
Contour-based cane extraction for 2D vine
modelling

November 11, 2013

Jared Klopper
jjk52@uclive.ac.nz

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand

Supervisor: Richard Green
richard.green@canterbury.ac.nz

Abstract

Modelling grape-vines from a two-dimensional image has a number of interesting problems
which have to be overcome. Due to their growth patterns and the surrounding environment vines
tend to grow in ways which result in a large number of occlusions from a single perspective,
making identification difficult. In addition the presence of wires, posts and other foreign objects
increase complexity. We propose a method which uses the contours extracted from an image
to identify canes. An emphasis has been made on identifying only sections of canes which are
not occluded. Our method extracts the contours, creates a model of all edges and pairs up edges
which contain similar properties such as their width and direction. High quality edge pairs are
then selected to produce partial cane models. These models have been quantitatively assessed
by comparing their structure to near perfect hand drawn versions. From this analysis we have
found a mean overall accuracy of 71.3% (σ = 5.9%) for all images used in our study. These
results are promising as the models produced have a high correspondence with the ground truth,
although are missing some information. Finally we propose several techniques which could be
investigated in the future in order to further improve the accuracy and reliability of our method.

Acknowledgements
Richard Green and Tom Botterill for their constant support and help throughout the year on this
project.

Contents

1 Introduction 4
1.1 Report Outline . 5

2 Related work 6
2.1 Motivation . 6
2.2 Skeletonization . 7
2.3 Expectation maximization . 7
2.4 Segmentation . 9
2.5 Plant and tree reconstruction . 10

3 Implementation 11
3.1 Image pre-processing . 11
3.2 Contour Extraction and Approximation . 11
3.3 Association criteria . 13

3.3.1 Associations vs. Simplification . 13
3.3.2 Near Straight Lines . 14
3.3.3 Buds and Tendrils . 15
3.3.4 Weighted directions . 17

3.4 Edge pairing . 18
3.5 Cane modelling . 19

4 Results 22
4.1 Overall accuracy . 22
4.2 Error rate . 24
4.3 Performance . 24
4.4 Results . 24

5 Discussion 26
5.1 Accuracy . 26
5.2 Skeletonization comparison . 27
5.3 Performance . 28

6 Limitations and Future Work 29
6.1 Hole Detection . 29
6.2 Parameter selection . 30
6.3 Occlusion resolution . 30
6.4 Performance . 32

2

CONTENTS 3

7 Conclusions 33

Bibliography 36

1 Introduction

The automated robot pruning project aims to develop a system capable of pruning vines in com-
mercial vineyards without human aid through the use of computer vision [3]. The project makes
use of several camera’s to detect features such as canes, posts, wires and other debris within a
single image. Prior work has been done on detecting canes from these images, however they
have not been suitable for practical use. As a result simulated vines are currently being used
within the project [3]. In order to begin reconstructing a 3D model of the plant, canes need to be
detected within individual frames. It is however not necessary to detect every single cane within
a frame, as missing information is preferable to errors in this instance.

Previous work has been done in extracting the structure of vines from images. A variety of
skeletonisation methods have been analysed, however none of them produced skeletons which
could be directly used for reconstructing the 3D model [11].

Recently additional research has been conducted into the use of expectation maximization for
modelling vines [18, 17]. This approach has showcased promising results, however there is op-
portunity for improving upon this. Run-time performance of the split-and-merge implementation
is not real-time, however effective initialisation of the algorithm may speed it up sufficiently. Any
pre-processing steps for producing initial models has to be efficient such that the resulting over-
head is minimal. Additionally the models produced for initialisation need to be as error-free as
possible in order to reduce the amount of work required and increase overall accuracy.

In this paper we propose a technique for automatically extracting the structure of vines from
2D images using a simple rule based system. Our approach makes use of edge information
from a background subtracted image of the plants. These edges are then iteratively joined using
a number of simple rules, forming fully associated edges of canes. Cane edges are paired up
and a model is produced. A quantitative analysis of these models is performed, and several
enhancements which could be made in the future to further improve these results are suggested.

4

1.1. REPORT OUTLINE 5

1.1 Report Outline

This report begins with an overview of recent work related to this research. We cover our moti-
vation and the overall importance of this research, including previous research done on skeleton-
isation, expectation maximization, segmentation and general plant and tree reconstruction tech-
niques. Chapter 3 outlines our approach and implementation for reconstructing vines. Chapter
4 contains information about how we have assessed our algorithm and presents the final results.
Chapter 5 contains a brief discussion of these results and their relative comparison to skeleton-
isation methods. Chapter 6 outlines possible future work which could be conducted to improve
our method. Chapter 7 presents our final conclusion.

2 Related work

This chapter contains a review of literature and other related work that has been consulted while
conducting this research. We cover the motivation behind the research, including the project it
is involved with and other related work. In addition we cover skeletonisation algorithms and
expectation maximization to extract the structure of vines. Finally we cover other related work
in the area of reconstructing plants and tree models from 2D images.

2.1 Motivation

This research is a small part of the automated vine pruning project currently being developed.
The project aims to produce a robot which is capable of automatically pruning vines [3]. In
order to accomplish this several components are being developed. The robot has to be capable of
constructing a full 3D model of the vines and the surrounding environment in order to be able to
make pruning decisions and navigate effectively. The vision side consists of detecting features
within 2D images captured from the 3 optical cameras on the rig. Within these 2D frames,
features of interest such as canes, posts, wires and vineyard debris are detected. These features
are then tracked between subsequent frames in order to build up a 3D model of the environment.
Using this 3D model decisions can be made on how to effectively prune the plant.

In order to reliably reconstruct models of canes in varying environments the robot is equipped
with a full canopy and lighting setup. This reduces the effects of lighting which is often an issue
in vision related work [25]. Additionally laser lines are present which allows depth information
to be calculated [3, 2]. The system is currently capable of detecting posts and wires from the 2D
images [3]. Additionally work has been done to produce a system capable of making pruning
decisions [7] which has shown promising results.

Currently the project is making use of simulated vines when constructing the 3D model [3].
This places an emphasis on reliably extracting the vines from 2D images in order for the rest of
the project to make further progress. Previous work has been undertaken in order to extract the
structure of the vines using skeletonisation [11], however this was found to be inadequate for
use in practice [4]. Currently methods such as image grammars and split-and-merge expectation
maximization techniques are being investigated [17, 18]. The work using an expectation maxi-

6

2.2. SKELETONIZATION 7

mization algorithm could potentially benefit from being seeded with initial locations of canes.

2.2 Skeletonization

Skeletons can be used to model objects which possess a network-like structure in nature. Skele-
tonisation involves the extraction of a skeleton from a binary digital image [11]. Skeletonisation
algorithms can be split into two categories, discrete and continuous [13]. These algorithms have
been used on images containing a wide variety of objects; including those containing plants and
trees. Skeletonisation algorithms aim to produce skeletons which accurately represent the topol-
ogy of structures present within the original image. A high quality skeleton will preserve the
connectivity of the original structure, while also being both well localized and thin. These mod-
els can then be analysed and used within the application, for tasks such such as reconstructing a
handwritten document in digital format, or building up a 3D model of the branches within a tree.

Previously Gittoes and Botterill [11] have analysed the application of skeletonisation algorithms
in producing models of vines from a 2D image. In their research 5 discrete and 5 continuous
skeletonisation methods were implemented and evaluated. The skeletons produced by all of
these algorithms were compared against hand drawn ground truths. Metrics for measuring the
accuracy, connectedness and thinness of the skeletons were implemented and used to quantita-
tively assess the skeletons. Of these algorithms they found that morphological thinning combined
with an active contour model using a blurred vine image to be the most suitable skeletonisation
method. This was due to the comparatively high accuracy relative to the other algorithms evalu-
ated. An example image produced by this method can be seen in Figure 2.1.

These skeletons have not been used within the pruning project due to a number of issues. The
resulting skeletons often contain errors which are caused by the presence of junk and noise within
the image [4]. In addition the algorithms are not scale invariant and produce different models
from the same image at different resolutions. In [6] and [12] skeletonisation methods have been
assessed for their usefulness in modelling plants, with similar results. It is therefore desirable
for any method developed to be capable of coping with any noise or junk which may be present
within the image. In these situations it is preferable to omit the information, rather than produce
best guesses which may result in errors.

2.3 Expectation maximization

In [17] a framework using expectation-maximization (EM) for segmenting 2D vine images has
been proposed. This approach involves defining a probabilistic model which is used to repre-
sent segments of canes. Using this model a probability that a pixel belongs to a model can be
calculated, based on the pixels distance to the model. With the models defined expectation max-
imization is then performed using the binary image containing the canes. In order to use the

2.3. EXPECTATION MAXIMIZATION 8

(a) Original colour image (b) Skeleton produced with crossing-points resolved

Figure 2.1: Example input image and the resulting skeleton produced [11].

expectation maximization framework on a given input image, a set of initial models for canes
has to be created. Both the parameters for the models, as well as the number of models to be
initialised have to be chosen. The authors have found that this initialisation process is critical in
producing a high quality segmentation of canes as a poor initialisation will result in the algorithm
becoming stuck in a local maximum [17]. In this system initialisation has been done manually by
the user. This approach was found to produce the best results, however this will not be feasible
for use in an autonomous vine pruning robot.

In [18] this system has been further enhanced, using a split-and-merge approach as originally
proposed in [27]. This allows EM to run, while altering the number of models between iterations.
Splitting involves creating new models from an existing one which does not fit its data points
well. Merging is performed on multiple models which bare similar properties. This step reduces
the risk of the system getting stuck in a local maximum, which was one of the main issues of the
first approach. In order to reduce the effects of poor initialisation random-restarts have been used.
This involves randomly selecting the parameters of the initial models. This is done repeatedly
and the solution which contains models which have the best fit relative to all others is selected.

The use of random restarts has shown to be more effective than heuristics previously used in
[17]. Despite these improvements, additional work can be done to provide a more accurate set
of initial parameters. This will likely improve the final results after running the EM method with
split-and-merge included. It is hoped that the results of our research may be beneficial for the
use in initialising a higher level algorithm such as this.

2.4. SEGMENTATION 9

Figure 2.2: Expectation maximization convergence using a gaussian model [17].

2.4 Segmentation

Previously Flowers [10] has investigated the use of a variety of segmentation methods for use
on images of vines. A selection of 5 different segmentation techniques used within related fields
were evaluated on images of vines with posts, wires, canes present. Ground truth segmentation
images were constructed from the images and these were then used to calculate the accuracy of
segmentations produced. Mean-shift clustering was found to be the most appropriate algorithm
due its high accuracy and variable number of clusters created. An accuracy of 99% was found
using mean-shift on their test images.

Despite creating highly accurate segmentations with a variable amount of these segments in an
image, we have not made use of mean-shift segmentation as a pre-processing step. The resulting
segments produced have not been classified into vine, post or other objects within the scene. This
makes it difficult to directly use this output in our research without investigating how accurately
these segments correlate to actual regions within the original image. Given the proportionally
high number of segments created, a mean of 6,587 in their analysis for images of 160x160
(25,600 pixels total), it seems that the image has been over-segmented. In addition to this, within
their evaluation they have not made use of full resolution images, but rather smaller 160x160
sections of the original image. We will be working with full images of the plant at a resolution
of 960x1280 and it is unclear on how well these methods will perform in this setup. Additionally

2.5. PLANT AND TREE RECONSTRUCTION 10

the current run-time performance of these algorithms is too slow even on these smaller images for
use within a real time system [10]. Runtime performance is important as this segmentation would
be used as a pre-processing step and therefore needs to have a minimal amount of overhead.

2.5 Plant and tree reconstruction

There has been much research in the area of plant and tree based reconstruction. This research
focuses on constructing a model of the plant using a wide variety of inputs such 2D images, point
clouds, laser lines and manual user input. The main goal of such works is to accurately reproduce
a 3D model of the plant, including both its branch structure and foliage. The automatic recreation
of the plants branch structure is of most interest to us.

In [20] Quan and Tan propose a system which can be used to automatically generate models of
smaller plants. Their approach uses structure from motion to automatically generate a 3D point
cloud of the plant [16]. These points are then segmented using a graph partitioning algorithm,
the results of which are refined by user input. Branch reconstruction is done manually by the
user using a specialised tool to assign leaves as well as create the branch hierarchy. This system
has since been enhanced by Tan et al. [26]. The enhanced system is capable of reconstructing
full trees, including automatically identifying portions of the branch structure and its foliage.
Branch structure extraction is performed using a graph construction algorithm which assigns 3D
points to branch nodes based on their distances to neighbouring points. This branch structure
is then manually refined by the user in order to resolve issues such as occlusions and missing
information. An example of the inputs, intermediate states and the final model produced can
be seen in Figure 2.3. Despite the improvements made to their system, it still relies on manual
user input in order to fully reconstruct the tree, which would not be suitable in a fully automated
system such as the one we are developing.

Figure 2.3: Example of a tree being reconstructed as produced by [26]. From left to right: 1 of 18
input images, fully reconstructed branch structure, fully reconstructed tree, tree from a different
perspective.

3 Implementation

This chapter contains the details of the proposed method we have implemented for extracting the
structure of the vine from a 2D image. Our approach works by extracting the edge information
from a background seperated image. These edges are then iteratively joined using a set of rules.
Finally models of the canes are produced by selecting edge pairs which best match a set of
criteria.

3.1 Image pre-processing

The input to our system is a 2D image captured by one of the three optical cameras on the robot.
Background separation is then performed, resulting in a grey scale image where the intensity of
each pixel is the probability that it is in the foreground. Background separation is performed
using Bayes formula. In addition to this, all wire pixels have been removed from the image using
the current wire detector. Both of these methods were previously developed by Botterill and
Green [3] and their details are beyond the scope of this report. Finally the image is converted to a
binary image, where all pixels with a foreground probability larger than 0.5 are set to 1, enabling
us to perform contour extraction. An example background segmented image with wires removed
can be seen in Figure 3.1a.

3.2 Contour Extraction and Approximation

Using the pre-processed, background separated image we can extract the topological information
of the vines by performing contour extraction. This provides us with information about regions
within the image, including their hierarchical relationship with one another. This information
is the basis for our vine modelling method. Contour information has been extracted using the
method described in [24], the implementation of which was provided by the OpenCV library [5].
This technique builds upon existing border following algorithms [23], while also constructing a
full hierarchy for all identified regions. This provides us with all pixels that form each border as
well as their corresponding parent region and siblings.

11

3.2. CONTOUR EXTRACTION AND APPROXIMATION 12

(a) Background separated image. (b) Overlaid pruned edge pairs.

Figure 3.1: Greyscale image after performing background subtraction, along with the extracted
contours which have been approximated into line segments. Line segment colours are based off
of their direction.

3.3. ASSOCIATION CRITERIA 13

After performing contour extraction we make use of the Ramer-Douglas-Peucker [21, 8] algo-
rithm in order to generate line segments which consist of a minimal number of points, without
significant variation from the original contour. This step is performed in order to reduce the
amount of data and move to a higher level of abstraction. By forming line segments from these
pixels we can obtain a richer representation of the contour. This enables us to make decisions
based on the length and direction of the line segments. The Ramer-Douglas-Peucker algorithm
achieves this by recursively simplifying the set of points into lines. The start and end point for
the original contour are selected as points to be kept, and the furthest point between these is
found. If the distance between the line segment and this point is greater than the error threshold,
this point is kept, and the two new resulting line segments are subdivided. This continues until
we are left with a simplified representation of the original set of points.

From the approximated line segments we are also able to calculate the direction that the segment
is oriented within a range of 0−360◦. Having the orientation expressed within this range enables
us to determine whether segments are running parallel, and whether they are oriented in opposing
directions. This is necessary, as it aids in the identification of opposing cane edges, which are
oriented in such a way that they will run in the opposite direction.

3.3 Association criteria

The edge association portion of the method plays a critical role in the overall process of building
a model of the cane segment. This step consists of a series of processes which attempt to identify
single, unoccluded edges along a single cane segment. During this stage only line segments and
their neighbours are considered. Line segments consist of two ordered points, representing the
pixel locations on the image. Using these lists of segments, the relationships of the segments with
their neighbours are used to build up associations between segments. These built up associations
can then be used at a later stage when creating edge pairs and modelling the cane segment.

3.3.1 Associations vs. Simplification

In order to build a model of candidate edges for each cane, two approaches were implemented.
The first implementation involved iteratively simplifying sets of line segments, while our second
approach built up associated segment sets.

Simplification involved merging all connected line segments involved into a new, single line
segment. For this method both the straight line detector and bud detector were implemented.
If two or more segments were identified as belonging to a bud or straight edge, all segments
involved were replaced by a single new line segment which contained the start and end points
for the first and last segments involved, respectively. This method was found to be inadequate,
as it rapidly diverged from the underlying model and this resulted in many poor decisions as it

3.3. ASSOCIATION CRITERIA 14

Figure 3.2: Before and after performing edge association. All buds and growths have been
detected successfully, as denoted by the colours of the line segments.

progressed. An example of the final result after performing segment simplification can be seen
in Figure 3.3

Due the limitations caused by iteratively simplifying line segments we implemented a second
approach using associations only. This approach involved building up associations between in-
dividual line segments without changing or removing any of the original segments. After the
approximation algorithm has generated line segments, each segment is placed into its own set.
As features are detected between individual segments, the union of all segments and their as-
sociations is calculated and assigned to each segment involved. This enables us to distinctly
determine which segments are associated with each other, allows us to build up single edges of
a cane. There are a number of advantages of this approach over iteratively simplifying line seg-
ments. Since the underlying segments are never altered, any association methods which relies
solely on the attributes of the segments, such as their length and direction need only to make a
single pass over the list of line segments, thereby reducing the number of operations. Association
methods which rely on other properties, such as those of the association sets themselves however
will still have to be iteratively run until no features are found.

3.3.2 Near Straight Lines

The first and most simple association method aims to identify connected line segments which
have a similar direction within a specified threshold. Every segment within the contour is iterated
over, and the difference in direction between the current and the next connected segment is
calculated. If this difference is minimal, associate them together. By associating segments which
have approximately the same direction we are able to build up much of a single edge along the

3.3. ASSOCIATION CRITERIA 15

(a) Original extracted contours. (b) Resulting simplified segments.

Figure 3.3: The result of performing segment simplification. The final image does not resemble
the original set of contours very well, which makes identifying canes very difficult.

cane, generally only stopping at points of occlusion or large growths. This is the most simple
detector and accounts for the majority of associations built within the edge association phase.
Since we are not altering any of the underlying information when building associations, this step
can be performed in a single pass for each contour extracted. It is worth noting that the segments
that belong to the contour form a cycle. We therefore only check the next connected segment to
avoid redundant operations.

3.3.3 Buds and Tendrils

Canes often have buds, tendrils or other growths coming off of them. These growths are generally
small and dont alter the shape of the cane significantly. In order to reliably detect the full edge
of the cane these growths need to be considered when associating segments. To accomplish this
a bud detector has been developed which is capable of identifying a variety of buds and growths.
The outline of our implementation can be seen in Algorithm 1.

The algorithm attempts to identify segments which lie within a short distance of each other
and run along in an approximately similar distance. In order to accomplish this, the algorithm
repeatedly iterates over all segments within the contour and selects the Nth connected segmented
ahead of the current. The value of N is incremented between iterations up until a predefined

3.3. ASSOCIATION CRITERIA 16

Algorithm 1: Bud detection
for i = 1 to N do

foreach contour in image do
foreach segment in contour do

comparisonSegment = currentSegment.skip(i);
distance = 0;
foreach segment in-between current and comparison do

distance += segment.length;
end foreach

directionDi f f erence = abs(currentSegment.direction -
comparisonSegment.direction);
if directionDifference < DirectionThreshold and totalDistance <
MaxDistance then

Associate all segments in-between current and comparison;
end if

end foreach
end foreach

end for

maximum. Changing N is necessary as buds may consist of as few as 2 or as many as 10 or more
segments. After selecting this segment the cumulative length of all segments between the current
segment and the selected segment is calculated. If this distance is small, and the difference
in heading between the current and selected segment is minimal, we can associate the current
segment, the selected segment, and all segments in-between. This can be seen more clearly in
Figure 3.4.

Figure 3.4: Bud detection with N = 3. The two red segments have their direction compared and
the total length of the green segments is calculated. Since Both red segments run in the same
direction, and the cumulative distance covered by the green segments is minimal, all segments
involved will become associated.

3.3. ASSOCIATION CRITERIA 17

(a) Background sub-
tracted segment

(b) Resulting edge
associations

Figure 3.5: Without the length constraint, the feature detector would incorrectly classify the pink
and blue edges as a bud.

This method of detecting buds and other growths relies on the fact that buds generally form a set
of small connected segments which shortly return back to the main cane and then continue ap-
proximately in the original direction. We limit the cumulative length of all intermediate segments
in order to prevent false positive detections due to occlusions of other branches and objects. An
example of this can be seen in Figure 3.5, where a straight branch of another cane could have
been falsely identified without the length constraint. Since this feature detector does not alter the
underlying segments being compared, it is performed in a fixed number of passes.

3.3.4 Weighted directions

Our final edge association method works on the entire segment association sets, rather than
individual segments and their local neighbourhood. This algorithm attempts to associate entire
sets based on their overall average weighted direction of the individual segments comprising
the set. This is necessary as the bud detector can fail on cases where the first and last segment
forming the bud do not quite align with respect to their direction, despite the overall structure of
the segments running approximately in the same direction. By calculating the weighted average
distance for the entire set we can reduce the impact short bud segments have on the overall
decision making process. This is desirable as buds tend to run in directions which do not coincide
with the overall direction that the cane is growing in and therefore should have less weight on
the decision.

Our implementation works by iterating over all segments within each contour of the image.
For each segment, the current segment and the following segment are considered. If these seg-

3.4. EDGE PAIRING 18

Algorithm 2: Weighted directions
foreach contour in image do

while Associations made or first iteration do
foreach segment in contour do

nextsegment = currentSegment.next();
if currentSegment is not associated with nextSegment then

if difference in weighted direction between current and next is acceptable
then

associate the two segments and their sets;
end if

end if
end foreach

end while
end foreach

ments are not currently associated, we calculate the weighted average direction for both of these
segments and all the other segments associated with them. If the difference between the two
weighted directions for both segment sets is within a threshold, we merge the two sets together.
This is done repetitively until no sets with similar weighted average directions can be merged.
Unlike the straight line and bud detectors this method makes a variable number of passes over
the set. This is due to the fact that the underlying information, the overall weighted direction of
segment sets changes whenever a merge is performed.

3.4 Edge pairing

After all the feature detectors have executed most individual line segments will have been merged
into distinct sets forming their associations. These sets generally form single edges along the side
of the cane up until points of occlusion. It is now necessary to start building up models of the
cane section using these segment sets. The first step in this process involves attempting to identify
edge pairs which match the following criteria.

1. Pairs have a minimal distance apart

2. Run in opposite directions, being roughly parallel.

3. Do not match holes in the original image.

An ideal edge-pair will have a very minimal overall distance between the two opposing edges,
run in opposing directions and not match a hole. Distance should be minimised as canes tend to

3.5. CANE MODELLING 19

have a relatively consistent thickness without significant variation. During the contour extraction
and approximation stage, contours are extracted in a clockwise order. This gives us the guarantee
that any opposing edge will be oriented in the opposing direction. Finally when pairing edges,
we do not want to match holes. Holes are defined as areas where there is no cane in-between the
two edges.

The following method has been used to match edge pairs together. Every segment set is iterated
over, and compared with all other sets. Set comparisons are performed by iterating over each
segment within the set. For each segment, we find the closest point in the candidate set relative
to the start and end point for the current segment. Using this we can calculate the distance from
that point as well as the difference in direction. This enables us to calculate an average distance
and difference in overall direction between the two sets, enabling us to determine how well the
pair match. This process can be seen in Figure 3.7a.

After comparing all segment sets with one another we can then select pairs which match. In
order for a match to be made, the two segments must have an average distance less than a certain
threshold and their difference in direction must be approximately 180◦. Finally both segment
sets must agree on each other being the best candidate. This is necessary in order to prevent any
segment sets from being used in multiple models.

The final criteria when creating edge pairs is to not match holes. Holes are contours which
surround a blank area within the image, an area in which there are no foreground pixels. Holes
can often be erroneously identified as canes when there are two or more canes running parallel
to one another. When this occurs, it is ambiguous as to which edges should be paired together, as
they will all tend to be running in opposing with similar distances between one another. In order
to prevent this from occurring the contour hierarchy is used to determine whether two segment
sets are likely to surround a hole. By using the hierarchy we will not match any two segment sets
which are both interior contours, as this guarantees that the area between them is a hole. This
prevents the majority of holes being selected as edge pairs without any need to refer back to the
original image.

3.5 Cane modelling

Using the edge pairs selected in the previous step it is now possible to generate models of the
cane. Prior to generating the model we have found it necessary to partially remove segments
from either pair that are too far from the opposing side. This is done by finding the closest point
on the opposing edge for every segment. If the closest point is beyond a threshold distance, we
remove this segment from the pair. This is necessary as edges of the cane may have sprouts or
other growths coming off of it, which results in segments beyond the growth not being associated
together. This step can be seen in Figure 3.6.

Creation of the model is performed in a manner baring much resemblance to the edge pairing

3.5. CANE MODELLING 20

(a) Resulting edge pairs. (b) Overlaid pruned edge pairs.

Figure 3.6: Edge pairs before and after pruning off segments which do not correspond well with
the opposing edge. Red segments in the first image denote segments which have not been paired
up.

3.5. CANE MODELLING 21

(a) Edge pairing procedure. (b) Model creation.

Figure 3.7: Edge pairs are compared using their joints and their average difference in direction.
A model of these pairs is then created using the midpoints between segment joints.

procedure. For each pair of segment sets, we iterate over all segments in both pairs. For every
segment we calculate the closest point on the opposing segment set for both the start and end
point of the segment. The midpoint between these is calculated and this is used as a point in the
generated model. The distance can also be stored in order to retain width information about the
cane at every control point. All points are then sorted along the Y axis, and this forms the model
of the cane. Figure 3.7b visually demonstrates this procedure.

4 Results

This chapter contains the quantitative results of our evaluation of the method described in Chapter
3. We have selected two methods for assessing the cane models produced, both of which rely
on comparison against ground truth models. These methods provide insight into how well the
developed method performs, with a focus on either overall accuracy or error rate.

In order to determine how effective our method for identifying canes is, we need to a way to
quantitatively compare its output with the ideal models. Since there are no methods for reliably
and accurately identifying canes automatically we will be comparing our results with hand drawn
ground truth models. To accomplish this a set of 8 distinct images of vines from our robot have
been selected. This set consists of a variety of images, including different plant species as well as
significantly different perspectives of the same plant. For all of these images we have created a
separate ground truth version which has the centre of the cane marked out in red. When creating
these ground truth images we have marked out pixels which we believe best correspond to the
centre point of the cane. Areas in which it is ambiguous as to whether a cane is present or at
points of occlusion have been omitted in our ground truths. An example of our generated models
and the corresponding ground truth can be seen in Figure 4.1. Using these ground truth images
we can calculate the level of correspondence our generated models have.

4.1 Overall accuracy

Previously Gittoes et al. [11] have measured the accuracy, connectivity and thickness of skeletons
that were generated in order to model vines. Of these metrics, only accuracy can be applied to
the models our algorithm produces. Connectivity is not an issue in our generated models, as they
are all inherently connected up until points of occlusion, which we do not resolve. As a result
we have not included this metric within our analysis.

Thickness was previously used to measure the mean width of the generated skeleton, where the
ideal thickness was 1 pixel wide. Our method generates models which are a single pixel wide;
therefore including this metric into our analysis would be redundant.

The method used in [11] to measure accuracy is an adaptation of earlier work in quantitatively
assessing the quality of skeletons [14, 15]. Their method involves calculating the mean distance

22

4.1. OVERALL ACCURACY 23

(a) Generated models. (b) Hand drawn ground truth.

Figure 4.1: An example of our generated models alongside the corresponding hand drawn ground
truth.

between pixels on the generated image and the hand made ground truth. In [11] this has been
slightly altered and instead is expressed as a percentage rather than distance.

Sg,t =
1
2
(
Mg,t

Ng
+

Mt,g

Nt
) (4.1)

Equation 4.1 calculates the overall accuracy of a generated model, g and the corresponding truth,
t. In the equation Mg,t is the number of pixels in the generated model that correspond to a point
on the ground truth. Ng is the number of pixels in all the ground truth models, while Mg,t is the
number of pixels on the ground truth that have a corresponding pixel on the generated model,
and Nt is again the total number of pixels in the generated models. The result of this, Sg,t is the
similarity between the generated models and the ground truth.

In order to determine whether a pixel in the ground truth or generated models has a corresponding
point, we find the nearest pixel and calculate the distance between them. If this distance is less
than a threshold value, we mark the pixel as found. This step is repeated for all pixels in the
ground truth and generated models. In [11] a value of 4 pixels was used as the threshold distance.
Since we are working with similar images of approximately the same resolution we have used
this value in our analysis as well.

4.2. ERROR RATE 24

4.2 Error rate

In addition to the overall accuracy measure, we have used an additional metric to gauge the
correspondence of our generated models with their ground truth. This equates to only using the
error rate portion of Equation 4.1. Instead of calculating the correspondence of the generated
model to the truth as well as the truth back to skeleton, we only consider how much of our
generated model directly corresponds to points on the truth. This metric is of relevance as we
have focused on reducing errors in our resulting models, rather than producing more models at
the cost of increased errors.

Sc,t =
Mt,g

Nt
(4.2)

Once again the resulting value will be in the range of 0 to 1, where a value of 1 means that
everything generated is completely error free. It is worth noting that this metric is biased towards
generating as few models as possible, however we are not using it to tune the parameters used in
the algorithm.

4.3 Performance

Although run-time performance has not been a focus of this research, we have measured the time
it takes our implementation to identify canes. Results have been collected on a system equipped
with an Intel i5 3470 CPU, 8GB of memory running Windows 8. The results of these timings
can be found in Table 4.1.

4.4 Results

We have used a set of 8 images of various grape vine plants taken from the robot. Using these
images overall accuracy, ground truth correspondence and run-time performance have been mea-
sured. The results for each of the images tested can be seen in Table 4.1. From this we have
calculated an overall average accuracy of 0.713 with a standard deviation of 0.059. Average
correspondence with ground truth was found to be 0.908 with a standard deviation of 0.0414.
Finally average time taken per frame was calculated to be 47.93ms with a standard deviation of
12.12ms.

4.4. RESULTS 25

Image No Overall accuracy Ground truth correspondence Time taken (milliseconds)
1 0.700 0.904 55.81
2 0.645 0.860 25.92
3 0.621 0.825 42.27
4 0.700 0.922 47.45
5 0.690 0.956 63.85
6 0.785 0.944 52.35
7 0.774 0.923 60.71
8 0.789 0.931 35.13
Mean 0.713 0.908 47.93
Standard deviation 0.059 0.0414 12.14

Table 4.1: Overall accuracy, correspondence with ground truth and time taken for all images we
have used.

5 Discussion

This chapter contains an overview of the results found in Chapter 4. Factors such as overall
accuracy, correspondence of models with ground truth and run-time performance are analysed
and discussed. We provide insight into why the method has performed as it has and briefly
mention possible improvements which could be made to address any shortcomings. Finally a
comparison with some of the skeletonisation methods assessed in [11] is made.

5.1 Accuracy

We have measured the overall accuracy of our method using the same process defined in [11].
From this we have found a mean accuracy of 71.3% with a standard deviation of 5.9%. These re-
sults are promising, however it is unlikely they are high enough for use in reliably reconstructing
the 3D model of the canes. There are a number of issues and limitations with the models found
which directly impact our accuracy values. The main reason for the low overall accuracy is the
low number of models generated compared to the number identified in the ground truth. This
is supported by our results for the correspondence with the ground truth. When comparing the
models our method has generated against the ground truth only, we have found a mean accuracy
of 90.8% with a standard deviation of 4.1%. This is significantly higher than the overall accuracy
and supports the claim that the main reason our accuracy is low is due to missing information.
The bulk of the models created do correspond to points within the ground truth. When manually
comparing the models produced with the ground truth, in some cases our method has identified
cane portions which are not marked in the ground truth, but could potentially be canes. This can
be seen in Figure 5.1. When creating the ground truth images, portions of cane which appeared
ambiguous were omitted.

(a) Possible piece of cane. (b) Identified model.

Figure 5.1: A model which does not correspond to anything in the ground truth, thus resulting in
a reduction in measured accuracy.

26

5.2. SKELETONIZATION COMPARISON 27

This result is promising as it means that the majority of the models identified are correct. It may
therefore be possible to make use of the models we have identified as initial locations for a higher
level algorithm such as the one in [18]. Additionally there are a number of improvements which
can be made to reduce the missing information in our models. Some of the main improvements
which could be investigated are outlined in Chapter 6.

5.2 Skeletonization comparison

In [11] several skeletonisation methods have been quantitatively assessed for their use in extract-
ing the structure of vines. Although our approach does not produce a skeleton, we have extracted
a structure which can be compared with a skeleton. As a result we have made use of the same
accuracy metrics in our research. This has enabled us to compare our results with prior research,
allowing us to gauge the relative performance of our method. Figure 5.2 contains the overall
accuracy of the skeletonisation algorithms assessed in [11] alongside our own. Error bars are for
a 95% confidence interval.

Figure 5.2: Overall accuracy of our method compared with skeletonization methods on vines as
conducted in [11]

From the figure we can see that our method had a lower mean overall accuracy when compared
to both the graph building and the snakes with crossing point resolution using the blurred image
skeletonisation methods, while scoring higher than the rest of the skeletonisation methods. De-
spite this there is insufficient evidence to suggest that there is a significant difference between
these methods using a 95% confidence interval. It is likely that with the changes proposed in
Chapter 6 that our approach will surpass the usefulness of these skeletonisation methods when

5.3. PERFORMANCE 28

modelling vines.

5.3 Performance

Currently the three cameras on the robot capture frames at a rate of 7.5 per second [3]. Therefore
in order for the system to run in real-time as the robot moves along the plant features within an
individual frame should be extracted within a period of 133ms, assuming that the three frames
can be processed concurrently. Using our set of 8 images, we found the mean runtime to be
47.93ms, with a standard deviation of 12.14ms. This enables our system to process images at
a rate of 20.8 frames per second on average, which is above the minimum rate of 7.5 that the
system currently records at. In addition our method operates independently of other frames and
therefore could be applied in parallel for each of the cameras equipped on the robot. If our
method is used as pre-processing step for an algorithm such as the one currently being developed
in [18], it would be a necessity for the runtime of it to be minimal.

6 Limitations and Future Work

In this report we have described our implementation of an algorithm which makes use of con-
tour information in order to construct partial models of canes using the topological information
extracted from these contours exclusively. This method has been shown to be capable of ex-
tracting much of the canes structure; however there are a number of improvements which could
be made in the future in order to further increase the accuracy of the algorithm. Some of these
improvements include changing the hole detection method, automatically tuning parameters and
resolving occlusions.

6.1 Hole Detection

Holes are regions in the image which surround black, empty pixels which have been classified as
the background. In our system these are regions which are fully surrounded by canes and other
objects within the image. When matching edge pairs in order to model the cane it is important to
not match two pairs which surround a hole. Our current implementation attempts to avoid this by
making use of the hierarchy provided when extracting contours. This successfully eliminates the
majority of holes being matched, however it is still possible for two edges surrounding an empty
region to be incorrectly paired up. Figure 6.1 demonstrates this. In this example the algorithm
has matched two edges which surround a blank area within the image, but are not a hole as
defined by the hierarchy.

This is because both of these edges belong to the same contour which has no parent, making
it a viable match. In situations such as these it is not possible to determine if the matched pair
surrounds a hole in the image using the contour hierarchy alone. In order to prevent this from
occurring additional checks should be made. The most intuitively obvious approach would be to
make use of texture information available in the original image. If the control points of the mod-
elled cane produced by the edge pair results in the majority of points falling on pixels which are
black, we have likely matched two edges surrounding a hole. Any methods for improving hole
detection will result in a reduction in the error rate of the algorithm, therefore further exploration
into this will be valuable.

29

6.2. PARAMETER SELECTION 30

(a) Extracted contours (b) Resulting models

Figure 6.1: An example of the current method of hole detection failing. The yellow cane model
falls between the area inbetween two different canes.

6.2 Parameter selection

Our current implementation relies on a number of parameters to be selected in order for the algo-
rithm to work as expected. These parameters are mostly related to distance and angle thresholds
used when associating edges, pruning segments and selecting edge pairs. For this implemen-
tation we have manually selected the parameters that appeared to work best for the images we
tested against, using the overall accuracy as a benchmark. An alternative approach to this would
be to automatically tune these parameters using a separate cost function. This would enable the
algorithm to be rapidly adopted for use in a different setup with varying image resolutions and
other properties.

Within the current implementation all distances are measured using pixel distances. This means
that the choice of parameters for distance values is directly tied to the resolution of the image
and the distance from the camera to the vines. When attempting to pair up edges, we make use
of the average distance between all joints along the two edges. An alternative to this could make
use of the standard deviation instead, making this portion of the algorithm scale invariant.

6.3 Occlusion resolution

In this report we have outlined a method for detecting cane regions and building models of
them through the use of contours and the resulting line segments which form the edges of the

6.3. OCCLUSION RESOLUTION 31

(a) Extracted
contours

(b) Resulting
models

Figure 6.2: Cane segments have been identified succesfully up to points of occlusion, which have
not been resolved.

cane. When building up the edge information for the side of the cane, only segments which are
directly connected and within the same contour are considered while performing associations.
This introduces a limitation in that the algorithm is unable to fully reconstruct canes in which
parts of them are occluded by other objects within the image. This is because occlusions often
result in the contour extending around the borders of the occluded region, as show in Figure 6.2a.
This makes it impossible for our method to resolve occlusions, resulting in separate partial cane
models for regions between occlusions. All of the images in our data-set have had at least a
single pair of vines which have occluded one another. It is therefore desirable for the algorithm
to be able to detect and resolve these occlusions when they occur.

One approach which could be investigated would involve iteratively joining existing models
which have been produced by our current method. By comparing both the straight line distance
and the difference in average weighted directions of the models, it may be possible to reliably
join models which have occlusions between them. This approach would work specifically in
instances where the algorithm has been able to reliably produce full models between points of
occlusions, such as those highlighted in yellow in Figure 6.2b.

Additionally improvements could be made to the edge association portion of the algorithm. After
performing all straight line and bud associations, a new cross contour association method could
be applied. This step would likely involve individually comparing two straight line segments,
scoring their likelihood of belonging to a single cane based on their distance apart, as well as
factoring in the difference in average weighted direction of their segment sets and any other
relevant properties. This would enable the algorithm to determine where the cane edge exists

6.4. PERFORMANCE 32

in regions where it may be occluded. In addition it would also enable full reconstruction of
canes without any changes being made to the current edge pairing and model reconstruction
implementation.

6.4 Performance

As mentioned in Chapter 4, we have no placed an emphasis on runtime performance of our
method during implementation. As a result there is much which can be improved in our im-
plementation in order to drastically improve its performance. Future research could involve
thoroughly exploring the runtime performance of our method. This would involve rigidly mea-
suring the performance and determining what factors negatively affect it. Additionally methods
for reducing the run time cost of our method could be explored. Spatial partioning data struc-
tures such as Quad trees [9] or k-d trees [1] might prove useful in this regard. Using a spatial data
structure will remove otherwise unnecessary comparisons in several steps within the algorithm.
For example when attempting to match edge pairs, those pairs in which all segments lie beyond
a threshold distance need not ever be compared. By storing all edge-pairs within this structure,
we would be able to efficiently query only those which could feasibly be a valid pair. This would
significantly reduce the number of comparisons performed in this step alone.

7 Conclusions

Within this report we have proposed a new method for extracting the structure of vines from 2D
images. A wide variety of methods have been used in the field of plant modelling and recon-
struction [20, 26, 19, 22], however very few have focused on accurate, automatic reconstruction
of the plants branch structure. More recently work has been undertaken to investigate the use-
fulness of skeletonisation algorithms to model branches in fruit trees [6] and vines [11]. These
skeletonisation methods have been successful in extracting some of the structure, however it has
not been adequate for building up a 3D model of the plants.

Our method uses edge information obtained by using a border extraction algorithm [24] on the
background subtracted image. Using a set of simple rules edges are iteratively joined up based
on their properties. Finally edge pairs are compared and those which possess properties of canes
within the image are transformed into models. This method has been quantitatively assessed
against hand drawn ground truth models which are near perfect. From this we have found a
mean overall accuracy of 71.3% (σ = 5.9%), with 90.8% (σ = 4.1%) of the generated models
matching the ground truth.

These results are promising, but are unlikely to be adequate to be used directly within the re-
construction of the 3D model of the plant. Instead additional improvements which are likely to
increase the number of models detected have been proposed. The majority of these improve-
ments involve increasing the number of models that are extracted, while retaining high accuracy
and low error rates. Resolving points of occlusion, preventing hole matches and improving the
edge association process are all areas which could be explored to further enhance our method.

Alternatively due to the high accuracy of the models our method does identify, as well as the
relatively cheap run-time cost, it is likely that our method could be used to initialise a higher level
algorithm such as expectation maximization [18]. The split-and-merge expectation maximization
algorithm proposed by Marin [18] has shown promising results and could potentially benefit from
the results of this research.

33

Bibliography

[1] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[2] Tom Botterill, Steven Mills, and Richard Green. Design and calibration of a hybrid com-
puter vision and structured light 3d imaging system. In Automation, Robotics and Applica-
tions (ICARA), 2011 5th International Conference on, pages 441–446. IEEE, 2011.

[3] Tom Botterill, Richard Green, and Steven Mills. Reconstructing partially visible models
using stereo vision, structured light, and the g2o framework. In Proceedings of the 27th
Conference on Image and Vision Computing New Zealand, pages 370–375. ACM, 2012.

[4] Tom Botterill, Richard Green, and Steven Mills. Finding a vines structure by bottomup
parsing of cane edges. In Proceedings of Image and Vision Computing New Zealand, 2013.

[5] G. Bradski. Opencv, March 2013. URL http://opencv.org/.

[6] Alexander Bucksch and Stefan Fleck. Automated detection of branch dimensions in woody
skeletons of leafless fruit tree canopies. In SILVILASER, 2009.

[7] Sam Corbett-Davies, Tom Botterill, Richard Green, and Valerie Saxton. An expert system
for automatically pruning vines. In Proceedings of the 27th Conference on Image and
Vision Computing New Zealand, pages 55–60. ACM, 2012.

[8] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: The Interna-
tional Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.

[9] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on
composite keys. Acta informatica, 4(1):1–9, 1974.

[10] Simon Flowers and Richard Green. Low-level Image Segmentation for a Vine Imaging
Robot. Honour’s report, Department of Computer Science and Software Engineering, Uni-
versity of Canterbury, 2012.

[11] Will Gittoes, Tom Botterill, and Richard Green. Quantitative analysis of skeletonisation
algorithms for modelling of branches. In Proceedings of Image and Vision Computing New
Zealand, 2011.

[12] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and
Baoquan Chen. L1-medial skeleton of point cloud.

34

http://opencv.org/

BIBLIOGRAPHY 35

[13] J Komala Lakshmi and M Punithavalli. A survey on skeletons in digital image processing.
In Digital Image Processing, 2009 International Conference on, pages 260–269. IEEE,
2009.

[14] Louisa Lam and Ching Y Suen. Automatic evaluation of skeleton shapes. In Pattern
Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems,
Proceedings., 11th IAPR International Conference on, pages 342–345. IEEE, 1992.

[15] Louisa Lam, Seong-Whan Lee, and Ching Y Suen. Thinning methodologies-a compre-
hensive survey. IEEE Transactions on pattern analysis and machine intelligence, 14(9):
869–885, 1992.

[16] Maxime Lhuillier and Long Quan. A quasi-dense approach to surface reconstruction from
uncalibrated images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27
(3):418–433, 2005.

[17] Ricardo Marin, Tom Botterill, and Richard Green. Segmentation and Hierarchical Structure
Retrieval of Vine Canes From 2D Images. Phd proposal, Department of Computer Science
and Software Engineering, University of Canterbury, 2012.

[18] Ricardo Marin, Tom Botterill, and Richard Green. Split-and-merge em for vine image
segmentation. In Proceedings of Image and Vision Computing New Zealand, 2013.

[19] Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate image-based tree-
modeling using particle flows. In ACM Transactions on Graphics (TOG), volume 26,
page 88. ACM, 2007.

[20] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing Kang. Image-
based plant modeling. In ACM Transactions on Graphics (TOG), volume 25, pages 599–
604. ACM, 2006.

[21] Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1(3):244–256, 1972.

[22] Alex Reche-Martinez, Ignacio Martin, and George Drettakis. Volumetric reconstruction
and interactive rendering of trees from photographs. In ACM Transactions on Graphics
(TOG), volume 23, pages 720–727. ACM, 2004.

[23] Azriel Rosenfeld and Avinash C Kak. Digital picture processing, volume 1. Elsevier, 1982.

[24] Satoshi Suzuki et al. Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.

[25] Richard Szeliski. Computer vision: algorithms and applications. Springer, 2011.

[26] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan. Image-based tree
modeling. ACM Transactions on Graphics (TOG), 26(3):87, 2007.

BIBLIOGRAPHY 36

[27] Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, and Geoffrey E Hinton. Split and
merge em algorithm for improving gaussian mixture density estimates. Journal of VLSI
signal processing systems for signal, image and video technology, 26(1-2):133–140, 2000.

	Introduction
	Report Outline

	Related work
	Motivation
	Skeletonization
	Expectation maximization
	Segmentation
	Plant and tree reconstruction

	Implementation
	Image pre-processing
	Contour Extraction and Approximation
	Association criteria
	Associations vs. Simplification
	Near Straight Lines
	Buds and Tendrils
	Weighted directions

	Edge pairing
	Cane modelling

	Results
	Overall accuracy
	Error rate
	Performance
	Results

	Discussion
	Accuracy
	Skeletonization comparison
	Performance

	Limitations and Future Work
	Hole Detection
	Parameter selection
	Occlusion resolution
	Performance

	Conclusions
	Bibliography

