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ABSTRACT 

High-speed imaging of water drop impacts on a polymer surface have been used alongside 

two-dimensional Lattice Boltzmann simulations to investigate the conditions under which a 

spreading lamella submerges a small surface ridge. Three basic outcomes have been observed 

when the lamella comes into contact with the ridge: pinning, wetting and splashing. The effects 

of Weber number and the dimensionless distance between the impact point and the ridge are 

investigated, and a phase portrait of the different wetting outcomes is presented. For each of 

the potential outcomes, a side-by-side comparison of experimental and numerical results can 

be made. An energy balance approach is used to study the transitions between the different 

outcomes. 

Keywords: Drop impact, Surface ridge, Drop wetting, High-speed photography, Lattice 

Boltzmann method 

1. INTRODUCTION 

Following impact of a liquid drop on to a solid surface, the liquid typically forms a thin 

lamella which spreads over the surface (Yarin 2006; Josserand Christophe and Thoroddsen 

2016). Wetting outcomes are determined by parameters such as the surface roughness, impact 

velocity (𝑉), drop size, liquid viscosity (µ) and surface tension (𝛾). Rioboo et al. identified five 

such outcomes: deposition, prompt splash, corona splash, receding breakup and rebound 

(Rioboo et al. 2001). To simplify and reduce the number of parameters, drop impact conditions 

can be characterized by the dimensionless Reynolds and Weber numbers, which balance 

inertial forces with viscous and capillary forces, respectively: 

Re =
𝜌𝑉𝐷0

µ
 (1) 
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We =
𝜌𝑉2𝐷0

𝛾
 (2) 

Here 𝐷0 denotes the diameter of the drop (assumed spherical for drops smaller than the 

capillary length). 

Various researchers have drawn links between impact parameters and splashing (Rioboo et 

al. 2001; Xu 2007; Tsai et al. 2010; Kim et al. 2014), and it is known that splashing can be 

suppressed by reducing the ambient pressure (Tsai et al. 2010). Splash thresholds have been 

identified as a function of Weber number (Tsai et al. 2010) and surface morphology (Kim et al. 

2014). When it comes to morphologies, research into drop impact on to rough and 

micropatterned solid surfaces is a growing area of interest (Kannan and Sivakumar 2008; Ellis 

et al. 2011; Marengo et al. 2011; Kim et al. 2012; Khojasteh et al. 2016), particularly when the 

surfaces are superhydrophobic. This research is often motivated by the prospect of being able 

to design patterns which can control impact outcomes. 

When using micropatterns to design surfaces, it is important to understand the interaction 

between impacting drops and single topographic features. However, very little attention has 

been paid to how a moving contact line interacts with a single well-defined topographical 

feature. Josserand et al. performed experiments on the impact of a droplet on a Teflon-coated 

surface with a small obstacle placed in the droplet spreading path (Josserand C et al. 2005). In 

that study, the influence of the obstacle’s thickness and distance from the impact point on the 

splashing angle were investigated, with Re and We held constant. Numerical simulations of 

these impacts were also carried out. Splashing was observed in the simulations, but the 

splashing angle for the simulations was smaller than in experiments. Jong et al. experimentally 

studied the impact of a drop near a millimeter-sized pit or pore (de Jong et al. 2015). 

In this article, we present a combined experimental and numerical study of the wetting of a 

topographical feature after impact. This work should provide greater understanding of water 

drop impacts near individual topographic features. We focus on the interaction between the 

edge of the spreading lamella and a micron-scale ridge on an otherwise flat polymer surface 

(Fig. 1), including identification of the different possible wetting outcomes. This article aims 

to investigate the influence of two important control parameters on the wetting outcomes: the 

dimensionless distance from the impact point to the ridge (𝑅/𝐷0) and the Weber number (Eq. 

2). Impacts are studied experimentally using high-speed photography, and simulated using a 

two-dimensional (2D) multiphase lattice Boltzmann method. To explore the degree of 



quantitative agreement between the simulations and the experiments, an analysis is carried out 

using simple energy conservation arguments relating to the maximum extent of drop spreading 

(Collings et al. 1990; Bennett and Poulikakos 1993; Wildeman et al. 2016). 

 
Fig. 1. Schematic of a drop impacting on a surface with a single ridge. 𝐷0 denotes the initial diameter of the droplet, 𝑉 denotes 

the impact velocity and R denotes the distance parallel to the surface from the edge of the ridge to the center of the droplet. 

The lamella-ridge interaction is especially relevant in two areas of research that have 

recently been prominent in the literature. Firstly, researchers have noted the ability to reduce a 

droplet’s contact time with a surface by direct impact on a thin hydrophobic ridge (Bird et al. 

2013; Gauthier et al. 2015). In applications where the drop incidence is stochastic, droplets will 

commonly impact some distance away from a ridge, after which a spreading lamella will 

impact the ridge from the side (Regulagadda et al. 2017). A related problem is the spread of a 

lamella on or near vascular bundles (veins) on leaves, which can produce asymmetric drop 

outcomes (Fritsch et al. 2013). The second area of specific relevance concerns the interplay 

between spreading dynamics and the Cassie and Wenzel states, which are more familiar from 

quasi-static wetting. In the Cassie state (characteristic of superhydrophobic surfaces), the liquid 

is pinned on top of the surface microstructure, creating regions of liquid-air interface under the 

drop. In the Wenzel state, the liquid completely wets the microstructure. Drop impact 

experiments have shown that a lamella can transition from fully penetrating a microstructure 

to spreading over the top of the pillars (Reyssat et al. 2010; Tsai et al. 2011; Robson and 

Willmott 2016). This transition is similar to a lamella moving over a ridge, studied here.  

The paper is organized as follows. The next section describes the experimental and 

numerical methodologies which have been implemented in this study. To identify the different 

possible outcomes, a side-by-side comparison of experimental and numerical results for each 

of three classified outcomes is depicted. Then full numerical and experimental results are 

presented, and the effects of control parameters on the outcome are discussed using a phase 

portrait. The final section presents concluding remarks. 

 



 

 

 

2. METHODOLOGY 

2.1. Experimental Methodology 

Vertical drop impacts were recorded from a horizontal line of sight using a Photron SA5 

high speed camera and Nikkor 105 mm macro lens. Back lighting was used to produce sharp 

contrast at the edge of the drop. A ridge with height 54 µm and width 41 µm was produced on 

a polydimethylsiloxane (PDMS) surface using soft lithography (Fig. 2). An acrylic (polymethyl 

methacrylate) substrate was spin coated with SU8-2050 (MicroChem Corp, USA) and exposed 

using a 375 nm direct mask writer (Heidelberg Instruments PG101, Germany). The ridge was 

cast from this mould using PDMS, and optical profilometry (Bruker ContourGT-K) was used 

to measure the geometry of the ridge. Fig. 2 (a) shows that the ridge walls are not perfectly 

vertical. The slope is calculated at 84.9°, near to the manufacturer’s stated limit for the optical 

profiler (87° maximum slope angle). The ridge width was 41.2 ± 0.8 µm, where the uncertainty 

is determined by the limitations of the optical profiler. Water droplets were produced using a 

blunt 90° stainless steel gauge 24 needle (Cadence Science, USA), fed by a syringe pump (NE-

1000, New Era Pump Systems Inc, USA). The needle was mounted on a custom built 

micrometer-based three-dimensional positioning system allowing for precise positioning of the 

droplet relative to the ridge. 

 

Fig. 2. (a) Optical profilometry of the ridge used in experiments. (b) Optical image of the ridge profile, obtained using an 

Infinity K2 DistaMax microscopic lens. 

Drop impact videos were processed using a custom Matlab script. Image processing enables 

extraction of the trajectory of the droplet prior to impact, allowing calculation of 𝐷0, 𝑉 and 𝑅. 

Due to air resistance (Thoroddsen et al. 2005) and release conditions, droplets are not perfectly 



spherical at impact, although the eccentricity is small (mean 1.02) so that the effect on drop 

outcomes should be minimal (Mishra et al. 2011).  𝐷0 is calculated by assuming that the drop 

is ellipsoidal, and finding the diameter of a sphere with equal volume.  𝐷0 was typically 2-3 

mm in diameter, while 𝑅/𝐷0 was more widely varied by adjusting the point of impact. By 

altering the height of the drop, impact Weber numbers were adjusted from approximately 25 

to 400. Weber number was calculated using (Eq. 2) and values of surface tension and density 

were obtained from (Kell 1975; Vargaftik et al. 1983). We use Weber number to characterise 

the impacts because the outcomes should be predominantly governed by competition between 

the kinetic and surface energies; there is a monotonic relationship between Weber and 

Reynolds numbers for water drops (Eq. 1). 

2.2. Numerical Method 

The Lattice Boltzmann Method (LBM) originated from the cellular automata concept which 

was discovered by Ulam and von Neumann in the 1940s (Sukop and Thorne Jr 2006). Zhang 

has reported an exhaustive review of the development of LBM for microfluidics (Zhang 2011). 

The transport Boltzmann equation based on the BGK approximation can be written as 

𝜕𝑓

𝜕𝑡
+ 𝒆 ∇𝑓 =

𝑓𝑒𝑞 − 𝑓

𝜏
 (3) 

where 𝑓(𝒙, 𝒆, 𝑡) and 𝑓𝑒𝑞(𝒙, 𝑡) are the particle distribution function and the equilibrium 

distribution function, respectively. 𝒙 denotes the position and 𝒆 is the microscopic velocity. 𝜏 

represents the relaxation time. During our simulations, the default value of the relaxation time 

is unity. The main idea behind the LBM is to solve the following discrete Boltzmann equation: 

𝑓𝑘(𝒙 + 𝒆𝑘∆𝑡 , 𝑡 + ∆𝑡) −  𝑓𝑘(𝒙, 𝑡) =
∆𝑡

𝜏
[𝑓𝑘

𝑒𝑞(𝒙, 𝑡) − 𝑓𝑘(𝒙, 𝑡)] (4) 

This can be solved numerically using a two-stage process. The first step is the streaming step, 

which models the particle distribution advection along the lattice link, 

𝑓𝑘(𝑥 + ∆𝑥 , 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) = 𝑓𝑘(𝑥 , 𝑦, 𝑡 + ∆𝑡) (5) 

and the following step is the collision step, which models the rate of change in the particle 

distribution, 

𝑓𝑘(𝑥 , 𝑦, 𝑡 + ∆𝑡) = 𝑓𝑘(𝑥 , 𝑦, 𝑡) +
∆𝑡

𝜏
[𝑓𝑘

𝑒𝑞(𝑥 , 𝑦, 𝑡) − 𝑓𝑘(𝑥 , 𝑦, 𝑡)] (6) 



In this work, we choose the D2Q9 model as shown in Fig. 3 which has nine discrete 

velocities 𝒆𝑘 such that 𝑘 = 0, … ,8 in two dimensions: 

[𝒆0, 𝒆1, 𝒆2, 𝒆3, 𝒆4, 𝒆5, 𝒆6, 𝒆7, 𝒆8] = 𝑐 [
0 1 0
0 0 1

   
−1    0 1
   0 −1 1

   
−1 −1    1
   1 −1 −1

 ] (7) 

 

 
Fig. 3. Discrete velocity model D2Q9 which consists of nine velocities (𝒆𝑘 where 𝑘= 0, 1,…, 8) in two dimensions. 𝒆0 defines 

particles at rest. The lattice unit (𝑙𝑢) and the time step (𝑡𝑠) are basic units for the length and the time, respectively. The 𝑥 and 

𝑦 components of velocities are either 0 or ±1 and therefore the magnitude of velocity for  𝒆1  to 𝒆4 is 1 (𝑙𝑢. 𝑡𝑠−1) and for 𝒆5  

to 𝒆8 is √2 (𝑙𝑢. 𝑡𝑠−1). 

In Eq. 7, c denotes the lattice speed and is calculated by 𝑐 =  
∆𝑥

∆𝑡
  where ∆𝑥 = 1 lattice unit 

(𝑙𝑢) and ∆𝑡 = 1 time step (𝑡𝑠). For the D2Q9 velocity model, the equilibrium distribution 

function is defined as: 

𝑓𝑘
𝑒𝑞(𝒙, 𝑡) = 𝜔𝑘𝜌[1 + 3(𝒄𝑘 . 𝒖) +

9

2
(𝒄𝑘. 𝒖)2 −

3

2
𝒖2) (8) 

where u denotes the macroscopic velocity and ω is the weight factor which is 4/9 for k=0, 1/9 

for k=1,2,3,4 is and 1/36 for k=5,6,7,8.  

The kinematic viscosity is a function of the relaxation time and can be determined by 𝜐 =

𝑐𝑠
2(𝜏 − 0.5)∆𝑡  where 𝑐𝑠 denotes the sound speed which can be obtained from 𝑐𝑠

2 =
𝑐2

3
 in the 

D2Q9 model. In simulations, any lattice nodes can be occupied by either a fluid (gas or liquid) 

node or a solid node. Boundary conditions applied include the bounce-back boundary condition 

at the solid-liquid interface in the collision step, and the periodic boundary condition for other 

boundaries in the streaming step. In the LBM, the bounce back boundary is implemented as 

the known distribution function (from the streaming process) hits the wall and bounces back to 

the region. The periodic boundary condition is implemented by requiring that as the distribution 

function reaches the end of the region, 𝑓𝑘  carries over on to the opposite wall. The macroscopic 

fluid density 𝜌 and the macroscopic velocity 𝒖 can be calculated as: 



𝜌 = ∑ 𝑓𝑘

8

𝑘=0

 
(9) 

𝜌𝒖 = ∑ 𝑓𝑘

8

𝑘=0

𝒆𝑘 
(10) 

In this study, we use the single component multiphase Shan Chen model (SCMP) (Shan and 

Chen 1993). In this model, the inclusion of the inter-particle force modifies the pressure term 

to the non-ideal and non-monotonic equation of state (EOS). The inter-particle forces between 

the solid node and fluid node (adhesive force) and also between fluid nodes (cohesive force) 

are calculated using the Shan-Chen model: 

𝑭(𝒙, 𝑡) = −𝐺𝜓(𝒙, 𝑡) ∑ 𝜔𝑘𝜓(𝒙 + 𝒆𝑘∆𝑡, 𝑡)𝒆𝑘

8

𝑘=0

 (11) 

where 𝐺 is a parameter controlling the strength of the inter-particle force. In the simulation, 

this parameter acts analogously to an inverse temperature scale and creates the liquid-gas 

interface with constant surface tension, density gradient and interface thickness. 𝜓 denotes an 

interaction potential (pseudopotential) to model attraction and repulsion between the phases 

and can be calculated as: 

𝜓(𝜌) = √
2(𝑃 − 𝑐𝑠 

2𝜌)

𝑐𝑠 
2𝐺

 (12) 

where P denotes pressure and can be obtained using the pressure-density relation by the 

Carnahan and Starling (C-S) equation of state: 

𝑃 = 𝜌𝜆𝑇
1 +

𝛽𝜌
4

+ (
𝛽𝜌
4

)2 − (
𝛽𝜌
4

)3

(1 −
𝛽𝜌
4 )3

− 𝛼𝜌2 (13) 

where 𝑇 denotes the temperature and is equal 𝑇 =0.0943𝑇0 according to 𝛼 = 1  𝑙𝑢5 (𝑚𝑢. 𝑡𝑠2⁄ ), 

𝛽 = 4 𝑙𝑢3 𝑚𝑢⁄  and 𝜆 = 1 𝑙𝑢2 (𝑡𝑠2⁄ . 𝑡𝑢) (Yuan and Schaefer 2006). Furthermore, in this model, 

we can obtain the interaction between the fluids and the wall by giving the solid nodes an 

artificial wall density 𝜌𝑤  where 𝜌𝑔 ≤ 𝜌𝑤 ≤ 𝜌𝑙 (Benzi et al. 2006). 𝜌𝑔 and 𝜌𝑙 denote the gas and 

liquid density and in our simulation are chosen to be 0.0285 (𝑚𝑢
𝑙𝑢3⁄ ) and 0.285 (𝑚𝑢

𝑙𝑢3⁄ ), 



respectively. In the SCMP, the equilibrium distribution function is updated using the 

equilibrium velocity. This equilibrium velocity 𝒖𝑒𝑞 which replaces u in Eq. 8 can be determined 

as: 

𝒖𝑒𝑞 = 𝒖 +
𝑭𝜏

𝜌
 (14) 

 

According to the above explanation, a FORTRAN code has been developed in two-

dimensional space. In our simulations, the effects of gravity are neglected. The numerical 

algorithm consists of three main stages, which are an initialisation stage including initialising 

variables and nodes; a main loop including the collision step, the streaming step, boundary 

conditions, calculating macroscopic quantities, determining forces and obtaining the 

equilibrium velocity; and finally a post-processing stage including plotting the density 

contours. The validity of this Lattice-Boltzmann method for drop impacts was demonstrated in  

(Rashidian and Sellier 2017) where it was shown that the maximum spread radius reproduces 

well the well-known correlation of (Scheller and Bousfield 1995) for impact on flat, non-

textured surfaces.  

3. RESULTS AND DISCUSSION 

3.1. Classification of outcomes 

We define the outcome of the drop impact at the moment when the lamella is at maximum 

spread, immediately prior to recoil. Three basic outcomes have been observed. Firstly, the 

advance of the lamella may be arrested before the drop reaches the far side of the ridge, an 

outcome labelled as pinning (Fig. 4). For pinning, the lamella may spread and touch the ridge 

without extending horizontally beyond the ridge, or it may extend beyond it, but it must start 

to recoil prior to touching the surface on the other side. Wetting, the second outcome, occurs 

when the drop spreads on to the surface beyond the ridge without breaking up (Fig. 5).  In some 

wetting cases, the lamella first makes contact with the surface on the far side at some distance 

from the edge of the ridge.  The third outcome is splashing, when smaller drops are generated 

from the lamella edge while the lamella is in contact with the ridge, prior to the onset of 

lamella retraction (Fig. 6). 



 
Fig. 4. Side-by-side comparison of numerical (left) and experimental (right) results for the pinning outcome, both obtained for 
𝑅

 𝐷0
=1.48 and 𝑊𝑒=144. In the photographs, the red dashed line indicates the position of the ridge. 

 
Fig. 5. Side-by-side comparison of numerical (left) and experimental (right) results for the wetting outcome, both obtained for 
𝑅

 𝐷0
=0.91 and 𝑊𝑒=142. In the photographs, the red dashed line indicates the position of the ridge. 



 
Fig. 6. Side-by-side comparison of numerical (left) and experimental (right) results for the splashing outcome, both obtained 

for 
𝑅

 𝐷0
=0.86 and 𝑊𝑒=237. In the photographs, the red dashed line indicates the position of the ridge. 

Figs. 4, 5 and 6 provide a side-by-side comparison for the three different outcomes. In each 

figure, four steps during droplet impact are shown: (i) impact (t = 0), when the droplet strikes 

the surface; (ii) as the droplet begins to spread; (iii) when the droplet first touches the ridge; 

and (iv) the droplet at maximum spread, when the outcome of the impact is determined. 

Simulations and experiments show good qualitative agreement, although there are observable 

differences. For example, in Fig. 6 the simulated splashing angle is smaller than the angle 

observed in experiments, an observation previously reported by Josserand et al (Josserand C et 

al. 2005). It can also be seen that the size of the satellite drop in simulations is larger than the 

ejected drops in experiments.  Moreover, free surface perturbations can be observed 

experimentally in the wetting case, while these are absent in simulations. Several factors may 

explain these differences. Firstly, simulations are 2D; this point will be discussed further in the 

next section.  Secondly, the density ratio in simulations is significantly different from the 

experimental case due to limitations of the SCMP lattice Boltzmann method (Huang et al. 

2011). It should be noted that simulations have the density ratio of 10, whereas this ratio is 

1000 for experiments. Thus simulations are not able to capture the smaller length scale effects 

entirely. 

3.2. Energy approach for analysing transitions 

When the droplet meets the ridge, the outcome should be predominantly governed by 

competition between the kinetic and surface energies, noting that the Bond number of the 



droplets (equal to gD0
2 / 4for gravitational acceleration g) was typically less than 0.30. 

Therefore, a simple energy balance approach is used to study the dependence of the pinning-

wetting transition on 
𝑅

 𝐷0
 and We. The model is based on an estimate for the maximum spread 

of an impacting droplet (Collings et al. 1990; Bennett and Poulikakos 1993), in which the 

reduction in kinetic energy following impact is equated to the extra surface energy produced in 

deforming the droplet. This analysis allows us to compare 2D and 3D models, and therefore to 

address the differences between the experimental and simulation data. The method is 

approximate because energy losses due to viscous dissipation (known to be significant in drop 

spreading (Wildeman et al. 2016)) are neglected, and because the spreading drop is modelled 

as a cylindrical disc with the liquid-vapour surface tension applicable on all surfaces. However, 

we do account for the initial surface energy, which was neglected in Collings et al.’s model 

(Collings et al. 1990) that yields the widely-used result that the maximum spreading diameter 

scales ∝ We0.5 (Marengo et al. 2011). Regarding viscous losses, it has been found that 

approximately half of initial kinetic energy is transformed to surface energy during drop 

impact, independent of impact parameters (Wildeman et al. 2016), suggesting that a model with 

one or two parameters can accurately capture the spreading behaviour. 

For this energy balance approach, the kinetic energy and surface energy prior to impact are 

equated to the sum of these energies when the drop has spread. If a 2D droplet of density 𝜌 

(unit kg.𝑚−1) and surface tension 𝛾 (unit J.𝑚−1) spreads to its maximum extent, forming a 

rectangle of height h and length L, this energy balance gives:  

1

2
𝜌𝑉2𝜋 (

 𝐷0

2
)

2

+ 𝜋 𝐷0𝛾 =  𝐾𝐸𝑓 + 2𝛾(ℎ + 𝐿) (15) 

where  𝐾𝐸𝑓 is the final kinetic energy, which is zero at maximum spread. Using volume 

conservation due to incompressibility (ℎ𝐿 = 𝜋
 𝐷0

2

4
⁄ ), we then find: 

𝜋

8
𝜌𝑉2 𝐷0

2 = 𝛾(
𝜋 𝐷0

2

2𝐿
+ 2𝐿 − 𝜋 𝐷0) (16) 

or using Eq. 2, 

We =
16𝐿

𝜋 𝐷0
+

4 𝐷0

𝐿
− 8 (17) 

In this investigation, we assume that the pinning-wetting transition occurs at some spreading 

diameter smaller than 𝐿, so that 2𝑅 = 𝑁𝐿 where 0 < 𝑁 ≤ 1. Using the constant 𝑁 allows us to 



make a simple fit to the experimental and simulated data. Using this relation with Eq. 17, we 

obtain for the 2D case: 

We =
32𝑅

𝑁𝜋 𝐷0
+

2𝑁 𝐷0

𝑅
− 8 (18) 

In 3D, if the drop at maximum spread forms a cylindrical disc of height h and diameter L, 

the energy balance is:  

1

2
𝜌𝑉2

4

3
𝜋 (

 𝐷0

2
)

3

+ 4𝜋𝛾 (
 𝐷0

2
)

2

=  𝐾𝐸𝑓 + 𝜋𝛾(ℎ𝐿 +
𝐿2

2
) (19) 

As in the 2D case, we consider the point of maximum spread (𝐾𝐸𝑓= 0), use conservation of 

volume due to incompressibility (𝜋ℎ(𝐿 2)⁄ 2
= 𝜋  𝐷0

3 6⁄  ) and assume that the transition occurs 

at 2𝑅 = 𝑀𝐿 for some constant 𝑀 where 0 < 𝑀 ≤ 1. Following Eq. 19, we obtain Eq. 20 for the 

3D case. For control experiments of water droplet impact on flat PDMS surfaces (80 < We < 

230), the maximum spread is described by Eq. 20 with M = 1.334.  

We =
24𝑅2

𝑀2 𝐷0
2 +

4𝑀𝐷0

𝑅
− 12 (20) 

3.3. Phase portrait of outcomes 

A phase portrait of the experimental and simulated wetting outcomes is shown in Fig. 7. 

Simulations matching the experiments were carried out over the range 25 < We < 350, and 

for impact points such that 0.5 ≤ 𝑅/𝐷0 ≤ 2. Note that if 𝑅/𝐷0 ≤ 0.5, part of the drop lands 

directly on the ridge, a situation not studied here. 

Describing the thresholds for transition between the pinned, wetting and splashing outcomes 

is of particular interest. Solid lines indicate transitions from pinned to wetting outcomes in 

both simulations and experimental results. Dashed lines show transitions from wetting to 

splash outcomes. For the experimental cases, lines are fitted with a least squares method to 

calculate the best value of M using Eq. 20. For the simulations, a similar method was used to 

find 𝑁, although Eq. 18 was modified to  

We =
32𝑅

𝑁𝜋𝐷0
+

2𝑁𝐷0

𝑅
− 8 − 𝑆 

(21) 



Inclusion of the constant parameter 𝑆 is necessary because the simple 2D model, Eq. 18, 

gives imaginary values of 𝑅/𝐷0 near the origin (We < 17). Physically, this is because the 

model does not account for spreading driven by gravity or surface-liquid interactions at low We.  

Firstly considering the boundary between the pinning and wetting outcomes in Fig. 7, it is 

clear that the energy required to submerge the ridge is reduced as the distance from the ridge 

decreases. The 3D fit using our simple model gives a good description of the experimental 

transition, and predicts that the transition occurs at slightly less than half the distance to 

maximum spread. Eq. 20 gives 𝑅/𝐷0 ∝ We0.5 to first order, in agreement with the widely used 

results for maximum spread which uses a similar analytic approach (Collings et al. 1990). 

 
Fig.7. Phase portrait of the wetting outcomes. The solid lines are fits to the simulation data using a 2D model over the ranges 

of Weber number shown (Eq. 21. Fit1: N=0.042, 𝑆=193. Fit 2: N=0.022, 𝑆=272). The dashed lines are fits to the experimental 

data using a 3D model (Eq. 20. Fit1: M=0.45. Fit 2: M=0.27). 

Qualitatively, the experimental results are consistent with simulations, although direct 

quantitative comparison is not appropriate because the simulations are carried out in 2D. For 

example, the spreading 2D drop meets the ridge along a line, whereas the 3D drop first 

touches the ridge at a point. The fit to the simulation data using the 2D model (Eq. 21) can 

be used to effectively describe the pinning/wetting transition over a limited range of We. The 

model is limited by the lack of a solution at low We (mentioned above), and because viscous 

effects have been neglected. 

Similar results are obtained for the transition from wetting to splash in Fig. 7. The closer 

to the ridge the droplet impacts, the more likely it is to retain enough energy after 



surmounting the ridge to break up into droplets. The experimental data suggest that this 

transition occurs when the ridge is about 0.27 of the distance to theoretical maximum spread.  

Interestingly the simulation data are non-monotonic, and suggest that a wetting to splashing 

transition occurs at low value of 𝑅/𝐷0. In the simulations, drops travelling at high velocity and 

landing close to the ridge immediately wet the surface beyond the ridge, and do not break up. 

When a drop has slightly further to travel before reaching the ridge, it will break up and 

splash. This transition was not observed in experiments, and probably reflects the importance 

of inertia and small length scales in the drop breakup dynamics when the drop lands very 

near the ridge. It is also possible that wetting outcomes (without splashing) could be observed 

in experiments close to  𝑅/𝐷0 = 0.5 at high We. The upper branch of the simulated wetting-

splashing transition is qualitatively similar to the experimental result, although quantitative 

agreement is not found for similar reasons to the pinning-wetting transition. 

The analytic approach used to define the transitions in Fig. 7 has recognized limitations 

(Marengo et al. 2011), in addition to the issue noted above for the 2D case at low We. In 

particular, viscous dissipation is neglected, and this generally accounts for about half the 

energy loss in more sophisticated analytical approaches (Wildeman et al. 2016). Also, our 

approach has not accounted for the surface energy at the solid-liquid interface. A comparison 

with the model at the Collings et al. (Collings et al. 1990) which includes the contact angle 

for a spherical cap, suggests that this omission would not strongly affect the results we have 

obtained. 

4. CONCLUSION 

In this study, we have used the multiphase Lattice Boltzmann method and high-speed 

imaging to investigate the interaction between the edge of an impacting water drop and a 

microscopic polymer ridge. Experimental and simulation outcomes have been categorised as 

pinning, wetting and splashing when the lamella is at maximum spread. A simple model based 

on energy conservation has been developed to predict experimental outcomes as a function of 

the Weber number and the distance from the impact point to the ridge. This model (𝑅/𝐷0 ∝ 

We0.5 to first order) gives a good description of the pinning-wetting and wetting-splashing 

transitions. The model could be improved by including viscous and gravitational contributions. 

Identification of these transitions can assist with the study and design of surface 

microstructures which passively control the outcomes of drop impact events. 



When comparing the 2D numerical results with the experimental data, there is good 

qualitative agreement for each of the three classified outcomes. There is a clear pathway 

towards improvement of the simulations based on comparison with the experiments. For 

example, differences in the wetting front dynamics were observed because the simulations do 

not entirely capture smaller length scale effects (the simulations assumed a liquid to gas 

density ratio of 10 which is smaller than the density ratio of 1000 in experiments). The 2D 

energy conservation model only produces a reasonable fit to transition thresholds over limited 

ranges of Weber number. Lack of quantitative agreement is to be expected because of the 2D 

nature of the simulations. Despite these drawbacks to the simulations implemented here, the 

multiphase lattice Boltzmann method remains a very powerful tool to unravel wetting 

phenomena such as drop impact, and has provided useful insights here. 

5. REFERENCES 

 

Bennett T, Poulikakos D. 1993. Splat-quench solidification: estimating the maximum spreading 

of a droplet impacting a solid surface. Journal of Materials Science. 28(4):963-970. 

Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F. 2006. Mesoscopic modeling of a two-

phase flow in the presence of boundaries: the contact angle. Physical Review E. 

74(2):021509. 

Bird JC, Dhiman R, Kwon H-M, Varanasi KK. 2013. Reducing the contact time of a bouncing 

drop. Nature. 503(7476):385. 

Collings E, Markworth A, McCoy J, Saunders J. 1990. Splat-quench solidification of freely 

falling liquid-metal drops by impact on a planar substrate. Journal of Materials Science. 

25(8):3677-3682. 

de Jong R, Enríquez OR, van der Meer D. 2015. Exploring droplet impact near a millimetre-

sized hole: comparing a closed pit with an open-ended pore. Journal of fluid mechanics. 

772:427-444. 

Ellis A, Smith F, White A. 2011. Droplet impact on to a rough surface. The Quarterly Journal 

of Mechanics & Applied Mathematics. 64(2):107-139. 

Fritsch A, Willmott G, Taylor M. 2013. Superhydrophobic New Zealand leaves: contact angle 

and drop impact experiments. Journal of the Royal Society of New Zealand. 43(4):198-

210. 

Gauthier A, Symon S, Clanet C, Quéré D. 2015. Water impacting on superhydrophobic 

macrotextures. Nature communications. 6:8001. 



Huang H, Krafczyk M, Lu X. 2011. Forcing term in single-phase and Shan-Chen-type 

multiphase lattice Boltzmann models. Physical Review E. 84(4):046710. 

Josserand C, Lemoyne L, Troeger R, Zaleski S. 2005. Droplet impact on a dry surface: 

triggering the splash with a small obstacle. Journal of fluid mechanics. 524:47-56. 

Josserand C, Thoroddsen ST. 2016. Drop impact on a solid surface. Annual review of fluid 

mechanics. 48:365-391. 

Kannan R, Sivakumar D. 2008. Drop impact process on a hydrophobic grooved surface. 

Colloids and Surfaces A: Physicochemical and Engineering Aspects. 317(1-3):694-704. 

Kell GS. 1975. Density, thermal expansivity, and compressibility of liquid water from 0. deg. 

to 150. deg.. Correlations and tables for atmospheric pressure and saturation reviewed 

and expressed on 1968 temperature scale. Journal of Chemical and Engineering data. 

20(1):97-105. 

Khojasteh D, Kazerooni M, Salarian S, Kamali R. 2016. Droplet impact on superhydrophobic 

surfaces: A review of recent developments. Journal of Industrial and Engineering 

Chemistry. 42:1-14. 

Kim H, Lee C, Kim MH, Kim J. 2012. Drop impact characteristics and structure effects of 

hydrophobic surfaces with micro-and/or nanoscaled structures. Langmuir. 

28(30):11250-11257. 

Kim H, Park U, Lee C, Kim H, Hwan Kim M, Kim J. 2014. Drop splashing on a rough surface: 

How surface morphology affects splashing threshold. Applied Physics Letters. 

104(16):161608. 

Marengo M, Antonini C, Roisman IV, Tropea C. 2011. Drop collisions with simple and 

complex surfaces. Current Opinion in Colloid & Interface Science. 16(4):292-302. 

Mishra NK, Zhang Y, Ratner A. 2011. Effect of chamber pressure on spreading and splashing 

of liquid drops upon impact on a dry smooth stationary surface. Experiments in fluids. 

51(2):483-491. 

Rashidian H, Sellier M. 2017. Modeling an impact droplet on a pair of pillars. Interfacial 

Phenomena and Heat Transfer. 5(1). 

Regulagadda K, Bakshi S, Das SK. 2017. Morphology of drop impact on a superhydrophobic 

surface with macro-structures. Physics of Fluids. 29(8):082104. 

Reyssat M, Richard D, Clanet C, Quéré D. 2010. Dynamical superhydrophobicity. Faraday 

discussions. 146:19-33. 

Rioboo R, Tropea C, Marengo M. 2001. Outcomes from a drop impact on solid surfaces. 

Atomization and sprays. 11(2). 



Robson S, Willmott GR. 2016. Asymmetries in the spread of drops impacting on hydrophobic 

micropillar arrays. Soft matter. 12(21):4853-4865. 

Scheller BL, Bousfield DW. 1995. Newtonian drop impact with a solid surface. AIChE Journal. 

41(6):1357-1367. 

Shan X, Chen H. 1993. Lattice Boltzmann model for simulating flows with multiple phases 

and components. Physical Review E. 47(3):1815. 

mSukop M, Thorne Jr D. 2006. Lattice Boltzmann modeling: an introduction for geoscientists 

and engineers. Springer. 

Thoroddsen S, Etoh T, Takehara K, Ootsuka N, Hatsuki Y. 2005. The air bubble entrapped 

under a drop impacting on a solid surface. Journal of Fluid Mechanics. 545:203-212. 

Tsai P, CA van der Veen R, van de Raa M, Lohse D. 2010. How micropatterns and air pressure 

affect splashing on surfaces. Langmuir. 26(20):16090-16095. 

Tsai P, Hendrix MH, Dijkstra RR, Shui L, Lohse D. 2011. Microscopic structure influencing 

macroscopic splash at high Weber number. Soft Matter. 7(24):11325-11333. 

Vargaftik N, Volkov B, Voljak L. 1983. International tables of the surface tension of water. 

Journal of Physical and Chemical Reference Data. 12(3):817-820. 

Wildeman S, Visser CW, Sun C, Lohse D. 2016. On the spreading of impacting drops. Journal 

of fluid mechanics. 805:636-655. 

Xu L. 2007. Liquid drop splashing on smooth, rough, and textured surfaces. Physical Review 

E. 75(5):056316. 

Yarin AL. 2006. Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu Rev 

Fluid Mech. 38:159-192. 

Yuan P, Schaefer L. 2006. Equations of state in a lattice Boltzmann model. Physics of Fluids. 

18(4):042101. 

Zhang J. 2011. Lattice Boltzmann method for microfluidics: models and applications. 

Microfluidics and Nanofluidics. 10(1):1-28. 

  



 

Figure captions  

Fig. 8. Schematic of a drop impacting on a surface with a single ridge. 𝐷0 denotes the initial 

diameter of the droplet, 𝑉 denotes the impact velocity and R denotes the distance 

parallel to the surface from the edge of the ridge to the center of the droplet. 

Fig. 9. (a) Optical profilometry of the ridge used in experiments. (b) Optical image of the ridge 

profile, obtained using an Infinity K2 DistaMax microscopic lens. 

Fig. 10. Discrete velocity model D2Q9 which consists of nine velocities (𝒆𝑘 where 𝑘= 0, 1,…, 

8) in two dimensions. 𝒆0 defines particles at rest. The lattice unit (𝑙𝑢) and the time step 

(𝑡𝑠) are basic units for the length and the time, respectively. The 𝑥 and 𝑦 components 

of velocities are either 0 or ±1 and therefore the magnitude of velocity for  𝒆1  to 𝒆4 is 

1 (𝑙𝑢. 𝑡𝑠−1) and for 𝒆5  to 𝒆8 is √2 (𝑙𝑢. 𝑡𝑠−1). 

Fig. 11. Side-by-side comparison of numerical (left) and experimental (right) results for the 

pinning outcome, both obtained for 
𝑅

 𝐷0
=1.48 and 𝑊𝑒=144. In the photographs, the red 

dashed line indicates the position of the ridge. 

Fig. 12. Side-by-side comparison of numerical (left) and experimental (right) results for the 

wetting outcome, both obtained for 
𝑅

 𝐷0
=0.91 and 𝑊𝑒=142. In the photographs, the red 

dashed line indicates the position of the ridge. 

Fig. 13. Side-by-side comparison of numerical (left) and experimental (right) results for the 

splashing outcome, both obtained for 
𝑅

 𝐷0
=0.86 and 𝑊𝑒=237. In the photographs, the 

red dashed line indicates the position of the ridge. 

Fig.14. Phase portrait of the wetting outcomes. The solid lines are fits to the simulation data 

using a 2D model over the ranges of Weber number shown (Eq. 21. Fit1: N=0.042, 

𝑆=193. Fit 2: N=0.022, 𝑆=272). The dashed lines are fits to the experimental data 

using a 3D model (Eq. 20. Fit1: M=0.45. Fit 2: M=0.27). 

 

 

 

 



 

 

 

 

 


