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1. Introduction 

This document reports the work done from 1.9.2005 to 30.11.2005 on the ASPIRE project, funded 
by the e-Learning Collaborative Development Fund grant 502. In this project, we will develop a 
Web-enabled authoring system called ASPIRE, for building intelligent learning agents for use in 
e-learning courses. ASPIRE will support the process of developing intelligent educational systems 
by automating the tasks involved, thus making it possible for tertiary teachers with little computer 
background to develop systems for their courses. The resulting educational systems will overcome 
the deficiencies of existing distance learning courses and support deep learning. The proposed 
project will dramatically extend the capability of the tertiary education system in the area of e-
learning.  

In the first report on the ASPIRE project (Mitrovic et al., 2005), we presented the background 
for the project, functional specifications and the overall architecture of ASPIRE. ASPIRE consists 
of ASPIRE-Author, the authoring server, and ASPIRE-Tutor, the tutoring server which delivers 
the resulting intelligent educational systems to students. The first report also discussed the 
functionality of the system in terms of user stories, the knowledge representation language used 
for developing domain models, and finally presented the Session Manager, the first component of 
ASPIRE to be developed.  

This second report focuses on the work performed on implementing components of both 
ASPIRE-Author and ASPIRE-Tutor, and builds upon the information presented in the first report. 
Section 2 discusses the newly developed components of ASPIRE-Author. We start with the 
authoring process, and then in Section 2.2 describe the implementation of the general framework 
necessary for authoring, on which the further development is based. We present the package 
structure and discuss the classes developed. Next, Section 2.3 describes the Domain Structure 
component of the authoring interface, which allows the author to specify some features of the 
chosen instructional domain. Section 2.4. discusses the interface component for specifying the 
structure of problems and solutions. These specifications are stored as a part of the domain model, 
and later used for constraint induction. They are also necessary in order for the author to develop 
the student interface, and Section 2.5 describes the Student Interface Designer.  

Section 3 follows the same structure, starting with the description of the implemented 
framework, classes and packages of ASPIRE-Tutor. Then we describe the Diagnostic Module in 
Section 3.2, and the Student Modeller in Section 3.3.  

In order to provide persistence of student data, it was necessary to design and implement 
logging procedures. ASPIRE is being implemented in Allegro Common Lisp (Steele, 1990), an 
object-oriented language which supports the CLOS standard1. For that reason, we decided to use 
AllegroCache2  (Aasman, 2005), an object-oriented database management system which is a 
component of the ACL IDE3. Section 4 discusses the work performed with AllegroCache. Finally, 
conclusions are presented in Section 5.  

2. ASPIRE-Author 

ASPIRE-Author supports authors in developing new intelligent educational systems. The main 
task in authoring is the development of the domain model. Manual development of a domain 
model is a time-consuming and difficult task, as domain models are typically large, and require 
careful explicit representation of the domain knowledge. For that reason, ASPIRE-Author supports 
the author by substituting the programming task with a much simpler task of providing examples 
of problems and solutions, from which the system induces the necessary knowledge elements.  

                                                
1 http://www.lisp.org/table/references.htm 
2 http://www.franz.com/products/allegrocache/index.lhtml 
3 http://www.franz.com/ 
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This section describes the work done on ASPIRE-Author in the second reporting period. We 
start by describing the authoring process in general, and then describe the implementation of the 
framework for ASPIRE-Author. This work was necessary to provide an environment for further 
development of the components planned for this reporting period. We then present the components 
allowing the author to specify domain characteristics, problem and solution structures, followed by 
a description of the Student Interface Builder.  

2.1. General Authoring Process 

As described in the previous report (Mitrovic et al, 2005), authoring in ASPIRE-Author is a semi-
automated process carried out with the assistance of an author (i.e. domain expert). The authoring 
process presented previously was extended to account for the addition of several instructional 
domains by the same author. The modified process includes an additional initial step where the 
author adds a new domain and specifies its general characteristics, such as its name and 
description, as well as any necessary subdomains. This step serves as the starting point for 
developing the domain model.  

Once the instructional domain is specified, the author develops its ontology, which is a 
hierarchy of the domain concepts ordered by the ‘is-a’ relationship (The ‘is-a’ relationship is the 
association between a subclass and its parent; super-class). Each domain concept may additionally 
be associated with other domain concepts by various author-specified relationships. The developed 
ontology will later be used for constraint generation. After specifying the ontology, the author 
decides on the problem and solution structures, and provides typical problems with their solutions. 
ASPIRE-Author then analyses the ontology and the problems to generate syntax and semantic 
constraints for the domain. Finally, the author validates the generated constraints by analysing the 
generated English descriptions of the constraints.  

Consequently, the process of generating a domain model for a domain using ASPIRE-Author 
involves seven steps:  

1. Modelling the domain structure; the author specifies the structure of the domain. This 
includes specifying the name of the chosen instructional domain, a short description, and 
whether the domain is procedural or not. For procedural domains, the author specifies the 
steps to be performed by the student. The author also specifies the subdomains (if any 
exist).  

2. Composing an ontology of the domain; during the ontology composition stage, the author 
models the domain as a hierarchy of concepts using the Ontology Workspace.  

3. Modelling the problem and solution structures; the author specifies the structure of 
problems and solutions to problems in the chosen instructional domain.  

4. Designing the student interface; during this step, the author specifies the interface for 
communicating with students.  

5. Adding problems and solutions; the author is requested to enter examples of problems and 
solutions during this stage. The Problem/Solution Editor will be developed according to 
the specified structures of problems and solutions and the interface characteristics 
specified during the previous step.  

6. Generating constraints (syntax and semantic); this step involves the generation of both 
syntax and semantic constraints. The Syntax Constraints Generator analyses the domain 
ontology and induces syntax constraints directly from it, without any further assistance of 
the author. The Semantic Constraints Generator analyses both the ontology and the 
problems and solutions provided by the author to generate semantic constraints.  

7. Validating the generated constraints; the constraint validation stage involves automatic 
validation of the constraints base by the Constraint Validation Module and manual 
validation by the domain expert. The domain expert would inspect a system generated 
high level description of each constraint and label invalid constraints. The author has to 
provide example problems to the system in order to illustrate the error.  
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The reporting period covered by this document included work on steps 1, 3 and 4. Section 2.2 
describes the implementation of the general framework which was necessary in order to work on 
ASPIRE-Author. Then, the following sections describe the components supporting these three 
authoring steps.  

2.2. Implementation of the Framework 

Figure 1 illustrates the architecture of ASPIRE-Author, which is a slightly updated version of the 
architecture developed in the first reporting period. As shown in the diagram, the Web Interface 
module (i.e. the authoring interface) consists of six components to cater for each knowledge 
authoring step outlined in Section 2.1 (note that generation of constraints is handled by other 
components of the system). The three components (Domain Structure Modeller, Problem/Solution 
Structure Modeller and the Student Interface Designer) relating to authoring steps 1, 3 and 4 have 
been completed during this reporting period.  

The Authoring Controller module is the driving engine of the ASPIRE-Author. It acts as a 
mediator between the interface layer and the data layer. The controller receives requests from the 
interface layer, which are passed on to the relevant module. The controller is also responsible for 
accessing objects from the database. The controller functions necessary for the implemented 
interface modules have been completed.  

The Domain Model Manager consists of all the domain model classes for representing domain 
models. In this period, we have completed the domain model classes necessary for representing 
domain details, problem/solution structures and ontologies. As the Ontology Workspace is planned 
to be developed in the next period, currently we have only developed the classes necessary to store 
the ontology. This was necessary as the problem and solution structure depend on concepts of the 
ontology.  Web Interface Ontology Workspace Constraint Validation/ Authoring InterfaceAuthoring Controller Domain Model ManagerDomain model Constraint GeneratorSyntax SemanticConstraint validator

Problem/ Solution EditorStudent Interface DesignerProblem Solution Structure ModellerDomain Structure Modeller
 

Figure 1. The architecture of ASPIRE-Author 
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2.2.1. Packages structure 

The package structure of ASPIRE-Author (shown in Figure 2) was implemented to reflect its 
architecture. Each module is implemented as a separate package. The framework of the system had 
to be developed in order for the individual modules to be able to communicate with each other. 
The packages such as the constraint-generator are currently empty and will be completed in future 
milestones.  

The web interface is handled by the web package. The base web package is responsible for 
initialising and starting up the web server. It consists of two sub packages: web.access  and 
web.interface . web.access  contains all web access functions for handing web requests 
from the user. The web.interface  package consists of all clp functions, which produce the 
dynamic content of HTML pages (http://opensource.franz.com/aserve/aserve-
dist/webactions/doc/webactions.html). Currently the base web package is complete. The functions 
necessary for implementing the three interface components scheduled for this reporting period 
have been implemented.  

The controller  package acts as a middle layer between the data layer and the interface 
layer. It provides the only access point to the web.access  package. The controller package is 
responsible for starting up ASPIRE-Author server, communicating with the db-manager  for 

aspire-author .web
aspire-author .db-manager

aspire-author .constraint-validatoraspire-author .author-controller aspire-author .web.interfaceaspire-author .web.access
aspire-author .constraint-generator.syntax aspire-author .constraint-generator.semanticaspire-author .domain-model aspire-author .xml-tags

 

Figure 2. The package structure of ASPIRE-Author  
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accessing the required components from the database and issuing commands for other packages. 
The controller package also communicates with the domain model for modifying and retrieving 
domain model components. Currently the controller package contains the functions essential for 
the implemented interface components to communicate with the domain model package.  

The data classes for storing the domain model are contained in the domain-model  package 
(see Section 2.2.2). The implementation of classes required for representing domain details and 
problem solution structure is complete. They are also capable of producing XML representations 
of themselves and of updating themselves according to an XML representation of a domain model.  

The xml-tags  package consists of all constants, especially tags used for producing XML 
documents. The xml-tags package is used by the domain-model, and the web package for 
assembling and decrypting XML representations of the domain model. The controller also uses the 
xml-tags package for accessing relevant constants.  

The ASPIRE-Author project is implemented according to the directory structure outlined in 
Figure 3. The project consists of seven top level directories for grouping various files. The db 
directory holds the physical database file. The compiled executable version of the system would 
reside in the dist  directory. All user and development documentation resides within the doc  
directory. The lib  directory contains any extra libraries that the system would use. Any other 
resources reside within the resources  directory. The directories under src , which hold Lisp 
source code files, reflect the system’s package structure. Each source file is stored under the 
appropriate directory. All HTML pages including their resources such as style sheets, images and 
scripts are stored under the web directory.  

 

\---aspire-author 
    +---db 
    |   \---test-db 
    +---dist 
    +---doc 
    |   +---dev 
    |   \---usr 
    +---lib 
    +---resources 
    +---src 
    |   +---constraint-generator 
    |   |   +---semantic 
    |   |   \---syntax 
    |   +---constraint-validator 
    |   +---controller 
    |   +---db-manager 
    |   +---domain-model 
    |   +---web 
    |   |   +---access 
    |   |   \---interface 
    |   \---xml-tags 
    \---web 
        +---css 
        +---img 
        \---script     

Figure 3. The directory structure of ASPIRE-Author 
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2.2.2. Domain Model Classes 

In order to be able to work on the milestones for this period, we needed to define the classes 
belonging to the domain model. Figure 4 shows the UML class diagram for the domain model. For 
simplicity, the class diagram only focuses on the implemented classes that are directly related to 
achieving the milestones in this reporting period. Please note that ASPIRE-Author and ASPIRE-
Tutor share domain models, and therefore this work is relevant for both sides of ASPIRE.  

 
Figure 4. The domain model classes4 

 

As discussed in the previous report (Mitrovic et al, 2005), a domain model consists of all 
knowledge necessary to analyse students’ solutions to problems in a particular instructional 
domain. Domain models are maintained by the Domain Manager. A domain has a unique id and a 
unique name. The author may also enter a description of the domain; this description is not 
processed by ASPIRE in any way, and will only be used by humans to familiarise themselves with 
instructional domains. An instructional domain either contains procedural or declarative (i.e. non-
procedural) tasks, as specified by the author (see Section 2.3), and the type of tasks is stored as the 
is-procedural  attribute in the corresponding class. For procedural tasks, the author specifies 
each step in the task. This information is maintained in the problem-solving-step  class. For 
                                                
4 The links between the structures and concrete objects in Figure 4 are dependency links -- a dotted line with 
an open arrowhead that shows one entity (object) depends on the behaviour of another entity (object). 
Dependencies are typically used to represent that one class instantiates another or that it uses the other class 
as an input parameter. 
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each problem-solving step, the author specifies its id (unique within the task), name, description, 
and the page this step will be served on. Further explanation of procedural task specification is 
available in Section 2.5.  

Each domain has a domain ontology (produced by the author), which is identified by its name, 
and consists of a number of domain concepts. A domain concept has a unique id, name, 
description, and an attribute which keeps track of whether it is abstract. Domain concepts are 
organised into a hierarchy via the ‘is-a’ relationship; the concepts appearing as leaves in the 
hierarchy are elements of student solutions, while the concepts on higher levels are abstract 
concepts, and are used to describe the structure of the domain. Currently, we have only 
implemented the ontology  and concept  classes as they were relevant for the solution structures. 
The next reporting period involves the implementation of the ontology editor, which would require 
the remainder of the classes for representing an ontology such as relationship  and property  
to be implemented (not shown in the class diagram).  

Each domain may have a number of subdomains, where a subdomain covers a particular 
problem set. For example, in the case of SQL-Tutor, the database query language tutor (Mitrovic, 
1998; Mitrovic et al., 2002), a subdomain consists of a set of problems using a particular database, 
such as a MOVIES database. All problems in a subdomain share the same database, and the author 
can specify the scaffolding information only once. The scaffolding information can be any 
additional material that the author feels is necessary to aid the students in solving the presented 
problems, in the SQL-Tutor this is the names and fields of the tables in the database (i.e. the 
database schema). The constraints describing the SQL concepts would belong to the domain, not 
to the subdomain, as they do not depend on a particular database. In other domains, however, there 
might be constraints that are domain specific. For example, in the case of LBITS, an intelligent 
educational system that teaches English (Martin & Mitrovic, 2003), the various types of problems 
(such as turning verbs into nouns, or specifying the plural version of a noun given the singular 
form) will also have specific constraints. In that case, a subdomain will contain a number of 
problems and also constraints specific to that subdomain. Therefore, each subdomain contains the 
specification of the problem structure and solution structure. In the case when all the problems are 
of the same type, there will be a single subdomain representing them.  

The problem structure consists of a list of problem-component-structure  objects, which 
keep information about the problem’s components, such as its name and type. A problem 
component can be either textual (such as the text of the problem) or graphical (e.g. a diagram 
accompanying the problem). If the component is textual, then the author would type in the 
problem statement while adding problems, whereas if it is graphical, the author would have to 
upload an image.  

Each subdomain has its own solution structure. The solution-structure  objects keep 
track of the structure of a complete solution for a particular step. Sub-domains of declarative 
domains have only one solution structure, whereas procedural domains would have a solution 
structure associated with each problem-solving step. A solution-structure  consists of a list 
of solution-component-structure  objects, which keep track of the structure of a part of the 
complete solution. Each solution-component-structure  object has an id, label, type and 
length and width. It also knows about the type of elements it can hold (i.e. concept from ontology). 
The types and dimensions of widgets that form the student problem solving interface depends on 
properties of the solution-component-structure  object, as discussed in Section 2.5.  

Problems and solutions for a subdomain are based on these problem/solution structures. The 
number of components for a problem, the number of solutions for each component and the 
ordering in which they appear are governed by these specifications.  
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Figure 5. The Domain Structure Modeller 

2.3. Modelling the domain structure 

The Domain Structure component of the authoring interface, illustrated in Figure 5, allows the 
author to specify the general characteristics of the chosen instructional domain. The author enters 
the domain’s name and a short description of the domain in the textboxes provided. The author 
also chooses whether the domain contains non-procedural (i.e. declarative) or procedural tasks. By 
default, a domain is non-procedural, as is the case in Figure 5.  

Domains can be divided into subdomains (referred to as problem sets) to group similar 
problems. Each domain must have at least a single problem set, described by its name, description 
and any scaffolding information. Problem sets can be added and removed by clicking the + and – 
buttons. Figure 5 illustrates the domain structure for a tutoring system that teaches SQL, the 
popular database query language. The final tutoring system, named SQL-Tutor, would present 
problems to students to be solved in a non-procedural manner. SQL-Tutor would consist of two 
sets of problems: movies  and company .  

Once the author is satisfied with the modelled domain structure, it can be saved by pressing on 
the Save structure  button. A successful save action presents the author with the 
Ontology Editor  interface for modelling an ontology of the domain, which is the next step in 
the authoring process. The author may also return to the Domain structure  page at any time to 
make any necessary changes or to add new problem sets.  

If the author specifies that the domain is procedural, the authoring interface allows the author 
to specify the problem-solving steps. In the case illustrated in Figure 6, the author is developing a 
physics tutor, and has specified four problem-solving steps. The four steps are: choosing the 
appropriate equation, outlining the known variables, composing the chosen equation with the 
known variables substituted and finally solving the equation for the unknown variable. The author 
needs to decide whether the solutions for all steps are composed in one web page or whether it is 
spread out to a set of web pages. In the case of APT, each problem solving step would be 
presented to the student on a separate page, where the student has to correctly complete the current 
step they are working on, in order to move on to the next step. Once the student has correctly 
completed a step, the interface for composing the solution for the next step is presented along with 
the solutions for all previously completed steps.  
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The author may add as many steps as required by clicking the + button. Clicking the + button 
results in a new blank row, which can be populated to add one new step. For each step, the author 
specifies its name and description in the textboxes provided, and also chooses whether to display 
the step’s solution components on the same page as the preceding step or on a new page. The 
author may also remove any unnecessary steps by clicking on the - button. Each click on the - 
button removes the last step in the procedural steps list.  

2.4. Specifying Problem/Solution Structure 

After specifying the domain ontology, the author needs to specify the structure of problems and 
solutions in the chosen instructional domain during the third step of the domain authoring process. 
We have completed the interface for modelling the structure of problems and solutions, which 
enables authors to specify components of problems and model the structure of solutions expected 
from students. The structure of solutions depends on whether the domain is procedural or 
declarative. A declarative task requires a single solution that may consist of a number of 
components. On the other hand, a procedural task requires a solution for each step of the problem 
solving procedure. As the result, the structure of solutions for each step has to be modelled.  

2.4.1. Declarative domains 

Figure 7 illustrates the interface for modelling the structure of problems and solutions for a 
declarative domain. The interface is divided into two separate sections. The top section is for the 
author to model the structure for problems and the bottom is for modelling the structure of 
solutions.  

In some cases, all problems in a subdomain may have the same general description about what 
needs to be done. For example, in the language tutor, there is a set of problems dealing with 
turning verbs into nouns. All problems of this type would have the same task requirement entered 
just once by the author: “Turn the following verb into a noun”, and then each verb would be 
entered separately as the problem statement. The author needs to specify whether there is such a 
task requirement for the current subdomain, using the tick box associated with the first element 
(called Task requirement ) of the problem structure interface. The author does not need to do 

 

Figure 6. Specifying steps of a procedural task 
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anything about the second element (called Problem statement ), as it is assumed that every 
problem will have a specific problem statement. This element is included in the interface to make 
it obvious that a problem statement will always be a part of the problem specification.  

A problem may also contain a collection of sub-components that add detail to the problem 
statement. The composition of these problem components can be modelled by populating the 
problem components table, where problem components can be added by clicking on the + button 
and removed using the – button. Clicking the + button results in a new row, which can be 
populated to add a new problem component. Problem components are described by their label and 
type. The label is displayed in the student problem solving interface next to the problem 
component. Each component can be either textual or graphical. For example, Figure 7 illustrates 
the problem structure for SQL-Tutor. Each problem in SQL-Tutor contains a description of the 
task, and no additional components.  

The solution structure for a declarative task consists of a list of solution components. The 
components can be added and removed in a manner similar to the addition and removal of problem 
components, by clicking the + and – buttons. Each solution component has a label, the type of 
elements it may hold (i.e. the concept from the domain ontology), a type and the number of 
elements it may hold. The type determines the choice of input widget that would be ultimately 
displayed in the student problem solving interface. Solution components can be either ‘text’, 
‘boolean’ or ‘choice’, which results in a textbox, check box or drop-down list respectively. In the 
case of specifying ‘text’ as the type for the solution component, the author also has to specify the 
dimensions of the resulting text box, labelled as length and rows.  

The solution structure specified for SQL-Tutor (Figure 7) reflects the six clauses that exist in 
SQL SELECT statements: Select, From, Where, Group by, Having and Order by. The solution 
components can hold textual elements of their respective types. All but one text box to be 
displayed in the solution workspace of the student interface are 60 columns wide and 1 row tall. 
The where  clause is 40 columns wide and 3 rows tall. 

 

Figure 7. The interface for specifying problem/solution structure 
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2.4.2. Procedural domains 

The interface for modelling the structure of problems and solutions for procedural tasks (shown 
Figure 8) is similar to the interface for declarative tasks described in the previous section. The 
main difference is the presentation of the solution structure. As each problem solving step requires 
a solution which may contain several parts, the composition of solutions for each step has to be 
modelled separately. Consequently, the solution structure for procedural domains consists of a 
collection of solution component lists, one for each problem solving step.  

The structure for problems in APT (Physics tutor), illustrated in Figure 8, consists of only the 
default problem statement. As problems of APT consist of four steps, the structure of solutions for 
each step has to be modelled using the interface. The solution for the first step 
(choose an appropriate equation ) consists of only one component which may hold an 
equation. Solutions for the second step, which involves identifying the known variable, may 
contain up to four components. In other words, students can identify up to four variables 
depending on the given scenario. The final two steps also contain a single component, which 
require an equation as their solutions.  

2.5. Student Interface Designer 

In step 3 of the authoring process, the author specifies the student interface. Once developed, this 
interface becomes the communication medium that students will use when interacting with the 
developed intelligent educational system. Therefore, when the author finishes designing the 
interface, the specification becomes a part of the domain model, and will be transferred to 
ASPIRE-Tutor to be served to students.  

 

Figure 8. Specifying problem/solution structure for a procedural task 
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We have simplified the interface building task by providing an interface layout, dynamically 
calculated from the previously specified problem/solution structures. This interface layout serves 
as the initial phase in the process (illustrated in Figures 9 and 10). The assumption here is that 
every interface will consist of four basic areas:  

• the navigation area at the very top of the page, providing the buttons that students interact 
with;  

• the problem area at the top of the page, providing the problem statement and any 
additional problem components the author specifies;  

• the solution area at the centre of the page, providing the workspace for students to enter 
their solutions; and  

• the feedback area at the right side of the page, which will contain the system’s feedback to 
the student, and buttons for the student to request feedback.  

The navigation area’s options include:  

• the problem selection drop-down menu where students can select the next problem they 
would like to work on;  

• the Next Problem  button, which requires the educational system to select the best 
problem for the student to solve, based on the student model;  

• the History  button, which shows the history of interactions in the current session;  
• the Student Model  button, which provides an assessment of the student’s proficiency 

level;  
• the Tutorial  button, which provides a tutorial on how to use the system;  
• the Help  button, which gives quick pointers on how to use the system and/or go about 

solving the problems;  
• the Logout  button, which allows the student to exit the tutor at any time.  

The starting point for constructing the student interface is the previous specification of the 
problem and solution structures. The ASPIRE-Author examines the specified components and 
displays them in accordance to their characteristics in the problem/solution areas. The navigation 
and feedback areas, however, are displayed to the author without any additional calculations. The 
author is then able to check the interface layout. The current implementation of the Student 
Interface Builder does not allow the author to move the various components of solutions/problems, 
but we plan to implement that kind of support in the second year of the project.  

If there are any necessary changes to the structures, the author may go back to the problem and 
solution structures page to make those changes, which will be reflected in the interface as soon as 
they are saved. Once the author is satisfied with the problem/solution structures and their interface 
representation, the author is able to move to the next authoring step of adding problems and their 
solutions (which are covered in milestone 9). The next two sections provide examples of this 
authoring step for both types of domain tasks; declarative and procedural.  

2.5.1. Declarative domains 

Figure 9 shows a screenshot of the Student Interface Builder for our SQL-Tutor example. The 
Student Interface Builder examines the problem and solution structures and presents the 
corresponding interface to the author. In this case, the problem structure does not contain any 
additional components, so only problem statement will be displayed. The six solution components 
are displayed one after the other in the solution area. As all the solution components are of type 
“text”, a textbox  is drawn beside each component’s name according to its specified size; length 
and rows. 
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Figure 10. Student interface for a procedural task 

 

2.5.2. Procedural domains 

Figure 10 shows the screenshot of a student interface produced by the Student Interface Builder 
for the physics tutor, which teaches a procedural task. Similar to declarative tasks, the interface 
areas populated with the appropriate structures are presented to the author. The main difference 
here is the presentation of each problem solving step. As specified by the author previously, each 
step may be presented on a separate page. Therefore, although the components of the steps are 
examined and presented in the same manner as for declarative domains, there are additional checks 
for presenting them on their appropriate pages. Figure 10 shows what the student interface will 
look like for the first step of the physics problem.  

 

Figure 9. Student interface for the SQL domain 
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As discussed above, all steps share the same problem structure, but differ in their solution 
structure. The solution structure of a particular step is only presented on the page corresponding to 
that step. Given that these problem-solving steps may depend on each other, the solutions of 
previous steps are displayed in the problem area as part of the current step’s problem structure.  

The author can navigate through the pages of a procedural task by clicking on the 
Next Page >>  or << Previous Page  buttons, or by choosing the page number from the pages 
drop down menu.  

3. ASPIRE-Tutor 

ASPIRE-Tutor is responsible for the delivery of intelligent educational systems developed in 
ASPIRE-Author. Figure 11 illustrates the general architecture of ASPIRE-Tutor, which was 
discussed in the previous report (Mitrovic et al., 2005).  Get State

Evaluate solution Log event/requestCreate/validate userUpdate model
 

Figure 11. The architecture of ASPIRE-Tutor  
 

3.1. Implementation of the Framework 

The plan for the current reporting period includes the Diagnostic Module and the Student Modeller. 
However, in order to be able to implement these two components, we also had to implement all the 
packages and the basic functionality of all the modules.  
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3.1.1. Packages Structure 

The package structure of ASPIRE-Tutor (shown in Figure 12) was implemented to reflect its 
architecture. To minimise coupling5 and increase cohesion6 of the system modules, each module is 
implemented as a separate package centred around the functionality provided by the module. The 
session-manager  package represents the component of the system which manages the system 
data and delegates operations on the data to other modules. Each module encapsulates the 
operations on data and hides the implementation behind it via a clearly defined public interface 
abstracted from implementation details. This approach, naturally supported by the Object-Oriented 
programming paradigm, minimises further development and maintenance efforts. Even before the 
system is complete, it is possible to run the system during development and testing stages.  

The session-manager  runs the web and database server controlling the access to data. The 
Session Manager module translates external requests and operations coming from the client into a 
unified language of requests understood by the rest of the system. In this way, the Session 
Manager translates all commands arriving from users (via XML-RPC or Web clients) into 
operations that are further handled by the other packages. Session Manager dispatches the 
operations to the modules responsible for handling specific requests. For example, login and 
logout requests are handled by the User Manager, implemented in the user  package, and students’ 
solutions are processed by the Pedagogical Module, implemented in the pedagogy  package. The 
session-manager  package decouples the packages dependent on it so that they do not 
communicate directly with each other.  

The Pedagogical Module depends on the Diagnostic Module, Domain Module and Student 
Modeller implemented in the corresponding packages. The pedagogy  package, similarly to the 
session-manager  package, acts as a client of the packages it depends on. In this way 
diagnosis , student-model  and domain  packages are independent of each other, with the 
pedagogy  package being responsible for making high-level decisions. The finer-grain details of 
these decisions are provided by the functionality encapsulated in the lower-level packages. This 
separation of module functionality and interaction is encouraged by the principle of 
separation of concerns . Each module and the corresponding package encapsulate the 
minimum functionality necessary for carrying out its tasks. For example, the student-model  
package does not need to be responsible for finding, loading and saving individual student model 
objects corresponding to certain users. Instead it simply manipulates student model objects passed 
to it by routines called from the pedagogy  package. These routines, however, are contained in the 
student-model  package, but it is up to the Pedagogical Module to decide when they should be 
called upon. 

                                                
5 Coupling or dependency is the degree to which each module relies on any other module. Low coupling in 
programming means that one module does not have to be concerned with the internal implementation of 
another module, and interacts with modules via a stable interface. Therefore, with low coupling, a change in 
one module will not require a change in the implementation of another module. Low coupling is a desirable 
sign of a well structured computer system. 
6 Cohesion is a measure of how well the lines of the source code within a module work together to provide a 
specific piece of functionality. Modules with high cohesion tend to be preferable as high cohesion is 
associated with several desirable traits of software including robustness, reliability, and reusability. 
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Figure 12. The package structure of ASPIRE-Tutor  
 

The directory and source code layout of ASPIRE-Tutor is shown in Figure 13. The project 
consists of seven top level directories for grouping various files. The db directory holds the 
physical database file. The compiled executable version of the system would reside in the dist  
directory. All user and development documentation resides within the doc  directory. The lib  
directory contains any extra libraries that the system would use. Any other resources reside within 
the resources  directory. The directories under src , which hold Lisp source code files, reflect the 
system’s package structure. Each source file is stored under the appropriate directory. All HTML 
pages including their resources such as style sheets, images and scripts are stored under the web 
directory.  

\---aspire-tutor 
    +---db 
    |   +---test-db 
    |   \---tmp-db 
    +---dist 
    +---doc 
    |   +---dev 
    |   \---usr 
    +---lib 
    +---resources 
    +---src 
    |   +---diagnosis 
    |   +---domain 
    |   +---front-end 
    |   |   +---admin-gui 
    |   |   |   \---icons 
    |   |   +---web 
    |   |   |   +---access 
    |   |   |   \---interface 
    |   |   \---xml-rpc 
    |   |       \---access 
    |   +---pedagogy 
    |   +---session-manager 
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    |   +---student-model 
    |   +---user 
    |   \---util 
    \---web 
        +---base 
        |   +---css 
        |   +---img 
        |   \---scripts 
        \---domains 

 

Figure 13. The directory structure of ASPIRE-Tutor  

3.1.2. ASPIRE-Tutor classes 

The UML diagram in Figure 14 shows the classes developed for ASPIRE-Tutor. Please note that 
the domain model classes are shared between the tutoring and authoring side, and have already 
been discussed in Section 2.2.2. The Diagnostic Module, the Student Modeller, and the classes 
specific to these components are described in Sections 3.2 and 3.3 respectively.  

Information about users is stored in the User  class, and also the appropriate subclasses 
(depending on the type of users). The affiliation of users would be defined by the administrators, 
when the user account is created. ASPIRE-Tutor recognises three types of users: students, teachers 
and administrators. The teacher defines the specific features of an intelligent educational system 
he/she would like to use for a group of students, and these details will be stored as an instance of 
the group  class.  

Information about each Web session will be maintained using an object of the session  class. 
Different types of sessions correspond to the three types of users: students, teachers and 
administrators. The student-session  class is of special importance for this report, as we have 
been working on the functionality related to students. At any one time, the student’s session will 
be related to an instance of the pedagogical-state  class, representing information about the 
current instructional domain the student is working in, the id of the selected problem, and the 
attempt number on the current problem.  

A student will have an instance of the student-model  class for each intelligent educational 
system he/she uses. The student-model  class stores the long-term model of the student’s 
knowledge. This class contains the student’s proficiency for the domain as a whole. For each 
sudomain of the instructional domain the student has used, there would be an instance of the 
subdomain-student-model  class, storing details of the student’s behaviour in the subdomain.  

If there is a defined pre/post test for the chosen instructional domain/system, the result of the 
test would be stored as an object of the test-result  class. Instances of test-result  class 
store pre/post-test results, including the student’s answer to each question, and the total score. In 
instructional domains for which pre/post-tests have been specified, the student will be given one of 
the tests (selected randomly) as a pre-test. The student’s result on the pre-test would serve as an 
initial indication of the student’s knowledge of the domain (i.e. pre-existing background 
knowledge). The pre-test would be given the first time the student logs on to the educational 
system. When the teacher has specified that the students should sit a post-test, a different test will 
be given to the student as a post-test. The result of the post-test serves as an indication of the 
student’s knowledge after interacting with the tutoring system. Pre/post-test dates are stored in the 
group  class. There should be an instance of pedagogical-settings  class associated with each 
group  instance.  

For each solution attempt the student submits, there would be an instance of the solution-

attempt  class, storing information about the problem the student attempted, the timestamp, the 
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raw solution received, the attempt number, the outcome of the diagnosis (the lists of 
violated/satisfied constraints and appropriate binding lists), as well as the feedback the student 
received.  

The student model also contains constraint histories, implemented via the constraint-use-
case  class. An object of this class exists for every constraint relevant to a student’s submission, 
and stores the timestamp (i.e. the time and date), information about whether the constraint was 
used correctly or not (the satisfaction  attribute), information about the domain the constraint 
belongs to, and the problem number within that domain.  

 

Figure 14. The class diagram for ASPIRE-Tutor  
 

3.1.3. Request Protocol 

This section describes in detail the interaction between external client interfaces and the core 
application server. User actions are delivered to the Session Manager module in the form of HTTP 
request or XML-RPC commands through the application web-server listening for incoming 
network connections. In line with the Model-View-Architecture (Krasner & Pope, 1998), the 
interface layer is decoupled from the core application. In ASPIRE-Tutor, the communication 
between the interface layer and the Session Manager is carried out through an internal request 
protocol. The basic principle of this protocol is that every user action, no matter what type of 
interface it is coming from, is delivered to the Session Manager in a specific request type form. 
For example, a login attempt initiated in a web browser as an HTTP POST request is handed over 
to the Manager as an instance of the login-request  class. Although the class diagram in Figure 
14 shows only three types of requests, there are request  classes corresponding to other types of 
user actions supported by the system. In this report we only concentrate on the three types of 
request which are handled by the components we have focused on in the current period.  
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The Session Manager is aware of the request specialisation, and thus each request is handled in 
a unique appropriate way determined by its request type. The implementation of this request 
handling protocol is based on generic functions and specialised methods that are the building 
blocks of the Common Lisp Object System.  

All requests handled by the Session Manager can be divided into two broad categories: 
persistent and transient requests. Persistent requests are those that carry certain value of the 
pedagogical or administrative nature; these requests are automatically saved in the database as the 
system activity log. Login, logout and solution submission requests are examples of persistent 
requests. Persistent requests and the system’s responses to them are used internally by the system 
for providing optimal learning environment and for external analysis and monitoring of learning 
progress. Transient requests, on the other hand, are small atomic transactions that do not need to 
be saved in the database. For example, requests cantered around retrieval of information required 
for rendering of parts of the interface are represented as transient requests. These requests are 
processed, but are not logged in the system database.  

3.2. Diagnostic Module 

The Diagnostic Module undertakes the evaluation of solutions submitted by students, and also 
returns the results of these evaluations. Initially, the Pedagogical Module passes the information 
about the student’s solution to the Diagnostic Module, including the domain name, problem id, 
and the components of the solution. The Diagnostic Module then creates an instance of the 
Diagnosis class to represent the solution, and starts evaluating it. Once the evaluation is complete, 
the Diagnosis object will contain the result of the evaluation (the satisfied and violated constraints, 
and the variable bindings), which are then passed back to the Pedagogical Module.  

A student’s solution is processed in two phases. Firstly, the relevance conditions of all domain 
constraints are matched to the student solution and the ideal solution for the same problem. In the 
second phase, the satisfaction condition of the relevant constraints are also matched. This process 
results in the lists of relevant and satisfied/violated constraints, as discussed in more detail in 
Section 3.2.2. The Student Modeller uses this information to update the long-term student model 
(as discussed in Section 3.3), and the Pedagogical Module uses this information in order to select 
appropriate feedback for the student.  

3.2.1. Diagnostic Module interface 

There is only one operation exposed to the Pedagogical Module:  

process-solution (domain-id problem solution-compon ents)  

This operation passes the information about the student’s solution and requires that it be processed. 
The Diagnostic Module creates an instance of the Diagnosis class, and evaluates the solution 
against the ideal solution and the domain constraints. Once completed, the Diagnosis  object 
will contain the lists of satisfied and violated constraints that have resulted from the evaluation, 
and possibly other relevant data (e.g. for visually identifying where in a solution the errors 
occurred).  

3.2.2. Matching constraints 

Constraint-based intelligent tutoring systems represent domain knowledge in terms of constraints, 
which denote the basic domain principles. Constraint-Based Modelling (CBM) (Ohlsson, 1994; 
Mitrovic & Ohlsson, 1999) is a student modelling approach that is not interested in the exact 
sequence of states in the problem space the student has traversed, but in what state he/she is in 
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currently. As long as the student never reaches a state that is known to be wrong, they are free to 
perform whatever actions they please.  

CBM starts from the observation that all correct solutions in a particular instructional domain 
share one property: no correct solution violates any domain principles. Therefore, domain 
knowledge may be represented in terms of state descriptions of the form:  

If <relevance condition> is true, then <satisfaction condition> had better also be true, 
otherwise something has gone wrong.  

As discussed in the previous report (Mitrovic et al., 2005), constraints test the student’s 
solution for syntax errors and compare it against the system’s ideal solution to find semantic errors. 
The knowledge base enables the tutor to identify student solutions that are identical to the system’s 
ideal solution. More importantly, this knowledge also enables the system to identify valid 
alternative solutions, i.e. solutions that are correct but not identical to the system’s solution. Each 
constraint specifies a fundamental property of a domain that must be satisfied by all solutions. 
Constraints are problem-independent and modular, and therefore easy to evaluate. They are written 
in Lisp, and can contain built-in functions as well as domain-specific functions.  

Each constraint has a relevance condition, and a satisfaction condition. These conditions may 
be simple tests, or multiple tests connected with AND, OR or NOT. A test may be any Lisp function 
or the call to the match  function, which implements pattern matching. Pattern matching is a well-
known Artificial Intelligence technique in which a pattern (i.e., an expression containing variables) 
is compared to a constant expression (with no variables) to test whether they are similar. Patterns 
contain variables, that can represent any kind of expressions, and constants, which must appear in 
the constant expression as they are given in the pattern. Pattern matching finds substitutions for 
variables in the pattern that will make the pattern identical to the constant expression. In ASPIRE, 
patterns are specified by using the following symbols:  

• ?var  - A simple variable, which matches any one expression  
• ?*var  - Matches zero or more expressions  
• ?+var  - Matches one or more expressions  
• ??var  - Matches zero or one expression  
• (?if exp)  - Tests if exp  is true  
• (?is var predicate)  - Tests the specified predicate on one expression  
• (?or pat ...)  - Matches any pattern on one expression  
• (?and pat ...)  - Matches every pattern on one expression  
• (?not pat ...)  - Succeeds if pattern(s) do not match  

Constraints differ significantly in their complexity. An example of a very simple constraint 
from SQL-Tutor is:  

  
(p 2   
  "The SELECT clause is a mandatory one. Specify th e     
attributes/expressions to retrieve from the databas e."    
   t                                         
  (not (null (select-clause ss)))       
  "SELECT") 

The relevance pattern of this constraint is t , which is always satisfied; therefore, this 
constraint is relevant to all the student’s solutions. The satisfaction pattern specifies that the 
SELECT clause of the student’s solution (represented by the variable ss ) cannot be empty.  
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However, constraints can be much more complex. In order to test for specific features of 
solutions, patterns need to be specified for the match  function. Other conditions may be any LISP 
functions, and they can use the binding lists obtained from the matching process to perform 
additional tests on the student’s solution. Constraint 186, given below, contains complex 
conditions. Its relevance condition contains a conjunction of seven tests. For the constraint to be 
relevant to a submitted solution, all seven tests need to be met. The initial two tests make sure that 
the where  component of the student solution and the ideal solution are not empty, respectively. If 
that is the case, the third test binds the variable ?n to the names the student used in the WHERE 
component (note that this might result in multiple bindings for variable ?n, if there is more than 
one name in WHERE). The fourth test keeps only those values of ?n which are valid attributes in 
the current database (ensured by using the attribute-p predicate), and then the fifth tests is met only 
by numerical attributes. The first match requires a specific pattern to appear in the student’s 
solution, where the value of the attribute is greater than a specific numeric constant (?c1), while 
the second match function contains a similar pattern to be found in the ideal solution, including the 
same attribute which is greater than or equal to another constant (?c2). If that is the case, the 
satisfaction condition ensures that the constant in the student’s solution is 1 less than the constant 
in the ideal solution.  

(p 186   
  "Check the numerical constant you are using in th e WHERE clause!"   
 (and (not (null (where ss)))   
      (not (null (where is)))   
      (bind-all ?n (names (where ss)) bindings) 
      (attribute-in-db (find-schema (current-databa se *student*)) ?n ss) 
      (equalp (find-type ?n ss) 'numeric) 
      (match '(?*d1 ?n ">" (?is ?c1 numericp) ?*d2)  (where ss) bindings) 
      (match '(?*d3 ?n ">=" (?is ?c2 numericp) ?*d4 ) (where is) 
bindings)) 
(equalp (string-to-number ?c2) (1+ (string-to-numbe r ?c1))) 
  "WHERE") 

We have developed functions that allow any test to be specified in the constraint language. 
The actual processing of a student’s solution is further discussed in the following section.  

3.2.3. Speeding up the evaluation of student solutions 

As discussed earlier, CBM is computationally very simple because it reduces student modelling to 
pattern matching. The conditions of constraints are patterns matched against the student’s solution. 
Pattern matching is a simple, but potentially time-consuming operation, especially in situations 
when the number of patterns is large. It is therefore often done in AI systems by using RETE 
networks (Forgy 1982). A detailed discussion of the RETE pattern matching algorithm is beyond 
the scope of this report and we briefly give the fundamental ideas only. RETE networks are 
designed for many pattern/many object situation, typical for expert systems, where there is a large 
number of facts (objects) describing the current problem state, and a large number of rules 
(patterns). A RETE network is the result of compiling patterns so that all conditions that appear in 
many patterns are applied only once. RETE networks consist of a number of nodes, which apply 
the conditions on objects they are given.  

In constraint-based educational systems, all constraints belonging to an instructional domain 
need to be used when diagnosing students' solutions. In an environment support multiple 
educational systems, each of which could have hundreds of constraints, speed could potentially 
become an issue, especially with many users accessing the system simultaneously. A complete 
evaluation of a solution taking only a few seconds can become a greater inconvenience once CPU 
time is shared and evaluation times extend. In order to ensure efficient processing of student 
solutions, ASPIRE-Tutor compiles constraints into structures that resemble RETE networks. We 
call these structures constraint networks . For a given domain, we create a pair of constraint 
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networks, as illustrated in Figure 15. The relevance network contains compiled relevance 
conditions, and the other network compiles satisfaction conditions of all domain constraints. The 
student’s solution is first propagated through the relevance network to determine which constraints 
are relevant. In the second phase, the solution is propagated through the satisfaction network, but 
only for those constraints that are relevant. Finally, the satisfaction network produces a list of 
violated and a list of satisfied constraints.  

There are three kinds of nodes in the constraint networks: input, internal and output nodes. 
Each input node may be connected to one or more internal nodes, referred to as its children. Each 
internal node has one input (coming from the input node, or another internal node), and may be 
connected to a number of other nodes (internal or output). Each internal node applies a test 
(corresponding to a condition in a constraint) to either SS or IS and, if the test is satisfied, 
propagates the resulting bindings to its children.  

Relevance and satisfaction networks have slightly different structures. The number of input 
nodes in a relevance network is equal to the number of distinct conditions which appear as first 
conditions in any constraint. If several constraints have identical initial test in their relevance 
conditions, the relevance network will have an input node containing that test, and this input node 
will be shared by all these constraints. This way, the pattern-matching results can be re-used, and 
the amount of processing is reduced.  

Each output node in the relevance condition corresponds to one of the domain constraints. 
Once the student’s solution reaches an output node in the relevance network, the relevance 
condition of the corresponding constraint has been met, and the constraint is added to the list of 
relevant constraints, together with the appropriate binding list.  

Each input nodes of a satisfaction network contains a constraint id. If the constraint is relevant 
for the student’s solution, the satisfaction condition will be applied to it, by propagating the 
solution to the children of the input node. When the solution reaches an output node, the 
satisfaction network adds the constraint number to the list of satisfied constraints (with the binding 
list). If any of the tests in the satisfaction condition (i.e. the tests in the nodes connected to the 
input node) fail, the constraint is violated, and is added to the list of violated constraints.  

Let us illustrate constraint networks on the example of the following constraints from SQL-
Tutor7:  

 
(p 110 
   "You need the ON Keyword in the FROM clause!" 
    (member "JOIN" (from-clause ss)) 
    (member "ON" (from-clause ss)) 
    "FROM") 
 

                                                
7 Please note that these constraints are given in a simplified form, to make the understanding of the example 
easier. 

Satisfaction
network

Relevance
network

Student’s 
solution

Relevant 
constraints

Satisfied/Violated
constraints

  

Figure 15. The processing of a student’s solution 
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(p 358 
   "Check the syntax for the JOIN and ON keywords i n the FROM clause!" 
   (and (member "JOIN" (from-clause ss))  
        (member "ON" (from-clause ss))) 
   (match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON" ?a1 "=" ?a2 ?*d2)(from-
clause ss) bindings) 
   "FROM") 
 
(p 11 
   "If the JOIN keyword is used in the FROM clause,  
    the same clause should contain a join condition  specified  
    on a pair of attributes from corresponding tabl es being joined." 
    (and (member "JOIN" (from-clause ss))  
         (member "ON" (from-clause ss))) 
         (match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON " ?a1 "=" ?a2 ?*d2) 
(from-clause ss) bindings) 
         (valid-table ?t1) 
         (valid-table ?t2) 
         (attribute-of ?t1 ?a1)) 
    (and (attribute-of (find-table ?t2 (current-dat abase *student*)) ?a2) 
         (equalp (find-type ?a1 ss) (find-type ?a2 ss))) 
    "FROM") 
 
(p 187 
   "If the JOIN keyword is used in the FROM clause,  
    the same clause should contain a join condition  specified  
    on a pair of attributes from corresponding tabl es being joined." 
    (and (member "JOIN" (from-clause ss))  
         (member "ON" (from-clause ss))) 
         (match '(?*d1 ?t1 ??s1 "JOIN" ?t2 ??s2 "ON " ?a1 "=" ?a2 ?*d2) 
(from-clause ss) bindings) 
         (valid-table ?t1) 
         (valid-table ?t2) 
         (attribute-of ?t1 ?a2)) 
    (and (attribute-of (find-table ?t2 (current-dat abase *student*)) ?a1)  
         (equalp (find-type ?a1 ss) (find-type ?a2 ss))) 
    "FROM") 

The relevance network for these constraints is given in Figure 16. Input and internal nodes are 
shown as rectangles, while output nodes are shown as ovals. Constraint 110 has only a single test 
in its relevance condition (checking that the JOIN keyword appears in the FROM clause of the 
student’s solution), and if it is met by the students solution, the output node is reached, meaning 
that the constraint is relevant. Constraint 358 shares the same test with constraint 110, but 
additionally requires that the ON keyword also appears with JOIN. If both of these conditions are 
met, the constraint is relevant. Constraint 11, in addition to these two tests, also has four new tests, 
which are checked in order. Constraints 187 and 11 have almost identical relevance conditions; the 
only difference is in the last test, and that is why there are two branches from the internal node 
testing whether variable ?t2 has a value which is a valid table.  

Note how tests are shared: the input node would apply the initial test to the student’s solution, 
and if it is met, the joining internal nodes will apply more tests to the student solution. Instead of 
having to apply the same test five times in order to test the relevance condition of each constraint 
independently, the constraint network re-uses the results produced by network nodes, thus 
reducing the total number of tests applied on the student’s solution.  
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3.2.4. Locking system 

Constraint networks must be created at start-up, with the constraints from the chosen domain. As 
discussed earlier, there is a pair of constraint networks (i.e. relevance and satisfaction networks) 
created for each domain. The total number of networks would be determined by the number of 
instructional domains served by ASPIRE-Tutor. On start-up, the Diagnostic Module iterates 
through all instructional domains, and for each domain performs the following steps: gets the 
constraints for each domain from the Domain Manager, creates a pair of constraint networks, and 
stores references to them.  

Due to the nature of constraint networks, only one solution can be propagated through a 
network at a time. Because of this, a locking system has been created for situations when there is 
simultaneous need for a network (i.e. multiple students submit solutions to the same instructional 
system). When a process-solution call has been made, the Diagnosis object makes a request to the 
repository of constraint networks corresponding to the domain. If the network is not in use, it is 
returned, and a Request-Lock  is set. If the network is locked, the request continues to wait until 
the network becomes available.  

Once the submission is propagated through the constraint network, the lock is removed, and 
other requests can now retrieve the network.  

 

Figure 16. An example relevance network 
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3.2.5. Diagnostic Module Classes 

Figure 16 illustrates the classes that the Diagnostic Module uses for its specific functions. The 
Diagnosis class, as discussed in Section 3.1.2, stores all the necessary information about the 
student’s solution and the results of its evaluation. Other classes included in the diagram in Figure 
16 are related to the constraint networks. As discussed in Section 3.2.4, the constraint networks are 
generated on system start-up, from the domain constraints obtained from the Domain Manager. 
For each network, an instance of the Constraint-Network  class is created. Input nodes and 
internal nodes of relevance networks are represented as instance of the Node class, as they have 
the same structure (i.e. each node contains a test to be evaluated). The output nodes of both 
relevance and satisfaction networks have the same structure, and are represented as objects of the 
Output-node  class. The input nodes of satisfaction networks are different from the input nodes 
of relevance networks, as they only contain the constraint id, and not a test.  

3.3. Student Modeller 

Student Modeller is responsible for maintaining long-term models of students' knowledge. 
Whenever a student submits the solution to a problem, the Diagnostic Module will analyse it, and 
produce the short-term model (as discussed in Section 3.2), which it passes to the Pedagogical 
Module. This module then requires the Student Modeller to update the long-term model.  

ASPIRE stores general information about each user (such as user code and password) as 
attributes of the user  class. The student  class extends the user  class and provides capabilities 
for storing information that describes the student’s knowledge of a particular domain. Within 
ASPIRE-Tutor it is necessary to keep a model of the student’s knowledge for each instructional 
domain the student has worked on. This information is distributed over several classes, described 
in Section 3.1.2. The Student Modeller module is responsible for maintaining a long-term model 

-domain-name-problem-solution-components-satisfied-constraints-violated-constraints-tags Diagnosis -lock-rel-bindings-sat-bindings-failed-sat-bindings-matched-rel-constrs-matched-sat-constrs-failed-sat-constrsConstraint-Network
-testNode -constr-numInput-Sat-Node-matched-constrOutput-Node

* 1 *1* -ID-relevance-condition-satisfaction-conditionConstraint1 *
 

Figure 16. The class diagram for the Diagnostic Module 
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of each student’s knowledge, aggregating and providing data about individual student models to 
the Pedagogical Module.  

3.3.1. Student Modeller Interface 

The operations exposed to the Pedagogical Module include:  

• make-student-model (domain-id)  

Creates a new student-model object for the specified domain.  

• update-student-model (student-model solution-attemp t)  

Updates the student-model instance based on the evaluated solution-attempt containing 
required information (e.g. lists of satisfied and violated constraints). The Pedagogical 
Module will call this method to update the student model each time the student performs 
cognitively or pedagogically important action, such as submitting a solution to a problem.  

• Queries  
o student-level (student-model)  Gets the student’s proficiency level for the 

domain.  
o attempted-problems (student-model)  Gets the problems attempted by the 

student. This may include problems attempted but not completed as well as fully 
completed problems. This may be useful for problem selection.  

o solved-problems (student-model)  Gets the problems solved by the student. 
This only includes the successfully completed problems. This is useful for problem 
selection.  

o constraint-knowledge (student-model constraint-id)  For feedback and 
problem selection strategies the Pedagogical Module needs to know the student’s 
comprehension of each particular constraint.  

o visualise-student-model (student-model)  Gets a summary of the student-
model for visualisation.  

4. Allegro Cache 

AllegroCache is a high-performance, persistent, dynamic object caching system (Aasman, 2005). 
It supports a full transaction model with long and short transactions, and meets the classic ACID 
requirements8 for a database. AllegroCache allows us to work directly with objects as if they were 
in memory while in fact the object data is always stored persistently. It provides both a single user 
and client-server (multiple-user) configurations. In the client-server environment, different clients 
(or processes) on different processors can access the same database over the network. In the 
context of ASPIRE project we are using AllegroCache in the client-server configuration. 

Purely for performance considerations HTTP requests received by the application web server 
on behalf of either ASPIRE-Tutor or ASPIRE-Author are normally processed in separate Lisp 
threads. When a client connects to the port on which AllegroServe web server is listening, 
AllegroServe passes that connected socket to a free worker thread which then wakes up and calls 
the internal function to process the given connection9. AllegroCache database serving as the 
backend datastore for both ASPIRE-Tutor or ASPIRE-Author allows multiple simultaneous 
connections to the database. However, from the perspective of AllegroCache, only one thread at a 

                                                
8 Every production database management system needs to achieve four goals: atomicity, consistency, 
isolation and durability (ACID). Databases that fail to meet any of these four goals is not considered reliable. 
AllegroCache meets all these essential ACID requirements. 
9 http://opensource.franz.com/aserve/aserve-dist/doc/aserve.html 
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time should be using a given database connection (AllegroCache Manual). Using a database 
connection includes:  

• reading or writing the slot of a persistent object  
• locating a persistent object from an index  
• commit or rollback  
• creating a persistent object  
• deleting a persistent object  

To be sure threads do not overlap during their use of a connection, we create a pool of 
database connections and have each thread pick a connection out of the pool for its exclusive use, 
returning the connection to the pool when the thread is finished. The Session Manager ensures that 
for each thread processing an HTTP request there is also a dedicated database connection. 
AllegroCache is based on optimistic concurrency model 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconoptimisticconcurrency.asp). When the database transaction associated with 
each request is complete, the Session Manager commits the changes to the database.  

AllegroCache makes object persistence absolutely transparent. When an object of a persistent 
class is created or modified, the database reflects the transaction globally after the commit 
operation. During each transaction the persistent database objects can be manipulated just like 
transient objects.  

5. Conclusions 

This report covered the second reporting period of the ASPIRE project, and presented the work 
done on both ASPIRE-Author and ASPIRE-Tutor. In both cases, it was necessary to implement all 
the packages and the basic functionality of all modules, in order to be able to complete the planned 
components. On the authoring side, we have implemented three components of the authoring 
interface: Domain Structure Modeller, Problem/Solution Structure Modeller, and the Student 
Interface Builder. We also implemented two components of ASPIRE-Tutor: Diagnostic Module, 
and Student Modeller. We also briefly discussed AllegroStore, the underlying object-oriented 
database storing all the necessary data.  

In this period, we have also started working on constraint generation, and this milestone will 
be completed in March 2006. The next reporting period includes two new components of the 
authoring interface: the Ontology Workspace and the Problem/Solution Editor.  
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