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SOBOLEV SPACES AND APPROXIMATION BY AFFINE SPANNING 
SYSTEMS 

H.-Q. BUI AND R. S. LAUGESEN 

ABSTRACT. We develop conditions on a Sobolev function 1/; E wm,P(JRd) such that if ;f;(O) = 1 and 
1/; satisfies the Strang-Fix conditions to order m - 1, then a scale averaged approximation formula 
holds for all f E wm,P(JRd): 

1 J 

J(x) = }!..,~} L L Cj,kVJ(ajX - k) 
i=l kEZd 

The dilations { ai} are lacunary, for example ai = 2j, and the coefficients Cj,k are explicit local 
averages of f, or even pointwise sampled values, when J has some smoothness. 

For convergence just in wm-l,P(JRd) the scale averaging is unnecessary and one has the simpler 
formula J(x) = limj-oo I:;kEZd Cj,kVJ(aix-k). The Strang-Fix rates of approximation are recovered. 

As a corollary of the scale averaged formula, we deduce new density or "spanning" criteria for 
the small scale affine system {1/;(aix- k) : j > 0, k E zd} in wm,P(JRd). We also span Sobolev space 
by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian 
affine system span Sobolev space? 

1. Introduction 

We seek conditions on 'I/; under which every Sobolev function f can be approximated explicitly 
by linear combinations of the integer translates and small-scale dilates of 'I/;, that is by linear 
combinations of 'I/;( aix - k) for j > 0, k E 'l!f The dilations ai here are assumed to grow at least 
exponentially; for example ai = 2i. Our work on this approximation problem yields answers to the 
spanning problem of determining whether the '1/;(ajx - k) span Sobolev space. 

We illustrate our results now by stating them in one dimension, for the special case of Sobolev 
functions possessing one derivative. 

Fix 1 :::; p < oo with } + i = 1, take 'I/; E W 1,P and suppose rp E Lq has compact support, for the 
remainder of this Introduction. Also assume 

;f (f) = 0 

or equivalently that I:kEZ '1/;(x - k) = const. 

Approximation results. Write 

for all integers f =/:- 0, 

Jj(x) = L ( r f(a-;1y)rp(y - k) dy) 'lj;(ajX - k) 
kEZ I~. 

for the quasi-interpolant off with analyzer <p and synthesizer 'lj;. Define a local supremum operator 
Qf(x) = IIJIIL""(x-1,x+l)· (See Sections 2 and 3 for more general definitions of Q and Jj.) 

Theorem 1 proves scale averaged convergence for f E W 1•P; 
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f = limJ---->oo J 'l:,f=l Ii if Q'ljJ, Q((l + \xl)1J;') E £ 1 and ;;;(o) = ¢(0) = l. 

(These Q-hypotheses say roughly that 'ljJ and (1 + \xl)1/;' are bounded and decay integrably at 
infinity.) 

Theorem 4 implies the same for the pointwise quasi-interpolant JJ(x) = LkEZ f(a-;- 1k)1j;(ajX-k), 
provided f E W 1,P n C1 with Qf, Q(f') E LP. . 

These two theorems give convergence rate o(l) in the W 1,P norm. For the LP norm, the "Strang­
Fix" rate of convergence O(\ai 1-1) is obtained as expected, by Theorem 6: 

if Q((l + \xl)'ljJ) E £1 and ;;;(o) = ¢(0) = 1 and ¢'(0) = 0, then II! - fi\\p :S 
C\flw1,p\aii- 1 = O(lajl-1) as j _, oo, for each f E W 1,P. 

Spanning results. Corollary 8 deduces that: 

if 1/;' decays like \x1-2-c: at infinity, and ;;;(o) =f 0, then the small scale affine system 
{'1/J(ajX - k) : j > o, k E Z} spans W 1,P. 

Finally, taking derivatives and differences of known spanning systems will generate yet more 
spanning systems, as Proposition 9 and Theorem 10 explain. 

Outline of the paper. The standing assumptions on dilations and translations are established 
in Section 2, along with some definitions. Section 3 gives approximation formulas for wm,P(Rd), 
with relevant literature summarized in Section 3.5. Spanning results are deduced in Section 4. 

Spanning properties of the second difference of the Gaussian are determined in Section 5. Span­
ning properties of the second derivative of the Gaussian, a function known as the Mexican hat, 
remain mostly unknown. This open problem is related in Section 5 to a spanning conjecture for 
the Gaussian 1/;(x) = e-x

2
/

2 itself: does the small scale dyadic system {'1/J(2Jx - k): j > O,k E Z} 
span wm,p7 

The technical core of the paper is in Section 6, where discretized approximate identities are 
studied and scale averaging is introduced through formula (22). Then Theorems 1, 4 and 6 are 
proved in Sections 8, 9 and 11, after which appear the remaining proofs and an appendix about 
the Q-operator. 

Remark. This paper builds on our LP results in (5]. The Hardy space H 1 was treated in [7]. 

2. Definitions and notation 

1. Fix the dimension d EN and write C = [O, l)d for the unit cube in Rd. 
2. Let the dilations aj for j > 0 be nonzero real numbers with \ail -, CX) as j -, oo. Define 

amin = minj>O \aj \. 
Some of our results further assume the dilations grow exponentially, meaning \ai+1I 2 1 \aj\ for 

all j > 0, for some 1 > 1 (so that the dilation sequence is lacunary). 
3. Fix a translation matrix b, assumed to be an invertible d x d real matrix. Some of our 

constants and operators in this paper will depend implicitly on b and the dimension d. 
4. Write LP = LP(JRd) for the class of complex valued functions with finite LP-norm, and 

wm,p = wm,P(Rd) for the Sobolev functions with m derivatives in LP. Given a multiindex µ of 
order \µ\ = µ1 + · · · + µd, we write /(µ) = Dµ, f for the µ-th derivative of f. 

5. Given 'ljJ E LP and <p E Lq, where by convention 

we define 

1 1 - +- = 1, 
p q 

IPj,k(x) = \aj\d/q<jJ(ajX - bk), 
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for j > O,k E zd. These rescalings satisfy 117Pi,kllv = ll7Pllv and ll<Pi,kllq = 11¢11q· 
6. The periodization of a function f is 

Pf(x) = ldetbl L f(x - bk) for x E !Rd. 
kEZd 

If f E L1, then this series for Pf converges absolutely for almost every x, and Pf is locally 
integrable. 

7. Define a local supremum operator 

Qf(x) = ess. suply-xl<V<llf(y)I = llfll£oo(B(x,v'i:l))' 

Appendix A explains some properties of Q f. 
8. Write x(x) = 1 + Jxl and X(x) = x, for x E !Rd. 
9. Define the Fourier transform with 21r in the exponent: f(l) = JJR.d f(x)e- 21rif.x dx, for row 

vectors l E JRd. 
10. A subset U of a topological vector space Vis said to span V if the finite linear combinations 

of elements of U form a dense subset of V, that is if V is equal to 
n 

V-span(U) = closure in V of { L Cm Um: Cm EC, Um EU, n EN}. 
m=l 

3. Approximation results 

In this section we state our two main approximation theorems, for average sampling and pointwise 
sampling respectively, and then we extend them to give rates of approximation. At the end of the 
section we discuss related literature and prior results. 

3.1. Approximation by average sampling. We define an approximation to f at scale j by 

fi(x) = JdetbJ L (f,¢j,k)7Pj,k 

= I det bJ L (ld f(a-; 1y)ip(y - bk) dy) 'ljJ(ajx - bk), 
kEZd JR 

j > o, (1) 

where f is the signal, ¢ is the analyzer and 'ljJ is the synthesizer. To understand fi, suppose 
¢ is a delta function (like in Theorem 4 below); then with b = I we get the quasi-interpolant 
fj(X) = I:kEV f(a"";1k)'ljJ(ajX - k). 

Our first theorem finds conditions under which the Ji provide a good approximation to f. 

Theorem 1. Assume 'ljJ E wm,p for some 1 ::; p < oo, m E N, and suppose one of the following 
conditions holds: 

(i) PJxlµl'lj;(µ) J E Lfoc for all lµI ::; m, and Xm<P E £ 1, and f E c-;;i; 
(ii) Q(xlµl'lj;(µ)) E £ 1 for all lµI ::; m, and</> E Lq with</> having compact support, and f E wm,p. 

Suppose 

for all row vectors£ E zd \ {O}, (2) 

whenever lµI < m. 
Assume fJRd 'ljJ dx = 1 and fJR.d </> dx = 1. Then ( a)-( d) hold: 
(a) (Strang-Fix approximation} If in addition (2) holds whenever lµI = m, then 

f = _lim fj in wm,p. 
J-->00 

(3) 
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(b) (Scale-averaged approximation} If the dilations aj grow exponentially, then 

1 J 
f = lim -J L,fi 

J-,oo 
in wm,p_ 

j=l 

(c) (Stability} If (ii) holds then llfil\wm,p ~ C('I/J, ¢>, m,p)\lfllwm,p for all j > 0. 
( d) (Span} fi E wm,p -span{ 7Pj,k : k E zd} for each j > 0. 

The proof is in Section 8. 

Examples. A decay condition near infinity guarantees hypothesis (i) on '1/J: 

Lemma 2. Let '1/J E wm,p for some 1 ~ p < oo, m E N. If 

for each\µ\= m and almost every x with \xi > R, 

for some constants C, R, E > 0, then P\xlµl1P(µ) I E Lf
0
c for all \µ\ ~ m. 

Hypothesis (ii) holds if 1P and its derivatives are bounded and decay at infinity: 

(4) 

Lemma 3. Let '1/J E wm,oo for some m E N. If decay condition (4) holds, then Q(xlµl'I/J(µ)) E £ 1 

for all \µ\ ~ m. 

Lemma 2 and 3 are proved in Appendix A. 

Notes on Theorem 1. 
The £P result corresponding to Theorem 1 is (5, Theorem l]. The hypotheses there are roughly 

the same as case (i) with m = 0, except that f need not be continuous with compact support. 
Precisely, the £P result assumes that '1/J E £P with Pl'I/JI E Lfoc' ¢> E Lq with Plc/>I E £=, and f E £P. 
The reason our Sobolev result Theorem 1 can only handle f E C"{!', in case (i), boils down to our 
inability to prove a stability estimate in Lemma 11 case (i) for the general function h(x, y). 

Case (ii) assumes more on '1/J than case (i) does (because Q(·) E £ 1 implies Pl · I E L 00 by (6, 
Lemma 23]). But case (ii) has the advantage of applying to all f E wm,p and not just to f E C"{!'. 
Also, case (ii) yields a stability estimate in Theorem l(c). 

We call condition (2) the Strang-Fix condition of order m - 1, in view of the work of Strang and 
Fix in (13, 29, 30] (although historically, Schoenberg (28, Theorem 2] seems to have been the first 
to use the condition, in the context of polynomial interpolation and smoothing in one dimension). 
The Strang-Fix condition can be satisfied formally by putting 

(with m factors of u) (5) 

where u has constant periodization Pu= 1 a.e. (meaning the integer translates of u form a partition 
of unity). Indeed Pu= 1 a.e. implies u(O) = 1 and u(fb-1) = 0 for all f E zd \ {O}, by computing 
the Fourier coefficients of the bZd-periodic function Pu, and thus the Strang-Fix condition (2) 
follows from the fact that ;j; = u · · · ufo. For a different interpretation of the Strang-Fix condition, 
in terms of periodizations of moments of 1P, see Section 7. 

Our methods for Theorem 1 extend to cover dilation matrices aj that expand both exponentially 
(supj>O llaia.i~lll < 1) and nicely (lla;111d ~ Cl deta;11); see [6, §7]. But our method breaks down 

for dilations like ( ~ i) that do not expand nicely. 

Relevant literature for Theorem 1 will be discussed in Section 3.5. 
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3.2. Properties of fj· Observe that Jj discretizes a classical approximation to the identity: 

f(x) = Hm (f * VJ -:-1 )(x) 
J-+-CO aJ 

= _lim r f(z)jajldVJ(aj(X - z)) dz 
J->00 JJR.d 

= Hm r f(a-; 1y)VJ(ajX - y) dy by z = a-;1y 
J->00 JIR.d 

~ ,lim L ( r f(a-; 1y) dy) '!/J(ajX - k) 
J->oo kEZd lk+C 

(6) 

by a Riemann sum approximation. This last line (6) is exactly limj_,00 Jj, with ¢ = :n.c and b = I. 
Caution is required in the Riemann sum approximation step, because we discretize with fixed step 
size 1. Theorem l(a)(b) nonetheless shows the approximation (6) is exact in the wm,p_norm as 
j -, oo provided either 'ljJ satisfies Strang-Fix conditions to order m or else VJ satisfies them to 
order m - 1 and the approximation formula is averaged over all dilation scales. 

Second, we can express f} in terms of an integral kernel as fj(x) = fJR.d Kj(x, y)f(y) dy where 

Kj(x, y) = JaildK(ajx, ajy) and K(x, y) = I detbJ L VJ(x - bk)</J(y - bk). 
kEZd 

The stability estimate in Theorem l(c) says that Kj : wm,p-, wm,p with a norm estimate that is 
independent of j, provided hypothesis (ii) holds. 

3.3. Approximation using pointwise sampling. Now we develop an analogue of Theorem 1 
that uses pointwise sampling. Write 

fJ(x) = I det bl L f(a11bk)'!/J(ajX - bk) (7) 
kEzd 

for the quasi-interpolant off at scale j, sampled on the uniform grid a-;1bzd. The "•" notation 
refers to the pointwise nature of the sampling. 

Theorem 4. Assume VJ E wm,p for some 1 :s; p < oo, m E N, and that Q(xlµIVJ(µ)) E £ 1 for all 
JµI :s; m, and f E wm,p n cm with Q(f(µ)) E LP for all JµI ::; m. Suppose 

Dµ;j(l!b- 1) = 0 for all row vectors I! E zd \ {0}, (8) 

whenever JµJ < m. Assume JJR.d VJdX = 1. Then (a)-(d) hold: 
(a) {Strang-Fix approximation} If in addition (8) holds whenever JµJ = m, then 

f = lim r in wm,p. 
j->oo J 

(b) [Scale-averaged approximation} If the dilations aj grow exponentially, then 

1 J 
f = lim - :z=r in wm,p. 

J--,oo J J 
j=l 

(c) [Stability} llfJllwm,p::; C(VJ,m,p,amin)Z:1µl:S:mllQ(f(µ))Jlv for all j > 0, where amin 

minj>O laj I· 
(d) {Span} fJ E wm,p_span{'l/Jj,k: k E zd} for each j > 0. 

See Section 9 for the proof. 
The cm-smoothness of f in the theorem is convenient, but it could be weakened like in the 

corresponding LP result [5, Theorem 2]. 
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For simplicity, Theorem 4 is stated only with hypothesis (ii) from Theorem 1, although it can 
be proved under hypothesis (i) also. 

3.4. Approximation rates. The preceding two theorems can be adapted to give explicit rates 
of approximation of Ji to f. But we must first construct analyzers and synthesizers with suitably 
normalized moments. 

Lemma 5. Suppose </>, 'l/1 E £ 1 with xmc/>, xm-l'l/1 E £ 1 for some m E N. If JfR.d </> dx =f. 0 and 

fntd 'l/1 dx =I- 0, then there exists a finite set K C zd and coefficients ak, f3k EC fork E K such that 
the linear combinations 

<I>(x) = L ak¢>(x - bk) 
kEK 

satisfy the moment conditions 

r xµ<I>(x) dx = {1 ifµ= o, 
lntd O if O < JµJ::; m, 

and w(x) = I: f3kw(x + bk) 
kEK 

(-xtw(x) dx = Im {
1 ifµ=O, 

Rd O if O < JµJ ::; m - 1. 
(9) 

The proof is in Section 10, along with examples of how to construct the linear combinations for 
<I> and'¥. 

Now we can determine the rate at which fj approximates f E wm,p in the wr,p_norm, for 

0::; r::; m. Recall JfJwr,p = (I:Jµl=r JJDµ fll:f Pis the Sobolev seminorm. 

Theorem 6. Assume '1/J E wm-l,p for some 1 S p < 00 1 m E N, with Q(xm'l/1(µ)) E £ 1 for all 
JµJ < m, and take¢> E Lq with compact support. Suppose 

Dµ;p(eb- 1) = 0 for all row vectors£ E zd \ {O}, 

whenever JµJ < m. 
Assume JfR.d 'l/1 dx =f. 0, JRd q> dx =I- 0, and that W and <I> are as in Lemma 5. 
(a) [Average sampling} If f E wm,p then for each r = 0, 1, ... ,m -1, 

JFi - fJwr,p ::; C('!/J, </>, m,p)JfJwm,pJaiJT-m = O(Jailr-m) for all j > 0, 

where Fj is defined by average sampling with analyzer <I> and synthesizer W: 

Fj(x) = I det bJ L ( rd f(aj 1y)<I>(y - bk) dy) w(ajX - bk) 
kE'J.d JR 

= I <let bJ L ( L nk1f3k2 fmd f(a11y)cp(y - b(k + k1 + k2)) dy) '1/J(ajx - bk). 
kE'J.d k1,k2EK R 

(b) [Pointwise sampling} Suppose f E wm,p n cm and Q(f(µ)) E IJ' for all JµJ ::; m. Then for 
each r = 0, 1, ... , m - 1, 

JFj• - fJwr,p::; C('l/1, m,p, amin) L IIQ(f(µ))llpJajlr-m = O(JajJr-m) 
JµJ=m 

for all j > 0, 

where amin = minj>O lail and FJ is defined by uniform pointwise sampling with synthesizer W: 
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The theorem is proved in Section 11. 

Remarks on Theorem 6. 
1. Theorems 1 and 4 can give further information on Fj and FJ, such as stability estimates. 
2. Theorem 6 does not consider case (i) of Theorem 1, because stability estimates underpin the 

proof and we only know stability in case (ii). 
3. The scale averaging technique in Theorems l(b) and 4(b) does not help obtain rates of 

approximation. The problem, when one digs into the proofs, is that the scale averaged periodiza­
tion j L,f=l P'lj;(ajx) will generally fail to converge uniformly to its mean value; in particular, 
convergence fails at x = 0 if P'lj;(O) is not equal to the mean value and P'ljJ is continuous. 

4. Theorem 6(a) implies that Fj - fin wm-l,P, so that the 1Pj,k span wm,p using the wm-l,p_ 
norm. In fact the 1Pj,k span wm,p in its own norm, by Corollary 7. This illustrates the "gain of one 
order" provided by scale averaging, in our work. 

3.5. The Sobolev approximation literature and prior results. 

Overview. Our main contribution in Section 3 is the scale averaged approximation in Theorem l(b), 
which is genuinely new. 

The pointwise sampling results in Theorem 4 and Theorem 6(b) seem also to be new. 
The average sampling results (big-0 approximation rates) in Theorem 6(a) are essentially known. 

Detailed discussion. We now give a more complete account of the literature, and our contributions. 
The original approximation results in wm,p with fIW.d 'ljJ dx -/=- 0 all assume that p = 2 and 'ljJ 

has compact support. See Babuska (4, Theorem 4.1) and Strang and Fix (30, Theorem I). These 
approximation formulas are not explicit, in the sense that they use sampled values of J, rather than 
of f, to construct an approximation to f by Fourier transform methods. These indirect Fourier 
methods are characteristic of the work of Strang and Fix and most of the papers inspired by them. 
By contrast, we work with explicit quasi-interpolants in this paper, namely the functions /j(x). 

Di Guglielmo had earlier proved an explicit approximation result [16, Theoreme 6) for p = 2, 
provided also 'ljJ is a convolution like in (5) with u being the characteristic function of a unit cube. 
This means u vanishes on the union of hyperplanes {l E JRd : li E Z \ {O} for some i = 1, ... , d}, 
and so,($ vanishes on all these hyperplanes too, instead of just vanishing at the lattice points (where 
hyperplanes intersect) like in the work of Babuska, Strang and Fix. 

For p = 2, these authors all prove big-0 approximation rates that are analogous to our Theo­
rem 6(a). That is, they show an arbitrary f E wm,2 can be approximated in the wr,2 norm at 
rate O(laj 1r-m) as j -t =, for each r = 0, 1, ... , m -1. The best possible result of this kind is due 
to Jetter and Zhou (19, Theorem 1], who completely characterized the functions 'l/; and¢ for which 
these approximation rates can hold, when p = 2. See also Holtz and Ron (18, Theorems 7,9). 

For all 1 ::::; p < oo, Jia (20, Theorem 3.1) has proved analogous approximation rates under the 
assumption that 'l/; and ¢ have compact support. Thus Theorem 6(a) is known already in the 
compactly supported case. Jia's proof is different to ours, although both proofs avoid the Fourier 
transform and hence can treat p -/=- 2 along with p = 2. 

Theorem 6(a) improves on all these results in a technical sense (except for Jetter-Zhou and 
Holtz-Ron when p = 2), because the hypothesis Q(xm'l/J(µ)) E L1 can hold even when 'l/; does not 
have compact support. 

Much more attention has been paid in the literature to the case r = 0 of Theorem 6(a) (approx­
imation of Sobolev functions in the LP-norm) than to the case r > 0 (approximation of Sobolev 
functions in Sobolev norms). See for example [22, §7] for all p, and the references in [18) for p = 2. 

The approximation rates in Theorem 6(b), for pointwise sampling, seem to be new except when 
p = 2, which was considered by Jetter and Zhou [19, Theorem 5) provided m > d/2. When 
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p = oo (uniform approximation), Strang and Fix [30, Theorem III] did use pointwise sampling to 
approximate f in the wr,oo norm, and other authors have smce extended those results. 

Turn now to Theorem 1. Part (a) was essentially proved by Di Guglielmo [16, Theoreme 2'] for 
p ::::: 2, under the strong "convolution" assumption on 'ljJ mentioned above. Notice Theorem l(a) 
only gives convergence at the rate o(l), although to its credit this is accomplished without the 
vanishing moment assumption on the analyzer and synthesizer needed in Theorem 6. 

Theorem l(b) proves scale averaged convergence, which is new. We are aware of no precedents 
in the Strang-Fix tradition or in related approximation theory. Note that Theorem l(b) gives 
convergence in the wm,p_norm in a situation where Strang-Fix type results like Theorem 6 can 
only prove convergence in the wm-l,P-norm (because the Strang-Fix condition is assumed only to 
order m - 1). The convergence rate in Theorem 1 is merely o(l), but that will later suffice to yield 
interesting spanning results, in Section 4. 

Lastly, Theorem 4 is the analogue of Theorem 1 for approximation in wm,p by pointwise sam­
pling. It seems not to have direct forbears in the literature. 

Additional remarks. Strang and Fix [30, Theorem I] proved a converse saying that the Strang-Fix 
condition to order m - 1 is necessary for approximating an arbitrary f E wm,2 in the wr,2-

norm (for r = 0, 1, ... , m - 1) at rate O(JajJr-m) in a "controlled" fashion by functions of the 
form I::kEZd Cj,k'l/Jj,k· The point of Theorem 6(a) in this paper is to prove sufficient conditions 
under which the quasi-interpolant fi achieves this best possible rate of approximation. We do not 
consider necessary conditions. 

Mikhlin's monograph [26] develops Strang-Fix type approximation results using "primitive func­
tions". Unfortunately the number of such generators must grow with m. 

Maz'ya and Schmidt [23, 24, 27] developed a theory of approximate approximations that can be 
viewed as Strang-Fix theory without the full Strang-Fix conditions. Their approximations possess 
inescapable saturation errors and thus do not actually converge. Nonetheless, Maz'ya and Schmidt 
make a case that the saturation errors can be negligible in practical situations. 

4. Spanning results - synthesizers and their derivatives and differences 

First we deduce spanning results from our earlier approximation theorems. 

Corollary 7. Assume 'ljJ E wm,p for some 1 :::; p < oo, m E N, and suppose PJxlµl'ljJ(µ) J E Lf
0
c for 

all JµJ ~ m. Assume 

for all row vectors e E zd \ {O}, 

whenever JµJ < m. 
If fJRd 'ljJ dx f. 0, then { 'l/Jj,k : j > 0, k E zd} spans wm,p. 

Spanning means the finite linear combinations of the functions 'l/Jj,k are dense in wm,p_ 
The analogous LP spanning result [5, Corollary 1] holds when Pl'l/JI E Lfoc· 

Proof of Corollary 7. The dilations aj can be taken to grow exponentially, by passing to a subse­
quence if necessary. And we can require fJRd 'ljJ dx = 1, since multiplying 'ljJ by a nonzero constant 
does not affect the span of the 'l/Jj,k· Let ¢ be the characteristic function of a unit cube. 

Then the wm,p_span of the 'l/Jj,k contains C-:;1', by Theorem l(b)(d) case (i). By density of c-:;i, 
the 'l/Jj,k therefore span all of wm,p. 0 

Next we conclude that a simple decay condition near infinity suffices for the 'l/Jj,k to span wm,p, 
in conjunction with the Strang-Fix vanishing of the Fourier transform at the lattice points, to order 
m-1. 
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Corollary 8. Assume 'lj; E wm,p for some 1 Sp< oo, m EN, and that 'lj; decays o,ccording to 

1'¢(µl(x)I S Clxl-d-m--< for each lµI = m and all large lxl, 

for some constants C, E > 0. Suppose DµJ(fb- 1) = 0 for all f E zd \ {O} and lµI < m. 
If fJRd '¢ dx =/:- 0, then { '¢j,k : j > 0, k E zd} spans wm,p. 

To prove the corollary, just combine Corollary 7 with Lemma 2. 
The analogous LP result ( m = 0) is in [5, Corollary 2]. We are not aware of any previous spanning 

results of this kind for Sobolev space. 

Our next result spans by derivatives of a given spanning set. 

Proposition 9. Let 1{ c wm,p for some 1 < p < oo, m EN, and suppose 1{ spans wm,p. 
If v is a multiindex of order O < lvl Sm, then the collection {Dvh: h E 1-l} spans wm-\vl,p_ 

The proposition is proved in Section 12. Clearly it fails for p = 1, since fJRd Dv h dx = 0 always. 

Example for Proposition 9. If 'lj; satisfies the hypotheses of Corollary 7 or 8, and 1 < p < oo, then 
the (Dv'l/J)j,k span wm-lvl,P by Proposition 9. In particular, they span LP when lvl = m. 

Note the Fourier transform of our new affine generator Dv'lj; vanishes at all lattice points, with 

Dµ~(fb- 1) = O 

whenever f E zd \ {O} and lµI < m, and also whenever f = 0 andµ< v. 

Our final result shows that in most cases, the span of an affine system is not changed by taking 
differences of the generator. Our notation for first differences is 

D.c,z'¢(x) = 'l/J(x) - c'ljl(x - z), c E <C, x,z E IB.d. 

When c = 1 we simply write D.z'¢(x) = 'lj;(x) - 'ljl(x - z). 

Theorem 10. Suppose 'lj; E wm,p for some 1 Sp S oo, m EN U {O}. Fix j > 0. Take c E <C and 
r. E zd \ {O}. 

If 1 < p < oo or lei =/:- 1, then 

wm,p_span{'l/Jj,k: k E zd} = wm,p_span{(D.c,b,.:'lp)j,k: k E zd}. 

See Section 13 for the proof. Notice LP-spaces are covered by the theorem (when m = 0). 

Example for Theorem 10. Work in dimension d = 1 for simplicity. If'¢ E L00 has compact support 
and JIR 'lj; dx =/:- 0, then the small-scale affine system {'¢j,k : j > 0, k E 'll} spans LP(IB.) for each 
1 S p < oo, by (5, Corollary 2]. Then Theorem 10 with c = 1 and r. = 1 implies that each 
LP(IB.), 1 < p < oo, is also spanned by the small-scale affine systems generated by each of 

D.'ljl(x) = 'lj;(x) - 'ljl(x - b), 

b.2'1j;(x) = 'lj;(x) - 2'¢(x - b) + 'lj;(x - 2b), 

and so on. 
For example the Haar wavelet H = li[o,1; 2) - lir1; 2,1) can be written as a difference H = !b.'¢ of 

the function '¢ = 2li[o,1; 2), provided b = 1/2, and so the oversampled, small-scale Haar system 

{H(2i+Jx- ~k): j > O,k E Z} 

spans LP for 1 < p < oo, for each JEN, by taking aj = 2i+J above. Recall that the Haar system 
{ H (2i x - k) : j E Z, k E 'll} with no oversampling also spans LP [17], though it needs all dilation 
scales j E 'll to do so. 
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Remark. The spanning by differences result in Theorem 10 is weaker (in the interesting case 
c = 1) than the spanning by derivatives result in Proposition 9. For suppose we want to span 
LP. A difference of a function 'lj; E LP will have Fourier transform vanishing on infinitely many 
hyperplanes ( e.g. the unit difference 'lj;(x) -'lj;(x - e1) in the x1 direction has a factor of 1- e-2rri6 

in its Fourier transform, and this factor vanishes whenever 6 E Z). If instead we started with 
'lj; E W 1,P and then took a derivative such as D1'1/J, we would introduce zeros only on the single 
hyperplane 6 = 0 through the origin in Fourier space; we would also need to impose a Strang-Fix 
condition :(/; = 0 at the nonzero lattice points, to ensure that the '1/Jj,k span W 1,P by our results (like 
Corollary 8) and hence that their derivatives span LP. The upshot, though, is that when spanning 
by differences one needs :(/; to vanish on infinitely many hyperplanes, whereas when spanning by 
derivatives one only needs :(/; to vanish on one hyperplane and infinitely many lattice points. 

Of course in dimension d = 1 the two approaches are equivalent, because hyperplanes reduce to 
points. And anyway, differences can be more convenient to use than derivatives. 

Spanning by molecular and wavelet affine systems. The work of Gilbert et al. (15], and 
earlier Frazier and Jawerth [14], gives an affine spanning result in the homogeneous Sobolev space 
wm,p, 1 < p < oo. In particular, the result (15, Theorem 1.5] proves a frame decomposition using 
the full affine system { '1/J( ai x - bk) : j E Z, k E zd} provided 'lj; satisfies certain "molecular" decay 
and smoothness conditions. Hence the system spans wm,p. Strang-Fix conditions are not imposed. 
Unfortunately, [15, Theorem 1.5] holds only when the dilation step a is sufficiently close to 1 and 
the translation step bis sufficiently close to 0, depending on the synthesizer 'lj;. By contrast, in this 
paper our dilations and translations are independent of 'lj;. 

In a different direction, orthonormal wavelet systems { 'lj;(2i x - k) : j E Z, k E zd} that satisfy 
some smoothness and decay conditions are known to provide unconditional bases for Sobolev space 
(17, p. 312], and hence span Sobolev space. See (21] for recent developments. 

These molecular and wavelet results employ all the scales j E Z, and assume ,$(0) = 0. In 
contrast, this paper uses just the small scales j > 0 and assumes :(/;(O) =f 0. (The only generators 
with :(/;(O) = 0 in this paper are those resulting from Proposition 9 when spanning by derivatives, 
and from Theorem 10 when spanning by differences.) 

5. Open problems - the Gaussian and the Mexican hat 

Our work in this paper on Sobolev space, and our earlier work on LP in (5] and H 1 in [7], are 
motivated by Y. Meyer's unsolved "Mexican hat" problem. To describe it, consider now dyadic 
dilations aj = 2i in dimension d = 1, and for simplicity take b = 1 throughout this section. Write 
B(x) = (1 - x2)e-x

2
/
2 for the Mexican hat function (whose graph resembles a sombrero). 

Meyer [25, p. 137] asked: does the full Mexican hat system {Bj,k : j, k E Z} span LP for all 
1 < p < oo? (It cannot span all of L1 because the Mexican hat has integral zero.) The answer is 
Yes when p = 2, but the problem remains open for all other p-values. It is known that the Mexican 
hat system spans LP provided the translations are sufficiently oversampled [8], or the translations 
and dilations are both sufficiently oversampled (15]. 

We propose a different approach. The Mexican hat is the second derivative of the Gaussian 
-e-x

2 
/

2 , and so we wonder whether the Gaussian system spans Sobolev space. 

Conjecture 1. IJ'lj;(x) = e-x
2

/
2 then {'¢j,k: j > 0, k E Z} spans wm,p for each 1 :Sp< oo, m EN. 

If Conjecture 1 is true, then for all m E N, the mth derivative of the Gaussian 'lj; would generate 
a small scale system spanning LP, 1 < p < oo, by Proposition 9. In particular by taking m = 2, the 
small scale Mexican hat system {Bj,k : j > 0, k E Z} would span LP, answering Meyer's question. 
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Notice Conjecture 1 is true for m = 0 (the LP case), by [5, Corollary 2] or earlier by [12) 
for dyadic dilations. Also note Corollary 8 fails to· resdve the conjecture for m > 0, because 
the Fourier transform of the Gaussian vanishes nowhere and thus fails the Strang-Fix hypothesis 
Dµ:J;(P.b- 1) = 0 imposed in Corollary 8. 

Conjecture 1 must be approached with caution, because not every reasonable 'I/; generates a 
system that spans Sobolev space. For example the tent function '1/;(x) = 2x for x E (0, 1/2] and 
'¢(x) = 2 - 2x for x E [1/2, 1] does not generate a small scale dyadic spanning set for W 1·2 (1R), 
because if it did then '¢' = 2H would generate a small scale dyadic spanning set for L2 (1R) by 
Proposition 9, whereas spanning L2(JR) requires the full dyadic Haar system (involving j E Z and 
not just j > 0), by orthonormality. 

We expect such counterexamples to be nongeneric, but they do show that small scales alone will 
not always suffice to span Sobolev space, or LP. 

The second difference of the Gaussian. Although we cannot so far resolve the Mexican hat 
spanning problem for the second derivative of the Gaussian, we can easily resolve the analogous 
problem for the second difference of the Gaussian. With 'l/J(x) = e-x

2
/
2 being the Gaussian, write 

a(x) = '1/;(x + 1) - 2'1/;(x) + 'lj;(x - 1) = -LL1~1'1/;(x) 

for the symmetric second difference of the Gaussian with step size 1. As remarked above, the 
Gaussian system {'l/Jj,k : j > 0, k E Z} spans LP(JR) for 1 :::;; p < oo, and so the second difference 
system { O'j,k : j > 0, k E Z} spans LP(JR) for each 1 < p < oo, by two applications of Theorem 10 
with m = 0, c = 1. 

Figure 1 shows that the second difference a of the Gaussian and the second derivative () (the 
Mexican hat) behave very much the same way, in both time and frequency domains. 

y 

0 

-4 

I 
I 
I 
I 
I 
I 

0 4 

x 

2 

y 

0 

-0.8 0 0.8 

x 

FIGURE 1. Left: The second derivative B(x) and second difference a(x) of the 
Gaussian (solid and dashed curves, respectively), after normalization to 1 at x = 0. 
Right: Their Fourier transforms e(~) and&(~). 

Incidentally, the Mexican hat generates more than a spanning set for L2 (JR): it generates a dyadic 
frame by [11, p. 987] or [10, p. 264), meaning constants O < A :::;; B < oo exist such that 

All/II§ :::;; LL l(f, Bj,k)l2 
:::;; Bii/ii§ for all f E L2 (1R), 

jEZ kEZ 
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when aj = 2i. The second difference function O'( x) also generates a dyadic frame: by numtrically 
evaluating Casazza and Christensen's frame ..:l'iterion (see [9, Theorem 2.5], [10, Theorem .:.1.2.3]) 
we have obtained the estimate B / A ::::; 1.088 for the frame bounds, compared with B / A ::::; 1.095 for 
the Mexican hat. 

6. Discretized approximations to the identity 

The basic approximation results of the paper are developed in this section. The key object is an 
operator Ij[W, cp] that acts on functions h(x, y) by 

(Ij[W, cp]h)(x) = I det bl I; (lmd h(x, a;1y - x)cp(y - bk) dy) 'lj!(ajx - bk), 
kE'l.d lR 

j > 0. (10) 

Lemma 11 specifies properties of the synthesizer 'lj! and analyzer cp under which Ij is well defined. 
We will require h(x, y) to belong to the mixed-norm space 

L(p,oo) = {h: h is measurable on ]Rd x ]Rd and lihli(p,oo) < CXJ} 

where lihll(p,oo) = ess. supyEJRd Untd lh(x, y)IP dx )1IP. That is, llhll(p,oo) takes the LP norm of h with 
respect to x, and then the vx, norm with respect to y. 

For example if h(x, y) = f(x + y) and f E LP then h E L(p,oo) with llhll(p,oo) = llfllP' This choice 
of h yields lj[W, cp]h = fj, by comparing the definitions (1) and (10). Hence we call Ij a "discretized 
approximation to the identity" operator. 

Lemma 11. Assume 'lj! E LP for some 1::; p < CXJ, and that one of the following conditions holds: 

(i) Piwi E Lf
0
c, cp E L1, and h(x, y) = f[o,lJ f (x + ty) dw(t) for some f E Cc and some Borel 

probability measure w on [0, 1]; 
(ii) Q'I/J E L1, cp E Lq with cp having compact support, and h E L(p,oo). 

Then the series (10) defining Ij[W, cp]h converges pointwise absolutely a.e. to an LP function. The 
series further converges unconditionally in LP. And in case (ii} we obtain a stability estimate that 
is independent of j: 

(11) 

Remarks on Lemma 11. 
l. Case (i) assumes less about '1/J than case (ii) does, but on the other hand it assumes a special 

form for h, and it does not yield a stability estimate. 
2. The assumption Q'lj! E L1 in case (ii) lets us bound the values of '1/J at nearby points, so that 

we can estimate certain Riemann sums involving 'lj! with integrals involving Q'lj!. See (17) below. 
3. For h(x, y) = f(x + y), Lemma 11 and also Lemma 12 below were proved in our LP paper [5, 

Lemmas 1 and 2]. (The hypotheses there are stronger on the analyzer cp, but that matters little.) 
This special choice h(x, y) = f(x + y) yields a stability estimate in both cases (i) and (ii). 

See that paper [5] for an account of earlier literature with h(x, y) = f (x+y), such as di Guglielmo 
[16, p. 288]. 

Proof of Lemma 11. The integral fJR.d h(x, a;1y - x)cp(y - bk) dy occurring in the definition of Ij 
is well defined, because in case (i) h is bounded and cp E L1, and in case (ii) we see y 1-t h(x, y) 
belongs to Lf

0
c for almost every x and cp E Lq has compact support. 
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To start estimating Ij, notice 

l(Ij[VJ, ¢]h)(x)IP 5 (1 det bl L { d lh(x, a-;1y - x)ll¢(y - bk)I dy lw(ajX - bk)I) p 

kEZd j!R 

5 ldetbl L (fmd1h(x,a-;1y-x)ll¢(y-bk)ldy)p1w(ajX-bk)I (12) 
kEV JR 

. (1 det bl L lw(ajX - bk)l)p-l 
kEzd 

by Holder's inequality on the sum, when p > 1. (When p = 1 the last inequality is trivial.) 

Case (i). By applying Holder's inequality to they-integral in (12) we find 

l(Ii[W, ¢]h)(x)IP 

5 I det bl I: r lh(x, a-;1y - x)IPl¢(y - bk)I dy llfllf-1 lw(ajX - bk)l(Plwl(ajx))P-l. (13) 
kEZd }]Rd · 

After integrating (13) with respect to x and then substituting h(x, y) = fro,l] f(x + ty) dw(t) and 

making the changes of variable x t--t a-;1(x + bk) and y t--t y + bk, we deduce 

IIIj[W, ¢]hll~:;:; r r r Rj(X, Y, t) lw(x)l(Plwl(x))P-1 l¢(y)I dxdydw(t) 11¢11f-l (14) 
lro,11 }]Rd }]Rd 

where 

Rj(x, y, t) = I det a-;1bl L lf(a-;1(x +bk)+ ta-;1(y - x))IP. (15) 
kEZd 

We claim Rj is bounded, independently of x, y and t. For if we write w = a-;1x + ta-;1(y - x) and 

K = {k E '!J,d : a-;1bk E (spt f) - w }, then 

Rj(x, y, t) 5 I det a-;1bl · #K · llfll~ 
= 11!11~ · I ukEK a/b(k + C)I 

5 IIJII~ · l{z E JRd: dist(z, (spt f) - w) 5 diam(a-;1bC)}I 

= 11!11~ · l{z E JRd: dist(z,sptf) 5 diam(a-;1bC)}I, (16) 

which gives a bound on Rj that is uniform in x, y and t. 
Also¢ E £ 1 by hypothesis in case (i), and lwl(Plv,l)P-l E £ 1 because 

rd lwl(Plwl)p-l dx = 1 L lw(x - bk)l(Plwl(x - bk))p-l dx = I detbi- 1 IIPlwllJ1;,P(bC) < CXl. 

JIR bC kE7ld 

Therefore Ii [VJ, ¢]h belongs to LP by the estimate (14). 
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Case (ii). By using the compact support of¢ in the y-integrnl in (12), and then applying Holder's 
inequality, we fi11d 

l(Ij ['¢, ¢]h )(x )IP 

::::; I det bl L f lh(x, aj1Y - x)IP]_spt¢(Y - bk) dy 11¢11: l?/J(ajX - bk)IIIPl?/!111~1 

kEV j'dld 

::::; ldetbl L r lh(x,aj1y-x)IP].E(Y-bk)QE?/J(ajx-y)dy·IIPl'¢111~111¢11: (17) 
kEZd jffi:.d 

for almost every x, by Lemma 17 with f = ?/! and E = spt ¢, 

::::; r lh(x, -aj1Y)IPQE?/J(y) dy. IIP].ElloollPl?/!111~111¢11: by y t-+ ajX - y. 
Jffi:.d 

Integrating with respect to x gives the norm estimate 

IIIj[?/!, ¢]hll:::::; r llh(·) -aj1Y)ll:QE'¢(y) dy. IIP]_ElloollPl'¢111~111¢11: (18) 
lrn:d 

5 C(E) llhll(p,oo) IIQ'¢ll1 · IIPl?/JI 11~
1

11¢11:, 

using here that IIQE(·)lli 5 C(E)IIQ(·)ll1 by definition of QE in (64). Finally note IIPl'¢llloo 5 
CIIQ?/Jlli by Lemma 18. 

Thus we have proved estimate (11) in case (ii). 

Unconditional convergence. The series defining Ij ['¢, ¢]h converges unconditionally in LP, because 

i~oo L lldetbJ (lrndh(x,a-;-
1
y-x)¢(y-bk)dy) ?/J(ajx-bk)I =0 

lkl<".K ffi: 

in IJ> by dominated convergence (using the pointwise absolute convergence proved above). D 

The next lemma proves convergence properties of Ij[?/!, ¢] as j-, oo. 

Lemma 12. Assume'¢ E IJ> for some 1 ::::; p < oo, and that one of the following conditions holds: 

(i) Pl'¢1 E Lf
0
c, <p E L1, and h(x, y) = fto,lJ f(x + ty) dw(t) for some f E Cc and some Borel 

probability measure w on [O, 1]; 
(ii) Q?j! E L 1, <p E Lq with <p having compact support, and h E L(p,oo) with 

lim h(·,y) = h(·,O) in IJ>. (19) 
y->0 

Then (a)-(c) hold: 
(a) (Upper bound} 

limsu III·[?/! ¢]hll < llh(· 0)11 · {C(p)JIPl?/JIIILP(bC)ll</Jlll 
j->oop 1 

' P - ' P C(p,spt</J)IIQ'¢ll1ll</Jllq 

in case (i}, 

in case (ii). 

(b) (Constant periodization} If P'lj;(x) = frn:d ?j!(y) dy for almost every x, then 

Hm(Ij['¢,¢]h)(x)=h(x,O) { ?j!(y)dy { ¢(z)dz inLP. 
J->00 lrn:d lrn:d 

(c) (Scale averaging} If the dilations aj grow exponentially, then 

lim -
1
1 

t(Ii[?/J, ¢]h)(x) = h(x, O) { ?j!(y) dy { ¢(z) dz in LP. 
J-+oo . Jrn:d }ffi:.d 

J==l 
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Hypothesis (19) says that yr-> h(·, y) is continuous as a map ]Rd-) LP, at y = 0. 

Proof of Lemma 12. Observe Pl'I/JI E Lfoc' by hypothesis in case (i) and from Lemma 18 in case 
(ii). Integrating P\?fl over the period cell bC then shows ?f E L1. And the mean value of P'l/! equals 

1~1 l P?p(y) dy = 1 L ?f(Y - bk) dy = id '1/J(y) dy. 
bC bC kEZd JR 

Thus the bZd-periodic function g( x) = P'l/!( x )- JJRd ?f(Y) dy has mean value zero and belongs to Lfac· 
If the dilations aj grow exponentially then [5, Lemma 3] tells us that limJ__,00 J I:,f=l g(ajx) = 0 

in Lfoc' or 

Jim -
1
1 t P'l/J(ajx) = f '1/J(y) dy 

J---,oo }]Rd j=l 
in Lfoc· (22) 

(Formula (22) is the source of all scale averaging in this paper. It is a concrete version of Mazur's 
theorem, which says that the weak convergence g(ajx) -' 0 implies norm convergence of suitable 
convex combinations of the g(ajx).) 

With these preliminaries taken care of, we begin to prove parts (a)-(c). 

Part (a). Case (i). The estimate (16) implies that Rj is bounded by a constant independent 

of x, y, t and j, for all large j (using that a11 
-) 0). Note also Rj(x, y, t) -) fJRd IJ(z)IP dz as 

j -) oo, for each x, y, t (by interpreting the definition of Rj in (15) as a Riemann sum and using 
that f E Cc)· Thus we may apply dominated convergence to formula (14) to obtain that 

limsup\\Ij['l/!,</>]h\l~::; { { { { \f(z)\Pdz\?f(x)\(Pl'l/!l(x))P-l\<j>(y)\dxdydw(t)\l<l>llf-1
, 

j--->OO }[0,1] }]Rd }]Rd }]Rd 

which implies estimate (20). 

Case (ii). By dominated convergence, as j -) oo the righthand side of (18) approaches the limiting 
value fJRd llh(·, O)ll~QE'I/J(y) dy · IIP].E\loollPl'I/JI 11~1114>11~, because QE'l/J E L 1 and llh(·, y)llp E L00 

while h(·,y)-) h(·,O) in LP as y-) 0 by assumption (19). This proves (20) in case (ii), since we 
can now replace QE with Q like we did after (18). 

Before considering parts (b) and ( c) of the lemma, we prove (20) for a useful variant of h from 
case (i). 

Lemma 13. Assume 'Ip E LP for some 1 ::; p < oo, and that P\'1/JI E Lfoc> </> E L1, and h*(x, y) = 
f[o,iJ lf(x + ty) - J(x)\ dw(t) for some J E Cc and some Borel probability measure w on [O, l]. 

Then h*(x,0) = 0, and limj---,oo IIIj[W, </>]h*IIP = 0. 

Proof of Lemma 13. We have 

IIIj['I/J,</>]h*II~::; { { { R;(x,y,t)\'l/J(x)\(P\?f\(x))P-l\<j>(y)\dxdydw(t)\l<l>llf-1 (23) 
J[o,1] JJRd JJRd 

by applying (14) to h* instead of to h, where 

R;(x, y, t) = I det a-.;-1b\ L IJ(a1
1(x +bk)+ ta11(y - x)) - J(a11(x + bk))IP. 

kEV 

Clearly R;(x, y, t) is a Riemann type sum, converging pointwise to JJRd IJ(z) - f (z)IP dz = 0 as 
j-) oo, since f is continuous with compact support. And like in the proof of Lemma 12(a) in case 
(i), one finds R;(x, y, t) is bounded by a constant independent of x, y, t and j, for all large j. Thus 
dominated convergence applied to (23) gives IIIJ ['1/J, <j>l]h* !IP -) 0 as j -) oo. D 
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Now we return to proving Lemma 12. 

Parts (b) and ( c). Define 

H(x,y) = h(x,y)-:-h(x,O) E L(p,oo). 

Then the definition of Ij in (10) implies 

(Ij[VJ, </>]h)(x) = (Ij[VJ, cp]H)(x) + h(x, O)PVJ(ajx) f cp(z) dz. 
}Rd 

(24) 

Case (i). Suppose h(x, y) = J[o,l] f (x + ty) dw(t) for some f E Cc and some Borel probability 

measure w, so that H(x,y) = J[o,l](f(x + ty)- f(x)) dw(t). Then 

Hm Ij['l/J, cp]H = 0 in LP (25) 
J-+OO 

by Lemma 13, because IIj(VJ, cp]HI :::; Ij[l'l/JI, 1¢1Jh* pointwise. 
To prove part (b) of the lemma, observe if PVJ(x) = JRd VJ(Y) dy for almost every x that the 

desired limit (21) follows immediately from (25) and decomposition (24). 
For part ( c) we just use (25) and (24) and observe that 

1 J Im lim h(x, 0)-J L PVJ(ajx) = h(x, 0) VJ(Y) dy 
~00 ·1 ~ 

J= 

by the boundedness and compact support of h(x,0) = J(x) E Cc and using the Lf
0
c convergence of 

the periodizations in (22). 

Case (ii). In this case limj-+oo Ij[VJ, cp]H = 0 in LP by part (a) of the lemma, because HE L(p,oo) 
and H(·, y) - H(·, 0) = 0 as y - 0 by hypothesis (19). 

Hence part (b) of the lemma again follows from the decomposition (24). 
Part ( c) follows like in the proofof part (i) above when h(x, 0) is bounded with compact support. 

But we can reduce part (c) to this situation by the stability estimate lllj('l/J, cp]hllp :::; Cllhll(p,oo) 
(proved in Lemma 11, formula (11)) in conjunction with the following density argument. Given 
E > 0, choose h E Cc(lRd) with llh( ·, 0) - hi IP < E, and then define 

h ( ) _ {h(x) if IYI S E, 
e x,y -

h(x, y) otherwise. 

Then trivially limy-,O he(·, y) = he(·, 0) in LP, while 

llh - h,ll(p,oo) :::; max llh(·, y) - h(,, O)llp + llh(·, 0) - hllp - 0 
IY!::;e 

as E - 0. That is, we can approximate h arbitrarily closely in L(p,oo) by a function satisfying the 
same hypotheses ash but which is also bounded with compact support when y = 0. 0 

7. A preliminary result: Strang-Fix implies constant periodization 

Here we establish a lemma explaining Theorem l's hypotheses on the zeros of :(/;. Roughly, if the 
Fourier transform of VJ vanishes at every nonzero lattice point, and so do its derivatives up to order 
n*, then the moments of VJ up to order n* must all have constant periodization. 

Recall X(x) =xis the identity function, and x(x) = 1 + Ix!. 

Lemma 14. Take integers O:::; m* :::; m, 0:::; n* :::; n, and suppose VJ E wm,l with XnVJ(p) E L1 for 
all multiindices of order IPI = m*. 

(a) Then:(/; E Cn(JRd \ {O} ), and:(/; E cn(JRd) if xn'l/J E L1. 
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(b) If D"':($(eb-1) = 0 for all lal s n* and all row vectors e E '71.d \ {O}, then the periodization of 
(-X)"''ljJ(P) is constant for each lal Sn*, IPI = m*, with 

P((-X)"''ljJ(P))(x) = { (a~!p)! fJRd(-y)"'-P'ljJ(y) dy if a 2 ~' for almost every x. 
O otherwise, 

Proof of Lemma 14. Part (a). Suppose JaJ Sn and Jpl = m*. Then (-21riX)"''ljJ(P) is integrable by 

the assumption xn'I/J(p) E £ 1. So we can differentiate the transform ;j;}(f,) = JJRd'ljJ(Pl(x)e-21ri(xdx 

through the integral (J times, obtaining that 'ljJ(P) E cn(JRd) since a was arbitrary. But ;j;}(f,) = 
(21rif,)P:($(f,), and so ,J; has n continuous derivatives away from the set {f,: f,P = O}. By considering 
all pure multiindices (meaning p = (m*, 0, ... , 0) and so on) we deduce that :($ has n continuous 
derivatives away from the origin. 

Part (b). The periodization x f-+ P((21ri(-X))"''¢(Pl)(bx) is zd_periodic and is locally integrable. 
Its £-th Fourier coefficient is 

1 P((21ri(-X))"'¢(P))(bx)e-21riex dx 

= 1 'I: (21ri(-x + bk))"''ljJ(P)(x - bk)e-21rub-ix dx 
bC kEZd 

= { (-21rix)"'ljJ(P\x)e-21rub-lx dx 
}]Rd 

= Df r 'ljJ(P)(x)e-21ri(x dxl 
}Rd (=ib-1 

= Df(21rif,)P,J;"(f,)I (=ib-1 

by x f-+ b-1x and definition of P 

by x f-+ x + bk (26) 

by parts. This last expression is zero when Jal s n* and e E zd \ {O}, by the hypothesis on the 
zeros of:($ and its derivatives. Thus all the Fourier coefficients of P( (21ri( - X) )"' 'ljJ(P)) vanish except 
possibly the zeroth one, and so P( (21ri( - X) )"' 'ljJ(P)) is a constant function. 

This constant value is given by the e = 0 Fourier coefficient, which by (26) equals 

{ (-21rix)"''ljJ(P)(x)dx = {(21ri)laj(a~~)! JJRd(-x)"'-P'ljJ(x)dx 
}Rd O 

after integrating by parts p times. 

8. Proof of Theorem 1 

First we show the hypotheses of the theorem make sense. 

if a 2 p, 

otherwise, 

0 

To start with we show :J; E cm(JRd \ {O} ), so that D/J.:J;(eb-1) makes sense whenever lµJ s m 
and e -:f 0. So letµ be a multiindex of order JµJ Sm. We have Plxl/J.l'ljJ(µ.)J E Lf

0
c C L[oc (from 

hypothesis in case (i), and in case (ii) by using also Lemma 18). Hence xl/J.l'ljJ(µ.) E L1, so that 
'ljJ E wm,l. Lemma 14(a) with n* = n = m* = m now tells us that :J; E cm(JRd \ {O} ). 

Note also that xl/J.l'ljJ(µ.) E LP by Lemma 16. 
Next, 'ljJ E £ 1 by above, while cp E £ 1 from the hypotheses in cases (i) and (ii). Thus the 

normalizations on the integrals of 'ljJ and cp (in the statement of Theorem 1) do make sense. 
Now we commence the proof, by showing fj E wm,p. Fix a multiindex p of order 

r := IPI Sm. 
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If we formally take the derivative through the sum over kin the definition of Jj, in formula (1), we 
fir..d that 

(27) 

To make this rigorous, let h(x, y) = f(x + y) and notice the righthand side of equation (27) equals 
a;Ji ['lf;(P), c/>]h, which belongs to £P by Lemma 11. That lemma proves the sum over k in (27) 
converges pointwise absolutely a.e. to an LP function. Then it is straightforward to show DP fi 
exists weakly and is given by (27). Hence Ji E wm,p. 

Part ( d). In fact fi E wm,p _span { 'l/Jj,k : k E zd}, because the sum over k in (27) converges 
unconditionally in £P by Lemma 11. 

Parts (a)(b)(c). Our first step is to add and subtract an appropriate Taylor polynomial inside 
the formula (27) for DP fi. Specifically, we will show 

DP Ji = Mainj + Remj 

where 

Mainj(x) = L j(cr)~x) a;-5 L ((j) { y<T-'I' c/>(y) dy · P((-X)7' 'lf;(P))(ajx), (28) 
c,, T }Uld 

Jeri Sr r:S:cr 

Remj(x) = JdetbJ L (!md [f(a1
1y)- L f(cr~~x)(a1

1y-xf] c/>(y-bk)dy) a';'lf;(P)(ajx-bk), 
kEZd JR JcrJ:S:r 

(29) 

with s = Jal and with (~) = (~;) · · · (~!) being a product of binomial coefficients. To see this, 
substitute the binomial identity 

(aj 1y - x)<T = ajs L (;) (y - bkf-'l'(bk - ajxr 
r:S:cr 

into Remj(x), which leads to cancellation with all the terms in Mainj(x) and thereby reduces us 
back to the known formula (27) for DP Ji. 

Remainder term. We will show Remj --+ 0 in £P as j --+ oo. In fact we take absolute values in 
(29) and aim to show 

_lim JdetbJ L ( f hr(x,aj1y-x)Jy-ajxirlc/>(y-bk)ldy) l'l/J(p)(ajx-bk)I =0 (30) 
3-+oo kEZd jJRd 

in LP, where 

hr(x, y) = { jf (x + y) - I:JcrJ'.S;r t<"}x) ycrl/ JyJr when y =f O, 

O when y = 0. 

Taylor's formula with integral remainder enables us to rewrite 

hr(x,y) = r L _!,[j(cr}(x + ty) - l<Tl(x)]y<T dwr(t) I IYlr 
lro,1J Jcrl=r a· 

for almost every (x, y) E ]Rd x !Rd, where wr is the probability measure on [O, 1] defined by 

dw (t) = {r(l -w-1 
dt if r > o, 

T dth(t) if r = 0. 
18 
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Hence 

After putting hr :::; Hr and the estimate 

IY - ajxl :S IY - bkl + lbk - ajxl :S (1 + IY - bkl)(l + lbk - ajxl) 

into (30), we see it's enough to prove 

in LP 

where </Jr = lxr ¢!. 

(32) 

(33) 

(34) 

Our hypotheses on ¢ guarantee in case (i) that </Jr E L1, and in case (ii) that </Jr E Lq with 
compact support. Hence in case (i), the desired limit (34) follows from Lemma 13, because Hr has 
the form required of h* in that lemma and f(rr) E Cc, 

In case (ii), we see that (34) follows from Lemma 12(a) provided we show Hr E L(p,oo) and 
Hr(·, y) --t Hr(·, 0) = 0 in LP as y --t 0. But (32) implies 

IIHr(·, Y)llp :S L 1 ii/<"\+ ty) - f(cr) lip dwr(t) 
lrrl=r [O,l] 

--t O as y --t 0. 

(
which is :S 2 L !If<") IIP) 

lrrl=r 
(35) 

This completes our proof that the remainder term Remj vanishes in LP in the limit as j ---+ oo. 

Main term. Next we examine Mainj(x). Since lrl :::; la! :::; r = IPI, if either r < a or !al < r then 
0 :S Ir! < !Pl= r, and so 

(36) 

by Lemma 14(b) (with m* = n = r and n* = r - 1). It is here in Lemma 14 that we employ the 
Strang-Fix hypothesis (2) on the zeros of ;j;. 

Most terms in Mainj(x) vanish by (36). The ones that are left have !al = r and r = a, so that 
s = r and (~) = 1 and fntd y"-r ¢(y) dy = fntd <p dy = 1. Thus 

j(cr) (x) 
Mainj(x) = L -

1
-P((-X)"7jJ(P))(ajx). (37) 

a. 
irrl=r 

Proof of Part (c). Assume (ii) holds, in this part of the proof. Let O :S !Pl = r :::; m. Then 

l!Remj IIP :S lllj[lxr7/J(p)l,¢r]Hrllp by the estimates leading up to (34) 

:S C(7/J, <p,p) L lll")IIP by Lemma 11 and (35). 
lrrl=r 

And 

II Mainj !IP :S L 1il")IIPIIP((-X)"7/J(P))lloo by (37) 
lrrl=r 

'.SC L llf<")llpllQ((-X)"7jJ(P))ll1 by Lemma 18. 
lrrl=r 

Combining these two estimates and summing over !Pl = r gives the seminorm stability IJjlwr,p :::; 
C(7/J, ¢, r,p)lflwr,p, and then summing over r = 0, ... , m gives the norm stability llfjllwm,p < 
C(7/J, ¢, m,p)llfllwm.p. 
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- Proof of Parts (a) and (b). We need only consider f EC;;' when proving part (b): in case (i) we 
already assume f EC;;', and in case (ii) we can reduce to f EC;;' by the density of such functions 
in wm,p and the stability bound llfillwm,p::::; Cllfllwm.p proved in part (c). 

To prove parts (a) and (b), we will first show 

DPJ = Hm DPJj in LP if IPI < m and f E wm,p_ (38) 
J-+00 

Then to complete the approximation formula in (a) we will show that if the Strang-Fix hypothesis 
(2) holds for all multiindices of order ::::; m (not just < m), then 

DP f = _lim DP Jj in LP if IPI = m and f E wm,p. (39) 
J-+00 

To complete the approximation formula in (b) we will show ( if the dilations aj grow exponentially) 
that 

1 J 
DPJ = lim - LDPfi 

J-+oo J 
in LP if IPI = m and f E C'{;'. (40) 

j=l 

Proof of limits (38) and (39). For proving the first limit (38) we suppose lal = IPI = r < m. 
Then 

P((-X)a'lj;(P))(x) = {p! if a=~ 
O otherwise 

for almost every x, by Lemma 14(b) with m* = n = n* = r (and recalling JJRd 'ljJ dy = 1). Hence 
(37) simplifies to Mainj = DP f, meaning (38) follows immediately from our remainder estimate 
Remj -t 0. 

To prove the next limit (39), just apply the same reasoning with r = m. 

Proof of limit (40). To prove the third limit (40), suppose lal = IPI = r = m. Define the function 

{
P((-Xf 'lj;(P))/a! if a# p, 

ga;p = [P((-X)P'lj)(P))jp!J -1 if a= p, 

so that 9u;p E Lf
0

c is bZd-periodic. Then 

Mainj(x) = DPJ(x) + L lu)(x)ga;p(ajx), 
lul=m 

(41) 

by comparing with the expression (37) for Mainj(x). Each function ga;p has mean value zero, 
because 

lbCl-11 P((-Xt'lf;(P))dx= { (-Xt'lf;(P)dx= {p! ifa=~ 
bC }JRd O otherwise 

by parts, recalling lal = IPI· 
If the dilations aj grow exponentially, as assumed for ( 40), then (5, Lemma 3] applies to each 

9u;p and says that 

Then 
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because each j(u) is bounded and has compact support (recalling f EC;' for (40)). Hen~e 

1 J 
lim -

1 
""""'Mainj = DP f in £P ( 42) 

J->oo L....., 
j=l 

by (41). Combining (42) with Remj-+ 0, we deduce the limit (40). 

9. Proof of Theorem 4 

Our initial task is to show J; E wm,p. Fix a multiindex p with r := IPI :::; m. Like in Theorem 1, 
formally differentiating the definition (7) of f J yields that 

DPJ;(x) = ldetbl L f(a-;1bk)a';'if}Pl(ajx-bk). (43) 
kEZd 

The righthand side of this equation is exactly a';J;['i/J(P)J, where the temporary notation tn'if;(P)J 
denotes the function obtained by replacing 'if; with 'lj;(P) in the definition of J;. Now to show 
rigorously that JJ is weakly differentiable with derivative given by ( 43), it is enough (like in the 

proof of Theorem 1) to observe that the series defining f;['if;(P)J converges absolutely a.e. to an 

£P function, which it does by [5, Theorem 2(e) and its Remark 3]. Note 'lj;(P) does satisfy 'the 
hypotheses of [5, Theorem 2(e)], by using Lemma 18. 

Hence J; E wm,P. 

Part (d). In fact JJ E wm,p_span{'l/;j,k : k E zd}, because the sum over k in (43) converges 

unconditionally in LP, by [5, Theorem 2(e)] applied to 'lj;(P). 

Parts (a)(b). We will first show 

DPJ = lim DPJ8 
j->oo J 

in £P if IPI < m. (44) 

Then to complete the approximation formula in (a) we will show that if hypothesis (8) holds for 
all multiindices of order :Sm (not just < m), then 

DP f = lim DP JJ• in £P if IPI = m. (45) 
j->OO 

And to complete the proof of part (b) we will show (if the dilations aj grow exponentially) that 

1 J 
DPJ = lim - """"'DPJ8 in £P if IPI = m. (46) 

J->oo J L....., J 
j=l 

To begin with, we calculate from ( 43) that 

DP J; = Mainj + Rem; 

where 
f(ul(x) 

Mainj(x) = L a! P((-Xf'lj;(P))(ajx), 
iul=r 

Rem;(x) = I detbl L [f(a-; 1bk) - L 1<:~x) (a-;1bk - xr] a';'if;(P)(ajX - bk), 
kEZd !u!.::;r 

noting in this calculation that if lal < r then P((-Xf'lj;(P)) = 0 by Lemma 14(b) with m* = n = r 
and n* = r - 1. 
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In formulas ( 44) and ( 45) we have Mainj = DP f, as shown in the proof of (38) and (39) in the 
previous section. Thus for provi:lg ( 44) and ( 45), we have only to show Rem; --t O in LP. 

In formula (46) we can express Mainj as in (41), and 

1 J 

l"\x)1 L9a;p(ajx) --t O in LP as J --too 

j=l 

by Lemma 19, since Q(f(a)) E l.J'. Therefore (42) holds, and so to prove (46) we again have only 
to show Rem; --t O in LP. 

Remainder term. We will show Rem; --t O in LP as j --t oo. After taking absolute values inside 
Rem;(x), we would like to show 

Hm ldetbl L hr(x,a1
1bk-x)lbk-ajxir!1fJ(Pl(ajx-bk)I =0 

J->oo kEZd 

in l.J', where the function hr was defined in (31). Since hr :::; Hr by the Taylor remainder estimate 
(32), it suffices to prove 

_lim I det bl L Hr(x, a1
1bk - x) l(xr 1j.J(P))(ajx - bk)I = 0 in LP. (47) 

J->oo kEZd 

We will do this by comparing with the analogous limit that uses average rather than pointwise 
sampling. 

So let our analyzer be</>= :Il.i,c/lbCI and subtract the quantity Ij[lxr1fJ(P)l,¢]Hr from (47). This 
quantity tends to zero in l.J' as j --too by Lemma 12(a), observing Hr(·, y) --t Hr(·, 0) = 0 in LP as 

y --t 0. 
After performing the subtraction of Ij[lxr1fJ(P)l,</>]Hr from (47) and then taking absolute values, 

we see it would be enough to prove (whenever lal = IPI = r:::; m) that 

Hm ldetbl L r r ll"l(x+t(aj1bk-x))-l"l(x+t(aj1y-x))I dwr(t)</>(y-bk)dy 
J->oo kEZd }Rd j[O,l] 

· l(xr1fJ(P))(ajX - bk)I = 0 in LP. 

But </>(y - bk)# 0 if and only if y - bk E bC, in which case ia1
1bk - a1

1yl::::; lla11bllv'd. Therefore 
the last limit would follow from 

Hm ldetbl L r r (Sa-:-1bla))(x+t(a1 1y-x))dwr(t)¢(y-bk)dyl(xr1fJ(P))(ajx-bk)I =0 
J->oo kEZd }Rd j[0,1] ; 

in l.J', where the modulus of continuity operator S is defined in Appendix A. Thus our goal is now 
to prove 

in LP (48) 

where T;(x, y) = fro,iJ(Sa-;1bf(a))(x + ty) dwr(t). 
The stability estimate in Lemma 11 together with Minkowski's integral inequality implies that 

lllj[lxr 1/J(p) I, </>]Tj IIP :::; C( 1/J,p, r)IITj ll(p,oo) ::::; C(1j.J,p, r )IISa-:-1bla) IIP 
) 

(49) 

--, 0 as j --t oo 

by Lemma 20, which is valid since Qf(a) E LP and f(a) E C by hypothesis. This proves (48), 
completing our proof that Rem; --t O in LP. 

Part (c). The proof of Theorem l(c) shows 11 Mainj IIP:::; C(1j.J, m,p)llfllwm,p. 
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To get stabiiity of the remainder term Remj, it suffice& to show (in view of our proof above) i;hat 

IIJJ[lxrvi(p)l,<t>]Hrllp S C(VJ,r,p) ~ lll<T)llp, (50) 
\<T\=r 

IIJJ[lxrv,(P)j,cp]Tjllp S C(v,,r,p,amin) L IIQ(J(<T))llp· (51) 
\<T\=r 

The first inequality follows from Lemma 11 together with the estimate IIHrll(p,oo) S I:1<Tl=r 2IIJ(<T) IIP 
in (35), and the second inequality follows from (49) and the fact that 1lSa-:-1bJ(<T) lip S C(amin)IIQ J(<T) IIP 

) 

for all j > 0 by Lemma 20. 

10. Proof of Lemma 5. Examples. 

Notice¢ E cm and ;j; E cm-1, since Xm<P E £ 1 and Xm-lv, E £ 1. 
We adapt the reasoning in [30, p. 833] as follows. Let K = {k E zd: lk1l + · · · + lkdl Sm} and 

write B(~) = I;kEK f3ke21ri{k for a trigonometric polynomial with coefficients f3k to be determined 
later. After checking that 

f (-x)µw(x) dx = (27ri)-\µ\vµ(B(~b);f(~)) I , lµI Sm - 1, 
JJRd {=0 

we see the task for W in (9) is to choose B such that the derivatives of B(~b) agree up to order 
m - 1 at ~ = 0 with the derivatives of J(~)-1. In other words the derivatives of B(~) should agree 
with those of ;f(~b-1 )-1 up to order m - 1, at ~ = 0. This is true if we take 

B(~) = L Dt ( ;f(eb-1)-1) lo=o Pµ(~) 
\µ\::;m-1 

where 8 E ]Rd is regarded as a row vector and po(~) = 1 and where for O < jµI S m - 1 we write 
Pµ(~) for the unique polynomial of degree m - 1 jointly in e21ri(i, ... , e21ri{d such that 

D<Tp (0) = { l if (, = µ f 11 I I 1 
µ 0 otherwise or a (J' S m - · 

Then B ( ~) has the desired form I;kEK f3ke 21ri{k, and our coefficients f3k are determined. 
Argue similarly to construct <I>. 

Examples for Lemma 5. In special cases we can argue directly to construct <I> and W, rather than 
following the method of the proof above. Take b = I for simplicity, and fntd cp dx = fntd VJ dx = 1. 

1. Let m = 1. If cp(x) is even with respect to each component x;, then we can take <I> = cp and 
W = 'lj;, in Lemma 5. 

2. Let m = 2. If </>(x) and v,(x) are even with respect to each component x;, and ¢(x) is 
symmetric in x1, ... , xd, then in Lemma 5 we can take '1i = VJ and 

<I>(x) = ao<f>(x) - a1 L </>(x - k), 
k:\kl==l 

where lkloo := max1::;;::;d lx;I and 

We leave the reader to verify that (9) holds with m = 2. Notice 3d - 1 = #{k : lkl 00 = 1 }. 
In dimension d = 1 this construction reduces to <I>(x) = (1 + 2a1)<t>(x) - a1¢(x -1) - a1¢(x + 1) 

with a 1 = ! JIR x2¢(x) dx, provided cp is an even function of one variable. 
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11. Proof of Theorem 6 

Fix a multiindex p with r := IPI :S m - 1. 

Part (a). We decompose 

where 

Mainj(x) = L f(cr)~x) a;-s. P((-X)"w(P))(ajx), 
O". 

lcrl:O:m 

Remj(x)=ldetbl L (ld [f(a-;1y)- L f("~}x)(ai 1y-x)"] <I>(y-bk)dy) a1w(P)(ajx-bk), 
kEzd lcrl:'S:m 

and s = lul. These quantities are identical to Mainj and Remj in (28) and (29) (see the proof of 
Theorem 1) except that here we sum over lul :Sm instead of lal :Sr and we use the moment condi­
tions (9) on <I> to evaluate the moments fJR.d y"-r<I>(y) dy. Note that the periodization P((-X)"w(P)) 
occurring in Mainj is bounded, by the hypothesis that Q(xmw(P)) E L 1 and Lemma 18. 

Remainder term. We first show 

for all j > 0. (52) 

Now, Remj is bounded pointwise by 

where hm is defined by taking "r = m" in (31). And after using (33) to estimate IY - ajxl, we see 
that (53) is bounded by lajir-m times Ij[lxmw(p)I, <I>m]hm where <I>m = lxm<I>I, 

Hence (52) follows from 

for all j > 0, 

which holds by the stability estimate in Lemma 11 in view of the following observations. First, 
Q(xm'I/J(P)) E L 1 by hypothesis, which implies xmw(P) E L 1 n £ 00 c LP by Lemma 18 with "r = l". 
Second, </> E Lq has compact support and so <I> does too, so that <I>m E Lq with compact support. 
Third, hm E L(p,oo) with llhmll(p,oo) :S C(m,p)lflwm,p by (32) and (35) (with r changed tom). 

Main term. Next we simplify Mainj. Notice that DP{ii(eb-1) = 0 for all row vectors f E zd \ {0}, 
because the same is assumed for '1/1, in this theorem (recalling IPI = r :S m - 1). Hence 

P((-X)"w(P)) = {p! if a=~ 
O otherwrne 

whenever lal < m, 

by Lemma 14(b) applied to W (with n* = n = m - 1 and m* = r and with "m" in the lemma 
replaced by m - 1), using also here the moment condition ( 9) on W. 

Thus the only terms in Mainj that can make a nonzero contribution are those either with lo-I = m 
or else with lal < m and a = p. Hence 

j(cr)(x) 
Mainj(x) = j(P\x) + L ~a;-m · P((-X)"w(P))(ajx), 

lcrl=m 
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so that 

II Mainj -DP flip::; L IIJ(<T)llpllP((-Xf llJ(Pl)llooia;lr-m 
iul=m 

::; C('lf;, m,p)lflwm,plaiir-m. (54) 

By putting together (52) and (54) we get 

IIDPFj - DPJIIP::; C('lj;,¢,m,p)lflwm,plajir-m, 

which proves part (a) of the theorem. 

Part (b). Similar to part (a) we decompose 

where 

Rem;(x) = I det bl L [J(a;1bk) - L j(:~x) (a; 1bk - xr] a;w(Pl(ajX - bk). 
kEZd JuJ~m 

The term Mainj was estimated already in part (a), leading to (54). Hence to prove part (b) it 
suffices to show the remainder estimate 

IIRem;IIP::; C('lj;,m,p,amin) L IIQl11)llplailr-m for all j > 0. 

J<Tl=m 

Notice Rem; is bounded pointwise by 

I detbl L hm(x, a;1bk- x)lbk - ajx1m1w(Pl(ajX - bk)l · lailr-m. 
kEZd 

After using hm::; Hm like in (32), where Hm(x,y) = I:i<TJ=mfro,l] IJ(<Tl(x + ty) - j(<Tl(x)ldwm(t), 
we reduce the remainder estimate to showing 

I det bl L Hm(x, a;1bk - x) l(xmw(Pl)(ajX - bk)I 
kEV p 

_:::; C(w, m,p, amin) L IIQJ(<T)llp 
J<1J=m 

(55) 

for all j > 0. Next we let¢= n.bC/lbCI, and subtract and add the quantity Ij[lxm\Jf(P)I, ¢]Hm inside 
the IJ' norm on the left of (55). By reasoning like we did leading up to (48), we deduce (55) will 
follow once we verify 

lllj(lxmw(p)I, ¢]Hmllp::; C(\J!, m,p) L lli<T)llp, 
iuJ=m 

(56) 

11Ij[lxmw(P)l,¢]Tjllp::; C(w,m,p,amin) I: IIQi<T)llp, 
j<TJ=m 

(57) 

where Tj(x, y) = fro,iJ(Sa;1bj(<1))(x + ty) dwm(t), !al = m. But inequalities (56)-(57) are essentially 

the same as (50)-(51) except with r = m, and so they are proved already by the paragraph after 
(50)-(51). 
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12. Proof of Proposition g 

If f E wm,p then f can be approximated arbitrarily well in i,he wm,p_norm by linear combinations 
of functions in H. In the process, Dv f gets approximated arbitrarily well in the wm-lvl,P_norm by 
linear combinations of functions in DvH. 

Thus we need only prove that the collection {Dv f : f E wm,p} is dense in wm-lvl,P. The next 
lemma does this. Write S for the Schwartz class. 

Lemma 15. {DO" f: f ES} is dense in wn,p for all 1 < p < oo, n EN U {O} and multiindices a. 

Proof of Lemma 15. For a= 0, the claim is simply that the Schwartz class is dense in wn,p, which 
is well known. 

Now we use induction on a. The task is to show that if { Du f : f E S} is dense in wn,p for 
all 1 < p < oo, n EN U {0}, then the same is true for the multiindex a+ et for each t = 1, ... , d. 
Without loss of generality we can suppose t = 1, so that e1 = (1, 0, ... , 0). 

Let 1 < p < oo, n EN U {O}, and take u ES and c > 0. The induction hypothesis implies that 
llu - Du fllwn+l,p < c for some f ES. In particular, IID1 u - Du+e, fllwn,p < c. 

Thus we have only to show that {D1u: u ES} is dense in wn,p. Suppose to the contrary that it 
is not dense. Then by the Hahn-Banach theorem there exists a functional g E (wn,P)* \ {O} such 
that g[D1u] = 0 for all u ES. 

The functional g can be written as a sum of distributional derivatives, with g = I:lrl:5n crDr g,­
for some functions g,- E Lq, by the standard representation of the dual space (wn,P)* (see [1, 
Theorem 3.8]). Hence if 77 is a mollifier then the mollified distribution 

g(e) = 77e * g = L C,-c-lrl (Dr rJ)e * g,-

lrl:5n 

is a smooth function belonging to Lq, for each c > 0. 
We know D19<0

) = 770 * Dig = 0, because Dig = 0 as a distribution by construction above. 
Thus the function g<0

) is constant in the xi-direction. Since g<0
) is also Lq-integrable, it must be 

identically zero. Letting c --+ 0 gives g = 0 as a distribution, and hence by density of S we see 
g = 0 as a functional on wn,p. This contradicts the construction of g, completing the proof. 0 

13. Proof of Theorem 10 

Write z = bt.,. Clearly 

wm,p_span{7Pj,k: k E zd}::) wm,p_span{(.6.c,z1P)j,k : k E zd} (58) 

because 

.6.c,z'¢(ajX - bk)= '¢(ajx - bk) - c'ljJ(ajX - b(k + t.,)) (59) 

and k +"' E zd. 
To prove the reverse inclusion in (58), first consider the case le! < l. Temporarily fix k E zd. 

For n ~ 1, examine the linear combination 

n-1 n-1 

L ce(.6.c,z1P)j,k+Kf. = L /['¢J,k+1d - C"Pj,k+tc(l+l)J 
l=O l=O 

= 1PJ,k - cn'l/JJ,k+tcn 

--+ 'l/;j,k 

using (59) 

by telescoping 

in wm,p as n -too, 

because lei < l. Thus 1PJ,k belongs to the righthand side of (58), so that equality holds in (58). 
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Next consider lei> 1. (We will reduce to the case "lei < l" .) Notice 

!:::.c,z'l/J(x) = -c['l/J(x - bK,) - c-1'1/J(x)] 

= -c!:::.c-1,-z'1/J(x - bK,) 

and hence (!:::.c,z'1/J)j,k = -e(!:::.c-1,-z'1/J)j,k+1<· Thus 

wm,p_span{(!:::.c,z'lf)j,k: k E zd} = wm,p_span{(!:::.c-1,-z'lf)j,k: k E zd}. 

Since lc- 1
1 < 1, the previous case now implies equality in (58). 

We have handled all cases lei -I- 1. To complete the proof of the theorem, we now suppose 
1 < p < oo and lcl :::; 1. To show equality holds in (58), we take n 2:: 1 and examine the linear 
combination 

n-1 n-1 
~n-€ e ~n-€ e 
L, --C (!:::.c,z'1/J)j,k+i<i = L, --C ['1/Jj,k+i<i - c'I/Jj,k+i<(i+l)J 

n n 
i=O i=O 

n-1 n ~n-e e ~n-€+1 e 
= L, --c '1/Jj,k+l<i - L, c 'lfj,k+i<i 

i=O n i=l n 
1 n 

= 'ljJ. k - - ~ l'lj;. k+ i· 
J, n L, J, " 

i=l 

Thus to show that '1/Jj,k lies in the closed wm,p_span of {(!:::.c,z'1/J)j,k' : k' E zd}, we need only show 

1 n 

;;: I: l'l/;j,k+i<e - o 
i=l 

in wm,p as n-+ 00. (60) 

Take c > 0 and choose u E wm,p with compact support and satisfying 11'1/J(ajx)-u(ajx)Jlwm,p < 
claiJ-d/p (here we use that p < oo and j is fixed). Then 

for all n (using lei :::; 1). Thus for (60) it remains only to show limn--+oo !, I:~1 ceuj,k+,.e = 0 in 
wm,p whenever u E wm,p has compact support. 

We may further choose u to be supported in a set of the form y + bC for some y E !Rd (just 
by decomposing the original u into a finite sum of functions with such supports, by a partition of 
unity). Then the functions ui,k+l<i for e = 1, ... , n have disjoint supports, so that 

I
~ t luj,k+r.ell :::; ~nl/pllu(ajx)llwm,p 

i=l wm,p 
-+ 0 as n-+ oo, because p > 1. 

Acknowledgments 

Part of this paper was researched at the Institute for Mathematical Sciences, National University 
of Singapore, during the program on "Mathematics and Computation in Imaging Science and 
Information Processing" in 2004. We thank the IMS for its support. Also we thank Ilya Krishtal 
for stimulating discussions on frames and the Mexican hat function. 

27 



APP~NDIX A. The operators P, Q and S 

Throughout this appendix, we take f to be a measurable function on ]Rd i,hat is finite a.e. 

Lemma 16. If Plfl E Lf
0
c for some 1 Sp S oo, then f EV. 

Proof of Lemma 16. The result is clear when p = oo, because lf(x)I S I:kEZd lf(x - bk)I, 
Suppose 1 S p < oo, so that 

L lf(x - bk)IP S ( L lf(x - bk)l)P. 

Hence if PIJI E Lf
0
c then P(lflP) E Lfoc> which implies lflP E £ 1 or f EV. 

Recall the local supremum operator 

Qf(x) = ess. suply-xl<v'dlf(y)I = llfllL"°(B(x,v'd))' 

D 

where the choice of radius/dis convenient but not essential. Obviously OS Qf(x) S oo, and the 
function Q f is measurable because it is lower semicontinuous. 

Incidentally, the norm equivalence 

1 Sp S oo, 

is not difficult to show, where W(L00
, fP) is the Wiener amalgam space considered by Feichtinger 

and others (see e.g. (2], (3]). 
We prove Lemmas 2 and 3. 

Proof of Lemma 2. First we extend the decay condition (4) to all lower derivatives of 'lj;: 

l'l/J(µ)(x)I S C'lxl-d-1µ1-E for each lµI Sm and almost every x with lxl > R, (61) 

for some constant C' > 0. 
For this, it suffices by induction on (4) to show that if f E W1~·; and ID f(x)I S Clxi-n-l for 

almost every x with Ix!> R, for some constants C,n > 0, then lf(x)I S (C/n)lxl-n for almost 
every x with Ix! > R. The proof goes by radial integration: for almost every direction v E 3d-l, 

the function F(r) = f(rv) belongs to W1~}(0, oo), with IF(r)I S ft IDf(sv)I ds S (C/n)r-n for 
almost every r > R. 

The lemma will now follow once we prove 

f E Lf
0
c and lf(x)I S Clxl-d-E for almost all !xi > R ==> Plfl E Lfoc> (62) 

because when f = xlµl'lj;(µ) we know f E Lf
0
c (since 'lj; E wm,p) while lf(x)I S C1x1-d-E for almost 

all !xi> R by (61). 
To prove (62), write g = lilxl~Rf and h = lilxl>Rf, so that g + h = f. It is easy to show 

Plgl E Lf
0

c, because g E V has compact support. And h has a bounded radially decreasing L1 

majorant of the form C(l + lxl)-d-,, by construction, so that Plhl E L00 by a Riemann sum 
argument (see [5, Lemma A.2]). Therefore Plfl S Plgl + Pihl E Lfoc' which proves (62). D 

Proof of Lemma 3. We need only show that 

f E Lf':c and lf(x)I S Clxl-d-E for almost all !xi> R ==} Qf E L1, (63) 

because when f = xlµl'lj;(µ) we know f E Lf':c (since 'lj; E wm,oo) while hypothesis (4) ensures (61) 
and so lf(x)I ::; Clx1-d-, for almost all lxl > R. 

To prove (63), write f = g + h like in the previous proof. Then Qg E L1 because g is bounded 
with compact support, and Qh E L1 because h has a bounded radially decreasing L1 majorant ( cf. 
[6, Lemma 21]). Therefore Qf S Qg + Qh E L1. D 
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Next we derive pointwise relations for f and Q f. 

Lemma 17. We have Ill S Qf a.e. And if Eis a bounded set in JRd then 

lf(x)I S QEJ(y) := 

k:lkl <diam(E)+v'd 

for almost every (x, y) E ]Rd x ]Rd with x - y E E. 

Qf(y + k) (64) 

Proof of Lemma 17. Consider the set F = {x E ]Rd : Qf(x) < oo}, and the larger open set 
G = UxEFB(x, v1d) on which f is essentially locally bounded and hence locally integrable. The 
Lebesgue differentiation theorem implies that at almost every x E G, 

lf(x)I s limsup IE( 
1 

)I f if(y)I dy s Qf(x) 
c:--+0 x, € j B(x,c:) 

as we wanted. And if x (j. G then x (j. F, so that Qf(x) = oo ~ lf(x)I. 
Now suppose Eis a bounded set in :JRd, and y E JRd. Let x E G be a Lebesgue point for f such 

that x-y EE. Choose k E '7/.,d with x-y E k+C so that x E B(y+k, v1d) and lkl < diam(E)+ v!J. 
Then the Lebesgue differentiation theorem implies IJ(x)I S Qf(y+k). On the other hand, if x (j. G 
and x - y E E then choosing k as before shows that Qf(y + k) = oo (since otherwise y + k E F, 
which implies x E G). Either way, we have proved (64). D 

Now we prove norm relations between P and Q. 

Lemma 18. 

llfllq S IIQfllr for all 1 Sr Sq S oo, and 

IIPflloo S IIPlfllloo S CIIQflli, 

Proof of Lemma 18. We will show IIJll 00 S IIQ!llr for all 1 S r < oo, which proves the first 
inequality in the lemma for q = oo. Then for q < oo, 

lflq = lflq-rlflr S IIJll;;:;-rlQJir a.e. 

by Lemma 17, and so IIJllq S IIQ!llr as desired. 
To show llflloo S IIQfllr, suppose 1 Sr < oo (noting the case r = oo follows from Ill S Qf in 

Lemma 17). For each y E ]Rd, 

llf 11~ S :::t llf ll~""(B(y+k,vd)) 

S L IIJll~""(B(y+k,v,i)) 
kEZd 

= I: QJ(y+kr. 
kEZd 

Integrating over y EC gives llfll~ S IIQJII~, as we wanted. 
For the second inequality in the lemma, we have lf(x - bk)I S QEf(x - bk - y) for all k E zd 

and almost every (x, y) E JRd x Eby applying Lemma 17 with E = bC. For such x and y values, 

ldetbl-1PJJl(x) SL QEJ(x-bk-y). 
kEV 
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Integrating over y E bC yields that for almost C'TCfY x, 

Plfl(x):::; 1 L QEf(x - bk - y) dy 
bC kEZd 

by definition of QE in (64). 

= { QEf(x - y) dy = IIQEfll1:::; C(bC)IIQflli 
JJR_d 

0 

Next we investigate norm convergence of scale averages of rapidly oscillating functions, as used 
in the proof of Theorem 4. 

Lemma 19. Suppose that g E Lf
0

c (for some 1 :::; p < oo} is b'll.i-periodic with mean value zero. 
If the dilations aj grow exponentially and f E V with Q f E V, then 

1 J 
lim f(x)-

1 
~ g(ajx) = 0 in LP. 

J----,oo L...., 
j=l 

Proof. We have 
1 J 

lim -1 "g(ajx) = 0 in Lf
0

c (65) 
J----,oo L.., 

j=l 

by [5, Lemma 3]. And f E L00 by Lemma 18, since Qf EU'. 
Let R > 0 be arbitrary. Then 

J p J p 

r J(x)~ I:g(ajX) dx:::; 11f11~ r ~ I:g(ajx) dx 
j B(O,R) j=l j B(O,R) j=l 

- 0 as J--. oo, by (65). 

Furthermore, lf(x)I :::; Qf(k) for almost every x E k +CC B(k, v'd), by definition of Q. Thus for 
each J, 

J p J p 

r f(x)~ Lg(ajx) dx:::; L Qf(k)P r ~ Lg(ajx) dx 
jJR.d\B(O,R) j=l lkl>R-vd lk+C j=l 

:::; L Qf(k)P (~ t (1 lg(ajx)IP dx )l/p)P 
lkl>R-vd j=l k+C 

:::; L Qf(k)P (~ t (1ail-d 1 lg(x)IP dx)l/p)P 
lkl>R-vd j=l ai(k+C) 

< L Qf(k)P · Cll9lltP(bC) (66) 
lkl>R-vd 

since the mean value of the bZd-periodic function lg IP over the set aj(k+C) is bounded by a constant 
times its mean value over the period cell bC (see for example [6, Lemma 25); the constant C depends 
on minj>O lail). The expression (66) can be made as small as we like by choosing R sufficiently 
large, because I;kEZd Qf(k)P < oo as explained below. Letting R--. oo then proves the lemma. 

We have 
B(x, vd) C B(O, 2vd) c Ulel<3vJB(C, vd) whenever lxl < vd, 
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and translating these balls by k-x shows Qf(k)P ~ LieJ<JvdQJ(e+k -x)P. Integrating this over 
x E C and then summing over k gives that 

E Q 1 ( k )P ~ E 1 E Q 1 ( e + k - x )P dx 
kEZd kEZd C ifl<3vd 

E IIQJII~ < oo. 
JfJ<3vd 

D 

Our final lemma concerns the modulus of continuity function 

Saf(x) = IIJ(x) - f(·)IIL""(B(x,\la\lvd))' 
where a is a d x d matrix. 

Lemma 20. Let a be a d x d matrix, and 1 ~ p 5 oo. Then 

IISafllp 5 C(llal!)IIQfllw 
If Qf E IJ' and f is continuous, then Saf-+ 0 in Il' as llall -+ 0. 

Proof of Lemma 20. Let K(a) be a finite collection of lattice points in zd such that B(O, llalJv'd) C 

ukEK(a)B(k, v'd). Then 

Saf(x) ~ lf(x)I + IIJIIL""(B(x,\la\lvd)) ~ Qf(x) + I: Qf(x + k) a.e. 
kEK(a) 

because Ill 5 Qf a.e. by Lemma 17. Hence IISafllP 5 (1 + IK(a)l)IIQfllp· 
Now suppose Qf E IJ' and f is continuous. Then Saf(x) -+ 0 for each x as llall -+ 0, by definition 

of Saf, so that Saf-+ 0 in IJ' by dominated convergence (with dominating function IJI + Qf for 
all llall ::::; 1, since K(a) = {O} when llall 5 1). D 
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