ASPIRE: Student Modelling and
Domain Specification

Antonija Mitrovic
Brent Martin
Pramuditha Suraweera
Konstantin Zakharov
Nancy Milik
Jay Holland

Technical Report TR-08/05, 8 December 2005
Intelligent Computer Tutoring Group
Department of Computer Science and Software Engineering
University of Canterbury

Content

IO [g1 o T (U Tod 1o o A ST UUPPPRPRIN 3

2. ASPIRE-AULNOT ...ttt e e e eeeeenee 3
2.1. General AULhOIING PrOCESSuuiiiiii s ceeeeeei e 4
2.2. Implementation of the Framework..........ccccceiviiiiiiiiiiie e, 5
2.3. Modelling the domain StrUCLUIeciv oo e ee e e 10
2.4. Specifying Problem/Solution Structure...........ccoeevveieiviiiieiieeeeeeeees 11
2.5. Student Interface DeSIGNEr............vuiiieeeeee e 13

I NS o | =] T o] P 16
3.1. Implementation of the Framework..........cccooevviiiiiiiii e, 16
3.2. DIagnostic MOAUIEovniiiiii e 21
3.3. Student MOdelleroooiiiiei e 21

o N (1= To | (o I = Lo o 1 28

5. CONCIUSIONS. ...ttt e ettt e e e e et e e e e e e e e e e eeanen 28

B. RETEIENCES ...t ettt e e e e eaaa e 30

1. Introduction

This document reports the work done from 1.9.2005 to 30.11.2005 &SPIKRE project, funded
by the e-Learning Collaborative Development Fund grant 50thisnproject, we will develop a
Web-enabled authoring system called ASPIRE, for buildmelligent learning agents for use in
e-learning courses. ASPIRE will support the process of dewgldantelligent educational systems
by automating the tasks involved, thus making it possiblecftiaty teachers with little computer
background to develop systems for their courses. Theirggeliucational systems will overcome
the deficiencies of existing distance learning coursessapgort deep learning. The proposed
project will dramatically extend the capability of thetitay education system in the area of e-
learning.

In the first report on the ASPIRE project (Mitrovicadt, 2005), we presented the background
for the project, functional specifications and the ovaadhitecture of ASPIRE. ASPIRE consists
of ASPIRE-Author, the authoring server, and ASPIRE-Tuttee, tutoring server which delivers
the resulting intelligent educational systems to studehite first report also discussed the
functionality of the system in terms of user storiég, knowledge representation language used
for developing domain models, and finally presented thei@ebtanager, the first component of
ASPIRE to be developed.

This second report focuses on the work performed onemmgting components of both
ASPIRE-Author and ASPIRE-Tutor, and builds upon the infaionapresented in the first report.
Section 2 discusses the newly developed components of ESRiEhor. We start with the
authoring process, and then in Section 2.2 describe therimaptation of the general framework
necessary for authoring, on which the further developmehtased. We present the package
structure and discuss the classes developed. Next, S@clatescribes the Domain Structure
component of the authoring interface, which allows the auth@pecify some features of the
chosen instructional domain. Section 2.4. discusses thdaggecomponent for specifying the
structure of problems and solutions. These specificatiomstored as a part of the domain model,
and later used for constraint induction. They are alsessacy in order for the author to develop
the student interface, and Section 2.5 describes the Statlenfiice Designer.

Section 3 follows the same structure, starting with description of the implemented
framework, classes and packages of ASPIRE-Tutor. Thedeseribe the Diagnostic Module in
Section 3.2, and the Student Modeller in Section 3.3.

In order to provide persistence of student data, it vex®gsary to design and implement
logging procedures. ASPIRE is being implemented in Allegpsm@on Lisp (Steele, 1990), an
object-oriented language which supports the CLOS stahdeod that reason, we decided to use
AllegroCaché (Aasman, 2005), an object-oriented database managemesmsysiich is a
component of the ACL IDE Section 4 discusses the work performed with Allegrb@aEinally,
conclusions are presented in Section 5.

2. ASPIRE-Author

ASPIRE-Author supports authors in developing new intelligehicational systems. The main
task in authoring is the development of the domain modehusladevelopment of a domain
model is a time-consuming and difficult task, as domain teoale typically large, and require
careful explicit representation of the domain knowledge. lratrreason, ASPIRE-Author supports
the author by substituting the programming task with a mucplsinask of providing examples
of problems and solutions, from which the system inducesgbessary knowledge elements.

! hitp://www.lisp.org/table/references.htm
2 http://mww.franz.com/products/allegrocache/index.lhtml
3 http://mww.franz.com/

This section describes the work done on ASPIRE-Author irs¢send reporting period. We
start by describing the authoring process in general, anddgwmibe the implementation of the
framework for ASPIRE-Author. This work was necessarytovide an environment for further
development of the components planned for this reporting p&iedhen present the components
allowing the author to specify domain characteristics, protelad solution structures, followed by
a description of the Student Interface Builder.

2.1. General Authoring Process

As described in the previous report (Mitrovic et al, 20@5}horing in ASPIRE-Author is a semi-

automated process carried out with the assistance axfitaor (i.e. domain expert). The authoring
process presented previously was extended to accounbeoaddition of several instructional

domains by the same author. The modified process includadditional initial step where the

author adds a new domain and specifies its general chadstics, such as its name and
description, as well as any necessary subdomains. Thissste@es as the starting point for
developing the domain model.

Once the instructional domain is specified, the author deseits ontology, which is a
hierarchy of the domain concepts ordered by the ‘is-a’ioekstip (The ‘is-a’ relationship is the
association between a subclass and its parent; supéex-8ash domain concept may additionally
be associated with other domain concepts by various aspieaified relationships. The developed
ontology will later be used for constraint generation. Afpecifying the ontology, the author
decides on the problem and solution structures, and providealtgpablems with their solutions.
ASPIRE-Author then analyses the ontology and the problengererate syntax and semantic
constraints for the domain. Finally, the author validéitesgenerated constraints by analysing the
generated English descriptions of the constraints.

Consequently, the process of generating a domain modeldomain using ASPIRE-Author
involves seven steps:

1. Moddling the domain structure; the author specifies the structure of the domain. This
includes specifying the name of the chosen instructional idpraashort description, and
whether the domain is procedural or not. For procedural demidie author specifies the
steps to be performed by the student. The author alsdfigpdtie subdomains (if any
exist).

2. Composing an ontology of the domain; during the ontology composition stage, the author
models the domain as a hierarchy of concepts using the Ontolokspce.

3. Modeling the problem and solution structures; the author specifies the structure of
problems and solutions to problems in the chosen instrattitmmain.

4. Designing the student interface; during this step, the author specifies the interface for
communicating with students.

5. Adding problems and solutions; the author is requested to enter examples of problems and
solutions during this stage. The Problem/Solution Editor vélldeveloped according to
the specified structures of problems and solutions andirtteeface characteristics
specified during the previous step.

6. Generating constraints (syntax and semantic); this step involves the generation of both
syntax and semantic constraints. The Syntax Constr@eterator analyses the domain
ontology and induces syntax constraints directly from it, wittamy further assistance of
the author. The Semantic Constraints Generator analystss the ontology and the
problems and solutions provided by the author to generate Semamstraints.

7. Validating the generated constraints; the constraint validation stage involves automatic
validation of the constraints base by the Constraint ¥a6éd Module and manual
validation by the domain expert. The domain expert woudghént a system generated
high level description of each constraint and label invedidstraints. The author has to
provide example problems to the system in order to illtesthae error.

The reporting period covered by this document included waorkteps 1, 3 and 4. Section 2.2
describes the implementation of the general frameworkhmvies necessary in order to work on
ASPIRE-Author. Then, the following sections describe the @orapts supporting these three
authoring steps.

2.2. Implementation of the Framewaork

Figure 1 illustrates the architecture of ASPIRE-Authdnjclv is a slightly updated version of the
architecture developed in the first reporting period. Beas in the diagram, the Web Interface
module (i.e. the authoring interface) consists of six paments to cater for each knowledge
authoring step outlined in Section 2.1 (note that generatfioronstraints is handled by other
components of the system). The three components (Domaict 8 Modeller, Problem/Solution
Structure Modeller and the Student Interface Designeringléo authoring steps 1, 3 and 4 have
been completed during this reporting period.

The Authoring Controller module is the driving engine of the IKERAuthor. It acts as a
mediator between the interface layer and the data |&hercontroller receives requests from the
interface layer, which are passed on to the relevant modihke controller is also responsible for
accessing objects from the database. The controlleridmschecessary for the implemented
interface modules have been completed.

The Domain Model Manager consists of all the domain modeedaf®r representing domain
models. In this period, we have completed the domain modedesdanecessary for representing
domain details, problem/solution structures and ontologies. ASntmogy Workspace is planned
to be developed in the next period, currently we have ongldeed the classes necessary to store
the ontology. This was necessary as the problem and soltrimtuse depend on concepts of the
ontology.

Web Interface

Domain . Student Problem/ Constraint
Ontology Problem Solution . L
Structure Workspace Structure Modeller Interface Solution Validation/
Modeller P Designer Editor Authoring Interface
A S b T4 4 4 —
/
/
A Constraint Generator
i P
Authoring Controller) Syntax || Semantic
i '

L

- Al Constraint
validator ‘

A |
A Domain Model
Manager

Domain model

e

Figure 1. The architecture of ASPIRE-Author

2.2.1. Packages structure

The package structure of ASPIRE-Author (shown in Figure & implemented to reflect its
architecture. Each module is implemented as a sepaaeakage. The framework of the system had
to be developed in order for the individual modules to be &blcommunicate with each other.
The packages such as the constraint-generator are cueamty and will be completed in future
milestones.

The web interface is handled by tiwveb package. The base web package is responsible for
initialising and starting up the web server. It cons@ftdwo sub packagesveb.access and
web.interface . web.access contains all web access functions for handing web stgue
from the user. Theveb.interface package consists of all clp functions, which produce the
dynamic content of HTML pages htfp://opensource.franz.com/aserve/aserve-
dist/webactions/doc/webactions.hjmCurrently the base web package is complete. The functions
necessary for implementing the three interface comporsshisduled for this reporting period
have been implemented.

ire-auth
aspire-author <— - a\s,\,‘:t:eail;eszr aspire-author 3
.web :)) .web.interface I
! — :
I ! ! I
I ! ! I
I ! ! I
| I [I
I 1ol
: : | |
| |
- Vi Lo
| |
fmmmmmmmm———————— aspire-author ~ |---------- -
: P .author-controller | : :
|
: : , , ! o
: | ! ! | 1ol
! |_ - 7777~ 0 | | |
I I | I ! [
I I | I ! o
I I | I ! o
| | | | | o
| I ! | | [
! | W Vi M o
: : aspire-author aspire-author aspire-author : :
: : .constraint- .constraint- .constraint- : :
: : generator.syntax generator.semantic validator o
| | T T T : :
| | | | | | |
| | | | | | |
: : . I e 1ol
I I : b Lo
| | | I ! [
| | o P
| | | | [
. o> VARV o
| |
aspire-author aspire-author aspire-author ¢ :
.db-manager | _____________> .domain-model | _________\X .xml-tags <____J'
Figure 2. The package structure of ASPIRE-Author
The controller package acts as a middle layer between the data layahauriterface

layer. It provides the only access point to Weh.access package. The controller package is
responsible for starting up ASPIRE-Author server, commumigatith thedb-manager for

accessing the required components from the database aimd)issmmands for other packages.
The controller package also communicates with the domain nfimdehodifying and retrieving
domain model components. Currently the controller package oertaé functions essential for
the implemented interface components to communicatetidtdomain model package.

The data classes for storing the domain model are contamirtbddomain-model package
(see Section 2.2.2). The implementation of classes regtorerepresenting domain details and
problem solution structure is complete. They are alpaldle of producing XML representations
of themselves and of updating themselves according to an X¥ptiesentation of a domain model.

Thexml-tags package consists of all constants, especially tags fosqutoducing XML
documents. The xml-tags package is used by the domain-modelthandieb package for
assembling and decrypting XML representations of the domadel. The controller also uses the
xml-tags package for accessing relevant constants.

The ASPIRE-Author project is implemented according todinectory structure outlined in
Figure 3. The project consists of seven top level dirextdidor grouping various files. The db
directory holds the physical database file. The compiletwtable version of the system would
reside in thedist directory. All user and development documentation residdsn the doc
directory. Thelib directory contains any extra libraries that the systauld use. Any other
resources reside within thhesources directory. The directories underc , which hold Lisp
source code files, reflect the system’s package struddaeh source file is stored under the
appropriate directory. All HTML pages including theisoarces such as style sheets, images and
scripts are stored under tveb directory.

\---aspire-author
+---db
| \---test-db
+---dist
+---doc
| +---dev
| \---usr
+---lib
+---resources
+---src
| +---constraint-generator
| | +---semantic
| | \---syntax
| +---constraint-validator
| +---controller
| +---db-manager
| +---domain-model
| +---web
| | +---access
| | \---interface
| \---xml-tags
\---web
+---CSS
+---img
\---script

Figure 3. The directory structure of ASPIRE-Author

2.2.2. Domain Model Classes

In order to be able to work on the milestones for thisogerwe needed to define the classes
belonging to the domain model. Figure 4 shows the UML classatiafpr the domain model. For
simplicity, the class diagram only focuses on the implaied classes that are directly related to
achieving the milestones in this reporting period. Plemse that ASPIRE-Author and ASPIRE-
Tutor share domain models, and therefore this workevaat for both sides of ASPIRE.

concepl
ontology -ic
-name
name ‘1 -descriptior
1 * |Hs-abstract
domain-mode !
-ic N
roblem-solving-ste|
-name ® 1 p g P
-descriptior -Ic
-is-procedural 1 * o |-name
-descriptior
1 -page -numbel 1
sub-domain
-name solutior -structure
* -descriptior ¢ 0 r
-scaffolding 1 ste-ic
-has-fixed-problerr *
1
1
solutior -component-structure *
problem-component-structure -ic
-label
-label type
type -elements-coun
-rows
-lengtt

Figure 4. The domain model clasdes

As discussed in the previous report (Mitrovic et al, 2005)pm@ain model consists of all
knowledge necessary to analyse students’ solutions to probteras particular instructional
domain. Domain models are maintained by the Domain ManAg#mmain has a unique id and a
unigue name. The author may also enter a description ofldhmin; this description is not
processed by ASPIRE in any way, and will only be usedunyams to familiarise themselves with
instructional domains. An instructional domain either costairocedural or declarative (i.e. non-
procedural) tasks, as specified by the author (see S&8prand the type of tasks is stored as the
is-procedural attribute in the corresponding class. For procedural tés&sauthor specifies
each step in the task. This information is maintaimethé problem-solving-step class. For

* The links between the structures and concrete obje€igure 4 arelependency links -- a dotted line with
an open arrowhead that shows one entity (object) depents behaviour of another entity (object).
Dependencies are typically used to represent that oseinlstantiates another or that it uses the othsscl
as an input parameter.

each problem-solving step, the author specifies its id @enwgthin the task), name, description,
and the page this step will be served on. Further exptamafi procedural task specification is
available in Section 2.5.

Each domain has a domain ontology (produced by the author)) ighientified by its name,
and consists of a number of domain concepts. A domain corm@epta unigue id, name,
description, and an attribute which keeps track of whether dbstract. Domain concepts are
organised into a hierarchy via the ‘is-a’ relationshipe concepts appearing as leaves in the
hierarchy are elements of student solutions, while the canampthigher levels are abstract
concepts, and are used to describe the structure of the rdo@airently, we have only
implemented thentology andconcept classes as they were relevant for the solution structures
The next reporting period involves the implementation of tlielogy editor, which would require
the remainder of the classes for representing an ontologyasueltionship andproperty
to be implemented (not shown in the class diagram).

Each domain may have a number of subdomains, where a subdoonairs a particular
problem set. For example, in the case of SQL-Tutor, dt@badse query language tutor (Mitrovic,
1998; Mitrovic et al., 2002), a subdomain consists of a setotflgms using a particular database,
such as a MOVIES database. All problems in a subdomaie she same database, and the author
can specify the scaffolding information only once. The felidihg information can be any
additional material that the author feels is necessanid the students in solving the presented
problems, in the SQL-Tutor this is the names and fieldthe tables in the database (i.e. the
database schema). The constraints describing the SQ@epsnwvould belong to the domain, not
to the subdomain, as they do not depend on a particular databasher domains, however, there
might be constraints that are domain specific. For gkanin the case of LBITS, an intelligent
educational system that teaches English (Martin & ditr, 2003), the various types of problems
(such as turning verbs into nouns, or specifying the pluraiarerof a noun given the singular
form) will also have specific constraints. In thas&aa subdomain will contain a number of
problems and also constraints specific to that subdorhaarefore, each subdomain contains the
specification of the problem structure and solution structarthe case when all the problems are
of the same type, there will be a single subdomain repgregehem.

The problem structure consists of a lispasblem-component-structure objects, which
keep information about the problem’s components, such asaite rand type. A problem
component can be either textual (such as the text of the problegraphical (e.g. a diagram
accompanying the problem). If the component is textual, theratiieor would type in the
problem statement while adding problems, whereas if it iphigal, the author would have to
upload an image.

Each subdomain has its own solution structure. ddietion-structure objects keep
track of the structure of a complete solution for a paldr step. Sub-domains of declarative
domains have only one solution structure, whereas procedural domairild have a solution
structure associated with each problem-solving stegoldtion-structure consists of a list
of solution-component-structure objects, which keep track of the structure of a parhef t
complete solution. Eacholution-component-structure object has an id, label, type and
length and width. It also knows about the type of elemientm hold (i.e. concept from ontology).
The types and dimensions of widgets that form the stysteblem solving interface depends on
properties of theolution-component-structure object, as discussed in Section 2.5.

Problems and solutions for a subdomain are based on thesenpisabution structures. The
number of components for a problem, the number of sokitfon each component and the
ordering in which they appear are governed by these spedifisati

2.3. Modelling the domain structure

The Domain Structure component of the authoring interfdlostrated in Figure 5, allows the

author to specify the general characteristics of the chiosémictional domain. The author enters
the domain’s name and a short description of the domaineineixtboxes provided. The author
also chooses whether the domain contains non-procedurale@larative) or procedural tasks. By
default, a domain is non-procedural, as is the case imd-tg

Domains can be divided into subdomains (referred to as probéts) to group similar
problems. Each domain must have at least a single problenesetibed by its name, description
and any scaffolding information. Problem sets can bedaddd removed by clicking the + and —
buttons. Figure 5 illustrates the domain structure for aritg system that teaches SQL, the
popular database query language. The final tutoring systemed SQL-Tutor, would present
problems to students to be solved in a non-procedural man@erT &or would consist of two
sets of problemsnovies andcompany.

Once the author is satisfied with the modelled domain streicit can be saved by pressing on
the Save structure button. A successful save action presents the author thith
Ontology Editor interface for modelling an ontology of the domain, whichhis mext step in
the authoring process. The author may also return tbdimain structure page at any time to
make any necessary changes or to add new problem sets.

If the author specifies that the domain is proceduralathboring interface allows the author
to specify the problem-solving steps. In the case illiesdrat Figure 6, the author is developing a
physics tutor, and has specified four problem-solving steps. fdur steps are: choosing the
appropriate equation, outlining the known variables, composinghtbeen equation with the
known variables substituted and finally solving the equatiomh®iunknown variable. The author
needs to decide whether the solutions for all steps arecsmdpn one web page or whether it is
spread out to a set of web pages. In the case of APT, prablem solving step would be
presented to the student on a separate page, where the baglentorrectly complete the current
step they are working on, in order to move on to the next €epe the student has correctly
completed a step, the interface for composing the solfdidine next step is presented along with
the solutions for all previously completed steps.

J Domain ” Ontology “ Problems Structure |] Student Interface H Add Problem ” Log Out.[.:

Domain Details

e |SQL-Tutor

Description |A knowledge-hased teaching system which supports learning SQL

Type @& Non-Procedural © Procedural

Problem sets =E
Set Number Name Description Scaffolding

1 Ir\.’lovies IMovies database l|

2 iCompany |Company database I

Powered by ASk

Figure 5. The Domain Structure Modeller

10

J. Domain “ Ontology “ Problems Structure l:I:S!udant !.nterfacel ” Add F‘rohlen; “ Log Out l

Domain Details

Mame Aot

Description [Amazing Physics Tutor

Type) Non-Procedural & Procedural

Procedural Steps | |
Step Number Name 3 Task Descripbion. New Page Page Number

1 Choose equation |Choose appropriate equa| 1

2 [Known variables :I.Jst known vanables ., 2

3 [Substiuted equation | Substrtute known vaﬁabl-fl 3

4 [Soived equatibn ' |Solve equation for unknol 4
Problem sets =
Set Number MName _ Description. Scaffolding

1 |Kinematics \Acceleration in one dimer

Powered by ASy EE

Figure 6. Specifying steps of a procedural task

The author may add as many steps as required by clidkéng button. Clicking the + button
results in a new blank row, which can be populated tooaddnhew step. For each step, the author
specifies its name and description in the textboxes provatetialso chooses whether to display
the step’s solution components on the same page as the presexqlingy on a new page. The
author may also remove any unnecessary steps by clicking enbthiton. Each click on the -
button removes the last step in the procedural steps list.

2.4. Specifying Problem/Solution Structure

After specifying the domain ontology, the author needs to gp#uif structure of problems and
solutions in the chosen instructional domain during the gtgd of the domain authoring process.
We have completed the interface for modelling the struatfineroblems and solutions, which
enables authors to specify components of problems and nedsirticture of solutions expected
from students. The structure of solutions depends on whetheddimain is procedural or
declarative. A declarative task requires a single solutimt may consist of a number of
components. On the other hand, a procedural task regugesition for each step of the problem
solving procedure. As the result, the structure of solufiansach step has to be modelled.

2.4.1. Declarative domains

Figure 7 illustrates the interface for modelling the stmectof problems and solutions for a
declarative domain. The interface is divided into two ssgasections. The top section is for the

author to model the structure for problems and the bottonoriambdelling the structure of
solutions.

In some cases, all problems in a subdomain may have tleegeraral description about what
needs to be done. For example, in the language tutor, theresét of problems dealing with
turning verbs into nouns. All problems of this type would hidneesame task requirement entered
just once by the author: “Turn the following verb into a nowarid then each verb would be
entered separately as the problem statement. The auttis twespecify whether there is such a
task requirement for the current subdomain, using the tigkassociated with the first element
(calledTask requirement) of the problem structure interface. The author doeseetl to do

11

anything about the second element (caledblem statement), as it is assumed that every
problem will have a specific problem statement. This etdns included in the interface to make
it obvious that a problem statement will always be & gfathe problem specification.

A problem may also contain a collection of sub-componentsatth@tdetail to the problem
statement. The composition of these problem componentdbeanodelled by populating the
problem components table, where problem components can be addicking on the + button
and removed using the — button. Clicking the + button resalta new row, which can be
populated to add a new problem component. Problem componentssarided by their label and
type. The label is displayed in the student problem solvinngrfate next to the problem
component. Each component can be either textual or graphaaéxample, Figure 7 illustrates
the problem structure for SQL-Tutor. Each problem in SQLeiTgbntains a description of the
task, and no additional components.

The solution structure for a declarative task consibta list of solution components. The
components can be added and removed in a manner similaratddition and removal of problem
components, by clicking the + and — buttons. Each solution compbasra label, the type of
elements it may hold (i.e. the concept from the domain ontqlagyype and the number of
elements it may hold. The type determines the choicepuit iwidget that would be ultimately
displayed in the student problem solving interface. Solutionpomients can be either ‘text’,
‘boolean’ or ‘choice’, which results in a textbox, check boxp-down list respectively. In the
case of specifying ‘text’ as the type for the solution comprthe author also has to specify the
dimensions of the resulting text box, labelled as lengtirand.

I Domain E Ontology I! Problems Structure ! Student Interface E Add Problem E Log Dut _

Problem and Solution Representation

Task reguirement (Relevant to all problems)

Problem statement

Problem components

Label Type

Solution structure

Solution components ==
Label - Concept : Type : _Element Count
Selet | | Select clause | E3 [1__8| Length(s0 [Rows1 |
Fom [Fomclause ¥ =~ 1 ¥ Length 60 |Rows[1 |
Where [Where dause ¥ [t ¥ 1~ Length [40 |Rows[3 |
Gowby | | Group by dlause ¥ [tet | E Length(80 [Rows[l |
[Hawng] [Having clause | [t o [1 ¥ Length 60 |Rows[1 |
ouoty | [Grtrby dawee] = 8 [& e
Save structure
powered by AS¥ RE

Figure 7. The interface for specifying problem/solution structure

The solution structure specified for SQL-Tutor (Figure Tleets the six clauses that exist in
SQL SELECT statements: Select, From, Where, Group byinglaand Order by. The solution
components can hold textual elements of their respectives.typll but one text box to be
displayed in the solution workspace of the student interfee&@ columns wide and 1 row tall.
Thewhere clause is 40 columns wide and 3 rows tall.

12

2.4.2. Procedural domains

The interface for modelling the structure of problems aidtisns for procedural tasks (shown

Figure 8) is similar to the interface for declarativektadescribed in the previous section. The
main difference is the presentation of the solution strucAgeach problem solving step requires
a solution which may contain several parts, the compositiagolutions for each step has to be
modelled separately. Consequently, the solution structureréedural domains consists of a

collection of solution component lists, one for each probierirg step.

The structure for problems in APT (Physics tutor), tHated in Figure 8, consists of only the
default problem statement. As problems of APT consisbwf $teps, the structure of solutions for
each step has to be modelled using the interface. The osoldftr the first step
(choose an appropriate equation) consists of only one component which may hold an
eguation. Solutions for the second step, which involves idemjifyhe known variable, may
contain up to four components. In other words, studentsiaemify up to four variables
depending on the given scenario. The final two steps alstaio a single component, which
require an equation as their solutions.

2.5. Student Interface Designer

In step 3 of the authoring process, the author specifiesutiengtinterface. Once developed, this
interface becomes the communication medium that studeltsse when interacting with the
developed intelligent educational system. Therefore, wihenauthor finishes designing the
interface, the specification becomes a part of the dommaidel, and will be transferred to
ASPIRE-Tutor to be served to students.

I Domain I Ontology ! Problems Structure I Student Interface ! Add Problem ! Log Dut _

Problem and Solution Representation

Problem structure

Task requirement (Relevant to all problems) []

Problem statement

Problem components
Label Type
Solution structure
Choose equation: Solution components ===
Label Concept Type : _Element Count
Fowien | | Equation | et | 1 Length[30 [Rows[l |
Known variables: Selution components = | = |
Label - Concept Type : Element Count
Known varizble 1 | | Varable | et | A Length|20 |Rows[l |
[Known vansble2 | [Variable | lld | K Length[2l |Rows[l |
Known variable 3 Variable test hdl 1 v Length |2D | Rows |1 |
e vt | [Varable | et ¥ 1 Length(20 [Rows[l |
Substituted equation: Solution components
_Labe[Concept Type : E[g[nent Count
Substuted equation | | Equation | S [1 Length30 [Rows[l |
Solved equation: Solution components
Label Concept . ype. [Element Count _
|Solved equation | [Equation | [tet | [1 =¥ Length [20 | Rows |1 |
bsbtation b S | Equation | U=t | EL—

Powered by ASY RE

Figure 8. Specifying problem/solution structure for a procedural task

13

We have simplified the interface building task by providimginterface layout, dynamically
calculated from the previously specified problem/solution sirast This interface layout serves
as the initial phase in the process (illustrated irufeig 9 and 10). The assumption here is that
every interface will consist of four basic areas:

« the navigation area at the very top of the page, providingutiens that students interact
with;

- the problem area at the top of the page, providing the problatansnt and any
additional problem components the author specifies;

» the solution area at the centre of the page, providing the paw&sor students to enter
their solutions; and

» the feedback area at the right side of the page, whiclkeevitiain the system'’s feedback to
the student, and buttons for the student to request feedback

The navigation area’s options include:

» the problem selection drop-down menu where students can gateaext problem they
would like to work on;

» the Next Problem button, which requires the educational system to sdhlertbest
problem for the student to solve, based on the student model;

« theHistory button, which shows the history of interactions in the ctirgession;

» the Student Model button, which provides an assessment of the student’sierafy
level;

» theTutorial button, which provides a tutorial on how to use the system;

« theHelp button, which gives quick pointers on how to use the systaifoago about
solving the problems;

« thelLogout button, which allows the student to exit the tutor at ang.t

The starting point for constructing the student interfacehé previous specification of the
problem and solution structures. The ASPIRE-Author examinespheified components and
displays them in accordance to their characteristithd@rproblem/solution areas. The navigation
and feedback areas, however, are displayed to the autthautviny additional calculations. The
author is then able to check the interface layout. The muingplementation of the Student
Interface Builder does not allow the author to move the vadoagonents of solutions/problems,
but we plan to implement that kind of support in the secoad gfethe project.

If there are any necessary changes to the structuresjttier may go back to the problem and
solution structures page to make those changes, whichenwittflected in the interface as soon as
they are saved. Once the author is satisfied with thdgamdolution structures and their interface
representation, the author is able to move to the next adhstep of adding problems and their
solutions (which are covered in milestone 9). The next ¢ections provide examples of this
authoring step for both types of domain tasks; declaratisigoeocedural.

2.5.1. Declarative domains

Figure 9 shows a screenshot of the Student Interface Budddaur SQL-Tutor example. The
Student Interface Builder examines the problem and solutionctstes and presents the
corresponding interface to the author. In this caseptbblem structure does not contain any
additional components, so only problem statement will beadisdl The six solution components
are displayed one after the other in the solution areall Aseasolution components are of type
“text”, atextbox is drawn beside each component’s name according tpetified size; length
and rows.

14

I Domain I Ontology I Problems Structurs I Student Interface I Add Problem I Log Dut _

Student Interface Builder

[Selectone... ~ I History Student Model Tutoral
ASyrRE! -

Help | Logout
Probfem Feedback
Fixed problem statement Feedback text...
Problem statement...
Solution workspace
Select | |
From | |
Where
Group by
Having | Erorflag ¥
Order by Submit
Full solution
Powered by AS K RE

Figure 9. Student interface for the SQL domain

2.5.2. Procedural domains

Figure 10 shows the screenshot of a student interfaceiqgody the Student Interface Builder
for the physics tutor, which teaches a procedural taskil&®ito declarative tasks, the interface
areas populated with the appropriate structures are prégentee author. The main difference
here is the presentation of each problem solving step. A#fisdeby the author previously, each
step may be presented on a separate page. Therefboeighaltthe components of the steps are
examined and presented in the same manner as for dedalatnains, there are additional checks

for presenting them on their appropriate pages. Figure 10 shbassthe student interface will
look like for the first step of the physics problem.

I Domain I Ontology I Problems Structure I Student Interface I Add Problem I Log Cut _

Student Interface Builder

AS i/ RE | Sdect ove.. v IS Student Model

Problem

Feedback
Problem statement... Feedback text...
Solution workspace
Choose equation
Equation |
| Erorflag ¥
Submit

Full solution
Powered by AS VRE

Figure 10. Student interface for a procedural task

15

As discussed above, all steps share the same problem strietudiffer in their solution
structure. The solution structure of a particular stemlg presented on the page corresponding to

that step. Given that these problem-solving steps mayndepe each other, the solutions of
previous steps are displayed in the problem area as phe ofirrent step’s problem structure.

Next Page >>

drop down menu.

3. ASPIRE-Tutor

The author can navigate through the pages of a procedaskl ly clicking on the
or << Previous Page

buttons, or by choosing the page number from the pages

ASPIRE-Tutor is responsible for the delivery of intelligmducational systems developed in

discussed in the previous report (Mitrovic et al., 2005).

ASPIRE-Author. Figure 11 illustrates the general architectoir ASPIRE-Tutor, which was

Interface
HTML CLP functions

GUI Interface
Server Administratior
Local User Mode

Windows and Dialogs

Web Interfact

XML RPC Interface

g N ’%%
@ 0, e
8 e G Y
.
v AllegroServe
@ AllegroServe

Web Sessions

L

Action Functions

| Allegro Web Actions

XMl RPC Module

Domain Manage

Aspire Sessions

}7 All external clients of the Sessior
Manager can communicate with il
|
a¥a %
@ Session Manager

only through a clearly definec
request interface

Diagnostic Module i

Allegro Cache Database
AN
-~ AN Cess Obje,
N\
Pedagogical Modul¢ N) Domain Models
\(qo Student Models
Q)
9% Y N\ %, Users
% %, Log
/ z N2
& E3 S
N o} 3
B S
52 £ < AN
5) % \.
&/ g B 0
/ £ 3]
Log Manage
User Manager
Student Modeller

> Contre

> Mode

3.1.

Figure 11. The architecture of ASPIRE-Tutor

Implementation of the Framework

The plan for the current reporting period includes thgybaatic Module and the Student Modeller.

packages and the basic functionality of all the modules.

However, in order to be able to implement these two compsnastalso had to implement all the

16

3.1.1. Packages Structure

The package structure of ASPIRE-Tutor (shown in Figurevi®y implemented to reflect its
architecture. To minimise couplihgnd increase cohesfoof the system modules, each module is
implemented as a separate package centred around thierfatiist provided by the module. The
session-manager package represents the component of the system which mdhaggstem
data and delegates operations on the data to other modtdeh module encapsulates the
operations on data and hides the implementation behind i vlearly defined public interface
abstracted from implementation details. This approadhrailly supported by the Object-Oriented
programming paradigm, minimises further development and mainte efforts. Even before the
system is complete, it is possible to run the system ddemglopment and testing stages.

The session-manager runs the web and database server controlling the accesdat The
Session Manager module translates external requestspanations coming from the client into a
unified language of requests understood by the rest of ttensy In this way, the Session
Manager translates all commands arriving from users (W8L-RPC or Web clients) into
operations that are further handled by the other pack&®gssion Manager dispatches the
operations to the modules responsible for handling spesfijoests. For example, login and
logout requests are handled by the User Manager, implethienttecuser package, and students’
solutions are processed by the Pedagogical Module, implechenthepedagogy package. The
session-manager package decouples the packages dependent on it so that thegt do
communicate directly with each other.

The Pedagogical Module depends on the Diagnostic Module, Dowhadule and Student
Modeller implemented in the corresponding packages.pebagogy package, similarly to the
session-manager package, acts as a client of the packages it dependsn athisl way
diagnosis , student-model and domain packages are independent of each other, with the
pedagogy package being responsible for making high-level decisions.fifbr-grain details of
these decisions are provided by the functionality encapsulatda lower-level packages. This
separation of module functionality and interaction iscceiraged by the principle of
separation of concerns . Each module and the corresponding package encapsulate the
minimum functionality necessary for carrying out itskeasFor example, thetudent-model
package does not need to be responsible for finding, loadingaaimy individual student model
objects corresponding to certain users. Instead itlgimpnipulates student model objects passed
to it by routines called from theedagogy package. These routines, however, are contained in the
student-model package, but it is up to the Pedagogical Module to decide thiegnshould be
called upon.

® Coupling or dependency is the degree to which each modige oel any other module. Low coupling in
programming means that one module does not have to beroed with the internal implementation of
another module, and interacts with modules via a statdgface. Therefore, with low coupling, a change in
one module will not require a change in the implementatfanother module. Low coupling is a desirable
sign of a well structured computer system.

® Cohesion is a measure of how well the lines okthece code within a module work together to provide a
specific piece of functionality. Modules with high cohesiend to be preferable as high cohesion is
associated with several desirable traits of softwasi@diing robustness, reliability, and reusability.

17

1

TTTTTT T T T T «systemy F~———====="===73
I R — aspire-tuto }
|
| ! |
| ! T |
| ! | I
| ! | |
|
W w | |]
} aspire-tutor froni-
aspire-tutor froni- aspire-tutor froni- ! aspire-tutor froni- end web interface
end xm -rpc end admin-gu | end weh access
|
|
i i | i
| | | |
| | Yo e j
| |
| |
L 777777777777777777 N ::7 aspire-tutor sessior -manager [~
= ; N e
- N
- ! \\ >3\
— | N
aspire-tutor pedagogy } \\\ aspire-tutor util
- ! N
aspire-tutor domain K — ‘ \\
//// \J

aspire-tutor usel

T

I

]

I

’ |
L N

aspire-tutor studeni-
model

aspire-tutor log

aspire-tutor diagnosi:

Figure 12. The package structure of ASPIRE-Tutor

The directory and source code layout of ASPIRE-Tutor is shiomFigure 13. The project
consists of seven top level directories for groupingouar files. Thedb directory holds the
physical database file. The compiled executable versioheofystem would reside in thiest
directory. All user and development documentation residdsin the doc directory. Thelib
directory contains any extra libraries that the systemladvuse. Any other resources reside within
theresources directory. The directories undstc , which hold Lisp source code files, reflect the
system’s package structure. Each source file is stonddr the appropriate directory. All HTML
pages including their resources such as style sheets, imadexripts are stored under theb
directory.

\---aspire-tutor
+---db
| +---test-db
| \---tmp-db
+---dist
+---doc
| +---dev
| \---usr
+---lib
+---resources
+---src
+---diagnosis
+---domain
+---front-end
| +---admin-gui
| | \---icons
| +---web
| | +---access
| | \---interface
| \---xml-rpc
| \---access
+---pedagogy
+---session-manager

18

| +---student-model
| +---user
| \---util
\---web
+---base
| +---css
| +--img
| \---scripts
\---domains

Figure 13. The directory structure of ASPIRE-Tutor
3.1.2. ASPIRE-Tutor classes

The UML diagram in Figure 14 shows the classes develope8iSBIRE-Tutor. Please note that
the domain model classes are shared between the tutodnguémoring side, and have already
been discussed in Section 2.2.2. The Diagnostic Module, the Stvdeleller, and the classes
specific to these components are described in Sectiona@2 &respectively.

Information about users is stored in tbieer class, and also the appropriate subclasses
(depending on the type of users). The affiliation of usersld be defined by the administrators,
when the user account is created. ASPIRE-Tutor recogihissss types of users: students, teachers
and administrators. The teacher defines the specifiarg=abf an intelligent educational system
he/she would like to use for a group of students, and theisdls will be stored as an instance of
thegroup class.

Information about each Web session will be maintainetbusin object of theession class.
Different types of sessions correspond to the threestyafeusers: students, teachers and
administrators. Thetudent-session class is of special importance for this reportwashave
been working on the functionality related to studentsamyt one time, the student’'s session will
be related to an instance of tpedagogical-state class, representing information about the
current instructional domain the student is working in, thefi the selected problem, and the
attempt number on the current problem.

A student will have an instance of thtadent-model class for each intelligent educational
system he/she uses. Thtdent-model class stores the long-term model of the student’s
knowledge. This class contains the student’s proficiencytife domain as a whole. For each
sudomain of the instructional domain the student has used, woerdd be an instance of the
subdomain-student-model class, storing details of the student’s behaviour inubd@main.

If there is a defined pre/post test for the chosenuogtmal domain/system, the result of the
test would be stored as an object of tdwt-result class. Instances aést-result class
store pre/post-test results, including the student’s answeach question, and the total score. In
instructional domains for which pre/post-tests have beecifggd, the student will be given one of
the tests (selected randomly) as a pre-test. The studestik on the pre-test would serve as an
initial indication of the student's knowledge of the domaire. (ipre-existing background
knowledge). The pre-test would be given the first time the stuldgs on to the educational
system. When the teacher has specified that the studendsl sit a post-test, a different test will
be given to the student as a post-test. The result of ttetgmt serves as an indication of the
student’s knowledge after interacting with the tutoring systere/post-test dates are stored in the
group class. There should be an instancpeafagogical-settings class associated with each
group instance.

For each solution attempt the student submits, there wauthbinstance of theplution-
attempt class, storing information about the problem the studéetnpted, the timestamp, the

19

raw solution received, the attempt number, the outcome of dibgnosis (the lists of
violated/satisfied constraints and appropriate binding Jlists)well as the feedback the student
received.

The student model also contains constraint historigdeimented via theonstraint-use-
case class. An object of this class exists for every camstrelevant to a student’s submission,
and stores the timestamp (i.e. the time and date);nmafiton about whether the constraint was
used correctly or not (theatisfaction attribute), information about the domain the constraint
belongs to, and the problem number within that domain.

Geor sessior request

— = sessior it sessior it
affiliatior user code sessior owner i
* | user pwc *
name .
user email

descriptior

administratol sessior login request logou request

student sessior

student teacher administratol

teacher sessior process solution request

T raw submissiol

groug pedagogical state

problem selection strategy current domair i
feedbacl selectior strategy current problem ic

attemp numbe
constrain use cas¢
student mode

domair i timestamp

; K>— | satisfaction
proficiency domair i¢
problem numbe

tes result

score
subdomair student mode raw answel

\ problem attempt

raw attemp
satisfiec constraints
violated constrainte
feedbact

Figure 14.The class diagram for ASPIRE-Tutor

3.1.3. Request Protocol

This section describes in detail the interaction betwedsrnal client interfaces and the core
application server. User actions are delivered to thad®esgmnager module in the form of HTTP
request or XML-RPC commands through the application welesdistening for incoming
network connections. In line with the Model-View-ArchitegtufKrasner & Pope, 1998), the
interface layer is decoupled from the core applicationASPIRE-Tutor, the communication
between the interface layer and the Session Managerrisdcaut through an internal request
protocol. The basic principle of this protocol is that evesgr action, no matter what type of
interface it is coming from, is delivered to the Sessicandfjer in a specific request type form.
For example, a login attempt initiated in a web browsesiraHTTP POST request is handed over
to the Manager as an instance of Itigin-request class. Although the class diagram in Figure
14 shows only three types of requests, thereempgest classes corresponding to other types of
user actions supported by the system. In this report we comgentrate on the three types of
request which are handled by the components we have foonsedhe current period.

20

The Session Manager is aware of the request speti@lisand thus each request is handled in
a unique appropriate way determined by its request type.ifmplementation of this request
handling protocol is based on generic functions and specialigtidods that are the building
blocks of the Common Lisp Object System.

All requests handled by the Session Manager can be diwdedtwo broad categories:
persistent and transient requests. Persistent regaestthose that carry certain value of the
pedagogical or administrative nature; these requests anmatitally saved in the database as the
system activity log. Login, logout and solution submissioquests are examples of persistent
requests. Persistent requests and the system’s responthem are used internally by the system
for providing optimal learning environment and for externallgsis and monitoring of learning
progress. Transient requests, on the other hand, aleaiomic transactions that do not need to
be saved in the database. For example, requests caatetenl retrieval of information required
for rendering of parts of the interface are represeatedransient requests. These requests are
processed, but are not logged in the system database.

3.2. Diagnostic Module

The Diagnostic Module undertakes the evaluation of solutions gedntiy students, and also
returns the results of these evaluations. Initially, Regagogical Module passes the information
about the student’s solution to the Diagnostic Module, inclutiiegdomain name, problem id,
and the components of the solution. The Diagnostic Module thestes an instance of the
Diagnosis class to represent the solution, and startsagivay it. Once the evaluation is complete,
the Diagnosis object will contain the result of the eatitin (the satisfied and violated constraints,
and the variable bindings), which are then passed back Rettegogical Module.

A student’s solution is processed in two phases. Fitigyrelevance conditions of all domain
constraints are matched to the student solution and thiesmlation for the same problem. In the
second phase, the satisfaction condition of the relevastraants are also matched. This process
results in the lists of relevant and satisfied/violatedstraints, as discussed in more detail in
Section 3.2.2. The Student Modeller uses this informatiamptiate the long-term student model
(as discussed in Section 3.3), and the Pedagogical Moddehisénformation in order to select
appropriate feedback for the student.

3.2.1. Diagnostic Module interface

There is only one operation exposed to the Pedagogical Module

process-solution (domain-id problem solution-compon ents)

This operation passes the information about the studesttiasm and requires that it be processed.
The Diagnostic Module creates an instance of the Diggraass, and evaluates the solution
against the ideal solution and the domain constraintse ©@ampleted, th®iagnosis object
will contain the lists of satisfied and violated conistisithat have resulted from the evaluation,
and possibly other relevant data (e.g. for visuallyntifigng where in a solution the errors
occurred).

3.2.2. Matching constraints

Constraint-based intelligent tutoring systems repredemiain knowledge in terms of constraints,
which denote the basic domain principles. Constraint-BasedeNing (CBM) (Ohlsson, 1994;

Mitrovic & Ohlsson, 1999) is a student modelling approach thatot interested in the exact
sequence of states in the problem space the studentakieasséd, but in what state he/she is in

21

currently. As long as the student never reaches a statis theown to be wrong, they are free to
perform whatever actions they please.

CBM starts from the observation that all correct solimna particular instructional domain
share one property: no correct solution violates any dorpairciples. Therefore, domain
knowledge may be represented in terms of state descriptidhe form:

If <relevance condition> is true, then <satisfaction condition> had better also be true,
otherwise something has gone wrong.

As discussed in the previous report (Mitrovic et al., 20@6pstraints test the student’s
solution for syntax errors and compare it against themsysideal solution to find semantic errors.
The knowledge base enables the tutor to identify student solthi@inare identical to the system’s
ideal solution. More importantly, this knowledge also enaliles system to identify valid
alternative solutions, i.e. solutions that are correctnbtidentical to the system’s solution. Each
constraint specifies a fundamental property of a domaih riust be satisfied by all solutions.
Constraints are problem-independent and modular, and theezfey to evaluate. They are written
in Lisp, and can contain built-in functions as well amdin-specific functions.

Each constraint has a relevance condition, and aagtisi condition. These conditions may
be simple tests, or multiple tests connected witl) ORor NOT A test may be any Lisp function
or the call to thenatch function, which implements pattern matching. Patterrchiag) is a well-
known Artificial Intelligence technique in which a pattere.(an expression containing variables)
is compared to a constant expression (with no varialde®st whether they are similar. Patterns
contain variables, that can represent any kind of expressand constants, which must appear in
the constant expression as they are given in the pattetarrPaatching finds substitutions for
variables in the pattern that will make the pattern idahto the constant expression. In ASPIRE,
patterns are specified by using the following symbols:

« 2var - A simple variable, which matches any one expression
« ?wvar - Matches zero or more expressions

« ?+var - Matches one or more expressions

« ??var - Matches zero or one expression

« (?if exp) - Tests ifexp is true

+ (?is var predicate) - Tests the specified predicate on one expression
« (?orpat...) - Matches any pattern on one expression

« (?and pat ...) - Matches every pattern on one expression

+ (?not pat ...) - Succeeds if pattern(s) do not match

Constraints differ significantly in their complexity.nAexample of a very simple constraint
from SQL-Tutor is:

(p2
"The SELECT clause is a mandatory one. Specify th e
attributes/expressions to retrieve from the databas e."

t
(not (null (select-clause ss)))
"SELECT")

The relevance pattern of this constrainttis which is always satisfied; therefore, this

constraint is relevant to all the student’s solutionse Bhtisfaction pattern specifies that the
SELECT clause of the student’s solution (represented by tiabless) cannot be empty.

22

However, constraints can be much more complex. In ordeéestofor specific features of
solutions, patterns need to be specified fomth&h function. Other conditions may be any LISP
functions, and they can use the binding lists obtained frommuehing process to perform
additional tests on the student’s solution. Constraint 186engibelow, contains complex
conditions. Its relevance condition contains a conjunctfoseven tests. For the constraint to be
relevant to a submitted solution, all seven tests nebd toet. The initial two tests make sure that
thewhere component of the student solution and the ideal solution arenmaty, respectively. If
that is the case, the third test binds the variable® Thae names the student used in the WHERE
component (note that this might result in multiple bindifagsvariable ?n, if there is more than
one name in WHERE). The fourth test keeps only those vafugs which are valid attributes in
the current database (ensured by using the attribute-p pedimad then the fifth tests is met only
by numerical attributes. The first match requires ecifipepattern to appear in the student’'s
solution, where the value of the attribute is greater thapecific numeric constant (?cl), while
the second match function contains a similar pattern fourel in the ideal solution, including the
same attribute which is greater than or equal to anatbestant (?c2). If that is the case, the
satisfaction condition ensures that the constant in thergtsdmlution is 1 less than the constant
in the ideal solution.

(p 186
"Check the numerical constant you are using in th e WHERE clause!"
(and (not (null (where ss)))
(not (null (where is)))
(bind-all ?n (names (where ss)) bindings)

(attribute-in-db (find-schema (current-databa se *student*)) ?n ss)
(equalp (find-type ?n ss) 'numeric)
(match '(?*d1 ?n ">" (?is ?c1 numericp) ?*d2) (where ss) bindings)
(match '(?*d3 ?n ">=" (?is ?c2 numericp) ?*d4) (where is)
bindings))
(equalp (string-to-number ?c2) (1+ (string-to-numbe r 2cl)))
"WHERE")

We have developed functions that allow any test to be ggabdif the constraint language.
The actual processing of a student’s solution is furtheusisd in the following section.

3.2.3. Speeding up the evaluation of student solutions

As discussed earlier, CBM is computationally very sim@ealise it reduces student modelling to
pattern matching. The conditions of constraints arenpatimatched against the student’s solution.
Pattern matching is a simple, but potentially time-corisgnoperation, especially in situations
when the number of patterns is large. It is therefidten done in Al systems by using RETE
networks (Forgy 1982). A detailed discussion of the RETE npatteatching algorithm is beyond
the scope of this report and we briefly give the funddateideas only. RETE networks are
designed for many pattern/many object situation, typicag¢Xpert systems, where there is a large
number of facts (objects) describing the current problemte,sand a large number of rules
(patterns). A RETE network is the result of compilingtgrans so that all conditions that appear in
many patterns are applied only once. RETE networks corisishomber of nodes, which apply
the conditions on objects they are given.

In constraint-based educational systems, all constragitmging to an instructional domain
need to be used when diagnosing students' solutions. In an envitosopport multiple
educational systems, each of which could have hundredenstraints, speed could potentially
become an issue, especially with many users accessirgydtem simultaneously. A complete
evaluation of a solution taking only a few seconds can beeogneater inconvenience once CPU
time is shared and evaluation times extend. In ordeznsure efficient processing of student
solutions, ASPIRE-Tutor compiles constraints into stristuthat resemble RETE networks. We
call these structuresonstraint networks . For a given domain, we create a pair of constraint

23

networks, as illustrated in Figure 15. The relevance m&tveontains compiled relevance
conditions, and the other network compiles satisfaction conditof all domain constraints. The
student’s solution is first propagated through the relevaletwork to determine which constraints
are relevant. In the second phase, the solution is propatmteigh the satisfaction network, but
only for those constraints that are relevant. Finaly satisfaction network produces a list of
violated and a list of satisfied constraints.

There are three kinds of nodes in the constraint networgat, internal and output nodes.
Each input node may be connected to one or more internal, meflsed to as its children. Each
internal node has one input (coming from the input node, or anotieenal node), and may be
connected to a number of other nodes (internal or outputh Eaernal node applies a test
(corresponding to a condition in a constraint) to either 8$8Soand, if the test is satisfied,
propagates the resulting bindings to its children.

Student's Relevant Satisfied/Violatec
solution Relevance constraints | Satisfaction constraints
network network

Figure 15. The processing of a student’s solution

Relevance and satisfaction networks have slightly diffestructures. The number of input
nodes in a relevance network is equal to the number ahaistonditions which appear as first
conditions in any constraint. If several constraints haemtical initial test in their relevance
conditions, the relevance network will have an input nodeaguing that test, and this input node
will be shared by all these constraints. This way,péern-matching results can be re-used, and
the amount of processing is reduced.

Each output node in the relevance condition corresponds to ot afomain constraints.
Once the student’'s solution reaches an output node in the redevestwork, the relevance
condition of the corresponding constraint has been met, argbtistraint is added to the list of
relevant constraints, together with the appropriate bindsg i

Each input nodes of a satisfaction network contains a edmtsid. If the constraint is relevant
for the student’'s solution, the satisfaction condition will Ipplied to it, by propagating the
solution to the children of the input node. When the solutiomhe=a an output node, the
satisfaction network adds the constraint number toishefl satisfied constraints (with the binding
list). If any of the tests in the satisfaction condit{@e. the tests in the nodes connected to the
input node) fail, the constraint is violated, and is adddtie list of violated constraints.

Let us illustrate constraint networks on the example offidhewing constraints from SQL-
Tutor”:

(p 110
"You need the ON Keyword in the FROM clause!"
(member "JOIN" (from-clause ss))
(member "ON" (from-clause ss))
"FROM")

’ Please note that these constraints are given in aifsiwfibrm, to make the understanding of the example
easier.

24

(p 358
"Check the syntax for the JOIN and ON keywords i n the FROM clause!"
(and (member "JOIN" (from-clause ss))
(member "ON" (from-clause ss)))

(match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON" ?al "="?a2 ?*d2)(from-
clause ss) bindings)

"FROM")
(p 11

"If the JOIN keyword is used in the FROM clause,

the same clause should contain a join condition specified

on a pair of attributes from corresponding tabl es being joined."

(and (member "JOIN" (from-clause ss))
(member "ON" (from-clause ss)))
(match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON "?al "="?a2 ?*d2)
(from-clause ss) bindings)
(valid-table ?t1)
(valid-table ?t2)
(attribute-of ?t1 ?al))

(and (attribute-of (find-table ?t2 (current-dat abase *student*)) ?a2)
(equalp (find-type ?al ss) (find-type ?a2 ss)))
"FROM")
(p 187
"If the JOIN keyword is used in the FROM clause,
the same clause should contain a join condition specified
on a pair of attributes from corresponding tabl es being joined."

(and (member "JOIN" (from-clause ss))
(member "ON" (from-clause ss)))
(match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON "?al "="?a2 ?*d2)
(from-clause ss) bindings)
(valid-table ?t1)
(valid-table ?t2)
(attribute-of ?t1 ?a2))

(and (attribute-of (find-table ?t2 (current-dat abase *student*)) ?al)
(equalp (find-type ?al ss) (find-type ?a2 ss)))
"FROM")

The relevance network for these constraints is givenguar& 16. Input and internal nodes are
shown as rectangles, while output nodes are shown as ovaftraunl10 has only a single test
in its relevance condition (checking that the JOIN keywap@ears in the FROM clause of the
student’s solution), and if it is met by the students solutio®,output node is reached, meaning
that the constraint is relevant. Constraint 358 sharessdinee test with constraint 110, but
additionally requires that the ON keyword also appeans H@IN. If both of these conditions are
met, the constraint is relevant. Constraint 11, miitamh to these two tests, also has four new tests,
which are checked in order. Constraints 187 and 11 have abeosital relevance conditions; the
only difference is in the last test, and that is whydhere two branches from the internal node
testing whether variable ?t2 has a value which is a \atbie.t

Note how tests are shared: the input node would apply thed teisit to the student’s solution,
and if it is met, the joining internal nodes will apply maests to the student solution. Instead of
having to apply the same test five times in order tothestelevance condition of each constraint
independently, the constraint network re-uses the resulduged by network nodes, thus
reducing the total number of tests applied on the studsmitifion.

25

(member “JOIN” (from-clause ss)) | % 110

A

(member “ON” (from-clause ss)) — > 358)

\ 4
(match ‘(?*d1 ?t1 ??s1 “JOIN” 2t2 ??s2 “ON”
?al “=>?a2 ?*d2) (from-clause ss) bindings)

v

(valid-table ?t1)

v

(valid-table 22) > (attribute-of 2t1 2a2) — »_ 187
(attribute-of 2t1 2a1) — »(_ o1

Figure 16. An example relevance network

3.2.4. Locking system

Constraint networks must be created at start-up, Wwahconstraints from the chosen domain. As
discussed earlier, there is a pair of constraint nétsvéire. relevance and satisfaction networks)
created for each domain. The total number of netwarksid be determined by the number of
instructional domains served by ASPIRE-Tutor. On startthp, Diagnostic Module iterates
through all instructional domains, and for each domainopmd the following steps: gets the
constraints for each domain from the Domain Managertaseapair of constraint networks, and
stores references to them.

Due to the nature of constraint networks, only one solutiEm be propagated through a
network at a time. Because of this, a locking systenbbasn created for situations when there is
simultaneous need for a network (i.e. multiple studembsnit solutions to the same instructional
system). When a process-solution call has been madbjaberosis object makes a request to the
repository of constraint networks corresponding to the dontithe network is not in use, it is
returned, and Request-Lock is set. If the network is locked, the request contirtaesait until
the network becomes available.

Once the submission is propagated through the constraimonketthe lock is removed, and
other requests can now retrieve the network.

26

3.2.5. Diagnostic Module Classes

Figure 16 illustrates the classes that the Diagnostic Madkss for its specific functions. The
Diagnosis class, as discussed in Section 3.1.2, storékealhecessary information about the
student’s solution and the results of its evaluation. Otlagises included in the diagram in Figure
16 are related to the constraint networks. As discuss8dation 3.2.4, the constraint networks are
generated on system start-up, from the domain constrairagetitfrom the Domain Manager.
For each network, an instance of thenstraint-Network class is created. Input nodes and
internal nodes of relevance networks are representatstasnice of thélode class, as they have
the same structure (i.e. each node contains a test toaheted). The output nodes of both
relevance and satisfaction networks have the samdwtuand are represented as objects of the
Output-node class. The input nodes of satisfaction networks arerdift from the input nodes
of relevance networks, as they only contain the constdyiaind not a test.

Constraint-Network

Diagnosis
domain-name lock
-rel-bindings Constraint
-problem « 1 - 1
: -sat-bindings -1D
-solution-components) - .
o . -failed-sat-bindings -relevance-condition
-satisfied-constraints)) o
.) -matched-rel-constrs -satisfaction-condition
-violated-constraints
-matched-sat-constrs
-tags ;
-failed-sat-constrs

1

* *

Node

-test

AN

Output-Node Input-Sat-Node
-matched-constr -constr-num

Figure 16. The class diagram for the Diagnostic Module

3.3. Student Modeller

Student Modeller is responsible for maintaining long-termdaets of students' knowledge.

Whenever a student submits the solution to a problem, #gnbstic Module will analyse it, and

produce the short-term model (as discussed in Section hih w passes to the Pedagogical
Module. This module then requires the Student Modeller totapgba long-term model.

ASPIRE stores general information about each user (sualsaascode and password) as
attributes of thaiser class. Thestudent class extends theser class and provides capabilities
for storing information that describes the student’s knowleafga particular domain. Within
ASPIRE-Tutor it is necessary to keep a model of the stisdkemowledge for each instructional
domain the student has worked on. This information isilgiged over several classes, described
in Section 3.1.2. The Student Modeller module is respanéidsl maintaining a long-term model

27

of each student’s knowledge, aggregating and providing data mloxitual student models to
the Pedagogical Module.

3.3.1. Student Modeller Interface

The operations exposed to the Pedagogical Module include:
e make-student-model (domain-id)
Creates a new student-model object for the specified idoma
e update-student-model (student-model solution-attemp t)

Updates the student-model instance based on the evaluatedrnsattempt containing
required information (e.g. lists of satisfied and viethtconstraints). The Pedagogical
Module will call this method to update the student model éawdh the student performs
cognitively or pedagogically important action, such as suingia solution to a problem.

« Queries
o0 student-level (student-model) Gets the student’'s proficiency level for the
domain.
o attempted-problems (student-model) Gets the problems attempted by the

student. This may include problems attempted but not compétedell as fully
completed problems. This may be useful for problem setecti

o solved-problems (student-model) Gets the problems solved by the student.
This only includes the successfully completed problemss Bhuseful for problem
selection.

o constraint-knowledge (student-model constraint-id) For feedback and

problem selection strategies the Pedagogical Module neeleot® the student’s
comprehension of each particular constraint.

o visualise-student-model (student-model) Gets a summary of the student-
model for visualisation.

4. Allegro Cache

AllegroCache is a high-performance, persistent, dynafijiecb caching system (Aasman, 2005).
It supports a full transaction model with long and short &etiens, and meets the classic ACID
requirementsfor a database. AllegroCache allows us to work direeitly objects as if they were
in memory while in fact the object data is alwaymed persistently. It provides both a single user
and client-server (multiple-user) configurations. In thentiserver environment, different clients
(or processes) on different processors can accessathe database over the network. In the
context of ASPIRE project we are using AllegroCache irctiemt-server configuration.

Purely for performance considerations HTTP requestsived by the application web server
on behalf of either ASPIRE-Tutor or ASPIRE-Author arenmallty processed in separate Lisp
threads. When a client connects to the port on whiclkeghdiServe web server is listening,
AllegroServe passes that connected socket to a free wibrieard which then wakes up and calls
the internal function to process the given conneétiohllegroCache database serving as the
backend datastore for both ASPIRE-Tutor or ASPIRE-Authtows multiple simultaneous
connections to the database. However, from the perspectivilegfdCache, only one thread at a

8 Every production database management system needs tcedchiegoals: atomicity, consistency,
isolation and durability (ACID). Databases that faimeet any of these four goals is not considered teliab
AllegroCache meets all these essential ACID requérds

° http://opensource.franz.com/aserve/aserve-dist/dociabémn

28

time should be using a given database connection (AllegroQdemeial). Using a database
connection includes:

« reading or writing the slot of a persistent object
» locating a persistent object from an index

e commit or rollback

» creating a persistent object

» deleting a persistent object

To be sure threads do not overlap during their use of a coomeuwte create a pool of
database connections and have each thread pick a connectarttaipool for its exclusive use,
returning the connection to the pool when the thread is finiSheelSession Manager ensures that
for each thread processing an HTTP request theres® aldedicated database connection.
AllegroCache is based on optimistic concurrency model
(http://msdn.microsoft.com/library/default.asp?url=/librany/
us/cpguide/html/cpconoptimisticconcurrencyjadffhen the database transaction associated with
each request is complete, the Session Manager commithdhnges to the database.

AllegroCache makes object persistence absolutely tramtpaen an object of a persistent
class is created or modified, the database refld@striansaction globally after the commit
operation. During each transaction the persistent deg¢abhjects can be manipulated just like
transient objects.

5. Conclusions

This report covered the second reporting period of the RERIroject, and presented the work
done on both ASPIRE-Author and ASPIRE-Tutor. In both casess necessary to implement all
the packages and the basic functionality of all modules dier do be able to complete the planned
components. On the authoring side, we have implemented ¢breponents of the authoring
interface; Domain Structure Modeller, Problem/Solutionu8tire Modeller, and the Student
Interface Builder. We also implemented two component&SPIRE-Tutor: Diagnostic Module,
and Student Modeller. We also briefly discussed AllegnaStthe underlying object-oriented
database storing all the necessary data.

In this period, we have also started working on congtigeneration, and this milestone will

be completed in March 2006. The next reporting period inclimtesnew components of the
authoring interface: the Ontology Workspace and the PrdBlention Editor.

29

6. References

1. Aasman, J. AllegroCache: A High-Performance Object lizeta for Large Complex Problems.
1005th International Lisp Conference, Stanford Universitye 19-22, 2005.

2. Forgy, C.L. Rete: a fast algorithm for the many patteamy object pattern match problem'.
Artificial Intelligence 19, pp. 17-37, 1982.

3. Krasner, G.E., Pope, S.T. A cookbook for using the model-dentroller user interface
paradigm in Smalltalk-80. J. Object Oriented Programnii(ig), 26-49, 1998.

4. Martin, B., Mitrovic, A. Domain Modelling: Art or Sciee@ In: U. Hoppe, F. Verdejo & J.
Kay (ed) Proc. 11th Int. Conf. Artificial Intelligenda Education, IOS Press, pp. 183-190,
2003.

5. Mitrovic, A. Experiences in Implementing Constraint-Baddddeling in SQL-Tutor. B.
Goettl, H. Halff, C. Redfield, V. Shute (eds.), Pridcs'98, pp. 414-423, 1998.

6. Mitrovic, A., Martin, B., Mayo, M. Using Evaluation t8hape ITS Design: Results and
Experiences with SQL-Tutor. Int. J. User Modelling ancérdapted Interaction, 12(2-3),
243-279, 2002.

7. Mitrovic, A., Martin, B., Suraweera, P., Zakharov,, KVilik, N., Holland, J. ASPIRE:
Functional Specification and Architectural Design. TdRbport TR-COSC 05/05, University
of Canterbury, 2005.

8. Mitrovic, A., Ohlsson, S. Evaluation of a ConstraintsBd Tutor for a Database Language. Int.
J. Artificial Intelligence in Education, 10(3-4), 238-256, 1999.

9. Ohlsson, S. Constraint-based Student Modelling. In PrfoStudent Modelling: the Key to
Individualized Knowledge-based Instruction, Springer-VerlagliBepp. 167-189, 1994.

10. Steele, G.L. Common Lisp - the Language. Digital Presseditihn, 1990.

30

