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Abstract. This communication discusses the possibility of identifying the shear and

structure relaxation functions in inorganic glass by means of a single, simple and

non-intrusive experiment. The latter consists in measuring the thickness variation

over time of a glass plate cooled symmetrically from both sides from a temperature

above the glass transition temperature down to room temperature. Results with

“artificially” created experimental observations suggest that in spite of its simplicity,

the thickness variation curve contains sufficient information to identify uniquely the

relaxation functions parameters using the Levenberg-Marquardt method.
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1. Introduction

Many numerical techniques are nowadays well established to simulate the thermo-

mechanical behavior of viscoelastic material in complex geometries and under non-trivial

mechanical and thermal loadings. However, the potential ability of these techniques to

reproduce the reality and therefore provide useful predictive results depends strongly

on the quality of the estimate of the material properties.

Glass undergoes stress relaxation upon loading around the glass transition

temperature and is also prone to structure relaxation upon cooling, i.e. the state of the

structure characterized by the fictive temperature differs depending on the cooling path.

Both relaxation phenomena are well described by means of Boltzmann memory integrals,

[1], and the challenge is to identify the relaxation moduli and the structure relaxation

function (memory kernels). Although the effects of both relaxation phenomena are

combined in usual processing conditions, the identification of the memory kernels is

often tackled independently. For example, a torsion test is used, on one hand, to identify

the shear relaxation modulus at a given temperature (see [2] for a review of the possible

methods for measuring the viscoelastic properties of solids). This strategy was used by

Lochegnies et al., [3], using experimental data obtained by Kurjian, [4]. The structure

relaxation function is found, on the other hand, by imposing a temperature jump to the

glass and monitoring the material property variation.

Simultaneous measurement of the stress and structural relaxation functions was

performed by DeBast and Gilard, [5], using a differential extensometer. The device allow

the simultaneous but independent measurement of the strain resulting from the loading

of the sample and the one resulting from stabilization. The experiment considered in

the following contrasts by its simplicity. It consists in measuring the thickness variation

over time of a glass plate cooled symmetrically from both side from a temperature above
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the glass transition temperature down to room temperature.

The aim of the present work is to investigate whether, in spite of its simplicity, the

thickness variation curve contains sufficient information on the stress and structure

relaxation phenomena to allow, under several simplifying assumptions, the unique

identification of the memory kernels coefficients.

2. Evaluation of the sample thickness variation

The thermo-mechanical analysis of a viscoelastic plate in non-isothermal conditions

was first performed by Muki and Sternberg, [6]. This solution was later used by

Narayanaswamy, [7], to describe tempering of a glass plate. A review of the related

work can be found in [8].

2.1. Constitutive equations

As a standard starting point of the thermo-mechanical analysis, the glass is pre-supposed

to obey, at any location, x, and time, t, the following constitutive equations:

sij(x, t) = 2G0

∫ t

0
G (ξ(x, t)− ξ(x, t′))

∂eij(x, t′)
∂t′

dt′ , (1)

σ(x, t) = 3K (ε(x, t)− εth(x, t)) , (2)

where sij, σ and eij, ε are the deviatoric and volumetric parts of the stress and strain

tensors, respectively, εth the thermal strain, G0 the instantaneous shear modulus, and

G the shear relaxation modulus. The latter is function of the reduced time ξ(x, t).

Because of the very limited compressibility of inorganic glasses, the bulk modulus K is

assumed to be constant, [9]. If, moreover, the influence of the temperature, T , on the

relaxation behavior can be represented by a classical Arrhenius model, the reduced time
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is expressed as:

ξ(x, t) =
∫ t

0
e

∆H
R

(
1

TR
− β

T (x,t′)−
1−β

Tf (x,t′)

)
dt′ , (3)

where ∆H is the activation energy, R the ideal gas constant, TR the reference

temperature, and Tf the fictive temperature defined as:

Tf (x, t) = T (x, t)−
∫ t

0
M (ξ(x, t)− ξ(x, t′))

∂T (x, t′)
∂t′

dt′ . (4)

The shear relaxation modulus, G, and structure relaxation function, M , are supposed

to be well represented by stretched exponential functions, i.e.:

G (ξ) = exp


−

(
ξ

τs

)bs

 and M (ξ) = exp


−

(
ξ

τv

)bv

 . (5)

In eqs. (5), τs > 0 and τv > 0 are the unknown characteristic relaxation times in shear

and for the structure, respectively. For most inorganic glasses, the exponent bs is equal

or very close to 0.5, [1], and this value will be used in the following to reduce the

number of unknown parameters. The exponent bv, assumed to belong to the interval

[0, 1], remains to identify. Finally, the thermal strain in eq. (2) is given by:

εth(x, t) = αg (T (x, t)− T0) + (αl − αg) (Tf (x, t)− T0) ,

where αg, αl are the coefficients of thermal expansion of the solid and liquid glass,

respectively.

2.2. Reduction to a one-dimensional problem

If the glass plate has an initial thickness 2b0 much smaller than its lateral extent in the

x and y directions, the thermo-mechanical problem can be treated as one-dimensional

with quantities only depending on the thickness coordinate, z, and time.

The sample has initially a uniform temperature T0. Heat transfer in semitransparent

materials like hot glasses is not only accomplished by conduction but also by radiation,
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which is dominant for high temperatures. The temperature T (z, t) satisfies the radiative

heat transfer equation

cpρg
∂T

∂t
(z, t) =

∂

∂z

(
kh

∂T

∂z
(z, t)

)
− ∂q

∂z
(z, T ), T (z, 0) = T0, (6)

−kh
∂T

∂z
(b0, t) = α(T (b0, t)− Ta) +

επ
∫

opaque
(Ba(T (b0, t), λ)−Ba(Ta, λ)) dλ, (7)

kh
∂T

∂z
(0, t) = 0 , (8)

where cp is the specific heat, ρg the density of the glass, and kh the thermal conductivity.

α denotes the heat transfer coefficient, Ta the ambient temperature, and Ba(T, λ) the

Planck function for air depending on temperature and wavelength λ. ε is the mean

hemispheric surface emissivity.

The radiative flux q(z) is defined as the first moment of the radiative intensity

I(z, µ, λ) with respect to the directional cosine µ

q(z) = 2π
∫ ∞

0

∫ 1

−1
I(z, µ, λ)µdµ dλ.

The intensity satisfies the radiative transfer equation

µ
∂I

∂z
(z, µ, λ) = κ(λ) (Bg(T (z, t), λ)− I(z, µ, λ)) , (9)

I(b0, µ, λ) = ρ(µ)I(b0,−µ, λ) + (1− ρ(µ))Bg(Ta, λ) , µ < 0 , (10)

I(0, µ, λ) = I(0,−µ, λ) , µ > 0 . (11)

Here κ(λ) denotes the absorption coefficient, ρ(µ) the reflectivity computed using Fresnel

law, and Bg(T, λ) the Planck function for glass.

The one-dimensional assumption and symmetry of the cooling considerably reduce
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the complexity of the mechanical problem. Because the sample is traction free, the

in-plane stress must satisfy

∫ b0

0
σxx (z, t) = 0 . (12)

Moreover, for reasons of symmetry well discussed in [10, 11], stresses and strains are

related as follows:

σxx (z, t) = 2
∫ t

0
G (ξ − ξ′)

∂

∂t′
[εxx (t′)− εzz (z, t′)]dt′ , (13)

σzz = 0 =
∫ t

0
−4

3
G (ξ − ξ′)

∂

∂t′
[εxx (t′)− εzz (z, t′)] +

K
∂

∂t′
[2εxx (t′) + εzz (z, t′)− 3εth (z, t′)] dt′ . (14)

Finally, the half-thickness of the sample, b(t), is obtained using

b (t) = b0 +
∫ b0

0
εzz (z, t) dz . (15)

2.3. Solution technique

For conciseness reasons, only a brief overview of the numerical technique adopted is

reported here.

The radiative heat equations (6)-(7) is first solved using a standard implicit Finite

Volume technique. For the solution of the radiative transfer equation (eq. (9)), we

refer to [15]. The main idea is to split the intensity into two parts I(z, µ, λ) =

I1(z, µ, λ) + I2(z, µ, λ), where I1(z, µ, λ) is the solution of the homogeneous equation

with inhomogeneous boundary conditions, which can be calculated analytically, and

I2(z, µ, λ) is the solution of the inhomogeneous equation with homogeneous boundary

conditions, which can be calculated numerically by ray tracing using the formal solution

I2(z, µ, λ) = κ(λ)
∫ d(z,µ)

0
Bg(T (z − sµ), λ)e−κ(λ)sds.

d(z, µ) is the distance of the point z to the boundary in direction −µ.
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To simplify the integration of the memory integral (eqs. (4), (13) and (14)), the

kernels are first expressed in the form of Prony series using the method proposed by

Scherer, [12]. The benefit of this preliminary stage is that, using the algorithm proposed

by Taylor et al., [14], the computation of the memory integral no longer requires the

entire strain or temperature history but only the values at the previous time step.

The fictive temperature is then obtained by integrating eq. (4) using the stable

scheme proposed in [13]. Equation (3) is then integrated with the Trapezoidal Rule to

obtain the reduce time. Equations (13) and (14) are discretized in a way similar to

that of Taylor et al., [14]. The normal strain variation for the current time step, ∆εzz,

is eliminated from the discrete analog of eq. (13) using eq. (14) so that ∆εxx can be

evaluated subject to eq. (12).

Results without radiation were validated by comparing the residual stresses with

those of the fully three-dimensional simulation performed with the commercial Finite

Element code ANSYS. Differences of no more than 5% were achieved in a fraction of

the computational time required by ANSYS.

2.4. Sample numerical results

Figure 1 illustrates the variations of the plate thickness, the true, and fictive

temperatures for values of the material properties and boundary conditions taken from

[8], when available. The initial plate thickness, b0, and temperature, T0, are 0.305 cm

and 973.15 K. The thermal properties are ρg=2537 kg/m3, kh=1.046 W/mK, cp=3349.44

J/kgK, and the adsorption coefficient, κ(λ), is set to 0.3 cm−1 for 1< λ <2.7 µm,

5 cm−1 for 2.7< λ <4.5 µm, and ∞ for λ >4.5 µm while a value of 1.46 is chosen

for the refraction index. The kernels are defined by the parameters (τs, bs)=(577,0.5),

(τv, bv)=(6350,0.68) at the reference temperature TR=791.45 K and the mechanical

properties correspond to K=40.5 GPa, G0=28 GPa, αl=33.6×10−6 K−1, αg=11.2×10−6
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Figure 1. Time variation of the plate thickness, the true, and fictive temperatures at
the surface and centerline of the plate.

K−1. The required parameters to define the reduced time in eq. (3) are set to ∆H=150

kcal/mol, R=1.987 cal/molK, and β=0.5. Finally, the heat transfer coefficient α=468.6

W/m2K with an ambient air temperature Ta=293.15 K are representative of a rapid

tempering of the plate. This rapid tempering induces large temperature gradients in

the plate resulting the strong contrast of the fictive temperature between the surface and

the core of the plate shown in Figure 1. Moreover, the steepening of the temperature

decrease, apparent in Figure 1, confirms the importance of the radiative heat transfer

at high temperature.

3. Kernel parameter identification

The definition of the identification problem is the following: “identify the shear and

structure relaxation parameters (τs, τv, bv) in eqs. (5) so that the calculated response

(the sample thickness variation, b(t)) matches in a least square sense the experimental
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observations, bobs(t)”, i.e.:

min
p∈padm

E (p) =
1

2

l∑

i=1

r2
i (p) =

1

2

l∑

i=1

(
b (ti)− bobs (ti)

)2
, (16)

where E is the error function, l is the number of observation points and the vector

parameter p = (τs, τv, bv) must belong to the space of admissible parameters, padm. The

latter include all the vectors with the values of τs, τv, bv which satisfy the constraints

given in section 2.1.

Husain and Anderssen recently proposed algorithms to recover the parameters of

the relaxation moduli, expressed in the form of stretched exponential (or Kohlrausch)

functions, using moments of the measured stress and the corresponding known applied

strain rate, [16, 17], but the idea is not straight-forward to extend to the non-isothermal

problem. Instead, the popular Levenberg-Marquardt method, [18], which combines the

benefits of the Newton and steepest descent methods is used to minimize E in eq. (16). It

determines iteratively the necessary correction dpk to the vector parameter p according

to

[(
J (k)

)T
J (k) + β(k)I

]
dpk = −

(
J (k)

)T
r(k) . (17)

J (k) is the Jacobian matrix of E calculated by Finite Differences and β(k) is a positive

constant chosen equal to 10−3 initially. If the current iteration successfully decreases

E, β(k) is divided by 10, it is multiplied by 10 otherwise. The linear system of

equations (17) is solved in MATLAB for dp(k) and the vector parameter is updated

according to p(k+1) = p(k) + dp(k). In order to transform the constrained least-square

problem into an unconstrained one, a variable transformation is performed. The choice

of transformed variables p̃ = (p1, p2, p3) with (p2
1, p

2
2, sin

2(p3)) = (τs, τv, bv) naturally

enforces the constraints on τs, τv and bv.
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4. Results and analysis

Unfortunately, true experimental results are not available. Nevertheless, in order to

assess the method, tests are performed with an “artificial” experimental thickness

variation, bobs(ti), obtained numerically for the values of the parameters reported

previously, i.e. pobs = (τ obs
s , τ obs

v , bobs
v )=(577,6350,0.67) at TR=791.45 K. Noise is

introduced by adding a random component of magnitude 2mag to the smooth

experimental curve according to

bobs (t) = (2mag ∗ rand (t) + (1−mag)) b (t) , rand(t) ∈ [0, 1] .

A noise magnitude of 1.2 × 10−4b0 is chosen. This corresponds to an uncertainty of

1% on the experimental readings since the overall thickness variation, shown in Figure

1, is around 1.2 × 10−2b0. Note that for a 1 cm thick glass plate, this uncertainty is

on the order of one micron which is well within the precision range of laser sensors‖.

The Levenberg-Marquardt algorithm is stopped after kstop iterations when a maximum

of 200 iterations is reached or β(k) in eq. (17) becomes greater than 1025 as experience

showed no further changes in the solution beyond these thresholds.

For three different coefficients of heat transfer (α=468.6, 280.32 and 92 W/m2K),

the Levenberg-Marquardt algorithm is launched 30 times from different starting points in

the parameter space, p0 = (τ 0
s , τ 0

v , b0
v), and with different noise patterns on the observed

sample thickness variation. Table 1 reports the mean and standard deviation of the

resulting, identified parameters based on these 30 runs. Although not precisely identical,

the average values of the identified parameters are reasonably close to the observed ones,

pobs=(577,6350,0.67), for all the coefficients of heat transfer. Note that for a noiseless

thickness variation, the Levenberg-Marquardt algorithm only fails for unrealistic initial

‖ See, for example, the Keyence sensor range at http://world.keyence.com
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Figure 2. Residual stress profiles: Experimental (line with dot symbols);
Reconstructed using using 10 different sets of identified parameters (solid lines) for
α = 468.6 W/m2K.

guesses. The standard deviation in Table 1 is quite large but Figure 2 and Table 1 reveal

that this scatter of the identified parameters has little influence on the residual stresses at

room temperature. Indeed, the maximum, relative, residual stress difference between the

experimental and reconstructed curves defined as max
z∈[0,b0]

|| σxx(z,tf)−σxx
obs(z,tf)

σxx
obs(0,tf)−σxx

obs(b0,tf)
||, where

tf is the final time when the temperature is uniformly equal to room temperature, never

exceeds 10 % and the experimental and reconstructed residual stress profiles plotted in

Figure 2 are almost undistinguishable.

Finally, although the choice to set the value of β in eq. (3) to 0.5 is the most natural

one and the one made by Narayanaswamy in its seminal paper, [7], this choice is not

unique and somehow arbitrary. A possible strategy to remove this indetermination is

to run the Levenberg-Marquardt algorithm for several values of β and retain the one
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which minimizes the error function E. To test this strategy, “artificial” experimental

data are created with β = βobs = 0.5, α = 92 W/m2K and without any noise. The

Levenberg-Marquardt is then run with β set to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 and

the corresponding, computed values of E are found to be 2.7 × 10−10, 1.8 × 10−11,

2 × 10−12, 1.6 × 10−22, 6.6 × 10−13, 9.29 × 10−10 and 7.5 × 10−9, respectively. Clearly,

β = 0.5 minimizes the error function and is therefore, as expected, the sought value.

5. Conclusions

The present results demonstrate, at least in theory, the possibility of identifying the shear

relaxation modulus and the structure relaxation function through the measurement of

the time variation of the glass plate thickness. The identified parameters are close to the

experimental ones on average but present quite a large scatter. However, the effect on

the residual stresses is small and might be reduced by measuring the thickness variation

of two plates with different thicknesses and fitting the results simultaneously. Only

comparison with real experimental data can guaranty the feasibility of the method but

a number of potential benefits may be outlined. Although the independent identification

of the shear relaxation modulus and the structure relaxation function is probably more

accurate, both effects are normally combined in practice and the suggested experiment

is therefore more representative of real processing conditions. Moreover, the method is

non-intrusive and the thickness variation can be measured in practice with a high degree

of accuracy and with little noise.
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Figure caption

Figure 1: Time variation of the plate thickness, the true, and fictive temperatures at

the surface and centerline of the plate.

Figure 2: Residual stress profiles: Experimental (line with dot symbols); Reconstructed

using 10 different sets of identified parameters (solid lines) for α = 468.6 W/m2K.
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Table

Table 1. Parameters identification statistics¶.

α in W/m2K mean(pkstop) std(pkstop) Maximum , relative, residual

stress difference in %

468.6 (638,6615,0.7) (377,0.13,737) 5.9

280.32 (784,6086,0.68) (534,0.1,1756) 10.8

92 (774,6225,0.74) (739,0.18,815) 10

¶ Mean and standard deviation of the resulting, identified parameters based on 30 runs. The maximum,
relative, residual stress difference is defined as max

z∈[0,b0]
|| σxx(z,tf )−σxx

obs(z,tf )
σxx

obs(0,tf )−σxx
obs(b0,tf )

||, where tf is the final

time when the temperature is uniformly equal to room temperature.


