
Structural health monitoring and diagnosis of civil structures using mechatronics-based 
methodology and technology 
 
In 1997 noted futurist Paul Saffo wrote that the next decade, which we now call the “noughties” (2000-
2010), would be heralded as the “age of the sensor” and in particular that ubiquitous, low cost, high 
performance sensors linked to silicon chips (computation) would be the next great technology revolution 
[1]. In particular, he noted that such sensors and computation hooked together would add sensory organs 
to our networks and products, and that we would become increasingly interlinked by these actions. It was 
clear that he was not alone in this idea of an increasingly sensed and interconnected world. In my mind, 
they simply said that mechatronics-based methodology and technology would reshape our world. 
 
Today, the idea that all new powerful tools, enabled by new waves of more powerful sensors, of all types, 
and increasingly power computational resources, has reshaped our lives is pretty well accepted. 
However, to my mind, this revolution is not nearly so short as many have intimated. Succinctly, we are at 
the beginning rather than the end. How, specifically? Well, in essence, there are three classes of 
increasingly ubiquitous sensing: 1) smart, active products and systems like advanced aircraft that act 
deliberately on these sensor inputs; 2) passive, mobile monitoring that we carry around such as that 
found in cell phones that “check your presence in” at a certain location on Facebook; and 3) fixed 
monitoring and surveillance in buildings, infrastructure and cities. This last area is the topic of this 
section, and is an one that has mostly been reflected by its “dark side” post 9/11. This section will talk 
more about some of the positive gains to be made by these technologies in quietly assessing and 
maintaining the health, integrity and quality of the buildings, infrastructure and lifelines that we use so 
ubiquitously that we often dramatically under-estimate their impact on our lives. 
 
Structural health monitoring or SHM is a broad term defined as is the process of comparing the current 
state of a structure’s condition relative to a baseline or expected state to detect the existence, location, 
and degree of likely damage after a damaging input, such as an earthquake. SHM can simplify and 
improve typical visual or localized experimental approaches, as it does not require subjective visual 
inspection of the structure [2]. Finally, it is equally applicable to buildings, critical infrastructure like bridges 
or tunnels or waterworks, and is a topic that has always been considered difficult [3]. 
 
Most efforts to date in this field have focused on structures in seismic zones and assessing damage after 
a major event, and in particular on computational methods to assess damage (eg [3-11]). Many current 
vibration-based SHM methods, particularly for large civil structures, are based on modal parameter 
damage detection in both the time series and frequency domain [2, 12]. Current modal methods are more 
applicable to steel-frame and bridge structures where vibration response is more linear [4, 12] and 
several assume one has data from the undamaged state [8], which is increasingly possible with advanced 
sensor technologies. 
    
In addition, SHM must be identify localized damage, be robust in the presence of noise and evaluate 
structural health rapidly or in real-time [4, 5].  All of these characteristics are ones that can increasingly be 
met by emerging, improved sensor technologies that are more distributed, low cost and easily used in 
volume, and/or integrate computation directly with measurement. 
 
Most existing methods that could potentially provide real-time SHM are modal or frequency based 
methods. These methods typically only use accelerometers as sensors and rely on the change in natural 
frequencies to detect damage [5, 10, 13]. However, a change in a frequency doesn’t necessarily 
represent damage, particularly with highly non-linear responses [14, 15]. Significant changes in story 
stiffness are often required as well, which would normally cause clearly visible damage [15]. Equally, [13, 



16] identified changes in structural stiffness in real-time using a Least Mean Squared (LMS)-based 
adaptive filtering approach in real-time. However, this method requires measurement of velocity and 
displacement, which has often been considered impractical in many realistic cases due to excessive 
sensor requirements.  
 
Recently there have been significant advances in Global Positioning System (GPS) displacement 
monitoring technology for large structures [15-20]. Displacements can be measured with 1-3 mm 
accuracy for rates of up to 3-4 Hz, which include the modal frequencies of the rigid structure [16], and for 
1 Hz, measurement errors have been stated as less than 12% [9]. The use of GPS opens up new 
opportunities in real-time structural health monitoring [15]. Equally, there are increasing advances in a 
wide range of displacement sensing technologies (eg [21-26]) that will enable further improvements in our 
ability to accurately identify and locate damage. 
 
However, monitoring structural damage is just the beginning. Buildings increasingly have the ability to 
monitor all their functions, such as climate and energy usage. Integrated together these present other 
forms of monitoring to improve lifecycle and services in these buildings, as well as making them more 
economic and cost effective. Even that is not the end of the age of the (fixed) sensor. Networking lets us 
integrate buildings and regions into wider area monitoring and leads eventually, with other systems, 
towards what some are now calling “smart cities” where data from buildings, power grids, traffic and much 
more are integrated into an entire interconnected, some might dare say optimised, organism. 
 
Thus, the next, “next age” is always around the corner. Increasingly the use of sensors to monitor, 
improve performance, and aid decision making, whether human or automated, is seen as an avenue to 
achieve  significant social and economic benefits. More succinctly, our ability to sense our environment 
has always let us assess and monitor what is around us, with silicon and other advanced sensors and 
computation this ability is being dramatically enhanced via mechatronics-based methods and 
technologies. 
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