seawater and lead in sediments at the sea-fill site are at a level that could cause 

possible adverse ecological effects. Conversely, the concentrations in green-lipped 

mussels at the sea-fill site and the reference site mussels are safe for human 

consumption from the perspective of trace element exposure. The results also suggest 

that multiple matrix analysis is required for a complete picture of trace element 

content in monitoring, as the sediment and seawater results of this study indicated a 

higher concentration of cadmium at the sea-fill site, although the cadmium content in 

the green-lipped mussels indicated higher bioavailability of cadmium at the reference 

site. The irregular pattern of trace elements in different sampling rounds implies that 

concentrations can vary depending on many environmental and geochemical factors 

and can vary with season and the environmental matrix. 

The comparisons of trace elements in sediments of sea-fill or coastal landfills 

presented in Table 4.2 indicate that the concentrations of trace elements in fill sites 

are due to a number of factors. These include the nature of the fill materials, the inputs 

or proximity to the source, the geology of the site, the physical transport of materials 

(sea current and sediment movements), and the chemical and physical properties of 

the sediments. 
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CHAPTER 5 

 

TROPHIC TRANSFER OF TRACE 

ELEMENTS AT THE SEA-FILL OF 

LYTTELTON HARBOUR, NEW 

ZEALAND, AND RISK 

ASSESSMENT FOR CONSUMPTION 

OF FISH 

 

 

 

5.1 INTRODUCTION 

Continuous release of trace elements into the surrounding ecosystem can have 

potential long-term implications for the ecosystem (Ip et al. 2007) and seafood 

consumers. While consumed aquatic species can be exposed to trace elements directly 

from the water and sediments they inhabit (Ahlf et al. 2009; Wang & Rainbow 2008), 

passage through food chains is the greatest source of trace elements to aquatic animals 
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(Amiard-Triquet et al. 1992a; Mason et al. 2000; Mason et al. 1996). This is 

especially true of predatory species that inhabit the apex of aquatic food chains, and 

which are also then consumed by people. Seafood is a very common food source for 

human populations due to its nutritive properties (Andreji et al. 2006), but the 

consumption of contaminated seafood may expose human consumers to elevated 

levels of toxic elements. For this reason, regulatory limits exist that seek to minimise 

health impacts by setting limits for trace element concentrations in foods. It is 

consequently important to monitor the level of trace element accumulation and 

transfer across food chains in potentially contaminated areas such as near the sea-fill 

in Lyttelton Harbour (LH) of New Zealand (see Chapter 4 for site description). 

Baseline surveys of trace elements in marine organisms such as fish and 

shellfish have been carried out in different harbours and coastal areas of New Zealand 

(Brooks & Rumsey 1974; Brooks & Rumsey 1965; Kennedy 1986; Love et al. 2003; 

Milne 2006; Nielsen & Nathan 1975; Peake et al. 2006; Whyte et al. 2009). Baseline 

data on trace elements in seawater, marine sediment, and mussels were available for 

LH (Inglis et al. 2006; Sneddon 2011; Sneddon et al. 2010) prior to the start of this 

study. In general these data characterise LH as a slightly to moderately disturbed 

environment. However, there are no trace element data for fish or other marine biota 

from LH. Furthermore, there are no data examining transfer of trace elements across 

coastal food chains in this setting. Given the recent presence of a sea-fill site in the 

harbour (Sneddon 2011), the significant recent geological disturbances of this 

watershed through significant earthquake activity, and the knowledge that such 

activity can drastically change environmental trace element levels (Hung & Ho 2014), 

then there is a significant need for information regarding the levels of trace elements 

in LH biota and its potential risk to seafood consumers. 

5.1.1 SPECIES SELECTION AND FEEDING ECOLOGY 

Two species of fish, spotty (Notolabrus celidotus) and banded wrasse 

(Notolabrus fucicola), were selected for examination. These are species which have a 

restricted home range (Denny & Schiel 2001; Jones 1984) and are endemic to New 

Zealand coastal waters (Scott 2010). This makes them suitable biomonitoring species 

as their accumulated trace element levels are likely to reflect the area from which they 

are caught (Phillips 1977; Rainbow 1995). They are easy to catch and may be 
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consumed by recreational fishers and other minority groups in New Zealand (Burgess 

2013). Although the two species of fish in this study are not among commercially 

fished species, they may reflect the trace element concentrations in more commonly 

consumed fish species (Ministry of Primary Industry 2015). Studies from overseas 

have shown that accumulated trace elements in wrasse species reflect those of other 

fish species collected from similar habitats (Kalantzi et al. 2013). 

Importantly, both these species exhibit generalist feeding habits. The spotty is 

an opportunistic feeder, with its diet consisting of macroalgae, copepods, amphipods 

(particularly in juvenile fish), bivalves, crabs, ophiuroids, hermit crabs, limpets and 

gastropods (important in larger fish) (Jones 1984). The banded wrasse is a generalist 

benthic predator species and the main components of its diet include seaweed, 

amphipods, isopods (primarily in juveniles), bivalves, gastropods, hermit crabs, 

polychaete worms and crabs (important in larger fish) (Denny & Schiel 2001; Russell 

1983). 

Cancer crabs (Metacarcinus novaezelandiae) are a relatively abundant species 

in harbours, estuaries and coastal areas of New Zealand (Creswell 1988; Creswell & 

Marsden 1990; Creswell & McLay 1990), where they are commonly found buried in 

the sediments or under rocks, stone and seaweeds (Bennett 1964). Cancer crabs are 

nocturnal, feeding on gastropods, amphipods, isopods, crabs, bivalves including 

cockles, small fish, sponges, coelenterates, polychaete worms and plant matter 

(Bennett 1964; Chatterton & Williams 1994; Creswell 1988; Creswell & Marsden 

1990; Creswell & McLay 1990; Shelton et al. 1979). 

Polychaete worms take up trace elements predominantly from ingestion of 

sediment-bound particulates, including algae, microorganisms and detritus (Fauchald 

& Jumars 1979). Thus, trace element burdens in polychaete worms can directly 

correlate with the concentrations in the sediment (Meador et al. 2004; Phillips 1990). 

It has been recognised that polychaete worms can act as vectors for transferring 

contaminants from sediments into aquatic food chains, by virtue of higher trophic 

levels preying on these species (Meador et al. 2004; Rainbow et al. 2006a). 

Green-lipped mussels (Perna canaliculus) are found adhering to rocky 

substrates and hard materials in the intertidal zones. These bivalves are suspension 
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feeders that take up trace elements directly from the dissolved phase and suspended 

particles collected during filter feeding (Rainbow 1995). They have high filtration 

rates that can filter several litres of water every day (Davies & Simkiss 1996). 

Mussels are commonly employed as bioindicator species for monitoring of 

contaminants (Chan et al. 1986; Chandurvelan et al. 2015; O'Connor 2002; Salazar et 

al. 1995). 

Green algae are primary producers, found at the bottom of most aquatic food 

chains. The principle mechanism of nutrient and trace element uptake by the green 

algae is via physicochemical adsorption to the surface (Macfie & Welbourn 2000; 

Robinson et al. 2006). 

 

Figure 5.1: Pathways for possible trophic transfer of trace elements in the inshore coastal food 

chain of Lyttelton Harbour 
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5.1.2 STUDY OBJECTIVES 

The key objectives of this study were to: 

 Determine levels of trace elements in fish of Lyttelton Harbour sea-fill site 

 Perform a risk assessment for consumption of these fish 

 Quantify trace element concentrations in selected biota (see above) at 

different trophic levels of a marine food chain (Figure 5.1) around the sea-

fill site at Lyttelton Harbour 

 

5.2 MATERIALS AND METHODS 

The laboratory experimental methods to extract trace elements in marine biota, 

and their sample preparation for chemical analysis, are provided in Chapter 2. 

5.2.1 SAMPLE COLLECTION  

Biota from each species (n = 12) were collected (May-June 2013) in close 

proximity to the sea-fill site in Lyttelton Harbour and from a reference site (Pigeon 

Bay- PG) (Chandurvelan et al. 2015). The species collected were green algae (Ulva 

sp.), polychaete worms, green-lipped mussels (Perna canaliculus), cancer crabs 

(Metacarcinus novaezelandiae), spotty (Notolabrus celidotus) and wrasse (Notolabrus 

fucicola) (Figure 5.2). Samples were transported to the laboratory on ice. Fish were 

euthanised via immersion in an overdose solution of 2 phenoxyethanol (1 g L
-1

) as 

described in Chapter 3 (Sections 3.2.2.2), and crabs were chilled on a slurry of salt 

and ice for approximately 20 minutes, before the carapace was removed destroying 

the neural ganglia. All animal procedures were approved by the University of 

Canterbury Animal Ethics Committee. 

Spotty (121-226 mm fork length, and 77-210 g whole body weight) and 

banded wrasse (265- 420 mm fork length, and 512-1499 g whole body weight) were 

collected using baited fish traps. Muscle, liver, kidney and gonad were dissected and 

collected in pre-cleaned and pre-weighed polyethylene centrifuge vials. Spotty gonads 
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were not analysed due to their small size. Crabs were collected using baited crab pots 

at night. The carapace lengths (84-104 mm), and widths (51-61 mm), and whole body 

weights (86-174 g) were recorded, and muscle from claws and legs were collected. 

 

Figure 5.2: Biota collected from Lyttelton Harbour 

 

Green-lipped mussels (86-105 mm shell length) were collected by hand from 

mussel beds at Battery Point and Pigeon Bay (same mussel beds as used for the 

quarterly sample collections for Chapter 4). The entire soft tissues of the shellfish 

were collected, treated and stored as described in Chapter 4 (Section 4.2.2.3). 

Polychaete worms were collected by hand from green-lipped mussel beds. Green 

algae were collected by scraping from rocks at the sea-fill site, and from wharf piles at 

the reference site. Wet weights of all tissue samples were recorded and the tissues 

were stored at -20
o
C prior to freeze drying. 

5.2.2 TROPHIC TRANSFER POTENTIAL (TTP) AND 

BIOMAGNIFICATION  

Trace element trophic transfer potentials (TTP), representing the ability of 

trace elements to transfer through the food chain, were calculated using Equation 5.1 

(Gray 2002; Reinfelder et al. 1998; Wang 2002), where Cn,f is the trace element 

concentration (µg g wet wt
-1

) in the consumer, and Cn-1,f is the concentration (µg g 

wet wt
-1

) in the prey. 

TTP =  Cn, f / C n-1, f      Equation  5.1 

 

Spotty Wrasse Crab 

G. Mussel Polychaete worm Green algae 
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5.2.3 RISK ASSESSMENT FOR CONSUMPTION OF FISH  

Trace element exposures were determined for 25+ yr adults (male – 82 kg; 

female – 70 kg), children of 5-6 yr (32 kg) and toddlers of 1-3 yr (13 kg) using rates 

of fish and other seafood consumption provided in the 2009 New Zealand Total Diet 

Study (NZTDS 2009). The total fish consumption rate by a male adult was 35 g per 

day (245 g per week); that for a female adult was 24 g per day (168 g per week); that 

for a  child was 13 g per day (91 g per week), and for a toddler was 9 g per day (63 g 

per week). The risk assessments were performed for inorganic arsenic and 

methylmercury, as these elements do not have any known biological function in the 

body. Cadmium and lead, which are also considered toxic elements, were below the 

LOQ in the muscle of the two fish species from both LH and PG, and thus were not 

included in the risk assessment. Ten percent of the total arsenic was assumed to be in 

the inorganic form (WHO 2010b). All mercury was assumed to be methylmercury 

(MeHg), as it is the predominant form of mercury in fish (93-100%) (Hight & Cheng 

2006; Olmedo et al. 2013). The mean, 95
th

 percentile and maximum concentrations of 

inorganic arsenic and mercury in the fish muscle samples were used in the trace 

element exposure calculations. The trace element exposure doses were calculated as 

described in Chapter 3 (Section 3.2.2.4). 

5.2.4 STATISTICAL ANALYSIS 

All statistical analyses were carried out in R
©

 (Version 2.15.3). For trace 

elements, analyses were only performed for sample sets where more than 50% of the 

samples had values above the LOQ. In conditions where more than 50% of the 

samples were above the LOQ, the remaining samples below LOQ were given a value 

of half the LOQ. All duplicate measurements were averaged before inclusion in the 

statistical analysis. 

All data were checked for normality by plotting probability plots. Where 

necessary, data were log transformed to meet assumptions of normality before 

analysis. Significant differences (p < 0.05) for trace element concentrations in biota 

species between the sites, among the species within a site, and differences between 

tissues within a fish were determined by using single factor ANOVA followed by 

Tukeys HSD tests. 
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5.3 RESULTS 

5.3.1 ANALYTICAL METHOD PERFORMANCE 

Standard reference material of mussel tissue (SRM-2976) and fish protein 

(DORM-3) were digested along with the environmental fish muscle, crab meat and 

shellfish samples. Bovine liver (SRM 1557c), mussel tissue (SRM-2976) and fish 

protein (DORM-3) were digested along with the fish organs and polychaete worm 

samples. Tomato leaves (SRM 1573a) were digested in duplicate along with the 

environmental green algae samples. The percentage recoveries of all elements in the 

standard reference mussel and fish protein (DORM-3) ranged from 90 to 116%, with 

the exception of lead in DORM-3 (36.4%- see Section 2.4.3.2). The mean percentage 

recoveries of all elements in certified reference bovine liver ranged from 89 to 98%, 

while arsenic and mercury were <LOQ. Mean percentage recoveries of cadmium, 

copper, iron and zinc in certified reference tomato leaves ranged from 94 to 101%, 

(arsenic and mercury were <LOQ), while the certified value for lead was not provided 

for tomato leaves (for details see Appendix C1). 

5.3.2 TRACE ELEMENTS IN FOOD CHAIN SPECIES 

The trace element concentrations (mean values ± SE in µg g wet wt
-1

) in fish 

muscle and other soft tissues are presented in Appendix C2. The trace element 

concentrations (mean values ± SE in µg g wet wt
-1

) in crab muscle, green-lipped 

mussels, polychaete worms and green algae are presented in Appendix C3. All results 

are presented in wet weights (wet wt) unless specified. Graphical comparisons of 

trace elements in different marine biota (for fish, the plotted value represents muscle) 

are presented in Figure 5.3, and the concentrations of trace elements within fish 

tissues are presented in Figure 5.4. For ease of comparison some of the graphs were 

drawn on logarithmic scale for better representation of the wide range of 

concentrations measured in different species. 

Cadmium concentrations in crab muscle from both sites, and lead in crab 

muscle of PG were below the LOQ. In addition, cadmium and lead concentrations in 

the muscle of spotty and wrasse from both LH and PG were below the LOQ. 

However, cadmium and lead concentrations in fish organs (liver, kidney and gonad) 
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were above the LOQ. In general, the concentrations of trace elements in fish tissues 

were in the order: liver ≥ kidney ≥ gonad > muscle. Muscle tissue contained 

significantly lower concentrations than other tissues. The concentrations of trace 

elements in fish tissues were generally higher in the samples of LH than PG. 

However, cadmium and copper in liver of spotty, and liver and kidney of banded 

wrasse from the PG site contained significantly higher concentrations than those of 

LH (see Figures 5.4 b and c). For arsenic and iron, only kidney concentrations of 

these elements differed between the two sites, with LH showing higher concentrations 

than PG (see Figure 5.4 a and d). In crabs, iron and zinc were found at significantly 

higher concentrations in animals collected from LH than those collected from PG. 

The highest mean concentrations for individual trace elements among all the 

species investigated were found for iron in green algae and green-lipped mussel (1577 

µg g
-1 

and 148 µg g
-1

 respectively), zinc in crabs (64 µg g
-1

), and arsenic in  

polychaete worms and crabs (16.4 µg g
-1

 and 11.7 µg g
-1

 respectively). In general, 

iron, zinc and arsenic were the most abundant elements in the investigated species in 

this inshore coastal food chain. Copper concentrations were at an intermediate level 

ranging from 0.12 to 9.62 µg g
-1

, while cadmium (<LOQ-0.75 µg g
-1

), mercury 

(<LOQ-0.28 µg g
-1

) and lead (<LOQ-0.96 µg g
-1

), were found at very low 

concentrations (Appendix C2 and C3). Interestingly, mercury was found at the highest 

concentrations at the top of the food chain, with the highest levels measured in the 

fish (banded wrasse), followed by the crabs. 

The highest mean concentration of cadmium was recorded for polychaete 

worms (0.75 µg g
-1

), and the lowest in green algae (0.01 µg g
-1

), while banded wrasse 

displayed the highest mean concentrations of mercury (0.28 µg g
-1

). The highest mean 

copper concentrations were measured in the crabs (9.62 µg g
-1

), and the lowest in the 

muscle of the spotty (0.12 µg g
-1

). Green algae (0.96 µg g
-1

) contained the highest 

mean concentrations of lead with the lowest lead levels measured in the crab (0.01 µg 

g
-1

). 

The ranking order of mean concentrations of trace elements in fish muscle 

tissue was zinc > arsenic > iron > copper > mercury for spotty; and the order for 

banded wrasse was zinc > arsenic > iron > mercury > copper. The trace element 

concentrations in crab muscle followed the order zinc > arsenic > copper > iron > 
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mercury > lead; while the order for the green-lipped mussels was iron > zinc > arsenic 

> copper > lead > cadmium > mercury. The ranking order of mean trace element 

concentrations in polychaete worms was iron > zinc > arsenic > copper > cadmium > 

lead; while for green algae the order was iron > zinc > arsenic = copper > lead > 

cadmium. In general, zinc, arsenic and iron presented at the highest concentrations in 

all the species investigated, followed by copper. 

Overall arsenic, copper, mercury, lead, zinc and iron concentrations in the 

investigated species were higher in LH samples than those of PG (reference site). 

However, overall higher concentrations of cadmium were measured in the samples of 

the PG site. 
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Figure 5.3: Comparison of mean trace element concentrations in biota of marine food chains. Plotted values represent means ± standard errors (n = 12). Species sharing 

letters are not significantly different, and asterisks indicate significant differences between sites within a species.  Lowercase letters represent LH samples and uppercase 

letters are for PG samples. Cd was < LOQ in fish and crab muscle, Hg was < LOQ in PG worms and < LOQ for algae of both sites, Pb was < LOQ in fish muscle of both 

sites and in crab muscle of the PG site. 
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Figure 5.4: Comparison of mean trace element concentrations in different tissues of spotty (S) and banded wrasse (W) from Lyttelton Harbour (LH) and Pigeon Bay (PG). 

Plotted values represent means ± standard errors (n = 12). Asterisks indicate significant differences between sites within a tissue. Cd and Pb concentrations in the muscle 

tissues of both the fish species from both the sites were < LOQ. The inorganic arsenic was estimated as 10% of total arsenic. 
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5.3.3 BIOACCUMULATION AND TROPHIC TRANSFER POTENTIAL OF 

TRACE ELEMENTS ACROSS THE FOOD CHAIN 

The ranking order of trace element concentrations between species (Table 5.1) 

did not reflect the trophic positions of the species in the food chain. For example, iron 

and lead are most concentrated in algae, even though this is at the bottom of the food 

chain. However, the arrangement of species with respect to concentration levels for 

mercury indicated a scenario more likely to reflect food chain transfer, with wrasse 

having the highest levels, and levels in algae below LOQ. 

Table  5.1: The statistical ranking order of individual trace element concentrations between the 

species from highest to lowest 

As 

  
Worm, 

Crab 
> Spotty > 

Mussel, 
      

  Wrasse, 
      

  Algae 
      

Cd   Worm > Mussel > Algae 
      

Hg 
  

Wrasse > 
Crab, 

Spotty 
> Mussel > Worm     

  
    

Pb   Algae > Mussel > Worm > Crab 
    

Cu 
  

Crab  > 
Algae, 

Worm 
> Mussel > 

Wrasse, 
    

  Spotty 
    

Zn 
  

Crab > Worm  > Mussel  > 
Algae, 

Wrasse 
    

          

Fe 
  

Algae > Mussel > Worm > Crab > Wrasse > Spotty 

 

A TTP value > 1 indicates the possibility of biomagnification, whereas a TTP 

value < 1 indicates biodiminution or trophic dilution (Gray 2002; Reinfelder et al. 

1998; Wang 2002). The calculated TTP values for the food chain transfer analysis are 

presented in Table 5.2. Biomagnification was observed for arsenic, cadmium, copper, 

mercury and zinc in the inshore food chain for LH as indicated in bold in Table 5.2. In 

contrast, trophic dilution was observed for lead and iron in this food chain. In general, 

the TTP values >1 were found in the lower food chain for cadmium, copper and zinc 

while TTP > 1 were observed at the higher trophic levels for arsenic and mercury. 
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Table  5.2: Trophic transfer potential (TTP) for individual elements between species 

 Species TTP / 

As 

TTP / 

Cd 

TTP / 

Cu 

TTP / 

Fe 

TTP / 

Hg 

TTP / 

Pb 

TTP / 

Zn 

Wrasse /Algae 1.10 0.00 0.08 0.00 0.00 0.00 0.68 

Wrasse / Worm 0.10 0.00 0.10 0.03 19.74 0.00 0.10 

Wrasse / Mussel 0.80 0.00 0.16 0.02 8.14 0.00 0.27 

Wrasse / Crab 0.14 0.00 0.01 0.38 3.79 0.00 0.07 

Spotty /Algae 1.87 0.00 0.07 0.00 0.00 0.00 0.79 

Spotty/ Worm 0.17 0.00 0.10 0.02 5.17 0.00 0.12 

Spotty / Mussel 1.36 0.00 0.15 0.01 2.13 0.00 0.32 

Spotty/ Crab 0.23 0.00 0.01 0.20 0.99 0.00 0.08 

Crab /Algae 8.00 0.00 5.47 0.00 0.00 0.01 10.13 

Crab / Worm 0.71 0.00 7.48 0.08 5.21 0.10 1.54 

Crab / Mussel 5.80 0.00 11.69 0.04 2.15 0.04 4.05 

Mussel / Algae 1.38 5.83 0.47 0.09 0.00 0.30 2.50 

Worm / Algae 11.20 68.61 0.73 0.05 0.00 0.13 6.59 

Numbers in bold indicate values of TTP >1, indicative of bio-magnification 

 

5.3.4 RISK ASSESSMENT FOR CONSUMPTION OF FISH  

Trace element concentrations measured in the food chain species of this study 

were compared to the Food Standard Australia New Zealand (FSANZ) maximum 

allowable levels (ML) and European Commission (EC) maximum allowable values 

(Table 1.3, Chapter 1), which primarily assume food chain species are consumed 

traditionally (i.e. fish muscle is the consumed portion of the fish). However, 

concentrations of trace elements in organs of fish were included for the purpose of 

comparisons in this study as these tissues are consumed by humans in some parts of 

the world, including the Maldives. Concentrations of cadmium in liver and kidney of 

banded wrasse from both LH and PG; liver of spotty from both sites; and kidney of 

spotty from LH exceeded the maximum allowable value for fish (0.05 µg g wet wt
 -1

). 

Banded wrasse kidney and liver samples from both LH and PG exceeded the ML 

value for mercury in fish (0.5 µg g wet wt
 -1

). The concentrations of zinc in gonad 

samples of banded wrasse were more than three times higher than the ML. No sample 

exceeded the ML for copper. No comparison was made for iron as there was no ML 

value provided in either FSANZ or EC regulations. The trace element concentrations 

in fish muscle, fish organs, crab muscle, and green-lipped mussel did not exceed the 
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maximum values set by FSANZ for inorganic arsenic. 

Table  5.3:  Estimated weekly intake (EWI) of trace elements at different consumption rates by 

different age-gender cohorts at different concentrations in fish muscle tissue 

    

Consumption 

rate (g / week) 

EWI of trace elements  

(µg / kg BW / week) 

   

 Inorg. As Cd Hg Pb 

  WHO / JECFA PTWI values  21 5.6 1.6 25 

       

F
is

h
 c

o
n

su
m

p
ti

o
n
  

82 kg male 245         

Mean conc. 

 

0.82 - 0.83 - 

95
th

 percentile conc.   1.27 - 1.10 - 

Max conc. 

 

1.58 - 1.13 - 

70 kg female 168         

Mean conc. 

 

0.66 - 0.67 - 

95
th

 percentile conc.   1.02 - 0.88 - 

Max conc. 

 

1.27 - 0.91 - 

32 kg child 91 

    Mean conc. 

 

078 - 0.79 - 

95
th

 percentile conc.   1.21 - 1.04 - 

Max conc.   1.51 - 1.08 - 

13 kg toddler 63         

Mean conc. 

 

1.33 - 1.35 - 

95
th

 percentile conc.   2.06 - 1.78 - 

Max conc.   2.57 - 1.84 - 

 

The estimated weekly intake (EWI) values for inorganic arsenic and mercury were 

compared to the JECFA PTWI values (Section 1.5.2). The PTWI values for inorganic 

arsenic and mercury were not exceeded at previously published rates of fish 

consumption by adults of the general population of New Zealand (Table 5.3). Hence it 

is unlikely to be significant risk associated with the consumption of fish harvested 

from LH. However, the PTWI value for mercury was exceeded for toddlers with the 

average fish consumption rates provided in the NZTDS at the 95
th

 percentile and 

maximum concentration values measured in fish muscle. 
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5.4 DISCUSSION 

5.4.1 TRACE ELEMENT ACCUMULATION IN THE FOOD CHAIN 

The concentration of trace elements in marine food chains depends on several 

factors including the physicochemical properties of the habitat (e.g. water chemistry, 

pH, metal speciation), feeding ecology, life span and the strategies for metal handling, 

storage or depuration adopted by the species therein (Blackmore & Wang 2004; 

Otero-Romani et al. 2005; Rainbow 2002,2007). It has been reported previously that 

trace element concentrations can also vary with sex, age and size within a species 

(Fabris et al. 2006; Forsyth et al. 2004; Reinfelder et al. 1998). 

5.4.1.1  FISH AND CRABS  

This is the first study to examine trace element accumulation in banded wrasse 

(Notolabrus fucicola), spotty (Notolabrus celidotus) and the cancer crab, 

(Metacarcinus novaezelandiae). Concentrations of trace elements measured in banded 

wrasse, spotty and crabs were compared to other studied species with similar 

behaviours and ecology, where available (Tables 5.4 and 5.5). 

Trace element concentrations in muscle of the two fish in this study were 

comparable to those previously reported for similar fish species (Table 5.4). Levels of 

copper in all the studied species were at levels that have been previously observed in 

the literature (Tables 5.4-5.7). It was notable that copper was elevated in crabs, likely 

a consequence of the role that copper plays in haemocyanin, the crustacean blood 

pigment (Depledge et al. 1993; Devescovi & Lucu 1995). 

Biomagnification of cadmium, copper and zinc was noted in the current study. 

However, it should be noted that this could be a consequence of not depurating the 

samples prior to the analysis. Trace elements associated with food particles in the 

digestive tract may represent accumulated burdens that are not actually assimilated 

into the animal, thus overestimating the true trace element burden, and overestimating 

TTP. Depuration of biota prior to analysis can reduce this effect, but it can also lead to 

the loss of truly assimilated trace elements, and so could artificially lower burdens and 
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underestimate TTP (Marsden et al. 2014; Suedel et al. 1994). The impact of not 

depurating biota samples in the current study remains unknown. 

Arsenic concentrations in the muscle of the two fish species investigated in 

this study were not significantly different between the sites. This could reflect the 

similar environmental arsenic levels in the two studied sites (Chapter 4). This is 

supported by a study of coastal species of Australia (Victoria), where the total arsenic 

concentrations in snapper were significantly higher in the sites of higher 

environmental arsenic levels (Fabris et al. 2006). In addition, it is reported that arsenic 

concentrations are also related to the diet, and species with similar diets can contain 

similar arsenic concentrations (Barwick & Maher 2003). This supports the findings of 

the current study as the two species of fish from this study have similar diets (Denny 

& Schiel 2001; Jones 1984). 

The concentrations of arsenic measured in cancer crab of this study were 

comparable to some species of crab reported in previous studies (Table 5.5). The 

mean concentration of total arsenic in crabs of this study was generally higher than 

those of other food chain species investigated, with the exception of polychaete 

worms from LH sea-fill site. This observation is in agreement with previous studies 

on arsenic in food chains (Barwick & Maher 2003; Fabris et al. 2006; LeBlanc & 

Jackson 1973). LeBlanc and Jackson (1973) reported that arsenic concentrations in 

crab (Cancer magister) were the highest among fish, shellfish, and other marine 

invertebrates along the western coast of Canada. Fabris et al. (2006) also found 

relatively higher concentrations in crustaceans compared to other marine species, 

although the explanation for this pattern was unknown (Barwick & Maher 2003). The 

high content of arsenic in the crabs of this study could be attributed to the high storage 

capacity of arsenic (detoxified or metabolically available forms) due to a higher rate 

of arsenic assimilation compared to the excretion or elimination rate (Falconer et al. 

1983; Phillips 1990; Wang & Rainbow 2008) in comparison to other species. 

Falconer et al. (1983) observed that the level of arsenic in a fish reflects the level of 

arsenic in the diet of the fish. Therefore, the high concentrations of arsenic in the 

crabs of this study also could be related to the high concentrations of total arsenic in 

its potential food sources, such as polychaete worms, algae and cockles. For example, 

the baseline survey of shellfish from Lyttelton Harbour showed higher total arsenic in 
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cockles compared to other bivalves, Chapter 6 (Section 6.3.2.1). Although the green 

algae in this study contained low total arsenic concentrations, the diet of crab may 

contain other species of algae. It is reported, for example, that brown algae, a species 

available in the harbour, accumulates higher amounts of arsenic than green algae 

(Maher & Clarke 1984; Sanders 1979).  

Banded wrasse contained levels of mercury higher than those of spotty, but the 

levels of both fish were comparable to those in other near-coastal fish species (see 

Table 5.4). Higher mercury levels in banded wrasse might relate to a slightly different 

feeding niche. Although their diets have previously been reported as similar, there is 

greater divergence in prey items at adult life-stages (Denny & Schiel 2001; Jones 

1984), possibly placing the banded wrasse at a higher trophic level than the spotty. 

Numerous studies indicate higher concentrations of mercury are found in large 

predatory fish species, and in general the mercury concentrations increase with age, 

size and trophic level (Bowles et al. 2001; Fabris et al. 2006; Monteiro & Lopes 1990; 

Storelli & Marcotrigiano 2000; Storelli et al. 2002; Zhu et al. 2012). The higher 

mercury level in banded wrasse could therefore relate to its comparatively larger size 

(512-1499 g) relative to  spotty (77-210 g) (Forsyth et al. 2004; Storelli & 

Marcotrigiano 2000). Size could also explain why both these species in general have 

lower mercury levels than larger, longer-lived species such as tuna and swordfish 

(Love et al. 2003; Olmedo et al. 2013; Storelli et al. 2012; Zhu et al. 2012). Due to the 

high concentrations of mercury found in some fish species, food regulatory authorities 

such as Health Canada recommend limiting the number of meals of large predatory 

fish such as shark, swordfish and tuna, to one per week (Forsyth et al. 2004). 

No significant differences in mercury concentrations were found in the crabs 

from the two sampling sites. The total mercury concentrations measured for cancer 

crabs of this study were comparable (Table 5.5) to the blue swimmer crabs (Portunus 

pelagicus) from Northeastern Mediterranean coastal waters (Balkas et al. 1982), but 

were comparatively lower than the total mercury in the claw meat of king crabs 

(Pseudocarcinus gigas) from the coast of western Victoria (Australia) (Turoczy et al. 

2001). As described above for fish, this likely reflects relative size, age and placement 

in the trophic cascade. The low concentrations of mercury in the potential food items 

of the crab in this study (shellfish, polychaete worms and algae), would also play a 
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role. 

The lead concentrations in the LH crabs were measurable while the lead in 

crabs of PG site were <LOQ (Appendix C3), indicating that environmental levels play 

an important role in the bioaccumulation of lead in this species (Sections 4.3.2 and 

4.3.3). Lead concentrations in the cancer crabs of this study were lower than the lead 

concentrations measured in blue crabs (Portunus pelagicus) from Northeastern 

Mediterranean coastal waters (Balkas et al. 1982), and blue crabs (Callinectes 

sapidus) from three different sites of Iskenderun Bay of Turkey (Türkmen et al. 2006) 

(see Table 5.5). Blue crabs showed variations associated with site contamination, but 

even the concentrations of lead in the blue crabs from the cleanest site in Iskenderun 

Bay contained comparatively higher concentrations of lead than those of the cancer 

crabs in this study. The lower concentration of lead in the crabs of this study could be 

linked to lower bioavailability of lead from LH compared to Iskenderun Bay. The 

non-essentiality of lead means that it is less likely to be regulated to an optimal level 

in an organism, and instead may accumulate in accordance with the exposure levels 

(Blackmore & Wang 2004; Rainbow 1985; Roesijadi 1992; Wang 2002; Wang & 

Fisher 1998). This theory is consistent with the outcomes of the current study. 

The concentrations of copper, iron and zinc  measured in muscle of spotty and 

banded wrasse in this study were comparable to those previously reported for other 

fish species (gurnard, snapper and tarakihi) of New Zealand (Brooks & Rumsey 1974) 

(Table 5.4). Concentrations of these elements are subject to homeostatic regulation up 

to certain threshold values as they are essential to these organisms (Reinfelder et al. 

1998; Wang & Rainbow 2008). The levels of essential elements are generally 

regulated within a species by adjusting the rate of assimilation and excretion (Luoma 

& Rainbow 2005; Rainbow 1993,2007; Reinfelder et al. 1998). However, at higher 

exposure concentrations, regulation can be overwhelmed, thus leading to 

bioaccumulation. For example, zinc is essential, yet the concentrations of zinc in 

snapper (Pagrus auratus) from the coast of Victoria (Australia) differed as a function 

of environmental levels (Fabris et al. 2006). 

The copper concentrations in crabs from both the sampling sites in this study 

were not significantly different, and the concentrations in crabs of this study did not 

reflect the concentrations of copper in potential food sources, such as in shellfish and 
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polychaete worms. The copper concentrations in crabs were over 5-fold higher than in 

the green algae at the bottom of the food chain, the next biggest accumulator of 

copper. Several studies also report higher concentrations of copper in crabs (Balkas et 

al. 1982; Barwick & Maher 2003; Fabris et al. 2006; Turoczy et al. 2001). This 

suggests that the high accumulation of copper is required for certain physiological 

processes. This is likely to be attributed to the haemolymph pigment haemocyanin, a 

copper containing blood pigment in crustaceans (Depledge et al. 1993; Devescovi & 

Lucu 1995). 

Significantly different levels of iron were found between crabs from the two 

sampling sites of the current study. The higher concentrations of iron in LH crabs 

likely reflect the significantly higher concentrations of iron measured in the crab diet 

organisms (shellfish, green algae, polychaete worms) from LH compared to PG. 

Additionally, iron concentrations were significantly higher in seawater and sediments 

of LH than PG (see Sections 4.3.2 and 4.3.3). This finding is supported by a study of 

blue crabs from Iskenderun Bay, where higher concentrations of iron were found in 

sites of higher iron contamination (Türkmen et al. 2006). 

The zinc concentrations in the muscle of crab captured from the two sites were 

not significantly different. However, the zinc concentration in the claw muscle of the 

relatively large king crab (Pseudocarcinus gigas) from Australia (Turoczy et al. 2001) 

were two-fold higher than that of the cancer crab of this study. The high zinc 

concentration in king crab could be related to its large size, as Turoczy et al. (2001) 

found positive correlations between carapace size and zinc concentration. Although 

zinc is an essential element, changes in tissue concentrations with respect to crab size 

imply a changing physiology with mass (Turoczy et al. 2001), the reasons for which 

are unknown. However, this could be due to reproduction related effects. As zinc is 

important in the reproduction cycle, and it would expected that larger crabs are more 

fecund, they may have a higher demand for zinc, and thus a higher tissue burden. 

Zinc, iron and copper are essential elements and play important roles in 

growth, cell metabolism and survival of most animals including crustaceans. Hence, 

the relatively high levels of these elements can be attributed to their essentiality to 

these organisms (Pourang et al. 2004). Essential trace elements are likely to be 

regulated by the organisms, and thus will remain in a certain range unless the 
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homeostatic mechanism is overwhelmed by exposure levels, leading to accumulation 

(Rainbow 1985; Rainbow 2007). 

The low concentrations of cadmium and lead in the muscle of fish species 

could be due to low dietary assimilation of these non-essential elements (Long & 

Wang 2005; Wang & Fisher 1999). Correspondingly these elements do not bio-

magnify when transferred from food/prey items at the bottom of the food chains to 

fish (Wang 2002; Wang & Rainbow 2008). However, it should be noted that these 

non-essential elements can still biomagnify if environmental levels are sufficiently 

high, as they are not subject to regulation in the body (Suedel et al. 1994). 

The concentrations of cadmium and lead in the soft tissues of fish followed 

similar patterns (liver ≥ kidney ≥ gonad > muscle) to other fish species reported in 

previous studies (Andres et al. 2000; Brooks & Rumsey 1974; Canli & Atli 2003; 

Papagiannis et al. 2004), although the concentrations were not always comparable 

quantitatively. Similar to the non-essential elements, essential element concentrations 

in the soft organs of fish in this current study also generally followed similar pattern. 

The exception to this was that at times zinc in gonads was higher than in kidney and 

liver, a phenomenon also observed in the study of Brooks & Rumsey (1974) and 

Thilafushi Island of Maldives (Appendix A6) for some fish species. This could be due 

to the variation in metabolic status, which will be influenced by spawning periods and 

seasonal changes, and will especially impact levels of zinc owing to its important 

roles in reproduction (Olsson et al. 1987). Sex and species-specific differences in 

metabolic requirements may also be important (Wang & Rainbow 2008). 
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Table 5.4: Comparisons of trace element concentrations in fish (µg g wet wt 
-1

) with other studies 

Species Total As Cu Fe Hg Zn Ref 

Wrasse (Notolabrus fucicola) 0.52 - 5.14 

9 

0.10 - 0.16 1.47 - 4.27 0.16 - 0.38 3.28 - 5.27 This study 

Spotty (Notolabrus celidotus) 1.23 - 5.30 0.10 - 0.19 1.03 - 2.52 0.03 - 0.15 3.69 - 5.94 This study 

Gurnard (Trigla kumu) 
 

0.34 4.2 
 

5.5 1 

Snapper (Chrysophys auratus) 
 

0.11 2.5 
 

3.7 1 

Tarakihi (Chilodactylis macropterus) 
 

0.28 3.4 
 

2.8 1 

Rockfish (Sebastes sp.) <0.3 - 2.6 
    

2 

Gold striped sardine (Sardinella gibbosa) 2.37 
    

3 

Yellow fin bream (Acanthopagrus  australis) 0.1 - 2.4 0.1 - 2.0 
 

0.03 - 0.81 4.85 4 

Sea mullet (Mugil cephalus)  0.1 - 3.8 0.2 - 2.8 
 

0.03 4.24 4 

Snapper (Chrysophrys auratus) 0.4 - 4.4 0.2 - 1.5 
 

0.06 -1.94 5.30 4 

Snapper (Pagrus  auratus) 2.5 - 12.1 0.2 - 0.3 
 

0.09 - 0.20 3.1 - 7.5 5 

Groper (Polyprion oxygenios) 
   

0.25 
 

6 

Gurnard (Chelidonichthys kumu) 
   

0.24 
 

6 

Snapper (Chrysophrys auratus) 
   

0.2 
 

6 

Blue cod (Parapercis colias) 
   

0.07 
 

6 

Red cod (Pseudophycis kachus) 
   

0.09 
 

6 

Blue warehou (Seriolella brama) 
   

0.08 
 

6 

Tarakihi (Nemadactylus marropterus) 
   

0.09 
 

6 

Anchovy (Engraulis encrasicholus) 0.19 
  

0.02 
 

7 

Sardine (Sardina pilchardus) 0.56 
  

0.03 
 

7 

Yellow gurnard (Trigla lucerna) 
   

0.01 - 0.53 
 

8 

Anchovy (Engraulis encrasicholus) 
   

0.02 - 0.21 
 

8 

Sea bream (Pegellus erythrinus) 
   

0.05 - 0.70 
 

8 

LOQ-Limit of quantification; Ref: (1)- (Brooks & Rumsey 1974),  (2)- (LeBlanc & Jackson 1973), (3)- (Ruangwises & Ruangwises 2011), (4)- (Bebbington et al. 1977), (5)- 

(Fabris et al. 2006), (6)- (Love et al. 2003), (7)- (Olmedo et al. 2013), (8)- (Storelli 2008)  



151 
 

 
 

The concentrations of all trace elements measured in fish organs (liver, kidney 

and gonad) were generally significantly higher than those of muscle tissue in both the 

fish species investigated. It has been reported that trace elements preferentially 

bioaccumulate at higher levels in liver, kidney, gonad and gills, as these tissues are 

metabolically active (Allen 1995; Andres et al. 2000; Canli & Atli 2003; Moiseenko 

& Kudryavtseva 2001; Romeo et al. 1999; Ünlü et al. 1996; Yilmaz 2003). The liver 

is considered the main storage and detoxifying organ, gonad is a reproductive tissue, 

while kidney is an important excretory organ in fish (Amiard et al. 2006; Olsson et al. 

1987; Wang & Rainbow 2008,2010). The significant variation of trace element 

concentrations in different soft tissues of the two fish species in this study could be 

explained as a result of the capacities of these soft organs to induce metal-binding 

proteins such as metallothioneins (Amiard et al. 2006; Engel & Brouwer 1984; Marie 

et al. 2006; Rainbow 2002; Wang & Rainbow 2010). These sulfur-containing proteins 

have been characterised as the primary molecules for detoxifying trace elements 

(Rainbow 2002; Rainbow et al. 2006a; Roesijadi 1981; Wang & Rainbow 2010). 

Structures of such metal detoxifying proteins consist of a variety of functional groups 

(primarily the thiol residues of cysteine amino acids) that have high affinity for trace 

elements, and are capable of reducing the bioavailability of trace elements as part of a 

detoxification process (Pourang et al. 2004; Roesijadi 1992; Wang & Rainbow 2010). 

The lower, and yet relatively constant, levels of trace elements in the muscle 

tissue of fish is accounted for by mass dilution. The muscle tissue contributes the 

highest mass of the whole body relative to other organs (liver and kidney), and thus 

the distribution of accumulated trace element into a bigger mass will make the muscle 

tissue less concentrated compared to the smaller organs (Meador et al. 2004; Phillips 

1977; Reinfelder et al. 1998). Similar concentrations of trace elements can be found in 

muscle tissues of fish regardless of environmental contamination level, but the 

concentrations in soft organs such as liver and kidneys can often reflect the 

contamination levels in the surrounding environment (Moiseenko & Kudryavtseva 

2001; Phillips 1977). 
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Table  5.5: Comparisons of trace element concentrations in crab in µg g wet wt 
-1

 (µg g dry wt 
-1

) with other studies 

Species Total As Cu Fe Hg Pb Zn Ref 

Cancer crab 

(Metacarcinus novaezelandiae) 

 

7.3 - 16.3 

(35.5- 79.2) 

 

8.6 - 13.4  

(41.6 - 64.6) 

4.4 - 7.6 

(21.1 - 36.8) 

0.04 - 0.13 

(0.20 - 0.64) 

0.01 - 0.02 

(0.06 - 0.10) 

55.0 - 69.6 

(267 - 336) 
This study 

Crab (Cancer pagurus) 16.8 
     

1 

Crab (Cancer pagurus) 8.0 - 38.2 
     

2 

Crab (Cancer magister) 2.2 - 37.8 
     

3 

King crab (Pseudocarcinus gigas) 
 

(60) 
 

(1.2) 
 

(650) 4 

Blue crab (Callinectes sapidus) 
 

(36.6) (7.25 - 23.27) 
 

(2.67- 4.30) 
 

5 

Blue crab (Portunus pelagicus) 

pelagicus  

 

(Portunus pelagicus) 

 
1.7 - 21.7 1.4 - 6.3 0.03 - 0.30 0.27 19.5 - 47.9 6 

Benthic crab (Dorippe granulata)  
  

(171.6) 
   

7 

LOQ-Limit of quantification; Ref: (1)- (Sirot et al. 2009), (2)- (Falconer et al. 1983), (3)- (LeBlanc & Jackson 1973), (4)- (Turoczy et al. 2001), (5)- (Türkmen et al. 2006), 

(6)- (Balkas et al. 1982), (7)- (Depledge et al. 1993). 

 

Table  5.6: Comparisons of trace element concentrations in green algae in µg g wet wt 
-1

 (µg g dry wt 
-1

) with other studies 

Species Total As Cd Cu Fe Pb Zn Ref 

Chlorophyceae (Ulva sp.) 

1.46 - 2.31 

(8.3 - 17.4) 

0.01 

(0.05 - 0.06) 

1.26 - 1.69 

(9.7 - 10.8) 

768 -1577 

(9007 - 3919) 

0.41 - 0.96  

(6.3 - 29.8) 

2.84 - 6.31  

(14.5 - 36.0) 

This study 

Chlorophyceae 0.4 - 3.9 
     

1 

Chlorophyceae (6.3 - 16.3) 
     

2 

Chlorophyceae (10.7) 
     

3 

Chlorophyceae (Ulva rigida) 
 

(0.1 - 2.5) (1.1 - 4.3) (84.7 - 119.3) (2.1 - 5.5) (39.0 - 82.5) 4 

Ref: (1)- (Sanders 1979), (2)- (Maher & Clarke 1984), (3)- (Tukai et al. 2002), (4)- (Haritonidis & Malea 1999). 
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Table  5.7: Comparisons of trace element concentrations in green-lipped mussel and polychaete worms in µg g wet wt 
-1

 (µg g dry wt 
-1

) with other studies 

Species Total As Cd Cu Fe Hg Pb Zn Ref 

Green-lipped mussel  

(Perna canaliculus) 

1.21 - 2.18 

(8.7 - 12.0) 

0.05 - 0.14 

(0.26 - 0.73) 

0.61 - 0.87 

(3.3 - 4.8) 

58 - 180 

(310 - 972) 

0.02 - 0.04 

(0.10 - 0.22) 

0.08 - 0.33 

(0.44 - 1.9) 

8.6 - 18.6 

(46.1 - 100) 
This study 

 (Perna canaliculus) 1.56 - 2.97 0.07 - 0.75 
  

0.03 0.03 - 0.10 
 

1 

 (Perna canaliculus) (10.50) 
 

(8.6) (411) 
 (14.1) (66.8) 

2 

 (Perna canaliculus) 
 

0.10 - 1.00 0.2 - 28.0 26 - 280 0.04 - 0.19 0.1 - 7.8 0.5 - 28.0 3 

Blue mussel  
       

 

 (Mytilus galloprovincialis) 
  

 

0.55 - 1.34  

 

0.006 - 0.012 

 

0.22 - 1.48 

 

28.0 - 49.8 

 

4 

(Mytilus edulis aoteanus) 1.10 
      

5 

        
 

Polychaete worm  
4.7 - 16.7 

(21.6 - 77.3) 

0.35 - 0.75 

(1.6 - 3.6) 

0.74 - 1.29 

(3.4 - 5.9) 

46.9 - 101 

(221 - 465) 

<LOQ - 0.02 

(<LOQ - 0.08) 

0.03 - 0.13 

(0.17 - 0.59) 

18.5 - 56.2 

(120 - 269) 
This study 

Polychaete worm (32.1 - 107) 
      

6 

Polychaete worm (2.0 - 14.8) 
      

7 

Polychaete worm (>1000) 
      

8 

Polychaete worm (>2000) 
      

9 

Polychaete worm (8.8 - 117) (<0.2 - 0.6) (9.4 - 858) (427 - 1521) 
 

(2.1 - 34.5) (69 - 201) 10 

LOQ-Limit of quantification; Ref (1)- (Whyte et al. 2009), (2)- (Kennedy 1986), (3)- (Nielsen & Nathan 1975), (4)- (Milne 2006), (5)- (Robinson et al. 1995)(6)- (Dean et al. 

1986), (7)- (Watts et al. 2013), (8)- (Meador et al. 2004), (9)- (Gibbs et al. 1983), (10)- (Rainbow et al. 2006a). 
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5.4.1.2  POLYCHAETE WORMS AND GREEN-LIPPED MUSSELS 

Marine invertebrates, such as polychaete worms and bivalve molluscs have 

acquired remarkable and diverse strategies for accumulating trace elements (Berthet et 

al. 2003; Rainbow et al. 2006b). Trace element concentrations in bivalves and 

polychaete worms are controlled by a variety of physiological and biochemical 

responses including induction of metallothionein for detoxification, rate of excretion 

and assimilation efficiency, chemical forms of detoxified trace elements, trace 

element geochemistry and different elements being handled differently by different 

species (Reinfelder et al. 1998; Wang & Rainbow 2008). For example, these 

invertebrates can compartmentalise and store trace elements that have accumulated 

into different components such as metal-rich granules (MRG), cellular debris, 

organelles, metallothionein-like proteins, and other (heat-sensitive) proteins. Some of 

these detoxified forms such as the metallothionein-bound trace element fractions are 

often available for trophic transfer upon ingestion by predator, whereas the metal rich 

granules are less available for efficient assimilation by the predator, hence, subject to 

elimination (Rainbow et al. 2006b; Rainbow & Smith 2010; Wallace et al. 2003; 

Wallace & Luoma 2003). 

Trace element concentrations in polychaete worms and green-lipped mussels 

were compared to previous studies (Table 5.7), and found to differ from previously 

reported values. Some authors describe variation of trace element concentrations in 

polychaete worms in terms of feeding guild, habitat type, exposure level and species-

specific physiology (Gibbs et al. 1983; Meador et al. 2004; Wang & Rainbow 2008; 

Waring & Maher 2005). Of these it is thought that the species-specific physiology of 

the polychaete worms is the most important factor explaining differences in 

accumulation (Gibbs et al. 1983; Rainbow et al. 2004; Waring & Maher 2005). For 

example, a littoral polychaete worm  Nereis diversicolor from an estuary of England 

was found tolerant to extreme levels of copper, and accumulated abnormally high 

body concentrations, whereas another species of polychaete worm from the same site 

did not show elevated levels (Rainbow et al. 2004). 

The total arsenic concentrations in polychaete worms of this study were 

comparable to polychaete worms from the Gulf of Nicoya, Costa Rica, a relatively 

clean environment with only limited anthropogenic sources (Dean et al. 1986). Lower 
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arsenic concentrations than this study were observed for polychaete worms from the 

Sundarban mangrove, India (Watts et al. 2013), and the differences in the 

concentrations between species within that study were explained in terms of species-

specific differences in arsenic metabolism and detoxification. The very high 

accumulation of arsenic reported by Gibbs et al. (1983) in polychaete worms (Tharyx 

marioni) from England (2000 µg g
-1

, dry wt), was also explained in terms of species-

specific differences. This arsenic hyperaccumulator displayed levels significantly 

greater than other species of polychaete worms from the same site. Similarly, Meador 

et al. (2004) also found that some species of polychaete worms (e.g. Family 

Lumbrineridae) in Alaska and California contained significantly higher concentrations 

of arsenic (>1000 µg g
-1

, dry wt) than other species from the same site. However, 

Meador at al. (2004) also found strong correlations between arsenic concentrations in 

the polychaete worms and the associated sediments, suggesting physiology alone may 

not explain differences in accumulation. 

Although polychaete worms of LH contained significantly higher 

concentrations of arsenic than PG, the concentrations of sediment arsenic between the 

sites were not different (Section 4.3.3). Similarly, Waring & Maher (2005), while 

finding no direct correlation between sediment and polychaete worm arsenic 

concentrations, reported that detrital organic material often contains arsenic-rich 

macroalgae, a potential food source for the polychaetes. Consequently, the higher 

arsenic concentrations found in the polychaete worms of LH relative to polychaete 

worms of PG could be related to the ingestion of a more arsenic-rich algal food 

source. This explanation could also apply to the significantly higher concentrations of 

arsenic in the green-lipped mussels of LH compared to PG, as shellfish are suspension 

feeders that can obtain algae from filtering water. 

The wide range of copper concentrations in polychaete worms reported in the 

literature between different sites (Table 5.7) could be explained in terms of the 

metabolically available fractions of copper at those sites, and the capacity of certain 

species to accumulate and/or regulate trace elements (Berthet et al. 2003; Rainbow 

2002; Rainbow et al. 2006a). In this regard, higher bioaccumulation of copper from 

sites with low total copper levels, and vice versa, has been reported due to variation in 

the bioavailable copper fraction (Berthet et al. 2003; Rainbow et al. 2006a). This 
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indicates that bioavailability, and not total copper, is the main driver of copper 

accumulation, at least in polychaete worms (Berthet et al. 2003; Rainbow et al. 

2006a). 

Zinc concentrations in the polychaete worms of this study were generally 

comparable to those of other species (Berthet et al. 2003). This may relate to the 

ability of some marine species to regulate their zinc body burden to a relatively 

constant level (Berthet et al. 2003). Similarly, the generally comparable results 

obtained for copper and iron may also relate to their essentiality, and the ability of 

some marine organisms to regulate their body burdens of these elements to relatively 

constant levels by regulatory mechanisms such as excreting any excess  (Rainbow et 

al. 2006a). It has been reported that zinc is better regulated than copper in most 

species even at higher contaminant exposures (Berthet et al. 2003; Rainbow 2002; 

Rainbow et al. 2006a). 

Polychaete worms often contain large amounts of ingested sediment in their 

gut, and thus without depuration, bioaccumulation values may include trace elements 

that are ingested but not absorbed (Flegal & John 1977; Waring & Maher 2005). The 

polychaete worms in this study were analysed without depuration to reflect the actual 

amount of trace elements that would be ingested by the predators of these 

invertebrates. However, the bioavailability of this ingested sediment is likely to be 

lower than that of biologically-assimilated trace elements, and thus may distort the 

relationships between levels of trace elements across trophic levels (Rainbow 2002; 

Rainbow et al. 2004; Rainbow et al. 2006a,b; Rainbow & Smith 2010). Similarly, 

trace elements taken up by biota may also differ in their bioavailability. Marine 

invertebrates often detoxify and store trace elements in metabolically unavailable 

forms such as metal rich granules (Luoma & Rainbow 2005; Nott & Nicolaidou 1990; 

Rainbow et al. 2006a,b). Thus the relative level of biologically active trace element is 

key to determining trace element transfer in food webs (Rainbow & Smith 2010). 

Cadmium and lead concentrations in polychaete worms from the LH sea-fill 

site were higher than those of PG, reflecting environmental levels (Section 4.3.3).  

The cadmium concentrations measured in the polychaete worms of this study were 

higher than those previously reported for polychaete worms from potentially 

contaminated estuaries in Southwest England (Rainbow et al. 2006a), while lead 
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concentrations in the polychaete worms of this study were lower than the polychaete 

worms of the same English study (Table 5.7). This could be due to the relative levels 

of these trace elements and their mechanisms of uptake and detoxification. For 

example, the polychaetes of this study may have more capacity to handle or store 

cadmium, and in so doing pathways for the uptake and storage of lead may be 

compromised, owing to shared components of the detoxification process for these two 

elements (Rainbow et al. 2006a). 

Comparisons of trace element levels in the green-lipped mussels of this study 

were made with other available literature (Table 5.7). More detailed comparisons of 

trace elements in bivalve shellfish species are discussed in Section 6.4. With the 

exception of cadmium, all other trace elements investigated in green-lipped mussels 

contained significantly higher concentrations in the samples of LH than PG. In 

general, the higher concentrations of trace elements in the green-lipped mussels of LH 

could be due to the higher contamination levels measured in LH seawater and 

sediments compared to the PG site (Sections 4.3.2 and 4.3.3). Although cadmium 

concentrations in the mussels were higher for PG, the seawater and marine sediments 

of LH site contained significantly higher concentrations of cadmium than the PG site. 

Discussion on the higher contents of cadmium found in green-lipped mussels of PG 

was presented in Section 4.4.2. 

5.4.1.3  GREEN ALGAE 

With the exception of arsenic, all measureable trace elements in the green 

algae of this study were significantly higher in concentration in the samples from LH 

compared to PG. The green algae from PG were collected from wharf piles, while at 

LH they were collected from submerged rocks. One possible reason for the higher 

arsenic level in PG algae is therefore due to an exposure to higher arsenic 

concentrations. Treated wood, such as that used for wharf pilings, is known to 

contribute arsenic to the environment (Akter et al. 2005) and it is therefore likely that 

the wharf could have contributed towards an elevated arsenic exposure to the green 

algae collected from PG. 

Cadmium, lead, and zinc concentrations in green algae of this study were 

comparatively lower than concentrations in the green algae (Ulva rigida) from 
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Thermaikos, Gulf of Greece (Haritonidis & Malea 1999). In contrast, concentrations 

of copper and iron in the green algae of this study were higher than the concentrations 

of these elements in the green algae from the Greek study. The uptake of trace 

elements by green algae depends on three main factors; the environmental 

availability, metabolic state of the algae, and algal species (Maher & Clarke 1984; 

Phillips 1990; Sanders 1979; Tukai et al. 2002), and some researchers argue that the 

most important of these factors is the species of algae (Phillips 1990; Sanders 1979). 

Overall, arsenic, copper, mercury, lead, zinc and iron concentrations were 

higher in LH samples than samples sourced from PG (the reference site). The likely 

reasons for the higher concentrations of trace elements in LH samples (with the 

notable exception of cadmium in green-lipped mussels and arsenic in algae) could be 

higher trace element availability at the LH (sea-fill) site. This may be explained by the 

multiple sources of trace element input to the harbour, including the sea-fill, the dry-

dock yard, storm water runoff, sewage outfalls from the adjacent towns, port 

operations activities, and the coal stock yard facilities (Chapter 4). The possible 

explanations for the higher concentrations of cadmium in the green-lipped mussels of 

PG site were discussed in Section 4.4.2. 

The general principle observed across the different marine organisms was that 

essential elements are regulated within a certain optimal range, while non-essential 

trace elements are not subject to regulation. Accumulated trace elements that are 

beyond the organisms requirements are detoxified and stored, either in the form of 

less bioavailable metal rich granules or more bioavailable metallothionein (Rainbow 

& Smith 2010). Although the bioavailability of these two fractions differs, both lead 

to accumulation and elevated trace element body burdens (Rainbow 2002; Rainbow et 

al. 2006b; Wallace et al. 2003; Wallace & Luoma 2003). In general, the levels of trace 

elements measured in different organisms of this study reflected environmental levels, 

with higher trace element levels in the organism being found at sites of higher trace 

element contamination. This has also been observed in previous studies (Berthet et al. 

2003; Chandurvelan et al. 2015; Kennedy 1986; Luoma & Rainbow 2005; Meador et 

al. 2004; Robinson et al. 2006; Whyte et al. 2009). 

Because of the different physiological mechanisms for bioaccumulation, 

detoxification and excretion adopted by different species for different trace elements 
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at different trophic levels, high concentrations of trace elements transferring to higher 

trophic levels may not always be observed (Rainbow 2002; Rainbow et al. 2006a). 

This was seen in the current study with respect to lead and iron. For example, while 

particulate lead and iron in the diet of the polychaete worms and green-lipped mussels 

are likely to contribute to body burden in these species, they are not likely to be 

bioavailable or trophically available to their predators (Kennedy 1986; Marsden et al. 

2014; Meador et al. 2004; Rainbow 2002; Rainbow et al. 2006a). In addition, some 

species are capable of synthesising insoluble metal rich granules, which could be 

eliminated from the predator species upon intake from their diet, rather than directly 

absorbed into the body (Rainbow 2002). This could explain why the concentrations of 

zinc in the potential prey species of the investigated fish were not reflected in muscle 

trace element levels. Biokinetic parameters also play an important role for controlling 

the levels of trace elements in different species. This includes the rate of assimilation, 

ingestion, excretion or elimination/efflux, and growth dilution (Reinfelder et al. 1998; 

Wang & Rainbow 2008). The higher concentrations of mercury at higher trophic 

levels are partly due to higher assimilation efficiency compared to a low efflux rate, 

because of the lipophilic nature of methylmercury (Wang & Rainbow 2008). 

5.4.2 TROPHIC TRANSFER POTENTIAL (TTP) AND 

BIOMAGNIFICATION 

Biomagnification through trophic transfer was observed for arsenic, cadmium, 

copper, mercury and zinc in the studied food chain (Table 5.2). All of these elements 

increased in concentration in the tissues of the organisms at the higher trophic level, 

exceeding the levels in the tissues of the prey item (Reinfelder et al. 1998; Wang 

2002). Therefore, arsenic, cadmium, copper, mercury and zinc could be considered to 

have biomagnification potential (at least in the lower trophic levels for cadmium, 

copper and zinc), although mercury was the only element biomagnified to any 

appreciable extent in the marine food chain. These results are consistent with other 

studies (Barwick & Maher 2003; Blackmore & Wang 2004; Hill et al. 1996; Nfon et 

al. 2009; Storelli et al. 2012; Watras & Bloom 1992; Zhu et al. 2012). Some reviews 

on trophic transfer of trace elements indicate that there is insufficient evidence for 

trophic transfer of arsenic, cadmium, copper and lead, but there is compelling 

evidence for the biomagnification and trophic transfer of mercury, selenium and zinc, 
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at least in some marine food chains (Gray 2002; Reinfelder et al. 1998; Wang 2002). 

The main reason for the cadmium, copper and zinc biomagnification observed in this 

study could be as a result of not depurating the tested animals before analysis to 

reflect the actual bioaccumulated concentrations in the animal tissues. 

The zinc and copper biomagnification observed within the invertebrate species 

at the bottom of the LH food chain could be due to the efficient accumulation of 

essential trace elements by these species from the surrounding water, 

sediments/detritus and micro-organisms. However, the detoxified or the stored forms 

of the accumulated trace elements within the invertebrates may not be trophically 

available for efficient assimilation by the predators (Rainbow et al. 2006b; Rainbow 

& Smith 2010), thus displaying lower concentrations in the higher trophic levels. In 

fact it is often suggested that invertebrates lack efficient regulatory and detoxification 

mechanisms that are often present in the higher order vertebrates in the food chain 

(Bernhard & Andreae 1984; Dallinger 1994), resulting in higher accumulation levels 

in the invertebrates than the species at the higher trophic levels. Nfon et al. (2009) 

suggested that the efficient regulatory mechanisms adopted by the higher trophic level 

vertebrates could be the key characteristic for the lack of biomagnification of essential 

trace elements at the top of the food chain, a hypothesis supported by the data 

presented here. 

As in this study, biodiminution or trophic dilution of lead and iron has been 

previously reported in marine and freshwater food chains (Campbell et al. 2005; Nfon 

et al. 2009; Winterbourn et al. 2000). It is likely that the presence of this phenomenon 

relates to the chemical form of trace elements present in the aquatic invertebrates. 

Invertebrates, including bivalves and polychaete worms, are known to detoxify a 

greater proportion of accumulated trace elements as insoluble metal rich granules, 

which are less bioavailable to the predators, and which would thus act to reduce the 

amount of trophically-assimilated trace element (Blackmore & Wang 2004; Nott & 

Nicolaidou 1990; Rainbow 2002; Rainbow et al. 2006a; Reinfelder et al. 1998; Wang 

& Rainbow 2010). Additionally, the biodilution of trace elements observed in the 

organisms at the top of the food chain could also be accounted for by mass dilution 

(Reinfelder et al. 1998; Wang 2002), where accumulated trace elements are 

distributed in the muscle tissue, and concentrations are reduced as a consequence of 
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the large body size of the organism at higher trophic levels (Campbell et al. 2005; 

Nfon et al. 2009; Reinfelder et al. 1998). Reinfelder et al. (1998) explained trace 

element dilution in consumers through both mass dilution, but also through the 

presence of chemical transformations, such as converting inorganic arsenic to 

arsenobetaine for easier elimination (Zhang et al. 2012). This would result in a 

reduction in relative burden with increasing trophic level, as observed in the current 

study. 

The mercury results clearly indicated biomagnification across the trophic 

levels. Fish and crab, at the top of the food chain, contained the highest 

concentrations, with TTP values greater than one. This is likely due to the 

predominant storage form of mercury, methylmercury (MeHg), which is not water 

soluble and is instead lipophilic in nature. Methylmercury characteristically exhibits a 

high rate of assimilation with a very slow rate of elimination (Blackmore & Wang 

2004; Mason et al. 2000; Reinfelder et al. 1998). Therefore, the larger and long-living 

predator species at the top of the food chain are likely to have mercury biomagnified 

as a result of accumulation over a longer period of time (Wang 2002; Wang & Fisher 

1999). 

5.4.3 RISK ASSESSMENT FOR CONSUMPTION OF FISH 

The risks associated with consumption of seafood from Lyttelton Harbour are 

likely to be comparable or lower than other regions of New Zealand. This conclusion 

results from the observation that trace element concentrations found in the food chain 

species of LH were generally lower than concentrations in equivalent or identical 

species in other regions (Brooks & Rumsey 1974; Kennedy 1986; Love et al. 2003; 

Milne 2006; Peake et al. 2006; Whyte et al. 2009). 

Although organs of fish are not commonly consumed by the general 

population of New Zealand, the relatively higher concentrations of trace elements 

measured in fish gonads and livers could pose health risks if consumed. Moreover, 

recreational fishing from LH includes more species of fish than just spotty and banded 

wrasse, which are not widely consumed. Fish with niches that overlap with these two 

species include moki, trumpeter, blue cod, blue warehou, grey mullet, grouper, 

snapper and tarakihi (Leach 2006; Leach et al. 2003; Ministry of Primary Industry 
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2015). Previous studies measuring trace element concentrations in fish species with 

similar ecology from the New Zealand coast (Brooks & Rumsey 1974; Love et al. 

2003), the Australian coast (Bebbington et al. 1977), the Gulf of Thailand 

(Ruangwises & Ruangwises 2011) and the Pacific coast of Canada (LeBlanc & 

Jackson 1973) show levels comparable to those in the current study. Some species 

such as blue nose (1.3 µg g wet wt
-1

), ribald ( 0.94 µg g wet wt
-1

) and school shark 

(2.31 µg g wet wt
-1

) from the New Zealand coast, however, showed higher levels of 

methylmercury (Love et al. 2003); while hapuku, kingfish and trevally (Brooks & 

Rumsey 1974) from the New Zealand coast contained over two-fold higher 

concentraions of copper and zinc than those of this study. This suggests that using the 

levels of trace elements in spotty and banded wrasse could underestimate true 

exposure from consumption of LH fish species. Hence, the levels of risks to the 

community due to trace element intake via fish consumption requires further 

investigation over a wider range of consumed fish species. 

 

5.5 CONCLUSIONS 

Overall, trace elements in the food chain species from the LH sea-fill site 

displayed higher concentrations than those of PG. The exceptions to this were 

cadmium in green-lipped mussels and arsenic in green algae, which were higher at 

PG. These findings are consistent with Chapter 4 of this thesis, which reported 

significantly higher concentrations of trace elements in seawater and marine 

sediments for LH than at the PG site (Sections 4.3.2 and 4.3.3). 

Fish muscle, crabs and shellfish from LH did not exceed the maximum limits 

of FSANZ or the EC regulations for any trace elements examined. However, 

cadmium and mercury concentrations in the liver and kidney are likely to be high 

enough to cause health risks from regular consumption. 

Trophic transfer of trace elements was observed to some extent for both non-

essential (arsenic, cadmium and mercury) and essential (zinc and copper) elements. A 

decreasing trend was observed for iron and lead concentrations along the food chain. 

Higher concentrations of iron and lead accumulation were observed in the species that 
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obtain trace elements predominantly from the dissolved phase and sediments, such as 

green algae and green-lipped mussels, indicating these trace elements are bioavailable 

in the dissolved phase. Mercury was the only element found to appreciably 

biomagnify through the entire food chain. More data from species of biota from 

different trophic levels, covering all the species in the diet of each key organism 

investigated at each trophic level, are required to confirm the results of the current 

study. In addition, the biota species could be depurated before trace element analysis 

to obtain the true bioaccumulated concentrations of trace elements for the trophic 

transfer studies. 

The presented data suggests that the dietary uptake of trace elements is an 

important route to explain the degree of bioaccumulation in animals such as 

crustaceans, molluscs and fish. Furthermore, since no previous studies of trace 

element accumulation in spotty, banded wrasse and cancer crabs exist, the values 

reported in this study will therefore serve as a baseline for future trace element studies 

in similar fish species, specifically for risk assessment studies focussed on Lyttelton 

Harbour. 
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CHAPTER 6 

 

BASELINE STUDY OF TRACE 

ELEMENT CONTAMINATION IN 

SHELLFISH AND A RISK 

ASSESSMENT FOR CONSUMPTION 

OF SEAFOOD FROM LYTTELTON 

HARBOUR OF NEW ZEALAND 

 
 

 

6.1 INTRODUCTION 

Risk assessment studies have previously been carried out for consumption of 

New Zealand seafood (NZTDS 2009; Thomson et al. 2008). However, these studies 

generally focused on commercially-harvested shellfish from well-regulated clean 

environments, and thus do not reflect the consumption of seafood that may be 

harvested from contaminated waters. Iwi (Mãori people/tribes) living near coastal 

areas have ready access to seafood, and often rely on self-harvested wild shellfish 
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rather than buying seafood from supermarkets (Hay 1996). These wild shellfish 

collecting sites are not subjected to regulatory control and limited data are available 

addressing the risk of consuming wild shellfish from New Zealand coastal areas 

(Whyte et al. 2009). 

Baseline studies of trace elements in shellfish have been carried out in a 

number of different harbours and coastal areas of New Zealand (Brooks & Rumsey 

1965; Kennedy 1986; Milne 2006; Nielsen & Nathan 1975; Peake et al. 2006; Whyte 

et al. 2009). However, limited data are available on trace element concentrations in 

seafood harvested from Lyttelton Harbour (Sneddon 2011; Sneddon et al. 2010), even 

though fish and shellfish are regularly collected for consumption from this area 

(Bolton-Ritchie 2011). As risk assessment for consumption of fish and wild shellfish 

from Lyttelton Harbour has not previously been undertaken, the potential health risks 

to the consumers are unknown. There are multiple sources of trace elements to the 

harbor, including a sea-fill, sewage outfalls, storm water runoff, waste water from the 

port and the coal stockpile yard, and dry dock discharge (see Chapters 4 and 5). Since 

coastal populations utilise a number of different seafood sources (Whyte et al. 2009), 

concentrations of trace elements in three different species of shellfish were 

investigated in this study. 

Target species for this baseline study include New Zealand green-lipped 

mussels (Perna canaliculus), New Zealand cockles (Austrovenus stutchburyi) and pipi 

(Paphies australis). These organisms generally do not regulate toxic trace elements in 

their bodies, leading to accumulation. Therefore, body tissues often reflect the 

concentrations in the surrounding environment (Rainbow & Phillips 1993; Reinfelder 

et al. 1998). Green-lipped mussels are found adhering to rocky and hard materials in 

the intertidal zones, while cockles and pipi are shallow water sediment-burrowing 

bivalve species. Thus the latter two species may better reflect trace element exposure 

via the sediment, while the former may better represent trace element uptake through 

the diet. All of these bivalves take up trace elements from the dissolved phase in 

solution and via suspended particles in the water column and have high filtration rates 

that can filter several litres of water every day (Davies & Simkiss 1996). 

 



167 
 

 
 

The two key objectives of this study were to:  

 Quantify selected trace elements in three different species of shellfish from 

the wider Lyttelton Harbour  

 Carry out a risk assessment profile for consumption of shellfish harvested 

from Lyttelton Harbour 

 

6.2 MATERIALS AND METHODS 

The laboratory experimental methods to extract trace elements in marine 

sediments and biota, and their sample preparation for chemical analysis, are provided 

in Chapter 2. 

6.2.1 SAMPLE COLLECTION 

Green-lipped mussels (Perna canaliculus), cockles (Austrovenus stutchburyi) 

and pipi (Paphies australis) were collected for this study (10
th

 March - 19
th

 April 

2012) from 7 sites across the wider Lyttelton Harbour (Figure 6.1), depending on their 

availability. Green-lipped mussels (n = 10 each site, 74 - 108 mm shell length, 6 sites) 

and cockles (n = 10 each site, 32 - 51 mm shell length, 6 sites) were collected by hand 

at low tide. Pipi (n = 10 each site, 47 - 71 mm shell length, 3 sites) were collected by 

finger dredging or raking though the sand of the sampling sites at very low tide 

(Figure 6.2A). The shellfish were placed in zip-lock plastic bags. Triplicate sediment 

samples were also collected (in acid-cleaned plastic jars) from each shellfish 

collection site. The samples were transported to the laboratory on ice (Chandurvelan 

et al. 2013). The shellfish samples were collected from Corsair Bay (CO), Cass Bay 

(CA), Rapaki (RP), Sandy Bay (SB), Purau Bay (PR), Port Levy (PL) and Pigeon Bay 

(PG) (Figure 6.1). 

The shellfish were cleaned by scraping any adhering epibionts off the shells, 

and dried with paper towels before any measurements were recorded. The shellfish 

were not depurated prior to dissection to reflect consumption practices. The whole 

body soft tissues were collected in pre-cleaned and pre-weighed polyethylene vials. 
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Wet tissue measurements were recorded before storage at -20
o
C prior to freeze 

drying. Sediment samples were oven-dried and treated as described in Section 2.4.1.1 

for analysis. Shellfish samples were collected under the Ministry of Primary 

Industries permit provided to the School of Biological Sciences of the University of 

Canterbury for research purposes. 

 

Figure 6.1: Shellfish collected sites in wider Lyttelton Harbour:  CA- Cass Bay, CO- Corsair Bay, 

RP- Rapaki, SB-Sandy Beach, PR- Purau Bay, PL- Port Levy, PG- Pigeon Bay. Map adapted 

from Google Earth 

 

  

Figure 6.2: Pipi collection at Rapaki (A), and mussel and cockle beds in Sandy Beach (B) 

 

 

A B 
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6.2.2 RISK ASSESSMENT FOR CONSUMPTION OF SHELLFISH  

Trace element exposures were estimated using data provided for the age-

gender cohort of 25+ yr adults (male – 82 kg; female – 70 kg), children of 5-6 yr (32 

kg) and toddlers of 1-3 yr (13 kg) at the rates of fish and other seafood consumption 

for the general population of New Zealand provided in the 2009 New Zealand Total 

Diet Study (NZTDS 2009) as described in Chapter 5 (Section 5.2.3). Trace element 

data of fish muscle from Chapter 5 were used for the risk assessment calculations to 

obtain the EWI values for consumption of fish and shellfish combined. The rate of 

total shellfish consumption for a male adult was 7 g per day (49 g per week), and for a 

female adult was 3 g per day (21 g per week). Children and toddlers were assumed 

not to consume shellfish for the NZTDS. A higher shellfish consumption rate (2849 

g/week; 407 g per person per day) targeted for higher shellfish consumers was 

provided in a report on New Zealand shellfish harvesting and consumption (King & 

Lake 2013) was used to calculate an exposure scenario for heavily shellfish-

dependent populations. This ingestion rate was more relevant to those with ready 

access to shellfish harvesting locations, such as people living near the coast. 

Although shellfish retain some mercury in an inorganic form (Hight & Cheng 

2006), for the purposes of the risk assessment calculations, 100% of total mercury in 

shellfish was assumed to be methylmercury. The highest mean concentrations of the 

four toxic trace elements (arsenic, cadmium, mercury and lead) measured in any 

shellfish among the sampling sites from the wider Lyttelton Harbour were used for 

the risk assessment. In addition, the maximum individual concentration of each trace 

element from any shellfish in any one site was also used to estimate the worst case 

scenario for the two consumption rates. The trace element exposure doses were 

calculated as described in Section 3.2.2.4. 

6.2.3 METAL POLLUTION INDEX (MPI) 

The metal pollution index (MPI) was used to compare trace element contents 

at the shellfish sampling sites. The MPI values were calculated using Equation 4.1 in 

Section 4.2.5, using dry weights. 
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6.2.4 BIOSEDIMENT ACCUMULATION FACTOR (BSAF) 

The biosediment accumulation factor (BSAF) was calculated to evaluate trace 

element bioaccumulation in different species of shellfish from the associated 

sediments. The BSAF was calculated using Equation 6.1 (Szefer et al. 1999), 

     
  

  
      Equation 6.1 

where Cb is the mean concentration of the trace element in the biota (shellfish) in dry 

weight and Cs is the mean concentration of the same trace element in the associated 

sediment in dry weight. 

6.2.5 STATISTICAL ANALYSIS 

All statistical analyses were carried out in R
©

 (Version 2.15.3). Statistical 

analysis was performed only for the sample sets where more than 50% of the samples 

had levels above the limit of quantification (LOQ). For analytes detected but below 

the LOQ, a value of half the LOQ was used in the statistical analysis. All duplicate 

measurements were averaged before inclusion in the statistical analysis. 

All data were checked for normality by plotting probability plots. Where 

necessary, data were log transformed to meet assumptions of normality before 

analysis. Significant differences (p < 0.05) at the 95% confidence level for trace 

element concentrations in shellfish species between the sites were determined by 

using single factor ANOVA tests followed by Tukeys HSD test (p < 0.05). Pearson‘s 

correlation coefficients were used to analyse the relationships between the trace 

element concentrations in the shellfish and the associated sediments. Pearson‘s 

correlation coefficients were also used to analyse relationships between trace elements 

within the same species and within the sediments. 

 

6.3 RESULTS  

6.3.1 ANALYTICAL METHOD PERFORMANCE 

Standard reference materials of mussel tissue (SRM-2976, EVISA) and fish 



171 
 

 
 

protein (DORM-3) were digested along with shellfish samples. A marine sediment 

certified reference material (SRM-2702-NIST) was also digested along with the 

sediments of the shellfish collection sites. The percentage recoveries of all elements in 

the standard reference mussel and fish protein (DORM-3) were greater than 90%, 

with the exception of lead in DORM-3, which was 34.9% (see Section 2.4.3.2 for 

detail). The percentage recoveries of trace elements in the certified reference 

sediments ranged from 98.8 to 102.4% (Table 6.1). 

Table  6.1: Mean percentage recoveries ± standard error for standard reference materials 

Analytes 

 

Mean  % recoveries of trace elements for standard reference materials 

Mussel (n = 6) 

 

Fish protein (n = 6) 

 

Sediment (n = 2)  

 

Arsenic 116.4 ± 4.8 97.6 ± 6.2 94.9 ± 0.8 

Cadmium 104.7 ± 2.3 101.8 ± 2.6 102.4 ± 0.8 

Copper 90.1 ± 4.4 90.2± 2.2 90.1 ± 0.2 

Iron 103.9 ± 6.4 96.0± 2.3 92.9 ± 2.8 

Mercury 91.7 ± 11.2 90.6 ± 8.3 89.8 ± 3.2 

Lead 97.1 ± 5.2 36.4 ± 4.0 90.2 ± 0.9 

Zinc 101.7 ± 6.4 97.0 ± 8.6 91.7 ± 5.2 

 

The percentage differences of the 10
th

 sample duplicate digests were less than 

10%; while the duplicate dilutions were within 7%. The percentage recoveries of 

spiked elements in the samples ranged between 88-115%. 

6.3.2 TRACE ELEMENT CONCENTRATIONS IN SHELLFISH 

The trace elements analysed in three shellfish species and associated 

sediments collected around the wider Lyttelton Harbour were arsenic, cadmium, 

copper, iron, lead, mercury and zinc. Mercury was less than the LOQ in sediments. 

The trace element concentrations (mean values in µg g wet wt
-1

) measured in the 

shellfish and associated sediments (mean value µg g
 
dry wt

-1
) from the wider 

Lyttelton Harbour are presented in Table 6.2. This table also includes the MPI values 

calculated for the three shellfish species and sediments for each site; and the BSAF 

values calculated for each of the trace elements (except mercury, which was <LOQ) 

in the three shellfish species. Trace element concentrations in sediments were not 

compared in detail to other studies, as the main purpose of sediment analysis was to 

determine relationships with the concentrations of trace elements found in the 
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shellfish. Trace element concentrations in shellfish were presented in wet weight 

unless specified. Abbreviations for site names are provided in Table 6.2. 

In general, mercury, iron and zinc accumulation followed a similar pattern 

(green-lipped mussels > cockles > pipi), while cadmium and lead followed similar 

trends (green-lipped mussels > pipi > cockles) among the three shellfish species. 

Arsenic accumulation was highest in cockles followed by green-lipped mussels and 

then pipi; while copper accumulation was highest in pipi followed by cockles and 

then green-lipped mussels. Specific analysis of the data is detailed below. 

6.3.2.1  ARSENIC  

The mean total arsenic concentrations measured in the shellfish species ranged 

from 1.66 to 2.45 µg g
-1

, from 4.36 to 9.93 µg g
-1

 and from 1.99 to 2.86 µg g
-1

 for 

green-lipped mussels, cockles and pipi respectively. Total arsenic concentrations in 

cockles were significantly higher than those of green-lipped mussels and pipi, but 

there was no significant difference between these latter two species (cockles > green-

lipped mussels = pipi). For green-lipped mussels, the total arsenic concentrations from 

sites PL, PG and SB were significantly higher (p < 0.05) than those of the RP and PR 

sites, and mussels from site PL were significantly higher in arsenic than those from 

the SB site. For cockles, total arsenic concentrations of the PG and SB sites were 

significantly higher than those of the CA, RP and PL sites. In pipi, total arsenic 

concentrations of the RP site were significantly higher than those of the CO and PL 

sites. The mean concentrations of total arsenic in the sediments at different sites 

ranged from 5.05 to 16.10 µg g dry wt
-1

. The arsenic content in the sediments 

followed the order: PL > PG > CO = SB = PR > RP > CA. 

6.3.2.2  CADMIUM  

The mean concentrations of cadmium measured in the shellfish species ranged 

from 0.055 to 0.094 µg g
-1

, from 0.029 to 0.052 µg g
-1

 and from 0.048 to 0.072 µg g
-1

 

for green-lipped mussels, cockles and pipi respectively. Cadmium concentrations 

therefore followed the order: green-lipped mussels > pipi > cockles. For green-lipped 

mussels, cadmium concentrations in samples from the PG site were significantly 

higher than those of the RP and PR sites, and concentrations in the green-lipped 

mussels of PL site were significantly higher than those of the RP site. For cockles, 
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cadmium concentrations in the PG site were significantly higher than those of the CA, 

RP and PL sites. Cadmium concentrations in pipi from the PL site were significantly 

higher than those of CO and RP. Cadmium concentrations in sediments ranged from 

0.019 to 0.069 µg g dry wt
 -1

, and followed the order:  PG > PL > SB = PR > RP > CA 

= CO. 

6.3.2.3  COPPER 

The mean concentrations of copper in the shellfish species ranged from 0.71 to 

0.98 µg g
-1

, from 0.88 to 1.22 µg g
-1

 and from 0.87 to 1.78 µg g
-1

 for green-lipped 

mussels, cockles and pipi respectively. Copper concentrations followed the order: pipi 

> cockles > green-lipped mussels. For green-lipped mussels, copper concentrations in 

the SB, RP and PL sites were significantly higher than those of the PG site, and also 

copper concentrations at SB were significantly higher than at PR. Concentrations of 

copper in cockles from the PR site were significantly higher than those of the PG site, 

and there were no significant differences between any other sites for this species. For 

pipi, copper concentrations in the CO site were significantly higher than those of the 

PL and RP sites. The mean copper concentrations in sediments ranged from 4.26 to 

17.44 µg g dry wt
-1

. Copper concentrations at the different sites followed the order: 

PL > PG > SB > CO > PR > RP > CA. 

6.3.2.4  IRON 

The mean iron concentrations in shellfish species from different sites ranged 

from 150 to 212 µg g
-1

, from 41 to 119 µg g
-1

 and from 68 to 76 µg g
-1

 for green-

lipped mussels, cockles and pipi respectively. Statistically, the iron contents of the 

shellfish species were in the order: green-lipped mussels > cockles = pipi. The iron 

concentrations in green-lipped mussels from the SB site were significantly higher than 

those of the PG site; but there were no other significant differences in green-lipped 

mussel iron between other sites. For cockles, the iron concentrations in the animals 

collected from the RP site were significantly higher than those of the PG, PL and PR 

sites. Cockles from the SB site were significantly higher in iron than cockles from the 

PL and PR sites. There were no significant differences in iron concentrations between 

pipi with respect to site. Sediment iron concentrations between the sampling sites 

ranged from 10973 to 45898 µg g dry wt
-1

. Concentrations of iron in sediments 
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followed the order: PL = PG > SB > PR > RP = CO = CA. 
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Table  6.2: Trace element concentrations (mean) in shellfish and harbour sediments, metal pollution index (MPI) and mean biota-sediment accumulation 

factor (BSAF) 

Sample site As   Cd Cu Fe Hg Pb Zn MPI 

Green mussel (µg g wet wt
-1

) 

 Sandy Beach (SB) 2.14 0.068 0.98 211.70 0.050 0.41 21.82 7.60 

Rapaki (RP) 1.66 0.055 0.90 155.82 0.038 0.32 15.31 5.96 

Purau (PR) 1.75 0.063 0.78 172.02 0.039 0.27 17.32 6.04 

Port Levy (PL) 2.45 0.088 0.90 152.93 0.019 0.16 17.57 5.55 

Pigeon Bay (PG) 2.35 0.094 0.71 150.37 0.021 0.15 14.67 5.28 

mean BSAF (dry wt based) 1.22 9.24 0.53 0.04 

 

0.09 1.48   

Cockle (µg g wet wt
-1

) 

 Cass Bay (CA) 6.03 0.029 1.19 81.86 0.019 0.12 10.98 4.88 

Rapaki (RP) 6.31 0.030 1.04 118.94 0.020 0.13 11.94 5.26 

Sandy Beach (SB) 9.93 0.036 0.99 109.43 0.042 0.12 11.16 6.30 

Purau (PR) 7.49 0.031 1.22 45.59 0.035 0.05 11.29 4.57 

Port Levy (PL) 4.36 0.035 0.92 40.73 0.014 0.03 10.96 3.33 

Pigeon Bay (PG) 9.71 0.052 0.88 64.12 0.022 0.05 12.62 4.79 

 

 

 

BSAF (dry wt based) 5.27 5.44 0.84 0.025 

 

0.031 1.15   

Pipi* (µg g wet wt
-1

) 

 Corsair Bay (CO) 2.13 0.048 1.78 67.51 0.025 0.24 11.35 4.64 

Rapaki (RP) 2.86 0.047 1.11 73.53 0.028 0.24 11.95 4.71 

Port Levy (PL) 1.99 0.072 0.87 76.06 0.015 0.05 13.65 3.42 

BSAF (dry wt based) 1.34 9.28 0.82 0.02 

 
0.05 1.12   

Harbour sediment (µg g dry wt
-1

) 

 Corsair Bay(CO) 8.16 0.019 7.37 11358.92 <LOQ 18.56 51.29 15.35  

Cass Bay (CA) 5.05 0.020 4.26 10973.25 <LOQ 13.31 37.72 11.55 

 Rapaki (RP) 6.24 0.025 5.12 11443.32 <LOQ 13.51 35.30 12.31 

Sandy Beach (SB) 7.69 0.040 11.87 25551.66 <LOQ 20.09 67.02 22.38 

Purau (PR) 7.37 0.036 5.67 19347.52 <LOQ 14.46 55.03 17.18  

Port Levy (PL) 16.10 0.047 17.44 45897.50 <LOQ 14.15 96.78 30.97 

Pigeon Bay (PG) 10.73 0.069 13.33 41629.16 <LOQ 12.00 92.20 27.80  

ANZECC, ISQG-low value 20 1.5 65 ** 0.15 50 200 

 *Pipi were found only in three sites; ** no ISQG value provided; LOQ- Limit of quantification
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6.3.2.5  MERCURY  

The mean concentrations of mercury in the shellfish species ranged from 

0.019 to 0.050 µg g
-1

, from 0.014 to 0.040 µg g
-1

 and from 0.015 to 0.025 µg g
-1

 for 

green-lipped mussels, cockles and pipi respectively. Mercury concentrations in green-

lipped mussels were significantly higher than those of cockles and pipi (green-lipped 

mussels > cockles = pipi). The concentrations of mercury in green-lipped mussels 

from different sites followed the order:  SB > PR = PR > PG = PL. For cockles, 

mercury concentrations at the site SB were significantly higher (p < 0.05) than those 

of sites PG, RP, CA and PL. The concentrations of mercury in cockles from site PR 

were also significantly higher than those cockles from PL and CA. Mercury 

concentrations in pipi followed the order: CO = RP > PL. Mercury was not detected 

in any of the sediments. 

6.3.2.6  LEAD  

The mean lead concentrations for green-lipped mussels, cockles and pipi 

ranged from 0.15 to 0.41 µg g
-1

, from 0.03 to 0.13 µg g
-1

 and from 0.05 to 0.24 µg g
-1

 

respectively. Lead concentrations measured in the green-lipped mussels from site SB 

(0.41 µg g
-1

) displayed the highest mean concentrations, and cockles from site PL 

(0.03 µg g
-1

) displayed the lowest mean concentrations. The order of lead 

concentrations between the shellfish species was green-lipped mussels > pipi > 

cockles. Lead concentrations in green-lipped mussels followed the order: SB > RP = 

PR > PL = PG. Lead concentrations in cockles from the sites RP and SB were 

significantly higher than those of PR, PG and PL, and concentrations in cockles from 

site CA were significantly higher than those of sites PG and PL. For pipi, lead 

concentrations in sites CO and RP were significantly higher than those for pipi 

sampled from site PL. Mean concentrations of lead in the sediments ranged from 

12.00 to 20.09 µg g dry wt
-1

. Lead content in the sediment of site SB was significantly 

higher than that of all the other sites with the exception of site CO, while lead in site 

CO was also significantly higher than that of all the other sites. Concentrations of lead 

in sediments of the PR site were significantly higher than those of the PG site. 
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6.3.2.7  ZINC  

The mean concentrations of zinc for shellfish species collected from different 

sampling sites ranged from 14.67 to 21.82 µg g
-1

, from 10.96 to 12.62 µg g
-1

 and from 

11.35 to 13.65 µg g
-1

 for green-lipped mussels, cockles and pipi respectively. Zinc 

concentrations followed the order: green-lipped mussels > cockles = pipi. The zinc 

content in green-lipped mussels followed the order: SB > PL = PR = RP = PG. For 

cockles, zinc concentrations from site PG were significantly higher (p < 0.05) than 

those of sites CA and PL, while zinc concentrations were not significantly different 

between any of the sampling sites for pipi (PL = RP = CO). Mean concentrations of 

sediment zinc at different shellfish sites ranged from 35.30 to 96.78 µg g dry wt
-1

. 

Zinc concentrations in sites PL and PG were significantly higher (p < 0.05) than those 

of the SB, PR, CO, CA and RP sites. Concentrations of zinc from site SB were 

significantly higher than those of sites CO, CA and RP. Zinc contents from sites PR 

and CO were significantly higher than those of the CA and RP sites. 

6.3.2.8  CORRELATION ANALYSIS OF TRACE ELEMENTS IN 

SHELLFISH AND SEDIMENT 

Pearson‘s correlations analyses were carried out to investigate the 

relationships between concentrations of trace elements in shellfish and the associated 

sediments. The correlation coefficients and the respective p-values are presented in 

Table 6.3. This relationship is also shown in Appendix D1, by best fit regression lines 

for each species of shellfish for each trace element. 

Table  6.3:  Pearson correlation coefficients (r) and p-values for correlations of trace element 

concentrations between the shellfish and associated sediments 

  Mussels (n = 50) Cockles (n = 60) Pipi (n = 30) 

 

r p-value r p-value r p-value 

As 0.844 0.072 -0.288 0.580 -0.752 0.458 

Cd 0.928 0.023 0.937 0.006 0.978 0.133 

Cu 0.087 0.889 -0.845 0.034 -0.573 0.611 

Fe -0.302 0.621 -0.579 0.229 0.729 0.480 

Pb 0.805 0.100 0.342 0.508 0.431 0.716 

Zn 0.014 0.982 0.184 0.728 0.874 0.322 

Values in bold represent statistical significance (p <0.05)  
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Cadmium concentrations in green-lipped mussels and cockles were 

significantly positively correlated (p < 0.05) with the cadmium concentrations in 

sediments. Copper concentrations in cockles were significantly (p < 0.05) negatively 

correlated with copper concentrations in sediments. There were no significant 

correlations for lead, iron and zinc. 

Correlation analysis was also carried out for trace elements within each 

species of shellfish and within sediments (see Appendix D2). Iron-zinc, cadmium–

arsenic, and lead-mercury pairs were significantly positively correlated in green-

lipped mussels. For cockles, lead-iron was significantly positively correlated; while 

copper-iron and lead-cadmium pairs were significantly negatively correlated in pipi. 

Pearson correlation coefficients and p-values for trace elements within the sediments 

indicated that iron, copper, zinc, arsenic and cadmium were significantly positively 

correlated. 

6.3.2.9  METAL POLLUTION INDEX (MPI) 

The MPI values calculated from the green-lipped mussels (Table 6.2) 

indicated that Sandy Beach (SB) was the site with the most contaminated mussels, 

followed by Purau (PR) and Rapaki (RP). The MPI values obtained from cockles also 

indicated that SB site had the highest contamination load followed by the Port Levy 

(PL) and RP sites. The values obtained from pipi were not taken into account, because 

pipi were only available from a limited number of sites. MPI values calculated from 

sediments indicated that the PL site contained the most highly contaminated 

sediments, followed by PG and SB. 

6.3.2.10 BIOSEDIMENT ACCUMULATION FACTORS (BSAF) 

The bio-sediment accumulation factor (BSAF) calculated from the green-

lipped mussels followed the order: Cd > Zn ≥ As > Cu > Pb > Fe. The BSAF value 

obtained from cockles followed the order: Cd > As > Zn > Cu > Pb ≥ Fe. For pipi the 

BSAF values followed the order: Cd > As > Zn > Cu > Pb > Fe. Cadmium was placed 

at the top of the BSAF values calculated for all three species of shellfish, followed by 

arsenic and zinc. The lowest BSAF values were obtained for lead and iron for all 

species. 
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6.3.2.11 RISK ASSESSMENT FOR CONSUMPTION OF FISH AND 

SHELLFISH 

Estimated weekly intakes (EWI) of inorganic arsenic, cadmium, mercury and 

lead were calculated for fish and shellfish consumption. The total EWI values (fish + 

shellfish) were calculated by adding the individual EWI values of fish and shellfish 

for people who consume both species, using the highest mean concentrations 

measured in each food group. The EWI values for fish were calculated using the 

concentration data of fish species described in Chapter 5. 

The provisional tolerable weekly intake (PTWI) values for inorganic arsenic, 

cadmium, mercury or lead were not exceeded at rates of fish and shellfish 

consumption by adults of the general population of New Zealand. However, the PTWI 

value for mercury was exceeded for toddlers, using the average fish consumption 

rates provided in the NZTDS at the 95
th

 percentile concentration, and maximum 

mercury concentration values in fish (Table 6.4). Also, at the highest rate (2849 

g/week) of shellfish consumption, adults of both gender groups exceeded the PTWI 

value (Table 6.4) for inorganic arsenic and mercury. Similarly, adult females 

exceeded the PTWI value for cadmium at high shellfish consumption rates (2849 

g/week) (King & Lake 2013).  
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Table  6.4:  Estimated weekly intake (EWI) of trace elements at different consumption rates by 

different age-gender cohorts at different concentrations of trace elements in edible 

tissues 

    

Consumption rate 

(g/week) 

EWI of trace elements  

(µg/kg BW/week) 

   

 Inorg. As Cd Hg Pb 

  WHO / JECFA PTWI values  21 5.6 1.6 25 

       

F
is

h
 c

o
n
su

m
p
ti

o
n
  

82 kg male 245         

Mean conc. 

 

0.82 - 0.83 - 

95
th

 percentile conc.   1.27 - 1.10 - 

Max conc. 

 

1.58 - 1.13 - 

70 kg female 168         

Mean conc. 

 

0.66 - 0.67 - 

95
th

 percentile conc.   1.02 - 0.88 - 

Max conc. 

 

1.27 - 0.91 - 

32 kg child 

     Mean conc. 91 078 - 0.79 - 

95
th

 percentile conc.   1.21 - 1.04 - 

Max conc.   1.51 - 1.08 - 

13 kg toddler 63         

Mean conc. 

 

1.33 - 1.35 - 

95
th

 percentile conc.   2.06 - 1.78 - 

Max conc.   2.57 - 1.84 - 

S
h
el

lf
is

h
 c

o
n
su

m
p
ti

o
n
 

82 kg male           

Highest mean conc. 49 0.59 0.05 0.03 0.25 

Highest individual conc. 49  0.83 0.09 0.04 0.31 

Highest mean conc. 2849 34.40 3.13 1.74 14.25 

Highest individual conc. 2849 48.43 5.21 2.43 18.07 

      
70 kg female           

Highest mean conc. 21 0.30 0.03 0.02 0.12 

Highest individual conc. 21 0.42 0.05 0.02 0.16 

Highest mean conc. 2849 40.29 3.66 2.04 16.69 

Highest individual conc. 2849 56.74 6.11 2.85 21.16 

F
is

h
 &

 s
h
el

lf
is

h
 

co
n
su

m
p
ti

o
n
  

 82 kg male           

Highest mean conc.-fish 245 0.82 0.00 0.83 0.00 

Highest mean conc.-shellfish 49 0.59 0.05 0.03 0.25 

Total EWI  

 

1.41 0.05 0.86 0.25 

70 kg female           

Highest mean conc.-fish 168 0.66 0.00 0.67 0.00 

Highest mean conc.-shellfish 21 0.30 0.03 0.02 0.12 

Total EWI   0.95 0.03 0.68 0.12 

Values in bold exceed the PTWI value. (WHO/ JECFA)-Joint Expert Committee for Food 

Additives 
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6.4 DISCUSSION 

Iron was the most abundant trace element in the three shellfish species 

investigated. Thereafter, the trace elements found at highest levels were zinc and then 

arsenic, followed by copper and then lead. Cadmium and mercury were found at very 

low concentrations among all three species. These findings are in agreement with 

other bivalve shellfish studies reported elsewhere (Kulikova et al. 1985; Marsden et 

al. 2014; Usero et al. 1997). Similar trends of trace element concentrations were also 

reported in green-lipped mussels and blue mussels (Mytilus edulis) from Wellington 

Harbour (Kennedy 1986). However the study of Kennedy (1986) also reported that 

green-lipped mussels from one site of Wellington Harbour contained higher mean 

concentrations of lead than that of arsenic and copper, suggesting the levels of trace 

elements found in the shellfish are also dependent on the level of site contamination, 

as evident in this study. 

In general, mean trace element concentrations (µg g dry wt
-1

) in sediments 

followed the order: iron (23743) > zinc (62.19) > lead (15.15) > copper (9.29) > 

arsenic (8.76) > cadmium (0.04). The highest mean concentrations of arsenic, copper, 

iron and zinc were measured in PL site sediments, while the PG site displayed the 

highest concentrations of cadmium, and site SB contained the highest mean 

concentrations of lead. Similar to shellfish, the most abundant elements in sediments 

were iron and zinc. The trace element concentration trends observed in sediments of 

this study were in agreement with other sediment studies (Leivuori et al. 2000). It is 

common to observe higher concentrations of zinc and iron than other elements as 

these are naturally more abundant (Haynes 2014; Usero et al. 2005). 

Trace element concentrations in the biota samples were compared with the 

maximum allowable levels (ML) of the Food Standards Australia New Zealand 

(FSANZ) standard code, and maximum allowable values of the European 

Commission (EC) regulations. These values are presented in Table 1.3, Chapter 1. 

None of the shellfish species in any site exceeded the maximum allowable value for 

inorganic arsenic, cadmium, mercury or lead in FSANZ or EC regulations. Also, no 

shellfish sample exceeded maximum allowable levels for copper and zinc in the 

―other trace element standards‖ provided by the FAO for New Zealand and South 
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Australia (Table 1.3, Chapter 1). However, cockle samples from the PG site (0.97 µg 

g
-1

 inorganic As) and the SB site (0.99 µg g
-1 

inorganic As) were very close to the 

maximum allowable value of 1 µg g
-1

 for inorganic arsenic in molluscs. 

Comparisons of trace element concentrations in the shellfish-associated 

sediments to the ANZECC guidelines (ANZECC 2000) showed that all the 

investigated trace element concentrations were well below the recommended ISQG-

low trigger values recommended for contaminants in marine sediments (Table 6.2). 

More detail of the ANZECC guidelines, and the ISQG-low and ISQG-high values are 

provided in Chapter 4. 

There were no significant correlations between lead, iron and zinc in any 

shellfish species and the associated sediments. However, cadmium (positive 

correlation) and copper (negative correlation) were significantly correlated. The 

general lack of correlation could be explained by the small number of samples, by the 

lack of sediment trace element bioavailability, or by the fact that these organisms 

were able to regulate trace element burdens, especially of essential elements for which 

specific pathways of uptake and/or elimination are present (e.g. zinc, copper, iron). 

Alternatively, the trace element levels in the sediments were not at a sufficiently high 

concentration to result in significant biotic accumulation (Usero et al. 2005).  

The high MPI measured in the shellfish and sediments from Sandy Bay (SB) 

was not a surprise considering the presence of a sewage outfall in Governors Bay, in 

close proximity to the SB sampling site. The general trend of trace element 

contamination observed from the MPI values of the shellfish suggested that SB site 

contained the highest bioavailable fraction of trace elements followed by the Purau 

(PR) and Rapaki (RP) sites, although the total amounts of trace elements (both 

biologically available and unavailable) were higher in the Port Levy (PL) and Pigeon 

Bay (PG) sites as observed from the MPI values of sediments. The iron concentrations 

measured in sediments from PL and PG sites were nearly twice those of other 

sediments in this study, likely driving these elevated MPI ratings. In addition, PL and 

PG also contained comparatively higher concentrations of arsenic, copper and zinc. 

The sediment iron concentrations of Banks Peninsula (Lyttelton Harbour and Pigeon 

Bay, Chapter 4)  suggests that the higher concentration of iron observed in the more 

remote sites (PL and PG) were likely due to naturally elevated geological levels, as 
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volcanic areas are found to have elevated iron levels (Denton & Morrison 2009). The 

other sampling sites were also located in Banks Peninsula (inner Lyttelton Harbour), 

but had lower iron concentrations. This could be due to covering of the iron-rich 

sediment layer with other materials, a consequence of anthropogenic activities 

associated with urban development at inner Lyttelton Harbour sites. 

The mean BSAF values obtained for the three species of this study suggest 

that, in general, the green-lipped mussels had a greater capacity for trace element 

bioaccumulation than cockles or pipi, with the exception of arsenic and copper for 

cockles (Table 6.2). Cadmium was placed at the top of the BSAF values calculated for 

all three species of shellfish, suggested that cadmium has the highest efficiency for 

bioaccumulation from sediments, followed by arsenic and zinc, while lead and iron 

were taken up with the least efficiency from the sediments. This trend was common to 

all three species investigated in this study. The lowest BSAF value, derived for iron, 

could be explained by efficient homeostatic mechanisms for regulating essential 

elements, including iron, in bivalves. The relative ability to sequester trace elements 

from sediments will vary among different shellfish species depending on a number of 

factors, including behaviour (i.e. burrowing versus non-burrowing species), and diet 

(Gundacker 2000). 

The provisional tolerable weekly intake (PTWI) values for inorganic arsenic, 

cadmium, mercury and lead were not exceeded at rates of fish and shellfish 

consumption by adults of the general population of New Zealand. Hence there is little 

risk involved in consumption of fish and shellfish harvested from Lyttelton Harbour 

for adults assuming the PTWI values are protective. However, adult females can 

exceed the PTWI value for cadmium at high shellfish consumption rates (2849 

g/week). This could be of particular concern for New Zealanders such as Mãori and 

Pacific Islanders, as seafood can comprise a major proportion of their diet (Hay 1996; 

Russel et al. 1999). In the 2002 National Children‘s Nutrition Survey (Parnell et al. 

2003), fish and seafood were shown to contribute twice the proportion of protein for 

Pacific ethnic group children than for New Zealand European and other ethnic group 

children. 
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    Table  6.5:   Amount of shellfish required to be consumed by a 70 kg adult per week to exceed 

the WHO / JECFA PTWI values; and comparisons with the results from Bay of 

Islands / NZ 

Element Concentrations (µg g wet wt
-1

)   

Amount of shellfish flesh (kg) per 

week required to exceed PTWI 

values 

  

Max. 

mean for 

any 1 site 

Max. 

individual 

value 

Min. mean 

for any 1 

site 

  

Based on 

max. 

mean 

Based on 

max. 

individual 

value 

Based on 

min. 

mean 

As* 0.99 (SB) 1.39 (SB) 0.17 (RP)   1.49 1.06 8.65 

Cd 0.09 (PG) 0.15 (PG) 0.03 (CA) 
 

4.36 2.61 13.07 

Hg 0.05 (SB) 0.07 (SB) 0.01 (PL)   2.24 1.60 11.20 

Pb 0.41 (SB) 0.41 (SB) 0.03 (PL)   4.27 4.27 28.33 

Concentrations of trace elements in green-lipped mussels from Bay of Islands, NZ (Whyte et al. 

2009) for comparison 

As* 0.3 0.37 0.16 
 

4.9 3.97 9.19 

Cd 0.75 1.37 0.07   0.52 0.29 5.6 

Hg 0.06 0.08 0.05 
 

1.87 1.4 2.24 

Pb 0.1 0.15 0.03   17.5 11.67 58.33 

*Inorganic arsenic; PTWI-provisional tolerable weekly intake 

 

Previous risk assessments of shellfish consumption (Whyte et al. 2009), 

indicated that a comparatively large quantity of green-lipped mussels from the Bay of 

Islands would need to be consumed to exceed PTWI values for inorganic arsenic 

(>4.9 kg) and lead (>17 kg) (Table 6.5). Even larger quantities of shellfish from 

Lyttelton Harbour would be required to exceed the PTWI values for cadmium and 

mercury (Table 6.5). The higher accumulation of arsenic by cockles, compared to 

green-lipped mussels and pipi, would certainly pose higher health risks to the heavy 

consumers of cockles from Lyttelton Harbour. The maximum and minimum values of 

trace elements for calculating the EWI were obtained from among the three shellfish 

species rather than taking one species as in the Whyte et al. (2009) study. 

Only limited data are available on arsenic concentrations in green-lipped 

mussels and other bivalves in New Zealand (Robinson et al. 1995; Whyte et al. 2009). 

In general, previous studies on the trace element concentrations in shellfish species 

were comparable to this study (Tables 6.6 - 6.12). 
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Table  6.6: Comparison of total arsenic concentrations in bivalve shellfish with existing literature 

Arsenic 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

      
Mussel 

     
Perna canaliculus Lyttelton Harbour /NZ 2.07 (1.66 -  2.45) 10.92 (8.99 - 13.14) This study 

Perna canaliculus Bay of Islands  / NZ  2.11 (1.56 - 2.97)  
 

(Whyte et al. 2009) 

Perna canaliculus Wellington Harbour   10.5 (Kennedy 1986) 

Mytilus edulis  Wellington Harbour 
 

(7.2 - 13.6) (Kennedy 1986) 

Mytilus edulis aoteanus Mouth of Waikato River /NZ 1.10 ± 0.75   (Robinson et al. 1995) 

Perna viridis Thailand coast 2.35 (1.07- 4.30) 
 

(Ruangwises & Ruangwises 2011) 

Perna viridis Singapore coast   (13 - 32) (Bayen et al. 2004) 

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 7.31(4.36 - 9.93) 40.57 (25.93 - 55.04) This study 

Austrovenus stutchburyi Mouth of Waikato River /NZ 1.24 ± 0.39 
 

(Robinson et al. 1995) 

Anadara granosa Thailand coast 32.2 (30.5 - 35.5)   (Ruangwises & Ruangwises 2011) 

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ 
 

(10.2 - 46.3)  (Marsden et al. 2014) 

Pipi 
     

Paphies australis Lyttelton Harbour / NZ 2.33 (1.99 - 2.86) 11.10  (9.46 - 13.61) This study 

Paphies australis Mouth of Waikato River / NZ 1.01 ± 0.21   (Robinson et al. 1995) 
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Table  6.7: Comparison of cadmium concentrations in bivalve shellfish with existing literature 

Cadmium 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel           

Perna canaliculus Lyttelton Harbour / NZ 0.07 (0.055 - 0.094) 0.38  (0.29 - 0.49) This study 

Perna canaliculus Bay of Islands  / NZ 0.26 (0.07 - 0.75)  
 

(Whyte et al. 2009) 

Perna canaliculus All around NZ 0.30 (0.10 - 1.00)   (Nielsen & Nathan 1975)  

Mytilus galloprovincialis 
South and Southwest coast of 

Wellington / NZ 
(0.10 - 0.20) 

 
(Milne 2006)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour / NZ 0.04  (0.030 - 0.052) 0.20 (0.16 - 0.30) This study 

Austrovenus stutchburyi 
South and Southwest coast of 

Wellington / NZ 
0.01 - 0.03) 

 
(Milne 2006)  

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ   (0.21 - 0.42) (Marsden et al. 2014) 

Austrovenus stutchburyi All around NZ 0.19 
 

(Nielsen & Nathan 1975)  

Pipi 
     

Paphies australis Lyttelton Harbour /NZ 0.06 (0.047 - 0.072) 0.26 (0.22 - 0.35) This study 

Paphies australis All around NZ 0.13 (0.12 - 0.14) 
 

(Nielsen & Nathan 1975) 

Paphies subtriangulata 
South and Southwest coast of 

Wellington / NZ 
(0.07 - 0.08)   (Milne 2006)  



187 
 

 
 

 

Table  6.8: Comparison of mercury concentrations in bivalve shellfish with existing literature 

Mercury 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel 
     

Perna canaliculus Lyttelton Harbour /NZ 0.03 (0.02 - 0.05) 0.17 (0.10 - 0.26) This study 

Perna canaliculus Bay of Islands  / NZ 0.03 
 

(Whyte et al. 2009)  

Perna canaliculus All around NZ 0.09 (0.04 - 0.19) 
 

(Nielsen & Nathan 1975)  

Mytilus galloprovincialis 
South and Southwest coast of 

Wellington / NZ 
(0.006 - 0.012)   (Milne 2006)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 0.03 (0.01 - 0.04) 0.14 (0.10 - 0.23) This study 

Austrovenus stutchburyi 
South and Southwest coast of 

Wellington / NZ 
(0.006-0.008) 

 
(Milne 2006)  

Pipi 
     

Paphies australis Lyttelton Harbour /NZ 0.03  (0.02 - 0.03) 0.11(0.07 - 0.13) This study 

Paphies subtriangulata 
South and Southwest coast of 

Wellington / NZ 
(0.010 - 0.010)   (Milne 2006)  
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Table  6.9: Comparison of lead concentrations in bivalve shellfish with existing literature 

Lead 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel           

Perna canaliculus Lyttelton Harbour / NZ 0.26 (0.15 - 0.41) 1.37 (0.78 - 2.14) This study 

Perna canaliculus Bay of Islands  / NZ 0.07 (0.03 - 0.10) 
 

(Whyte et al. 2009) 

Perna canaliculus Wellington Harbour   14.1 (Kennedy 1986) 

Perna canaliculus All around NZ 1.8 (0.1 - 7.8) 
 

(Nielsen & Nathan 1975)  

Mytilus edulis  Wellington Harbour   (6.9 - 104.6) (Kennedy 1986) 

Mytilus galloprovincialis 
South and Southwest coast of 

Wellington / NZ 
(0.22 - 1.48) 

 
(Milne 2006)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 0.08 (0.03 - 0.13) 0.46 (0.16 - 0.72) This study 

Austrovenus stutchburyi 
South and Southwest coast of 

Wellington / NZ 
(0.06 - 0.14) 

 
(Milne 2006)  

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ   (0.3 - 1.37) (Marsden et al. 2014)  

Austrovenus stutchburyi All around NZ 1.8 
 

(Nielsen & Nathan 1975)  

Pipi 
     

Paphies australis Lyttelton Harbour /NZ 0.53 (0.05 - 0.24) 0.83 (0.25 - 0.13) This study 

Paphies australis All around NZ 0.4 
 

(Nielsen & Nathan 1975) 

Paphies subtriangulata 
South and Southwest coast of 

Wellington / NZ 
(0.13 - 0.25)   (Milne 2006)  
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Table  6.10: Comparison of copper concentrations in bivalve shellfish with existing literature 

Copper 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel 
     

Perna canaliculus Lyttelton Harbour /NZ 0.68 (0.71 - 0.98) 4.51 (3.73 - 4.72) This study 

Perna canaliculus All around NZ 1.8 (0.2 - 28.0) 
 

(Nielsen & Nathan 1975)  

Perna canaliculus Wellington Harbour   8.6 (Kennedy 1986)  

Mytilus galloprovincialis 
South and Southwest coast of 

Wellington / NZ 
(0.55 - 1.34) 

 
(Milne 2006)  

Mytilus edulis  Wellington Harbour   (9.0 - 14.2) (Kennedy 1986)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 1.04 (0.88 - 1.22) 5.85 (4.93 - 7.11) This study 

Austrovenus stutchburyi Otago Harbour and peninsula 
 

(3 - 60) (Peake et al. 2006)  

Austrovenus stutchburyi 
South and Southwest coast of 

Wellington / NZ 
(0.86 - 1.35)   (Milne 2006)  

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ 
 

(10.1 - 21.9) (Marsden et al. 2014) 

Pipi 
     

Paphies australis Lyttelton Harbour /NZ 1.25 (0.87 - 1.78) 6.01 (4.09 - 8.38) This study 

Paphies australis All around NZ 1.0 (0.7 - 1.3) 
 

(Nielsen & Nathan 1975)  

Paphies subtriangulata 
South and Southwest coast of 

Wellington / NZ 
(1.37 - 1.47)   (Milne 2006)  
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Table  6.11: Comparison of iron concentrations in bivalve shellfish with existing literature 

Iron 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel 
     

Perna canaliculus Lyttelton Harbour /NZ 169 (150 - 212) 882 (783 - 1105) This study 

Perna canaliculus Wellington Harbour 
 

411 (Kennedy 1986)  

Perna canaliculus All around NZ (26 - 280)   (Nielsen & Nathan 1975)  

Mytilus edulis  Wellington Harbour 
 

(235 - 457) (Kennedy 1986)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 76.78 (40.73 - 118) 433 (226 - 658) This study 

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ 
 

(108 - 426) (Marsden et al. 2014)   

Austrovenus stutchburyi Bay of Islands  / NZ 31   (Nielsen & Nathan 1975)  

Pipi 
     

Paphies australis Lyttelton Harbour /NZ 72.37 (67.51 - 76.06) 349 (321 - 363) This study 

Paphies australis All around NZ (21 - 24)   (Nielsen & Nathan 1975) 
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Table  6.12: Comparison of zinc concentrations in bivalve shellfish with existing literature 

Zinc 

Species Locations / description 
Mean (range) µg g

-1
 

Reference 
Wet wt Dry wt 

Mussel 
     

Perna canaliculus Lyttelton Harbour /NZ 17.34 (14.67 - 21.82) 90.62 (77.02 - 113.50) This study 

Perna canaliculus All around NZ 21 (0.5 - 28.0) 
 

(Nielsen & Nathan 1975)  

Perna canaliculus Wellington Harbour   66.8 (Kennedy 1986)  

Mytilus galloprovincialis 
South and Southwest coast of 

Wellington / NZ 
(28.0 - 49.8) 

 
(Milne 2006)   

Mytilus edulis  Wellington Harbour    (220 - 497) (Kennedy 1986)  

Cockle 
     

Austrovenus stutchburyi Lyttelton Harbour /NZ 11.49 (10.96 - 12.62) 63.55 (60.68 - 69.22) This study 

Austrovenus stutchburyi Otago Harbour and Peninsula 
 

(40 - 118) (Peake et al. 2006)  

Austrovenus stutchburyi 
South and Southwest coast of 

Wellington / NZ 
(9.0 - 11.6)   (Milne 2006)  

Austrovenus stutchburyi Avon-Heathcote Estuary / NZ 
 

(47.3  66.8) (Marsden et al. 2014)   

Austrovenus stutchburyi All around NZ 10   (Nielsen & Nathan 1975)  

Pipi 
     

Paphies australis Lyttelton Harbour / NZ 12.32 (11.35 - 13.65) 58.50 (54.16 - 63.70) This study 

Paphies australis All around NZ 13 
 

(Nielsen & Nathan 1975) 

Paphies subtriangulata 
South and Southwest coast of 

Wellington / NZ 
(8.8 - 10.5)   (Milne 2006)  
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Trace element concentrations in filter-feeding bivalves often reflect the 

contamination levels in the surrounding environment (Chandurvelan et al. 2015; 

Rainbow 1995). This has also been demonstrated in this study for arsenic, cadmium, 

and lead, which varied according to environmental contamination levels. For 

example, lead concentrations in green-lipped mussels from SB contained significantly 

higher concentrations than green-lipped mussels from other sites, and green-lipped 

mussels from the PG site contained significantly higher amounts of cadmium than 

most of the other sites. Similar trends were also reported by Kennedy (1986) in green-

lipped mussels and blue mussels from different sites of Wellington Harbour. 

The content of trace elements in burrowing bivalve species also reflects the 

concentrations measured in the sediments. For example, the highest content of lead 

was measured at the SB site while the highest concentrations of cadmium were 

measured in the PG site sediments. In general, this was reflected in bioaccumulation 

levels in cockles and pipi. 

In addition to environmental influences, such as geochemical effects on 

bioavailability, levels of trace elements in shellfish also depend on the type of trace 

element, exposure route, and species-specific characteristics (Luoma & Rainbow 

2005). Green-lipped mussels, cockles and pipi from the same sampling site contained 

significantly different amounts of some trace elements, indicating differences in trace 

element handling strategies, detoxification or excretion capacities. For instance, 

arsenic concentrations in cockles were predominantly higher than the green-lipped 

mussel or pipi from the same sites (at RP and PL), while the lead concentrations in 

green-lipped mussels were significantly higher than the other bivalve species 

investigated. This is supported by a study on different species of mussels from 

Wellington Harbour where the lead concentrations differed between two species 

collected from the same site (Kennedy 1986). 

Research has also illustrated that trace element uptake routes can differ 

between species and for different trace elements (Pan & Wang 2009). Some species 

can accumulate certain types of trace elements to a greater degree than other species. 

For example, the green-lipped mussels of the current study contained significantly 

higher levels of mercury compared to the other two shellfish species. These 

observations suggest that the suspension feeding green-lipped mussels may become 
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enriched in mercury as it occupies a higher trophic level than the other two species of 

shellfish (Blackmore & Wang 2004; Reinfelder et al. 1998). During the filter feeding 

process, green-lipped mussels can collect zooplankton and phytoplankton that might 

have bioaccumulated mercury. The other two shellfish species (cockles and pipi) feed 

mainly on the sediment-bound materials and nutrients in the porewater (Marsden et al. 

2014). 

Copper and zinc showed a fairly similar range of concentrations among the 

bivalve species of this study, values that were also consistent with those reported 

previously for similar species (Tables 6.10 - 6.12). This may reflect the essentiality of 

these elements. As essential elements, copper and zinc are regulated within a certain 

optimal range, unlike toxic trace elements (cadmium, mercury or lead) (Blackmore & 

Wang 2004). 

Both essential and non-essential elements can cause toxicity in bivalves when 

a certain threshold level is exceeded. The toxicity of trace elements in bivalves is 

generally determined by the species-specific partitioning of accumulated trace 

elements between metabolically active and metabolically less available detoxified 

forms (Luoma & Rainbow 2005; Rainbow 2002). When the uptake rate becomes 

greater than the detoxification rate or the excretion rate, balance will be disrupted 

(Luoma & Rainbow 2005; Pan & Wang 2009; Wang 2002). Hence, the metabolically 

available fraction of the trace elements will be increased, resulting in the appearance 

of toxic effects in the animal (Luoma & Rainbow 2005). 

 

6.5 CONCLUSIONS 

Iron, followed by zinc and then arsenic, were the most abundant trace 

elements in the three shellfish species investigated in the current study. Cadmium and 

mercury were found at very low concentrations in the three species of shellfish. The 

highest mean concentrations of arsenic, copper, iron and zinc were measured in the 

PL site sediments, while the PG site displayed the highest concentrations of cadmium, 

and the SB site contained the highest mean concentrations of lead. There were no 

significant correlations between shellfish lead, iron and zinc and the associated 
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sediments, although tissue cadmium (positive correlation) and copper (negative 

correlation) were correlated with sediment levels. This indicates that the 

concentrations in the sediment generally do not match the trace element levels in 

shellfish. The higher MPI values measured in the shellfish and sediments from the SB 

site were likely related to the presence of a sewage outfall in Governors Bay. The 

mean BSAF values obtained for the three species of this study suggests that, in 

general, green-lipped mussels have a greater capacity for trace element 

bioaccumulation than cockles or pipi, with the exception of arsenic and copper for 

cockles (Table 6.2). The mean BSAF values also indicate that cadmium has the 

highest efficiency for bioaccumulation from sediments, followed by arsenic and zinc. 

None of the shellfish species in any site exceeded the maximum allowable 

value for inorganic arsenic, cadmium, mercury and lead in FSANZ or EC regulations. 

All the investigated trace element concentrations in the sediments of shellfish sites 

were well below the ANZECC ISQG-low trigger values recommended for 

contaminants in marine sediments. The PTWI values for inorganic arsenic, cadmium, 

mercury and lead were not exceeded at rates of fish and shellfish consumption by 

adults of the general population of New Zealand. Hence there is limited risk 

associated with consumption of fish and shellfish harvested from Lyttelton Harbour. 

However, adults can exceed the PTWI value for cadmium at high shellfish 

consumption rates (2849 g/week). This could be of concern for New Zealanders that 

rely heavily on seafood. 
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CHAPTER 7 

 

CONCLUSIONS AND 

RECOMMENDATIONS FOR 

FURTHER WORK 

 

 
 

7.1 OVERVIEW 

This research was carried out to investigate whether trace elements were 

leaching from two sea-fill sites - Thilafushi Island in the Maldives and a sea-fill site in 

Lyttelton Harbour, New Zealand. The specific objectives were to determine if trace 

elements had accumulated in aquatic food chains due to the sea-fill activities, and to 

carry out risk assessment for consumption of seafood harvested from the vicinity of 

the sea-fills. To achieve the objectives of this research, multifaceted studies were 

designed and conducted at the two sea-fill sites. The following investigations were 

performed as separate individual components of this research. 

1- Seawater and marine sediments were collected at selected distances along 

three transect lines from the two sea-fill sites (one transect line at a reference 
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site), and were analysed for trace elements. 

2- Biota samples were collected from the vicinity of each sampling site to 

determine the concentrations of trace elements at different trophic levels in the 

food chain. The measured trace element concentrations were used to carry out 

a risk assessment for consumption of seafood harvested at the sea-fill sites. 

3- A baseline study of trace element concentrations in shellfish was carried out 

for the wider Lyttelton Harbour, and a risk assessment for consumption of 

wild shellfish harvested in Lyttelton Harbour was completed. 

This chapter presents summaries of all the research findings from the previous 

chapters with the main conclusions and recommendations for future work. 

 

7.2 TRACE ELEMENTS IN THILAFUSHI ISLAND 

SEA-FILL, MALDIVES 

7.2.1 ENVIRONMENTAL CHARACTERISATION 

Overall, the seawater results indicated that concentrations of all trace elements 

were significantly higher at the sea-fill site (Thilafushi Island) than at the reference 

site (Huruelhi Island). For the sediments, all trace elements were significantly higher 

at the sea-fill site with the exception of arsenic and cadmium. These combined results 

indicate that the sea-fill of Thilafushi Island could be a source of trace elements to the 

surrounding marine environment with a noticeable decrease in element concentrations 

with distance along the T1 and T3 transects. The concentrations of trace elements 

were generally comparable to previously reported levels for seawater and sediments 

of sea-fill or coastal landfill sites elsewhere. 

Seawater samples from Thilafushi Island exceeded the ANZECC trigger value 

for the protection of 80% of marine species for copper. Similarly, copper and zinc 

concentrations in marine sediments of the Thilafushi sea-fill exceeded the ANZECC 

guideline value of ISQG-low, and ISQG-high, respectively, implying that copper and 

zinc concentrations were high enough to have ecological effects at the sea-fill site 
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(Section 3.4.1). 

7.2.2 TRACE ELEMENTS IN BIOTA 

Marine biota collected at the sea-fill site contained significantly higher 

concentrations of copper, iron, mercury, lead and zinc compared to the reference site. 

Conversely, arsenic and cadmium were higher for the reference site. The cadmium 

result could be explained by competition for uptake between cadmium and the 

elevated levels of zinc at the sea-fill site. The trace element concentrations measured 

in the marine food chain species were generally similar to comparable species 

investigated elsewhere. Red mullet bioaccumulated significantly higher 

concentrations of arsenic, cadmium, copper, iron, lead and zinc than parrotfish, 

demonstrating that accumulation can differ between species under the same 

environmental exposure scenarios, although variations in diet can also play a role. 

Generally, the essential trace elements were measured at higher concentrations than 

non-essential trace elements. 

Overall trace element concentrations were significantly lower in the fish 

muscle tissue than in liver, kidney and gonad. There were no significant differences in 

accumulated copper and iron (essential elements) between red mullet or parrotfish 

between the two sites, implying that these elements are regulated within these species 

at certain concentration ranges, even when exposed to higher environmental 

concentrations. However, despite zinc being an essential element it was found at 

significantly higher concentrations in parrotfish from the reference site compared to 

the sea-fill site. Zinc is known to play an important role in reproduction, and increases 

during the spawning period (Banks et al. 1999; Olsson et al. 1987). This study also 

found that zinc concentrations in gonad (reproductive organ of fish) were significantly 

higher than other soft tissues within the same fish, again likely related to the role of 

zinc in reproduction. Mercury was found at higher concentrations in the organisms at 

higher trophic levels relative to organisms lower down the food chain. 

7.2.3 RISK ASSESSMENT FOR CONSUMPTION OF SEAFOOD 

HARVESTED AT THILAFUSHI SEA-FILL 

Lead concentrations in all tissues of red mullet from the sea-fill site, and in the 

gonads and kidneys of parrotfish from the sea-fill site, exceeded the FSANZ 
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maximum allowable levels (ML) for fish (Section 3.4.3). Cadmium concentrations 

measured in the liver, kidney and gonad of red mullet of the Thilafushi sea-fill 

exceeded the EC ML value for fish (Section 3.4.3). Although zinc is an essential 

element, the concentrations measured in the shellfish from both the sampling sites 

exceeded the ML value for molluscs, suggesting that this species of shellfish (penguin 

wing oyster) can accumulate high concentrations of zinc. Utilising the accumulation 

values for fish muscle, it was shown that lead and arsenic intakes can exceed the 

respective provisional tolerable weekly intake (PTWI) values for all weight groups of 

human consumers (i.e. toddlers, children, adult males and females) (Section 3.4.3). 

These intakes were further increased when shellfish and fish organs were incorporated 

into the diet of Maldivians. Although only lead exceeded the ML values for fish, the 

high fish consumption rates in the Maldives can result in the PTWI for inorganic 

arsenic, methylmercury and lead for all weight groups being exceeded. The PTWI 

value of cadmium was only exceeded by toddlers when fish organs were incorporated 

in the diet with the fish muscle; while children can exceed the PTWI value for 

cadmium when shellfish is included with fish muscle and fish organs. 

The trace element concentrations in seawater, marine sediments and biota of 

Thilafushi Island exceeded regulatory limits for those matrices. Furthermore, the 

results also showed that although the concentrations of some trace elements, such as 

arsenic and mercury, in seafood meet the existing ML levels, people can still exceed 

the PTWI values due to the high rates of fish consumption in the Maldives. Overall 

the dietary modelling showed that the sea-fill can increase dietary exposure to 

mercury and lead to levels above PTWIs. As there are no existing data of trace 

element concentrations of any biota or any food in the Maldives, the results of this 

study will serve as a baseline for future trace element studies in the Maldives, 

especially in terms of seafood for human risk assessment purposes. 
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7.3 TRACE ELEMENTS AT THE SEA-FILL OF 

LYTTELTON HARBOUR 

7.3.1 MONITORING OF TRACE ELEMENTS AT THE SEA-FILL  

Overall, seawater and marine sediment data indicated that trace elements at the 

LH sea-fill site were significantly higher than at the reference site, with the exception 

of arsenic in sediment which was not different between the two sites. Concentrations 

of cadmium, lead and zinc in seawater samples were significantly higher closer to the 

silt curtain and decreased with distance from the sea-fill. In the sediments, the arsenic, 

cadmium and lead concentrations decreased with distance from the sea-fill. This is 

strong evidence that the sea-fill is leaching trace elements to the surrounding aquatic 

environment. Sediment arsenic and iron concentrations increased over time at the sea-

fill site over the sampling period, while copper decreased. The levels of trace 

elements measured in seawater and sediments in the vicinity of the sea-fill were 

generally comparable to previously reported levels for sea-fill or coastal landfill sites 

elsewhere. 

The results from biota monitoring generally supported the data collected for 

sediment and seawater. Green-lipped mussels from the sea-fill site showed higher 

levels of tissue burdens than animals from the reference site, with the sole exception 

of cadmium. However, data also indicated that seasonal variations, possibly 

associated with factors such as spawning, played a role. Placing these accumulation 

data in a regulatory context, it was shown that copper in seawater and lead in 

sediment from the sea-fill site were at levels where biological impacts could be 

expected. It is, however, unlikely that effects would be observed in human consumers 

of seafood harvested from this site. 

7.3.2 TRACE ELEMENTS IN A COASTAL FOOD CHAIN, AND TROPHIC 

TRANSFER POTENTIAL 

This study was the first to examine the passage of trace elements through a 

food chain in Lyttelton Harbour, and to show how this potentially links environmental 

trace elements with human consumption. The data presented here showed that iron 

and lead actually diluted in concentration in higher trophic levels (Section 5.3.3). This 
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is likely explained by mass dilution, and/or the greater importance of alternative (non-

dietary) exposure routes in lower trophic feeders. Mercury was the only element 

found to appreciably biomagnify through the food chain (Section 5.3.3). This finding 

is consistent with the high bioavailability of methylmercury. Together these data show 

that the diet is a key pathway of exposure in food chains, but dissolved trace elements 

and sediment exposures will also play a role in trace element body burdens. 

The trace elements likely to be of greatest relevance in Lyttelton Harbour are 

cadmium and mercury, which both exceeded regulatory limits in fish liver and kidney 

(Section 5.3.4). This indicates these elements may cause health risks from regular 

consumption of these organs. It was shown, however, that Lyttelton Harbour remains 

a relatively clean site. Trace element concentrations found in the food chain species of 

the LH sea-fill site were generally lower than in other regions of New Zealand 

(Brooks & Rumsey 1974; Kennedy 1986; Love et al. 2003; Nielsen & Nathan 1975; 

Whyte et al. 2009). 

7.3.3 BASELINE STUDY OF SHELLFISH AND RISK ASSESSMENT FOR 

CONSUMPTION OF SEAFOOD HARVESTED IN LYTTELTON HARBOUR 

The next phase of the work focussed on a broader examination of trace 

element profiles around Lyttelton Harbour, by examining trace element burdens, and 

their relationships to sediment concentrations, in three shellfish species. Different 

elements were elevated at different locations, indicating distinct point sources for 

trace element contaminants around the harbour. However, no sediment sample 

exceeded the ANZECC ISQG-low/high values for any trace element. Of the shellfish 

species tested, green-lipped mussels accumulated the highest levels of trace elements, 

with the exception of arsenic in cockles and copper in pipi. Sandy Beach (SB) was 

shown to be the most contaminated site by applying an MPI approach with biota trace 

elements (Section 6.3.2; Table 6.2), likely the consequence of a sewerage outfall at 

nearby Governor‘s Bay. Port Levy (PL) was the highest scoring site if sediment trace 

element concentrations were used for MPI calculations. Biota sediment accumulation 

factors showed that cadmium had the highest efficiency for bioaccumulation from 

sediments, followed by arsenic and zinc. 

No shellfish species at any site in the wider Lyttelton Harbour exceeded the 
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maximum allowable values for inorganic arsenic, cadmium, mercury and lead. The 

PTWI values for inorganic arsenic, cadmium, mercury and lead were not exceeded at 

rates of fish and shellfish consumption by adults of the general population of New 

Zealand. However, adults can exceed the PTWI value for cadmium at high shellfish 

consumption rates (2849 g/week) (Section 6.3.2.11; Table 6.4). This could be of 

concern for populations that rely heavily on seafood. 

 

7.4 SYNTHESIS OF KEY FINDINGS 

The key findings from this thesis include: 

 Sea-fill sites are a potential source of trace elements to marine 

ecosystems. 

 The body burdens of marine organisms reflect environmental 

concentrations of trace elements. 

 Body burden of trace elements generally depends on the species, the 

essentiality of trace element, and the metal handling strategies adopted 

by different species. 

 Different trace elements behave differently in different organisms in the 

food chain, and their toxicity can vary depending on the chemical 

speciation they present in the biota. 

 High consumers of seafood can exceed PTWIs despite trace element 

concentrations being below maximum allowable limits. 

   

7.5 RECOMMENDATIONS FOR FURTHER WORK 

7.5.1 MALDIVES STUDY 

This was the first study to investigate trace element (arsenic, cadmium, 

copper, iron, mercury, lead and zinc) concentrations in biota from the Maldives. The 
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samples collected from the Thilafushi sea-fill site of Maldives had levels of copper in 

seawater and zinc in sediment that exceeded water quality guidelines for the 

protection of marine species (Section 3.4.1). These data are an initial insight into 

potential sources and magnitudes of contamination in this island nation, and will 

provide a baseline understanding of trace element concentrations that can be utilised 

for future monitoring purposes. Ultimately it is hoped that these results will lead to 

better protection of marine species, and a greater understanding of the risks to human 

consumers of these organisms. To achieve this, more thorough surveys are required. 

These should employ the multi-matrix approach validated in the current study, but 

encompass a greater area and a wider range of biota. This latter point is particularly 

important given the significant species-differences highlighted throughout the current 

thesis. Of specific value would be studies examining highly consumed fish species 

such as tuna. Tuna is well known to contain high levels of trace elements, especially 

mercury, due to its higher trophic position (Olmedo et al. 2013; Storelli 2008; Storelli 

et al. 2012). 

Importantly, it is clear that there is discordance between the maximum 

allowable trace element levels in biota and human regulatory limits. This is largely a 

consequence of the very high fish consumption rates of Maldivians, and is a factor 

that should be accounted for in setting human risk assessment advisories. Another key 

factor is the consumption of fish organs, shown in this and other studies, to contain 

elevated trace element levels, and which are considered a delicacy in this country. It is 

also recommended that a total diet survey be performed in the Maldives, as no such 

data exists. This would be critical for determining dietary exposure to trace elements 

and other environmental contaminants (see below) that find their way into the human 

food chain. 

It is worth highlighting that trace elements are not the only contaminants that 

could potentially be leaching from the Thilafushi Island sea-fill and entering marine 

food chains. Assessment of toxic organic compounds is strongly recommended. 

Organo-tin compounds from anti-fouling paints are also likely to be present at the 

Thilafushi sea-fill site, as the inner lagoon of Thilafushi Island is a sheltered location 

for boats to anchor for various purposes including repair and maintenance work. 

Furthermore, although toxicants such as polychlorinated biphenyls (PCBs), 
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polyaromatic hydrocarbons (PAHs), and brominated flame retardants were not 

considered in the current thesis, they are likely to be present in sea-fill sites, and are 

likely to accumulate in food chains, and pose risks to seafood consumers (Cooney & 

Wuertz 1989; Farrington et al. 1983; Jones 2010; Jones 2011; Kjeldsen et al. 2002; 

Storelli 2008). 

7.5.2 NEW ZEALAND STUDY 

Copper concentrations in the seawater and lead concentrations in the marine 

sediment of the LH sea-fill site exceeded the recommended limits for the protection of 

marine species (Section 4.4.1.4). Therefore, longer-term monitoring work of trace 

element concentrations in different matrices at the sea-fill site is recommended. More 

species of biota from different trophic levels, covering all the components of the diet 

for each key species investigated in the food chain of LH sea-fill site should be 

analysed to confirm trophic transfer potential and biomagnification of individual trace 

elements. 

The target contaminants should be extended to include organo-tin compounds 

and nickel. Lyttelton Harbour is a busy port with extensive shipping activities, and 

therefore historical use of organo-tin compounds as anti-fouling paints is likely to 

have left an impact in the environment. Nickel is an important trace element 

associated with many of the likely sea-fill constituents, and thus could also be a 

contaminant of concern (Jones 2010; Kjeldsen et al. 2002). Both organo-tins and 

nickel have been shown to have deleterious effects on marine biota (Cooney & 

Wuertz 1989; Madoni 2000; Münzinger 1990). 

This study highlighted higher bioavailablility for cadmium at a site considered 

to be a suitable reference site (Section 4.4.2) for LH. An investigation should be 

carried out to find the possible sources of cadmium and the reasons for higher 

bioavailability of cadmium in Pigeon Bay compared to Lyttelton Harbour. 
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A1: Sample collection site data (GPS co-ordinates, depth of sediment collection, pH of seawater) for studies conducted in Maldives  

Site (transect line-T1) - sea-fill site 1A (2m) 1B (20 m) 1C (80 m) 1D (160 m) 1E (400 m) 

Depth 3.5 m 6.4 m 7 m 7.2 m 6.3 m 

pH of seawater 7.5 7.5 7.6 7.7 7.7 

GPS coordinates N 4° 10' 56.5464"  N 4° 10' 56.7696" N 4° 10' 57.3492" N 4° 10' 58.2234" N 4° 11' 1.269" 

 

E 73° 26' 53.2566" E 73° 26' 52.6056" E 73° 26' 50.8122" E 73° 26' 48.3174" E 73° 26' 41.085" 

Site (transect line-T2) - sea-fill site 2A (2 m) 2B (20 m) 2C (80 m) 2D (160 m) 2E (400 m) 

Depth 0.7 m 0.8 m 0.9 m 1 m 1 m 

pH of seawater 8.1 8 7.9 7.8 8.2 

GPS coordinates N 4° 10' 58.7526" N 4° 10' 58.7706" N 4° 10' 58.9794" N 4° 10' 59.1378" N 4° 10' 59.8872" 

 

E 73° 25' 35.544" E 73° 25' 34.8924" E 73° 25' 32.97" E 73° 25' 30.3564" E 73° 25' 22.5948" 

Site (transect line-T3) - sea-fill site 3A (2 m) 3B (20 m) 3C (80 m) 3D (160 m) 3E (400 m) 

Depth 0.45 m 0.78 m 1.8 m 2.9 m 10.5 m 

pH of seawater 8 8 8 8.1 8.1 

GPS coordinates N 4° 10' 44.4354" N 4° 10' 44.0544" N 4° 10' 43.0782" N 4° 10' 41.757" N 4° 10' 37.7904" 

 

E 73° 26' 52.6086" E 73° 26' 53.1456" E 73° 26' 54.7944" E 73° 26' 57.0588" E 73° 27' 3.744" 

Site (transect line-T4) - reference 

site 4A (2 m) 4B (20 m) 4C (80 m) 4D (160 m) 4E (400 m) 

Depth 0.36 m 0.75 m 1.8 m 2.5 m 11.1 m 

pH of seawater 8.2 8.2 8.2 8.2 8.2 

GPS coordinates N 3° 32' 42.4644" N 3° 32' 43.08" N 3° 32' 44.9772" N 3° 32' 47.4972" N 3° 32' 54.8298" 

  E 72° 43' 10.9848" E 72° 43' 11.1714" E 72° 43' 11.766" E 72° 43' 12.5682" E 72° 43' 14.9982" 

Sample site GPS coordinates of biota samples 

 

Fish Crab Shellfish Worm Algae 

Thilafushi Island N 4° 11' 17.5272" N 4° 11' 4.2858" N 4° 11' 26.0838" N 4° 11' 8.628" N 4° 11' 2.5656" 

 

E 73° 25' 42.636" E 73° 24' 42.0762" E 73° 25' 2.7078" E 73° 25' 25.1472" E 73° 26' 5.4888" 

      Huruelhi Island N 3° 32' 50.8554" N 3° 32' 24.831" N 3° 32' 30.6816" N 3° 32' 38.2308" N 3° 32' 37.917" 

  E 72° 43' 8.7414" E 72° 43' 5.0514" E 72° 43' 1.7832" E 72° 43' 16.5108" E 72° 43' 8.5398" 
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A2: Overview of sampling species from Thilafushi Island and Huruelhi Island of Maldives 

Scientific name  Common name Sample site Length (mm) Whole body weight (g), (shell included 

where applicable) 

Replicates 

(n) 

Fish   Mean Range Mean Range  

Parupeneus indicus Red mullet or Indian goatfish Thilafushi 282.8 ± 21.6 250 - 315 419.2 ± 90.8 272 - 559 12 

Parupeneus indicus Red mullet or Indian goatfish Huruelhi 201.2 ± 39.4 160 - 280 157.8 ± 96.5 72 - 352 12 

Scarus ventula Queen parrotfish Thilafushi 317.8 ± 55.5 200 - 395 686.5 ± 254.5 357 - 1171 12 

Scarus ventula Queen parrotfish Huruelhi 288.9 ± 36.8 235 - 370 468.8 ± 120.1 277 - 689 12 

Shellfish        

Pteria  penguin Penguin wing oyster Thilafushi 206.2 ± 42.1 165 - 265 367.8 ± 188.7 147 - 815 12 

Pteria  penguin Penguin wing oyster Huruelhi 203.5 ± 29.8 140 - 231 317.8 ± 147.3 112 - 573 12 

Marine worm        

Sipunculus indicus Peanut worm Thilafushi NA NA 21.9 ± 5.8 13.5 - 31.2 12 

Sipunculus indicus Peanut worm Huruelhi NA NA 10.3 ± 4.2 3.96 - 15.8 12 

Green algae        

 Green algae Thilafushi NA NA 4.5 ± 1.5 2.1 - 6.7 12 

 Green algae Huruelhi NA NA 2.2 ± 0.6 1.4 - 3.6 12 

NA- not applicable 
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A3: Analytical performance results  

SEAWATER  

Percentage recoveries of cadmium, copper, iron, lead and zinc in certified 

reference seawater and trace elements spiked Milli-Q water, real seawater and 

artificial seawater ranged from 83 to 122% (Table A3.1). Quality assurance (QA) 

water samples were extracted in duplicate. 

Table A3.1: Mean percentage recoveries of trace elements in QA water samples 

Analyte 

% recovery of trace elements in certified reference seawater and trace element spiked water 

samples 

 CRM 

 

Milli-Q     

(n=2) 

 

Real seawater          

(n=2) 

 

Artificial seawater 

(n=2) 

 

NASS-6 

(n=2)  
1 ppb 10 ppb 

 
1 ppb 5 ppb 10 ppb 

 
1 ppb 10 ppb 

Cadmium 

 

108.3 

 

104.6 99.4 

 

98.3 102.4 100.0 

 

101.0 97.0 

Copper 

 

96.1 

 

98.5 95.7 

 

93.0 100.8 89.0 

 

97.6 99.0 

Iron 

 

<LOD 

 

89.7 85.3 

 

82.6 96.9 91.0 

 

89.1 92.7 

Lead 

 

122.0 

 

95.3 100.2 

 

90.6 89.9 82.8 

 

92.6 88.7 

Yttrium 

 

89.6 

 

90.3 94.6 

 

90.9 88.9 87.5 

 

98.2 91.9 

Zinc   116.5   89.0 98.0   92.2 99.4 89.7   97.6 95.8 

CRM (NASS-6) -certified reference materials (seawater); <LOD - below limit of detection. 

The percentage recovery for iron ranged from 83 to 97% for the trace element- 

spiked samples. The possible reasons for this relatively low recovery were previously 

discussed in Chapter 2 (Section 2.2.4).  Yttrium was used as an internal standard in 

this work and had a recovery range from 89 to 98%. Every 10
th

 sample of 

environmental seawater was extracted in duplicate for checking the accuracy of the 

extraction method. The percentage differences in the duplicate extractions were less 

than 12% for all elements, but 15.7% for zinc. 

MARINE SEDIMENTS 

The percentage recoveries for the marine sediment standard reference 

materials (SRM-2702-NIST) digested and analysed in duplicate along with the 

environmental sediment samples ranged from 92 to 115%. The mean percentage 

recoveries of arsenic, cadmium, copper, iron, mercury, lead and zinc in the standard 

reference sediment were 105.8, 114.7, 96.8, 93.6, 91.5, 98.5 and 96.8 respectively. 
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The percentage differences of the 10
th 

sample duplicate digests were within 

5% for all analytes except arsenic (11%). Every 10
th

 sample was analysed in duplicate 

and every 20
th

 sample was analysed with low level trace element spike for checking 

analytical instrument performance (ICP-MS). These duplicate sample differences 

were less than 5.5% for all elements. The percentage recoveries of the spiked 

elements were between 91-113%. 

 BIOTA 

Standard reference material of mussel tissue (SRM-2976, EVISA) and fish 

protein (DORM-3) were digested in duplicate along with the environmental fish 

muscle, crab muscle and shellfish samples. Standard reference bovine liver (SRM 

1557c, NIST), mussel tissue (SRM-2976, EVISA) and fish protein (DORM-3) were 

digested along with the fish organs (liver, kidney and gonad) and marine worm 

samples. Tomato leaves (SRM 1573a, EVISA) were digested in duplicate along with 

the green algae samples.  The mean percentage recoveries of the standard reference 

materials are provided in Table A3.2. 

Table A3.2: Mean percentage recoveries of standard reference materials 

Analytes 

Mean  % recoveries of trace elements in standard reference materials 

Mussel 

(n = 4) 

DORM-3     

 (n = 4) 

Bovine liver   

(n = 4) 

Tomato leaves 

(n = 2) 

Arsenic 119.0 ± 4.3 97.5 ± 2.8 < LOQ < LOQ 

Cadmium 106.4 ± 2.1 103.7 ± 1.6 103.2 ± 3.6 105.2± 7.2 

Copper 94.7 ± 4.2 91.0 ± 2.4 90.7 ± 4.1 104.3 ± 3.7 

Iron 106.3 ± 5.5 95.9± 2.9 100.9 ±8.5 98.5 ± 10.6 

Mercury 98.7 ± 13.5 91.8 ± 8.4 < LOQ < LOQ 

Lead 96.8 ± 2.4 34.9 ± 4.2 88.7 ± 5.7  NP* 

Zinc 106.0 ± 2.9 103.0 ± 9.4 96.0 ± 4.1 104.0 ±12.3 

*NP-data not provided, LOQ- limit of quantification 

The percentage recoveries of all elements in the standard reference mussel and 

fish protein (DORM-3) were over 90% with the exception of lead for DORM-3. The 

percentage recovery of lead in DORM-3 was 34.9%, which was comparable with the 

results obtained in the method validation work described in Chapter 2. 

The percentage differences of the 10
th

 sample duplicate digests were less than 

10% for all the biota species. The percentage differences of the 10
th

 sample duplicate 

analyses (instrument check- ICP-MS) were within 10% for all elements for all biota 
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species with the exception of fish muscle iron (13%), and mercury in kidney and 

gonad samples (11%). 

The percentage recoveries of the spiked elements ranged from 93 to 116% for 

fish muscle, from 85 to 98% for shellfish, from 92 to 103% for marine worms (with 

the exception of arsenic; 131%), and from 86 to 126% for green algae. It is worth 

highlighting the percentage recoveries for the spiked elements in the green algae 

samples were 126%, 97% and 86% for arsenic, lead and mercury respectively. The 

percentage recoveries of the spiked elements in all the fish organs ranged from 91 to 

118% for all elements except arsenic in kidney samples (135%). 
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A4: Trace element concentrations in marine sediment and seawater collected along the transect lines at the sea-fill and the reference site (Huruelhi) 

 

 

Trace element concentrations in sediment 

(mg kg  dry wt
-1

) 
Site 

T
ra

n
se

c
t Distance 

from 

Shoreline 

(m) 

Trace element concentrations in seawater 

(µg L
-1

) 

Fe Cu Zn As Cd Pb Fe Cu Zn Cd Pb 

13562.82 148.32 425.81 6.08 0.44 30.69 Thilafushi T1 2 28.41 1.28 4.38 0.018 0.223 

1545.68 31.29 68 3.94 0.24 26.21 Thilafushi T1 20 28.89 1.46 4.05 0.018 0.200 

2316 55.14 59.32 5.1 0.17 18.12 Thilafushi T1 80 26.29 1.61 4.33 0.017 0.186 

1789.95 44.67 69.62 4.76 0.21 16.6 Thilafushi T1 160 24.01 1.27 3.84 0.017 0.167 

741.2 14.06 19.66 3.63 0.08 5.96 Thilafushi T1 400 25.21 1.31 4.38 0.017 0.165 

32.31 0.14 0.23 1.83 0.06 0.23 Thilafushi T2 2 11.75 0.31 1.18 0.019 0.035 

26.16 0.14 0.47 1.61 0.05 0.24 Thilafushi T2 20 10.64 0.22 0.98 0.015 0.026 

22.56 0.15 0.41 1.49 0.04 0.24 Thilafushi T2 80 9.97 0.17 0.88 0.014 0.023 

35.31 0.14 0.3 1.82 0.04 0.26 Thilafushi T2 160 9.95 0.17 1.14 0.014 0.060 

29.15 0.16 0.4 2.51 0.05 0.2 Thilafushi T2 400 10.67 0.2 0.97 0.015 0.027 

712.96 49.12 13.66 1.77 0.06 4.62 Thilafushi T3 2 31.44 16.37 5.26 0.019 0.848 

401.17 11.38 7.08 2.03 0.07 1.82 Thilafushi T3 20 16.27 2.1 2.09 0.016 0.505 

616.04 11.15 8.13 2.28 0.17 2.62 Thilafushi T3 80 17.1 1.37 1.94 0.016 0.376 

93.39 0.6 1.37 2.75 0.07 0.56 Thilafushi T3 160 10.61 0.26 2.84 0.012 0.049 

61.25 0.56 1.01 2.14 0.07 0.45 Thilafushi T3 400 9.77 0.18 1.38 0.012 0.031 

25.29 0.15 0.21 1.45 0.05 0.41 Huruelhi T4 2 10.52 0.16 1.02 0.013 0.019 

30.35 0.19 0.25 1.63 0.07 0.42 Huruelhi T4 20 9.75 0.14 0.86 0.013 0.020 

28.88 0.2 0.22 1.75 0.07 0.39 Huruelhi T4 80 10.3 0.15 0.84 0.012 0.020 

28.38 0.21 0.26 2.37 0.08 0.45 Huruelhi T4 160 10.55 0.15 1.02 0.014 0.016 

27.24 0.2 0.35 1.9 0.07 0.26 Huruelhi T4 400 10.76 0.15 0.94 0.011 0.018 
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A5:‎Pearson’s‎correlation‎tests‎for‎seawater‎and‎marine‎sediments 

 

Table A5.1: Pearson's correlations coefficients and p-values for significant relationships (bold) between trace element concentrations 

in seawater for both the sampling sites 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thilafushi 

Fe Cu Zn Cd Pb 
Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Fe 1.0 
         

Cu 0.554 0.032 1.0 
       

Zn 0.944 0.000 0.555 0.032 1.0 
     

Cd 0.784 0.001 0.498 0.059 0.642 0.010 1.0 
   

Pb 0.612 0.015 0.867 0.000 0.563 0.029 0.559 0.030 1.0 
 

Huruelhi 

Fe Cu Zn Cd Pb 
Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Fe 1.0 
         

Cu 0.705 0.183 1.0 
       

Zn 0.631 0.254 0.663 0.223 1.0 
     

Cd -0.319 0.600 0.115 0.854 0.467 0.428 1.0 
   

Pb -0.622 0.262 -0.211 0.733 -0.749 0.145 -0.230 0.709 1.0 
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Table A5.2: Pearson's correlations coefficients and p-values for significant relationships (bold) between trace elements in sediments for both the sampling 

sites 

Thilafushi 

Fe Cu Zn As Cd Pb 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Fe 1.000  
          

Cu 0.942 0.000 1.000  
        

Zn 0.997 0.000 0.937 0.000 1.000  
      

As 0.746 0.001 0.800 0.000 0.757 0.001 1.000  
    

Cd 0.891 0.000 0.886 0.000 0.906 0.000 0.855 0.000 1.000  
  

Pb 0.761 0.001 0.836 0.000 0.786 0.001 0.896 0.000 0.915 0.000 1.000  

Huruelhi Fe Cu Zn As Cd Pb 

 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Fe 1.000  
          

Cu 0.659 0.226 1.000  
        

Zn 0.021 0.974 0.481 0.412 1.000  
      

As 0.243 0.694 0.791 0.111 0.393 0.513 1.000  
    

Cd 0.702 0.186 0.973 0.005 0.404 0.500 0.844 0.072 1.000  
  

Pb 0.248 0.688 -0.130 0.835 -0.798 0.105 0.092 0.883 0.050 0.937 1.000  
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Table A5.3: Pearson's correlations coefficients and p-values for significant relationships (bold) between trace elements in seawater and trace  

elements in sediments for both the sampling sites 

Thilafushi  

Sediment  
Fe Cu Zn Cd Pb 

Corr. 

coefficient 
P value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

S
ea

w
a

te
r
  

Fe 0.497 0.060                 

Cu     0.245 0.379             

Zn         0.450 0.092         

Cd             0.422 0.117     

Pb                 0.118 0.676 

Huruelhi 

Sediment 

Fe Cu Zn Cd Pb 
Corr. 

coefficient 
P value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

Corr. 

coefficient 

P 

value 

S
ea

w
a

te
r
  

Fe -0.736 0.156                 

Cu     -0.603 0.282             

Zn         0.040 0.949         

Cd             -0.114 0.855     

Pb                 -0.057 0.928 
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A6: Trace element concentrations in fish tissues 

Fish samples Concentration (µg g  wet wt
-1

) of trace elements in  fish and fish organs  (mean ± SE) 

Total As Cd Cu Fe Hg Pb Zn 

Thilafushi  Island fish  

 
Red mullet or Indian goatfish (Parupeneus indicus), n=12 

Muscle 8.27 ± 1.71 0.01 ± 0.01 0.20 ± 0.03 5.51 ± 0 .73 0.05 ± 0.02 1.06 ± 1.82 7.17 ± 1.24 

Liver 14.91 ± 3.38 8.84 ± 3.44 12.02 ± 3.75 920 ± 197 0.05 ± 0.02 15.42 ± 40.26 40.15 ± 5.65 

Kidney 13.31 ± 2.18 0.51 ± 0.26 1.59 ± 0.15 884 ± 316 0.08 ± 0.03 9.85 ± 27.21 1051 ± 540 

Gonad 10.68 ± 3.55 0.26 ± 0.14 1.09 ± 0.11 53.33 ± 13.04 0.03 ± 0.02 0.92 ± 1.11 61.76 ± 44.27 

Parrotfish (Scarus ventula), n=12 

 
Muscle 0.65 ± 0.23 <LOQ 0.16 ± 0.04 2.16 ± 0.86 <LOQ 0.09 ± 1.4 3.25 ± 0.22 

Liver 1.81 ± 0.33 4.57 ± 2.35 5.46 ± 2.73 157 ± 119 0.02 ± 0.01 0.30 ± 0.45 25.29 ± 8.43 

Kidney 1.04 ± 0.27 2.70 ± 1.18 1.56 ± 0.42 193 ± 61.18 0.05 ± 0.01 0.86 ± 1.04 16.47 ± 3.50 

 
Gonad 2.33 ± 1.60 0.25 ± 0.18 0.55 ± 0.26 11.70 ± 7.77 <LOQ 1.49 ± 2.96 15.26 ± 7.42 

Huruelhi Island Fish  

Red mullet or Indian goatfish (Parupeneus indicus), n=12 

Muscle 12.93 ± 5.31 0.01 ± 0.01 0.13 ± 0.01 2.84 ± 0.43 0.03 ± 0.02 <LOQ 6.17 ± 1.30 

Liver 16.44 ± 4.76 8.42 ± 3.68 13.48 ± 3.40 735 ± 183 0.05 ± 0.04 0.08 ± 0.04 39.90 ± 7.16 

Kidney 16.84 ± 4.63 0.73 ± 0.43 1.58 ± 0.35 424 ± 208 0.08 ± 0.05 0.04 ± 0.03 566 ± 329 

Gonad 17.14 ± 2.25 0.39 ± 0.36 1.70 ± 0.80 44.74 ± 13.72 <LOQ 0.01 ± 0.02 159 ± 34 

Parrotfish (Scarus ventula), n=12 

 
Muscle  0.71 ± 0.08 <LOQ 0.12 ± 0.01 1.51 ± 0.38 <LOQ  <LOQ 3.31 ± 0.43 

Liver 2.19 ± 0.32 12.05 ± 8.24 7.26 ± 3.09 194 ± 107 0.03 ± 0.02 0.08 ± 0.07 31.09 ± 14.3 

Kidney 1.16 ± 0.22 5.71 ± 2.07 1.24 ± 0.20 245 ± 61.67 0.07 ± 0.03 0.21 ± 0.13 18.99 ± 5.55 

Gonad 2.37 ± 2.53 0.51 ± 0.43 0.56 ± 0.21 23.96 ± 18.17 <LOQ 0.02 ± 0.03 74.08 ± 62.87 
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A7: Trace element concentrations in shellfish, marine worm and green algae samples 

Biota Samples 
Concentration (µg g wet wt

-1
) of trace elements in  marine biota (mean ± SE) 

Total As Cd Cu Fe Hg Pb Zn 

Thilafushi  Island biota 

Penguin Wing Oyster  

(Pteria  penguin) , n = 12 

13.83 ± 6.97 2.07 ± 0.01 0.79 ± 0.11 30.89 ± 9.30 0.03 ± 0.01 0.16 ± 0.11 415 ± 181 

Peanut worm (Sipunculus indicus), 

n = 12 

3.60 ± 0.77 0.36 ± 0.09 0.33 ± 0.06 64.31 ± 3.99 <LOQ 0.33 ± 0.08 9.25 ± 0.93 

Green algae, n = 12 1.54 ± 0.37 0.02 ± 0.00 14.67 ± 1.72 243 ± 26.14 <LOQ 1.62 ± 0.27 9.20 ± 1.16 

Huruelhi  Island biota 

Penguin Wing Oyster (Pteria  

penguin) , n = 12 

11.03 ± 2.99 1.53 ± 0.46 0.83 ± 0.16 14.21 ± 6.23 0.02 ± 0.01 0.06 ± 0.02 125 ± 55.17 

Peanut worm (Sipunculus indicus), 

n = 12 

13.48 ± 1.55 0.68 ± 0.10 0.43 ± 0.08 15.26 ± 2.01 <LOQ 0.04 ± 0.01 5.31 ± 1.15 

Green algae, n = 12 2.17 ± 0.43 0.05 ± 0.01 0.73 ± 0.26 30.93 ± 5.00 <LOQ 0.09 ± 0.02 0.71 ± 0.41 
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B1: GPS coordinates, distance from shoreline of seawater and sediment sites, and the depth of sediment samples collected at the transect lines of the LH sea-fill 

(Chapter 4) 

Transect line-T1 1A (2 m) 1B (20 m) 1C (80 m) 1D (160 m) 1E (400 m) 

Depth 8 m 8.6 m 8.6 m 8.6 m 12.7 m 

GPS coordinates S 43° 36.530' S 43° 36.553' S 43° 36.578' S 43° 36.614' N 43° 36.715' 

 

E 172° 44.026' E 172° 44.029' E 172° 44.054' E172° 44.093' E 172° 44.200' 

Transect line-T2 2A (2 m) 2B (20 m) 2C (80 m) 2D (160 m) 2E (400 m) 

Depth 7.7 m 7.8 m 7.8 m 7.3 m 12.6 m 

GPS coordinates S 43° 36.497' S 43° 36.510' S 43° 36.519' S 43° 36.544' S 43° 36.616' 

 

E 172° 44.117' E 172° 44.130' E 172° 44.168' E 172° 44.220' E 172° 44.379' 

Transect line-T3 3A (2 m) 3B (20 m) 3C (80 m) 3D (160 m) 3E (400 m) 

Depth 6.4 m 6.5 m 6.5 m 7.0 m 8.0 m 

GPS coordinates S 43° 36.349' S 43° 36.347' S 43° 36.346' S 43° 36.327' S 43° 36.295' 

 

E 172° 44.138' E 172° 44.157' E 172° 44.199' E 172° 44.0255' E 172° 44.427' 

Transect line-T4 4A (2m) 4B (20m) 4C (80m) 4D (160m) 4E (400m) 

Depth 4.2 m 4.2 m 4.4 m 4.5 m 5.1 m 

GPS coordinates S 43° 40.313' S 43° 40.304' S 43° 40. 289' S 43° 40. 267' S 43° 40.192' 

  E 172° 53.304' E 172° 53.311' E 172° 53.322' E 172° 53.336' E 172° 53.377' 

GPS coordinates and depths of seawater and sediment samples from sites around Lyttelton Harbour (Chapter 4, Figure  4.2) 

Site 1 2 3 4 5 

Depth 1.3 m 1.6 m 2.1 m 3.1 m 3.5 m 

GPS coordinates S 43° 38.744'  S 43° 38.844'  S 43° 37.562'  S 43° 36.667'  S 43° 37.276'  

  E 172° 40.424' E 172° 42.036' E 172° 39.532' E 172° 40.614' E 172° 40.453' 

Site 6 7 8 9 10 

Depth 5.5 m 5.0 m 7.5 m 8.0 m 4.2 m 

GPS coordinates S 43° 37.065'  S 43° 37.483'  S 43° 37.389'  S 43° 36.530'  S 43° 37.681'  

  E 172° 42.001' E 172° 43.045' E 172° 44.035' E 172° 44.026' E 172° 44.904' 

Site 11 12 13   

Depth 9.6 m 13.2 m 15.4 m   

GPS coordinates S 43° 36.604'  S 43° 36.238'  S 43° 35.849'    

  E 172° 45.366' E 172° 47.157' E 172° 49.149'   
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B2: Percentage recoveries of trace elements in quality control 

Table B2.1: Mean percentage recoveries of trace elements in quality control water samples (Chapter 

4) 

Analyte 

% recovery of trace elements in certified reference seawater and metal-spiked water samples 

 

CRM 

 

Milli-Q water 

(n = 12) 

 

Natural seawater 

 (n = 6) 

 

Artificial seawater 

(n = 12) 

 

NASS-6 

(n = 6)  
1 ppb 10 ppb 

 
1 ppb 5 ppb 10 ppb 

 
1 ppb 10 ppb 

Cadmium 

 

99.7 

 

91.7 93.4 

 

96.6 95.1 93.4 

 

96.0 94.2 

Copper 

 

103.7 

 

102.7 100.5 

 

90.3 96.3 87.4 

 

97.6 95.1 

Iron 

 

<LOQ 

 

86.4 96.6 

 

85.3 118.2 93.2 

 

84.7 93.5 

Lead 

 

119.9 

 

90.6 96.4 

 

91.0 90.0 88.6 

 

88.1 90.3 

Yttrium 

 

91.2 

 

92.6 97.2 

 

89.8 86.5 90.3 

 

89.3 88.8 

Zinc   96.6   90.9 92.7   91.2 107.1 95.3   98.8 96.1 

Table B2.1 represents percentage recoveries of trace elements in the quality 

control samples for the seawater of Chapter 4. Percentage recoveries of cadmium, copper, 

iron, lead, yttrium and zinc in certified reference seawater (NASS-6), and trace element-

spiked Milli-Q water, natural seawater and artificial seawater were within acceptable 

ranges (85-120%). The recovery for iron ranged from 85-118% for all the spiked samples.  

Yttrium was used as an internal standard in this work and had a recovery range from 89 to 

97%.  Every 10
th

 sample of seawater was extracted in duplicate and the percentage 

differences were within 10% for all elements with the exception of zinc (13.9%). 

Table B2.2 represents the trace element recovery for the quality assurance samples 

for the green-lipped mussels of Chapter 4.  The mean percentage recoveries of all 

elements in the standard reference mussel, fish protein (DORM-3) and marine sediments 

ranged between 90 and 113% with the exception of lead in DORM-3 (Table B2.2). The 

percentage recovery of lead in DORM-3 was 35.7%, which was comparable with the 

results obtained in method validation work described in Chapter 2 (Section 2.4.3.2).  
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Table B2.2: Mean percentage recoveries ± standard error for standard reference materials 

Analytes 

Mean  % recoveries of trace elements 

Mussel         

 (n = 4) 

Fish protein     

(n = 4) 

Sediment 

(n = 6)  

Arsenic 113.1 ± 3.3 97.6 ± 4.7 98.7 ± 2.6 
 

Cadmium 103.1 ± 5.5 104.4 ± 6.8 106.5 ± 5.6 
 

Copper 90.1 ± 1.5 93.0 ± 1.9 90.0 ± 1.1 
 

Iron 99.9 ± 1.5 94.2 ± 2.9 92.7 ± 2.9 
 

Mercury 90.4 ± 5.0 99.0 ± 3.8 95.2 ± 3.5 
 

Lead 99.2 ± 10.7 35.7 ± 1.8 91.7 ± 2.7 
 

Zinc 98.2 ± 2.0 95.8 ± 2.3 90.7 ± 3.7 
 

 

The percentage differences of the 10
th

 sample duplicate digests were within 10% 

for all the analytes in shellfish and marine sediments. In addition to the duplicate 

digestions, every 10
th

 sample was also analysed in duplicate, and every 20
th

 sample was 

analysed with low level trace element spikes for checking ICP-MS instrument 

performance and any matrix interferences. The percentage differences of these duplicate 

analyses ranged from 5 to 9% for all elements in shellfish, and <5% in marine sediments. 

The percentage recoveries of the spiked elements ranged between 89 and 115% in the 

green-lipped mussels and from 81 to 117 % in the sediment samples. 
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B2.3: Trace element concentrations µg L
-1

 (mean ± SE) in the seawater with respect to distance from 

silt curtain (T1 to T3 combined at sea-fill site) for 8 sampling rounds 

Distance  Fe Cu Zn Cd Pb   

2 m 320 ± 69 0.86 ± 0.39 2.37 ± 1.53 0.023 ± 0.004 0.26 ± 0.06 

R
o

u
n

d
 1

 20 m 340 ± 44 0.77 ± 0.20 2.17 ± 0.93 0.025 ± 0.006 0.26 ± 0.06 

80 m 347 ± 57 1.09 ± 0.77 1.62 ± 0.15 0.020 ± 0.001 0.26 ± 0.04 

160 m 337 ± 22 0.93 ± 0.43 1.60 ± 0.16 0.020 ± 0.002 0.23 ± 0.02 

400 m 302 ± 24 0.69 ± 0.15  1.69 ± 0.32 0.019 ± 0.001 0.21 ± 0.02 

Reference site 125 ± 15 0.42 ± 0.25 0.72 ± 0.41 0.022 ± 0.001 0.08 ± 0.01 

2 m 576 ± 143 0.76 ± 0.13 4.10 ± 2.1 0.026 ± 0.008 0.55 ± 0.26 

R
o

u
n

d
 2

 20 m 472 ± 196 0.65 ± 0.19 3.06 ± 1.9 0.023 ± 0.002 0.46 ± 0.33 

80 m 481 ± 115 0.70 ± 0.02 2.87 ± 0.55 0.022 ± 0.001 0.40 ± 0.10 

160 m 405 ± 6 0.63 ± 0.13 2.06 ± 0.26 0.026 ± 0.008 0.30 ± 0.02 

400 m 508 ± 86 0.66 ± 0.06 2.56 ± 0.45 0.022 ± 0.000 0.36 ± 0.07 

Reference site 300 ± 11 0.23 ± 0.02 1.03 ± 0.08 0.011 ± 0.001 0.14 ± 0.01 

2 m 94 ± 25 0.48 ± 0.01 2.01 ± 1.0 0.034 ± 0.017 0.19 ± 0.05 

R
o
u

n
d

 3
 20 m 94 ± 22 0.39 ± 0.07 1.08 ± 0.69 0.028 ± 0.015 0.15 ± 0.04 

80 m 131 ± 31 0.41 ± 0.04 1.25 ± 0.28 0.029 ± 0.016 0.16 ± 0.03 

160 m 112 ± 15 0.36 ± 0.0 0.65 ± 0.15 0.018 ± 0.003 0.12 ± 0.01 

400 m 131 ± 21 0.41 ± 0.06 0.73 ± 0.37 0.018 ± 0.002 0.12 ± 0.00 

Reference site 185 ± 7 0.22 ± 0.01 0.49 ± 0.06 0.019 ± 001 0.11 ± 0.00 

2 m 246 ± 62 0.49 ± 0.12 1.74 ± 0.53 0.019 ± 0.005 0.33 ± 0.09 

R
o
u

n
d

 4
 20 m 282 ± 35 0.44 ± 0.07 1.62 ± 0.38 0.018 ± 0.001 0.31 ± 0.09 

80 m 275 ± 21 0.55 ± 0.20 1.40 ± 0.15 0.017 ± 0.001 0.26 ± 0.02 

160 m 253 ± 67 0.44 ± 0.05 1.66 ± 0.46 0.016 ± 0.000 0.26 ± 0.03 

400 m 323 ± 60 0.60 ± 0.21 1.65 ± 0.17 0.017 ± 0.000 0.30 ± 0.04 

Reference site 197 ± 22 0.23 ± 0.02  0.88 ± 0.11 0.019 ± 0.001 0.12 ± 0.01 

2 m 135 ± 16 0.49 ± 0.13 1.79 ± 0.34 0.019 ± 0.005 0.33 ± 0.15 

R
o
u

n
d

 5
 20 m 168 ± 7 0.46 ± 0.04 1.51 ± 0.11 0.016 ± 0.001 0.33 ± 0.10 

80 m 203 ± 41 0.47 ± 0.04 1.67 ± 0.23 0.017 ± 0.001 0.38 ± 0.08 

160 m 208 ± 50 0.49 ± 0.03 1.58 ± 0.21 0.017 ± 0.001 0.41 ± 0.13 

400 m 182 ± 51 0.46 ± 0.05 1.22 ±0.20 0.016 ± 0.000 0.28 ± 0.07 

Reference site 95 ± 10 0.30 ± 0.05 0.69 ± 0.17 0.015 ± 0.002 0.10 ± 0.01 

2 m 80 ± 14 0.40 ± 0.08 1.65 ± 0.83 0.014 ± 0.002 0.27 ± 0.13 
R

o
u

n
d

 6
 20 m 79 ± 26 0.98 ± 0.61 1.38 ± 0.67 0.012 ± 0.001 0.24 ± 0.20 

80 m 59 ± 6 0.49 ± 0.28 0.92 ± 0.13 0.013 ± 0.001 0.13 ± 0.02 

160 m 57 ± 11 0.36 ± 0.02 0.78 ± 0.06 0.011 ± 0.000 0.10 ± 0.02 

400 m 72 ± 30 0.35 ± 0.05 0.75 ± 0.10 0.011 ± 0.001 0.15 ± 0.08 

Reference site 109 ± 35 0.21 ± 0.01 0.50 ± 0.10 0.010 ± 0.001 0.12 ± 0.04 

2 m 170 ± 32 0.53 ± 0.08 2.0 ± 0.67 0.012 ± 0.002 0.43 ± 0.02 

R
o

u
n

d
 7

 20 m 151 ± 28 0.52 ± 0.11 1.36 ± 0.15 0.012 ± 0.000 0.32 ± 0.04 

80 m 159 ± 23 0.51 ± 0.07 1.37 ± 0.43 0.011 ± 0.000 0.30 ± 0.05 

160 m 188 ± 45 0.56 ±0.09 1.53 ± 0.07 0.010 ± 0.000 0.34 ± 0.07 

400 m 160 ± 23 0.51 ± 0.06 1.13 ± 0.16 0.009 ± 0.001 0.28 ± 0.03 

Reference site 194 ± 57 0.26 ± 0.02 0.86 ± 0.19 0.009 ± 0.001 0.14 ± 0.01 

2 m 84 ± 31 0.58 ± 0.05 1.49 ± 0.48 0.013 ± 0.001 0.55 ± 0.25 

R
o
u

n
d

 8
 20 m 65 ± 3 0.51 ± 0.06 0.93 ± 0.29 0.011 ± 003 0.30 ± 0.07 

80 m 66 ± 5 0.53 ± 0.08 1.25 ± 0.50 0.010 ± 0.001 0.29 ± 0.09 

160 m 71 ± 6 0.51 ± 0.06 0.89 ± 0.18 0.010 ± 0.000 0.27 ± 0.03 

400 m 66 ±13 0.49 ± 0.05 0.74 ± 0.13 0.010 ± 0.000 0.25 ± 0.05 

Reference site 91 ± 5 0.24 ± 0.04 0.45 ± 0.08 0.011 ± 0.001 0.16 ± 0.02 
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B3: Trace element concentrations in marine sediments and seawater samples collected around Lyttelton Harbour (sample site 9 was same as the T1A site at the 

transect line T1 at the sea-fill) 

 

 

 

 

 

 

 

 

  

Sample 

site 

Marine sediment µg g dry wt
-1

. Seawater µg L
-1

   

Fe Cu Zn As Cd Pb Fe Cu Zn Cd Pb 

                        

1 17460.80 4.36 60.52 5.78 0.020 13.08 155.65 0.45 0.73 0.01 0.15 

2 18617.00 5.02 53.76 6.20 0.026 14.55 272.39 0.59 1.27 0.02 0.23 

3 20818.58 6.94 64.10 6.72 0.025 18.43 448.63 0.87 1.63 0.02 0.35 

4 25156.62 9.63 78.82 6.42 0.031 21.55 379.12 0.67 1.52 0.02 0.30 

5 20575.12 5.80 58.97 6.55 0.022 16.56 193.26 0.61 1.38 0.02 0.19 

6 21012.65 7.70 64.49 6.54 0.028 18.08 212.73 0.53 1.20 0.02 0.19 

7 21298.03 5.34 54.34 7.49 0.032 15.31 198.47 0.40 0.96 0.02 0.18 

8 18646.79 5.98 49.02 6.03 0.031 16.13 188.81 0.47 1.07 0.03 0.17 

9  (T1-A) 19186.87 15.54 151.78 7.24 0.133 75.22 260.98 1.31 4.14 0.03 0.32 

10 16358.50 4.68 42.40 5.93 0.025 15.15 124.96 0.40 0.70 0.03 0.11 

11 22047.03 8.62 66.44 6.68 0.032 19.08 185.12 0.39 1.05 0.04 0.15 

12 22138.12 7.71 60.18 7.73 0.033 17.98 24.28 0.21 0.68 0.03 0.06 

13 24733.10 9.94 70.11 7.81 0.041 21.14 83.34 0.25 0.72 0.02 0.10 
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B4:‎Pearson’s‎correlation‎analysis‎for‎seawater‎and‎marine‎sediments‎of‎Lyttelton‎Harbour‎and‎the‎reference‎site‎(Chapter‎4) 

 

Table B4.1: Pearson's correlations coefficients and P-values for significant relationships (bold) between trace elements within seawater  

Sea-fill site 

Fe Cu Zn Cd Pb 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Fe 1.000 

         Cu 0.396 0.000 1.000 

       Zn 0.716 0.000 0.402 0.000 1.000 

     Cd 0.429 0.000 0.193 0.034 0.493 0.000 1.000 

   Pb 0.455 0.000 0.212 0.020 0.692 0.000 0.095 0.304 1.000 

 

PG site 
Fe Cu Zn Cd Pb 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value P value 

Fe 1.000 

         Cu -0.117 0.473 1.000 

       Zn 0.628 0.000 0.028 0.865 1.000 

     Cd -0.059 0.719 0.426 0.006 0.018 0.910 1.000 

   Pb 0.350 0.027 -0.340 0.032 0.224 0.164 -0.627 0.000 1.000 
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Table B4.2: Pearson's correlations coefficients and P-values for significant relationships (bold) between trace elements within sediments 

Sea-fill site 
Fe Cu Zn As Cd Pb 

Correlation 

value 

P 

value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value 

P 

value 

Correlation 

value 

P 

value 

Correlation 

value 

P 

value 

Fe 1.000   

         

  

Cu -0.232 0.074 1.000   

       

  

Zn -0.260 0.045 0.538 0.000 1.000   

     

  

As 0.490 0.000 -0.234 0.071 -0.081 0.541 1.000   

   

  

Cd -0.425 0.001 0.558 0.000 0.759 0.000 -0.150 0.251 1.000   

 

  

Pb -0.446 0.000 0.439 0.000 0.876 0.000 -0.176 0.179 0.848 0.000 1.000   

PG site 
Fe Cu Zn As Cd Pb 

Correlation 

value 

P 

value 

Correlation 

value P value 

Correlation 

value P value 

Correlation 

value 

P 

value 

Correlation 

value 

P 

value 

Correlation 

value 

P 

value 

Fe 1.000   

         

  

Cu 0.743 0.000 1.000   

       

  

Zn 0.834 0.000 0.967 0.000 1.000   

     

  

As 0.937 0.000 0.764 0.000 0.853 0.000 1.000   

   

  

Cd 0.209 0.377 0.245 0.298 0.168 0.479 0.078 0.742 1.000   

 

  

Pb 0.657 0.002 0.984 0.000 0.948 0.000 0.700 0.001 0.206 0.384 1.000   
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Table B4.3: Pearson's correlations coefficients and P-values for significant relationships (bold) between seawater trace elements and sediment trace elements 

            

Sea-fill site 

Sediment elements 

Fe Cu Zn Cd Pb 

Correlation 

coefficient  P value 

Correlation 

coefficient   P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

W
a

te
r
 e

le
m

en
ts

 

Fe -0.100 0.449 
        

Cu   
0.259 0.046 

      

Zn     
0.419 0.001 

    

Cd       
0.153 0.243 

  

Pb         
0.169 0.196 

PG site 

Sediment elements 

Fe Cu Zn Cd Pb 

Correlation 

coefficient 
P value 

Correlation 

coefficient 
P value 

Correlation 

coefficient 
P value 

Correlation 

coefficient 
P value 

Correlation 

coefficient 
P value 

W
a

te
r
 e

le
m

en
ts

 

Fe 0.052 0.827 
        

Cu   
-0.084 0.724 

      
Zn     

0.280 0.233 
    

Cd       
0.098 0.681 

  
Pb         

0.061 0.799 
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B5: Trace element concentrations µg g dry wt
-1

 (mean  ±  SE) in the marine sediments at the sea-fill site with respect to distance from silt curtains (T1, T2 and T3 

combined) for the four  sediment sampling rounds (Chapter 4) 

 

Distance from silt curtain Fe Cu Zn As Cd Pb 

 
 Sediment sampling round 1 (R1) (April 2012) 

2 m 23028 ±3340 12.8 ± 2.9 101 ± 44  7.8 ± 0.8 0.087 ± 0.04 42.0 ± 29 

20 m 27069 ± 3611 15.4 ± 6.5 83.5 ± 7.5 7.8 ± 0.9 0.067 ±0.02 26.2 ± 4.8 

80 m 26064 ± 2402 12.4 ± 0.6 81.2 ± 7.7 7.5 ± 0.5 0.062 ± 0.01 28.2 ± 4.8 

160 m 23076 ± 4307 12.0 ± 2.0 78.5 ± 18 8.4 ± 0.7 0.060 ± 0.01 26.7 ± 3.5 

400 m 25065 ± 1914 12.3 ± 0.2 81.6 ± 5.2 7.5 ± 0.3 0.053 ± 0.01 23.7 ± 0.8 

Reference site 18761 ± 1925 6.1 ±1.2 51.5 ± 7.6 7.6 ± 0.4 0.037 ± 0.00 15.3 ± 2.1 

 
Sediment sampling round 2 (R3) (October 2012) 

2 m 23448 ± 3199 13.1 ± 0.8  97.9 ± 31 8.8 ± 1.6 0.081 ± 0.04 40.1 ± 24 

20 m 25392 ± 1434  12.6 ± 0.5 85.8 ± 9.3 8.8 ± 0.4 0.064 ± 0.01 28.2 ± 4.0 

80 m 25352 ± 2392 11.2 ± 2.1 80.4 ± 8.1 9.1 ± 1.1 0.079 ± 0.03 26.9 ± 4.6 

160 m 25385 ± 1452 11.6 ± 0.7 79.1 ± 8.6 8.7 ± 0.6 0.054 ± 0.01 24.1 ± 2.2 

400 m 24658 ± 1473 11.6 ± 0.3 76.5 ± 9.9 7.9 ± 0.7  0.059 ± 0.02  22.9 ± 1.0 

Reference site 19001 ± 1366 6.0 ±0.8 50.7 ± 4.8 7.6 ± 0.6 0.037 ± 0.00 14.9 ± 1.6 

 
Sediment ampling round 3 (R5) (April 2013) 

2 m 26253 ± 1747 11.01 ± 1.5 84.3 ± 13 9.2 ± 1.0 0.067 ± 0.01 30.4 ± 5.1 

20 m 27799 ± 1840 11.6 ± 1.8  83.4 ± 8.8 9.5 ± 1.2 0.059 ± 0.01 26.9 ± 4.7 

80 m 25544 ± 334 11.4 ± 1.2 77.3 ± 12 8.7 ± 0.8 0.055 ± 0.01 24.7 ± 2.9 

160 m 26936 ± 1597 11.8 ± 0.9 80.4 ± 9.2 8.8 ± 0.3 0.062 ±0.00 26.5 ± 2.8 

400 m 24107 ± 3876 10.8 ± 1.3 72.1 ± 14 7.4 ± 1.0 0.047 ± 0.00 20.7 ± 3.2 

Reference site 26104 ± 2258   7.7 ± 1.4 61.9 ± 9.4 8.9 ± 0.8 0.060 ± 0.04 18.0 ± 2.8 

 
Sediment sampling round 4 (R7) (October 2013) 

2 m 27648 ±5456  11.2 ± 1.9 91.8 ± 13 9.3 ± 0.9 0.064 ± 0.02 34.5 ±19 

20 m 28994 ± 708 10.6 ± 1.8 82.2 ± 10 9.8 ± 0.4 0.062 ± 0.01 26.4 ± 4.9 

80 m 29179 ± 2663 10.0 ± 1.0 73.9 ± 8.1 8.7 ± 0.3 0.052 ± 0.10 23.2 ± 4.01 

160 m 27736 ± 1149 10.1 ± 0.9 73.2 ± 8.3 8.9 ± 0.2 0.049 ± 0.00 20.8 ± 1.5 

400 m 28019 ± 2020 10.5 ± 0.5 76.1 ± 7.2 8.6 ± 0.5 0.045 ± 0.01 22.8 ± 0.1 

Reference site 27151 ± 1220 6.8 ± 0.8 59.7 ± 5.4 9.5 ± 0.7 0.035 ± 0.00 16.0 ± 1.6 
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B6: Organic content of sediments from the four transect lines for the first two sediment sampling 

rounds (R1 and R3), presented as a weight percentage (Chapter 4) 

Sample 

wt % of organic 

content 

Transect 

line 

Sampling 

round 

Distance from silt 

curtain (m) 

1A-1  7.08 1 1 2 

1B-1  8.25 1 1 20 

1C-1  6.65 1 1 80 

1D-1 6.00 1 1 160 

1E-1 5.29 1 1 400 

1A-2 5.13 1 2 2 

1B-2 5.61 1 2 20 

1C-2 5.37 1 2 80 

1D-2 5.02 1 2 160 

1E-2 5.08 1 2 400 

2A-1 4.90 2 1 2 

2B-1 4.31 2 1 20 

2C-1 4.80 2 1 80 

2D-1 5.34 2 1 160 

2E-1 5.30 2 1 400 

2A-2 4.42 2 2 2 

2B-2 5.00 2 2 20 

2C-2 4.84 2 2 80 

2D-2 5.14 2 2 160 

2E-2 5.38 2 2 400 

3A-1 11.53 3 1 2 

3B-1 7.39 3 1 20 

3C-1 4.68 3 1 80 

3D-1 4.64 3 1 160 

3E-1 4.25 3 1 400 

3A-2 5.72 3 2 2 

3B-2 5.43 3 2 20 

3C-2 4.63 3 2 80 

3D-2 4.67 3 2 160 

3E-2 6.48 3 2 400 

4A-1 3.75 4 1 2 

4B-1 4.12 4 1 20 

4C-1 4.67 4 1 80 

4D-1 4.88 4 1 160 

4E-1 5.33 4 1 400 

4A-2 4.44 4 2 2 

4B-2 5.34 4 2 20 

4C-2 5.61 4 2 80 

4D-2 6.70 4 2 160 

4E-2 7.11 4 2 400 
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B7: Trace element concentrations µg g wet wt
-1

 (mean ± SE) in the green-lipped mussels collected at the sea-fill site and reference site     (Chapter 

4) 

Sampling date (round) Fe Cu Zn As Cd Hg Pb 

 
Lyttelton Harbour sea-fill site (Battery Point-BP) 

April 2012 (R1) 140.2 ± 36.7 0.89 ± 0.11 18.1 ± 2.4 2.43 ± 0.34 0.076 ± 0.026 0.022 ± 0.005 0.34 ± 0.09 

July 2012 (R2) 125.0 ± 30.2 0.97 ± 0.15 18.2 ± 2.3 2.36 ± 0.14 0.079 ± 0.023 0.022 ± 0.005 0.41 ± 0.09 

January 2013 (R4) 95.5 ± 27.0 0.88 ± 0.26 14.8 ± 3.3 1.95 ± 0.22 0.069 ± 0.013 0.028 ± 0.005 0.23 ± 0.05 

April 2013 (R5) 148.8 ± 23.5 0.79 ± 0.07 16.0 ± 1.9 2.01 ± 0.11 0.060 ± 0.011 0.034 ± 0.003 0.28 ± 0.04 

July 2013 (R6) 119.6 ± 8.5 0.82 ± 0.04 15.9 ± 1.2 2.01 ± 0.05 0.069 ± 0.018 0.034 ± 0.003 0.31 ± 0.02 

November 2013 (R7) 123.0 ± 15.6 0.88 ± 0.07 13.6 ± 1.2 2.20 ± 0.11 0.064 ± 0.016 0.029 ± 0.004 0.38 ± 0.03 

January 2014 (R8) 124.2 ± 23.3 0.90 ± 0.07 16.1 ± 3.7 2.56 ± 0.19 0.071 ± 0.020 0.020 ± 0.004 0.30 ± 0.06 

 

Reference site (Pigeon Bay - PG) 

April 2012 (R1) 74.4 ± 11.8 0.73 ± 0.08 13.9 ± 2.0 2.43 ± 0.43 0.096 ± 0.029 0.016 ± 0.003 0.07 ± 0.01 

July 2012 (R2) 71.1 ± 13.3 0.74 ± 0.11 12.4 ± 1.7 1.82 ± 0.22 0.086 ± 0.025 0.017 ± 0.003 0.07 ± 0.01 

January 2013 (R4) 78.2 ± 16.1 0.78 ± 0.11 13.2 ± 2.0 1.94 ± 0.24 0.097 ± 0.029 0.021 ± 0.004 0.08 ± 0.02 

April 2013 (R5) 84.6 ± 20.4 0.74 ± 0.12 14.1 ± 3.5 1.64 ± 0.22 0.099 ± 0.022 0.031 ± 0.004 0.10 ± 0.02 

July 2013 (R6) 81.9 ± 12.0 0.65 ± 0.05 12.9 ± 1.6 1.63 ± 0.07 0.104 ± 0.017 0.022 ± 0.004 0.10 ± 0.01 

November 2013 (R7) 65.3 ± 10.4 0.67 ± 0.09 11.7 ± 1.3 1.95 ± 0.20 0.072 ± 0.008 0.018 ± 0.004 0.09 ± 0.01 

January 2014 (R8) 90.4 ± 8.3 0.78 ± 0.10 15.7 ± 2.4 2.67 ± 0.45 0.083 ± 0.023 < LOQ 0.08 ± 0.01 
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B8: Pearson's correlations coefficients and P-values for significant relationships (bold) between seawater trace elements and green mussel trace elements (Chapter 

4) 

Sea-fill site 

Green Mussel elements 

Fe Cu Zn Cd Pb 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

S
ea

w
a

te
r
 e

le
m

en
ts

 

Fe 0.0028 0.995                 

Cu     0.491 0.263             

Zn         0.591 0.163         

Cd             0.592 0.161     

Pb                 0.385 0.394 

PG site 

Green Mussel elements 

Fe Cu Zn Cd Pb 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

S
ea

w
a

te
r
 e

le
m

en
ts

 

Fe -0.552 0.199                 

Cu     0.057 0.903             

Zn         -0.407 0.365         

Cd             0.294 0.522     

Pb                 -0.539 0.211 
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B9: Pearson's correlations coefficients and P-values for significant relationships (bold) between green-lipped mussel trace elements and sediment trace elements 

Sea-fill site 

Green Mussel elements 

Fe Cu Zn As Cd Pb 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Correlation 

coefficient  P value 

Se
d

im
e

n
t 

el
e

m
e

n
ts

 Fe -0.941 0.219                     

Cu     0.221 0.858                 

Zn         0.979 0.132             

As             -0.827 0.380         

Cd                 0.994 0.072     

Pb                     0.820 0.388 

PG site 

Green Mussel elements 

Fe Cu Zn As Cd Pb 

Correlation 

coefficient  p value 

Correlation 

coefficient  p value 

Correlation 

coefficient  p value 

Correlation 

coefficient  p value 

Correlation 

coefficient  p value 

Correlation 

coefficient  p value 

Se
d

im
e

n
t 

el
em

e
n

ts
 Fe 0.878 0.326                     

Cu     0.923 0.250                 

Zn         0.111 0.929             

As             -0.354 0.770         

Cd                 -0.851 0.353     

Pb                     0.915 0.264 
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C1: Percentage recoveries of trace elements in the quality assurance samples 

Table C1.1 represents the percentage recoveries of trace elements in the quality assurance 

samples digested with the biota samples of Chapter 5. The mean percentage recoveries of 

trace elements in the standard reference materials are provided in Table C1.1  

Table C1.1:  Mean percentage recoveries ± standard error for standard reference materials 

Analytes 

Mean  % recoveries of trace elements in standard reference materials 

Mussel 

(n = 6) 

Fish protein 

(n = 6) 

Bovine liver 

(n = 6) 

Tomato leaves  

(n = 2) 

Arsenic 116.4  ± 4.8 97.6  ± 6.2 < LOQ < LOQ 

Cadmium 104.7  ± 2.3 101.8  ± 2.6 98.2  ±5.6  93.8  ± 3.7 

Copper 90.1  ± 4.4 90.2  ± 2.2 89.8  ± 4.3 100.5  ± 1.7 

Iron 103.9  ± 6.4 96.0  ± 2.3 93.0  ± 9.6 98.7  ± 1.0 

Mercury 91.7  ± 11.2 90.6  ± 8.3 < LOQ < LOQ 

Lead 97.1  ± 5.2 36.4  ± 4.0 88.5  ± 6.2 NP* 

Zinc 101.7  ± 6.4 97.0  ± 8.6 92.7  ± 3.6 95.3  ± 1.7 

*NP- not provided in the certified values; LOQ- limit of quantification 

The percentage differences of the duplicate digests were less than 10% for all analytes 

in fish muscle, fish organs, crab muscle, shellfish, polychaete worms and green algae 

samples. The 10
th

 sample duplicate analyses were <12% for all elements in fish muscle 

(although most elements were <5%), and <10% for all elements in crab muscle, shellfish, 

polychaete worms and green algae. The 20
th

 sample spike analysis had percentage recoveries 

of 89 to 120% for all samples with the exception of arsenic spiked in polychaete worms 

(126%) and green algae (130%). The percentage recoveries of the spiked elements in fish 

organs ranged from 81 to 119%. 
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C2: Trace element concentrations (µg g
 
 wet wt

-1
.) measured in fish muscle and organs from Lyttelton Harbour and Pigeon Bay (Chapter 5) 

Fish samples Trace element concentrations (mean ± SE) in fish muscle and organs  

Total As Cd Cu Fe Hg Pb Zn 

Lyttelton Harbour fish 

 
Spotty (Notolabrus celidotus) 

Muscle (n = 12) 2.74± 0.97 <LOQ 0.12±0.02 1.33±0.49 0.07±0.02 <LOQ 4.99±2.61 

Liver (n = 12) 8.12±3.81 0.09±0.07 2.86±0.71 243.37±60.42 0.11±0.04 0.05±0.03 21.08±4.32 

Kidney (n = 12) 11.00±10.49 0.06±0.05 1.45±0.58 296.28±152.51 0.27±0.17 0.08±0.10 22.13±8.79 

Wrasse (Notolabrus fucicola) 

Muscle (n = 12) 1.61±0.90 <LOQ 0.13±0.02 2.50±0.78 0.28±0.08 <LOQ 4.32 

Liver (n = 12) 6.68±5.99 1.53±0.89 3.21±0.91 225.62±70.01 1.62±0.92 0.21±0.12 26.66±7.60 

Kidney (n = 12) 3.87±3.12 0.24±0.07 0.93±0.12 545.89±126.02 1.07±0.37 0.11±0.07 16.47±1.10 

Gonad (n = 12) 4.64±3.30 0.03±0.02 1.23±0.38 74.81±64.55 0.40±0.22 0.02±0.02 129.05±67.82 

Pigeon Bay Fish 

Spotty (Notolabrus celidotus) 

 
Muscle (n = 12) 2.76±0.86 <LOQ 0.12±0.01 1.62±0.48 0.06±0.03 <LOQ 5.29±0.53 

Liver (n = 12) 9.93±3.88 0.34±0.21 9.17±8.60 233.74±68.47 0.12±0.03 0.02±0.02 32.29±8.60 

Kidney (n = 12) 4.13±4.64 0.04±0.02 0.72±0.38 

7 

110.39±81.97 0.08±0.05 0.01±0.01 11.70±7.41 

Wrasse (Notolabrus fucicola) 

Muscle (n = 12) 2.42±1.39 <LOQ 0.13±0.02 2.29±0.83 

.8 

0.22±0.08 <LOQ 3.36±0.28 

Liver (n = 12) 6.27±4.67 2.68±1.37 4.99±2.10 226.34±78.03 0.70±0.51 0.06±0.03 26.47±5.23 

Kidney (n = 12) 3.06±1.64 0.51±0.28 1.06±0.16 798.75±464.05 0.53±0.26 0.03±0.01 16.71±1.42 

Gonad (n = 12) 4.60±2.03 0.05±0.06 1.23±0.42 90.94±78.35 0.29±0.17 0.01±0.01 133.25±70.25 

LOQ-Limit of quantification, SE – standard error, n- number of replicates 
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 C3: Trace element concentrations (µg g
-1

 wet wt) measured in crab, shellfish, and marine worm and green algae samples (Chapter 5) 

Biota samples 
Trace element concentrations (mean ± SE)  in  biota 

Total As Cd Cu Fe Hg Pb Zn 

Lyttelton Harbour 

Cancer crab (Metacarcinus 

novaezelandiae) (n = 12) 11.7±4.47 <LOQ 9.27±4.01 6.56±1.84 0.07±0.03 0.01±0.00 63.96±3.65 

Green-lipped mussel (Perna 

canaliculus) (n = 12) 2.02±0.10 0.06±0.01 0.79±0.06 147.8±22.29 0.03±0.00 0.28±0.04 15.81±1.76 

Polychaete worm (n = 12) 16.39±0.29 0.75±0.02 1.24±0.03 86.73±5.37 0.01±0.00 0.12±0.00 41.63±7.86 

Green algae (Ulva sp.) (n = 12) 1.46±0.12 0.01±0.00 1.69±0.14 1577.15±136.01 <LOQ 0.96±0.11 6.31±0.59 

Pigeon Bay 

Cancer crab (Metacarcinus 

novaezelandiae) (n = 12) 10.86±5.68 <LOQ 9.62±2.84 4.44±0.91 0.07±0.03 <LOQ 62.1±6.25 

Green lipped mussel (Perna 

canaliculus) (n = 12) 1.63±0.22 0.09±0.02 0.72±0.11 83.4±21.86 0.03±0.00 0.1±0.02 13.33±3.59 

Polychaete worm (n = 12) 4.87±0.11 0.35±0.01 0.76±0.02 49.56±1.40 <LOQ 0.04±0.00 26.3±7.80 

Green algae (Ulva sp.) (n = 12) 2.31±1.07 0.01±0.00 1.26±0.74 768±183.94 <LOQ 0.41±0.10 2.84±0.72 

LOQ-Limit of quantification, SE – standard error, n- number of replicates 
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D1. Relations between trace elements in shellfish and associated sediments (Chapter 6) 
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D2: Pearson correlation coefficients for statistically significant correlations between trace 

elements within the same shellfish species, and within sediments (Chapter 6) 

Mussel Fe Cu Zn As Cd Hg Pb 

Fe 1 

      
Cu 0.598 1 

     
Zn 0.923* 0.721 1 

    
As -0.111 -0.065 0.119 1 

   
Cd -0.376 -0.431 -0.209 0.926* 1 

  
Hg 0.848^ 0.531 0.651 -0.612 -0.787 1 

 
Pb 0.828^ 0.700 0.670 -0.549 -0.781 0.967** 1 

Cockle Fe Cu Zn As Cd Hg Pb 

Fe 1 

      
Cu 0.001 1 

     
Zn 0.157 -0.457 1 

    
As 0.302 -0.189 0.496 1 

   
Cd -0.204 -0.712 0.732^ 0.612 1 

  
Hg 0.248 0.263 -0.109 0.718 -0.005 1 

 
Pb 0.935** 0.296 -0.080 0.132 -0.444 0.200 1 

Pipi Fe Cu Zn As Cd Hg Pb 

Fe 1 

      
Cu -0.999* 1 

     
Zn 0.876 -0.860 1 

    
As 0.089 -0.121 -0.402 1 

   
Cd 0.705 -0.681 0.959 -0.644 1 

  
Hg -0.616 0.590 -0.919 0.730 -0.993^ 1 

 
Pb -0.7537 0.732 -0.977 0.587 -0.997* 0.982 1 

Sediment Fe Cu Zn As Cd Hg Pb 

Fe 1 

      
Cu 0.938** 1 

     
Zn 0.979*** 0.951*** 1 

    
As 0.885** 0.912** 0.891** 1 

   
Cd 0.888** 0.743^ 0.869* 0.608 1 

  
Pb -0.247 0.044 -0.110 -0.136 -0.317 

 

1 

p-value, ^ <0.1, *<0.05, **<0.01, ***<0.001 

    

 


